
Appendix 1 - System Manual

This appendix will describe how to use the systems of the project. Most of the attention is
directed toward the main system. How the two other systems, i.e. the merging subpopulations
system and the convolutional system, differs from the main system, will be explained toward
the end of this appendix.

1 Running the Main System

The program is written in Python 3, and requires the following non-standard libraries to
run:

• TensorFlow

• Matplotlib

• idx2numpy

The program consists of four program files:

• main.py

• genetic algorithm.py

• neural net.py

• ensemble.py

The program can be started with the command python3 main.py.

Two command line arguments can be specified with this command:

• -c ”configuration file” - specifies the file path to a configuration file where all system
parameters are set (see section 2 of this appendix)

• -r ”restore file” - specifies the file path to a restore file which allows a previous
non-completed run to be continued (see section 3 of this appendix)

If no configuration file is specified, default values are used instead (see section 2). If no
restore file is specified, the program will start running from the first generation.

Additionally, the system requires the dataset which the system will use for training to
be available. The relative file path to the datasets can be specified in the configuration file.

1



2 Configuration File of the Main System

The configuration file should be a text file. Its filepath is specified by the command line
argument described in section 1. Every parameter in the file must be on a separate line.
The syntax of each line should be as follows:

parameter name: value

If a line has an invalid parameter name, that line will simply be ignored. If it has an
invalid value, the program might crash, depending on what parameter and value it is.

2.1 Normal Parameters

Table 1 lists all parameters that might be specified in the configuration file, except those
used to restrict the search space (these are described in the next subsection).

2.2 Restrictions of the Search Space

Table 2 shows the parameters which can be set to restrict the search space. If a line is not
specified, no such restriction will be set. That means the default value of every restriction is
to not use any restrictions at all.

3 Output of the Main System

This section will briefly explain the output produced by the system.

The following is printed to the standard output stream while the system is running:

• After every generation, information about the best nets are printed. The different
values printed for each individual represents the following, in that order: was the net
created in this generation, id, id of first parent, id of second parent, age, mutation,
topology, learning rate, learning rate decay, activation function, optimizer, cost function,
dropout probability, batch size, steps trained, accuracy on validation set, diversity
on validation set, scaled accuracy on validation set, scaled diversity on validation set,
fitness value.

• At the end of the system’s run, final results are printed. This includes validation and
testing accuracy for the best individual, as well as testing accuracy for the ensemble.
Also, if detailed results are set to be printed by that parameter in the configuration
file, the average diversity, average accuracy on the validation set, average accuracy on
the testing set, highest accuracy on the validation set, highest accuracy on the testing
set, and rate of new individuals for every generation will be printed, as well as the
distribution of what generation the individuals in the final population were created in.

Additionally, the system produces the following output:

2



Parameter Name Description Valid Values Default Value

Data set What dataset to use
mnist, emnist,
fashion mnist,
chess or yeast

mnist

Population size Size of the population Positive integers 10
Children per
generation

Number of new individuals that
will be created in every generation

Positive integers, or ”same”
(same as the population size)

same

Total time
Total training time for each
neural network in seconds

Positive integers 150

Generations Number of generations Positive integers 10
Data case fraction Fraction of the dataset to be used in total Numbers in the range [0, 1] 1

Age factor
To what degree younger individuals

should be prioritized
Positive numbers 2

Crossover rate
The fraction of children which will

be created by two parents
Numbers in the range [0, 1] 0.5

Random immigrant rate
The fraction of children which will be

created as random immigrants without parents
Numbers in the range [0, 1] 0.1

Ratio of generations
with alpha=0

The fraction of generations in the
end where only accuracy will be considered

Numbers in the range [0, 1] 0.25

Validation interval
Steps between each early stopping test

will be executed during training
Positive integers 100

Patience
Steps before training will be terminated if

no improvements have been found
Positive integers 10000

PFC sample rate
Fraction of the validation set to

be used to calculate diversity
Numbers in the range [0, 1] 1

PFC individuals
Number of other individuals each individual

will be compared against when calculating diversity

Integers in the range
[1, PopulationSize− 1], or ”all”

(all individuals will be used)
all

Early stopping fraction
Fraction of the used dataset to be used

to evaluate the neural networks during training
to determine early stopping

Numbers in the range [0, 1] 0.10

Validation fraction
Fraction of the used dataset to be used
to evaluate the fitness of each individual

Numbers in the range [0, 1] 0.20

Test fraction
Fraction of the used dataset to be used

as an independent test set for final testing
Numbers in the range [0, 1] 0.15

Max cpus
Maximum number of neural networks

to be trained in parallel
Positive integers 20

Print length
Maximum number of individuals to be

printed after each generation
Positive integers 20

Mnist path File path to where the MNIST dataset is stored File path strings mnist/
Emnist path File path to where the EMNIST dataset is stored File path strings emnist balanced/

Fashion mnist path
File path to where the Fashion-

MNIST dataset is stored
File path strings fashion mnist/

Chess path File path to where the chess dataset is stored File path strings chess/krkopt.data
Yeast path File path to where the yeast dataset is stored File path strings yeast/yeast.txt

Results path File path to where the results will be stored File path strings results.txt

Stored path syntax

Base name of the restore files
created after every generation

(the full name will be the base followed
by the generation number and ”.txt”)

Strings stored

Nets directory
File path to the folder where the

neural nets will be stored
File path strings nets/

Print detailed results
Whether detailed results will be printed

when the system is done running
Booleans true

Table 1: Standard parameters
3



Parameter name Valid values Example

Restrict topology type How the topology will be restricted.
Valid values are: exact (topology
will not be evolved), min max
(topology is restricted by a
minimum and maximum number of
layers, and neurons per layer),
fixed layers min max (number of
layers are hardcoded, and for every
layer a minimum and maximum
number of neurons are set, which
might differ from layer to layer).

exact

Restrict topology exact List of positive integers,
representing the topology if the
type is ”exact”.

[50, 20, 12]

Restrict topology min layers Positive integer representing the
minimum number of hidden layers
if the type is ”min max”.

2

Restrict topology max layers Positive integer representing the
maximum number of hidden layers
if the type is ”min max”.

3

Restrict topology min neurons Positive integer representing the
minimum number of neurons in any
layer if the type is ”min max”.

5

Restrict topology max neurons Positive integer representing the
maximum number of neurons in
any layer if the type is ”min max”.

20

Restrict topology exact layers min
neurons

List of positive integers,
representing the minimum number
of neurons per layer if the type is
”fixed layers min max”. The length
of the list represents the number of
layers.

[20, 10, 10]

Restrict topology exact layers max
neurons

List of positive integers,
representing the maximum number
of neurons per layer if the type is
”fixed layers min max”. The length
of the list represents the number of
layers.

[300, 75, 40]

4



Restrict activation function List of activation functions to
be part of the search space.
Valid activation functions are:
sigmoid, tanh, softsign, relu,
leaky-relu, swish, selu, softplus.

[”relu”, ”sigmoid”]

Restrict cost function List of cost functions to be
part of the search space. Valid
cost functions are: mse,
cross entropy, huber.

[”mse”]

Restrict optimizer List of optimizers to be part of
the search space. Valid
optimizers are: gd, adam,
adagrad, rmsprop, ftrl.

[”adam”, ”adagrad”]

Restrict learning rate Tuple of two values that
represents the lower and upper
bound for the learning rate.

[0.01, 0.3]

Restrict learning rate factor Tuple of two values that
represents the lower and upper
bound for the learning rate
decay.

[1e-08, 1e-05]

Restrict dropout prob Tuple of two values that
represents the lower and upper
bound for the dropout
probability.

[0, 0]

Restrict batch size Tuple of two values that
represents the lower and upper
bound for the batch size.

[32, 128]

Table 2: Restricting parameters

5



• The trained neural nets are saved in the folder specified in the configuration file, and
are removed when that individual is removed from the population. However, the nets
in the final population are kept when the system is done running.

• A restore file is created after each generation, named as specified in the configuration
file. This file contains all variable values required to restart the system run from this
generation, in case the run will be interrupted at a later point. The restore file from
the previous generation is automatically removed when the next one has been created.

• A results file is created after the final generation. It contains the same results as those
printed to the standard output stream after the final generation, as explained above.
Additionally, it contains information about all the individuals in the final population.

4 Merging Subpopulations System

The merging subpopulations system works in approximately the same way as the main
system, with the following exceptions:

• The system contains an additional program file, named ”super population.py”, which
defines a class holding all the normal populations which the system creates.

• The configuration file has an additional parameter, with name ”Start populations”,
determining the number of populations in the first generations of the algorithm’s run.
There are some requirements to the value of this parameter, which has been explained
in the main report.

5 Convolutional System

The convolutional system also works in almost the same way as the main system, with the
following exceptions:

• The system contains an additional program file, named ”convnet.py”, which is used to
represent the topology of an individual.

• It is not possible to restrict the topology through the configuration file, as the topology
is quite complex for this type of net. Such restrictions could of course have been
implemented, but this has not been the focus of the thesis as this is only a side system,
and because no tests with such restrictions have been conducted on this system.

6


