
Appendix 3 - Complexity of Multi-Level Systems

This appendix will illustrate that the time complexity of a system grows exponentially
with respect to the number of levels it consists of. A level means a new learning algorithm
put on top of another to learn the hyperparameters of the algorithm on the level below. E.g.
a neuroevolution system contains two levels, where level 1 is neural networks, and level 2 is
genetic algorithms.

With only one level, that learning algorithm will only be run once. In practice, a system
is usually run more than one time, but per definition, it is assumed that the system as a
whole, and therefore also the top level algorithm, is only run once. The time complexity will
be:

Comp(d = 1) = Comp(a1)

Here, Comp is a function for the time complexity, d is the number of levels such a
multi-level algorithm contains, and ai is the algorithm used on level i. E.g. with only one
level, and this level being a neural network nn, the complexity is:

Comp(d = 1) = Comp(nn)

With two levels, the algorithm on level 2 will only be run once, while the algorithm on
level 1 will be run many times to create evaluation data for the level 2 algorithm. Generally,
the complexity will therefore be:

Comp(d = 2) = Comp(a1) · n1 + Comp(a2)

ni is the number of times the algorithm on level i is run per run of the algorithm on level
i + 1. For a neuroevolution system, with neural networks on level 1 and genetic algorithms
on level 2, the complexity becomes:

Comp(d = 2) = Comp(nn) · n1 + Comp(ga) = Comp(nn) · gens · nets + Comp(ga)
≈ Comp(nn) · gens · nets

Here, ga is the genetic algorithm, gens the number of generations, and nets the number
of nets created in each generation. n1 = gens · nets because this is the number of neural
networks which must be trained when running the genetic algorithm once. Comp(ga) can
be ignored, as the time used to run the genetic algorithm itself is much less than the time it
takes to train the neural networks.

1



In the same manner, the complexity of a system with three levels will be as follows:

Comp(d = 3) = (Comp(a1) · n1 + Comp(a2)) · n2 + Comp(a3)
= Comp(a1) · n1 · n2 + Comp(a2) · n2 + Comp(a3)

Generally, with d = x, the complexity is:

Comp(d = x) =
∑x

i=1Comp(ai) ·
∏x

j=i nj

nx is defined as 1 to simplify the formula.

If one assumes all ni are approximately equal, the formula can be simplified to:

Comp(d = x) =
∑x

i=1Comp(ai) · nx−i

Furthermore, by assuming the complexity of the different algorithms are approximately
equal, only the algorithm on level 1 will determine the overall complexity, as that one is run
the most number of times. Then the formula can be simplified further:

Comp(d = x) = Comp(a1) · nx−1

This shows what this appendix was trying to illustrate; that the time complexity grows
exponentially with respect to the number of levels the algorithm consists of (i.e. x).

2


