Appendix 1 - System Manual

This appendix will describe how to use the systems of the project. Most of the attention is
directed toward the main system. How the two other systems, i.e. the merging subpopulations
system and the convolutional system, differs from the main system, will be explained toward
the end of this appendix.

1 Running the Main System

The program is written in Python 3, and requires the following non-standard libraries to
run:

e TensorFlow

e Matplotlib

o idx2numpy

The program consists of four program files:
e main.py

e genetic_algorithm.py

e neural_net.py

e ensemble.py

The program can be started with the command python3 main.py.

Two command line arguments can be specified with this command:

e -c ”configuration file” - specifies the file path to a configuration file where all system
parameters are set (see section 2 of this appendix)

e -r ”restore file” - specifies the file path to a restore file which allows a previous
non-completed run to be continued (see section 3 of this appendix)

If no configuration file is specified, default values are used instead (see section 2). If no
restore file is specified, the program will start running from the first generation.

Additionally, the system requires the dataset which the system will use for training to
be available. The relative file path to the datasets can be specified in the configuration file.

2 Configuration File of the Main System

The configuration file should be a text file. Its filepath is specified by the command line
argument described in section 1. Every parameter in the file must be on a separate line.
The syntax of each line should be as follows:

parameter name: value

If a line has an invalid parameter name, that line will simply be ignored. If it has an
invalid value, the program might crash, depending on what parameter and value it is.

2.1 Normal Parameters

Table 1 lists all parameters that might be specified in the configuration file, except those
used to restrict the search space (these are described in the next subsection).

2.2 Restrictions of the Search Space

Table 2 shows the parameters which can be set to restrict the search space. If a line is not
specified, no such restriction will be set. That means the default value of every restriction is
to not use any restrictions at all.

3 Output of the Main System

This section will briefly explain the output produced by the system.

The following is printed to the standard output stream while the system is running;:

e After every generation, information about the best nets are printed. The different
values printed for each individual represents the following, in that order: was the net
created in this generation, id, id of first parent, id of second parent, age, mutation,
topology, learning rate, learning rate decay, activation function, optimizer, cost function,
dropout probability, batch size, steps trained, accuracy on validation set, diversity
on validation set, scaled accuracy on validation set, scaled diversity on validation set,
fitness value.

e At the end of the system’s run, final results are printed. This includes validation and
testing accuracy for the best individual, as well as testing accuracy for the ensemble.
Also, if detailed results are set to be printed by that parameter in the configuration
file, the average diversity, average accuracy on the validation set, average accuracy on
the testing set, highest accuracy on the validation set, highest accuracy on the testing
set, and rate of new individuals for every generation will be printed, as well as the
distribution of what generation the individuals in the final population were created in.

Additionally, the system produces the following output:

Parameter Name

Description

Valid Values

Default Value

mnist, emnist,

Data set What dataset to use fashion_mnist, mnist
chess or yeast
Population size Size of the population Positive integers 10
Children per Number of new individuals that Positive integers, or ”same” same
generation will be created in every generation (same as the population size)
. Total traini ime f h e
Total time otal traiing tu.ne or eac Positive integers 150
neural network in seconds
Generations Number of generations Positive integers 10
Data case fraction Fraction of the dataset to be used in total Numbers in the range [0, 1] 1
To wh individual -
Age factor 0 what degree your.lge.r'lndlwdua ® Positive numbers 2
should be prioritized
Crossover rate The fraction of children which will Numbers in the range [0, 1] 0.5
be created by two parents
Random immigrant rate The fraction Of Chﬂ.dren Whl(.;h will be Numbers in the range [0, 1] 0.1
created as random immigrants without parents
Ratio of generations The fraction of generations in the .
with alpha=0 end where only accuracy will be considered Numbers in the range [0, 1] 0.25
Validation interval Steps. between each early StOpI.)H.lg test Positive integers 100
will be executed during training
Patience Steps b.efore training will be terminated if Positive integers 10000
no improvements have been found
Fraction of the validation set to .
PFC sample rate be used to calculate diversity Numbers in the range [0, 1] 1
T o Integers in the range
R N f oth 1 h 1 . _
PR individuls | oy it when eenlating divensity | 1 PopulationSize — 1], or all al
p & & Y| (all individuals will be used)
Fraction of the used dataset to be used
Early stopping fraction to evaluate the neural networks during training Numbers in the range [0, 1] 0.10
to determine early stopping
_— . Fraction of the used dataset to be used .
Validation fraction to evaluate the fitness of each individual Numbers in the range [0, 1] 0.20
. Fraction of the used dataset to be used .
Test fraction as an independent test set for final testing Numbers in the range [0, 1] 0-15
Maximum number of neural networks e
Max cpus to be trained in parallel Positive integers 20
. Maxi f individual e
Print length axuim number o 1nd1v1du§ s to be Positive integers 20
printed after each generation
Mnist path File path to where the MNIST dataset is stored File path strings munist/

Emnist path

File path to where the EMNIST dataset is stored

File path strings

emnist_balanced/

Fashion mnist path

File path to where the Fashion-
MNIST dataset is stored

File path strings

fashion_mnist/

Chess path

File path to where the chess dataset is stored

File path strings

chess/krkopt.data

Yeast path

File path to where the yeast dataset is stored

File path strings

yeast/yeast.txt

Results path

File path to where the results will be stored

File path strings

results.txt

Base name of the restore files
created after every generation

Stored path syntax (the full name will be the base followed Strings stored
by the generation number and ”.txt”)
. File path to the folder where the . .
Nets directory neural nets will be stored File path strings nets/
Print detailed results Whether detailed results will be printed Booleans true

when the system is done running

Table 1: Standard parameters

3

Parameter name

Valid values

Example

Restrict topology type

How the topology will be restricted.

Valid values are: exact (topology
will not be evolved), min_max
(topology is restricted by a
minimum and maximum number of
layers, and neurons per layer),
fixed layers_min_max (number of
layers are hardcoded, and for every
layer a minimum and maximum
number of neurons are set, which
might differ from layer to layer).

exact

Restrict topology exact

List of positive integers,
representing the topology if the
type is "exact”.

50, 20, 12]

Restrict topology min layers

Positive integer representing the
minimum number of hidden layers
if the type is ”"min_max”.

Restrict topology max layers

Positive integer representing the
maximum number of hidden layers
if the type is ”"min_max”.

Restrict topology min neurons

Positive integer representing the
minimum number of neurons in any
layer if the type is "min_max”.

Restrict topology max neurons

Positive integer representing the
maximum number of neurons in
any layer if the type is ”min_max”.

20

Restrict topology exact layers min
neurons

List of positive integers,
representing the minimum number
of neurons per layer if the type is
”fixed_layers_min_max”. The length
of the list represents the number of
layers.

20, 10, 10]

Restrict topology exact layers max
neurons

List of positive integers,
representing the maximum number
of neurons per layer if the type is
”fixed_layers_min_max”. The length
of the list represents the number of
layers.

[300, 75, 40]

Restrict activation function

List of activation functions to
be part of the search space.
Valid activation functions are:
sigmoid, tanh, softsign, relu,
leaky-relu, swish, selu, softplus.

2 7

["relu”, ”sigmoid”]

Restrict cost function

List of cost functions to be
part of the search space. Valid
cost functions are: mse,
cross_entropy, huber.

[77 mse77]

Restrict optimizer

List of optimizers to be part of
the search space. Valid
optimizers are: gd, adam,
adagrad, rmsprop, ftrl.

["adam”, "adagrad”]

Restrict learning rate

Tuple of two values that
represents the lower and upper
bound for the learning rate.

[0.01, 0.3]

Restrict learning rate factor

Tuple of two values that
represents the lower and upper
bound for the learning rate
decay.

[1e-08, 1e-05]

Restrict dropout prob

Tuple of two values that
represents the lower and upper
bound for the dropout
probability.

Restrict batch size

Tuple of two values that
represents the lower and upper
bound for the batch size.

Table 2: Restricting parameters

e The trained neural nets are saved in the folder specified in the configuration file, and
are removed when that individual is removed from the population. However, the nets
in the final population are kept when the system is done running.

e A restore file is created after each generation, named as specified in the configuration
file. This file contains all variable values required to restart the system run from this
generation, in case the run will be interrupted at a later point. The restore file from
the previous generation is automatically removed when the next one has been created.

e A results file is created after the final generation. It contains the same results as those
printed to the standard output stream after the final generation, as explained above.
Additionally, it contains information about all the individuals in the final population.

4 Merging Subpopulations System

The merging subpopulations system works in approximately the same way as the main
system, with the following exceptions:

e The system contains an additional program file, named ”super_population.py”, which
defines a class holding all the normal populations which the system creates.

e The configuration file has an additional parameter, with name ”Start populations”,
determining the number of populations in the first generations of the algorithm’s run.
There are some requirements to the value of this parameter, which has been explained
in the main report.

5 Convolutional System

The convolutional system also works in almost the same way as the main system, with the
following exceptions:

e The system contains an additional program file, named ”convnet.py”, which is used to
represent the topology of an individual.

e [t is not possible to restrict the topology through the configuration file, as the topology
is quite complex for this type of net. Such restrictions could of course have been
implemented, but this has not been the focus of the thesis as this is only a side system,
and because no tests with such restrictions have been conducted on this system.

