
M
aria H

ilm
o Jensen

D
etecting hateful utterances using an anom

aly detection approach

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Maria Hilmo Jensen

Detecting hateful utterances using an
anomaly detection approach

Master’s thesis in Computer Science

Supervisor: Heri Ramampiaro

June 2020

Maria Hilmo Jensen

Detecting hateful utterances using an
anomaly detection approach

Master’s thesis in Computer Science
Supervisor: Heri Ramampiaro
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract
Research on safety in social media has grown substantially in the last decade. With the
widespread use of online services and social media, it has become easy to disseminate
hateful messages. Freedom of speech is considered a human right in the Norwegian
society; however, several statutory restrictions are prohibiting discriminatory and hateful
statement. These posts are intended to be derogatory, humiliating or insulting, and are
defined as hate speech. Many online communities dedicate massive amounts of resources
towards the removal of such hateful contents, but the methods often rely on manual
effort. A manual approach scales poorly, and for hate speech detection to be practically
feasible, there is a need for systems that can automatically detect hateful expressions.
Such automatic detection is a challenging task, and the majority of the research in the
field is targeting the task using text classification approaches. However, despite the
emerging scientific studies using these approaches, state-of-the-art solutions still suffer
many drawbacks. This thesis explores the effects of re-phrasing the problem of hate
speech detection by re-conceptualising hate speech detection as anomaly detection. Hence,
this research aims at discovering if the problem can rightfully be considered an anomaly
detection problem. Moreover, most of the existing methods use English datasets, so
an enduring challenge in the research field is the lack of methods performing well on
non-English datasets. Therefore, this thesis also investigates the possibility of creating a
system that is language-independent.

A thorough literature review related to hate speech detection and anomaly detection
was conducted to attain valuable insights. Based on the obtained knowledge, a deep
semi-supervised anomaly detection approach to hate speech detection was proposed,
which is based on the principle of entropy minimisation and consists of pre-trained
Word Embeddings and a Convolutional Neural Network. Additionally, a Norwegian
dataset, including a representative selection of topics, was collected and annotated. This
dataset is a major contribution to the field of hate speech detection in Norwegian since
an annotated baseline dataset did not previously exist. The developed system was
used for experimentation with both an English and Norwegian dataset, and it achieved
relatively good performance using both datasets. Utilising anomaly detection systems
have several advantages over regular classification algorithms, such as not assuming
similarities between the hateful content and being more suited for handling a real-scenario
distribution between neutral and hateful content online. This indicates that using an
anomaly detection approach might solve several persistent issues in the research field.
The findings from this thesis suggest a huge potential for detecting hateful utterances
using anomaly detection techniques, but it is still necessary to conduct more research for
the system to be practically usable.

i

Sammendrag
Forskning på sikkerhet i sosiale medier har vokst betydelig det siste tiåret. Med den
utbredte bruken av nettbaserte tjenester og sosiale medier, har det blitt enkelt å spre
hatefulle meldinger. Selv om ytringsfrihet anses som en menneskerettighet i det norske
samfunn, er det flere lovbestemte begrensninger som forbyr diskriminerende og hatefulle
uttalelser. Slikt innhold er med hensikt nedsettende, ydmykende eller fornærmende, og er
definert som hatefulle ytringer. Mange nettmiljøer dedikerer enorme mengder ressurser
til fjerning av slikt hatefullt innhold, men metodene er ofte avhengige av manuelt arbeid.
En slik manuell tilnærming skalerer dårlig, og for at deteksjon av hatefulle ytringer skal
være mulig i praksis, er det behov for systemer som automatisk kan oppdage hatytringer.
Slik automatisk deteksjon er en utfordrende oppgave, og det meste av relevant forskning
prøver å løse problemet ved å ta i bruk metoder for tekstklassifisering. Til tross for
de fleste vitenskapelige studiene bruker disse tilnærmingene, har de fremdeles mange
problemer og ulemper. Derfor undersøker denne oppgaven virkningene av å konseptualisere
deteksjon av hatefulle ytringer som anomalideteksjon. På denne måten utgjør hatefulle
ytringer en avvikende variant av vanlig tale. Denne forskningen har altså som mål å
avgjøre om problemet rettmessig kan betraktes som et anomalideteksjonsproblem. Videre
bruker de fleste eksisterende metoder engelske datasett, så en varig utfordring innenfor
forskningsfeltet er mangelen på metoder som gir gode resultater på ikke-engelske datasett.
Derfor undersøker denne oppgaven også muligheten for å lage et språkuavhengig system.

For å oppnå verdifull innsikt ble en grundig litteraturgjennomgang relatert til både
deteksjon av hatefulle ytringer og anomalideteksjon utført. Basert på den innhentede
kunnskapen ble det foreslått en dyp anomalideteksjonsmetode basert på delvis veiledet
læring til deteksjon av hatefulle ytringer. Metoden er basert på prinsippet om entropi-
minimering og består av forhåndstrente ord-vektorer og et konvolusjonelt nevralt nett
(CNN). I tillegg ble det samlet og annotert et norsk datasett, bestående av et repre-
sentativt utvalg av emner. Dette datasettet er et stort bidrag til forskningsfeltet som
omhandler deteksjon av hatefulle ytringer på norsk, ettersom et slikt annotert datasett
ikke eksisterte. Det utviklede systemet ble brukt til eksperimentering med både et engelsk
og norsk datasett, og det oppnådde relativt god ytelse ved bruk av begge datasettene.
Å benytte anomalideteksjonssystemer har flere fordeler sammenlignet med tradisjonelle
klassifiseringsalgoritmer. For eksempel antar de ikke likheter mellom det ulike hatefulle
innholdet og de er mer egnet for å håndtere en reell fordeling mellom nøytralt og hatefullt
innhold på nett. Dette indikerer at bruk av en anomalideteksjontilnærming kan løse flere
vedvarende problemer i forskningsfeltet. Funnene fra denne oppgaven antyder et enormt
potensial for å oppdage hatefulle ytringer ved bruk av anomalideteksjonsteknikker, men
det er fremdeles nødvendig å utføre videre forskning for at systemet skal være praktisk
anvendelig.

ii

Preface
This Master’s Thesis was written by Maria Hilmo Jensen in the Spring of 2020, as a
part of the Master of Science degree in Computer Science at the Norwegian University of
Science and Technology (NTNU) in Trondheim, Norway. I want to thank my supervisor
Herindrasana Ramampiaro for all guidance, discussions and help throughout the semester.
Moreover, I would like to express my appreciation to Tora Seim Gunstad and Marie
Andreassen Svanes for good collaboration on the specialisation project and the collection
of the dataset, as well as for interesting discussions on the topic.

I also want to express my deepest gratitude to fellow students, friends and family that
agreed to help with the annotation of the collected Norwegian dataset. Furthermore, I
would like to thank Lukas Ruff at TU Berlin for help and inspiration.

Maria Hilmo Jensen

Trondheim, 13th June 2020

iii

Contents
1. Introduction 1

1.1. Background and motivation . 1
1.2. Goals and research questions . 3
1.3. Research method and environment . 4
1.4. Contributions . 5
1.5. Thesis structure . 5

2. Background Theory 7
2.1. Definition of hate speech . 7
2.2. Machine learning . 9

2.2.1. Learning algorithms . 9
2.2.2. Classical methods . 10

2.3. Anomaly detection . 11
2.3.1. Definition . 11
2.3.2. Approaches and algorithms . 13
2.3.3. Detecting anomalies in text . 14
2.3.4. Challenges . 15

2.4. Deep learning . 17
2.4.1. Artificial neural networks . 17
2.4.2. Recurrent neural network . 19
2.4.3. Convolutional neural network . 20
2.4.4. Autoencoders . 21
2.4.5. Attention . 21

2.5. Natural language processing . 22
2.5.1. Textual preprocessing . 22
2.5.2. Text representation . 24

2.6. Evaluation methodologies . 27
2.6.1. Techniques . 27
2.6.2. Metrics . 28
2.6.3. Inter-annotator agreement metrics 30

2.7. Tools and libraries . 32

3. Related Work 33
3.1. Hate speech detection . 33
3.2. Existing data collections . 34
3.3. Anomaly detection . 36

v

Contents

3.4. Features in hate speech detection . 39
3.5. Classification methods . 42
3.6. Hate speech detection for non-English languages 45
3.7. Summary . 46

4. Preparation of Data Collection 51
4.1. Collecting data . 51

4.1.1. Preprocessing . 53
4.2. Annotation procedure . 54

4.2.1. User-based annotation . 54
4.2.2. Guidelines . 55
4.2.3. Inter-annotator agreement . 57

4.3. Challenges . 61
4.3.1. Annotation . 62
4.3.2. Language issues . 62

5. The ADAHS Approach 65
5.1. Text preprocessing . 65

5.1.1. Semi-supervised setting . 67
5.2. Model architecture . 67
5.3. System functionality . 70

5.3.1. Optimisation and regularisation . 71

6. Experiments and Results 73
6.1. Experimental plan . 73
6.2. Experimental setup . 75

6.2.1. Datasets . 75
6.2.2. Semi-supervised setup . 78
6.2.3. Configurations and hyperparameters 79
6.2.4. Evaluation methodology . 80

6.3. Experimental results . 81
6.3.1. Results using the English dataset 82
6.3.2. Results using the Norwegian dataset 87
6.3.3. Results from the baseline methods 91

7. Evaluation and Discussion 93
7.1. Evaluation . 93

7.1.1. General trends and observations 93
7.1.2. Results using the English dataset 95
7.1.3. Results using the Norwegian dataset 101

7.2. Discussion . 107
7.2.1. Overall performance . 107
7.2.2. Advantages . 110
7.2.3. Disadvantages and challenges . 112

vi

Contents

7.2.4. Improvements . 114
7.2.5. Language independence . 115
7.2.6. Dataset annotation . 116
7.2.7. Revisiting the research questions 117

8. Conclusion and Future Work 121
8.1. Conclusion . 121
8.2. Contributions . 122
8.3. Future Work . 123

Bibliography 127

Appendices 135

A. Additional Experimental Results 135
A.1. Results using the English dataset . 135
A.2. Results using the Norwegian dataset . 142

B. Annotation Guidelines 145

C. Collecting Social Media Content 151
C.1. Twitter search words . 151
C.2. Facebook . 151

C.2.1. Sites and posts . 151
C.2.2. Names . 152

vii

List of Figures

2.1. A feed-forward network architecture . 18
2.2. A simplified architecture of a convolutional neural network 20
2.3. A usual text preprocessing pipeline . 22
2.4. Word n-gram representation . 26

5.1. An overview of the system architecture . 67
5.2. All the layers in the neural network model 69
5.3. A detailed illustration of the CNN architecture 70

6.1. The distribution of comments in each category in the Norwegian dataset . 77
6.2. Loss and validation AUC for the English dataset 84
6.3. The ROC curve and Precision-Recall curve for the English dataset 84
6.4. Histograms of the anomaly scores for the English dataset 85
6.5. Loss and validation AUC for the Norwegian dataset 88
6.6. The ROC curve and Precision-Recall curve for the Norwegian dataset . . 88
6.7. Histograms of the anomaly scores for the Norwegian dataset 89

7.1. Confusion matrices for the English dataset 99
7.2. Confusion matrices for the Norwegian dataset 104

A.1. Validation AUCs for the English dataset in the unsupervised setting . . . 139
A.2. Validation AUCs for the English dataset in the normal setting 140
A.3. Additional confusion matrices for the English dataset 141
A.4. Additional confusion matrices for the Norwegian dataset 144

ix

List of Tables

2.1. The interpretation of the kappa coefficient 31

3.1. Features in hate speech detection . 41
3.2. Overview of related approaches . 47

4.1. Pairwise utterance coherence between the annotators 58
4.2. The number of comments in each category labelled by the annotators . . 58
4.3. Hateful comments categorised by at least one annotator 59
4.4. Percentage agreement between each pair of annotators 60
4.5. Calculated inter-annotator metrics . 60
4.6. Additional calculated inter-annotator metrics 61

6.1. Two random samples from the English dataset 75
6.2. The number of comments in each category in the English dataset 76
6.3. The number of neutral and hateful comments in the English dataset . . . 76
6.4. The number of comments in the annotated Norwegian dataset 77
6.5. Preprocessed combined annotated Norwegian dataset 78
6.6. AUC scores from testing hyperparameter values 82
6.8. AUC scores of the experiments on test 1 with the English dataset 83
6.9. Classification metrics using the English dataset 86
6.10. AUC scores of the experiments on test 2 with the English dataset 86
6.11. AUC scores for different values of η using the Norwegian dataset 87
6.12. AUC scores of the experiments on test 1 with the Norwegian dataset . . . 87
6.13. Classification metrics using the Norwegian dataset 90
6.14. AUC scores of the experiments on test 2 with the Norwegian dataset . . . 90
6.15. AUC scores for the experiments with OC-SVM on both datasets 91
6.16. AUC scores for the experiments with CVDD model on both datasets . . . 92

A.1. Results without decreasing normal samples in the English dataset 136
A.2. Comparison between the two approaches on the English dataset 137
A.3. Results with and without network bias terms 138
A.4. Alternative results from test 1 with the Norwegian dataset 142
A.5. Alternative results from test 2 with the Norwegian dataset 142
A.6. Comparison between the two approaches on the Norwegian dataset 143

B.1. Annotation guidelines . 146

xi

1. Introduction

The rise of social media and digital platforms has contributed to more people using their
freedom of speech to participate in public debates, which is a positive factor for democratic
participation. However, it is apparent that the debate is becoming increasingly polarised
where thoughts and ideas based on hatred and fear are spread fast to many people via
social media. The debate about hate speech has been central in recent years, and there
has been an increasing legal pressure to remove this content from digital platforms. Even
though hate speech is commonly defined as abusive language that targets specific group
characteristics, it still does not have a formal definition. This makes it harder to moderate
and detect hateful comments, and thus challenging to annotate new data. Despite that
there is no general agreement on what expressions should be considered hateful, or what
the limits of freedom of speech should apply to, there is still a broad consensus that
hateful expressions are a significant societal problem. Hate speech keeps prejudice alive
and deprives people of their dignity. Furthermore, repetitive hate speech may lead to a
normalisation of negative attitudes in the population towards particular groups, which
can lead to increased discrimination, harassment and violence towards people of these
groups (Veledar, 2018). Hence, the work against hate speech is an essential contribution
to the work for equality. This thesis focuses on the detection of hate speech in social
media using anomaly detection approaches. It includes both an extensive literature
review, a collection and annotation of a Norwegian dataset and a series of experiments.

1.1. Background and motivation
Freedom of speech is considered a human right and is a mainstay in the Norwegian
society. However, there are several statutory restrictions prohibiting threats, defamation,
harassment and various discriminatory and hateful statements (Elden et al., 2018).
Despite this, it appears as if the threshold for writing hateful utterances online is lower
due to anonymity and lack of supervision. Technology giants such as Facebook, Twitter
and Google spend enormous amounts of resources on moderation, and they are still not
able to reach a satisfactory level of moderation. The process of manual moderation is
becoming increasingly time-consuming for human annotators due to information overflow,
and automation of hate speech detection would thus allow earlier detection of harmful
situations.

Previous studies focus mainly on dataset construction, text classification and automatic
identification of hateful language. In later studies, many state-of-the-art approaches use

1

1. Introduction

word embeddings, often in combination with deep learning methods (Badjatiya et al.,
2017; Zhong et al., 2016). A commonality for most of these studies is that they use
text classification approaches and collect and label their own data, due to the lack of a
standard corpus. Even though there is an abundance of research going on within the field,
there are still some challenges. While the methods perform relatively well when presented,
Gröndahl et al. (2018) found that several methods achieved poor performance when they
were trained on one dataset and tested against another. The classifiers typically assume
that similar data are likely to be a part of the same class, which does not necessarily
hold for the hateful contents. Additionally, text classification systems require a balanced
dataset to perform sufficiently. However, in a real-life scenario, the hateful statements
only account for a small fraction of the total amount of data. This stresses the need
for a system that can handle this drastic imbalance, and hence function efficiently on a
dataset that represents real-life data. Creating a system that does not rely on a fully
labelled dataset may also make it easier to utilise for several platforms, which may have
access to a considerable amount of unlabelled data. Hence, this thesis explores the idea
suggested by Gröndahl et al. (2018), to re-phrase the problem of hate speech detection by
re-conceptualising hate speech detection as anomaly detection (AD), where hate speech
constitutes an anomalous variant of ordinary speech. This concept is similar to how the
common reader may perceive hate speech. To the best of our knowledge, there exist no
methods that explore this idea.

Nobata et al. (2016) stated that abusive language evolves with time since people create new
slurs and inventive ways to avoid being detected. For a regular classification model, this
involves that the hateful content no longer fits into its assigned class. When using anomaly
detection approaches, one does not assume similarities between the abnormal/hateful
data. This is a major advantage compared to the classification algorithms, and AD
methods might, therefore, be better suited to handle these language changes. This is a
motivating factor for re-phrasing the problem.

Even though hate speech detection has previously only been considered a supervised
learning problem, there exists no benchmark labelled dataset for this purpose, and the
labelling of a large enough dataset is a very time-consuming process. One might not
have a large labelled dataset, but one might have access to a small amount of labelled
data verified as either neutral or hateful. An advantage would be to utilise these labelled
samples in addition to the large portion of unlabelled samples. Anomaly detection is
usually treated as an unsupervised learning problem, but semi-supervised approaches
to AD aim to utilise such labelled samples. Therefore, this thesis intends to use semi-
supervised learning in order to facilitate the utilisation of large amounts of unlabelled
data.

Another challenge in the field is that most studies are conducted in English, which results
in inadequate hate speech detection methods in other languages such as Norwegian. This
is highly motivating for research in the field of Norwegian hate speech and collecting a
standard Norwegian corpus.

2

1.2. Goals and research questions

1.2. Goals and research questions

This section presents the overall goal and proposed research questions for this thesis. The
goal of this thesis is to conduct further research in the field of hate speech detection and
apply anomaly detection techniques to separate hateful and neutral utterances. Based
on this, the overall goal was formulated as follows:

Goal Investigate how to accurately detect hate speech in text using anomaly detection
techniques.

Using anomaly detection techniques to detect hateful utterances are not yet explored.
Hence, the work of this thesis aims at discovering if anomaly detection techniques can
be applied to solve the problem of hate speech detection and thus if the problem can
rightfully be considered an anomaly detection problem.

The following research question is formulated in order to achieve the main goal:

Research question How can effective hate speech detection be achieved by applying
anomaly detection?

It is desirable to discover if there exists a potential for using anomaly detection approaches
to detect hate speech. The objectives of this work are set to be achieved through practical
experiments with a developed anomaly detection method, as well as a theoretical literature
study, including relevant research in the field of hate speech detection and anomaly
detection. The main research question proposed is a question formulated based on the
overall goal, and can be decomposed into the following sub-questions:

Research question 1 Which principles and models are effective when using anomaly
detection on textual data?

In order to develop an anomaly detection model that can detect hateful utterances, it
is necessary to determine which principles, techniques and models to utilise. In order
to gain insights into how to best make these choices, an extensive literature review is
conducted. This study contains reviews of previous research within the field of anomaly
detection, as well as in the field of hate speech detection. The findings are evaluated
comprehensively to obtain valuable knowledge which is then used to determine which
principles and what model to implement.

Research question 2 Would a semi-supervised deep learning model for anomaly detection
be effective at correctly determining hateful social media comments?

Since it would be advantageous to be able to utilise unlabelled data, as well as a smaller
part of labelled data, it is desirable to implement an anomaly detection model that uses
semi-supervised learning. This implemented model is then applied to the task of detecting
hate speech through a series of experiments. The experiments investigate the anomaly
detection method’s ability to distinguish the hateful language from offensive and neutral
language. They are designed to explore different scenarios, which includes investigating
the effect of labelled samples on system performance, and the system’s ability to handle

3

1. Introduction

novelties by simulating the unpredictable nature of anomalies. Furthermore, the method’s
robustness to increasing pollution of unlabelled anomalous samples is investigated. This
is in order to imitate the real-life scenario where it is difficult to determine if all of the
unlabelled samples are normal samples.

Research question 3 How to develop a method for hate speech detection based on
anomaly detection that is language independent?

This research question is closely related to Research Question 2 and investigates the
method’s ability to handle a non-English dataset. To be able to test the method with a
dataset of another language, it is necessary to collect and annotate a dataset consisting
of Norwegian social media comments. The method’s performance is tested using this
created dataset, as well as an English dataset.

1.3. Research method and environment

To answer the research questions and accomplish the overall goal, several methodologies
have been used. The first step to accomplish the overall thesis goal was to adopt an
exploratory approach that was used to conduct a qualitative analysis of relevant research
in the field of hate speech detection and anomaly detection, i.e. conduct a detailed
literature review. This was necessary to achieve theoretical insights on both topics, and
understand how existing solutions attempt to solve the problem at hand. Furthermore,
this was important in order to gain relevant knowledge that could be utilised to propose
a new possible solution. This step is also related to research question 1, which requires
exploration of existing principles, techniques and models related to anomaly detection on
textual data.

Experiments were conducted primarily to answer the second and third research question,
which involves the implementation of a semi-supervised anomaly detection method that
can separate between hateful and neutral speech, as well as an extensive set of experiments
used to test this method. Here, the primary strategy is the design and creation of a
practical solution. The experiments focus on discovering if there is a potential for using
anomaly detection techniques to detect hateful utterances, as well as how the amount of
labelled training data and pollution in the training data, affect performance. The focus
is to do a quantitative research experiment and to use the achieved results to determine
if hate speech detection can, in fact, be addressed as an anomaly detection problem.
Hence, I plan on conducting a quantitative data analysis on the results of this thesis.
Another vital part of the experimental research was to test if the implemented model is
language independent, as proposed in the third research question. To be able to test the
implemented model using a non-English dataset, a Norwegian dataset consisting of social
media comments was created. The collection of this dataset started in the specialisation
project in the Autumn of 2019 (Jensen et al., 2019) and continued in this thesis. Both
the specialisation project and the further work related to the creation of the dataset was
conducted together with Tora Seim Gunstand and Marie Andreassen Svanes.

4

1.4. Contributions

1.4. Contributions

The exploratory work conducted in this thesis contributes to further research in the field
of hate speech detection, by being the first to investigate if anomaly detection techniques
can be used to separate hateful and neutral utterances. It provides a deeper insight into
an evolving research field, and hopefully, it helps to bring the research one step closer to
a reliable method for detecting hate speech in social media. The main contributions of
this work are listed below:

1. A thorough literature review of existing research related to hate speech detection.

2. The creation of a large labelled dataset containing Norwegian tweets and comments
from Facebook and Resett.

3. The development of a deep learning method for detecting hate speech based on
anomaly detection techniques, using semi-supervised learning, pre-trained word
embeddings and a convolutional neural network.

4. Experimentation with the implemented method on two datasets; one in English
and another one in Norwegian.

1.5. Thesis structure

The remainder of this thesis is organised as follows:

Chapter 2 introduces and describes relevant theories, technologies and methods used in
the work of this thesis and related work.

Chapter 3 provides a detailed overview of related work in the field of hate speech
detection, including literature related to the definition of hate speech, existing data
collections, features and methods. Further, the chapter includes relevant work conducted
within the field of anomaly detection.

Chapter 4 outlines the creation and preparation of a labelled dataset consisting of
Norwegian comments. The chapter includes the collection of data, preprocessing, an-
notation procedure and guidelines, as well as the inter-annotator agreement calculations.
Moreover, it finishes with a discussion of important challenges related to annotation and
language.

Chapter 5 explores the developed method that utilises an anomaly detection approach
to distinguish hateful and neural utterances. The chapter includes a detailed description
of the system, including text preprocessing steps, the implemented architecture and the
system’s functionality.

Chapter 6 presets the conducted experiments, including the experimental plan, setup
and results.

5

1. Introduction

Chapter 7 evaluates the obtained experimental results and discusses the findings in
relation to the proposed research questions.

Chapter 8 gives a conclusion to the thesis and presents suggestions for future work in
order to improve anomaly detection approaches to hate speech detection.

The thesis also contains three appendices, which presents additional results, complete
annotation guidelines and information related to the collection of the Norwegian dataset.

6

2. Background Theory

When addressing the problem of detecting hateful expressions, it is crucial to provide a
precise definition of hate speech. Hence, this chapter starts with defining hate speech and
how it can be separated from offensive language. Furthermore, it provides the relevant
background theory within the fields of machine learning, deep learning, anomaly detection
and Natural Language Processing (NLP), including necessary concepts and techniques.
It presents both technologies and architectures, as well as tools and libraries used in this
thesis and in relevant work presented in Chapter 3. A significant part of the relevant
background material was written as a part of the specialisation project preceding this
thesis (Jensen et al., 2019). New background information about relevant topics such as
anomaly detection, pre-trained word embeddings, transfer learners, autoencoders and
the attention mechanism has been added to this chapter. Most of the sections initially
written in the specialisation project have been modified, but still contain parts that have
not been altered.

2.1. Definition of hate speech

The term "hate speech" is ambiguous, and there is no unified national or international
definition of the phenomenon. The term may also appear misleading because it gives
the impression that the sender must have a subjective sense of hatred for an utterance
to be hateful. However, according to Veledar (2018, p. 37), whether there is a sense of
hatred that drives the sender, or whether it is a political conviction, ideology, prejudice,
xenophobia or otherwise, is not decisive for an utterance to be hateful. What is decisive
is how the ordinary audience perceives the utterance, given the context in which it is
presented.

Although there is no universal definition of hate speech, the most accepted definition in
the research field is provided by Nockleby (2000): “any communication that disparages
a target group of people based on some characteristics such as race, colour, ethnicity,
gender, sexual orientation, nationality, religion, or other characteristics”. In all, there
seems to be a pattern shared by most of the literature reviewed (Davidson et al., 2017;
Dennis Gitari et al., 2015; Djuric et al., 2015; Nobata et al., 2016; Nockleby, 2000; Schmidt
and Wiegand, 2017; Silva et al., 2016) where hate speech is defined as a deliberate attack
directed towards a specific group of people motivated by actual or perceived aspects that
form the group’s identity.

7

2. Background Theory

According to Schmidt and Wiegand (2017), it is difficult to define what is hateful, because
what is considered a hateful expression might be influenced by aspects such as the domain
of an utterance, its discourse context, the exact time of posting and world events at
this moment, identity of the author and target recipient, as well as context consisting
of co-occurring media objects (images, videos, audio). This thesis will not focus on the
identity of authors and co-occurring media objects; however, the importance of these
areas are emphasised.

Another factor to take into consideration is that hate speech may have strong cultural
implications. As pointed out by Davidson et al. (2017), an utterance may be perceived
as offensive or not depending on one’s cultural background and perceived relation to this
culture. For example, the words hoe and bitch are rather normal when quoting rap lyrics,
but in another context, they should be perceived differently. Besides, whether or not
an utterance is hateful is often subjective. As Xiang et al. (2012) states "The notion of
vulgarity is rather subjective and the degree of offensiveness varies considerably among
people." This statement can be further substantiated by Ross et al. (2017) and Schmidt
and Wiegand (2017). They both emphasise the issues regarding annotation of hate
speech datasets, and even though the annotators have common annotation guidelines,
the agreement score amongst the annotators are often deficient.

The understanding of hate speech depends on whether one uses a legal (and thus narrow)
understanding of the term, as stated in the Norwegian Penal Code §185 and which
includes only the most severe statements, or whether one uses a broader social science
understanding of the phenomenon. Examples of hate speech which have been penalised
by the Norwegian Supreme Court is:

(1) Fandens svarte avkom reis tilbake til Somalia og bli der din korrupte kakkelakk.
(2) Det er vel bedre at vi fjerner disse avskyelige rottene fra jordens overflate selv

tenker jeg!!
(3) Ja de forsvinner den dagen disse steppe bavianene reiser dit de hører hjemme!

Comment (1)1 can by the ordinary reader be perceived as a severe offence, with reference
to skin colour and thereby ethnic origin. Regarding comment (2) and (3),2 the Supreme
Court found that the first comment was related to Muslims, while the second comment
was aimed towards dark-skinned people. Hence, all of these statements were considered a
violation of §185 in the Norwegian Penal Code (often referred to as the clause of racism).

Applying a too narrow understanding of the term "hate speech" will offer some methodo-
logical challenges, because it will be complicated to draw the line between the "illegal"
and "legal" hate speech (Veledar, 2018). Therefore, in this thesis, the definition of hate

1https://www.domstol.no/Enkelt-domstol/hoyesterett/avgjorelser/2020/hoyesterett---straff/hr-2020-
184-a/

2https://www.domstol.no/Enkelt-domstol/hoyesterett/avgjorelser/2020/hoyesterett---straff/hr-2020-
185-a/

8

https://www.domstol.no/Enkelt-domstol/hoyesterett/avgjorelser/2020/hoyesterett---straff/hr-2020-184-a/
https://www.domstol.no/Enkelt-domstol/hoyesterett/avgjorelser/2020/hoyesterett---straff/hr-2020-184-a/
https://www.domstol.no/Enkelt-domstol/hoyesterett/avgjorelser/2020/hoyesterett---straff/hr-2020-185-a/
https://www.domstol.no/Enkelt-domstol/hoyesterett/avgjorelser/2020/hoyesterett---straff/hr-2020-185-a/

2.2. Machine learning

speech is the one provided by Veledar (2018, p. 11), which is based on the definitions by
the European Commission against Racism and Intolerance’s (ECRI) and The Danish
Institute for Human Rights:

Stigmatising, derogatory, abusive, harassing or threatening statements af-
fecting the dignity, reputation and status of an individual or group through
linguistic and visual means that promote negative emotions, attitudes and per-
ceptions based on characteristics such as ethnicity, religion, gender, disability,
sexual orientation, age, political outlook and social status.

As opposed to hate speech, offensive language is defined as terms that are applied to
hurtful, derogatory or obscene comments made by one person to another person or
towards a group. The difference from hate speech is the severity of the statement. It
is vital to separate hate speech from other instances of offensive language; just because
a message contains a particular term does not make it hateful, and neither makes it
automatically offensive. It is often challenging to separate offensive from hateful speech,
and a reason is the lack of a universal definition, which leads to subjective opinions.
Furthermore, hate speech and offensive speech often contains many of the same terms and
are particularly difficult to distinguish because of the many nuances of natural language.
In general, hate speech is more than profane words; it can be precise and sophisticated.
Thus, this is another challenge when separating hateful language from offensive language.

2.2. Machine learning

Machine learning is a field in computer science concerned with the study of algorithms and
statistical models aiming to create techniques for solving complex problems without using
explicit instructions. Such problems are hard to solve using conventional programming
methods, but machine learning algorithms can solve many of these severe problems in a
generic way by relying on patterns and inference (Rebala et al., 2019). Essentially, the
algorithms learn from datasets of variable size by examining the data to find common
patterns and explore differences. Machine learning is an application of artificial intelligence
that provides computer systems with the ability to learn from experience. By comparison,
artificial intelligence is a much broader field of study, where the focus is to understand
and build intelligent entities (Russell and Norvig, 2010). The following sections present
the different types of learning algorithms used in machine learning and some classical
methods commonly used in the field of hate speech detection.

2.2.1. Learning algorithms

In order to understand the terminology used throughout the rest of this thesis, general
types of learning algorithms used in machine learning are presented. Machine learning
algorithms differ in how they learn and what data they input and output, as well as
the type of problem they are trying to solve. Therefore, they are usually divided into

9

2. Background Theory

different categories/learning models. The most prominent learning models are Supervised
Learning, Unsupervised Learning and Semi-supervised Learning.

Supervised machine learning algorithms utilise a labelled training dataset, i.e. the training
set contains both the inputs and the known desired output. After sufficient training, new
input data can be provided to the algorithm. Based on the key characteristics, the model
predicts the most likely output (Rebala et al., 2019; Russell and Norvig, 2010). Typical
problems supervised algorithms are designed to solve are classification and regression
problems, and it is frequently used to classify text. On the other hand, unsupervised
algorithms are used when the dataset used to train is neither classified nor labelled, i.e. an
unlabelled dataset. In other words, the algorithm learns patterns and trends of similarity
based on the input even though no explicit feedback is supplied (Russell and Norvig,
2010). Unlike supervised algorithms, these algorithms cannot find a correct output, but
instead, they can draw an inference to describe hidden structures. The algorithms can be
used in, for example, pattern detection and text clustering, as well as anomaly detection.
Semi-supervised learning algorithms fall somewhere between supervised and unsupervised
learning algorithms. These algorithms are provided with both labelled and unlabelled
data, typically a small amount of labelled and a larger amount of unlabelled data. One
of the biggest advantages of this approach is that it is not necessary to spend much time
labelling the entire dataset (Rebala et al., 2019).

2.2.2. Classical methods

Schmidt and Wiegand (2017) stated that, previously, classical machine learning methods
were mainly used in the field of hate speech detection, but more recently, neural networks
and deep learning methods tend to outperform these methods. However, much research
utilises these methods, either as their primary model or as a baseline. Since hate speech
detection has previously only been regarded as a classification problem, these methods
are used in a large proportion of relevant research. These commonly used classic methods
involve supervised learning and include naïve Bayes, logistic regression, support vector
machines, gradient boosted decision trees and random forest.

Naïve Bayes classifiers are a set of simple, yet powerful probabilistic models used for
solving classification tasks. The decisive part of all the classifiers are based on Bayes’
theorem (Bayes, 1763), and the classifiers differ mainly in their chosen decision rule.
Even though the classifiers assume conditional independence, which is rarely accurate in
real-world situations, they have proven useful in text classification tasks (Russell and
Norvig, 2010). Cox (1958) first proposed logistic regression (LR), which is a supervised
machine learning model used for classification that originated from the field of statistics.
Initially, the LR model provided a binary prediction indicating if a specific outcome
would be achieved or not, but it was later expanded to also work on multi-nomial values.
Support vector machines (SVMs) were first introduced by Cortes and Vapnik (1995)
and are particularly prominent when you do not have any prior knowledge about a
domain (Russell and Norvig, 2010). SVMs often produce significant accuracy with less

10

2.3. Anomaly detection

computation power, and it can be used for both regression and classification tasks. A
decision tree is a decision support tool that represents a function for making a decision
based on input data. The decision tree has a tree-like structure, and the full paths from
the root node to the leaves serve as the classification rules. Russell and Norvig (2010)
states that the decision tree learning algorithm uses a greedy divide-and-conquer approach,
and as a result, the main problem can be divided into smaller sub-problems that can be
solved recursively. Gradient boosting is a technique that produces a prediction model in
the form of an ensemble of weak prediction models and hence, converts weak learners
to strong learners.3 Decision trees are used as the weak learner in gradient boosting;
thus gradient boosting decision trees are decision trees that use the gradient boosting
technique. Random forest is an ensemble learning method and a meta estimator that
fits several decision tree classifiers on various sub-samples of the dataset. The concept
behind random forest is that a large number of relatively uncorrelated models, in this
case, decision trees, operating together will outperform any of the individual models.4

2.3. Anomaly detection

Anomaly detection is the process of finding data objects with behaviours that differ from
the norm or the expectation. If using anomaly detection techniques to solve the problem
of detecting hateful utterances, it implies that hate speech must be considered anomalous
variants of normal speech. This consideration involves creating an anomaly detection
model that can efficiently separate between normal and abnormal textual utterances. In
order to understand how to address this problem, this section presents the definition
of anomalies and anomaly detection and explains approaches and common algorithms.
One of the sections will focus specifically on anomaly detection on text data, as this is
of particular interest in this thesis. The last part of this section addresses important
challenges related to the utilisation of these techniques to detect hate speech.

2.3.1. Definition

Generally, an anomaly is an outcome or value that can be considered a variation of the
norm, which means that anomalies deviate from the expected. According to Alla and
Adari (2019), anomalies typically fall into three categories:

Data point-based anomalies: These anomalies can seem comparable to outliers in a set
of data points. Outliers are data points that differ from the norm but are still
expected to be present in the dataset. These instances may occur in the dataset
due to unavoidable random errors or systematic errors.

Context-based anomalies: These consist of data points that at first glance appear to be
3https://towardsdatascience.com/introduction-to-gradient-boosting-on-decision-trees-with-catboost-
d511a9ccbd14

4https://towardsdatascience.com/understanding-random-forest-58381e0602d2

11

https://towardsdatascience.com/introduction-to-gradient-boosting-on-decision-trees-with-catboost-d511a9ccbd14
https://towardsdatascience.com/introduction-to-gradient-boosting-on-decision-trees-with-catboost-d511a9ccbd14
https://towardsdatascience.com/understanding-random-forest-58381e0602d2

2. Background Theory

normal, but are considered anomalies in specific contexts. For example, if a person
owns an electric car and suddenly buys gasoline, this purchase would seem out of
place. On the other hand, for a person that owns a gasoline car, this would be
completely normal. In hate speech detection, some comments might be normal in
some contexts but hateful/anomalous in others.

Pattern-based anomalies: These anomalies are patterns and trends that deviate from
their historical counterparts. It can often be time-series data, where the goal is to
identify periods of abnormal behaviour.

As mentioned, anomaly detection is the process of discovering or detecting anomalies using
advanced algorithms. Hence, the purpose is to identify unexpected items or behaviour in
datasets that differ from the norm. Related to this is both outlier detection and novelty
detection, which one can call options of anomaly detection. Outlier detection is according
to Alla and Adari (2019, p. 15-19), a technique that aims at discovering outliers within a
given dataset. These models are given a dataset and then decides which of the instances
are outliers and which are normal.

On the other hand, novelty detection aims at discovering novelties. Novelties are data
points that are not previously seen by the model, e.g. they are not a part of the training
dataset. Novelty detection and outlier detection are very similar. However, the key
difference is that the novelty detection models learn what is considered regular data
points and then try to determine if new data instances are anomalies or not (Alla and
Adari, 2019, p. 18-19). The detection of hateful utterances can hence be categorised as
both outlier detection and novelty detection since we expect some hateful comments, but
the hateful comments might not be similar to what we have seen before. Nevertheless,
this thesis uses novelty detection techniques.

Anomaly detection approaches are based on the assumption that normal data are
stationary, which means that the underlying processes do not change significantly over
time. Hence, the approaches are based on past data. The models assume that statistics
characterising a system in the past will continue to characterise the system in the future.
If one is dealing with data that changes over time, the data may, in some cases, be
characterised by long-term trends or cyclic behaviour (Mehrotra et al., 2017, p. 4).

In many anomaly detection problems, one can separate the data into two classes; normal
and abnormal/anomalous. In this case, it might be tempting to address this problem
using classical machine learning classification algorithms, such as support vector machines
or decision trees. However, in the case of anomaly detection, this approach will rarely be
successful due to the drastic imbalance between the two classes. The anomalous instances
are sporadic compared to the normal instances, which will often result in too many false
negatives (Mehrotra et al., 2017, p. 6). Another issue using normal classification is that
the anomalies might not resemble each other. Classifiers typically assume that similar
data are likely to be a part of the same class. This assumption often holds for the normal
class but is crucially invalid for the anomalies (Ruff et al., 2020), because all of the
anomalous data might not fit into a single class. Also, if an anomalous data point is a

12

2.3. Anomaly detection

novelty, the algorithm will not be capable of labelling the point as a part of the anomaly
class. When detecting hate speech in a real-life scenario, the majority of the utterances
will be neutral and hence, normal instances. According to Veledar (2018), approximately
10% of the comments on the Facebook pages of NRK and TV 2 were hateful. From a
social perspective, this can be regarded as a large proportion of the comments, but for a
classification model, a dataset with only 10% hateful comments will be considered too
imbalanced.

2.3.2. Approaches and algorithms

According to Han et al. (2012), one can differentiate between several approaches to
anomaly detection:

Proximity-based: These methods assume that data objects that are far away from other
objects in feature space are considered anomalous. The effectiveness of these
methods relies heavily on the proximity measure used. There are two major types
of proximity-based anomaly detection; distance-based and density-based.

Clustering-based: These methods assume that the normal data objects belong to large
and dense clusters, whereas outliers belong to small or sparse clusters, or do not
belong to any clusters.

Classification-based: The idea of classification-based anomaly detection methods is to
train a classification model that can distinguish normal data from outliers.

Distance (similarity) measures are the basis of distance-based anomaly detection. Popular
applied similarity measures include direct measures, such as Euclidean and Minkowski
distances, but also measures such as cosine similarity and Jaccard index (Mehrotra et al.,
2017, p. 34). Distance-based anomaly detection algorithms are assured to work well
only when the different neighbourhoods, consisting of data points, are characterised by
approximately equal densities. This assumption is often violated, giving unfortunate
results. On the other hand, in a density-based approach, anomalies are considered to be
those data objects that are in regions with relatively low density. Hence, these methods
review the density of a specific point and compare it with the density associated with its
neighbours. Well-known density-based algorithms include local outlier factor (LOF) and
connectivity-based outlier factor (COF)(Mehrotra et al., 2017, p. 107-113).

Clustering-based approaches detect anomalies by examining the relationship between
objects and clusters. The methods declare anomalies to be those data points that
are outside of clusters, in relatively dense clusters or near the boundaries of clusters
(Mehrotra et al., 2017, p. 33-55). Methods that fall into this category include clustering
methods based on distance, such as k-nearest neighbours and k-means clustering, as well
as methods based on density such as DBSCAN.

One can use classification-based methods when labelled data is available. As previously
mentioned, in an anomaly detection problem, there is often a significant imbalance

13

2. Background Theory

between the number of ordinary data objects and the number of anomalies. Consequently,
we are left with an insufficient representation of the anomalous data. Therefore, to
overcome this challenge, these approaches often use a one-class model, which is a model
build only to describe the normal data (Han et al., 2012, p. 571). The one-class support
vector machine model is an example of a one-class model and is described further in the
following section.

One-Class SVM

One of the main issues with using regular SVMs for anomaly detection is that they are
designed to handle two classes which needs to be separated using a decision boundary.
As previously mentioned, assuming two classes in anomaly detection will be invalid for
the anomaly class, and hence, an alternative algorithm is needed. A One-Class Support
Vector Machine (OC-SVM) is a modified support vector machine used to identify unusual
or anomalous data from a given dataset. Hence, it is well-suited for both anomaly
detection and novelty detection. The models build upon the idea that they are trained
solely on normal data and can consequently be used to detect anomalies/novelties in
new data when they are presented. According to Zhou et al. (2008, p. 645), OC-SVMs
have been widely applied in many areas, such as outlier ranking and density estimation.
Moreover, the models have played an essential role in the field of intrusion detection.
Generally, OC-SVMs is considered an unsupervised learning algorithm. Nevertheless,
since training on only one class is considered training on "partially labelled" data, the
algorithm can also be used for semi-supervised learning (Alla and Adari, 2019, p. 51).

Furthermore, according to Alla and Adari (2019, p. 51-52), an OC-SVM model is good
at handling high-dimensional data and has a great ability to capture the shape of the
data. However, according to Aggarwal (2017, p. 92), an issue with OC-SVMs is that they
can be sensitive to the choice of kernels and many hidden parameters associated with
the method. Hence, it is essential to set the regularisation hyperparameters and kernel
hyperparameters in order to obtain satisfactory results (Zhou et al., 2008, p. 645).

2.3.3. Detecting anomalies in text

Mahapatra et al. (2012) stated that in the textual domain, anomaly detection tech-
niques aim at uncovering novel and interesting topics and words in a document corpus.
Furthermore, they affirm that anomaly detection in text data finds broad applicability
in several domains. Because of the ubiquity of text in social media, emails and blogs,
there are several applications of anomaly detection on textual data in web applications.
For instance, it can be used to detect important events or unusual topics from Twitter
streams. Furthermore, it can be used to detect a subset that corresponds to spam in
a stream of emails. There are many conceptual similarities between high-dimensional
and sparse data and text data. The reason is that the text data is often represented
using a vector format, which is usually high-dimensional and sparse. Therefore, Aggarwal

14

2.3. Anomaly detection

(2017, p. 262) claims that most of the probabilistic, linear, and proximity-based methods
for multidimensional data can be generalised to text. However, there are differences
in how these models are implemented caused by the sparsity and non-negative nature
of text. Besides, a principal challenge related to models using a textual data corpus
is the well-known curse of dimensionally. With this increasing dimensionality, many
of the conventional anomaly detection methods do not produce satisfactory results. It
also becomes difficult to effectively detect anomalies when analysing the data in full
dimensionality. The reason is that the anomalies may be masked by the noise effects of
having multiple irrelevant dimensions (Aggarwal, 2017, p. 149).

Probabilistic models are models that assign probabilities of memberships to classes or
clusters, instead of assigning a distinct label to data objects. These models are often
used for probabilistic clustering (also called soft clustering) of text documents, which is
essentially an application of the Expectation-Maximization (EM) algorithm to text data
(Aggarwal, 2017, p. 262).

2.3.4. Challenges

This section presents and discusses important challenges that should be addressed when
using anomaly detection methods to detect hate speech.

Modelling data normality

When solving a problem using anomaly detection techniques, the quality of the results
highly depend on the modelling of normal and abnormal data objects. In order to achieve
valuable results, the model has to represent the two classes effectively. According to Han
et al. (2012), one challenge that may arise is that building a comprehensive model for
data normality is hard, or even impossible. The reason is that it is often difficult to
find all possible normal behaviours in a system. Furthermore, when AD techniques are
applied in the textual domain, is it challenging to handle the significant variations in
documents belonging to each class or topic (Chalapathy and Chawla, 2019). Additionally,
in many systems, there is not a clear cut between what is normal and what is not. Hence,
many data instances can be labelled wrongfully. A possible solution to this exact problem
can be to measure the degree of "outlier-ness" instead of giving a distinct evaluation as
either normal or abnormal.

In many domains, normal behaviour evolves frequently, and the current notion of normality
might not be sufficient to represent normal instances in the future (Chalapathy and
Chawla, 2019). This is a major challenge with regards to using AD techniques on
hate speech detection. First of all, defining the boundary between neutral and hateful
language is challenging because what is considered hateful might be influenced by other
aspects such as the domain, its context and world events at this moment. Also, what
is considered hateful varies over time, and hence, so does what is considered normal

15

2. Background Theory

(neutral or offensive). As a result, defining a normal region which encompasses every
possible normal behaviour overtime is practically impossible.

Choosing the correct similarity measure

For an anomaly detection algorithm to perform sufficiently, it is crucial to determine
the correct similarity measure. Unfortunately, these choices tend to be application-
specific because different application domains often have very different requirements.
Hence, anomaly detection is highly dependent on the application type, which makes it
exceptionally difficult to develop a universal method (Han et al., 2012). Furthermore,
anomaly detection methods are prone to noise in the dataset as this can distort the data
and make it challenging to create a distinction between the ordinary data objects and
the anomalies.

Choosing the optimal threshold

According to Aggarwal (2017), most anomaly detection algorithms assign an anomaly
score to each data sample in the test set. This score indicates the extent to which the
model believe the sample is an anomaly, which results in a ranking of the data samples.
Hence, to be able to induce binary labels and determine if a data sample is an anomaly
or not, a threshold is chosen. Samples with a score above this threshold are considered
anomalous. Choosing the optimal threshold can be difficult, and is often domain-specific.
If the threshold is selected too restrictively, then the algorithm misses real anomalies,
and hence the number of false negatives increase. On the other hand, if the algorithm
declares too many data samples as anomalies, then it leads to too many false positives
(Aggarwal, 2017). Related to hate speech detection, this involves choosing to flag too
many comments as potentially hateful versus letting some of these comments remain
unnoticed.

Sarcasm and subjectivity

Related to all hate speech detection problems, is the problem of handling aggressive
comments disguised as sarcastic irony. Irony is when an individual state the opposite
of what is implied, and sarcasm is the mockery, derision or ridicule of a person using
irony. Sarcasm is intentionally ambiguous, and even humans may struggle to understand
and interpret the content. Sarcasm disguises the actual intention of the statement, which
is challenging to recognise for a machine. A system typically identifies a statement as
neutral, when it is, in fact, sarcastic. Of course, not all sarcastic comments can be
considered hate speech, but according to Frenda (2018), sarcasm is a commonly used
figure of speech to express negative opinions. Furthermore, they discovered that hate
speech detection systems might experience difficulties detecting sarcastic, abusive tweets.
Hence, this is a significant issue and is also considered its own research field. Handling
sarcastic irony is not considered in this thesis, but we emphasise its importance.

16

2.4. Deep learning

Moreover, as was mentioned in Section 2.1 and will be further discussed in Section 3.1,
the subjective interpretation of hate speech is an important challenge. As Davidson et al.
(2017) stated; an utterance may be perceived as offensive depending on one’s cultural
background, which can lead to issues when determining what is hateful and what is not.

2.4. Deep learning
Deep learning is a sub-field of machine learning which in recent years has experienced
noticeable growth in popularity. A significant difficulty in many artificial intelligence
applications is the impact variation has on the observable data, and how challenging
the extraction of features can be on such data. As opposed to classical supervised and
unsupervised methods, deep learning automatically extracts relevant features during
training and in this way solves this significant problem.

The machine learning methods described in Section 2.2.2 require choosing features care-
fully to function well and extracting these features can be challenging. Deep learning
extract features and thus solves this issue by building representational hierarchies con-
taining multiple abstraction levels. Goodfellow et al. (2016) describe deep learning as a
type of machine learning that achieves great power and flexibility by being able to learn
complex concepts out of simpler ones. The lowest level of the hierarchy contains simple
concepts, and it is typically working on much simpler representations of data than what
is used in other machine learning approaches. On the other hand, the higher hierarchical
levels use increasingly complex concepts, based on the lower simpler levels.

The main challenge with deep learning models is that they generally require a large amount
of data to perform well, along with a great deal of computational power. Today, when data
availability and computational power is not an issue, deep learning is used increasingly
to solve many machine learning problems, including anomaly detection problems. In
recent years, there has been an increasing interest in deep anomaly detection algorithms
(Chalapathy and Chawla, 2019). These approaches are motivated by the limited scalability
of shallow AD techniques, and the need for methods that can handle large and complex
datasets.

There are several variations to deep learning models, and this section will briefly describe
some of the models used in natural language processing and anomaly detection.

2.4.1. Artificial neural networks

Artificial neural networks (ANNs), also called multi-layer perceptrons, are networks
inspired by the human brain and is one of the models used in deep learning. It is a set of
networks that consists of highly interconnected processors, called nodes or neurons, that
imitate biological neurons. These biological neurons are connected through synapses,
which in neural networks corresponds to weighted links that send signals between nodes.
The network has a fixed number of external inputs to specific nodes, as well as a fixed

17

2. Background Theory

number of outputs from other specific nodes. Each node takes several input signals,
sums them and produces an output based on an activation function (Rebala et al.,
2019). This function performs a non-linear transformation and is the reason that neural
networks are capable of learning both linear and non-linear functions. A node can then
be mathematically described as:

aj = g(inj) = g

(
n∑

i=0
wi,jai

)
(2.1)

where ai is the output from node i, g is the activation function and wi,j is the weight of the
connection between node i and j. The learning happens by adjusting the weights between
each node using gradient descent, which is a method for optimizing a function (Rebala
et al., 2019). Neural networks can be used to create both supervised, semi-supervised and
unsupervised machine learning models and are very useful for solving complex problems
where other conventional methods do not produce accurate results.

The simplest way to connect a neural network is as a feed-forward network. A feed-forward
network is a network that only has connections one way, from the input layer, through
hidden layers (if some) to the output layer and in this way forms a directed acyclic graph.
There are no internal states in the network and in this way it represents a function of its
current inputs (Russell and Norvig, 2010). Feed-forward networks are generally arranged
in layers where each node only receives inputs from its immediately preceding layer and
the computations are done layer by layer (Rebala et al., 2019). One often distinguishes
between single-layer networks where the information precedes immediately from the input
nodes to the output nodes and multi-layer perceptrons/networks (MLPs) that contains
one or more hidden layers. A simple feed-forward network containing one hidden layer is
shown in Figure 2.1.

Figure 2.1.: A feed-forward network architecture with one input layer, one hidden layer and
one output layer

Feed-forward networks can solve many problems, but they are not the only kind of

18

2.4. Deep learning

networks used in modern deep learning.

Deep neural networks

Deep neural network (DNN) is a variant of neural networks composed of several layers.
These networks are distinguished from the single-hidden-layer neural networks by their
depth, which is the number of layers the data must pass through. According to Rebala
et al. (2019), deep neural networks usually refer to neural networks with many layers and
a large number of neurons where each extra layer increases the complexity of the network.
This allows them to represent more complex functions than shallow neural networks.

Both recurrent neural networks and convolutional neural networks are examples of neural
networks that can be categorised as deep, which are explained in the following sections.

2.4.2. Recurrent neural network

Recurrent neural networks (RNNs) presented by Rumelhart et al. (1986) have recurrent
values, meaning that they have units that are linked in cycles. In other words, the network
feeds its output back to its inputs and hence uses feedback. The presence of these cycles
has a profound impact on the network’s learning capability. Unlike feed-forward networks,
RNNs enables short-term memory and can use this internal state to process a series of
inputs (Russell and Norvig, 2010). In this way, the output from the system will depend
on the internal state which in turn may depend on previous inputs. These dynamic
networks are best suited for processing sequential data, e.g., text or time-series data
(Rebala et al., 2019). Furthermore, they can handle sequences of much greater length
than regular MLPs.

Long Short-Term Memory

A Long Short-Term Memory (LSTM) network is a variation of a recurrent network and
was proposed by the German researchers Hochreiter and Schmidhuber (1997). These
gradient-based networks included so-called Long Short-Term Memory cells and were
introduced as a solution to the RNNs vanishing gradient problem; The gradient expresses
the change in all weights concerning the change in error. When the gradient vanishes,
the weights cannot be adjusted and learning will stop. The LSTM networks are used to
address the problem of modelling long-term dependency in recurrent neural networks and
they can solve complex long-time-lag tasks that are not possible to solve with a basic
recurrent network.

Rebala et al. (2019) states that LSTM networks have been very successful in modelling
problems related to natural language processing with strong long-range dependency
modelling. LSTM can be used to learn the long-distance contextual dependency (order
information) among words. Wang et al. (2018) conducted experimental results which
showed that given enough training data the methods can learn the word usage in the

19

2. Background Theory

context of social media. These findings can be useful for further experiments with textual
data.

2.4.3. Convolutional neural network

A convolutional neural network (CNN) is a variation of a feed-forward network. Goodfel-
low et al. (2016) describe convolutional networks as neural networks that use convolution
in place of general matrix multiplication in at least one of their layers. Convolution is a
technique that automates the extraction and combination of important features which
is necessary for identifying a target class. Simply put, thy can be though of as sliding
window functions applied to a matrix. This sliding window is often called a kernel or
a filter, and it can have variable sizes. A CNN usually consists of several layers that
combine convolution and pooling, followed by a neural network. The pooling layer(s)
reduce the dimensions of the inputs. A simplified architecture of CNN can be seen in
Figure 2.2.

Figure 2.2.: A simplified architecture of a Convolutional Neural Network. The network contains
one convolution layer, one pooling layer and a fully connected neural network

As opposed to regular multi-layer networks, the first layers involved in convolution in a
convolutional network are not fully connected. This means that all nodes in one layer are
not connected to all nodes in the preceding layer. Goodfellow et al. (2016) states that
CNNs are mainly used for processing data that has a grid-like topology such as images,
but they can also successfully be applied to problems within the field of natural language
processing. For instance, CNN can be used on text by splitting sentences into words and
represent the words as numerical vectors. These features are then fed into a convolutional
layer. The filters can be of different height and correspond to the number of adjacent
rows considered jointly, i.e. the n-grams (a 1xn filter) within the text. A representative
number is given as output from pooling the results of the convolution and sent to a
fully connected neural network. If one is considering a classification problem, then the
network may output a probability for each class, whereas if one is considering an anomaly
detection problem, then the output might be a vector. Either way, the decision is based
on weights assigned to each feature. Thus, CNN is effective as "feature extractors" as
they are good at extracting combinations of words or characters.

20

2.4. Deep learning

2.4.4. Autoencoders

Autoencoders are a type of neural networks that can learn efficient data representations
and uses this to reconstruct its inputs to its outputs. Hence, they are useful for detecting
anomalies. The model consists of two parts: an encoder and a decoder. The encoder’s
job is to reduce high-dimensional data into a lower-dimensional and dense representation,
which is also known as a latent representation. The decoders job is to convert and hence,
expand, this low-dimensional data into the original input (Alla and Adari, 2019, p. 123-
126). As a result, the autoencoder neural network has the same amount of input nodes
as output nodes. The model uses the neural network’s property of backpropagation to
learn normal behaviour, and hence being able to detect when anomalies occur. When the
network is trained on solely normal data instances, the aggregated error of reconstruction
will be higher for data that does not fit the description of "normal". Hence, this
reconstruction error can be used to quantify the outlier score (Aggarwal, 2017, p. 102).
The hidden layer, and hence the encoding, have fewer units than the input layer, the
model is forced to prioritise which aspects of the input to keep and what to discard
(Goodfellow et al., 2016, p. 505). In this way, it learns to preserve the useful parts of the
input and discard the irrelevant parts.

2.4.5. Attention

The key idea behind the attention mechanism is to pay "attention" to the relevant source
content, and thus create short-cut connections between the source and target. The
attention mechanism was first introduced by Bahdanau et al. (2015) followed by Luong et
al. (2015), where they both used it to improve the quality of Neural Machine Translation
(NMT) systems. An NMT system is a sequence to sequence (Seq2Seq) model, which is
a particular case of the recurrent neural network typically used to solve complex text
problems, such as language translation, speech recognition and question answering. The
most common architecture used to build Seq2Seq models is encoder-decoder architecture.
The encoder builds a numerical context vector based on the input sequence, and the
decoder processes this vector in order to return the output sequence, which is a translated
sentence in the case of NMT. This setup works fine for short and medium sentences, but
this fixed-size vector becomes a bottleneck when handling longer sentences.5 In this case,
the network might forget the earlier parts once the whole sequence is processed. The
attention mechanism aims at solving this problem by capturing global information over
all the items in an input sequence.

5https://github.com/tensorflow/nmt

21

https://github.com/tensorflow/nmt

2. Background Theory

2.5. Natural language processing
Natural language processing (NLP) is a subfield of computer science and linguistics,
concerned with the interaction between humans and computers using natural language. It
is challenging for a computer system to be able to interpret ambiguous and unstructured
language correctly. Therefore, the field of NLP offers methods and techniques to make
human languages possible to understand and process for a computer system. NLP is
an important part of hate speech detection. It is crucial to preprocess and make the
text mathematically computable so that a machine learning model can make sense of
it. In this section, text preprocessing and text representation used in Natural Language
Processing are presented.

2.5.1. Textual preprocessing

For a machine to be able to understand natural language, the text needs to be preprocessed.
This is an essential step in NLP, especially when handling user-generated content such as
comments or short messages from social media. A typical textual preprocessing pipeline
is illustrated in Figure 2.3. All the steps are not necessary for every situation, but this
pipeline includes the most common preprocessing steps.

Figure 2.3.: A usual text preprocessing pipeline followed by feature selection and a learning
algorithm (Ikonomakis et al., 2005).

The process starts when a document is read. Next, the text is typically tokenised, meaning
the document is converted into a sequence of tokens. A token provides the link between
documents and queries and is usually itself a sequence of alphanumeric characters from A
to Z and from 0 to 9. According to Büttcher et al. (2016), the tokenisation is critical in
the process of text classification because it allows for more effective processing of search
queries by limiting the number of queries that the system can process. Once the text is
tokenised, word stemming or lemmatisation may be applied. Word stemming considers
the morphology, more commonly known as the internal structure, of terms and reduces

22

2.5. Natural language processing

the term to a word stem. The word stem is just a smaller form of the word and is not
necessarily the same root as a dictionary-based morphological root. Stemming is done to
easily compare words such as "runs" and "running", which both are reduced to "run", and
also because stemming increases retrieval effectiveness for specific queries (Büttcher et al.,
2016). Porter’s Algorithm, or Porter Stemmer, is known as the most common algorithm
used for stemming English texts according to D.Manning et al. (2009). Lemmatisation is
a similar but more calculated process than stemming. It focuses on removing inflectional
endings only and return a word that is either the base or a lemma. A lemma is a word
in its dictionary form. To be able to find the lemma of each word, a part of speech
(POS) tagger is needed. A POS Tagger is a software that reads the text and assigns each
word with a part of speech, such as noun, verb or adjective. An example to display the
difference between stemming and lemmatisation is the word saw. While stemming might
return only the character s, lemmatisation might return either see or saw depending on
the context and to what part of speech the POS Tagger assigns the word.

Another factor for more effective queries is the removal of stopwords. Many common
words may potentially have little value for retrieval purposes, so at query time these are
removed from the query. These stopwords are usually frequent terms, thus removing them
leads to a size reduction of the indexing structure, which implies reduced execution times.
The retrieval is then based solely on the remaining terms (Baeza-Yates and Ribeiro-Neto,
2011). Examples of stopwords in the Norwegian language are "alle", "det" and "og". Other
preprocessing methods include the removal of special characters, such as emoticons, or
frequently used characters such as hashtags (#) and mentions () from Twitter messages.

The next step is to represent the text as a numerical vector. This is useful when the
ordering of terms is relevant or when terms are repeated (Baeza-Yates and Ribeiro-Neto,
2011). A common approach is that each term is represented by a vector filled with zeros
except for a one that represents the element at the index corresponding to the word in
the text. These vectors can be used further as features. The topic of text representation
is crucial in NLP tasks and will be further elaborated in Section 2.5.2.

After the text is represented as numerical vectors, it might be necessary to select the
relevant features from the data. The default for text classification is to use terms as
features. However, only a few classifiers operate directly on the textual representation
(Büttcher et al., 2016). Furthermore, it is possible to increase the performance of the
classifiers by adding additional features which are suited to a specific problem, so that
each document is represented as a collection of features. The process of defining and
extracting features that might be relevant is generally referred to as feature engineering.
Various features may be applied, and this can include features derived directly from the
text or extrinsic information related to it. An example of features that are purely based
on the given text is simple surface features, such as the document length, number of
characters or number of symbols, while the time an e-mail arrived can be an example of
extrinsic information that may be a relevant feature. The goal of feature selection is to
improve effectiveness and computational efficiency by filtering irrelevant or redundant
features. To be able to reduce dimensionality, it is necessary first to identify relevant

23

2. Background Theory

features and eliminate the ones which do not add significant value. Another method
to achieve this is by feature extraction. Here, the original feature space is converted
to a new and reduced space, where all the original features are replaced by a smaller
representative set. This is useful when the number of features in input data is too large
(Indira Gandhi et al., 2015).

Once the data is preprocessed and represented numerically, it can be used as input
to a learning algorithm. The learning algorithm may, for instance, be a classification
or clustering model, or in the case of this thesis, an anomaly detection model. Since
deep learning models extract features automatically, these steps are typically used when
handling a classic/shallow machine learning model.

2.5.2. Text representation

After the text is preprocessed, it needs to be represented numerically. Each term of the
document representation is considered a separate variable, or feature. This is a technique
generally referred to as text representation, and is concerned with the achievement of
a numerical representation of the unstructured text, thus making it mathematically
computable. The rest of this section will focus on methods used for text representation,
and hence present various popular ways to represent text numerically.

Bag of words

Bag of words, or BoW, is a simple representation of queries and documents. Here, the
text is represented as a bag that contains its words, with no regards to word order or
grammar. Thus the text is represented very simply by term conjunctive components
which reflect the terms they contain. The number of occurrences of a particular term in
the text is counted because the important factor is the presence of a word, and not where
it occurs. This makes it possible to use the frequency of each term to find the keywords
of the document and make decisions based on the presence or absence of a particular
word. The bag-of-words-model is used for feature extraction and modelling, based on the
assumption that documents are similar if they have similar content. Another usage is to
calculate term frequency, which is explained in the following section (Baeza-Yates and
Ribeiro-Neto, 2011).

TF-IDF

TF-IDF is, according to Baeza-Yates and Ribeiro-Neto (2011), the most popular term
weighting scheme used in information retrieval. TF-IDF is based on term frequency (TF)
and inverse document frequency (IDF) and determines the importance of a term in a
document.

Baeza-Yates and Ribeiro-Neto (2011) defines TF and IDF as follows:

24

2.5. Natural language processing

Term Frequency The value, or weight, of a term ki that occurs in a document dj is
simply proportional to the term frequency fi,j .

Inverse Document Frequency Let ki be the term with the r-th largest document fre-
quency, i.e., n(r) = ni. Associated with the term ki the inverse document frequency,
IDFi, is given by:

IDFi = logN
ni

(2.2)

where N is the number of documents in the collection.

This leads to the definition of the TF-IDF weighting, as proposed by Salton and Yang
(1973):

Let wi,j be the term weight associated with the pair (ki, dj). Then, we define

wi,j =
{

(1 + log fi,j)× log N
ni

if fi,j > 0
0 otherwise

(2.3)

which is referred to as TF-IDF weighting scheme (Baeza-Yates and Ribeiro-Neto, 2011).

N-grams

N-gram is a simple language model that assigns probabilities to word and character
sequences. An n-gram is a sequence of n words or n characters, such as 1-gram (unigram),
2-gram (bigram), 3-gram (trigram) and so on. The optimal value for n will vary from
language to language (Büttcher et al., 2016). Character n-grams treat overlapping
sequences of n characters as tokens. A particular use case for character n-grams is to
reduce the problem of spelling variation in user-generated data. An example of this can
be the word "f@aen" which is a variation of "faen", but the words still convey the same
message. With n = 4 and the word "nordmenn" as an example, the result is the following
character 4-gram:

nor nord ordm rdme dmen menn enn

Word n-grams can be used to estimate the probability P (w|h) of word w given a history h.
The n-gram model looks n words into the past to estimate the probability of word w. An
example of a trigram model would be P (en|han er). Assigning probabilities to n-grams
is useful to help decide which n-grams that can form single entities together. Use cases
include spelling error corrections, likely suggestions for misspelt words or prediction of
the next word or characters in a sequence. For instance, the sentence "drikk kafe" could
be corrected to "drikk kaffe" if the word "kaffe" had a higher probability of occurring
after the word "drikk". An example of a word n-gram representation of the sentence
"Katten liker ikke å bade" is shown in Figure 2.4.

25

2. Background Theory

Figure 2.4.: Word n-gram representation

Word embeddings and transfer learners

A word embedding is a numerical and distributed word representation based on a word’s
context. For each word, a vector representation is induced from a text corpus. A word
embedding can capture the context of a word in a document, relation with other words
and semantic similarities. The idea is that words with the same meaning, such as "great"
and "good" in these examples "Have a great day!" and "Have a good day!", occupy close
spatial positions and are not categorised as having nothing to do with each other. Thus,
similar words may end up having similar vectors. This is an advantage compared to
regular one-hot encodings, where all words are represented independently of each other.

Word embeddings were first introduced by Bengio et al. (2003). They propose to fight
the curse of dimensionality by learning a distributed representation for words, where each
of the training sentences provides the model with several semantically similar sentences.
The vector representations are typically created by using neural networks, and hence,
they are well suited as input features for other neural networks. Word embeddings have
become highly popular, and it exists several pre-trained word embeddings that have
already been trained on a large document corpus. Commonly known pre-trained models
are Word2Vec (Mikolov et al., 2013), GloVe (Pennington et al., 2014) and FastText
(Mikolov et al., 2017).

Word2vec is a predictive algorithm which is built upon two models; the Continuous
Bag-of-Words (CBOW) model and the Skip-gram model. The purpose of the CBOW
model is to predict a word from surrounding words, whereas the skip-gram model aims at
predicting a word’s surrounding words. The GloVe (short for Global Vectors) algorithm
is an extension of this model. It is a statistical approach that leverages global matrix
factorisation and local context window methods to create a global log-bilinear regression
model. Both of these models capture the local word-to-word co-occurrences from a
corpus, but in addition, GloVe also captures global co-occurrence statistics. FastText
tries to solve Word2Vec’s problem of generalisation to unknown words. It is doing so by
accounting for word parts and characters. This makes it possible to train on less data
since more information is extracted from the text.

Recently, large language models like ELMo (Peters et al., 2018) and BERT (Devlin

26

2.6. Evaluation methodologies

et al., 2018) have gained popularity within the field of NLP. These models learn dynamic
sentence embeddings in an unsupervised manner and have proven to be very useful for
transfer learning. However, these large models are very computationally intensive.

Word2vec, GloVe and FastText word embeddings are context-independent, which means
that they output one vector for each word. This is a consequence of not considering
the order of words. On the other hand, ELMo and BERT can generate different word
embeddings for a word that captures the context of a word, i.e. its position in a sentence.

2.6. Evaluation methodologies

When dealing with a machine learning problem, it is vital to evaluate and test the
performance of the implemented model. While training the model is an important step,
how the model performs on unseen data is a crucial aspect that should be considered.
It is necessary to know if it actually works and if its predictions are trustworthy. The
model might merely memorise the data it was trained on, and consequently, be unable
to predict correctly on new data. Therefore, it is essential to measure the performance
of the model. This section describes techniques for evaluation of a machine learning
model and also presents various metrics that are often used when evaluating hate speech
detection systems. All of the presented metrics are common when dealing with both
classification problems and anomaly detection problems.

2.6.1. Techniques

The first step in the evaluation of a machine learning model is to split the data into three
categories: a training set, a validation set and a test set. In order to improve accuracy,
the training set is used to build predictive models by adjusting the weights of the model.
The validation set is not a part of the training data and is used to assess the performance
of the model and avoid overfitting to the data in the training set. With a validation set,
it is possible to select the best performing model after fine-tuning the data, and validate
that the model is improving. The test set consist of unseen data and is used to assess
the performance of the finalised model.

The accuracy of this evaluation can vary based on how the data was split into categories,
and unwanted bias can become part of the model. Cross-validation is a regression method
used to avoid this. K-Fold Cross Validation is where a dataset is partitioned into K folds,
and each fold is then used as a testing set. In the first iteration, the first fold is used to
test the model and the rest to train the model. This process is repeated until each of the
K folds have been used to test the model. Regression is then performed on the combined
results, which are then regarded as one validation set (Büttcher et al., 2016).

27

2. Background Theory

2.6.2. Metrics

Evaluating the quality of the results using performance metrics provides a quantitative
measure which makes it easier to effectively determine a model’s accomplishments.
Evaluation metrics are used to make informed decisions based on quantitative measures
to increase performance and discover better approaches. Comparing the effectiveness of
one method against another in the same situation is useful when deciding which method
best achieves their intended purpose and meets the user’s need (Büttcher et al., 2016). In
this section, various evaluation metrics are presented. All the presented metrics require
having ground-truth labels available. In this case, where the datasets are adapted from
imbalanced classification problems, the ground-truth labels can be used to measure the
performance of the anomaly detection system.

Precision and recall

Precision and recall are two of the most widely used evaluation metrics. Usually, the
metrics are used for measuring the effectiveness of set-based retrieval, and they can be
used to evaluate anomaly detection models that possess labelled data samples (Aggarwal,
2017, p. 27-28). Assume that an anomaly detection model outputs an anomaly score. By
setting a threshold, the score can be converted into a binary label for each data sample.
For any given threshold t on the anomaly score, the declared set of anomalies is denoted
by S(t). Furthermore, let G denote the true set consisting of all anomalies (based on
the ground-truth labels). Then, for any given threshold t, the precision is defined as the
fraction of retrieved documents that are in fact outliers:

Precision(t) = |S(t) ∩G|
|S(t)| (2.4)

On the other hand, recall is the fraction of ground-truth outliers that have been retrieved:

Recall(t) = |S(t) ∩G|
|G|

(2.5)

Recall is used to evaluate the effectiveness of tasks where the user wants to find all
relevant documents. This evaluation metric measures how meticulously the search results
meet the user’s information need. By varying the parameter t, it is possible to plot a
curve based on the precision and recall values. This is called a precision-recall curve
(PRC), and it shows the relationship between precision and recall for fixed recall levels
from 0% to 100%. For each recall point, the curve plots the maximum precision achieved
at that recall level or higher. The curves are normally used to compare retrieval quality of
distinct retrieval algorithms because it allows evaluation of both the fraction of relevant
documents found and the quality of the results itself. A precision-recall curve can also be
used to clarify where a retrieval algorithm is most suitable. For instance, if an algorithm
has higher precision at lower recall levels, it will be more suitable for the Web. On the

28

2.6. Evaluation methodologies

other hand, if the algorithm has higher precision at higher recall levels, it may be more
suitable for use cases such as legal applications (Baeza-Yates and Ribeiro-Neto, 2011).
The baseline of PRC is determined by the ratio of positives (P) and negatives (N) as y =
P / (P + N). Hence, for a balanced dataset, the baseline is 0.5.

F-measure

Several of the previous works on hate speech detection use another measure to evaluate
their models. F-measure, also known as the F1-score, is an accuracy measure that
provides another way of combining precision and recall. It is defined as follows:

F = 2
1
R + 1

P

= 2 ∗R ∗ P
R+ P

. (2.6)

Here, R represents recall and P represents precision. F-measure is the harmonic mean
between these two metrics, and it brings a balance between recall and precision. Its use
cases include serving as a measure for search, query classification and document classific-
ation performance, as well as evaluating named entity recognition or word segmentation.
An F1-score varies between 0 and 1, where 1 equals perfect precision and recall and is
the optimal value. If needed, the formula can be weighted to focus more on either recall
or precision.

Area under the ROC curve

A receiver operating characteristic (ROC) curve is a probability curve that is closely
related to the precision-recall curve (Aggarwal, 2017, p. 28). It is used as a performance
measure, and it tells how much a model is capable of distinguishing between classes. The
ROC curve provides a geometric characterization of filter effectiveness, plotted with the
true positive rate (TPR), or recall (Equation 2.5), on the y-axis against the false positive
rate (FPR) on the x-axis. FPR gives the proportion of falsely predicted positives out of
the ground-truth negatives. For a dataset D with ground-truth labels G and threshold t,
the false positive rate is given by Equation 2.7.

FPR(t) = |S(t)−G|
|D −G|

(2.7)

The degree of separability between classes is measured in the area under the curve (AUC).
The higher the AUC, the better the model is at predicting the correct label (Büttcher
et al., 2016). A model with a good measure of separability will have AUC near to 1.
Likewise, a poor model will have AUC near 0. AUC near 0.5 means the model cannot
separate between classes which equal random guesses.

29

2. Background Theory

2.6.3. Inter-annotator agreement metrics

When creating a linguistic data collection, it is common to have multiple people annotate
the same data and then compare the annotations. There might be several reasons why
this is desired, for example, to validate the annotation guidelines or identify difficulties
within the annotation procedure. The evaluation, which often is a comparison, can, for
instance, be a qualitative examination of the annotations or a quantitative examination
based on the calculations of agreement metrics. Either way, the annotation variation
between annotators must be examined to assure the quality and reliability of the dataset.
According to Artstein (2017), an annotation process is reliable if the annotations yield
consistent results. This section presents the most common inter-annotator agreement
metrics, which are used in Chapter 4. The metrics are intended to provide a quantitative
measure of the magnitude of agreement between observers.

Observed agreement

The easiest way to measure the level of agreement between annotators is to use the
observed agreement, or raw agreement. This measure equals the percentage agreement
between the annotators. Hence, it is calculated by counting the number of items for
which the annotators provide identical labels and divide this by the total number of
annotated items. The metric is easy to understand and calculate, and according to Bayerl
and Paul (2011), it is the most common way of reporting agreement. The drawback to
this approach is that it does not account for the chance that the agreement might be by
accident (Artstein, 2017, p. 299).

Kappa and alpha

Coefficients in the kappa and alpha family are intended to calculate the amount of
agreement that was attained above the level expected by chance (Artstein, 2017, p. 300).
Hence, they attain the expected level of agreements given a scenario.

Cohen’s kappa (Cohen, 1960) measures agreement between two annotators while
considering the possibility of an agreement by chance. Fleiss kappa (Fleiss, 1971) have
many similarities to Cohen’s kappa, but it allows for more than two annotators. When
there are more than two annotators, the agreement is calculated pairwise. However,
according to Artstein (2017), the coefficients are not compatible because they differ in
their conceptions of an agreement by chance.

Let Ao be the actual/observed agreement and Ae be the expected agreement. Then, both
Cohen’s and Fleiss’ kappa (κ) can be calculated using the simplified formula presented
in Equation 2.8:

κ = Ao - Ae
1−Ae

(2.8)

30

2.6. Evaluation methodologies

Viera and Garrett (2005) provided an overview of how to interpret the kappa score. This
is presented in Table 2.1.

Table 2.1.: The interpretation of the kappa coefficient

Kappa Agreement
< 0 Less than chance agreement
0.01−0.20 Slight agreement
0.21−0.40 Fair agreement
0.41−0.60 Moderate agreement
0.61−0.80 Substantial agreement
0.81−0.99 Almost perfect agreement

Unlike Cohen’s and Fleiss’ kappa, Krippendorff’s Alpha can assess agreement among
a variable number of annotators and also accepts non-annotated examples (Bobicev and
Sokolova, 2017). Krippendorff’s α is similar to Fleiss’ κ, but is expressed in terms of
disagreement, rather than agreement. α is calculated from the simplified formula in
Equation 2.9, where Do = 1 − Ao and De = 1 − Ae.

α = 1− Do
De

(2.9)

α does not treat all disagreements equally and uses a distance function in order to set a
specific level of disagreements between each pair of labels. The observed disagreement is
then calculated by counting the number of disagreeing pairs, rather than the agreeing
pairs. Furthermore, each disagreement is scaled by the appropriate distance given by the
distance function (Artstein, 2017).

31

2. Background Theory

2.7. Tools and libraries
Many tools and open-source libraries are developed to provide easily accessible and
reusable components. There exist many such tools and libraries for working with textual
data, and they make the job more convenient. Python was chosen to be the main
programming language, primarily because of its extensive support for machine learning
libraries. PyTorch6 with PyTorch-NLP7 was used to implement the deep learning method.
This was chosen because of its ability to utilise a machine’s graphics processing unit
(GPU) that supports CUDA. Furthermore, pandas8, skikit-learn9 and NLTK10 were
used for a variety of tasks, such as reading and handling data, creating the OC-SVM
baseline method and calculate evaluation metrics. Lastly, Twitter’s REST API was used
to collect tweets.

6https://pytorch.org/
7https://pytorchnlp.readthedocs.io/en/latest/
8https://github.com/pandas-dev/pandas
9https://scikit-learn.org/stable/

10https://www.nltk.org/

32

https://pytorch.org/
https://pytorchnlp.readthedocs.io/en/latest/
https://github.com/pandas-dev/pandas
https://scikit-learn.org/stable/
https://www.nltk.org/

3. Related Work

The state of the art and related work on hate speech detection were reviewed and carried
out in the specialisation project preceding this thesis (Jensen et al., 2019). This is
amended with a discussion of papers based on anomaly detection that have become
relevant for this thesis, as well as a few additional papers on hate speech detection that
have become available after the project.

In this chapter, the current state of the art within the field of hate speech detection
are discussed. This includes the existing research on hate speech detection, hate speech
datasets and an overview of research on anomaly detection, both in general and on textual
data. Furthermore, relevant features and text representation methods commonly used
for hate speech detection are discussed. Even though this thesis aims at using anomaly
detection techniques to detect hate speech, a significant part of the relevant research on
hate speech detection involves classification models. Hence, an overview of the current
classification methods used in the research field is also included. In addition, research on
hate speech detection for non-English languages is provided. The chapter finishes with a
table containing a complete summary of all the research directly related to hate speech
detection, which is presented previously in this chapter.

3.1. Hate speech detection

Hate speech is a field which has continuously received increased attention in the research
community, and thus the amount of research has also grown accordingly. Despite this,
there are still many challenges within the field. Nobata et al. (2016) summed up some of
the major challenges including; the subjective interpretation of hate speech and offensive
language, the difficulty of annotating data, the evolving language, and the lack of a
benchmark dataset.

The subjective interpretation of hate speech and offensive language is already mentioned
in the definition of hate speech in Section 2.1 and will be discussed further in the
annotation procedure described in Section 4.2. Dinakar et al. (2012) stressed that “the
presence of profane content does not in itself signify hate speech. General profanity is
not necessarily targeted towards an individual and may be used for stylistic purposes or
emphasis. On the other hand, hate speech may denigrate or threaten an individual or a
group of people without the use of any profanities.” Thus, hate speech detection is more
than just detecting profane words. Hate speech can be both grammatically correct and

33

3. Related Work

fluently written. In addition, as already mentioned in Section 2.1, Schmidt and Wiegand
(2017) underlined what is considered a hate speech message might be influenced by a lot
of different aspects and Davidson et al. (2017) point out that different offensive terms
often have cultural implications; a word can have a different meaning to specific groups.
Due to these difficulties, Ross et al. (2017) and Waseem and Hovy (2016) both investigate
the difficulty of annotating data by analysing the reliability of annotators, which includes
the difference between the annotation quality when annotators have a definition or not,
and whether they are experts. They both concluded that the reliability did not improve
when they were given a definition. However, annotators should be given a more detailed
definition of hate speech before annotating. This highlight the problem of subjective
interpretation of hate speech detection.

Another problem for hate speech detection is an evolving language. As users get moder-
ated, they will use new variations of spellings, words and other methods to learn how to
avoid getting moderated. Lastly, the lack of a benchmark dataset and how the data is
collected is also a highly relevant and debatable topic. This will be further discussed in
Section 3.2.

As the amount of research increase, the number of different approaches also increase.
Fortuna (2018) made an overview of the different existing datasets and annotation
procedures, and Schmidt and Wiegand (2017) also made an overview and introduction
to the hate speech field. The first discussion point is whether hate speech classification
should differentiate only between hate and non-hate (binary) or multiple classes. As
binary classification is considered more straightforward, method-wise, this is previously
the most commonly used approach (Malmasi and Zampieri, 2017). As noted by Dinakar
et al. (2012), models trained on such data often rely on the frequency of offensive or
profane words to distinguish between the classes. Therefore, it is crucial to discriminate
between hate speech and profane words. As a result, classifying multiple labels has
recently become more widespread through either multi-label classification (Malmasi and
Zampieri, 2017; Sharma et al., 2018) or multi-step classification (Park and Fung, 2017).
H. Liu et al. (2019) looked into multi-step learning because classifying into a single class
would not be optimal for the real world. They proposed a three-level framework which
first did a polarity classification, determining whether something is hate or not hate,
followed by a multi-task classification for the identification of the different types of hate
speech and then in the last stage it detected topics and context of hate speech.

3.2. Existing data collections

Despite the proliferation of hate speech as a research field, one commonly accepted corpus
does not exist yet. Because of this, authors usually have to collect and label their own
data. The datasets are often constructed specially for the domain. Since the datasets
have been constructed for different purposes, they may display different sub-types of hate
speech and have unique characteristics. As an example, the data collected at a white

34

3.2. Existing data collections

supremacy forum will differ from the data collected at more general sites such as Twitter,
due to amongst other the difference in demographic. Because of the lack of a benchmark
dataset, a lot of the studies conducted use a variety of different annotations and data,
making it harder to compare methods and results. In addition, creating datasets is very
time-consuming because the number of hateful statements is much lower than for neutral
statements. Thus, to get a sufficient number of hate speech instances, a larger number of
comments has to been annotated. Also, a lot of the datasets has not been made publicly
available. One reason can be that due to the offensive and profanity language of the
data, the authors do not want the content to be publicly available.

Even though there is no benchmark dataset there exist some that are widely used in
recent papers. One of these is from Waseem and Hovy (2016). It was made publicly
available on GitHub with approximately 16k messages from Twitter which were labelled
as racism, sexism or neither. The tweets were collected through a manual search of
common hateful terms and hashtags related to religion, sex, gender and ethnic minorities.
The dataset is quite small and also contain a significant proportion of neutral tweets,
which makes it unbalanced. The authors state in their paper that this is intentional for a
better real-world representation. At the time being, many tweets are no longer available
due to users being deleted or blocked from Twitter.

Davidson et al. (2017) proposed a dataset with data collected from Twitter using the hate
speech lexicon from Hatebase.org. They did labelling through employing CrowdFlower
workers who did manual labelling on each tweet into one of three categories: hate speech,
offensive but not hate speech or neither. The workers were given definitions of hate
speech and told to consider the context of the tweet. The authors concluded that specific
lexical methods are effective to identify the offensive language, but not as accurate when
identifying hate speech; just a small percentage of the flagged Hatebase lexicon was
considered hate speech by humans. Their analysis showed that a hateful term could
both help and hinder accurate classification, and their study pointed out that some
terms are especially useful for distinguishing between offensive language and hate speech.
Nonetheless, if a text does not contain any offensive terms or curse words, we are most
likely to misclassify hate speech.

Another publicly available dataset1 from Kaggle contains around 150k Tweets where
16k are toxic. The dataset separates between six different types of hateful; toxic, severe
toxic, obscene, threat, insult and identity hate. Sharma et al. (2018) created a new
dataset of tweets based on ontological classes and degrees of harmful speech, with the
granularity they claim other publicly available datasets to be missing. They also take into
consideration the degree of harmful content, the intent of the speaker and how this affects
people on social media when labelling the data. Z. Zhang et al. (2018) also created a
dataset which extended the at time currently available datasets which consist of Waseem
and Hovy (2016) and Davidson et al. (2017). More recently, Founta et al. (2018) published
a dataset containing 100k English tweets with cross-validated labels. This is more useful

1https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data

35

https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data

3. Related Work

for deep learning models since they require larger amounts of data. The authors proposed
a methodology for annotating large-scale datasets and used CrowdFlower workers for
the labelling process. The dataset is more balanced compared to earlier datasets, with
roughly half of the samples labelled as "Normal" and the rest as either "Offensive", "Spam"
or "Hateful".

Gröndahl et al. (2018) tried to reproduce five state of the art hate speech models using
datasets from Waseem and Hovy (2016), Wulczyn et al. (2017) and Z. Zhang et al. (2018).
Their results show that the models only perform well when tested on the same type of
data they were trained on. Thus, this underpins what Davidson et al. (2017) and Waseem
(2016) emphasized; the lack of a definition of hate speech result in a difference in the
annotation of the dataset, which leads to models predicting offensive speech as being
hateful. However, if the models are retrained with the training set from another dataset
and then tested using the test set from the same dataset, all models perform equally well.
Thus, they are largely independent of the model architecture.

Lastly, several national and international hate speech workshops have recently proposed
datasets in their respective languages for their workshops and competitions. Zampieri
et al. (2019) presented OLID, the Offensive Language Identification Dataset, which
contains over 14k English tweets. Thus, this indicates that there is still not one commonly
accepted corpus.

3.3. Anomaly detection

As previously mentioned, Gröndahl et al. (2018) compared five state-of-the-art hate
speech models with three well-known datasets and found that all of the models had
poor performance when they were trained on one dataset and tested against another.
Therefore, they suggest to re-phrase the problem. Hate speech detection has previously
only been referred to as a classification problem, but should instead be addressed as
detection. Hence, they suggest reconceptualising hate speech detection as anomaly
detection, where hate speech constitutes an anomalous variant of ordinary speech. To the
best of our knowledge, there are currently no existing methods that have experimented
with the suggestion made by Gröndahl et al. (2018) to utilise anomaly detection to solve
the problem of detecting hateful utterances.

Even though anomaly detection has not been used in the field of hate speech detection,
it has been well-studied within diverse research areas and application domains. This
includes areas such as fraud detection, industry damage detection, image processing,
video network surveillance, and intrusion detection (Han et al., 2012). Most of the related
work treats anomaly detection as an unsupervised learning problem. Typical anomaly
detection methods assume that most of the data samples are normal and attempts to
learn a "compressed" representation of this data. Moya et al. (1993) implemented a
neural network one-class classifier for target recognition, while Schölkopf et al. (2001) and
Tax and Duin (2004) implemented one-class SVMs for detecting novel data or outliers.

36

3.3. Anomaly detection

The methods aim at finding a subset of the data which contains the normal instances.
Data samples that do not fall into this set are deemed anomalous. Furthermore, Kim
and Scott (2012) and Vandermeulen and Scott (2013) use Kernel Density Estimation
and F. T. Liu et al. (2008) use Isolation Forest to deal with the anomaly detection
problem. A drawback to these shallow unsupervised anomaly detection methods is that
they often require manual feature engineering to be effective on high-dimensional data.
This process is time-consuming, which entails that they are limited in their scalability to
large datasets.

In recent years, there has been an increasing interest in deep anomaly detection algorithms
(Chalapathy and Chawla, 2019), a line of research which has already shown promising res-
ults. These approaches are motivated by the limited scalability of shallow AD techniques,
and the need for methods that can handle large and complex datasets. Furthermore,
the deep anomaly detection methods aim at overcoming the need for manual feature
engineering by being able to learn the relevant features from the data automatically.
The methods have been applied to a diverse set of tasks like video surveillance, image
analysis, health care and cyber-intrusion detection. There have been proposed several
novel deep approaches to unsupervised anomaly detection, including the work done by
Abati et al. (2019) that designed an unsupervised deep autoencoder that learns the
underlying probability distribution through an autoregressive procedure. Furthermore,
Erfani et al. (2016) presented a hybrid model where an unsupervised Deep Belief Network
is trained to extract features, and a one-class SVM is trained from these features. Other
approaches include the works by Hendrycks et al. (2018), Ruff et al. (2019) and Pang
et al. (2019).

All the methods previously mentioned are relying on unsupervised learning. On the
other hand, semi-supervised learning utilises some labelled data samples in addition
to unlabelled data. Many real-world applications have access to a small portion of
data that might, for example, be labelled by a domain expert, and this knowledge is
not exploited in the unsupervised setting. According to Ruff et al. (2020), the term
semi-supervised anomaly detection has been used to describe two different settings for
anomaly detection. These settings include only adding labelled normal data and adding
both labelled normal data and anomalies. Most of the existing work adopts the first
setting, i.e. only incorporates labelled normal data. Shallow approaches that adopt
this setting include the work done by Blanchard et al. (2010) that created a semi-
supervised method for novelty detection, assuming that only labelled examples of the
normal class was available. They argue that the problem could be solved by reducing it
to a Neyman-Pearson (NP) classification, which is the problem of binary classification
subject to a constraint on the false positive rate. One deep approach is developed by
Akcay et al. (2018) by using a conditional generative adversarial network by employing
encoder-decoder-encoder sub-networks. There are a few authors that have investigated
the second setting, where one utilises labelled anomalies in addition to the labelled normal
data. This includes the works conducted by Görnitz et al. (2013) and Ergen et al. (2017)
among others.

37

3. Related Work

Ruff et al. (2020) introduce a deep end-to-end method for general semi-supervised anomaly
detection using an information-theoretic perspective. It involves deriving a loss motivated
by the idea that the entropy for the latent distribution of normal data should be lower
than the entropy of the anomalous distribution. Generally, semi-supervised approaches
to anomaly detection aim at utilising labelled samples, but most proposed methods are
limited to merely including labelled normal samples. This method also takes advantage
of labelled anomalies. They have conducted extensive experiments with three widely
used datasets containing images, along with other anomaly detection benchmark datasets
(where none contains text data). They argue that their method outperforms shallow,
hybrid, and deep competitors, yielding increased performance even when provided with
only a little labelled data.

There are a limited amount of works that address anomaly detection on text data. L. M.
Manevitz et al. (2001) study one-class classification of documents using OC-SVM, where
their model is based on identifying “outlier” data as representative of the second-class. L.
Manevitz and Yousef (2007) later experimented with a simple autoencoder (feed-forward
network) on text, where they developed a filter to examine a corpus of documents and
choose those of interest. They did this by only using positive information, i.e. normal
data, training on the Reuters-21578 data collection (Lewis et al., 2004).2 Steyn and
De Waal (2016) constructed a Multinomial Naïve Bayes classifier and enhanced it with
an augmented Expectation-Maximization (EM) algorithm in an attempt to simplify
the problem of textual anomaly detection. Kannan et al. (2017) use block coordinate
descent optimisation to create a matrix factorisation method for anomaly detection on
text, which they claim has significant advantages over traditional methods. Gorokhov
et al. (2017) implemented a convolutional neural network for unsupervised learning with
an RBF activation function and logarithmic loss that was tested on the Enron Email
dataset.3

Recent work has found that proper text representation is crucial for designing well-
performing machine learning algorithms. Several existing methods within the field of
hate speech detection and text classification, in general, utilises word embeddings. This
will be further discussed in Section 3.4. However, existing methods for anomaly detection
often rely on bag-of-words (BoW) to represent text, such as the works by L. M. Manevitz
et al. (2001), L. Manevitz and Yousef (2007), Kannan et al. (2017) and Mahapatra et al.
(2012). Neither of these methods makes use of unsupervised pre-trained word models,
like word embeddings. Ruff et al. (2019) is currently the only text-specific method for
anomaly detection that utilises pre-trained models for distributed vector representations of
words. They introduce a one-class classification method which uses unsupervised learning,
builds upon word embedding models and learn multiple sentence representations via
self-attention. These sentence representations capture multiple semantic contexts, which
enables the performance of contextual anomaly detection concerning the multiple themes
and concepts present in the unlabelled text corpus. The datasets they experimented

2Available at: http://www.daviddlewis.com/resources/testcollections/reuters21578/
3https://www.kaggle.com/wcukierski/enron-email-dataset

38

http://www.daviddlewis.com/resources/testcollections/reuters21578/
https://www.kaggle.com/wcukierski/enron-email-dataset

3.4. Features in hate speech detection

with was the Reuters-21578, 20 news-groups and IMDB Movie Reviews. They tested
both GloVe and FastText embedding and BERT language model and found that the
improvements using BERT on these datasets were insufficient and did not justify the
increased computational cost.

3.4. Features in hate speech detection

Feature extraction aims to transform input data into a new dataset by creating new
features. Schmidt and Wiegand (2017) did a summary of important features used within
hate speech detection, which includes a wide range of features. In this section follows a
presentation of the state of the art within feature extraction.

Simple surface features are features that can be derived without advanced methods. Bag of
words (BoW), word and character n-grams are popular methods used to find the presence
and frequency of words in a document. URL mentions, hashtags, punctuation, word and
document lengths and capitalisation are also used widely in hate speech classification
by authors such as Burnap and Williams (2015), Waseem and Hovy (2016) and Nobata
et al. (2016). Waseem and Hovy (2016) explored which features that are most prominent
when detecting hate speech and found that character n-grams contribute the most to the
result. Furthermore, Mehdad and Tetreault (2016) concluded that character n-grams
outperform word n-grams and other methods. Character n-grams are superior within
hate speech detection due to the ever-evolving language on social media. Users learn
blacklisted words and can thus avoid them by using slurs and disguising the language in
other manners. Using character n-grams is also more efficient to catch spelling mistakes.

Several lexical resources can be found on the web. Burnap and Williams (2015) created
a word list containing specific negative words such as insults and slurs. Dennis Gitari
et al. (2015) built a list of hate verbs and more recently hatebase.org4 has been widely
used. Davidson et al. (2017) showed that when detecting hate speech, one cannot rely
completely on only these word lists. Most approaches today use it in addition to other
features, such as simple surface features and word embeddings.

Linguistic features or syntactic features utilise syntactic information in the language such
as dependency relationships and part-of-speech (POS) which are employed in the feature
set of Dennis Gitari et al. (2015), Burnap and Williams (2015), Van Hee et al. (2015)
and Z. Zhang et al. (2018). Nobata et al. (2016) looked into several different features,
such as surface features and linguistic features. They found that character n-grams
perform very well alone, but in combination with other features, their method became
even more powerful. By adding these methods, one can capture long-range dependencies
between words which n-grams may struggle to do. Burnap and Williams (2015) found
that using typed dependencies, a representation of a syntactic grammatical relationship
in a sentence, reduced the false negatives by 7% over the baseline BoW. This is useful

4https://hatebase.org/

39

https://hatebase.org/

3. Related Work

for differentiating between utterances such as "send de hjem" and "la de være". Here, the
POS pattern is the same, but the first utterance is more frequent in hateful comments.
Sentiment analysis is the degree of polarity expressed in a message. A popular feature
used is the presence of positive or negative words. Thus, hate speech and sentiment
are often affiliated; often negative sentiment belongs to a hateful utterance, and several
approaches such as Dennis Gitari et al. (2015) and Van Hee et al. (2015) look into this.

With hate speech detection, one might encounter the problem of data sparsity and
high dimensionality. Word generalisation, which generally consists of word clustering
and word embeddings, have been used to face these problems. With word clustering,
induced cluster IDs representing a set of words are used as additional generalised features.
Algorithms such as Brown Clustering (Brown et al., 1992), assigning each individual
word to one particular cluster, and Latent Dirichlet Allocation (LDA) (Blei et al., 2003),
topic distribution for each word were used as features in Warner and Hirschberg (2012),
Malmasi and Zampieri (2017) and Zhong et al. (2016). However, more recently, word
embeddings, distributed word representations based on neural networks, have been
proposed for similar purposes. Word embeddings can be useful in hate speech detection
since semantically similar words such as "dog" and "cat" may end up having a more
similar vector than "dog" and "boat". There exist several popular word embedding models
including Word2vec (Mikolov et al., 2013), GloVe (Pennington et al., 2014) and fastText
(Mikolov et al., 2017). Word embedding has also been quite popular in recent research
within hate speech. Nobata et al. (2016), Park and Fung (2017) and Gambäck and
Sikdar (2017) used Word2vec, Badjatiya et al. (2017) used GloVe and fastText and
Pavlopoulos et al. (2017) used both GloVe and Word2vec. Djuric et al. (2015) showed
that Word2vec outperformed the current state of the art model when compared to using
BoW with a logistic regression classifier, addressing the aforementioned issues of data
sparsity and high dimensionality. Furthermore, recently Devlin et al. (2018) presented
a new word embedding model called BERT, Bidirectional Transformers for Language
Understanding. BERT is a bidirectional unsupervised language representation, meaning
that it can represent a word as having different meanings. For example, the word "bank"
would have different representation, whether it is used in the word "bank deposit" or
"riverbank". Their model outperformed the current state of the art, and this model can
further improve many different types of NLP tasks. In addition to BERT, ElMo (Peters
et al., 2018) and ULMFiT (Howard and Ruder, 2018) are some popular transfer learning
models used in hate speech detection.

Meta information is information about the context such as user characteristics or whether
the user has a high frequency of certain negative words in their user history. Waseem
and Hovy (2016), Pitsilis et al. (2018) and Unsvåg (2018) all look into this. Today’s
social media consist of both images, videos and audio content. This content can also
be hateful, and some studies try to use this multi-modal information as a predictive
feature. Hosseinmardi et al. (2015) and Zhong et al. (2016) employ features based on
images. World knowledge is used in Knowledge-based features to better get the context of
a sentence. It requires a lot of manual coding, and therefore, to the best of our knowledge,

40

3.4. Features in hate speech detection

only Dinakar et al. (2012) use a knowledge base in their work. In many papers, several
different features are used and tested to gain the best result. This includes Nobata et al.
(2016), Z. Zhang et al. (2018), Badjatiya et al. (2017), Davidson et al. (2017) and Waseem
(2016). However, it is often difficult to select useful features since existing supervised
models heavily rely on carefully engineered features. Robinson et al. (2018) conducted
an extensive feature selection analysis, looking at surface features, linguistic features and
sentiment features. They concluded that automatic feature selection could reduce the
carefully engineered features by over 90%. The authors were able to select a small set
of the most predictive features which achieves much better results than models using
carefully engineered features. In addition, to the best of our knowledge, the general
trend favours employing n-grams and different types of word embeddings, where transfer
learning models have been the newest addition to the current state of the art.

The features commonly used in hate speech detection, as presented in this section, are
summarised in Table 3.1.

Table 3.1.: Features in hate speech detection

Feature type Description
Simple surface features Features that can be derived without advanced methods

Bag of Words (BoW) It is a representation of text that describes the occurrence
of words within a document

N-grams N-gram assigns probabilities to word and character
sequences. It is a sequence of n words or characters

Linguistic features Utilise syntactic information in the language such as
dependency relationships and part-of-speech (POS) tagging

Typed dependencies A representation of a syntactic grammatical relationship in
a sentence

Sentiment analysis The degree of polarity expressed in a message
Word generalisation Generally consists of word clustering and word embeddings

Word clustering Cluster ids is representing a set of words used as additional
generalised features

Word embeddings Distributed word representations based on neural networks,
such as Word2Vec, GloVe and fastText

Transfer learners Language models that represent a word as having different
meanings, such as BERT and ElMo

Meta information Information about the context, such as user characteristics
Knowledge-based
features

World knowledge that is used to better understand the
context of a sentence

41

3. Related Work

3.5. Classification methods

Existing work within the field of hate speech detection can be divided into two categories;
classic methods and deep learning methods. Previously, classical methods were mainly
used, but more recently, neural networks and deep learning methods tend to outperform
these methods, as stated by Schmidt and Wiegand (2017). This section presents the
current state of the art within the field of classification methods, including classic methods
and deep learning.

Classic methods include support vector machines (SVM), naïve Bayes (NB), logistic
regression (LR), gradient boosted decision trees (GBT), random forest (RF) and general
NLP. Despite deep learning being the most popular research area nowadays, some classical
methods still compete with certain methods, and they are often used as a baseline for
deep learning methods.

As stated by Schmidt and Wiegand (2017), LR and SVM have been the most popular
choices among the classic methods within hate speech. Waseem and Hovy (2016) used
LR in combination with extra-linguistic features and character n-grams to detect hate
speech, while Gaydhani et al. (2018) proposed an approach which combined n-gram and
TF-IDF with NB, LR and SVM. LR outperformed the previous state of the art methods
at that time. However, these results have shown difficult to reproduce, and it turned out
that 74% of the test data were either already in the training data or a duplicate (Isaksen,
2019). Davidson et al. (2017) first used LR to reduce the data dimensionality before
testing a variety of models such as NB, decision trees, RF, and linear SVMs. They found
that LR and linear SVMs performed significantly better than the other models. Even
though they managed to get a high F1-score on the best performing model, this model
still misclassified almost 40% of the hate speech instances in the dataset.Lee et al. (2018)
used the Founta et al. (2018) dataset to create the first baseline model using the most
frequently studied classic machine learning and deep learning methods. They use BoW,
TF-IDF and n-grams as features and they experimented with NB, LR, SVM, RF and
GBT. For the neural network-based models, they used CNN and RNN. For their variant
models, they use a pre-trained GloVe word embedding model. The models performed
more or less equal, with an F1-score ranging from 0.73 to 0.805, where RNN performed
the best.

It is quite common to combine different machine learning classifiers. Burnap and Williams
(2015) used Bayesian LR, GBT, SVM and an ensemble method to detect cyber hate
speech. MacAvaney et al. (2019) proposed a multi-view SVM (combining multiple
SVMs) approach that achieved near state-of-the-art performance while being simpler and
producing easier interpretable decisions than neural methods. Malmasi and Zampieri
(2017) and Robinson et al. (2018) looked into using SVM in combination with typical
NLP features and achieved acceptable results, while Nobata et al. (2016) and Sharma
et al. (2018) used a supervised model combining various surface and linguistic features.

As previously mentioned, supervised machine learning methods are often used as a

42

3.5. Classification methods

baseline when testing deep learning methods. Fagni et al. (2019), Z. Zhang et al. (2018)
and Badjatiya et al. (2017) used SVM, NB and LR as a baseline in their deep learning
approach. Even though at present, classical methods are mostly outperformed by deep
learning methods, some recent papers find SVM and LR models outperforming current
deep learning architectures. Biesek (2019) tested SVM with TF-IDF vectors, bidirectional
gated recurrent unit (GRU) and a contextual string embeddings model and found SVM
outperforming the other methods. The reason probably being that it was a small and
unbalanced dataset which can make more complicated models overfit. Classical methods
are often chosen and preferred due to simplicity and when there is a smaller amount of
data.

In most recent papers, deep learning with convolutional neural network (CNN), recurrent
neural network (RNN), Long Short-Term Memory (LSTM) and a combination of methods
have been the preferred approach. Both Zampieri et al. (2019), Badjatiya et al. (2017),
Z. Zhang et al. (2018) and Fagni et al. (2019) showed that deep learning methods
outperforms the more classical machine learning methods. Gambäck and Sikdar (2017)
proposed to use CNN to classify hate speech by training four different CNN models using
character n-grams, word vectors, and a combination of those. Park and Fung (2017)
did one-step and two-step classification of abusive language. First detecting whether a
tweet was hateful or not, and afterwards using a different classifier to detect whether it
was racist or sexist. They, as well as Gambäck and Sikdar (2017), used a HybridCNN
model, which is a variant of CNN that uses both words and characters to classify. For
the one-step method, their proposed HybridCNN performs the best and for the two-step
approach combining two LR classifiers performs as well as the HybridCNN in one step.
This was surprising considering LR used fewer features than the HybridCNN. In addition,
using HybridCNN for the first step and LR for the second step worked better than just
using HybridCNN. Z. Zhang et al. (2018) introduce a new method based on deep neural
network combining CNN and GRU, where word embeddings are first fed into CNN, which
produces input vectors for the GRU. They evaluated it against several baselines and
state of the art methods on a large collection of publicly available datasets. The results
outperformed the baseline methods on six out of seven datasets.

Mehdad and Tetreault (2016) experimented with RNN and outperformed previous state-
of-the-art methods. Pavlopoulos et al. (2017) used RNN in combination with GRU to
further improve the previous state of the art approaches. It outperformed state of the art,
which used LR or ML with features such as character n-grams or word n-grams. They also
beat a standard CNN using word embeddings. Badjatiya et al. (2017) experimented with a
supervised learning model based on deep learning architectures. They experimented with
multiple classifiers such as LR, RF, SVMs, fastText, CNNs and LSTM. The best result
was achieved using the LSTM model, assisted by gradient boosted decision trees and the
features extracted by character n-grams. Their methods outperform previously considered
state of the art methods such as character and word n-grams methods. However, other
researchers have failed to reproduce their best-performing experiments, stating that their
cross-evaluation method had a bug which increased the final F1-score for each iteration

43

3. Related Work

(Fortuna et al., 2019). However, Gröndahl et al. (2018) showed that they still achieved
competing results without these implementations. De Gibert et al. (2018) tried different
types of machine learning techniques such as SVM, CNN and LSTM. The LSTM based
classifier obtained better results, but the SVM model still achieved decent results. Founta
et al. (2019) experimented with different types of RNN architecture; GRUs, LSTMs
and bidirectional RNNs. They found that the simple GRUs performed as good as more
complex units.

In the aforementioned methods, they have separated the use of RNN and CNN, but
as Z. Zhang et al. (2018) states; In theory, combining them should show to be more
powerful than just solely based on either. In hate speech, CNN is useful to extract word
or character combinations (word embeddings), and RNN will learn word or character
dependencies (order information). They hypothesise that a combined structure can
be more effective as it may capture co-occurring word n-grams as useful patterns for
classification.

Pitsilis et al. (2018) proposed a detection scheme that is an ensemble of RNN classifiers,
and it also incorporated various user-features. Their solution achieved a higher classi-
fication quality than the current state-of-the-art algorithms. One of these algorithms
included Badjatiya et al. (2017). Furthermore, Fagni et al. (2019) looked into six different
machine learning classification strategies, three classic and three deep learning. They
compared SVM, NB and LR to CNN, GRU and ensemble and concluded that the best
classification results were obtained through deep learning techniques, and ensemble in
particular. H. Liu et al. (2019) proposed a fuzzy multi-step method to classify, and it
was compared to SVM, CNN and LSTM beating the current state of the art. Meyer and
Gambäck (2019) proposed an optimised architecture to detect hate speech by combining
CNN and LSTM networks, utilising both character n-grams and word embeddings to
produce the final classification. They used the Waseem and Hovy (2016) dataset and
they outperformed all previous state-of-the-art approaches with an F1-score of 0.792.

Schmidt and Wiegand (2017) stated that there does not exist comparative studies which
would allow making a judgement on the most effective learning method. However, there
exist several studies that compare the performance of different classification methods.
Burnap and Williams (2015) did a comparative study which concluded that an ensemble
method seemed most promising. Still, considering that this method could only work well
for the exact dataset and features, it does not prove that it is the ideal approach for
every hate speech problem.

As hate speech detection is experiencing an increase in popularity, SemEval 2019, a yearly
international workshop on semantic evaluation, had two tasks regarding hate speech
detection. Zampieri et al. (2019) presented the results and the main findings where
the task was to identify and categorise offensive language in social media, with three
sub-tasks. One hundred and four teams submitted a result for the first sub-task where
the goal was to discriminate between offensive and non-offensive posts. The most popular
models involved deep learning approaches, and within these, there was a variation of

44

3.6. Hate speech detection for non-English languages

models used, but ensemble being the most popular. However, among the top 10 teams,
seven used a variant of BERT (Devlin et al., 2018), the top non-BERT model used an
ensemble of CNN with BiLSTM and BiGRU and got ranked sixth.

3.6. Hate speech detection for non-English languages

Since this thesis is concerned with the creation of a method for hate speech detection that
is language-independent, it is relevant to look into existing approaches to hate speech
detection for other non-English languages.

Van Hee et al. (2015) annotated their own Dutch dataset from Ask.fm consisting of
approximately 86k posts. They used SVM in combination with BoW, word and character
n-grams and semantic features when trying to detect Dutch cyberbullying. They achieved
an F1-score of 0.554, which was in line with the state-of-the-art approaches for automatic
cyberbullying detection at that time. A Finnish group of data scientist from the Finnish
company Futurice5 looked into NB, RF and SVM in combination with both BoW and
fastText tested on Finnish hate speech data from Facebook discussions. They achieved
quite good results, where SVM with BoW outperformed the other methods. Vigna et al.
(2017) reported performance for a simple LSTM classifier not better than an ordinary
SVM, where SVM beat the simple LSTM on some occasions. Jaki and De Smedt (2018)
trained a single-layer averaged Perceptron algorithm (Collins, 2002) in combination
with character n-grams on a German right-wing hate speech dataset consisting of 100k
instances. They achieved good results but state that the reliability of the model can be
improved by more recent techniques such as deep learning systems with word embeddings.

Sigurbergsson and Derczynski (2019) were the first to detect hate speech for Danish
and are to the best of our knowledge the only ones who have done it for Scandinavian
languages. They constructed a Danish dataset containing user-generated comments
from Reddit and Facebook. They split the classification into three sub-tasks in order
to capture different types of offensive language. Sub-task A consists of classifying each
post as either offensive or not. Sub-task B was to do an automatic categorization of the
offensive language types, and for sub-task C the goal was to classify the target of the
offensive language. Four automatic classification systems consisting of logistic regression
and different types of BiLSTM were designed for both English and Danish. They used
surface, linguistic and semantic features, as well as different types of word representations.
The best performing system for Danish for sub-task A achieves an F1-score of 0.699 with
logistic regression.

Several national semantic evaluation workshops for hate speech have lately taken place,
which has focused on their respective languages. Wiegand et al. (2018), Bosco et al. (2018)
and Ogrodniczuk and Kobyliński (2019) consists of various research papers in German,
Italian and Polish. In general, many state-of-the-art approaches were explored as well as

5https://www.futurice.com/blog/hate-speech-detection

45

https://www.futurice.com/blog/hate-speech-detection

3. Related Work

different word embedding methods, with transfer learning models also rising in popularity.
In addition, SemEval’s 2019 (Basile et al., 2019) task 5 consisted of multilingual detection
of hate speech against immigrants and women on Twitter and focused on Spanish and
English messages. The first sub-task consisted of a binary classification task where the
system had to predict whether a tweet in English or Spanish contained hate speech. SVM
with TF-IDF vectors was used as a baseline for all the models. The best model used
SVM in combination with ElMo and achieved an F1-score of 0.651 (Indurthi et al., 2019).
The other top performers used different combinations of neural networks, in particular,
CNN and LSTM models with a variation of fastText and BERT models.

Alfina et al. (2017) created a dataset in Indonesian that covers hate speech in general,
including hatred for religion, race, ethnicity, and gender. In addition, they conducted a
preliminary study using different machine learning models such as Naïve Bayes, Support
Vector Machine, Bayesian Logistic Regression, and Random Forest. Features they
extracted were word n-grams, character n-grams and negative sentiment. They achieved
an F-measure of 93.5% using word n-gram feature with Random Forest algorithm and
found that word n-grams outperformed character n-grams.

3.7. Summary
As the above discussion illustrates, many methods have been proposed for detecting
hate speech and offensive utterances, but these existing methods have issues that need
to be addressed. Table 3.2 summarises the approaches directly related to hate speech
detection, which was discussed in this chapter. As mentioned, there exists a large amount
of research related to the detection of hateful expressions, and this chapter provided
a comprehensive description of a selection of these. However, there exists much more
research not included here. The research related to anomaly detection is not included in
the table since this research is not directly related to hate speech detection.

6https://github.com/clips/pattern
7https://github.com/zalandoresearch/flair

46

https://github.com/clips/pattern
https://github.com/zalandoresearch/flair

3.7. Summary

Work Description Resources used Classification Dataset

Burnap
and
Williams
(2015)

Classification and
statistical modeling
for detecting cyber
hate speech

Simple surface
features i.e. BoW
and character
n-grams

Bayesian LR,
RFDT, SVM
and ensemble

Own Twitter
dataset

Waseem
and Hovy
(2016)

Presents a publicly
available hate
speech corpus

N-grams and text
features LR Own Twitter

dataset

Nobata
et al.
(2016)

Develop a hate
speech corpus and
a ML method to
detect hate speech

Several different
NLP features,
including lexicon,
n-grams, word2vec
and syntactic

Skip-bigram and
distributed
memory model

Own Yahoo
dataset (Djuric
et al., 2015)

Dennis
Gitari
et al.
(2015)

Generate a lexicon
of sentiment
expressions and use
this to create a
classifier

Sentiment analysis
SVM and
Maximum
Entropy

Own website
dataset

Davidson
et al.
(2017)

Hate speech
detection using
classic ML methods

Surface features,
linguistic features
and sentiment
features

LR, NB, DT,
RF and SVM

Own Twitter
dataset

Hossein-
mardi
et al.
(2015)

Detect
cyberbullying over
images in
Instagram

N-grams, image
and text features NB and SVM Own Instagram

dataset

Zhong
et al.
(2016)

Detect
cyberbullying from
Instagram images

N-grams, BoW,
Word2Vec, image
and text features

SVM and CNN Own Instagram
dataset

Fagni
et al.
(2019)

Hate speech
detection with
classic and deep
learning

Text features,
BoW, word2vec

LR, NB, SVM
and CNN, GRU
and Ensemble

Own Twitter
dataset

Gambäck
and
Sikdar
(2017)

Deep learning hate
speech classification
system

Character n-grams,
one-hot encoding
and word2vec

CNN Waseem and
Hovy (2016)

Founta
et al.
(2019)

Unified deep
learning
architecture for
abuse detection

TF-IDF BoW and
GloVe

NB as baseline,
RNN, Bi-RNN,
GRU and
LSTM

Chatzakou et al.
(2017), Waseem
and Hovy
(2016),
Davidson et al.
(2017),
Rajadesingan
et al. (2015)

Table 3.2.: Overview of related approaches

47

3. Related Work

Work Description Resources used Classification Dataset

Mehdad and
Tetreault
(2016)

Analysis of word
and character
n-grams in abusive
language detection

Word and character
n-grams, BoW,
Word2vec, image
and text features

Distributional
Representation
of Comments
(C2V), SVM,
NB and RNN

Nobata et al.
(2016)

Park and
Fung (2017)

One-step and
Two-step
classification for
abusive language

Word and character
n-grams, one-hot
encoding and
word2vec

HybridCNN and
LR

Waseem and
Hovy (2016)

Z. Zhang
et al. (2018)

Detecting hate
speech through
combining CNN
and GRU based
DNN

Surface, linguistic,
sentiment and
enhanced features,
word2vec

CNN+GRU and
SVM

Waseem and
Hovy (2016),
Davidson
et al. (2017)
and own
Twitter
dataset

Pavlopoulos
et al. (2017)

Deep learning for
user comment
moderation

GloVe and
word2vec

RNN+GRU,
wordlist and
CNN

Own
Gazzetta
dataset,
Wulczyn
et al. (2017)

Badjatiya
et al. (2017)

Hate speech
detection using
different methods
within deep
learning

Character n-gram,
TF-IDF, BoW and
GloVe and semantic
embeddings

LR, RF, GBDT,
SVM, FastText,
CNN and LSTM

Waseem and
Hovy (2016)

Pitsilis et al.
(2018)

Ensemble of RNN
classifiers to detect
offensive language
focusing on the
users’ behaviour

Word-based
frequency
vectorization

RNN and
LSTM

Waseem and
Hovy (2016)

De Gibert
et al. (2018)

Hate speech
detection on white
supremacy forum

BoW and randomly
initialized word
embeddings

SVM, CNN and
LSTM

Own
Stormfront
dataset

Malmasi and
Zampieri
(2017)

Detect hate speech
in social media and
distinguish from
profanity

Surface features,
word skip-gram,
Brown clusters

SVM Davidson
et al. (2017)

MacAvaney
et al. (2019)

Challenges and
solutions within
hate speech
detection

TF-IDF
BERT as
baseline,
multi-view SVM

De Gibert
et al. (2018),
Kumar et al.
(2018),
Davidson
et al. (2017)

48

3.7. Summary

Work Description Resources used Classification Dataset

H. Liu et al.
(2019)

Fuzzy multi-step
method for
detecting hate
speech

DBoW and
word2vec

SVM, DT, GBT
and DNN as
baseline, Mixed
Fuzzy Rule
Formation
(Berthold, 2003)

Own Twitter
dataset

H. Zhang
et al. (2019)

Identify and
categorize offensive
language in social
media

GloVe

classic methods
baseline, CNN,
Bi-LSTM,
Bi-GRU

OLID
dataset
Zampieri
et al. (2019)

Sharma et al.
(2018)

Degree based
classification of
harmful speech in
social media

TF-IDF and
BoW SVM, NB and RF Own Twitter

dataset

Sigurbergs-
son and
Derczynski
(2019)

Offensive language
and hate speech
detection in Danish

Surface, linguistic
and sentiment
features, word
representations

Logistic regression
and BiLSTM

Own Danish
dataset from
Reddit and
Facebook

Meyer and
Gambäck
(2019)

Platform agnostic
hate speech
detection

Character n-gram
and word
embeddings

CNN and LSTM Waseem and
Hovy (2016)

Vigna et al.
(2017)

Hate speech
detection on
Facebook for
Italian

Lexical and
sentiment
features, POS,
word2vec

SVM and LSTM
Own Italian
Facebook
dataset

Van Hee
et al. (2015)

Dataset
construction,
classification and
identification of
cyberbullying

Pattern6, surface
and sentiment
features,
POS-tagging

SVM
Own Dutch
Twitter
dataset

Biesek
(2019)

Automatic
cyberbullying in
Polish tweets

TF-IDF and
FastText

SVM, bi-GRU,
Flair7 framework
with Contextual
Embeddings
(Akbik et al.,
2018)

Ogrodniczuk
and
Kobyliński
(2019)

Jaki and
De Smedt
(2018)

Right-wing German
hate speech
detection

Character and
word n-grams

Single-layer
averaged
Perceptron
algorithm (Collins,
2002)

Own
German
Twitter
dataset

Alfina et al.
(2017)

Preliminary models
for hate speech
detection in
Indonesian

Word & character
n-grams and
negative
sentiment

NB, SVM,
Bayesian LR and
Random Forest

Own
Indonesian
Twitter
dataset

49

4. Preparation of Data Collection

When dealing with the detection of hateful utterances using machine learning methods, the
representation and amount of data are crucial for attaining adequate results. Furthermore,
it is beneficial that the data is moderately representative of a real-world scenario. There
is a requirement for a precisely labelled dataset in order to train the model, and the
labelling determines the system performance. Hence, in order to create an effective
system, it is essential that the data have appropriate labels and can be considered a
generalisation of the model’s input. Nevertheless, creating a labelled dataset can be a
time-consuming and demanding task. Therefore, a significant part of this thesis involved
the creation of a general dataset containing Norwegian Twitter messages (tweets) and
social media comments from Facebook and Resett.1 This dataset will hopefully function
as a benchmark dataset for future research within the field of hate speech detection in
the Norwegian language.

The creation of this dataset was collaborative work done by Tora Seim Gunstad, Marie
Andreassen Svanes and I, and it is a comprehensive and improved dataset based on the
work conducted in the specialisation project in the Fall of 2019 (Jensen et al., 2019). In
the following sections, the process of collecting and annotating data are presented. In
addition, the annotation procedure and guidelines are introduced, and the inter-annotator
agreement is calculated and discussed.

4.1. Collecting data

The first step in the process of creating a Norwegian dataset was the collection of data.
We decided that in order to obtain a generalised and high-quality dataset, it was necessary
to collect data from several different sources. A significant drawback to the dataset
created in Jensen et al. (2019) was that all the data came from one source; Resett, which
was chosen because it is known for being rather xenophobic and hateful. However, it was
discovered that the majority of the hateful comments were related to the immigration
of Muslims in particular. As a result, all the classification models were not capable of
detecting hate on other topics such as politics, feminism or just general cyberbullying.
Therefore, it was decided to collect data from Twitter and Facebook, and also include a
part of the data previously collected from Resett.

1https://www.resett.no/

51

https://www.resett.no/

4. Preparation of Data Collection

This section describes the collection of data gathered from Twitter, Facebook and Resett,
as well as what preprocessing steps were conducted before the dataset was annotated.

Twitter

In order to collect data from Twitter, it was necessary to utilise the Twitter API. This
requires an application to Twitter, stating the purpose of the data collecting. An approved
application provides a Twitter developer account that grants an authorisation token that
needs to be used when calling an endpoint. Because of Twitter’s restrictions, we created
three developer accounts in order to gather enough data. To access the API, we used
the build-in Python package requests, that allows for HTTP requests and collects the
results as a json file. Requests include a query, which is a search word that the API uses
to provide relevant tweets, and thus we had to create a list of search terms. We chose
terms that most likely contained some hateful utterances, and tried to include terms with
different topics. Examples of included terms are parasitt, rasist and feminist. The full
list of search words can be found in Appendix C.1.

All the collected tweets are written in the period 03.02.2020 12:00 to 03.03.2020 12:00.
Moreover, all the retweets were ignored, and the tweets were checked if they were written
in Norwegian or not. The Twitter API allows for language specifications, but even though
the Norwegian language is specified, not all retrieved tweets are in Norwegian. It was
chosen to keep all tweets containing at least 15% Norwegian words because, in social
media, many people add English words to their vocabulary when they are writing in
Norwegian. It is reasonable to believe that this trend will not disappear in the future,
and a system should be able to handle such behaviour. Furthermore, all comments were
going to be manually annotated by at least one annotator, so if a comment included too
many English words, it would be removed during the annotation process.

Facebook

The comments from Facebook were manually collected and retrieved using fbcrawl.2
This is an advanced crawler for Facebook written in Python that utilises Scrapy,3 an
open-source framework for extracting data from websites. It is only possible to crawl
specific posts or pages, and hence, we had to manually browse several Facebook pages
in order to find all of the Facebook posts that we wanted to crawl. We ended up using
74 posts from 18 pages, including the pages of several Norwegian news agencies, such
as TV2 and NRK Nyheter. According to Veledar (2018), approximately 10% of the
comments on these Facebook pages were hateful, and thus these pages was a good starting
point. Furthermore, we included pages that most likely posts content that encourages
discussion, such as "Norge fritt for Islam" and "Vi støtter Sylvi Listhaug, innvandrings-
og integreringsminister". Posts from these pages were chosen based on the number of

2https://github.com/rugantio/fbcrawl
3https://scrapy.org/

52

https://github.com/rugantio/fbcrawl
https://scrapy.org/

4.1. Collecting data

comments on the post. The full list of included pages can be found in Appendix C.2.
We only selected publicly available pages and assured that all names were removed to
safeguard privacy.

Resett

The original dataset from Jensen et al. (2019) consisted of 14 620 comments from Resett.
This data was collected by building a web crawler that could crawl a Disqus comment
system.4 The crawler used Scrapy and Splash5, a headless browser designed for web
scraping.

Mostly all comments from Twitter and Facebook were annotated before comments from
Resett.no were included in the dataset. We observed a massive imbalance between neutral
and hateful comments from the data collected from Facebook and Twitter. Therefore, it
was chosen to include all comments labelled as either offensive or hateful from the Resett
dataset in Jensen et al. (2019). In addition, neutral comments were added, so the total
number of comments from Resett eventually became six thousand. It was chosen only to
include six thousand comments because it was undesirable for the new dataset to include
too many of these comments.

4.1.1. Preprocessing

The following preprocessing steps were conducted in order to create comments that were
readable for a human annotator and to make all the comments anonymous.

Both the tweets and Facebook comments contain a lot of names and usernames. Since
outside annotators were going to be included in the annotation process, and since the
dataset are made publicly available, it was necessary to make all the comments anonymous.
For the tweets, this involved replacing the usernames, e.g. @example_username, with
the general user mentioning @USER. For Facebook, the process of removing names was
more challenging. There is no mentioning symbol, such as the @ for a Twitter user
when mentioning a person in a Facebook comment. Here, the mentioned person’s full
name appears anywhere in the comment. Hence, to replace all the names with NAVN
(the Norwegian word for "name") we had to search through the comments and look for
common Norwegian names. Two lists of common first and last names from Statistisk
Sentralbyrå (SSB) was also used.6 Replacing all of these names still left many names in
the dataset. Hence, it was decided to scroll through the entire dataset and write down
all names that were not already replaced. Merging the new list with the lists from SSB
gave two new lists of first names and last names, which can be found in Appendix C.2.2.
All of these names were replaced in the dataset.

4https://disqus.com/
5https://scrapinghub.com/splash
6https://www.ssb.no/navn

53

https://disqus.com/
https://scrapinghub.com/splash
https://www.ssb.no/navn

4. Preparation of Data Collection

Several tweets also contained the phrase "via @example_user", which were also removed,
in addition to the hashtag symbol (#). Furthermore, all URLs were removed from both
of the Twitter and Facebook datasets, and all potential duplicates were removed. After
analysing a part of the dataset, we found some tweets to be ads, tweets from magazines
such as DN+ or tweets from police stations. Since these are not similar to a typical
comment or tweet, these were removed from the dataset.

4.2. Annotation procedure

After the data was collected, it had to be manually annotated by at least one annotator.
This annotation process is an essential part of text analytics. Although the annotators
only work with a limited amount of the data instances, their results will have a large
impact on the final classification results. Therefore, reliability of the annotators and
the sufficiency of the defined labels are of significant importance in order to achieve
satisfactory results. The definitions of the categories are especially important in the case
of hate speech detection, due to the high chance of subjective interpretations.

For the dataset to fit the problem specifications of both theses, it was decided to categorise
the data into five distinct categories, labelled 1 to 5. All comments that should be removed
were marked with X. Comments with non-Norwegian language or comments consisting of
only URLs are examples of this category. The definitions of the different categories are
based on the definitions in Section 2.1, and can be found in Section 4.2.2. Tora, Marie
and I, from now referred to as the annotators, annotated the first 2500 instances from
the Twitter dataset, and several inter-annotator agreement metrics were calculated. This
is presented in Section 4.2.3. The majority vote was used as the final label for these data
instances, meaning that if two or more annotators agree on the category for a comment,
then that label should be used. If all three annotators disagreed, the median was used.
The rest of this section describes the procedure of involving user-based annotations and
guidelines used for annotation, as well as the annotation agreement.

4.2.1. User-based annotation

In order to mitigate annotator bias in the dataset, it was decided to include more
annotators, which from now will be referred to as outside annotators. Twenty people
volunteered to categorise five hundred Facebook comments each. The majority of these
volunteers were students at the Norwegian University of Science and Technology, studying
either computer science or communication technology. The rest of the dataset, i.e. all
the tweets, the comments from Resett and the remaining Facebook comments, were
divided equally between the annotators. All three annotators annotated a large part of
the dataset and distributed some comments to friends and family.

Waseem (2016) examined the influence of annotator knowledge of hate speech in classific-
ation results. They compared the classification results obtained from models which were

54

4.2. Annotation procedure

trained on data labelled by expert and outside annotators and found that the outside
annotators were more likely to classify offensive language as hate speech. Hence, systems
that were trained on expert annotated data achieved better results, which highlights the
problem of subjective interpretation of hate speech. Furthermore, as discussed in Section
3.1, both Ross et al. (2017) and Waseem and Hovy (2016) concluded that annotators
should be given a more detailed definition of hate speech before annotation, in order
to minimise the subjective perceptions of the content. Therefore, in order to provide
an extensive and well-defined dataset containing Norwegian tweets and social media
comments, it was necessary to provide clear guidelines with definitions and examples to
all of our outside annotators. It was included several examples found in the first two
thousand five hundred tweets for each category, in order to give a better explanation of
the formal definitions.

Ross et al. (2017) show that regardless of providing annotators with a definition of hate
speech, the annotators still failed to produce annotation of an acceptable level of reliability.
Too much wrongfully annotated data would have a severe impact on our results, and
therefore, we quality assured the annotated data. We checked what the outside annotators
had categorised and changed everything we considered to be incorrectly annotated. This
was particularly important for the more offensive and hateful classes, in order to create
a clear line between offensive and hateful speech. The following section presents the
guidelines provided to all outside annotators. These were the same guidelines we used
when annotating the first two thousand five hundred comments, only differentiating in
the inclusion of examples.

4.2.2. Guidelines

Both De Gibert et al. (2018) and Schmidt and Wiegand (2017) acknowledge that previous
studies have not had a common annotation procedure for hate speech. Hence, we had
to create our own guidelines which we based on the guidelines from De Gibert et al.
(2018). The guidelines were created in order to ensure that all annotators had the same
understanding of the different categories. An important part of the guidelines was to
develop a line between offensive content and hateful content. It is desirable to develop a
system that can successfully distinguish between these types of utterances and hence,
detect the worst of the worst comments.

Since the goal of this thesis involves using anomaly detection to detect hate speech, it is
only relevant to consider normal versus anomalous instances. Hence, it is undesirable to
keep all the following five classes. As mentioned, the comments are categorised into five
categories in order to fit both theses’ problem statement. If only considering the absolute
worst of the worst comments as anomalous speech, then all the rest of the categories will
be considered normal instances. How the dataset is used during experiments is elaborated
in Section 6.2.1.

The five different categories used to annotate the dataset are the following:

55

4. Preparation of Data Collection

1 - Neutral: Everything not included in the other categories.
Examples of neutral comments are:

1. Blir forbanna over at listhaug sier at spagetti er en norsk verdi eller noe sånt

2. Gud hjelpes for en gjeng

2 - Provocative: An utterance is defined as provocative if it contains aggressive language
used to express an opinion. This includes the use of profane words, patronizing
language or ironic and sarcastic tone.
Examples of provocative comments are:

1. Greta Thunberg er en BLØFF ! En stor løgn skapt kunstig av sosialister som
blir betalt for å lyve!

2. Ehhh ... om du er religiøs er du hjernevasket. Islam er en eneste stor sekt,
hva annet? Sekten holder 1,5+ milliarder mennesker nedtrykt i patriarkalske
strukturer, underutvikling og uvitenhet, ekstrem fattigdom ... hva godt gjør d
for menneskeheten å sitte å pugge koranvers?

3 - Offensive: An utterance is defined as offensive when it contains hurtful, derogatory
or obscene comments either directed towards an individual or a group based on
their characteristics. The difference from the above classes is the degree of inciting
actions and severity of the derogatory language.
Examples of offensive comments are:

1. Vil bare hoppe inn her og si at du er ond og ræva, men først og fremst veldig
dum, Someone20004. Dårlig fungerende hjerne! Og det må vi respektere, alle
er ikke født med en ordentlig hjerne

2. Milan bare endra tissen min fra stiv til halvkram, litt som å pule en feit hore
#fetehorer #æsj #fårdenikkeopp

4 - Moderately hateful: Utterances which are partly or wholly motivated by hate or
negative attitude towards groups or individuals based on ethnicity, religion, sexuality,
gender or disabilities. The utterances do not call to action but still violates the
integrity and disparages a group or individual’s dignity.
Examples of moderately hateful comments are:

1. Begriper ikke at noen kan slippe unna med et mordforsøk som dette var - eller
terror.mange media er også redde for å skrive at d er innvandrere - er på en
måte unødvendig da alle overfall utføres av disse jævlene... #islam #overfall
#mordforsøk

2. Ja, de flytter hit og vi får verre liv = klankultur, misogyni, høye økte offentlige
utgifter, press på skole og helsevesen, gjengproblematikk, æresrelatert vold, og
aller verst - en retardert, avskyelig religion! Bruker vi din logikk bør vel alle
pakistanere få komme inn og bli?

56

4.2. Annotation procedure

5 - Hateful: Utterances which are partly or wholly motivated by hate or negative attitude
towards groups or individuals based on ethnicity, religion, sexuality, gender or
disabilities and which encourage violent actions. These utterances encourage a
violation of integrity and a severe disparagement of a group or individual’s dignity.
Examples of hateful comments are:

1. Alle som jobber og sliter og blir mishandlet og fornedriget av disse kriminelle
monstrene er de samme som betaler regninga for deres liv i Europa. Send
ALLE kriminelle tilbake til hjemlandet og FORBY ISLAM!

2. Send henne hjem til Somalia med hele familien!

Furthermore, the guidelines included some additional information and tips that the
annotator should consider while annotating. This includes information about comments
that should be marked with X and freedom of speech. Freedom of speech is essential
in Norway, and everything related to statements about politics has a higher threshold
for being perceived as non-neutral in a debate. It is perfectly permissible to be strongly
opposed to various political issues, but it is considered as non-neutral when it falls into
the other categories mentioned above. The full guidelines provided to the annotators (in
Norwegian) can be found in Appendix B.

4.2.3. Inter-annotator agreement

When several annotators annotate the same part of the dataset, it is a common practice
to compare their level of agreement. The annotators used the guidelines provided in
Section 4.2.2, in order to assure that the knowledge used to annotate were transferable.
They worked individually and did not discuss individual data instances during the process.
The goal was to determine if the annotations were reliable and hence, determine if our
guidelines were adequate. There are several different metrics one can use to calculate the
inter-annotator agreement, as described in Section 2.6.3.

Melzi et al. (2014) used Cohen’s kappa to calculate inter-annotator agreement between
annotators. They divided Spine-health forum data into six categories and used both
Master’s students and health professionals as annotators. They calculated kappa between
the students to 0.26 and the agreement between the health professionals and the students
to 0.46. Bermingham and Smeaton (2009) got on average 3.6 annotators to annotate
150 topics from 115 documents. The annotators used sentence-level annotation and
categorised them into five classes. They evaluated the inter-annotator agreement using
Krippendorff’s alpha and achieved a score of 0.4219, which was considered to be moderate.
Bobicev and Sokolova (2017) examine the inter-annotator agreement in multi-class, multi-
label sentiment annotation of messages. They collected 65 discussions, each containing
10-20 posts. Three annotators annotated the posts using four distinct labels, where
each post could get several labels. For evaluating their inter-annotator agreement, they
calculated both percentage agreement, Cohen’s kappa, Fleiss’ kappa and Krippendorff’s
alpha.

57

4. Preparation of Data Collection

Based on the related articles, we decided to calculate both the pairwise Cohen’s kappa,
Fleiss’ kappa and Krippendorff’s alpha, as well as percentage agreement for the 2500
comments that were annotated by all three annotators.

The actual annotation pattern was examined, where Table 4.1 shows the pairwise utterance
coherence between annotators.

1 2 3 4 5
1 2171 29 9 1 0
2 111 24 8 2 0
3 15 18 10 2 0
4 0 2 1 6 0
5 0 0 1 3 2

(a) A1 vs A2

1 2 3 4 5
1 2254 37 6 0 0
2 38 19 16 0 0
3 8 4 14 3 0
4 0 2 3 6 3
5 0 0 0 2 4

(b) A2 vs A3

1 2 3 4 5
1 2174 26 10 0 0
2 107 27 11 0 0
3 19 6 18 2 0
4 0 3 0 5 1
5 0 0 0 2 4

(c) A1 vs A3

Table 4.1.: Pairwise utterance coherence between the annotators. The numbers 1 to 5 is the
different categories and A1, A2 and A3 represents the three annotators.

The diagonal shows all the instances where both annotators agree, and everything else is
where they disagree. As can be seen from the table, all three annotators agree on most
of the neutral comments (category 1), but there are some instances where the annotators
disagree if a given comment is category 1 or 2. There are also a few instances where they
disagree if it is category 1 or 3. Furthermore, it appears to be some disagreement about
whether the hateful comments should be labelled as moderately hateful (4) or hateful (5).
Because of these disagreements, it was also interesting to find the number of comments
labelled in each category. Table 4.2 presents the number of comments that were labelled
by at least one, two and all annotators.

Table 4.2.: The number of comments in each category labelled by at least one or two annotators
and by all annotators.

Category At least one At least two All three
Category 1 2358 2299 2149
Category 2 217 56 7
Category 3 78 28 7
Category 4 19 9 4
Category 5 7 4 2

From Table 4.2 it can be observed that seven comments were labelled as category 5 by
at least one annotator. How the comments were labelled can be seen in Table 4.3. Again,
from the table, it can be seen that all three annotators seem to disagree when annotating
these data instances. Hence, this leads to the conclusion that it is difficult to decide if
harassing comments are hateful or just moderately hateful.

In six out of seven of the cases presented in Table 4.3, at least two of the annotators

58

4.2. Annotation procedure

Table 4.3.: The comments where at least one annotator categorised a 5. For the sake of clarity,
the comments are not presented in this table. Each row in the table corresponds to
the annotators categorisation on a certain comment. A1, A2 and A3 represents the
annotators, where each of these columns presents the annotator’s decision for each
of the comments.

Comment A1 A2 A3
1 5 4 5
2 5 4 4
3 5 5 5
4 5 4 5
5 5 5 5
6 5 3 4
7 4 4 5

agree on the category. There are two instances where all three annotators agree. This
applies to the following comments:

1. Send henne hjem til Somalia med hele familien!

2. Når du trenes opp i bomber, kutter. strupen på barn og kvinner. Da er du et
hjernevasket sharia dyr. Og du er etnisk pakistansk. Bør du bli sendt til pakisan
med ett lite bidrag. De klarer av slikt. Send hennes influensere dit også!

These comments are clearly related to a group of people; immigrants in Norway. The
first comment implies that a person from Somalia should be returned to her home county.
The comment encourages hateful actions and does not include any political opinions.
Hence, this is considered hateful.

There is also one comment where all three annotators disagree:
Lite trolig, mer trolig at russerne må hjelpe til med å kaste de virkelige fiendene ut av
Europa til slutt, nemlig den islamske invasjonen.

This comment expresses a negative opinion about Islam and addresses them as the enemy.
Comments like these are difficult to annotate because they can be interpreted as both
hateful and offensive. The comment is implying that the writer wishes to deport Muslims,
but it is not explicitly stated. Further, the sentence is formulated as an assumption,
where the author asserts something that he or she thinks might happen.

Observed agreement

The observed agreement (percentage agreement) is the most straightforward and easiest
measure, and it was calculated for both the entire dataset and for each category. It was
found that 89.8% of all comments were classified equally by all three annotators and that
99.2% of all comments were classified equally by at least two annotators. The percentage

59

4. Preparation of Data Collection

agreement was calculated between each pair of annotators, and the results are reported
in Table 4.4.

Table 4.4.: Percentage of inter-annotation agreement between each pair of annotators, both
for the total dataset and for each category. C1 to C5 represents the five different
categories. A1, A2 and A3 are the annotators. Total is the entire dataset.

Annotator pair C1 C2 C3 C4 C5 Total
A1 vs A2 92.9% 12.4% 15.6% 35.3% 33.3% 91.6%
A2 vs A3 96.2% 16.4% 25.9% 35.3% 40.0% 95.0%
A1 vs A3 93.0% 15.0% 27.3% 38.5% 57.1% 92.2%
Average 94.0% 14.6% 22.9% 36.4% 43.5% 92.9%

The percentage agreement calculations in each category are based on the number of
comments labelled as this category by either one of the annotators in the annotator pair.
It is worth noting that since there are so much fewer comments containing hate, the
percentage values drop significantly when the annotators disagree on a few comments.

To check how good the annotators were at separating between the neutral comments
and everything else, all categories from 2-5 were merged into a new category. When
calculating agreement on this data, it was found that all three annotators categorised
similarly in 91.4% of the cases (2207 out of 2415 comments). Here, 2150 comments were
of class 1 and 57 were of the other class. If looking at all the comments where at least
two are agreeing, then the annotators agree in 100% of the cases. This indicates that
they mostly agree on the neutral comments, but tend to disagree more once the comment
contains provocative, offensive or hateful content.

Kappa and alpha

Cohen’s kappa, Fleiss’ kappa and Krippendorff’s alpha were calculated for each annotator
pair and all three annotators. Since Cohen’s kappa can only be applied to two annotators,
it is only calculated for the annotator pairs. The results are presented in Table 4.5. It
was found that Fleiss’ kappa was equal to Cohen’s kappa for all the annotator pairs.
Therefore, there is only one row for both Cohen’s kappa and Fleiss’ kappa.

Table 4.5.: Calculated inter-annotator metrics. The row for kappa presents the Cohen’s kappa
for each pair of annotators, and Fleiss’ kappa is the calculated value for all three
annotators. Fleiss’ kappa is equal to Cohen’s kappa when the number of annotators
is two.

Metrics A1 vs A2 A2 vs A3 A1 vs A3 All three Average
Cohen’s/Fleiss’ κ 0.3442 0.4666 0.3884 0.3931 0.3981
Krippendorff’s α 0.3414 0.4667 0.3854 0.3918 0.3963

60

4.3. Challenges

As can be observed from the table, the overall inter annotator-agreement using all three
metrics are relatively low. Based on the interpretation of kappa in Section 2.6.3, the
average kappa score is considered to be a fair agreement. A possible reason why the
metrics are low is because of the expected agreement. With only five classes and 2500
comments, the expected agreement is anticipated to be high. Furthermore, as already
stated, both Ross et al. (2017) and Schmidt and Wiegand (2017) emphasised that even
though annotators have common annotation guidelines, the agreement score amongst the
annotators are often deficient. This is in line with the obtained scores for this dataset.

In the case where the dataset is only split between normal and anomalous data (category
1, 2 and 3 versus 4 and 5), as is relevant in this thesis, the metrics are presented in Table
4.6.

Table 4.6.: Calculated inter-annotator metrics when only separating between normal and an-
omalous samples. The row for kappa presents the Cohen’s kappa for each pair of
annotators, and Fleiss’ kappa is the calculated value for all three annotators. Fleiss’
kappa is equal to Cohen’s kappa when the number of annotators is two.

Metrics A1 vs A2 A2 vs A3 A1 vs A3 All three Average
Cohen’s/Fleiss’ κ 0.7078 0.7317 0.8265 0.7540 0.7550
Krippendorff’s α 0.7079 0.7317 0.8266 0.7541 0.7551

The average metrics presented in the table above are categorised as substantial perform-
ance and is considerably better than the results when separating between all five classes.
Hence, the inter-annotator agreement should probably not adversely affect the results in
this thesis.

Reliable annotation is a desirable goal, but that is often difficult to attain in linguistic
annotation tasks. Nevertheless, it is possible that annotation that is less than reliable
also contains enough sufficient information to allow inference of the correct labels by
a learning model (Artstein, 2017). So even though several of the agreement metrics
were relatively low overall, it was concluded that for the rest of the dataset, only one
person could annotate each comment. The reasoning behind this conclusion is based on
both the percentage agreement and the restricted time and financial situation. Since the
dataset had to be completed within a strict time frame, there was not enough capacity
to annotate all the comments several times.

4.3. Challenges
The subjective interpretation of hate speech and offensive language creates challenges
related to the creation of a dataset. Furthermore, the difficulty of annotation and
challenges related to language are problems that need to be addressed. A substantial
part of the section discussing language issues was written as a part of the specialisation
project (Jensen et al., 2019), but some additional information has been added.

61

4. Preparation of Data Collection

4.3.1. Annotation

One common challenge with annotated datasets is biasing. In this thesis, a part of
the dataset was annotated and tested by the annotators, resulting in annotation bias.
Presumably, the dataset is also biased because of the user-based annotation. Even though
guidelines were provided, there was no insurance that the outside annotators actually
followed these. The categorisations were checked, and everything the expert annotators
considered to be incorrectly categorised was changed. However, since there were many
comments, there is a chance that some comments are still miscategorised. Due to the
lack of time, the challenge of annotation bias has not been handled further during this
thesis.

Furthermore, another challenge related to the user-based annotation is that almost all of
the annotators are approximately the same age and has the same education. There is a
possibility that the dataset would have been annotated differently if a more representative
sample of the population carried out the annotation.

All the expert annotators have achieved a substantial amount of insights on the topic
and had a clear definition of hate speech and offensive language. However, the overall
inter-annotator agreement metrics kappa and alpha was low. When the expert annotators
do not agree on the categorisation of the data, it can be expected that the user-based
annotation varies even more. Another challenge of annotation was context. Not having
the context of the comments made the annotation more open for subjective opinions. A
possible solution is to cluster comments into conversation threads and thus provide entire
conversations to the annotators.

4.3.2. Language issues

English language, being one of the most used languages on the Internet today, is known
as relatively easy to preprocess with high accuracy within fields such as part-of-speech
tagging, named entity recognition and automatic text summarization. However, languages
differ in how challenging they are to preprocess. When studying a language with richer
morphology, more flexible word order and distinctive linguistic characteristics, more
preprocessing are needed.

Compound words are a common part of Norwegian vocabulary. The Norwegian language
often constructs compound words whereas in English two words would be written. Ex-
amples of this can be "ferietur" in Norwegian and "holiday trip" in English. Compound
words can be a challenge because there is no guarantee that commentators write gram-
matically correct, resulting in one word being written as two, thus possibly changing the
meaning of the sentence and confusing the model.

Another challenge with text classification for Norwegian is the fact that Norway has
three official languages: Bokmål, Nynorsk and Sami. The Sami language is beyond the
scope of this work. However, the difference in Bokmål and Nynorsk is a challenge. For
instance, different words that have the same meaning such as "Kjærleik" and "Kjærlighet"

62

4.3. Challenges

will lead to an even higher dimensionality because the words are interpreted as different
words but have the same meaning. This is also the case if using word embeddings. A
few pre-trained word embeddings are available for the Norwegian language, but they
differentiate between Bokmål and Nynorsk. This causes the challenge that the pre-trained
model might not represent a significant amount of the words. The same issue can also be
found when commentators write in dialect. For human annotators, it will most likely be
possible to understand the meaning of the comment, but for a model, it might be more
challenging with words such as "jøtt" and "gæli". In addition, English has a rather strong
position in Norway and a lot of Norwegians, especially youth, write and use English as a
natural part of their everyday language. This will also potentially create a more sparse
matrix.

63

5. The ADAHS Approach

This chapter presents our hate speech detection approach called ADAHS; a deep semi-
supervised Anomaly Detection Approach to Hate Speech detection. The model is
based on and extends the principles and implementation of Deep SAD, a method for
general semi-supervised anomaly detection, proposed by Ruff et al. (2020), as well as
the implementation of Context Vector Data Description (CVDD) by Ruff et al. (2019).
The method builds upon the idea that normal data instances (neutral speech) often
resemble each other, while this is not necessarily the case for anomalies (hate speech).
Throughout this thesis, normal data instances include both neutral and offensive speech,
whereas anomalous instances represent hate speech unless stated otherwise. ADAHS uses
semi-supervised learning and consists of pre-trained word embeddings and a convolutional
neural network (CNN) that are implemented using PyTorch in Python. This chapter
starts by presenting the text preprocessing steps conducted before the architecture is
described in great detail. Lastly, the system’s functionality, including learning objective,
optimisation and regularisation, is outlined.

5.1. Text preprocessing
It is challenging for a computer system to be able to interpret ambiguous and unstructured
language correctly. Deep neural networks methods aim at overcoming the need for manual
feature engineering by being able to learn the relevant features from the data automatically.
Even though they do not require the amount of feature extraction necessary for shallow
approaches, they are still not capable of handling raw text as input. Therefore, for the
models to be able to understand natural language, the text needs to be preprocessed.
This is an essential but difficult step in NLP, especially when handling user-generated
content that contains much noise.

In this thesis, two datasets are used; one in the Norwegian language and one in the
English language, and these require customised text cleaning. On both datasets, the
text is always lowercased, and ’\n’ is replaced with whitespace. Further, the text is
stripped for whitespaces before and after the text. As a part of the manual annotation
process of the Norwegian dataset, it was observed that many comments did not include
whitespace after punctuation marks. Hence, if these punctuation marks are removed, the
preceding and following words would become one word. For instance, in the following
case [...] her.dette [...], one would be left with the new word herdette if the punctuation
mark is removed. Hence, whitespace is added after all punctuation marks to avoid this

65

5. The ADAHS Approach

issue. Furthermore, for the English dataset, CSS phrases and specific tokens used in
Wikipedia are removed. This includes image names and templates such as wikipedia:,
user: and category:. For the Norwegian dataset, tokens referring to a user are removed.
This includes both @user and navn which were used instead of names and usernames
when the dataset was created.

Moreover, for both datasets, the text is stripped from punctuation, numbers and special
characters, by creating a plain ASCII string from the text. Here, the additional letters æ,
ø and å from the Norwegian alphabet are added to the list of ASCII letters from the
English alphabet. Finally, all redundant whitespaces are removed.

Since pre-trained word embeddings are utilised, it was desirable to get the vocabulary as
close to the embeddings as possible. Therefore, common misspellings were replaced. Two
dictionaries of common misspellings in English and Norwegian were created, containing
both the incorrect and correct spelling. These contain regular common misspellings,
as well as misspellings specific for the datasets. The specific misspellings were found
by analysing the Out of Vocabulary (OOV) words obtained by comparing the datasets
and the pre-trained word embeddings. OOV words are all the words that are present
in the datasets vocabulary, but not present in the pre-trained model’s vocabulary. The
pre-trained embeddings used for the comparisons with the English dataset was GloVe
5B, while fastText with Norwegian Bokmål tokens was used with the Norwegian dataset.

After the text was cleaned, the semi-supervised setting was created. This setting is
described further in the following subsection. Furthermore, a text vocabulary was built
to later convert the tokens into integer numbers. The vocabulary is constructed based
on all words present in the entire dataset. Following, the text was tokenised using
the SpacyEncoder1 from PyTorch-NLP, that encodes the text using spaCy’s2 tokeniser.
This tokeniser is language-specific but has support for both Norwegian and English. In
Section 2.5, a common preprocessing pipeline is described. This includes tokenisation,
but also the removal of stopwords and stemming/lemmatisation. When using pre-trained
word embeddings, these two last steps should be avoided. The reason is that valuable
information is lost, which could help the neural network discover patterns. Hence,
stopword removal and stemming/lemmatisation were not included in the preprocessing.

Before the data are used in training, validation and testing, the data is divided into
batches. Generally, each batch contains 64 samples. The BucketBatchSampler from
PyTorch-NLP was used to pool together samples from the data with similar length to
minimise the amount of padding needed, while still maintaining some noise through
bucketing. The last batch was dropped if its size was smaller than the batch size to
assure that all batches were of the same size. The data in each generated batch were then
stacked, and the text field was zero-padded to achieve samples of equal length. Further,
the text was transposed in order to achieve speed and integration with CUDA.

1https://pytorchnlp.readthedocs.io/en/latest/source/torchnlp.encoders.html
2https://spacy.io/models

66

https://pytorchnlp.readthedocs.io/en/latest/source/torchnlp.encoders.html
https://spacy.io/models

5.2. Model architecture

5.1.1. Semi-supervised setting

The model uses semi-supervised learning, which leads to a semi-supervised anomaly
detection setting: The data consists of n unlabelled samples x1, ... , xn, which is mostly
or only normal data, and m labelled samples (x̃1, ỹ1), ... ,(x̃m, ỹm), where ỹ = +1 denotes
normal data and ỹ = −1 denotes anomalous data.

In our case, we have two datasets that are completely labelled. In order to use semi-
supervised learning, the semi-supervised setting had to be created. This involves choosing
a ratio of labelled normal and anomalous data to include. This ratio changes during
the experiments. Given a desired ratio of labelled data, the returned dataset includes
semi-labels where the normal labelled data have labels ỹ = +1, the labelled anomalies
have labels ỹ = −1 and the unlabelled part of the dataset has ỹ = 0. The ground truth
labels of all data samples are kept in order to quantitatively measure performance during
testing. The exact semi-supervised setup for both datasets are further described in
Section 6.2.1.

5.2. Model architecture
Roughly, the model consists of a word embeddings part and a convolutional neural
network (CNN) part. An overview of the model’s architecture is presented in Figure 5.1.
The figure does not include the cleaning and text preprocessing, only the architecture
of the implemented model. The input is the cleaned, preprocessed and batched text, as
described in Section 5.1.

Figure 5.1.: An overview of the system architecture

Proper text representation is crucial for designing well-performing machine learning
algorithms. As explained in Chapter 3, several existing methods within the field of
hate speech detection utilises pre-trained word embeddings, but only the work by Ruff
et al. (2019) utilises it in combination with anomaly detection on textual data. Hence,
their work was used as a starting point for the inclusion of pre-trained word embeddings
in this system. The system can handle the use of several different pre-trained models.
This includes all the available GloVe models (English language only); 6B tokens with

67

5. The ADAHS Approach

dimensions 50, 100, 200 or 300 trained on Wikipedia and Gigaword, 42B and 840B tokens
with dimension 300 trained on Common Crawl and 27B tokens with dimensions 25, 50,
100 or 200 trained on Twitter data.3 Furthermore, the model can also use fastText with
dimensions 300 for both English and Norwegian Bokmål.4

It was conducted research on how to handle Out of Vocabulary (OOV) words. Probably,
the best way to handle these instances is by creating a language model built to produce
embeddings for OOV words depending on their context, as done by Kandi (2018).
Nevertheless, due to the limited time and resources, this was considered unnecessary for
the purpose of this thesis. Therefore, the OOV words were initiated as zero-vectors with
the same dimension as the pre-trained vectors. However, a drawback to this approach
is that the model cannot find relationships between these OOV words the other words.
Another common way of initialising these vectors are by randomly assigning vectors
with the same dimension. A significant drawback to this approach is that the randomly
generated vector might be similar to other pre-trained word vectors. As a result, the
model might believe that two words are of similar meaning, even though they are not.

The architectural overview in Figure 5.1 shows that the CNN consists of convolutions and
max pooling, as well as a dropout layer and a dense/linear layer. Convolutions are sliding
window functions applied to a matrix. This sliding window is often called a kernel or a
filter, and it can have variable sizes. CNNs are most commonly used on images, which is
just a matrix of pixels. When that is the case, the filters may have different height and
width, and the final convolutions are found by sliding the filters over the entire matrix.
On the other hand, when convolutions are used in NLP, the filters are applied to a matrix
of stacked word embedding vectors. We denote the dimensionality of the word vectors by
d. If the length of a given padded comment is s, then the dimensionality of the matrix is
s× d. This matrix is the leftmost part of the figure. In NLP, the filters usually have the
same width as the length of the word embeddings. Hence, the filters slide over the word
embeddings, which is matrix rows. The filter height (also called region size) varies and
corresponds to the number of adjacent rows considered jointly, i.e. the n-grams (a 1xn
filter) within the text.

In our model, multiple filters for the same region size are used in order to learn comple-
mentary features from the same regions. A figure displaying all the layers in the model
is presented in Figure 5.2. This CNN architecture is based on the model proposed by
Y. Zhang and Wallace (2016), which uses a CNN for sentence classification.

As can be seen from the figure, the model’s input first passes through the embeddings
layer. This is where the text is converted into word vectors based on the pre-trained
vectors. After that, we depict five convolutional layers with filter region sizes varying from
1 to 5, each with 100 filters. The filters perform convolutions on the comment matrix
and generate feature maps of variable length. This corresponds to finding the one to five

36B, 42B etc. (B = billion) refer to the number of tokens in the model’s vocabulary. All GloVe
pre-trained models can be found here: https://nlp.stanford.edu/projects/glove/

4Both fastText pre-trained models can be found here: https://fasttext.cc/

68

https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/

5.2. Model architecture

Figure 5.2.: All the layers in the neural network model

n-grams of the text, meaning the one to five consecutive words. The purpose of this part
is to capture the spatial relationship in text, which makes it easier for understanding the
meaning of the comments. The rectified linear unit (ReLu) activation function is applied
to the output of the convolutional layers before max-pooling is applied. The idea behind
the max-pooling is to find the maximum valued feature because this is presumably the
most important feature, or in this case, the most important n-gram. As our model has
100 filters of five different region sizes, that means we have 500 different n-grams the
model thinks are essential. The outputs of the max-pooling layers are then concatenated
to form a feature vector for the penultimate layer. Further, dropout is applied to prevent
the model from overfitting and increase robustness by randomly dropping nodes during
training with a probability equal to 0.5. Lastly, the final fully-connected dense/linear layer
receives this feature vector as input and uses it to create an output/latent vector with a
representation dimension d = 32. This output vector is used to calculate a comment’s
anomaly score. A detailed view of the described architecture is presented in Figure 5.3.

69

5. The ADAHS Approach

Figure 5.3.: A detailed illustration of the CNN architecture. The figure is based on the figure
by Y. Zhang and Wallace (2016).

5.3. System functionality

The system aims at solving the semi-supervised anomaly detection problem, as presented
in Section 5.1.1, where the goal is to learn a model that characterises the "normal class".
The system builds upon the principle that normal data instances often resemble each
other, whereas this is not the case for anomalies. In this way, the normal data obtains a
latent distribution with low entropy, and the anomalous data obtain a latent distribution
with high entropy. Hence, the model’s learning objective may be interpreted as modelling
the latent distribution/output space, Z, of normal data, Z+ = Z|{Y = +1}, to have a
low entropy, and the latent distribution of anomalies, Z− = Z|{Y = −1}, to have high
entropy. In order to achieve a latent distribution that concentrates the normal data
around centre c, a quadratic loss is imposed on the distance between the labelled normal
samples (y = +1) and c. In contrast, for the labelled anomalies (y = −1) the loss is
calculated based on the inverse of the quadratic distance between the samples and c. As
a result, these samples are mapped further away from c. An epsilon (eps ~10−6) is added
to the denominator of the inverse to ensure numerical stability (Ruff et al., 2020). This
is in line with the common assumption that anomalies are not concentrated because they

70

5.3. System functionality

are not similar. Ruff et al. (2020) argue that such a model better captures the nature of
anomalies, as they can be generated from a mixture of different distributions dissimilar
from the normal data distribution. It is worth noting that this method does not impose
any cluster assumption on the distribution of the anomalies, i.e. it does not imply that
anomalies must be a part of the same class, just that they are not a part of the normal
class.

It is important to choose a proper weight initialisation strategy to maximise performance,
and the choice of strategy depends on the activation functions used in the model.
Therefore, the network weights W are initialised using Kaiming He initialisation (He
et al., 2015). Kaiming He initialisation strategy brings the variance of the outputs to
approximately one when the ReLu activation function is used. After the network weights
W are initialised, the hypersphere centre c is calculated as the mean of the network
outputs obtained from an initial forward pass of the data. This was based on the findings
from Ruff et al. (2020) that observed a faster network convergence by fixing c in the
neighbourhood of the initial data instances. Once the network is trained, the anomaly
score for a given unlabelled test instance, x, is calculated as the distance from x to c.
For the labelled data instances, a new loss term is proposed. This loss term introduces a
hyperparameter η > 0 used for controlling the balance between labelled and unlabelled
data. If η > 1, it puts more emphasis on the labelled data, whereas an η < 1 puts more
emphasis the unlabelled data.

The system’s functionality and learning objective are similar to those of the model
presented by Ruff et al. (2020). The difference is that they use an autoencoder network to
pre-train their model’s weights instead of using Kaiming He initialisation. Furthermore,
their system does not handle textual data.

5.3.1. Optimisation and regularisation

For a computationally efficient optimisation, the system can use either Adam or SGD to
optimise the network weights using backpropagation. Adam was used in all experiments
conducted in this thesis. A two-phase learning rate schedule is employed for "searching"
and "fine-tuning", respectively. This involves changing the learning rate after a given
number of epochs. In order to avoid overfitting, it is necessary to apply some regularisation
to the system. As described, the primary means of regularisation is dropout, which is
applied after the concatenation with a probability of 0.5. Furthermore, an L2 weight decay
regularisation, λ, with λ > 0 are added for improved generalisation. λ is a parameter that
is set at system initialisation and is used when the optimiser is initialised. The specific
parameters used in the experiments conducted in this thesis are described in Section 6.2.

71

6. Experiments and Results

In order to investigate how to detect hate speech using anomaly detection techniques
and to answer the research questions stated in Section 1.2, a series of experiments were
carried out. This chapter presents the experiments conducted to test the implemented
architecture from Chapter 5, and determine if there is a potential for using anomaly
detection to detect hateful utterances. Since the purpose of this thesis was to investigate
whether or not the problem can rightfully be considered an anomaly detection problem,
the focus of the experimental part has not been to find the best configurations for the
system. These configurations involve, for instance, the number of layers, filter sizes
and other hyperparameters. Instead, the main focus of the experiments was to check
for potential and discover how the amount of labelled training data and pollution in
the training data, affect performance. Also, an important part of the experimental
research was to test if the implemented model was language independent, as proposed
in Research question 3. First, Section 6.1 provides a description of which experiments
were planned and conducted, as well as what questions the experiments aim to answer.
Further, Section 6.2 presents the datasets used in the experiments and the methodology
for the experimental evaluation. This section also includes a detailed description of
the parameters and settings used during the experiments and a description of baseline
methods. Finally, Section 6.3 presents the experimental results.

6.1. Experimental plan

An experimental plan is crucial for keeping a series of experiments effective and structured,
and the experimental plan for this research consists of three main parts as described in
the rest of this section.

Even though the primary purpose of these experiments was not to find the best system
configurations, it was desirable to test two of the model’s parameters using different
values. This was the first part of the experimental conduction and included the following
parameters:

Hyperparameter η: Ruff et al. (2020) did a sensitivity analysis of the model’s hyperpara-
meter η and found that setting η = 1 gave a substantial performance improvement.
However, they conducted experiments on images, and it was thus determined to
test different values for η. Since this was not the main purpose of the experiments,
the analysis is not as thorough as the one presented by Ruff et al. (2020). It was

73

6. Experiments and Results

decided to test five values for η, only varying this hyperparameter.

L2 weight decay, λ: It was also desirable to test different values for λ, only varying this
parameter. Again, this testing was not comprehensive and only included testing
three different values.

The second part of the experimental phase serves to answer the research questions and
the thesis’ overall goal. This includes identifying how the amount of labelled training data
and pollution affect performance on two datasets of different language. It involves the
examination of two experimental tests, in which the following experimental parameters
are varied: (1) the ratio of labelled training data γl; both normal, γn, and anomalous, γa

samples, and (2) the ratio of pollution, γp, with anomalous samples in the unlabelled
part of the dataset.

Test (1) Adding labelled training data: The purpose of this test is to investigate
the effect of labelled samples on system performance. Additionally, it is conducted to test
if satisfactory performance can be achieved even though one might not have access to a
substantial amount of labelled data. These experiments also include the unsupervised
setting where no labelled data is added. To conduct these experiments, the ratio of
labelled training data, γl = m/(n+m) is increased by adding more labelled samples. In
the experiments, both the ratio of normal data, γn, and anomalous data, γa, are varied,
and the labelled samples are drawn randomly from a pool of normal data samples and
anomalous data samples. As previously stated, the main issue with existing hate speech
detection methods is that they have poor performance when they are trained on one
dataset and tested against another, which indicates that they struggle with the detection
of novelties. Therefore, these experiments are also conducted to test the model’s ability
to handle novelties and to simulate the unpredictable nature of anomalies. This is done
by only sampling labelled anomalies from a specific class of anomalies. Hence, this is
only relevant when a dataset has different anomaly classes. In this test, all the unlabelled
data in the training set is normal samples; hence, the ratio of pollution is set to zero.

Test (2) Polluted training data: In the ideal case, the unlabelled part of the training
dataset only consists of normal data samples, which is a common assumption used in
anomaly detection methods. However, in a real-life scenario where one may have a large
proportion of unlabelled samples, it is difficult to determine if all of these samples are,
in fact, normal samples. There is a chance that some of the samples are anomalous.
Therefore, in this test, the model’s robustness to increasing pollution of unlabelled
anomalous samples in the training dataset is investigated. The unlabelled part of the
dataset is polluted with a ratio of anomalous samples, γp. These samples are drawn
randomly from either a specific anomaly class or from a pool of all anomalous samples.

The third experimental part involves testing both datasets with two baseline models;
the one-class SVM (Schölkopf et al., 2001) and the Context Vector Data Description
(CVDD) model (Ruff et al., 2019). This is further elaborated in Section 6.2.4.

74

6.2. Experimental setup

6.2. Experimental setup

This section presents the data, hyperparameters and other configurations necessary to
reproduce the experiments. It starts with a description of the English and Norwegian
dataset used in the experiments, followed by a presentation of the semi-supervised setup
for both datasets. Furthermore, configurations and hyperparameter values are presented.
Finally, the evaluation methodology is explored, which involves an overview of evaluation
metrics and setup of the baseline methods.

6.2.1. Datasets

To perform the experiments with semi-supervised detection of hate speech and to check
the feasibility of the approach, two large datasets were used; one in the English language
and one in the Norwegian language. For both datasets, the text preprocessing steps
described in Section 5.1 were applied.

English (Jigsaw) dataset

The English dataset used in the experiments was the Jigsaw dataset from a Toxic
Comment Classification Challenge, which is available on Kaggle.1 The dataset consists
of a number of comments and their respective set of labels. There are six categories in
the dataset; toxic, severe toxic, obscene, threat, insult and identity hate. Two random
samples from the dataset looks like this:

Table 6.1.: Two random samples from the Jigsaw dataset showing how the data is represented.
Each row also contains an id which is not included here.

comment text toxic severe
toxic obscene threat insult identity

hate
FUCK YOUR FILTHY
MOTHER IN THE ASS,
DRY!

1 0 1 0 1 0

You, sir, are my hero.
Any chance you
remember what page
that’s on?

0 0 0 0 0 0

As can be seen from Table 6.1, a comment may have several labels, exactly one label or
no labels. The comment is neutral if does not have any labels, i.e. none of its labels are
set to one. The dataset consists of one training and test set, where some of the labels in
the test set are set to -1. After all of these labels were removed, the dataset consisted of

1https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data

75

https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data

6. Experiments and Results

223 549 comments in total, where 159 571 are in the train set and 63 978 are in the test
set. Hence, the test set consists of 28.6% of all comments. Table 6.2 shows the number
of comments that are labelled in each category.

Table 6.2.: The number of comments in each category in the English dataset

Label Train set Test set
Toxic 15294 6090
Severe toxic 1595 367
Obscene 8449 3691
Threat 478 211
Insult 7877 3427
Identity hate 1405 712

Since many comments are labelled with more than one label, the total number of hateful
comments is less than the sum of the comments presented above. Table 6.3 shows the
distribution between hateful and neutral in both the training and test set. The number
of hateful comments is calculated by summing all comments that contains at least one
hateful label. The number of neutral comments is the sum of all comments without any
hateful label.

Table 6.3.: The number of comments categorised as neutral and hateful in the English dataset.

Dataset Neutral Hateful Total
Train 143346 16225 159571
Test 57735 6243 63978

Based on the amount of neutral and hateful comments presented in the table above, one
can find that both datasets contains approximately 90% neutral comments.

Since the test set contains approximately 30% of all the data, one third of this data are
used for validation instead of testing. This results in approximately 70% of the data used
for training, 10% for validation and 20% for testing.

76

6.2. Experimental setup

Norwegian dataset

After the entire dataset was annotated and all comments labelled with X were removed,
the dataset was complete. Every row in the dataset is on the format ‘id, label, text’. The
dataset contains the number of comments presented in Table 6.4.

Table 6.4.: The number of comments and percentage of total in the annotated Norwegian dataset

Category Number of comments Percentage of total
1 - Neutral 34083 82.8%
2 - Provocative 4734 11.5%
3 - Offensive 1563 3.8%
4 - Moderately hateful 509 1.2%
5 - Hateful 250 0.6%
Total 41139 100%

The distribution of comments in the five distinct categories is also displayed in Figure
6.1.

1 2 3 4 5
labels

0

5000

10000

15000

20000

25000

30000

35000

co
un

t

1 Neutral
2 Provocative
3 Offensive
4 Moderately hateful
5 Hateful

Figure 6.1.: The distribution of comments in each category in the Norwegian dataset

To fit the problem statement of this thesis, it was necessary to only separate between
hateful/anomalous and everything else. The inter-annotator agreement calculations
in Section 4.2.3 indicated that even the expert annotators struggled to agree on the
annotation of the comments in category 4 or 5. Based on this and the definition in
Section 2.1, it was chosen to include both the moderately hateful and hateful comments
as the anomaly class, whereas category 1 to 3 was the normal class. But since many hate
speech detection methods struggle with the separation of offensive and hateful utterances,

77

6. Experiments and Results

it was decided to compare the performance of the model with and without the inclusion
of the offensive class as anomalies. This involves the investigation of two cases: (1) class
1, 2 and 3 are normal samples and class 4 and 5 are anomalous, (2) class 1 and 2 are
normal samples and class 3, 4 and 5 are anomalous. Both experimental tests from Section
6.1 were conducted using these two cases. Table 6.5 displays the number of comments
and percentage of total when only separating between normal and anomalous in the two
cases explained above.

Table 6.5.: Preprocessed combined annotated Norwegian dataset with and without the inclusion
of the offensive class as anomalies.

Case 1: 4+5 are anomalies Case 2: 3+4+5 are anomalies
Category #comments % of total #comments % of total
Normal 40880 98.2% 38817 94.4%
Anomalies 759 1.8% 2322 5.6%
Total 41139 100% 41139 100%

The dataset is separated into a training, test and validation set using stratified splits in
the beginning of every experiment. In other words, the data were divided so that each
set had approximately the same distribution between the different classes.

6.2.2. Semi-supervised setup

The semi-supervised setup involves choosing a ratio of labelled and unlabelled normal
and anomalous data to include during training, as described in Section 5.1.1.

The Jigsaw dataset contains seven categories; one neutral and six hateful. The neut-
ral category is always chosen as the normal class, while the rest of the categories
represent anomalies. The desired ratio of labelled normal samples, γn, are drawn
randomly from the normal class. The remaining normal samples are included as the
unlabelled part of the training set. This setting fulfils the assumption that most (in
this case all) of the unlabelled samples in the training set are normal. The train-
ing data of the six anomaly classes form the data pool from which anomalies are
drawn to achieve the experimental tests presented in Section 6.1. Both of the tests
involve varying the ratio of normal samples, γn, anomalous samples, γa, and pollu-
tion, γp. In the first test, the semi-supervised setup involves setting γp = 0.00, while
(γn, γa) ∈ {(0.00, 0.00), (0.10, 0.00), (0.00, 0.05), (0.00, 0.10), (0.05, 0.05), (0.10, 0.10)}. The
cases where (γn, γa) ∈ {(0.00, 0.00), (0.10, 0.00)} involves not adding any labelled anom-
alies, and will from now be referred to as the unsupervised and normal setting, respectively.
For the second test, the setup involves setting γn = γa = 0.05 and γp ∈ {0.01, 0.05}. In
both tests, the labelled anomalies are either sampled from one of the six anomaly classes,
or a data pool consisting of all the six classes. Hence, it involves seven experiments per

78

6.2. Experimental setup

semi-supervised setup. During testing, all six hateful classes are considered anomalies,
i.e. there are five novel classes at testing time.

On the other hand, the Norwegian dataset contains five categories. As explained in
Section 6.2.1, two cases are considered, where these five categories are separated into
a normal class and an anomalous class. In both cases, either category {1, 2, 3} or
{1, 2} constitute the normal class, and hence, the labelled normal samples are drawn
randomly from this concatenated class. The remaining normal samples are included
as the unlabelled part of the training set. Either category {4, 5} or category {3, 4, 5}
represents the anomalies, and the labelled anomalies are drawn from this class. The
semi-supervised setup for the two tests are similar to the setup for the English dataset,
but in this case, there are only two experiments per setup: case 1 and 2.

6.2.3. Configurations and hyperparameters

Pre-trained word embeddings from GloVe (Pennington et al., 2014) and fastText (Mikolov
et al., 2017) were employed in the experiments. For GloVe the 6B tokens vector embed-
dings of p = 300 dimensions that have been trained on the Wikipedia and Gigaword 5
corpora were used. GloVe only have pre-trained embedding for English. For fastText, the
English and Norwegian Bokmål word vectors of size p = 300 dimensions are considered,
which have been trained on the Wikipedia corpora and English and Norwegian web crawl.

In all the experiments, the seed was set to 1. This involves setting the random seed
of build-in modules in order to make the experiments reproducable. Furthermore, the
Adam optimiser was used with default hyperparameters as recommended by Kingma
and Ba (2015). For the employed two-phase learning rate schedule, the searching phase
uses learning rate eps = 10−4 for 50 epochs, while in the fine-tuning phase uses eps =
10−5 for another 50 epochs. Furthermore, all experiments are run using a batch size of
64. In accordance with the suggestions made by Srivastava et al. (2014), the probability
of losing nodes due to dropout was set to 0.5.

The hyperparameters η and the L2 weight decay regularisation, λ were fine-tuned in
the first part of the experimental phase. The hyperparameters η ∈ {0.1, 1, 5, 10}
were tested using both the English and Norwegian dataset. When using the English
dataset, only the GloVe word embeddings were used, while the Norwegian vectors from
fastText were employed when experimenting with the Norwegian dataset. All other
hyperparameters were set as described above, and λ was set to 0.5× 10−6 in both sets of
experiments. These tests showed that the greatest results were achieved when using η
= 10 for both datasets. η = 10 was used in the following experiments with the weight
decay regularisation. When experimenting with different values for λ, only the English
dataset were used, and GloVe word embeddings were employed. All hyperparameters
were set as described above, and the values considered were λ ∈ {0.5× 10−4, 0.5× 10−5,
0.5× 10−6}. Both the experiments with η and λ used a ratio of labelled normal samples
and labelled anomalous samples equal 0.05. The ratio of pollution was 0.00. The results

79

6. Experiments and Results

showed that λ should be set to 0.5 × 10−6, and hence this value was used for all the
remaining experiments.

6.2.4. Evaluation methodology

This section briefly explains how the experiments are evaluated. First, the applied
evaluation metrics are described. Furthermore, the chosen baseline methods are presented.

Evaluation metrics

To evaluate the model’s ability to separate between normal and anomalous data, the
AUC metric, as explained in Section 2.6.2, is computed using ground-truth labels. Even
though the test data does not include labels when tested, the ground truth labels of
all data samples are kept in order to measure performance quantitatively. Furthermore,
ROC curves and precision-recall curves are used to visualise the performance. Average
precision is also calculated by summarising the precision-recall curve as the weighted
mean of precisions achieved at each threshold. Here, the increase in the recall is used as
the weight. Additionally, a histogram was created based on the anomaly scores, which
was used to set a threshold so that the scores could be converted into a binary labels.
These labels are used to calculate precision and recall. Note that this is not conducted
for every experimental setup, but only for those achieving the highest AUC.

Baseline methods

To assess the effectiveness of the proposed semi-supervised model, the model’s results
are compared with the results of two baseline methods. The considered baselines are
the One-Class SVM (Schölkopf et al., 2001) and the Context Vector Data Description
(CVDD) as proposed by Ruff et al. (2019). Both baseline methods use unsupervised
learning, and are thus not tested on the same semi-supervised settings as ADAHS. Both
of the baseline models use the same pre-trained embeddings as described above, and only
consider class 4 and 5 as anomalies for the Norwegian dataset.

The OC-SVM model is implemented using the sklearn framework. It uses a radial
basis function (rbf) kernel and the gamma parameter set to scale. Three baselines for
aggregating the word vector embeddings to fixed-length sentence representations are
considered: mean, tf-idf weighted mean, and max-pooling. The mean is a simple average
sentence embedding, the tf-idf weighted mean includes document-to-term co-occurrence
statistics, and max-pooling uses the maximum value of the word embedding dimensions.
The model is tested for hyperparameters ν ∈ {0.05, 0.1, 0.2, 0.5}. ν is an upper bound
on the fraction of training errors and a lower bound of the fraction of support vectors
relative to the number of training samples (Schölkopf et al., 2001).

80

6.3. Experimental results

The CVDD model (presented in Section 3.3) was cloned from GitHub.2 The model had to
be adapted in order to function with the two hate speech datasets, which involved adding
support for handling these datasets and for Norwegian preprocessing. The experiments are
conducted employing a self-attention module with dimensionality d = 150 and results are
presented for r ∈ {3, 5, 10} number of attention heads/contexts. CVDD uses the Adam
optimiser with default parameters, a weight decay λ set to 0.5×10−6 and a batch size of 64.
It employs a learning rate similar to the one explained in Section 5.3.1, using learning rate
0.01 for 50 epochs and 0.001 for another 50 epochs. Furthermore, for weighting contexts,
a logarithmic annealing strategy for hyperparameter α ∈ {0, 10−4, 10−3, 10−2, 10−1} is
used, where α is updated every twentieth epoch. The hyperparameter for context vector
orthogonality regularisation P is set to 1.0. Please refer to the work by Ruff et al. (2019)
to get a description of all the presented parameters.

6.3. Experimental results
This section presents the experimental results achieved when performing the experiments
presented in the previous two sections. The results from ADAHS using the two datasets
are first presented separately before the results from the baseline methods are presented
in its own section.

In both datasets, there was a drastic imbalance between the two classes, where the
hateful instances were sporadic compared to the neutral instances. Therefore, a problem
accounted was that not all anomaly classes contained enough data samples to add 5% or
10% labelled anomalous samples to the training set. An example applies to the "Threat"
class (class 4) in the English dataset, which only consists of 478 samples. Two solutions
to this problem were tested. The first solution included only adding the available amount
of data as labelled anomalous samples. This solution involves adding all the normal
data, and potential unlabelled anomalous samples, and hence, resulting in a smaller
ratio of labelled anomalies. The second solution involved scaling the dataset in order
to maintain the desired ratio of labelled anomalies. This approach includes adding all
possible labelled anomalies from the respective class and decrease the amount of normal
and unlabelled anomalous data in order to obtain the correct ratio.

Several of the classes containing too little data samples were tested using both solutions.
One could observe that most of the AUC scores increased significantly for the English
dataset by using the second approach. Even though this approach involves decreasing the
total amount of training data, and thus also decreased performance compared to those
classes containing enough anomalous samples, this approach still increased performance
for these classes by an average of 1.1% AUC. On the other hand, the first approach was
superior when using the Norwegian dataset, and improved AUC score by an average of
7.0%. Only the results using the preferable approach for each dataset are included in this
section, but the results for the respective other approaches, are presented in Appendix A.

2https://github.com/lukasruff/CVDD-PyTorch

81

https://github.com/lukasruff/CVDD-PyTorch

6. Experiments and Results

6.3.1. Results using the English dataset

In all tables in this section, the following numbers refer to the respective anomaly class:

1: Toxic
2: Severe toxic
3: Obscene
4: Threat
5: Insult
6: Identity hate

The first part of the experiments involved testing the hyperparameters η and λ. Table
6.6 presents the achieved results using the English dataset. As stated in Section 6.2, all
these experiments are conducted using γn = γa = 0.05 and γp = 0.00. Only the GloVe
5B word embeddings were used and λ was set to 0.5× 10−6 when experimenting with η.
The experiments with λ were conducted after it was found that η = 10 achieved the best
results. Hence, η = 10 was used in all of these experiments. That is why the AUC values
for η = 10 and λ = 0.5× 10−6 in the two tables are equal.

Table 6.6.: AUC scores (in %) of the first part of the experiments; testing hyperparameter
values.

(a) AUC values for different values of η.
η AUC

0.1 83.0
1 90.1
5 92.3
10 93.4

(b) AUC values for different values of λ.
λ AUC

0.6× 10−5 93.4
0.5× 10−5 93.0
0.4× 10−5 93.4

These tests showed that the greatest results were achieved when using η = 10 and λ =
0.5× 10−6. From the table, it can be observed that the AUC score when λ is 0.5× 10−4

is equally good, but this is only due to rounding.

Test 1

The first test includes adding labelled data samples to the training data. It is conducted
by adding either normal samples, anomalous samples or both. Table 6.8 presents the
results for these setups. As previously mentioned, γl represents labelled samples (both
normal and anomalous). In the table, when γl is for instance 0.05, then both the ratio of
normal and anomalous samples is equal to 0.05.

In the unsupervised and normal setting, no experiments related to the different anomaly
classes are conducted. The reason is simply that the anomalous samples are not included
in the training dataset. Hence, these results are presented in the ‘All’ row.

82

6.3. Experimental results

Table 6.8.: AUC scores (in %) of the experiments with ADAHS on test 1 with the English
dataset. The scores for all anomaly classes and using both GloVe and fastText
vectors are presented. AC = anomaly class. UN = unsupervised setting (no labelled
samples, γl = 0.00). The normal setting is when γn = 0.10.

English dataset: Adding labelled training data
GloVe fastText

UN γn γa γl UN γn γa γl

AC 0.00 0.10 0.05 0.10 0.05 0.10 0.00 0.10 0.05 0.10 0.05 0.10
1 92.7 93.2 93.0 93.5 95.2 94.7 95.2 95.1
2 87.8 88.2 87.3 86.6 88.0 88.2 87.5 88.6
3 91.6 92.4 92.3 92.4 93.2 94.2 94.1 93.9
4 80.2 73.3 78.7 59.6 87.7 82.9 83.8 82.7
5 92.9 93.3 93.2 93.3 94.7 94.9 94.7 94.8
6 89.1 88.4 88.9 87.8 89.4 90.3 89.7 90.9
All 60.9 62.6 93.4 93.5 93.4 93.1 53.5 50.0 94.7 95.1 95.1 95.2

The highest AUC values for each anomaly class are highlighted. As can be observed
from Table 6.8, all the best performing configurations were achieved using fastText.
Furthermore, the model performs very poorly with no added labelled anomalous data,
with the worst result corresponds to random guessing. However, the system performs
significantly better by only adding little labelled anomalous data. One can also notice a
decrease in performance for those anomaly classes that do not contain enough labelled
samples, which is the case for class 2: severe toxic, 4: threat and 6: identity hate.

The overall best performing configuration was to include 5% labelled anomalous and
normal samples (γl = 0.05), and only drawing anomalies from the toxic class (AC =
1) when using vectors from fastText. Then, the achieved AUC score was 95.21%. Two
other configuration achieved almost identical score: when γl = 0.10 and AC = all, the
achieved AUC score was 95.19%, and when γa = 0.05 and AC = 1 the AUC was 95.18%.
For the best configuration, the training and validation loss, as well as validation AUC is
presented in Figure 6.2. Usually, validation accuracy is calculated during training, but in
this case it was replaced by the AUC score, because calculating accuracy involves setting
a specific threshold for separating normal and anomalous samples.

As can be seen from Figure 6.2a, the training loss quickly reaches approximately one
and continues to decrease slightly for the rest of the epochs. The only exception is the
spike around epoch fifty. The validation loss on the other hand, increases and varies
significantly for the first fifty epochs, before it stabilises at approximately three for the
remaining epochs. It is worth noting that these losses are calculated based on the distance
to the hypersphere centre, so a loss close to zero indicates that most of the normal samples
are close to centre c, while the anomalous samples are not. The model’s validation AUC

83

6. Experiments and Results

0 20 40 60 80 100
Epoch

0

2

4

6

8

10

12

14

16
Lo

ss
Model loss per epoch

Training loss
Validation loss

(a) Training and validation loss

0 20 40 60 80 100
Epoch

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

AU
C

Model AUC per epoch

(b) Validation AUC

Figure 6.2.: Training and validation loss, as well as validation AUC for the English dataset.

values, showed in Figure 6.2b, increases drastically for the first ten epochs and continues
to vary slightly until nearly epoch fifty five. After that the validation AUC stabilises at
roughly 0.95 for the remaining epochs.

The ROC curve and P-R curve for the configuration are shown in Figure 6.3.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue
 P
os
iti
ve
 R
at
e

Receiver operating characteristic

ROC curve (AUC = 0.95)
50

100

150

200

250

300

350

400

Th
re
sh
ol
d

(a) ROC curve

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall curve: AP = 0.70
ADAHS (AP = 0.70)

(b) Precision-recall curve and average precision

Figure 6.3.: The ROC curve and Precision-Recall curve with average precision (AP) for the
English dataset.

Figure 6.3a shows the ROC curve with the AUC value equal to 0.95 and the thresholds
used to calculate the true positive rates and false positive rates. The black dotted line
is the baseline corresponding to random guesses. Figure 6.3b shows the P-R curve and
the calculated average precision equal to 0.70. This value is the average of calculated
precision values at different thresholds. As can be observed, the precision decreases with

84

6.3. Experimental results

increased recall.

The anomaly score for each comment in the English test set was used to create histograms
displaying the results. These can be found in Figure 6.4. Figure 6.4a shows the scores
sorted in bins and the respective frequency of each bin, while Figure 6.4b presents a
zoomed version of the same histogram.

0 25 50 75 100 125 150 175 200
Score

0

250

500

750

1000

1250

1500

1750

2000

Fr
eq

ue
nc

y

Histogram of the anomaly scores

(a) Histogram

0 25 50 75 100 125 150 175 200
Score

0

10

20

30

40

50

60

70

80

Fr
eq

ue
nc

y

Histogram of the anomaly scores

(b) Zoomed histogram

Figure 6.4.: Histograms of the anomaly scores for the English dataset

As can be observed, most of the scores are close to 0. This is expected, because the
majority of the data is normal data and model concentrates the normal data around
centre c, and hence these data samples achieve a low anomaly score. In contrast, the
data samples believed to be anomalous achieve a higher score. Based on the histogram,
different frequency values were chosen and their corresponding scores were found. These
scores represents different thresholds used to separate normal samples from anomalous
samples. Based on the zoomed histogram in Figure 6.4b, four different frequency limits
were set; limit ∈ {10, 20, 30, 40}. The anomaly score of the first bin with frequency
lower than the limit is used as the threshold. Hence, all samples with score above this
is deemed anomalous. Precision, recall, F1-score and accuracy was calculated for each
threshold. Table 6.9 displays the results for the thresholds corresponding to the limits,
in an increasing order.

From Table 6.9 it can be observed that both precision, recall and F1-score is generally
very high for the neutral class, but lower for the hateful class. Whether recall or precision
is higher depends on the threshold. Precision is better when t = 8.243, while recall is
better for the other three thresholds. The highest recall is 78%, which means that a large
part of the hateful comments are detected by the model. A smaller threshold involves
deeming more comments to be anomalous, and hence, the chance of discovering an actual
hateful comment is bigger.

85

6. Experiments and Results

Table 6.9.: For different thresholds (t), precision, recall and F1-score are calculated for both
the normal and anomalous class using the best performing configuration with the
English dataset. Furthermore, accuracy for the entire dataset is calculated using the
same thresholds.

Thresholds
Metrics t = 8.243 t = 5.308 t = 4.330 t = 3.042

Recall Neutral 0.97 0.96 0.95 0.93
Hateful 0.55 0.66 0.70 0.78

Precision Neutral 0.95 0.96 0.97 0.98
Hateful 0.68 0.62 0.58 0.53

F1-score
Neutral 0.96 0.96 0.96 0.95
Hateful 0.61 0.64 0.64 0.63

Accuracy 0.93 0.93 0.92 0.91

Test 2

In the second test, the ratio of pollution in the training set, γp, is tested. All the
experiments are conducted using γn = γa = 0.05. Table 6.10 presents the obtained
results.

Table 6.10.: AUC scores (in %) of the experiments with ADAHS on test 2 with the English
dataset. The scores for all anomaly classes and using both GloVe and fastText
vectors are presented. AC = anomaly class.

English dataset: Polluted training data
GloVe fastText

AC γp = 0.00 γp = 0.01 γp = 0.05 γp = 0.00 γp = 0.01 γp = 0.05
1 93.0 92.6 92.4 95.2 94.9 94.4
2 87.3 87.7 85.0 87.5 87.9 85.5
3 92.3 92.5 92.2 94.1 94.0 94.0
4 78.7 75.7 69.4 83.8 80.4 73.3
5 93.2 92.8 92.1 94.7 94.5 94.3
6 88.9 87.5 82.6 89.7 88.1 84.6
All 93.4 92.7 92.7 95.1 94.7 94.4

As can be observed from the table above, for almost every anomaly class, the model’s
performance has a tendency to decrease with increasing degree of pollution. The only
exception is a small increase for AC = 2 and AC = 3 (with GloVe vectors) when 1%
anomalies are added.

86

6.3. Experimental results

6.3.2. Results using the Norwegian dataset

The dataset is first split into a training, validation and test set. All the presented results
are achieved during testing, on the test set that contains 8042 normal comments and
150 anomalous comments if the anomalies are drawn from {4, 5}. If the comments are
drawn from {3, 4, 5} it contains 7732 normal and 460 anomalies. The first part of the
experiments involved testing the hyperparameter η. Table 6.11 presents the achieved
results from ADAHS using the Norwegian dataset. The experiments were conducted
using γn = γa = 0.05 and γp = 0.00, only drawing anomalies from category 4 and 5. The
fastText vectors with Norwegian Bokmål tokens were used and λ was set to 0.5× 10−6

when experimenting with η. These experiments showed that the greatest result was
achieved using η = 10.

Table 6.11.: AUC scores (in %) for different values of η using the Norwegian dataset.
η AUC

0.1 61.6
1 67.1
5 70.4
10 71.3

Test 1
The first test involves adding labelled samples. Since this dataset contains very little
anomalous data, there is seldom enough samples to add 5% or 10% labelled anomalies.
As explained, all anomalous samples are added, and the original amount of normal data is
included. The result is thus using a smaller ratio of labelled anomalies. For this dataset,
the total amount of hateful comments in category {4, 5} is 1.84%. Hence, this is the
actual ratio of labelled anomalies added in each setup. When the anomalies consists of
classes {3, 4, 5}, then 5.65% anomalies are added when the desired ratio is 10%, and 5%
is added when the desired ratio is 5%. Table 6.12 presents the results for these setups.
Again, γl represents labelled samples (both normal and anomalous).

Table 6.12.: AUC scores (in %) of the experiments with ADAHS on test 1 with the Norwegian
dataset. AC = anomaly classes. UN = unsupervised setting (γl = 0.00)

Norwegian dataset: Adding labelled training data
UN γn γa γl

AC 0.00 0.10 0.05 0.10 0.05 0.10
{4, 5} 74.4 74.4 73.7 75.3

{3, 4, 5} 76.8 77.3 75.6 75.8
None 51.2 54.5

The highest AUC values are highlighted for each set of anomaly classes. As can be
seen from Table 6.12, the model performs poorly when no labelled anomalous data is

87

6. Experiments and Results

added. The method’s best performing configuration with anomaly class {4, 5} is when
the desired ratio of labelled neutral and hateful data samples are 10%, and the actual
ratio of the anomalous samples is 1.84%. Then an AUC value of 75.3% was achieved. For
this configuration the training and validation loss, as well as validation AUC is presented
in Figure 6.5.

0 20 40 60 80 100
Epoch

0

5

10

15

20

25

30

Lo
ss

Model loss per epoch
Training loss
Validation loss

(a) Training and validation loss

0 20 40 60 80 100
Epoch

0.50

0.55

0.60

0.65

0.70

AU
C

Model AUC per epoch

(b) Validation AUC

Figure 6.5.: Training and validation loss, as well as validation AUC for the Norwegian dataset.

As can be seen from Figure 6.5a, the training loss quickly reaches close to zero and the
validation loss varies slightly before it stabilises close to zero. The model’s validation
AUCs, showed in Figure 6.5b, increases and reaches a top at approximately epoch sixty,
before it slightly decreases. The ROC curve and P-R curve for the configuration are
shown in Figure 6.6.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue
 P
os
iti
ve
 R
at
e

Receiver operating characteristic
ROC curve (AUC = 0.75)

1

2

3

4

5

6

7

Th
re
sh
ol
d

(a) ROC curve

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall curve: AP = 0.05
ADAHS (AP = 0.05)

(b) Precision-recall curve and average precision

Figure 6.6.: The ROC curve and Precision-Recall curve with average precision (AP) for the
Norwegian dataset.

88

6.3. Experimental results

Figure 6.6a shows the ROC curve with the AUC value equal to 0.75 and the thresholds
used to calculate the true positive rates and false positive rates. Figure 6.6b shows the
P-R curve and the calculated average precision. As can be observed, the precision drops
instantly with increased recall, and continues to stay relatively low for all recall values.

The anomaly score for each comment in the Norwegian test set was used to create
histograms displaying the results. These can be found in Figure 6.7. Figure 6.7a shows
the scores sorted in bins and the respective frequency of each bin, while Figure 6.7b
presents a zoomed version of the same histogram.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Score

0

250

500

750

1000

1250

1500

1750

2000

Fr
eq

ue
nc

y

Histogram of the anomaly scores

(a) Histogram

0 1 2 3 4 5
Score

0

10

20

30

40

50

60

70

Fr
eq

ue
nc

y

Histogram of the anomaly scores

(b) Zoomed histogram

Figure 6.7.: Histograms of the anomaly scores for the Norwegian dataset

As can be observed, most of the scores are close to 0 because the majority of the samples
are normal. Again, different frequency values were chosen, and their corresponding scores
were found. Based on the zoomed histogram in Figure 6.7b, four different frequency limits
were set; limit ∈ {20, 30, 40, 50}. Precision, recall, F1-score and accuracy were calculated
for each threshold. Table 6.13 displays the results for the thresholds corresponding to
the limits, in increasing order.

From Table 6.13 it can be observed that both precision, recall and F1-score is high for
the neutral class, but low for the hateful class. However, the recall is significantly higher
than precision for the hateful class. The highest recall is 49%, which means that almost
half of the hateful comments are detected by the model.

89

6. Experiments and Results

Table 6.13.: For different thresholds (t), precision, recall and F1-score are calculated for both
the normal and anomalous class using the best performing configuration with the
Norwegian dataset. Furthermore, accuracy for the entire dataset is calculated using
the same thresholds.

Thresholds
Metrics t = 0.242 t = 0.211 t = 0.164 t = 0.157

Recall Neutral 0.91 0.89 0.86 0.85
Hateful 0.42 0.44 0.49 0.49

Precision Neutral 0.99 0.99 0.99 0.99
Hateful 0.08 0.07 0.06 0.06

F1-score
Neutral 0.94 0.94 0.92 0.92
Hateful 0.13 0.12 0.11 0.11

Accuracy 0.90 0.88 0.85 0.85

Test 2

The ratio of pollution in the training set, γp, was tested. As for the English dataset, all
the experiments are conducted using γn = γa = 0.05. Table 6.14 presents the obtained
results.

Table 6.14.: AUC scores (in %) of the experiments with ADAHS on test 2 with the Norwegian
dataset. AC = anomaly class.

Norwegian dataset: Polluted training data
AC γp = 0.00 γp = 0.01 γp = 0.05

{4, 5} 73.7 73.6 74.9
{3, 4, 5} 75.6 74.7 75.4

As can be observed from the table above, the model’s performance decreases slightly
when 1% pollution is added, but the performance increases with 5% pollution. When
the anomalies are drawn from class 4 and 5, the increase in performance when adding
5% pollution surpasses the performance with no pollution. This is not the case when
the anomalous samples includes the offensive comments, where the model still obtains
the best results with no added pollution. However, both the decrease and increase are
minimal, and the model obtains decent results in all setups.

90

6.3. Experimental results

6.3.3. Results from the baseline methods

Both baseline methods use a one-class classification setup with unsupervised learning.
The neutral class is used as the normal class when experimenting with the English dataset,
while category 1, 2 and 3 from the Norwegian dataset constitute the normal class when
conducting experiments with this dataset. The remaining classes in both datasets are
considered anomalous. Training is always performed using only the training data from
the respective normal class. Following, testing is performed on the data samples from all
classes, where samples from the normal class are labelled y = 0 and samples from all the
remaining classes are labelled y = 1 for determining the AUC.

Table 6.15 presents the obtained results from experimenting with the OC-SVM method
using both datasets. The highest achieved AUC score for both datasets is highlighted.

Table 6.15.: AUC scores (in %) for the experiments with OC-SVM on both the English and
Norwegian dataset.

OC-SVM
English dataset Norwegian dataset

GloVe fastText fastText
ν mean tf-idf max mean tf-idf max mean tf-idf max
0.05 65.5 67.6 58.9 64.4 63.5 55.7 47.8 46.8 50.4
0.1 62.3 64.3 60.3 60.6 61.2 56.0 48.0 47.2 49.6
0.2 58.3 60.8 61.4 56.4 57.4 56.3 48.2 47.5 48.8
0.5 51.9 55.3 62.0 50.3 51.2 59.9 48.3 47.7 47.2

As can be seen from the table above, the highest achieved AUC score was 67.6% using
the English dataset and 50.4% using the Norwegian dataset. For the best performing
setup with the English dataset, tf-idf weighted mean was used for aggregating the word
vector embeddings and hyperparameter ν = 0.05. However, for the Norwegian dataset
the best performing setup involved using max-pooling and ν = 0.05. Overall, the results
using the OC-SVM model are poor for both datasets.

Table 6.16 shows the results from the experiments with CVDD. The highest achieved
AUC score for both datasets is highlighted.

91

6. Experiments and Results

Table 6.16.: AUC scores (in %) for the experiments with the CVDD model using both the
English and Norwegian dataset.

CVDD
Dataset Embedding Attention heads AUC

English

GloVe
3 68.1
5 70.9
10 67.4

fastText
3 69.5
5 68.7
10 66.9

Norwegian fastText
3 55.2
5 54.3
10 50.7

As can be observed from Table 6.16, the best results are obtained using GloVe word
embeddings with 5 attention heads/contexts for the English dataset, and using 3 attention
heads for the Norwegian dataset. The results are then 70.9% and 55.2%, respectively. The
results from CVDD are, on average, slightly better than those achieved using OC-SVM.
However, they are still undoubtedly worse than the results achieved by ADAHS.

92

7. Evaluation and Discussion

The first part of this chapter interprets and evaluates the experiments and results
presented in Chapter 6. The second part discusses the evaluated findings in relation to
the research questions presented in Section 1.2.

7.1. Evaluation

The conducted experiments in this thesis were divided into three parts as presented in
Section 6.1, and all the experiments were carried out by following the experimental plan
and setup presented in Section 6.1 and 6.2. This section evaluates several aspects of
the experiments and the results obtained. The evaluation starts with discussing general
trends and observations before the experimental results for both datasets are examined.

7.1.1. General trends and observations

The first test in the second experimental part aims at investigating the effect of labelled
samples on system performance. Furthermore, these experiments are also conducted to
test the model’s ability to handle novelties by only sampling labelled anomalies from
a specific class. Generally, the system performs well on all anomaly classes, but the
performance is lower for the classes that initially contained too few anomalies to add
the 5% or 10% labelled anomalous data. A significant drawback to these experiments is
that it is overlap between the anomaly classes, so even though only one class is included
during training, the result is that comments which are also categorised as another class is
added. This makes it difficult to determine if the system can, in fact, effectively handle
novelties. More research would have to be conducted to determine if the system has this
ability.

Neither of the experiments with either dataset are conducted using k-fold cross-validation,
because of the amount of time each experiment would require. One experiment with the
English dataset could take between four and ten hours, so using k-fold cross validation
would nearly multiply this time with k. This thesis was interested in discovering a
potential for using anomaly detection, and since the goal did not involve fine-tuning a
model to compete with state-of-the-art solutions, using cross-validation was discarded.

93

7. Evaluation and Discussion

Datasets

Often, it might provide valuable insight to compare the results when experimenting
with two datasets. Nevertheless, in this case, when the datasets represent two different
languages, there is possibly less information to draw from such a comparison. However,
it might be possible to discover some similarities and trends, and additionally, it is most
likely a rationale for differences. A machine learning model’s performance is profoundly
affected by both the amount and type of data.

The datasets differ in many ways, but an essential difference is their language. Having
to handle two languages heavily affects the preprocessing step. For instance, dataset-
specific tokens were removed from the respective dataset, and two dictionaries of common
misspellings were created. Several of the misspellings were not just language-specific but
also distinct for each dataset and was found by comparing the dataset’s vocabulary and
the word embeddings’ vocabulary. After the preprocessing steps were applied, it was
only discovered embeddings for 36.2% of the vocabulary for the English dataset, while
for the Norwegian dataset it was found for 63.0%. However, this corresponds to 97.3%
and 96.4% of all the text, respectively. This means that there are many words in both
datasets that are very infrequent and does not match the terms in the pre-trained word
embeddings’ vocabulary. Examples are "dickhead", "noobs" and "omfg" for the English
dataset and "resett", "svåret" and "forsvåret" for the Norwegian dataset.

Another notable difference is the dataset size. The English dataset consisted of 223 549
comments, while the Norwegian dataset consisted of only 41 139 comments. As described
in Section 2.4, one of the main challenges with deep learning models is that they generally
require a large amount of data to perform well. Hence, if ignoring all other differences
between the datasets, better performance can still be expected when using the English
dataset. Furthermore, another striking distinction between the datasets is their content.
In the Norwegian dataset, the comments typically discuss the same topics, resulting in
many similar words used in both the hateful and neutral comments. On the other hand,
this is not the case for the English dataset. Here, the abusive comments contain more
direct hate, profanities and cursing.

Results

Generally, the results using both datasets indicate that it is challenging to separate
hateful language from neutral language. These difficulties were also remarked by several
others that experimented with hate speech detection, such as Davidson et al. (2017) and
Malmasi and Zampieri (2017).

The system achieves poor performance when not adding any labelled anomalies, using
both datasets. As can be seen from the validation AUC plots from these experiments,
presented in Appendix A, the AUC score varies extensively throughout all of the epochs
and appears to be affected by the number of epochs only, leading to a random performance.
However, the system experiences a significant increase in performance when adding a

94

7.1. Evaluation

small amount of labelled anomalous data to the training set. The rest of this section
evaluates the experimental results presented in Section 6.3 and is divided based on the
two datasets to evaluate the results separately.

7.1.2. Results using the English dataset

This section evaluates the presented results from ADAHS using the English dataset.

Test 1

In Table 6.8, the results from test 1 are presented. The table presents the results when
the number of normal samples is decreased to obtain the desired ratio of anomalous
samples in each experiment. The results from the alternative approach, which involves
not decreasing the number of normal samples, are presented in Appendix A. Table A.2
shows a comparison between the two approaches, and one can observe that most of
the setups experience an increased performance by decreasing the number of normal
samples. However, this is not the case for all setups. For instance, when using fastText
and γl = 0.05 for anomaly class 2, the performance decreased from 88.2% to 87.5%.
Furthermore, when using GloVe and anomalies from class 4, the performance decrease
with 6.5% when normal samples are deducted. However, on average, for all three classes
(2, 4 and 6), the performance increased with 1.1%. The increase in performance is
particularly prominent when using fastText and class 4 anomalies, which experiences
an average increase of 11.7%. Furthermore, in addition to the increased performance,
decreasing normal samples also reduce the system’s runtime, which is favourable.

Typically, the trend is that the performance increases with the amount of labelled
anomalous data, but with some exceptions. The results also indicate that there is no
or little effect of adding labelled normal samples. This can, for instance, be observed
when considering the difference in performance between γa = 0.10 and γl = 0.10. In
this case, the only difference is the added normal samples. In some of the cases, adding
labelled normal data leads to a minor increase, whereas in other cases the results are
equal or even lower. There is no obvious reason why the performance decrease when
adding normal samples, but it is possibly due to a correspondence between the labelled
normal comments and the hateful comments. These similarities can, for instance, be a
discussion of the same topic. If this is the case, it becomes more demanding for the model
to determine if new data instances related to this topic is neutral or hateful. Another
possibility is that it caused by the random drawing of samples, and thus, different results
could be obtained by changing the dataset splitting and random seed.

Furthermore, it can be observed an increasing performance when the anomalies are drawn
from a pool containing all the hateful comments. This is expected because it eliminates
the case of detecting novelties. As we can see, the results when drawing anomalies from
class 1 (toxic) only, are almost identical to the results obtained when the anomalies are
drawn from a pool of all samples. Class 1 is the largest class of anomalies with 15 294

95

7. Evaluation and Discussion

samples in the training set. As pointed out earlier, there is an overlap between the
anomaly classes, and it can thus be expected that this class contains overlap to all of the
other classes since it is the biggest. As discussed, the overlap between different anomaly
classes makes it difficult to determine if the system can effectively handle novelties. Hence,
it was determined to conduct test 1 on the system without any overlap between the
classes. This experiment was carried out by isolating all the comments that were only
labelled with one anomaly class. The number of non-overlapping samples in class 1 to
6 was 5666, 0, 317, 22, 301, 54, respectively. Thus, only class 1 (toxic) had a sufficient
amount of samples and was the only class used in the experiment. These 5666 comments
were added as labelled anomalies, and the number of normal samples was decreased to
obtain γa = 0.05. In this case, the system is tested on all anomaly classes, but only
non-overlapping samples from class 1 are included during training. Hence, all anomalies
from class 2 to 6 are novelties. The results showed an AUC score of 94.0%, which is only
1.2% lower than when the overlapping samples are included. This shows that the system
achieves good performance even when tested on novel samples. Nevertheless, this is only
tested using one anomaly class, and might not provide similar results when tested on
other novelties.

All the best performing configurations for each anomaly class are achieved when using the
pre-trained embeddings from fastText . This might be caused by the number of words in
the vocabularies because fastText contains vectors for more words than GloVe 6B, which
might have spiked performance. It was desired to test this theory, and thus the dataset’s
vocabulary was compared to fastText’s vocabulary to check if the coverage was bigger
than with GloVe. Only 36.2% of the vocabulary matched pre-trained vectors in GloVe
6B, but 55.9% matched vectors in fastText, which is an increase of 19.7%. Hence, the
size of the pre-trained vectors appears to have a large effect, so utilising GloVe 840B
instead of 6B will most likely lead to an even more considerable increase.

The most noticeable result is when GloVe vectors are used, and 10% normal and anomalous
data are added from anomaly class 4. In this case, the method only achieves an AUC
score of 59.6%, which is much lower than for all other configurations. When the amount
of normal data is not deducted, the same configuration achieved an AUC score of 80.9%,
which is an increase of 21.3%. Class 4 only contains 478 anomalous samples, and thus to
obtain the correct ratio, approximately 4.3k unlabelled neutral comment can be added,
along with another 478 labelled neutral samples. Since only a small amount of data
are used in this case and deep learning models usually require a large amount of data
to perform well, a lower performance can be expected. However, the results for this
configuration are significantly lower than the results obtained when only 10% anomalous
data was added. The only difference between these two setups is the addition of 10%
labelled normal samples, and there is no obvious reason why this would result in such a
bad performance. Furthermore, when using fastText with the same configuration, the
results are 23.1% better. Hence, as described earlier, the poor performance might be
caused by the random drawing of samples.

96

7.1. Evaluation

Loss and AUC plots

Figure 6.2 shows the training and validation loss, as well as the validation AUC scores
for each training epoch. As can be seen from Figure 6.2a, the training loss reaches
close to one at approximately epoch two. On the other hand, the validation loss varies
drastically in the "searching"-phase (first fifty epochs) but then stabilises close to three
for the remaining epochs, i.e. in the "fine-tuning" phase. As mentioned, it is expected
to have a loss close to zero. Here, the validation loss is consistently higher than the
training loss for all epochs. This can indicate that the model have learned some patterns
in the training data, that is not present in the validation data. A validation loss that
is significantly larger than the training loss often means that the model is overfitting.
However, the difference between the losses is relatively small, which does not necessarily
mean overfitting.

The model’s validation AUC scores showed in Figure 6.2b increases drastically and
reaches a top at approximately epoch fifty-five. This behaviour is expected since the
model improves during training. The first fifty epochs are the "searching"-phase where
the learning rate is higher in order to traverse quickly from the initial parameters to a
range of more decent parameter values. The last fifty epochs are the "fine-tuning"-phase
where the learning rate is lower to explore the deeper parts of the loss function. This can
be observed from the figure since the AUC change significantly more in the searching
phase than in the fine-tuning phase.

ROC and Precision-Recall curves

Figure 6.3a shows the ROC curve with the corresponding threshold curve. The AUC value
of 0.95 indicates a good degree of separability between the normal and anomalous classes,
i.e. the model is capable of distinguishing between classes to a great extent. Figure 6.3b
shows the Precision-Recall curve (PRC) and the calculated average precision. As can be
observed, the precision decreases evenly with increased recall. For a non-perfect model,
this is expected because as recall increases and more samples are deemed anomalous,
more normal samples are also misclassified, leading to lower precision. While the baseline
is fixed with ROC, the baseline of PRC is determined by the ratio of positives (P) and
negatives (N) as y = P / (P + N), to account for imbalanced datasets. In this case, the
baseline is y = 4158 /(4158 + 38 466) = 0.0976. This value is so low because the dataset
is very imbalanced. The average precision is usually equivalent to the area under the
P-R curve, and they are identical in this experiment, both equal to 0.70. Hence, the
average precision is substantially better than the baseline.

Classification results

Table 6.9 displays the calculated precision, recall and F1-scores for different thresholds.
Generally, all scores are very high for the neutral class but lower for the hateful class.
The recall varies between 0.55 and 0.78, while precision varies between 0.53 and 0.68,

97

7. Evaluation and Discussion

depending on the chosen threshold. The trend is that recall for the hateful class increases
with decreasing threshold, while precision increases with an increasing threshold. This is
expected because lowering the threshold involves including more samples to the predicted
anomaly class. Higher and lower scores for both precision and recall may be achieved
by setting the threshold higher or lower than the four values present as a part of the
experimental results. The best recall value is 78%, which means that the model detects a
significant part of the hateful comments. To further increase recall for the hateful class,
the threshold has to be set even lower.

The confusion matrices for the highest and lowest threshold used for the English dataset
are presented in Figure 7.1. The remaining two confusion matrices for limit 20 and 30
can be found in Figure A.3 in Appendix A.

Based on the confusion matrices, it can be seen that the model misclassifies a few samples,
both hateful and neutral. The number of misclassified comments depends on the chosen
threshold, where setting a lower threshold involves correctly classifying more hateful
comments, but also misclassify more normal samples. In the case where t = 3.042, the
model correctly classifies 3247 hateful samples, which is 23.3% more than when t = 8.243.
This happens at the expense of the number of correctly classified normal samples, which
has decreased by 0.05%. This percentage decrease is so little because there as so much
more normal than anomalous data.

For each setup, the fifty comments with highest and lowest anomaly score are found.
In this case, all the fifty comments with the highest anomaly score are actual hateful
comments, and all the comments with the lowest anomaly score are normal. This means
that at least the top and bottom fifty are classified correctly. Out of all the top fifty
comments, there is not one comment that does not contain profanities. Words such as
"fuck", "asshole", "slut" and "cunt" are used in almost every comment. Following are three
of the top fifty anomalous comments:

1. go suck a dick you faggot ass lame pussy fuck wikipedia

2. fuck you fuck you i hope your family dies and you die and your brother and sisters
die and i hope you die i hope you get aids and die and get your ass fucked i hope
you die again and sucks satans cock you dirty bitch nigga nigger ufck you cocksucker
fuck you fucking bitch fuck you fuck you from someone you fucked you dirty piece
of shit

3. you are a huge massive rapist cock sucking faggot

As can be observed, these comments all contain much obscenity and swearing.

98

7.1. Evaluation

Neutral Hateful
Predicted label

Neutral

Hateful

Tr
ue

 la
be

l

37396 1070

1879 2279

 Confusion matrix, without normalisation (t = 8.243)

5000

10000

15000

20000

25000

30000

35000

(a) Confusion matrix with t = 8.243

Neutral Hateful
Predicted label

Neutral

Hateful

Tr
ue

 la
be

l

0.97218 0.027817

0.4519 0.5481

 Normalised confusion matrix (t = 8.243)

0.2

0.4

0.6

0.8

(b) Normalised confusion matrix with t = 8.243

Neutral Hateful
Predicted label

Neutral

Hateful

Tr
ue

 la
be

l

35608 2858

911 3247

 Confusion matrix, without normalisation (t = 3.042)

5000

10000

15000

20000

25000

30000

35000

(c) Confusion matrix with t = 3.042

Neutral Hateful
Predicted label

Neutral

Hateful

Tr
ue

 la
be

l

0.9257 0.074299

0.2191 0.7809

 Normalised confusion matrix (t = 3.042)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d) Normalised confusion matrix with t = 3.042

Figure 7.1.: Confusion matrices for the English dataset. (a) and (b) are found by setting the
frequency limit to 10, and hence, threshold t = 8.243. On the other hand, (c) and
(d) are found by setting the frequency limit to 40, and hence threshold t = 3.042.
(b) and (d) contains normalised predictions.

Furthermore, it was found that the first comment the model misclassified is ranked as
the 77th most anomalous comment. The comment is very long, so only an excerpt is
presented here. The comment is as follows:
“Drew Pickles grew up as a gay child. When he was just born his cock was five feet long
it grew much bigger every second. When he was very young Drew liked to masturbate to
the wiggles, spongebob and dragon tales. His dick got very hard and much longer. [...]
Drew skipped lots of school because he wanted to stick dildos up his ass and poop on his
grandpa all day. [...]”

99

7. Evaluation and Discussion

The comment is not considered to be hateful but can be perceived as offensive or
provocative. It contains many words that are often used in the hateful comments, such
as "gay", "cock" and "dick", which might be the reason why the model believes it to be
hateful.

Test 2

Table 6.10 shows the results from the second test, which was adding unlabelled anomalous
samples to the training data, i.e. increasing level of pollution. As stated, the model’s
performance has a tendency to decrease with increasing degree of pollution. The only
exception is a small increase for AC = 2 and AC = 3 (using GloVe) when 1% anomalies
are added. Even though the majority decrease when anomalies are added, the system
still obtains adequate results and the difference in performance is almost insignificant.
The AUC values for anomaly classes 2, 4 and 6, which contains a decreased amount of
normal data, decrease more than the other anomaly classes. Hence, it appears as if the
system is more prone to pollution when a smaller amount of data is added. However,
adding unlabelled anomalies only has a minor effect on performance and indicates that
the model is reasonably robust against pollution.

Comparison with baseline methods

The best performing setup with OC-SVM was using tf-idf weighted mean for aggregating
the word vector embeddings and setting hyperparameter ν = 0.05. Then an AUC score
of 67.6% was achieved, as presented in Table 6.15, which is considered a relatively poor
or decent performance. Using the CVDD model, the maximum achieved AUC score was
70.9%, as found in Table 6.16. This was attained when using five attention heads/contexts
and the GloVe word embeddings. The results are slightly better than the results achieved
by the OC-SVM but are still significantly worse than the best performing setup with
ADAHS, which attained an AUC score of 95.2%. A possible reason why the baseline
methods have poor performance is that their parameters are not optimised. According to
Aggarwal (2017), the main challenge associated with support-vector machines is that they
can be sensitive to the choice of the kernels and the method’s many hidden parameters.
Furthermore, they state that different detectors require the identification of different
hyperparameters. This may lead to challenges for comparison purposes. The range of
parameters used in the OC-SVM is very different from the parameters used in CVDD.
Furthermore, they both differ from the parameters in ADAHS. Achieving maximum
performance for all the models requires that all their parameters must be optimised.
Since this is not conducted, it can further complicate a proper understanding of their
relative performance. Nevertheless, the results obtained from ADAHS are considerably
better than the results from the baseline methods, which may indicate that ADAHS,
despite optimisation, will still be the best performing method.

100

7.1. Evaluation

7.1.3. Results using the Norwegian dataset

This section evaluates the presented results from ADAHS using the Norwegian dataset.

Test 1

In Table 6.12, the results from test 1 are presented. As previously stated, the actual ratio
of labelled anomalies in the experiments with anomalies from {4, 5} (case 1) is 1.84%. As
a result, the only difference between the configurations is the number of labelled normal
samples. This involves that the two setups, where only anomalous data is added (γa =
0.05 or 0.10), are equal in this case.

Moreover, the method performs poorly using this dataset when no anomalous data is
added but experiences an increased performance when adding a small number of labelled
anomalies. Similarly to when the English dataset is used, the overall trend is that
the performance increases with increasing ratio of labelled anomalies. The results also
indicate that there is a minor effect of adding labelled normal samples. For instance,
when adding anomalies from {4, 5}, the performance increase with 1.6% when increasing
the amount of labelled normal data from 5% to 10%. This increase is independent of
labelled anomalies because both configurations contain the same amount of labelled
anomalous data, as described earlier.

It can also be observed an increasing performance when the offensive comments (category
3) is added to the set of anomalous samples. This is expected because adding the offensive
comments as anomalies involves not having to separate between offensive and hateful
utterances. As discussed in Section 2.1, it is often challenging to distinguish between
offensive and hateful content, and as briefly described in Section 3.2, several existing
methods struggle with this distinction. Nevertheless, the increase in performance is less
than expected, with an increase of only 2% for the best configurations in the two cases.
This suggests that the system is either bad at separating offensive and hateful content
from neutral and provocative content (normal class), or relatively good at distinguishing
hateful from all other content. However, the achieved results are decent but show that the
method struggles to separate the normal and anomalous content. Hence, this supports
the first suggestion. Furthermore, it is difficult to determine if this increase is just a result
of adding more labelled samples. In the case where class 3 is considered an anomalous
class, 5.65% anomalous samples are added, in contrast to 1.84% for the case where this
class is not considered anomalous.

Interestingly, for case 2, where the anomalies are drawn from {3, 4, 5}, it can be observed
from Table 6.12 that the system performs better when only anomalous data is added.
When the desired ratio of anomalies is 10%, and the actual ratio is 5.65%, the system
achieves an AUC score of 77.3% when γa = 0.10 and 75.8% when γl = 0.10. As also
discussed for the results using the English dataset, there is no apparent reason why this
is the case, but it might be due to similarities between the labelled normal and hateful
data, such as the discussion of related topics.

101

7. Evaluation and Discussion

As discussed, the presented results involve adding a smaller ratio of labelled samples
than desired, because of too few hateful samples in the dataset. The results from test 1
and 2 presented in Table 6.12 and Table 6.14 are compared to the results when using the
alternative approach (decreasing amount of normal data), which is presented in Table A.4
and Table A.5 in Appendix A. Table A.6 shows a comparison of the results from both
approaches. From this table, it becomes clear that the performance for all configurations
increase when the original amount of neutral samples are included. Furthermore, these
results are, on average, 7% better than if the number of normal samples is decreased.
The increase in performance is particularly prominent for the setup where it is desirable
to add 10% labelled anomalies from {4, 5} and normal data. Furthermore, the two
unquestionably largest increases were when 5% pollution was added in test 2, where the
performance is 24.3% and 21.9% better when including all normal data. This indicates
that the method is much more prone to pollution when only a small amount of data is
used. For the rest of the configurations, the increase is much smaller.

Loss and AUC plots

Figure 6.5 shows the training and validation loss, as well as the validation AUC scores
for each training epoch. As can be seen from Figure 6.5a, the training loss reaches close
to zero at approximately epoch ten. On the other hand, the validation loss varies slightly
in the searching-phase but then stabilises close to zero in the fine-tuning phase. The
validation loss is consistently lower than the training loss for the last fifty epochs. The
experiments with this dataset should thus also be conducted with more training because
as long as validation loss is lower than or even equal to training loss one should keep
doing more training. When the validation loss is slightly higher than the training loss,
the training should be completed. Furthermore, there are several possible reasons why
the validation loss is slightly lower than the training loss. One possible reason is that
regularisation (dropout) is applied during training, but not during validation and testing.
Another possible reason is that the validation set may be "easier" than the training set,
which can happen by chance if the validation set is too small. Since the validation loss is
not smaller than the training loss when using the English dataset, there is a possibility
that it is caused by the small size of the Norwegian dataset.

The method’s validation AUC scores showed in Figure 6.5b, increases and reaches a
top at approximately epoch sixty, before it slightly decreases. The AUC varies from
approximately epoch twenty to fifty-five before it becomes relatively stable with a small
decreasing tendency from about 0.72 to 0.70 in AUC score.

ROC and Precision-Recall curves

Figure 6.6a shows the ROC curve with the corresponding threshold curve. The AUC
value of 0.75 indicates a decent degree of separability between the neutral and anomalous
classes, i.e. the method is capable of distinguishing between classes to some extent. Figure

102

7.1. Evaluation

6.6b shows the Precision-Recall curve (PRC) and the calculated average precision. As
can be observed, the precision drops instantly with increased recall and continues to stay
relatively low for all recall values. This is presumably because the system misinterprets
many neutral comments for being anomalous. In this case, where the anomalies are drawn
from class 4 and 5, the baseline is y = 150 /(150 + 8042) = 0.018. The average precision
is equivalent to the area under the P-R curve, both equal to 0.05. So even though the
average precision is very low (0.05), it is still better than the baseline. However, based
on this plot, it appears as if the system is a weak classifier because it has to take a
substantial hit in precision to get a higher recall.

Classification results

Table 6.13 displays the calculated precision, recall and F1-scores for different thresholds.
All scores for the hateful class is considered relatively poor, but the recall is significantly
higher than precision. The highest recall is 49%, which means that the system detects
almost half of the hateful comments. A way to increase recall for the hateful class is to
set the threshold even lower. As a consequence, precision will decrease because even more
normal samples would be deemed anomalous. If it is desirable to increase prediction, the
threshold would have to be increased.

The confusion matrices for the highest and lowest threshold used for the Norwegian
dataset are presented in Figure 7.2. The remaining two confusion matrices for limit 30
and 40 can be found in Figure A.4 in Appendix A.

Based on the confusion matrices, it can be determined that the model misclassifies
a significant number of samples, both hateful and neutral. For each setup, the fifty
comments with the highest anomaly score are found. Following are some of the comments
the model have given high anomaly score, and their actual label:

1. Enig. Ta en dna test og send dem på huet og ræva tilbake det de hører hjemme
Actual label: 5

2. Og bra er det. Mer falske og dobbelmoralske mennesker enn kristne finnes ikke! De
kristne kan ta med seg muslimene og reise hjem til midtøsten der de hører hjemme
Actual label: 3

3. I dommen mot sian nå så spiller det visst nok ikke noen rolle om det er mot
muslimen, enkeltmenneske eller voldsideologien islam
Actual label: 2

4. Snart klart for yrkesjobbmesse nav jobbmesse mosjøenvgs nordland mosjøen utdan-
ning velgyrkesfag yrkesfag sensio smarthus googlehome eaton appstyring stemmestyr-
ing
Actual label: 1

The model successfully categorises comment (1), even though the comment does not
explicitly state who the subject is. Evaluating comment (2) shows that the subjective

103

7. Evaluation and Discussion

Neutral Hateful
Predicted label

Neutral

Hateful

Tr
ue

 la
be

l

7281 761

87 63

 Confusion matrix, without normalisation (t = 0.242)

1000

2000

3000

4000

5000

6000

7000

(a) Confusion matrix with t = 0.242

Neutral Hateful
Predicted label

Neutral

Hateful

Tr
ue

 la
be

l

0.9054 0.09463

0.58 0.42

 Normalised confusion matrix (t = 0.242)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) Normalised confusion matrix with t = 0.242

Neutral Hateful
Predicted label

Neutral

Hateful

Tr
ue

 la
be

l

6869 1173

76 74

 Confusion matrix, without normalisation (t = 0.157)

1000

2000

3000

4000

5000

6000

(c) Confusion matrix with t = 0.157

Neutral Hateful
Predicted label

Neutral

Hateful

Tr
ue

 la
be

l

0.8541 0.1459

0.5067 0.4933

 Normalised confusion matrix (t = 0.157)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(d) Normalised confusion matrix with t = 0.157

Figure 7.2.: Confusion matrices for the Norwegian dataset. (a) and (b) are found by setting
the frequency limit to 20, and hence, threshold t = 0.242. On the other hand, (c)
and (d) are found by setting the frequency limit to 50, and hence threshold t =
0.157. (b) and (d) contains normalised predictions.

interpretation of hate speech is a significant issue. This comment has many similarities
to comment (1), where both statements might be perceived as both stigmatising and
derogatory by affecting the dignity and status of a specific group based on various
characteristics, which is a part of the hate speech definition used in this thesis, as
presented in Section 2.1. Hence, both comments fit the description of hate speech, but
the latter was only regarded as offensive by the person annotating it. In comment (3),
the terms "muslimen" and "voldsideologien islam" are mentioned. Many of the hateful
comments contain hatred towards Muslims, and since this comment mentions Muslims
and refers to Islam as an ideology based on violence, it is understandable that the system

104

7.1. Evaluation

believes the statement to be hateful, even though it is not. Comment (4) contains many
words that are most likely hashtags. Most of the words are related explicitly to job fairs
and education, and these words are probably neither well represented in the dataset nor
included in the pre-trained embeddings’ vocabulary. Most likely, this comment is not
similar to other comments in the dataset, and many of its words do not have pre-trained
embeddings. Thus, it can be expected that the model fails to consider this as a normal
data sample. This indicates that it is crucial to include enough normal data of various
topics in order to successfully build a comprehensive model for data normality.

For each setup, the samples considered to be most normal are also found. A wrongfully
predicted comment is "ville kanskje vurdert å sterilisere meg snart om jeg var deg, men
det er jeg jo ikke" which has 5 as the actual label. First of all, one may argue that this
comment does not provide enough information to be categorised as hateful because it
does not state why the statement’s receiver should sterilise. Second, if the comment is
considered hateful, this type of hate is difficult for the model to identify because it does
not contain any words that are explicitly hateful or offensive.

By evaluating all the most anomalous and most normal samples provided by the model,
it was found that most of the returned anomalous samples were actually normal. This is
very different from using the English dataset, where all top fifty anomalous samples were,
in fact, hateful. The model performs considerably worst when tested on this dataset.

Analysing the misclassifications provided insights into what the model has a tendency to
misinterpret and flaws in the annotated dataset. To compare, the following comments
are misclassified by the model when offensive comments also are considered anomalous:

1. Fuck jøder er heilt bort i natta å seie men straffbart, trur ikke det. Hadde nokon
derimot kalt ein gitt jøde jævla kakerlakk hadde det vore annleis. Det var uttrykk
hitler brukte om jødar, han kalla dei skadedyr som måtte utryddast. Det er for
meg over streken.
Actual label: 1

2. Kom deg av doen din fitte
Actual label: 2

3. Noe som er veldig rart er at om du står imot totalitære regimer som kalles religion
islam, deres dreping, vold, voldtekter, pedofili, jødehat osv, så blir du kalt høyreek-
strem eller rasist selv av pst. Der må det arbeide mange uvitende mennesker.
Actual label: 2

Comment (1) contains several terms that are used in many of the hateful and offensive
comments, such as "fuck" and "jævla". There are also several combinations of words
(captured by the n-grams) that appears hateful, such as "Fuck jøder" and "jøde jævla
kakkerlakk" that does most likely not fit into the model’s learned normal representation.
Furthermore, it can be observed that the comment is written in Norwegian Nynorsk,
which involves using many words not included in the pre-trained word embeddings’
vocabulary. All of this creates probable cause for the model to believe this comment to

105

7. Evaluation and Discussion

be anomalous. In comment (2) the use of the word "fitte" is probably why the model
believes it to be hateful. However, even though the comment contains a profane word,
it does not make it hateful. Again, weaknesses with the dataset annotation are shown
when evaluating comment (3). It is difficult to determine whether or not this comment
is hateful since the purpose of the comment is to downplay PST (the Norwegian police
security service) and their actions. However, to express this opinion, the author utters
a hatred towards Muslims by announcing that they are committing murder, rape and
paedophilia. The person who has annotated this comment did not consider this to be
categorised as hateful, probably because the hatred is not entirely explicit.

The misclassifications when the offensive comments are considered hateful looks similar
to the misclassifications presented earlier. It looks like the model wrongfully predicts the
same type of comments in both cases.

Test 2

Table 6.14 shows the results from the second test, which was adding unlabelled anomalous
samples to the training data, i.e. increasing the level of pollution. As stated, the model’s
performance decreases slightly when 1% pollution is added but increases with 5% pollution.
There is no apparent reason why the model experiences this increase, and it might be
caused by the random drawing of anomalies. The random seed is equal in all the
experiments, and changing this seed, which will create a different dataset split and a
different random drawing of anomalous samples, might provide different results. However,
the increasing and decreasing performance is relatively insufficient and indicates that the
method is reasonably robust against pollution.

Comparison with baseline methods

The best performing setup with OC-SVM was using max-pooling for aggregating the
word vector embeddings and setting hyperparameter ν = 0.05. Then, an AUC score
of 50.4% was achieved, as presented in Table 6.15. This is a poor performance, and
it is approximately equal to a random guess. Using the CVDD model, the maximum
achieved AUC score was 55.2%, as found in Table 6.16. This was attained when using
three attention heads/contexts. The results are slightly better than the results achieved
by the OC-SVM, but they are still significantly worse than the best performing setup
with ADAHS, which attained an AUC score of 75.3%. As explained in Section 7.1.2, the
baseline’s parameters were not optimised, which have probably lead to worse performance.

106

7.2. Discussion

7.2. Discussion

In this section, the findings of this thesis are discussed in relation to the research questions
and overall goal presented in Section 1.2. The experimental results were thoroughly
reviewed in Section 7.1 and are thus not revisited in this section. However, the overall
performance of the system is discussed further. Since several aspects of the implemented
method must be considered and discussed to determine if the proposed method can
be useful in detecting hate speech, this section includes a discussion of the advantages,
disadvantages and challenges of such a method compared to conventional classification
methods, as well as possible improvements. The last section discusses the findings in
terms of the proposed research questions.

7.2.1. Overall performance

When the experimental results were evaluated, it was stated that the method achieves
poor performance using both datasets when no labelled anomalous data is included in
the training set. Hence, the method is unsuited to handle unsupervised learning. In
contrast, Ruff et al. (2020) still achieves good results when no anomalous data is added.
The difference in performance with and without the inclusion of anomalous data is
significantly smaller than for the experimental results obtained in this thesis. A possible
reason is due to their use of an autoencoder to pre-train their neural network weights.
They state that this pre-training follows the Infomax principle, because autoencoders
implicitly maximise the mutual information, and thus minimise the entropy in the latent
distribution. On the other hand, the implemented method in this thesis uses Kaiming
He initialisation (He et al., 2015) on the network weights, which helps in attaining a
global minimum of the cost function more efficiently. Both of these initialisation methods
prevents the vanishing and exploding gradient problem and results in faster convergence.
Using pre-training is not explored as a part of this implementation, but might improve
performance and should thus be tested.

Another potential cause of poor performance in the unsupervised and normal setting
is the use of network bias terms. When the network includes bias terms, it is for the
unsupervised and normal setting possible to achieve a trivial, uninformative solution
which involves that the neural network converges to a constant function (Ruff et al.,
2020). The reason is that bias terms can learn a constant function that is independent of
the input, which can map directly to the hypersphere centre and thus create a trivial
solution. However, this does not happen for the semi-supervised setting as long as
there are sufficiently many labelled anomalies, which is due to the difference in the loss
calculations. Hence, the poor and presumably random performance in these settings can
be caused by network bias terms. To test if this was the actual cause, the experiments
for the unsupervised and normal setting was conducted again, this time without network
biases. The resulting AUC scores using both GloVe and fastText vectors are presented
in Table A.3 in Appendix A.1. The AUC scores for the unsupervised setting was 57.1%
and 55.9%, and the scores for the normal setting was 56.5% and 53.7%. This means

107

7. Evaluation and Discussion

that both scores decreased when bias terms were removed using GloVe, whereas both
scores increased when using fastText. In both cases, the results are close to the achieved
performance when using the OC-SVM baseline model. The validation AUC plots that
can also be found in Appendix A.1, reveals that the AUC is significantly more stable
throughout all of the epochs when bias terms were removed. On the other hand, when
bias terms were included, the performance appeared random depending on the number
of epochs only. Either way, the results are insufficient, and the method can still not
correctly handle the unsupervised and normal setting.

It is interesting to notice that decreasing the amount of normal data in the English
dataset on average increased performance, but decreased performance when conducted on
the Norwegian dataset. A possible reason is that the Norwegian dataset is much smaller.
When adding 10% anomalous samples, this is equivalent to only adding 522 labelled
anomalous samples. If one were to decrease the number of normal samples and obtain
the correct ratio, only approximately 4.1k unlabelled neutral comment can be added,
along with another 522 labelled neutral samples. The amount of available training data
for the model is in this setup significantly decreased, and it appears as if this amount is
not enough for the model to learn trends and patterns. This is in line with the results
obtained for anomaly class 4 in the English dataset, which only contains 478 anomalous
samples. In this case, decreasing the amount of normal data also decreased performance.
However, the other anomaly classes in the English dataset that contained a small number
of anomalies experienced increased performance when normal samples were deducted. It
is thus difficult to determine why the performance for the English dataset is so much
higher in these cases, but it might be due to the dataset differences, such as language
and content.

After reviewing many comments from both datasets, it becomes clear that the English
dataset contains a lot more profanities. The hateful comments encompass a large variety
of abuse words that are barely or never present in the neutral comments. On the other
hand, both the neutral and hateful Norwegian comments discuss the same topics and
use many similar words. Furthermore, there are a lot less offensive terms used in the
Norwegian dataset, which is possibly a part of the reason why the model performs so
much better on the English dataset. It is easier to correctly determine the anomalies
when the model can rely on the frequency of offensive or profane words to separate these
instances from the normal class.

Generally, the system’s performance on the Norwegian dataset is much lower than on the
English dataset, and the method does not currently perform sufficiently to be considered
a viable detection method using Norwegian comments. It shows potential, and with
further research and fine-tuning, it may be possible to achieve a system that can at least
find the major part of the hateful comments. Furthermore, it is reasonable to believe
that the system will perform better with a larger dataset. In this way, the model may be
able to better capture the nature of normal samples and be better equipped to handle
the issue of representing normality. The applied preprocessing steps account for the
Norwegian language, but does not explicitly handle challenges such as compound words

108

7.2. Discussion

and Norwegian Nynorsk. For a system to be able to achieve satisfactory performance in the
Norwegian language, more research on how to most effectively conduct the preprocessing
must be completed.

The performance of the method is mainly evaluated using the AUC score from the ROC
curve. For a hate speech detection system, one would first of all like to know the sensitivity
(= recall) to be sure that the test identifies the vast majority of hateful comments as
hateful. Both the ROC curve and the P-R curve involves recall, but the ROC curve
also includes specificity (FPR), while the P-R curve includes precision. Both plots are
included to provide two different views of the experimental results. Saito and Rehmsmeier
(2015) found that the ROC curves are the most commonly used evaluation method with
imbalanced data. However, the authors concluded that changing the primary evaluation
method from ROC to PRC may influence many studies. The reason is that a ROC curve
might provide an overly optimistic view of an imbalanced dataset. In this case, if one is
adding many negatives (neutral comments), which achieves a low anomaly score, it may
result in a significant improvement of the ROC curve without improving the sensitivity.
On the other hand, a PRC is not impacted by this addition. Therefore, since all the
experiments are evaluated using AUC from the ROC curve, it is not guaranteed that the
results do not appear better than they are. Hence, the PRC should be evaluated for all
test results as a supplement to get the full picture. The early retrieval area (first 25% of
the FPR axis), which is a region with higher specificity values, may also be used because
this is less affected by the imbalance. One can, for instance, calculate the area under the
curve for only this region, which is especially useful for comparison reasons.

The ultimate goal of automatic hate speech detection is to be able to implement a
system that can find all hateful comments, without misjudging neutral data for being
hateful. Hence, such a system would achieve both precision and recall equal to 1. This
is a complicated task, as previously discussed. Since this might be impossible, other
approaches to automatic detection systems may be explored. The method implemented
in this thesis is probably best suited to flag hateful comments for manual moderation
because it does not achieve satisfactory precision, regardless of threshold. However, if the
threshold on the anomaly score is set relatively low, the majority of the hateful comments
are retrieved. The drawback is that many of the neutral comments are also flagged. If a
significant part of the neutral comments can avoid moderation, social media platforms
can save a considerable amount of time and resources. According to Van Royen et al.
(2014), expert moderators favour automatic monitoring, but with some conditions, such
as including effective follow-up strategies and protecting both the commentators’ privacy
and their self-reliance. By adopting this approach, automatic monitoring is applied, and
follow-up strategies to handle the flagged data can be included.

109

7. Evaluation and Discussion

7.2.2. Advantages

There are several advantages of using a semi-supervised anomaly detection approach
to detect hateful content, as described earlier. One of the significant advantages using
anomaly detection is that these systems do not try to find similarities between the
hateful comments. A supervised classification approach would, however, only learn to
recognise hateful comments similar to those seen during training. An issue with this
approach is that these utterances might not resemble each other. For instance, both
racism and sexism are considered hate speech, but these utterances are not necessarily
similar. Furthermore, this makes the methods unequipped to handle hateful expressions
that have not yet been seen, i.e. novelties. On the other hand, anything not normal is,
by definition, an anomaly in an anomaly detection system. The hateful expressions are
considered an anomalous variant of ordinary speech, and thus the hateful utterances do
not have to be similar.

Another advantage of using anomaly detection to distinguish neutral and hateful content
is that they are more capable of handling evolving language. As presented, Nobata et al.
(2016) stated that abusive language evolves with time since people create new slurs and
inventive ways to avoid being detected. This can cause the hateful comments to change
significantly, and thus for a regular classification model, this involves that they no longer
fit into their designated class. On the other hand, with anomaly detection approaches,
which does not assume similarities between hateful expressions, the comments are still not
normal (neutral), and hence, they are considered anomalous. Of course, this presupposes
that the evolved comments do not resemble the normal comments.

Applying pre-trained word embeddings have shown excellent results when detecting
hateful utterances, but as stated by Pitsilis et al. (2018), they make the detection of
hateful statements unfeasible when the author has deliberately replaced the offensive
terms with short slang words. These words are probably not included in the pre-trained
model’s vocabulary, because they are trained on more formal and correctly written text,
such as Wikipedia articles. As a result, the semantic meaning of slang words is not
represented. However, when using AD approaches, these words are typically regarded as
anomalous, as seen when evaluating the experimental results of the Norwegian dataset.
For instance, the comment “Snart klart for yrkesjobbmesse nav jobbmesse mosjøenvgs
nordland mosjøen utdanning velgyrkesfag yrkesfag sensio smarthus googlehome eaton
appstyring stemmestyring” was believably deemed anomalous because it contains so
many words that are not contained in the embeddings’ vocabulary. For handling slang in
hateful comments, this is a potential advantage of using AD techniques over conventional
classification. However, this substantiates the claim that a vital challenge in anomaly
detection is to avoid that unknown neutral terms are considered anomalous, i.e. to be
able to correctly model all normal data.

In a hate speech detection problem, one can separate the comments into two classes;
neutral and hateful. Hence, it is possible to address this problem using supervised
classification approaches, such as the majority of previous work in the research field. In a

110

7.2. Discussion

real-life scenario, the majority of utterances are neutral, which leads to a very imbalanced
distribution between neutral and hateful content. Due to this drastic imbalance between
the two classes, using regular classification are rarely successful and can result in too
many false negatives (Mehrotra et al., 2017). In contrast, an anomaly detection system
is created to handle this imbalance, and are thus better suited to function efficiently on a
dataset that represents real-life data.

The developed system uses semi-supervised learning, and it can consequently be argued
that it is more usable than a supervised method because it utilises large amounts of
unlabelled data. As discussed in Section 3.2, there is still not one commonly accepted
hate speech corpus, which makes it difficult for various platforms to train a model based
on supervised learning. Furthermore, as Gröndahl et al. (2018) discovered, hate speech
detection systems tend to achieve poor performance when they are tested on another
dataset than they were trained on. Hence, if an online platform trains a detection method
on an already existing dataset, they will most likely achieve poor performance when
the method is tested against their own data. The type of comments and users often
varies at different platforms, so they would have to train the model on their own data
to achieve adequate results. Moreover, it is a time-consuming process to label a large
dataset. Online services and platforms might not have the resources, time or capacity
to label a large enough dataset to utilise supervised approaches with their own data.
However, they often have access to large amounts of unlabelled data, where the majority
is neutral content. Fortunately, only a small part of the data has to be annotated to
use this semi-supervised approach. The experimental results from this thesis show that
the proposed method achieved an AUC above 80% on the English dataset with only
0.33% labelled anomalies (for anomaly class 4). This indicates that the method can
achieve relatively good performance with only a small fraction of labelled anomalies.
Furthermore, the results show that the proposed method is relatively robust against
pollution of anomalous samples in the dataset, which means that the entire dataset does
not have to be revised. This makes the system easier to utilise for several platforms.

Utilising user-oriented behavioural data is feasible because such information is available
and retrievable for many platforms like Facebook and Twitter. However, for a hate
speech detection system to be applicable to a multitude of services and platforms, it is
advantageous that the system is independent of platform-specific information, such as
user-oriented data. The implemented system only depends on the actual comments and
the language of the comments, which makes it easy to adapt without much change.

The proposed system induces an anomaly score instead of giving a distinct evaluation as
either neutral or hateful. An advantage of having such a system is that it allows choosing
the most suitable threshold based on application purposes. This makes it possible for
the various services to determine the threshold based on their guidelines and restrictions.
Typically, for a hate speech detection system, it will most likely be more advantageous to
flag too many comments as hateful and then use manual moderation to find the actual
hateful comments among the flagged ones. The alternative is to detect too few samples,
but with higher precision. Hence, setting a low threshold is probably favourable for this

111

7. Evaluation and Discussion

application purpose.

7.2.3. Disadvantages and challenges

The model builds on the assumption that normal data instances are similar to each other,
and hence, the latent distribution of normal and anomalous data should have low and
high entropy, respectively. In many cases, this is a valid assumption. However, when
using textual data, this is not necessarily a legitimate assumption, due to the ambiguous
and unstructured property of language. Unquestionably, there might be significant
variations in both content and structure of the neutral comments. On the other hand,
conventional supervised classifiers assume similarities between the data in each class,
thus also between the normal data. Accordingly, this assumption is adapted by both
approaches and is hence a challenge regardless of the chosen approach. As discussed in
Section 2.3.4, another critical challenge that may arise, is that building a comprehensive
model for data normality is challenging, and might even be impossible. The reason is
that it is often difficult to find all normal behaviours in a system. When working with
natural language, there are possibly an endless amount of normal data instances that
the model must account for to create a complete representation of the normal class. If
the model has not been exposed to a particular form of neutral comments, for example,
related to a specific topic, the model is not able to recognise these as normal.

As for all anomaly detection approaches, the developed method is based on the assumption
that normal data is stationary, which means that the underlying processes do not change
significantly over time. Hence, the method assumes that statistics characterising the
system in the past will continue to characterise the system in the future (Mehrotra et al.,
2017). Language change over time and this is an issue all models that aim at detecting
hate speech must consider. Even though this method works reasonably well now, it does
not mean it will continue to work in the future. If neutral speech change significantly, as
can be expected long-term, the method will no longer understand that this is considered
normal data.

As discussed in Section 2.3.4, it is crucial to determine the correct similarity measure for
an anomaly detection algorithm to perform sufficiently. The implemented system uses
the calculated distance to a hypersphere centre as the similarity measure. The method
achieves relatively good results, but it is still challenging to determine if this measure is
optimal. Choosing the optimal measure is a challenge that does not have to be taken
into account if the problem is considered a classification problem.

A drawback to using anomaly detection is that one can only separate between hateful and
not hateful and it is thus a binary detection problem, due to the specifications of an AD
system. Malmasi and Zampieri (2017) found that only distinguishing hate from no-hate
using binary classification has previously been the most commonly used approach to
detect hate speech. However, as noted by Dinakar et al. (2012), models trained on such
data often rely on the frequency of offensive or profane words to distinguish between the
classes. Therefore, multi-label classification has become more popular. Using a one-class

112

7.2. Discussion

AD system have the limitation that it can only learn to represent the normal data, and
it can hence not differentiate between various types of anomalies, such as variations of
hate speech like racism and sexism. If the system’s goal is to detect all hateful content,
then this is not an issue. However, if it is desirable to determine the type of hatred
that is often uttered by a specific user, an anomaly detection system would provide
unsatisfactory results.

As expressed in Section 2.3.4, handling sarcastic irony is a difficult, but essential task. It
should be addressed in order to create a system that can capture all hateful content. Due
to the challenges related to this research field, the implemented system is not capable
of handling sarcastic irony. This involves that the method is wrongfully determining
sarcastic comments to be neutral speech.

The method is trained using semi-supervised learning, which consists of mostly unlabelled
data. However, to test the method’s performance, datasets containing ground-truth labels
are used. Furthermore, the labels of all data samples are kept to quantitatively measure
performance during testing. This is beneficial for research purposes because evaluating the
approach without access to ground-truth labels is challenging. Nevertheless, if other online
services or platforms utilise the system, they are not capable of measuring performance
without labelling an entire test set. Hence, if the approach is used, the anomaly score for
each tested comment must be manually evaluated to test its achievements. Consequently,
adopting the approach is more manageable because unlabelled data are utilised, but
testing its performance on the unlabelled dataset is more cumbersome.

The experimental results and evaluation suggest that the developed method struggles
with at least three specific types of comments. The first case is the neutral comments that
objectively discuss topics and include words that are often used in the hateful comments.
This applies to comments such as “Fuck jøder er heilt bort i natta å seie men straffbart,
trur ikke det. Hadde nokon derimot kalt ein gitt jøde jævla kakerlakk hadde det vore
annleis. Det var uttrykk hitler brukte om jødar, han kalla dei skadedyr som måtte
utryddast. Det er for meg over streken”. The second case involves hateful comments
that do not include any of the usual hateful terms, such as “han er en radikal muslimut
med det greiene der”. This comment was annotated as hateful (category 5) because it
expresses the desire to deport an individual based on his or her religion. Since the author
did not include whitespace between the words "muslim" and "ut", the model does not
understand the meaning of the sentence. The third case involves neutral comments that
contain a significant amount of words that are neither well represented in the dataset
nor included in the pre-trained embeddings’ vocabulary. These comments contain many
words that are not similar to other known words and are thus evaluated as anomalous
by the model. An example of such a comment is “Snart klart for yrkesjobbmesse nav
jobbmesse mosjøenvgs nordland mosjøen utdanning velgyrkesfag yrkesfag sensio smarthus
googlehome eaton appstyring stemmestyring”.

113

7. Evaluation and Discussion

7.2.4. Improvements

Even though the proposed system performs relatively well, there are many ways to improve
even further. Since thorough optimisation was not a priority in this research, it can be
expected an increased performance by discovering the system’s optimal configurations.
Probably, one way to boost system performance is applying grid search for hyperparameter
optimisation. The system contains several parameters that should be tested, including η,
weight decay λ, learning rate schedule, batch size and optimiser. In this research, only
five values for η and three values for λ was tested, and both were tested by setting a static
value for the other parameter. Hence, a non-optimal solution was possibly found since
all five values for η were not tested against all three values for λ. Furthermore, many
design-related choices have not been tested. This includes the representation dimension
of the output space d, which was set to 32 based on findings from Ruff et al. (2020). This
dimension represents the output from the model’s last layer and is used to calculate the
distance to the hypersphere centre in the 32-dimensional space. A few experiments were
conducted setting d = 300, which is equivalent to the dimension of the word embeddings.
It was discovered that the model had to train for many more epochs before achieving
correspondingly good results, and thus this was not desired. However, a range of other
dimensions should be explored. Other design choices include filter sizes and the number
of filters, i.e. how many n-grams to consider and how many filters to use for the same
region size. It is also possible to change the number of layers in the model, by adding
more layers such as dropout after embeddings layer or additional fully connected layers.
Furthermore, batch normalisation should be explored, and leaky ReLu can be tested
instead of regular ReLu. K-fold cross-validation should also be included to minimise
bias caused by the dataset splitting. Moreover, implementing early stopping should be
employed, to stop the training process if the validation AUC continues to decrease for a
chosen number of epochs.

As explained in Chapter 5, out of vocabulary words were initiated as zero-vectors with
the same dimension as the pre-trained vectors, which has the drawback that the model
cannot find relationships between these OOV words the other words. A way to improve
the achievements of this system would be to handle these instances by creating a language
model built to produce embeddings for OOV words depending on their context, as done
by Kandi (2018). As presented, it was only found embeddings for 36.2% (GloVe) and
55.9% (fastText) of the vocabulary for the English dataset and 63.0% for the Norwegian
dataset. By creating embeddings for these words, an escalation in performance may be
expected.

Another possible way to improve performance is to add the context of the comments.
When only considering a comment, it can in many circumstances, be challenging to
determine if the statement is hateful or not. Many comments can be considered hateful
in certain contexts, but not in others. For instance, comment (2) and (3) presented
as examples of hate speech in Section 2.1, was only found to be hateful based on their
context. The Supreme Court found that the first comment was related to Muslims, while
the second comment was aimed towards dark-skinned people. The comments could not

114

7.2. Discussion

have been considered hate speech if the context was unknown, which causes an issue for
hate speech detection systems that do not include context, such as this developed system.
A possible way of including the context could be to provide a dataset which contains
the comments and the text from the original post or the previous comment in the same
comment thread. By using this information, the system can determine if a comment
is hateful based on the content it is referring to. The importance of context is further
discussed in Section 7.2.6.

Text representations are genetically noisy because text often involves synonymy and
polysemy, which is when the same concept may be represented with multiple words,
and the same word can have multiple meanings (Aggarwal, 2017). Using pre-trained
word embedding makes it possible to handle synonymy to some degree because they
capture semantic similarities. Nevertheless, they do not handle polysemy because a
word’s pre-trained vector is always the same regardless of the context where it occurs.
This might lead to misinterpretation, and in this case, it would be preferable to use BERT,
as described in Section 2.5.2, because it can capture the context of a word. However, Ruff
et al. (2019) tested both GloVe and fastText embeddings and BERT language model,
and found that the improvements using BERT were insufficient and did not justify the
increased computational cost. However, as described in Section 3.5, seven out of the
top ten best hate speech models presented at SemEval 2019 used BERT. Thus there
is a possibility that utilising a language model can improve the performance of this
hate speech system. BERT provides a multilingual model that includes support for the
Norwegian language, so using BERT can be tested for both datasets.

7.2.5. Language independence

The developed system itself does not depend on language. However, one of its components
are language-specific, and it can thus be argued that the system is restricted by language.
The input to the method is social media comments, i.e. sentences or paragraphs, which is
first preprocessed. Having to handle different languages heavily affects the preprocessing
step, and thus this step depends on the language. Different languages might require
different preprocessing steps because there are challenges related to each language
that should be addressed. For instance, in the Norwegian language challenges include
compound words and handling Norwegian Nynorsk. A drawback to the preprocessing step
in this method is that these challenges are not handled, because of the lack of research
using text in Norwegian. For this system, two dictionaries of common misspellings had
to be created; one for each language. This step is also dataset-specific because specific
tokens were removed from the respective dataset, such as the token "navn" that were
removed from the Norwegian dataset.

As presented in Chapter 5, the developed method roughly consists of a word embeddings
part and a convolutional neural network part. The preprocessed textual input first passes
through the embeddings layer, which is where the text is converted into word vectors.
After that, convolutions and max-pooling are applied before the outputs are concatenated

115

7. Evaluation and Discussion

to form a feature vector. Further, dropout is applied, and the feature vector is used
as input to the final fully-connected linear layer. The only step in this process that
is language dependant is the use of pre-trained word embeddings. These vectors are
language dependant since they are representations of a specific language, trained on
a corpus consisting of text in this language. Hence, the language of the embeddings
restricts the system, but it works similarly well when trained on embeddings from another
language, as long as the input text is of the same language. This is exemplified by
using two datasets with different languages, and the method is able to handle both. The
method can also handle other languages, as long as support for handling preprocessing
and pre-trained embeddings for the specific language is added.

7.2.6. Dataset annotation

In Chapter 4, the construction of a dataset consisting of Norwegian social media comments
and tweets from Facebook, Twitter and Resett was described. In order to mitigate
annotator bias in this dataset, several annotators were included in the annotation process,
which was referred to as user-based annotation. An important challenge when annotating
a dataset is biasing. A part of the dataset was annotated and tested by the annotators,
resulting in annotation bias. Presumably, the dataset is also biased because of the
user-based annotation, as discussed in Section 4.3.

In hate speech detection, there is not a clear cut between what is normal and what is not.
As discussed in Section 2.1 and 3.1 the subjective interpretation of hate speech is a major
issue. As Schmidt and Wiegand (2017) stated, hateful utterance might be influenced
by several aspects such as the domain of an utterance, its discourse context, time of
posting and identity of author and target recipient. As pointed out by Davidson et al.
(2017), an utterance may be perceived as offensive or not depending on one’s cultural
background. This is an important challenge for all hate speech detection systems and
has a considerable impact on the annotated datasets. When evaluating the system’s
performance on the Norwegian dataset, it could be observed that this caused issues.
Several comments misclassified by the method was difficult to annotate even for human
annotators. Comments such as “Og bra er det. Mer falske og dobbelmoralske mennesker
enn kristne finnes ikke! De kristne kan ta med seg muslimene og reise hjem til midtøsten
der de hører hjemme”, fit the description of hate speech, but was only regarded as
offensive by the person annotating it. Hence, this underlines that although the annotators
only work with a limited amount of the data instances, their results will have a large
impact on the final results.

Veledar (2018) stated that what drives the sender is not decisive for an utterance to be
hateful. What is decisive is how the ordinary audience perceives the utterance, given
the context in which it is presented. This thesis has not accounted for the context of
a comment, neither in the annotation process nor in the implementation. This missing
context increases the difficulty of annotation, because not having the context made the
annotation more open for subjective opinions. Several of the annotators gave feedback on

116

7.2. Discussion

the provided data samples, stating that some of the comments were arduous to annotate
without knowing the explicit context for when it was written. They stated that they
would be more certain about their decisions if they knew these circumstances. For
instance, it is problematic to determine if the comment “Nei, det gjør de slett ikke. Og
gjør de det blir de ikke savnet. Bare reis, forsvinn, sier jeg.” is hateful, based on the text
alone. Comments that refer to an action or a group of people mentioned in the main post
or a previous comment are hard to annotate. Often, these comments do not explicitly
contain hateful language, but the purpose of the comment might be interpreted as hateful
in specific contexts. A possible solution is to cluster comments into conversation threads
and hence provide entire conversations to the annotators. In this way, the dataset will be
more reliable, which will further improve the results when used with a machine learning
model.

7.2.7. Revisiting the research questions

The goal of this thesis was to investigate how to accurately detect hate speech in text
using anomaly detection techniques. One main research question was formulated for
reaching this goal, which was “How can effective hate speech detection be achieved by
applying anomaly detection?”. Three sub-questions were defined to answer this main
question. The findings in relation to these questions are addressed in this section.

Research question 1 Which principles and models are effective when using anomaly
detection on textual data?

Our study of the state of the art has shown that there are a limited amount of works
that address anomaly detection on text data, as described in Section 3.3. Since there has
been a lack of research in the field, it is difficult to determine which principles and models
that are superior. However, studying the different approaches is essential to gain insights
into the possible techniques and approaches that can be utilised in the implementation
of an anomaly detection system to detect hateful expressions. Furthermore, it is also
interesting to explore and include principles previously used to detect hate speech.

In Section 3.3, the current state of the art within anomaly detection was presented.
Even though there are a limited amount of works that use textual data, there are
several possible applications of AD techniques on text due to the ubiquity of text in
user-generated data online. Previous works include methods such as naïve Bayes and
one-class classifiers, but in recent years, there has been an increasing interest in deep
anomaly detection algorithms as suggested by more recent papers. These papers include
neural networks such as CNNs and autoencoders, the utilisation of pre-trained word
vectors and state-of-the-art techniques such as the attention mechanism. As of today,
no previous works have exploited deep anomaly detection approaches to detect hateful
expressions.

117

7. Evaluation and Discussion

As previously pointed out, hate speech detection is a popular topic, and the amount of
research in the field is increasing correspondingly. The literature review also considered
research related to hate speech detection focusing on exploring the existing available
solutions to automatic hate speech detection, as well as hate speech datasets, relevant
features and text representations and hate speech detection for non-English languages.
Table 3.2 in Section 3.7 presents an overview of the state of the art within the field of hate
speech detection. Chapter 3 also presents popular ways of handling text representation.
Recent work has found that proper text representation is crucial for designing well-
performing machine learning algorithms. As presented in Chapter 3, several existing
methods that use textual data utilises unsupervised pre-trained word models, like word
embeddings. There exist several popular word embedding models including Word2vec
(Mikolov et al., 2013), GloVe (Pennington et al., 2014) and fastText (Mikolov et al., 2017).
However, recently language models such as BERT Devlin et al. (2018) have outperformed
the current state of the art. Another important finding was that the vast majority of
existing methods were based on text classification approaches, where neural networks and
deep learning methods tend to outperform classical NLP methods. However, Gröndahl
et al. (2018) argue that the labelling and type of data are more important than the model
architecture and that the lack of a standard hate speech definition and corpus causes
several issues.

Based on the findings discussed above and in Chapter 3, it was decided it build on and
extend the anomaly detection system provided by Ruff et al. (2020), which involves
semi-supervised deep anomaly detection. They argued that their method outperforms
all competitors, and can thus be considered state of the art within anomaly detection.
However, their approach did not involve textual data and had to be extended to fit the
problem specifications of this thesis. Furthermore, it was decided to include pre-trained
word embeddings as a part of the developed solution because it has also shown excellent
results in previous work.

Research question 2 Would a semi-supervised deep learning model for anomaly detection
be effective at correctly determining hateful social media comments?

To answer this research question, a deep anomaly detection method which employs
semi-supervised learning was implemented, and an extensive set of experiments were
conducted to test its usability. The proposed system is described in Chapter 5 and the
experiments and obtained results are presented in Chapter 6. Several aspects of the
implemented method have been considered and discussed earlier in this chapter, in order
to determine if such a method can be useful in detecting hate speech.

The system’s effectiveness has been questioned by discussing several advantages and
related issues in the above sections. The experiments showed that the performance
decreases when a small dataset is provided, but that the method overall achieved good
performance. Moreover, it generally functions more efficiently when using the English
dataset. Furthermore, the system is robust against pollution in the training dataset, and
it is relatively good at handling novelties. Using semi-supervised learning provides the

118

7.2. Discussion

opportunity to utilise large amounts of unlabelled data, which is a significant advantage
compared to using only labelled data. Furthermore, using anomaly detection approaches
provides several other advantages over conventional classification methods, such as being
more suited for handling a real-scenario distribution between neutral and hateful content,
and not assuming any similarities between the hateful comments. Nevertheless, the
system faces several issues, such as creating a sufficient representation of data normality
and differentiating hateful and neutral content that discusses the same topics. The system
is per now not sufficiently effective at distinguishing hateful and neutral content, and there
are still many challenges and possible improvements that should be addressed. However,
overall, the system’s achievements suggest that with further research and fine-tuning, it
might be possible to utilise anomaly detection techniques and partially unlabelled data
to detect hateful utterances.

Research question 3 How to develop a method for hate speech detection based on
anomaly detection that is language independent?

This research question is closely related to Research Question 2 and aims at investigating
the developed method’s ability to handle a non-English dataset. To test the method with
a dataset of another language, a dataset consisting of Norwegian social media comments
was collected and annotated. The model’s performance was tested using this created
dataset, as well as an English dataset. In order to answer this research question, the
system was developed to be language independent.

Chapter 4 outlines the process of collecting and annotating the Norwegian dataset,
while 7.2.6 discusses some related issues. It was found that not including the context
of the comments when annotating caused issues for several of the outside annotators,
leaving room for subjective interpretations. It was observed that this heavily affected the
method’s achievements when evaluating the method using this dataset.

In the discussion in Section 7.2.5, it was stated that the developed system itself is language
independent but that it contains one component restricted by language. The conducted
preprocessing is dependent on the dataset since it accounts for language and specific
terms to remove from each dataset. These implemented preprocessing steps are described
in Section 5.1. This is the only part of the method that is concerned with language
because the rest of the method only handles encoded word vectors and feature vectors.
Even though the created method contains a preprocessing step that is dataset-specific, it
is still easy to utilise for several platforms, independently of language. The implemented
system can function with all languages as long as support for handling preprocessing and
pre-trained embeddings for the specific language is added.

Creating a method that is entirely independent of language involves not having any
components that are restricted by language. It is not necessarily beneficial to implement
this type of system because it involves not using pre-trained word embedding, which
often leads to increased performance. The alternative would be to use another way of
representing text or create custom embeddings based on the available data, by training
the embeddings with respect to the problem at hand. This solution works well if using a

119

7. Evaluation and Discussion

large dataset, but the embeddings created based on a small dataset are presumably not
carrying much semantic information. However, comparable results can be expected if
one is using a large dataset, and thus, this can be an alternative approach to achieve a
system that by no means is restricted by language.

120

8. Conclusion and Future Work

This chapter provides a conclusion to the work conducted in this thesis and discusses
how the research and findings have contributed to the field of hate speech detection. The
chapter finishes with the description of possible improvements and other research ideas
related to the utilisation of anomaly detection approaches to hate speech detection.

8.1. Conclusion
The debate about hate speech has been central in recent years, and an abundance of
research has been conducted aiming at the creation of systems that can automatically
detect hate speech. However, existing solutions are not efficient enough and suffer
several significant issues. This thesis re-conceptualised hate speech detection as anomaly
detection and explored the effects of utilising semi-supervised learning through a series
of experiments. Furthermore, there is a lack of research concerned with the discovery of
hateful utterances in non-English languages. Thus, the exploratory study conducted in
this thesis also included a collection and annotation of a Norwegian dataset. Moreover,
a thorough literature review of research related to hate speech detection and anomaly
detection was conducted to attain valuable insights. Due to the limited amount of research
that addresses anomaly detection on text data, it could not be decided with certainty
which principles and models that would be most effective at detecting hateful content.
However, Ruff et al. (2020) achieved great results using a method based on entropy
minimisation and semi-supervised learning to detect anomalies, so it was decided to
extend these ideas to detect hate speech. The thesis also presents the process of collecting
and annotating a Norwegian hate speech corpus consisting of more than 41k comments
and tweets. It was discovered that even though the annotators were provided common
guidelines, there was still a significant level of disagreement. This underlines some of the
vital challenges in the research field, which includes the subjective interpretation of hate
speech and the difficulty of annotating data.

The effectiveness of the developed semi-supervised anomaly detection method was tested
with an extensive set of experiments. It was found that the system is reasonably good at
handling novelties and relatively robust against pollution. Moreover, it was determined
that the performance decrease when the number of samples in the dataset decrease,
stressing the need for extensive data amounts to sufficiently represent data normality.
Furthermore, it was discovered that the method is incapable of handling an unsupervised
problem, and that, in general, the system performed significantly better using the English

121

8. Conclusion and Future Work

dataset than the Norwegian. Overall, the system achieved decent results and outperformed
the baseline methods. Anomaly detection systems have several advantages over regular
classification algorithms, such as being more suited for handling a real-scenario distribution
between neutral and hateful content and not assuming any similarities between the hateful
comments. Based on the experiments, it can be determined that there exists a potential
for utilising anomaly detection approaches to solve the problem of hate speech detection
due to many advantages over classification methods. Nevertheless, the system is not yet
practically usable or reliable at distinguishing hateful and neutral content, and there
are still many challenges and possible improvements that should be addressed. However,
with further fine-tuning, research and optimisation, an anomaly detection system may
hopefully be able to achieve state-of-the-art results.

8.2. Contributions
This thesis contributes to the area of hate speech detection by encouraging further
exploration of the potential of utilising anomaly detection approaches in NLP. An
extensive literature review of related research was carried out, which provides information
applicable to this and, potential future work. A comprehensive overview of the existing
literature was created and is presented in Section 3.7. This overview may be used as a
starting point for future research within the field. Furthermore, the work of this thesis has
contributed to the creation of a Norwegian hate speech dataset, consisting of more than
41k comments collected from Facebook, Twitter and Resett. This dataset is a significant
contribution to the field of hate speech detection in Norwegian since an annotated baseline
dataset did not previously exist. Possibly, the most important contribution is thus the
development and experimentation with an anomaly detection system to detect hateful
utterances. The results from these experiments clearly show that there is a potential
for utilising anomaly detection techniques on this problem. Furthermore, this involves
creating more opportunities since large amounts of unlabelled data can be used when
developing these systems.

The overall goal of this thesis was to investigate how to accurately detect hate speech
using anomaly detection techniques. As stated, the developed method showed a potential
for utilising AD techniques but was not capable of accurately detecting the hateful
utterances and is currently not practically usable. Nevertheless, relevant research has
been provided, and potential improvements have been suggested in order to develop the
proposed method further and thus achieve better performance.

122

8.3. Future Work

8.3. Future Work

Regardless of the research topic, it is advantageous to make improvements to existing
work. In recent years, several studies have focused on hate speech detection, yet it is
still challenging to achieve satisfactory results. There is also a lack of research related
to anomaly detection, and thus more research should be conducted in both research
fields. This section provides suggestions for how the research conducted in this thesis can
be further extended and improved. In addition to these concrete suggestions, ideas on
potential research that may be beneficial for the field of hate speech detection in general,
are presented.

Optimise hyperparameters and handle out-of-vocabulary words

As already stated in Section 7.2, it can be expected an increased performance by
discovering the system’s optimal configurations. For instance, grid search can be applied
for hyperparameter optimisation. Furthermore, the system contains several parameters
that should be tested, including η, weight decay λ, learning rate schedule, batch size and
optimiser. There are also many design-related choices have not been tested, including
the representation dimension of the output space, filter sizes and the number of filters. It
is also possible to change the number of layers in the model, add batch normalisation
and leaky ReLu. K-fold cross-validation and early stopping should also be included.
Moreover, proper handling of out of vocabulary words should be explored, for instance,
by creating a language model built to produce embeddings for OOV words depending on
their context.

Change learning model

The system developed in this thesis includes the use of a convolutional neural network
(CNN). Other potential networks have not been tested, and thus for future research, the
method should be tested with the use of another network or learning model. Models to
experiment with can, for instance, be a HybridCNN that uses both words and characters to
classify, as done by Gambäck and Sikdar (2017) and Park and Fung (2017), a combination
of CNN and GRU (Z. Zhang et al., 2018) or an RNN (Founta et al., 2019; Mehdad
and Tetreault, 2016; Pitsilis et al., 2018). Additionally, the use of attention, which was
described in Section 2.4.5, is considered state of the art within NLP tasks. Possibly,
the model can achieve both increased performance and interpretability by utilising this
technique. Furthermore, it would be advantageous to add support for autoencoder
pre-training of network weights as conducted by Ruff et al. (2020). Using pre-training
is not explored as a part of this implementation, but might improve performance and
should thus be tested.

123

8. Conclusion and Future Work

Use common hate speech datasets

Schmidt and Wiegand (2017) stated that there does not exist comparative studies which
would allow making a judgement on the most effective learning method. Because of
the lack of a benchmark dataset, a lot of the existing studies use a variety of different
annotations and data, making it harder to compare methods and results. However, there
exist several studies that compare the performance of different methods, and it would
be beneficial to compare the results obtained when using anomaly detection to previous
solutions. To be able to compare the results, the method should be tested on one of the
hate speech datasets commonly used in other related research. This can for instance be
the datasets by Waseem and Hovy (2016), Davidson et al. (2017) or Founta et al. (2018).

Experiment with the detection of novelties

As previously mentioned, Gröndahl et al. (2018) compared five state-of-the-art hate speech
models and found that all of the models had poor performance when they were trained
on one dataset and tested against another. In other words, this means that the models
are bad at handling hateful content that does not look similar to previously seen data
(novelties). The use of anomaly detection techniques was considered a potential solution
to this problem since they do not assume similarities between the hateful statements.
Some of the conducted experiments described in Chapter 6 aims at discovering the
methods ability to handle novelties by only adding hateful comments from a particular
hateful class. However, due to the overlap between the anomalous classes, and that
only one class was tested without overlap, more research would have to be conducted to
determine if the system does possess this ability. A possible experiment could use the
dataset from Waseem and Hovy (2016) that separates between racism, sexism and neither
or the dataset from Chatzakou et al. (2017) that distinguishes between bully, aggressive
and normal. Then one of the hateful classes could be added as labelled anomalies, and
the model could be tested to determine its performance at handling anomalies from the
other hateful category. Furthermore, the method should also be tested on another dataset
than what it was trained on to compare the relative performance.

Utilising a language model

The work of this thesis explores the use of both GloVe (Pennington et al., 2014) and
fastText (Mikolov et al., 2017) pre-trained word embeddings. Using these vectors makes
it possible to handle synonymy to some degree because they capture semantic similarities.
Nevertheless, they do not handle polysemy because a word’s pre-trained vector is always
the same regardless of the context where it occurs. As described, it would, therefore, be
preferable instead to use a language model such as BERT or ElMo, because they can
capture the context of a word. There is a possibility that utilising a language model can
improve the performance of this hate speech system, and it should thus be tested. BERT
provides a multilingual model that includes support for the Norwegian language, so using
BERT can be tested for both datasets.

124

8.3. Future Work

Including the context of comments

Investigating the effects of including the context of the comments to improve the detection
rate, should be explored. As discussed, it can be challenging to decide whether something
is hateful or not, based only on a short text, especially since a considerable number of
comments are replied to other comments. For example, the comment "De omringer oss!"
is not necessarily offensive, but in the context of the comment "Jeg har en mørkhudet
nabo" it is clearly offensive. Information about the news article that is being discussed
can also be valuable.

Another advantage by including information about context is to make it easier to
distinguish offensive and hateful utterances. Hateful utterances are in some countries
considered illegal, while offensive comments are often just hurtful but still legal. Thus, it
is a valuable contribution to be able to distinguish the two categories correctly.

Improve the created Norwegian dataset

Challenges related to the annotation of datasets have been discussed in several sections,
including Section 2.1, 3.1 and 4.2. Due to the lack of resources, the majority of all
comments were only annotated by one annotator. This causes the possibilities of bias. It
would thus be preferable to employ external annotators, where at least two annotators
are annotating the same chunk of data. Inter-annotator agreement metrics could then be
calculated, and the majority vote could be used to decide the final label of each comment.
This will most likely improve the dataset quality significantly. Besides, the dataset should
be further extended because as found during the experiments, the method performs
better on a larger dataset. Furthermore, for the method to be more capable of creating a
sufficient representation of normality, the dataset should contain more comments related
to several topics and thus be more generalised. Hence, a more substantial amount of
data will most likely improve the system’s performance on the Norwegian dataset.

Preprocessing of the Norwegian language

As already stated, languages differ in how challenging they are to preprocess. The English
language is known as relatively easy to preprocess, but when studying a language with
richer morphology, more flexible word order and distinctive linguistic characteristics,
more preprocessing is needed. There have only been a small amount of research within
NLP that uses the Norwegian language, which means that there are many challenges that
have not been addressed. For example, compound words are a common part of Norwegian
vocabulary, which can be particularly challenging when handling user-generated data
because there is no guarantee that commentators write grammatically correct. Another
challenge is that there are two commonly used languages in Norway: Bokmål and Nynorsk.
The same issue can also be found when commentators write in dialect. In order to achieve
better performance when hate speech detection is using in Norwegian, more research
would have to be conducted on how to handle these challenges.

125

8. Conclusion and Future Work

A specific preprocessing step that would be advantageous to improve is the pre-trained
word embeddings for the Norwegian language. In order to obtain state-of-the-art results
for hate speech detection in Norwegian, it is crucial to have access to embeddings trained
on a larger dataset, containing more words. Currently, the word embeddings provided
by fastText includes a vocabulary that is significantly smaller than for the English
language. Additionally, the embeddings are specific for either Norwegian Bokmål or
Nynorsk. When dealing with user-generated content, where both language variations are
used, it is necessary to have embeddings that have been trained on both. In this way, it
would be possible to determine that, for instance, the words "kjærlighet" and "kjærleik"
are of the same meaning, which is not possible with the current solution because the
words are interpreted as unrelated words.

Determining what part of a statement is hateful

A goal within the research field is to be able to create a system that can automatically
determine if a comment is hateful. Such a system can, for instance, be used to guide
users when writing comments online, by providing "pop-up" messages if a user violates
the terms and guidelines. In this case, it would be advantageous for the system to supply
information about which part of the statement is considered hateful. When the user has
written a comment and wishes to post, the user gets a notification if the underlying hate
speech detection system thinks that the user is about to post a comment with degrading
content. To enhance the system’s usability, it should instruct the user on which part of
the comment that might appear stigmatising or derogatory. This is particularly useful
if the user writes long comments containing several sentences. For this approach to be
possible, the hate speech detection system must consider each sentence individually. This
is not a necessity, but it would be favourable if the goal is to guide the users.

126

Bibliography
Abati, D., Porrello, A., Calderara, S. & Cucchiara, R. (2019). Latent Space Autoregression

for Novelty Detection.
Aggarwal, C. C. (2017). Outlier Analysis (2nd ed.).
Akbik, A., Blythe, D. & Vollgraf, R. (2018). Contextual String Embeddings for Sequence

Labeling.
Akcay, S., Atapour-Abarghouei, A. & Breckon, T. P. (2018). GANomaly: Semi-Supervised

Anomaly Detection via Adversarial Training. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 11363 LNCS, 622–637.

Alfina, I., Mulia, R., Fanany, M. I. & Ekanata, Y. (2017). Hate speech detection in the
Indonesian language: A dataset and preliminary study. In 2017 international con-
ference on advanced computer science and information systems (icacsis) (Vol. 2018-
January, pp. 233–238).

Alla, S. & Adari, S. K. (2019). Beginning Anomaly Detection Using Python-Based Deep
Learning.

Artstein, R. (2017). Inter-annotator Agreement. In Handbook of linguistic annotation
(pp. 297–313).

Badjatiya, P., Gupta, S., Gupta, M. & Varma, V. (2017). Deep Learning for Hate Speech
Detection in Tweets. Proceedings of the 26th International Conference on World
Wide Web Companion - WWW 17 Companion.

Baeza-Yates, R. & Ribeiro-Neto, B. (2011). Modern information retrieval: the concepts
and technology behind search (Second). Harlow, England: Addison-Wesley.

Bahdanau, D., Cho, K. & Bengio, Y. (2015). Neural Machine Translation by Jointly
Learning to Align and Translate. In Iclr.

Basile, V., Bosco, C., Fersini, E., Nozza, D., Patti, V., Rangel, F., Rosso, P. & Sanguinetti,
M. (2019). SemEval-2019 Task 5: Multilingual Detection of Hate Speech Against
Immigrants and Women in Twitter.

Bayerl, P. S. & Paul, K. I. (2011). What determines inter-coder agreement in manual
annotations? Ameta-analytic investigation. Computational Linguistics, 37 (4), 699–
725.

Bayes, T. (1763). LII. An essay towards solving a problem in the doctrine of chances. By
the late Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a letter to John
Canton, A. M. F. R. S. Philosophical Transactions Royal Society, 53, 370–418.

Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C., Ca, J. U., Kandola, J., Hofmann, T.,
Poggio, T. & Shawe-Taylor, J. (2003). A Neural Probabilistic Language Model.

127

Bibliography

Bermingham, A. & Smeaton, A. F. (2009). A study of inter-annotator agreement for
opinion retrieval. In Proceedings - 32nd annual international acm sigir conference
on research and development in information retrieval, sigir 2009 (pp. 784–785).

Berthold, M. R. (2003). Mixed fuzzy rule formation.
Biesek, M. (2019). Comparison of Traditional Machine Learning Approach and Deep

Learning Models in Automatic Cyberbullying Detection for Polish Language. Pro-
ceedings of the PolEval 2019 Workshop, 121–126.

Blanchard, G., Lee, G. & Scott, C. (2010). Semi-Supervised Novelty Detection. Journal
of Machine Learning Research, 11, 2973–3009.

Blei, D. M., Ng, A. Y. & Jordan, M. I. (2003). Latent Dirichlet Allocation. Journal of
Machine Learning Research, 3, 993–1022.

Bobicev, V. & Sokolova, M. (2017). Inter-Annotator Agreement in Sentiment Analysis:
Machine Learning Perspective. In Ranlp 2017 - recent advances in natural language
processing meet deep learning (pp. 97–102).

Bosco, C., Dell’orletta, F., Poletto, F., Sanguinetti, M. & Tesconi, M. (2018). Overview
of the EVALITA 2018 Hate Speech Detection Task.

Brown, P. F., DeSouza, P. V., Mercer, R. L., Della Pietra, V. J. & Lai, J. C. (1992).
Class-Based n-gram Models of Natural Language.

Burnap, P. & Williams, M. L. (2015). Cyber hate speech on twitter: An application
of machine classification and statistical modeling for policy and decision making.
Policy and Internet, 7 (2), 223–242.

Büttcher, S., Clarke, C. & Cormack, G. (2016). Information Retrieval implementing and
evaluating search engines. Cambridge, MA: The MIT Press.

Chalapathy, R. & Chawla, S. (2019). Deep Learning for Anomaly Detection: A Survey.
CoRR.

Chatzakou, D., Kourtellis, N., Blackburn, J., De Cristofaro, E., Stringhini, G. & Vakali, A.
(2017). Mean Birds: Detecting Aggression and Bullying on Twitter.

Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. Educational and
Psychological Measurement, 20 (1), 37–46.

Collins, M. (2002). Discriminative Training Methods for Hidden Markov Models: Theory
and Experiments with Perceptron Algorithms. In Proceedings of the 2002 conference
on empirical methods in natural language processing ({emnlp} 2002), Association
for Computational Linguistics.

Cortes, C. & Vapnik, V. (1995). Support-Vector Networks. Machine Learning, 20 (3),
273–297.

Cox, D. R. (1958). The regression analysis of binary sequences. Journal of the Royal
Statistical Society. Series B (Methodological), 20, 215–242.

D.Manning, C., Rahavan, P. & Schütze, H. (2009). An Introduction to Information
Retrieval. Cambridge, England: Cambridge University Press.

Davidson, T., Warmsley, D., Macy, M. & Weber, I. (2017). Automated Hate Speech
Detection and the Problem of Offensive Language.

De Gibert, O., Perez, N., García-Pablos, A. & Cuadros, M. (2018). Hate Speech Dataset
from a White Supremacy Forum.

128

Dennis Gitari, N., Zuping, Z., Damien, H. & Long, J. (2015). A Lexicon-based Approach
for Hate Speech Detection. International Journal of Multimedia and Ubiquitous
Engineering, 10 (4), 215–230.

Devlin, J., Chang, M.-W., Lee, K., Google, K. T. & Language, A. I. (2018). BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.

Dinakar, K., Jones, B., Havasi, C., Lieberman, H. & Picard, R. (2012). Common Sense
Reasoning for Detection, Prevention, and Mitigation of Cyberbullying. ACM Trans-
actions on Interactive Intelligent Systems, 2 (3).

Djuric, N., Zhou, J., Morris, R., Grbovic, M., Radosavljevic, V. & Bhamidipati, N.
(2015). Hate Speech Detection with Comment Embeddings. Proceedings of the 24th
International Conference on World Wide Web - WWW 15 Companion.

Elden, J. C., Gisle, J. & Kierulf, A. (2018). Ytringsfrihet. Store norske leksikon.
Erfani, S. M., Rajasegarar, S., Karunasekera, S. & Leckie, C. (2016). High-dimensional

and large-scale anomaly detection using a linear one-class SVM with deep learning.
Pattern Recognition, 58, 121–134.

Ergen, T., Mirza, A. H. & Kozat, S. S. (2017). Unsupervised and Semi-supervised Anomaly
Detection with LSTM Neural Networks. IEEE Transactions on Neural Networks
and Learning Systems, 1–15.

Fagni, T., Nizzoli, L., Petrocchi, M. & Tesconi, M. (2019). Six Things I Hate About You
(in Italian) and Six Classification Strategies to More and More Effectively Find
Them.

Fleiss, J. L. (1971). Measuring nominal scale agreement among many raters. Psychological
Bulletin, 76 (5), 378–382.

Fortuna, P. (2018). A Survey on Automatic Detection of Hate Speech in Text. ACM
Com-put. Surv, 51.

Fortuna, P., Soler-Company, J. & Nunes, S. (2019). Stop PropagHate at SemEval-2019
Tasks 5 and 6: Are abusive language classification results reproducible?

Founta, A.-M., Chatzakou, D., Kourtellis, N., Blackburn, J., Vakali, A. & Leontiadis, I.
(2019). A Unified Deep Learning Architecture for Abuse Detection.

Founta, A.-M., Djouvas, C., Chatzakou, D., Leontiadis, I., Blackburn, J., Stringhini, G.,
Vakali, A., Sirivianos, M. & Kourtellis, N. (2018). Large Scale Crowdsourcing and
Characterization of Twitter Abusive Behavior.

Frenda, S. (2018). The Role of Sarcasm in Hate Speech. A Multilingual Perspective. In
Proceedings of the doctoral symposium of the xxxiv international conference of the
spanish society for natural language processing (sepln 2018) (pp. 13–17). Sevilla,
Spain.

Gambäck, B. & Sikdar, U. K. (2017). Using Convolutional Neural Networks to Classify
Hate-Speech.

Gaydhani, A., Doma, V., Kendre, S. & Bhagwat, L. (2018). Detecting Hate Speech and
Offensive Language on Twitter using Machine Learning: An N-gram and TFIDF
based Approach.

Goodfellow, I., Bengio, Y. & Courville, A. (2016). Deep Learning. MIT Press.

129

Bibliography

Görnitz, N., Rieck, K., Brefeld, U. & Kloft, M. (2013). Toward Supervised Anomaly
Detection.

Gorokhov, O., Petrovskiy, M. & Mashechkin, I. (2017). Convolutional neural networks
for unsupervised anomaly detection in text data. In Lecture notes in computer
science (including subseries lecture notes in artificial intelligence and lecture notes
in bioinformatics) (Vol. 10585 LNCS, pp. 500–507).

Gröndahl, T., Juuti, M., Conti, M. & Asokan, N. (2018). All You Need is "Love": Evading
Hate Speech Detection.

Han, J., Kamber, M. & Pei, J. (2012). Data Mining Concepts and Techniques (3rd ed.).
Waltham: Morgan Kaufmann Publishers.

He, K., Zhang, X., Ren, S. & Sun, J. (2015). Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification. In The ieee international
conference on computer vision (iccv) (pp. 1026–1034).

Hendrycks, D., Mazeika, M. & Dietterich, T. (2018). Deep Anomaly Detection with
Outlier Exposure. 7th International Conference on Learning Representations, ICLR
2019.

Hochreiter, S. & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation,
9 (8), 1735–1780.

Hosseinmardi, H., Mattson, S. A., Rafiq, I., Han, R., Lv, Q. & Mishra, S. (2015). Detection
of Cyberbullying Incidents on the Instagram Social Network.

Howard, J. & Ruder, S. (2018). Universal Language Model Fine-tuning for Text Classific-
ation.

Ikonomakis, E. K., Kotsiantis, S., Ikonomakis, M., Kotsiantis, S. & Tampakas, V. (2005).
Text Classification Using Machine Learning Techniques. WSEAS TRANSACTIONS
on COMPUTERS, 4 (8), 966–974.

Indira Gandhi, S. K., Zareapoor, M. & R, S. K. (2015). Feature Extraction or Feature
Selection for Text Classification: A Case Study on Phishing Email Detection.
Information Engineering and Electronic Business, 2, 60–65.

Indurthi, V., Syed, B., Shrivastava, M., Gupta, M. & Varma, V. (2019). Fermi at SemEval-
2019 Task 6: Identifying and Categorizing Offensive Language in Social Media using
Sentence Embeddings.

Isaksen, V. (2019). Detecting Hateful and Offensive Language with Transfer-Learned
Models. Norwegian University of Science and Technology. Trondheim.

Jaki, S. & De Smedt, T. (2018). Right-wing German Hate Speech on Twitter: Analysis
and Automatic Detection.

Jensen, M. H., Gunstad, T. S. & Svanes, M. A. (2019). Detecting offensive utterances
in the Norwegian language. Project report in TDT4501. Department of Computer
Science, Norwegian University of Science and Technology. Trondheim.

Kandi, S. M. (2018). Language Modelling for Handling Out-of-Vocabulary Words in
Natural Language Processing (Doctoral dissertation).

Kannan, R., Woo, H., Aggarwal, C. C. & Park, H. (2017). Outlier Detection for Text
Data : An Extended Version.

Kim, J. & Scott, C. D. (2012). Robust Kernel Density Estimation.

130

Kingma, D. P. & Ba, J. L. (2015). Adam: A method for stochastic optimization. In 3rd
international conference on learning representations, iclr 2015 - conference track
proceedings, International Conference on Learning Representations, ICLR.

Kumar, R., Ojha, A. K., Malmasi, S. & Zampieri, M. (2018). Benchmarking Aggression
Identification in Social Media (tech. rep. No. 1).

Lee, Y., Yoon, S. & Jung, K. (2018). Comparative Studies of Detecting Abusive Language
on Twitter.

Lewis, D. D., Yang, Y., Rose, T. G. & Li, F. (2004). RCV1: A New Benchmark Collection
for Text Categorization Research. Journal of Machine Learning Research, 5, 361–
397.

Liu, F. T., Ting, K. M. & Zhou, Z.-H. (2008). Isolation Forest. ICDM, 413–422.
Liu, H., Burnap, P., Alorainy, W. & Williams, M. L. (2019). Fuzzy Multi-task Learning

for Hate Speech Type Identification. The World Wide Web Conference on - WWW
19.

Luong, M.-T., Pham, H. & Manning, C. D. (2015). Effective Approaches to Attention-based
Neural Machine Translation. Association for Computational Linguistics.

MacAvaney, S., Yao, H.-R., Yang, E., Russell, K., Goharian, N. & Frieder, O. (2019).
Hate speech detection: Challenges and solutions. Plos One.

Mahapatra, A., Srivastava, N. & Srivastava, J. (2012). Contextual anomaly detection in
text data. Algorithms, 5 (4), 469–489.

Malmasi, S. & Zampieri, M. (2017). Detecting Hate Speech in Social Media.
Manevitz, L. M., Yousef, M., Cristianini, N., Shawe-Taylor, J. & Williamson, B. (2001).

One-Class SVMs for Document Classification.
Manevitz, L. & Yousef, M. (2007). One-class document classification via Neural Networks.

Neurocomputing, 70 (7-9), 1466–1481.
Mehdad, Y. & Tetreault, J. (2016). Do Characters Abuse More Than Words?
Mehrotra, K. G., Mohan, C. K. & Huang, H. (2017). Anomaly Detection Principles and

Algorithms.
Melzi, S., Abdaoui, A. & Azé, J. (2014). Patient’s rationale: Patient Knowledge retrieval

from health forums.
Meyer, J. S. & Gambäck, B. (2019). A Platform Agnostic Dual-Strand Hate Speech

Detector.
Mikolov, T., Chen, K., Corrado, G. & Dean, J. (2013). Distributed Representations of

Words and Phrases and their Compositionality.
Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C. & Joulin, A. (2017). Advances in

Pre-Training Distributed Word Representations.
Moya, M. M., Koch, M. W. & Hostetler, L. D. (1993). One-class classifier networks for

target recognition applications. Proceedings World Congress on Neural Networks,
797–801.

Nobata, C., Tetreault, J., Thomas, A., Mehdad, Y. & Chang, Y. (2016). Abusive Language
Detection in Online User Content. Proceedings of the 25th International Conference
on World Wide Web - WWW 16, 145–153.

131

Bibliography

Nockleby, J. T. (2000). Encyclopedia of the American Constitution. Macmillan Reference
USA.

Ogrodniczuk, M. & Kobyliński, Ł. (2019). Proceedings of the PolEval 2019 Workshop.
Pang, G., Shen, C. & Hengel, A. v. d. (2019). Deep Anomaly Detection with Deviation

Networks. Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 353–362.

Park, J. H. & Fung, P. (2017). One-step and Two-step Classification for Abusive Language
Detection on Twitter.

Pavlopoulos, J., Malakasiotis, P. & Androutsopoulos, I. (2017). Deep Learning for User
Comment Moderation.

Pennington, J., Socher, R. & Manning, C. D. (2014). GloVe: Global Vectors for Word
Representation.

Peters, M. E., Neumann, M., Gardner, M., Clark, C., Lee, K. & Zettlemoyer, L. (2018).
Deep contextualized word representations.

Pitsilis, G. K., Ramampiaro, H. & Langseth, H. (2018). Detecting Offensive Language in
Tweets Using Deep Learning. Norwegian University of Science and Technology.

Rajadesingan, A., Zafarani, R. & Liu, H. (2015). Sarcasm Detection on Twitter: A
Behavioral Modeling Approach. Proceedings of the Eighth ACM International
Conference on Web Search and Data Mining - WSDM 15.

Rebala, G., Ravi, A. & Churiwala, S. (2019). An Introduction to Machine Learning.
Robinson, D., Zhang, Z. & Tepper, J. (2018). Hate speech detection on twitter: Feature

engineering v.s. feature selection. In Lecture notes in computer science (including
subseries lecture notes in artificial intelligence and lecture notes in bioinformatics)
(Vol. 11155 LNCS, pp. 46–49).

Ross, B., Rist, M., Carbonell, G., Cabrera, B., Kurowsky, N. & Wojatzki, M. (2017).
Measuring the Reliability of Hate Speech Annotations: The Case of the European
Refugee Crisis.

Ruff, L., Vandermeulen, R. A., Görnitz, N., Binder, A., Müller, E., Müller, K.-R. &
Kloft, M. (2020). Deep Semi-Supervised Anomaly Detection. In Iclr.

Ruff, L., Zemlyanskiy, Y., Vandermeulen, R., Schnake, T. & Kloft, M. (2019). Self-
Attentive, Multi-Context One-Class Classification for Unsupervised Anomaly De-
tection on Text. (pp. 4061–4071).

Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1986). Learning representations by
back-propagating errors. Nature, 323, 533–536.

Russell, S. & Norvig, P. (2010). Artificial Intelligence: A Modern Approach (Third Edit).
New Jersey: Pearson Education, Inc.

Saito, T. & Rehmsmeier, M. (2015). The Precision-Recall Plot Is More Informative than
the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLOS
ONE, 10 (3), e0118432.

Salton, G. & Yang, C. S. (1973). On the specification of term values in automatic text
analysis. Journal of Documentation, 29, 351–372.

Schmidt, A. & Wiegand, M. (2017). A Survey on Hate Speech Detection using Natural
Language Processing. Valencia, Spain: Association for Computational Linguistics.

132

Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Holloway, R., Smola, A. J. & Williamson,
R. C. (2001). Estimating the Support of a High-Dimensional Distribution. Neural
computation, 13 (7), 1443–1471.

Sharma, S., Agrawal, S. & Shrivastava, M. (2018). Degree based Classification of Harmful
Speech using Twitter Data.

Sigurbergsson, G. I. & Derczynski, L. (2019). Offensive Language and Hate Speech
Detection for Danish.

Silva, L., Mondal, M., Correa, D. & Weber, I. (2016). Analyzing the Targets of Hate in
Online Social Media.

Srivastava, N., Hinton, G., Krizhevsky, A. & Salakhutdinov, R. (2014). Dropout: A Simple
Way to Prevent Neural Networks from Overfitting.

Steyn, C. & De Waal, A. (2016). Semi-supervised machine learning for textual anomaly
detection. In Pattern recognition association of south africa and robotics and
mechatronics international conference, prasa-robmech 2016.

Tax, D. M. & Duin, R. P. (2004). Support Vector Data Description. Machine Learning,
54 (1), 45–66.

Unsvåg, E. F. (2018). Investigating the Effects of User Features in Hate Speech Detection
on Twitter. Norwegian University of Science and Technology. Trondheim.

Van Hee, C., Lefever, E., Verhoeven, B., Mennes, J., Desmet, B., De Pauw, G., Daelemans,
W. & Hoste, V. (2015). Automatic Detection and Prevention of Cyberbullying.

Van Royen, K., Poels, K., Daelemans, W. & Vandebosch, H. (2014). Automatic monitor-
ing of cyberbullying on social networking sites: From technological feasibility to
desirability. Telematics and Informatics, 32.

Vandermeulen, R. A. & Scott, C. D. (2013). Consistency of Robust Kernel Density
Estimators.

Veledar, A. (2018). Hatefulle ytringer i offentlig debatt på nett. Likestillings- og diskrimi-
neringsombudet.

Viera, A. J. & Garrett, J. M. (2005). Understanding interobserver agreement: The kappa
statistic. Family Medicine, 37 (5), 360–363.

Vigna, F. D., Cimino, A., Dell’orletta, F., Petrocchi, M. & Tesconi, M. (2017). Hate me,
hate me not: Hate speech detection on Facebook.

Wang, J.-H., Liu, T.-W., Luo, X. & Wang, L. (2018). An LSTM Approach to Short Text
Sentiment Classification with Word Embeddings.

Warner, W. & Hirschberg, J. (2012). Detecting Hate Speech on the World Wide Web.
Waseem, Z. (2016). Are You a Racist or Am I Seeing Things? Annotator Influence

on Hate Speech Detection on Twitter. In Emnlp workshop on natural language
processing and computational social science (pp. 138–142). Austin.

Waseem, Z. & Hovy, D. (2016). Hateful Symbols or Hateful People? Predictive Features
for Hate Speech Detection on Twitter.

Wiegand, M., Siegel, M., Ruppenhofer, J. & Klenner, M. (2018). 4 Saarland University’s
Participation in the GermEval Task. UdSW.

133

Bibliography

Wulczyn, E., Thain, N. & Dixon Jigsaw, L. (2017). Ex Machina: Personal Attacks Seen
at Scale. Proceedings of the 26th International Conference on World Wide Web -
WWW 17.

Xiang, G., Fan, B., Wang, L., Hong, J. I. & Rose, C. P. (2012). Detecting Offensive
Tweets via Topical Feature Discovery over a Large Scale Twitter Corpus.

Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra, N. & Kumar, R. (2019).
SemEval-2019 Task 6: Identifying and Categorizing Offensive Language in Social
Media (OffensEval).

Zhang, H., Mahata, D., Shahid, S., Mehnaz, L., Anand, S., Kumar, Y., Ratn Shah, R.
& Uppal, K. (2019). MIDAS at SemEval-2019 Task 6: Identifying Offensive Posts
and Targeted Offense from Twitter.

Zhang, Y. & Wallace, B. C. (2016). A Sensitivity Analysis of (and Practitioners’ Guide
to) Convolutional Neural Networks for Sentence Classification.

Zhang, Z., Robinson, D. & Tepper, J. (2018). Detecting hate speech on Twitter using a
convolution-GRU based deep neural network. Lecture Notes in Computer Science,
745–760.

Zhong, H., Li, H., Squicciarini, A., Rajtmajer, S., Griffin, C., Miller, D. & Caragea, C.
(2016). Content-Driven Detection of Cyberbullying on the Instagram Social Network.

Zhou, L., Li, F. & Yang, Y. (2008). Path Algorithms for One-Class SVM. In Advances in
neural networks - isnn 2008 (pp. 645–654).

134

A. Additional Experimental
Results

The experimental plan and setup described in Section 6.1 and 6.2 involved a large number
of experiments using different configurations/setups. For all experiments, the AUC score
was calculated, and the majority of all scores are presented in Section 6.3. Furthermore,
for every experiment, plots of the training and validation loss, validation AUC, P-R
curves, ROC curves and anomaly score histograms were created. These plots are only
presented for the best performing configuration for practical reasons. Furthermore, only
two confusion matrices per dataset were presented in the evaluation, so the remaining
two are presented here. For some of the configurations, the experiments were conducted
more than once. This involves the experiments with and without deducting the number
of normal samples, as described in Section 6.3. Only the results using the preferable
approach for each dataset were presented as a part of the experimental results, but the
results for the respective other approaches are presented here. In addition, it involves
testing the unsupervised and normal setting on the English dataset without using network
bias terms.

Hence, this appendix introduces a selection of additional experimental results. It is
divided based on the two datasets.

A.1. Results using the English dataset

This section presents a selection of additional experimental results using the English
dataset. It starts by presenting the results from test 1, without decreasing the number
of normal samples. Not decreasing the number of normal samples were not conducted
for the configurations from test 2. Furthermore, a comparison between the results for
the unsupervised and normal setting with and without the use of network bias terms is
described.

Test 1

The results obtained when keeping the original number of normal samples in the dataset
are shown in Table A.1. Hence, this table presents the results when a smaller ratio of
anomalous samples are added to the dataset. The table only includes the results from

135

A. Additional Experimental Results

class 2: severe toxic, 4: threat and 6: identity hate, because these were the classes that
did not contain enough samples to add 5% and 10% labelled anomalous samples. The
actual ratio of anomalies in these experiments for class 2, 4 and 6 are 1.1%, 0.3% and
1.0%, respectively. Since the only difference is the amount of labelled normal data, the
cases where γa = 0.05 and 0.10 are equal, and they are thus merged into one column; γa.
γl = 0.05 or 0.10 means that all available anomalous samples are included, in addition to
5% or 10% normal samples.

Table A.1.: Results without decreasing normal samples in the English dataset. AC = anomaly
class.

English dataset: Adding labelled training data
GloVe fastText

γa γl γa γl

AC 0.05 0.10 0.05 0.10
2 88.0 88.8 88.7 87.8 88.2 86.4
4 78.0 81.0 80.9 71.9 74.0 72.7
6 88.0 88.4 88.3 88.9 88.3 89.3

For easier comparison, the results using both approaches with the English dataset is
presented in Table A.2. This table shows the results with and without a reduced amount
of normal data as AUCD and AUCND, respectively. Furthermore, it presents the difference
between the obtained results using both approaches, as well as the average difference for
each anomaly class.

As can be seen from Table A.2, both the largest increase and decrease are achieved when
adding labelled anomalies from class 4. When using GloVe, the system experiences a
decreased performance by 6.5%. On the other hand, when using fastText, the performance
increase by 11.7%. For anomaly class 2 the system obtains a reduced performance by
an average of 0.2%, but for anomaly class 4 and 6, it experiences an increase of 2.6%
and 0.7%, respectively. This results in an overall performance increase by 1.1% when
decreasing the amount of normal data.

136

A.1. Results using the English dataset

Table A.2.: Comparison between the two approaches (with and without the deduction of normal
samples) on the English dataset. AC = anomaly class. AUCD is the AUC scores
(in %) when normal samples are deducted, while AUCND is the scores when normal
samples are not deducted. Diff is the difference between AUCD and AUCND and
Diffavg is the average difference.

Comparing approaches
AC Embedding Setup AUCD AUCND Diff Diffavg

2

GloVe

γa = 0.05 87.8 88.0 -0.2

-0.9γa = 0.10 88.2 88.0 0.2
γl = 0.05 87.3 88.8 -1.5
γl = 0.10 86.6 88.7 -2.1

fastText

γa = 0.05 88.0 87.8 0.2

0.5γa = 0.10 88.2 87.8 0.4
γl = 0.05 87.5 88.2 -0.7
γl = 0.10 88.6 86.4 2.2

4

GloVe

γa = 0.05 80.2 78.0 2.2

-6.5γa = 0.10 73.3 78.0 -4.7
γl = 0.05 78.7 81.0 -2.3
γl = 0.10 59.6 80.9 -21.3

fastText

γa = 0.05 87.7 71.9 15.8

11.7γa = 0.10 82.9 71.9 11.0
γl = 0.05 83.8 74.0 9.8
γl = 0.10 82.7 72.7 10.0

6

GloVe

γa = 0.05 89.1 88.0 1.1

0.4γa = 0.10 88.4 88.0 0.4
γl = 0.05 88.9 88.4 0.5
γl = 0.10 87.8 88.3 -0.5

fastText

γa = 0.05 89.4 88.9 0.5

1.0γa = 0.10 90.3 88.9 0.4
γl = 0.05 89.7 88.3 1.4
γl = 0.10 90.9 89.3 1.6

137

A. Additional Experimental Results

The effect of network bias terms

The method achieves poor performance in the two setups which involves not adding
any labelled anomalies, i.e. in the unsupervised and normal setting. A potential cause
is the use of network bias terms. When the network includes bias terms, it is possible
to achieve a trivial, uninformative solution when the training set does not contain a
sufficient amount of labelled anomalous data. Test 1 for unsupervised and normal setting
is conducted with and without the inclusion of the network bias terms. The results are
presented in Table A.3. The table includes the performance in each of the cases, as well
as the difference in performance between the two approaches.

Table A.3.: Results with and without network bias terms for the unsupervised (γl = 0.00) and
normal setting (γn = 0.10) using the English dataset.

English dataset: The effect of network bias terms
GloVe fastText

Bias terms γl = 0.00 γn = 0.10 γl = 0.00 γn = 0.10
With 60.9 62.6 53.5 50.0
Without 57.1 56.5 55.9 53.7
Difference 3.8 6.1 -2.4 -3.7

As can be observed, both scores decreased when the bias terms were removed when using
GloVe, with 3.8% and 6.1%, respectively. On the other hand, both scores increased with
fastText, with 2.4% and 3.7%.

The validation AUC curves for both settings, can be found in Figure A.1 and A.2. The
figures show the achieved validation scores for each epoch, with and without the inclusion
of network bias terms.

138

A.1. Results using the English dataset

0 20 40 60 80 100
Epoch

0.35

0.40

0.45

0.50

0.55

0.60

0.65

AU
C

Model AUC per epoch

(a) Using GloVe with bias terms

0 20 40 60 80 100
Epoch

0.54

0.55

0.56

0.57

0.58

0.59

0.60

0.61

AU
C

Model AUC per epoch

(b) Using GloVe without bias terms

0 20 40 60 80 100
Epoch

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

AU
C

Model AUC per epoch

(c) Using fastText with bias terms

0 20 40 60 80 100
Epoch

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

AU
C

Model AUC per epoch

(d) Using fastText without bias terms

Figure A.1.: Validation AUC scores for the English dataset in the unsupervised setting

139

A. Additional Experimental Results

0 20 40 60 80 100
Epoch

0.45

0.50

0.55

0.60

0.65

AU
C

Model AUC per epoch

(a) Using GloVe with bias terms

0 20 40 60 80 100
Epoch

0.55

0.56

0.57

0.58

0.59

0.60

AU
C

Model AUC per epoch

(b) Using GloVe without bias terms

0 20 40 60 80 100
Epoch

0.450

0.475

0.500

0.525

0.550

0.575

0.600

0.625

0.650

AU
C

Model AUC per epoch

(c) Using fastText with bias terms

0 20 40 60 80 100
Epoch

0.54

0.55

0.56

0.57

0.58

0.59

0.60

AU
C

Model AUC per epoch

(d) Using fastText without bias terms

Figure A.2.: Validation AUC scores for the English dataset in the normal setting

From the figures, it can be observed that in the unsupervised setting, the validation AUC
score varies significantly more when bias terms are included. Here, the AUC varies from
approximately 0.35 to 0.65, while it only varies between 0.5 to 0.6 when bias terms are
removed. This is also the case for the normal setting, but the difference in variation is
smaller than for the unsupervised setting. From both the table and figures above, we can
see that the model performs poorly both with and without bias terms. However, when
removing bias terms, the model’s result does not longer appear to be solely based on the
number of epochs.

140

A.1. Results using the English dataset

Confusion matrices

The confusion matrices for the thresholds corresponding to the frequency limits 20 and
30, that were not included in the evaluation in Section 7.1, are presented in Figure A.3.

Neutral Hateful
Predicted label

Neutral

Hateful

Tr
ue

 la
be

l

36766 1700

1412 2746

 Confusion matrix, without normalisation (t = 5.308)

5000

10000

15000

20000

25000

30000

35000

(a) Confusion matrix with t = 5.308

Neutral Hateful
Predicted label

Neutral

Hateful

Tr
ue
 la
be
l

0.95581 0.044195

0.33959 0.66041

 Normalised confusion matrix (t = 5.308)

0.2

0.4

0.6

0.8

(b) Normalised confusion matrix with t = 5.308

Neutral Hateful
Predicted label

Neutral

Hateful

Tr
ue

 la
be

l

36354 2112

1228 2930

 Confusion matrix, without normalisation (t = 4.330)

5000

10000

15000

20000

25000

30000

35000

(c) Confusion matrix with t = 4.330

Neutral Hateful
Predicted label

Neutral

Hateful

Tr
ue

 la
be

l

0.94509 0.054906

0.29533 0.70467

 Normalised confusion matrix (t = 4.330)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d) Normalised confusion matrix with t = 4.330

Figure A.3.: Additional confusion matrices for the English dataset. (a) and (b) are found
by setting the frequency limit to 20, and hence, threshold t = 5.308. On the
other hand, (c) and (d) are found by setting the frequency limit to 30, and hence
threshold t = 4.330. (b) and (d) contains normalised predictions.

141

A. Additional Experimental Results

A.2. Results using the Norwegian dataset
The results obtained when the amount of normal samples in the dataset are decreased,
are shown in Table A.4 and Table A.5. Table A.4 shows the results from test 1, while
Table A.5 shows the results from test 2. Hence, these tables present the results when the
desired ratio of anomalous samples are added to the dataset.

Table A.4.: Results from test 1 when decreasing normal samples in the Norwegian dataset.
AC = anomaly class.

Norwegian dataset: Adding labelled training data
γa γl

AC 0.05 0.10 0.05 0.10
{4, 5} 70.8 72.0 71.3 67.9

{3, 4, 5} 73.0 76.5 71.3 73.6

Table A.5.: Results from test 2 when decreasing normal samples in the Norwegian dataset.
AC = anomaly class.

Norwegian dataset: Polluted training data
AC γp = 0.00 γp = 0.01 γp = 0.05

{4, 5} 71.3 65.7 50.6
{3, 4, 5} 71.3 72.3 53.5

For easier comparison, the results using both approaches with the Norwegian dataset
are presented in Table A.6. This table shows the results with and without a reduced
amount of normal data as AUCD and AUCND, respectively. Furthermore, it presents the
difference between the obtained results using both approaches, as well as the average
difference for each set of anomaly classes.

As can be seen from Table A.6, for all setups the system achieves an increased performance
when the original amount of normal data is retained. The most significant differences
are observed when 5% pollution is added to the training set, where the performance is
24.3% and 21.9% better when all samples are kept. Overall, the results are in this case,
on average, 7.7% better.

142

A.2. Results using the Norwegian dataset

Table A.6.: Comparison between the two approaches (with and without the deduction of normal
samples) on the Norwegian dataset. AC = anomaly class. AUCND is the scores
when normal samples are not deducted, while AUCD is the AUC scores (in %) when
normal samples are deducted. Diff is the difference between AUCND and AUCD
and Diffavg is the average difference.

Comparing approaches
Test AC Setup AUCND AUCD Diff Diffavg

1

{4, 5}

γa = 0.05 74.4 70.8 3.6

4.0γa = 0.10 74.4 72.0 2.4
γl = 0.05 73.7 71.3 2.4
γl = 0.10 75.3 67.9 7.4

{3, 4, 5}

γa = 0.05 76.8 73.0 3.8

2.8γa = 0.10 77.3 76.5 0.8
γl = 0.05 75.6 71.3 4.3
γl = 0.10 75.8 73.6 2.2

2

{4, 5}
γp = 0.00 73.7 71.3 2.4

11.5γp = 0.01 73.6 65.7 7.9
γp = 0.05 74.9 50.6 24.3

{3, 4, 5}
γp = 0.00 75.6 71.3 4.3

9.5γp = 0.01 74.7 72.3 2.4
γp = 0.05 75.4 53.5 21.9

143

A. Additional Experimental Results

Confusion matrices

The confusion matrices for the thresholds corresponding to the frequency limits 30 and
40 are presented in Figure A.4.

Neutral Hateful
Predicted label

Neutral

Hateful

Tr
ue

 la
be

l

7171 871

84 66

 Confusion matrix, without normalisation (t = 0.211)

1000

2000

3000

4000

5000

6000

7000

(a) Confusion matrix with t = 0.221

Neutral Hateful
Predicted label

Neutral

Hateful

Tr
ue

 la
be

l

0.8917 0.1083

0.56 0.44

 Normalised confusion matrix (t = 0.211)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Normalised confusion matrix with t = 0.221

Neutral Hateful
Predicted label

Neutral

Hateful

Tr
ue

 la
be

l

6912 1130

76 74

 Confusion matrix, without normalisation (t = 0.164)

1000

2000

3000

4000

5000

6000

(c) Confusion matrix with t = 0.164

Neutral Hateful
Predicted label

Neutral

Hateful

Tr
ue

 la
be

l

0.8595 0.1405

0.5067 0.4933

 Normalised confusion matrix (t = 0.164)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(d) Normalised confusion matrix with t = 0.164

Figure A.4.: Additional confusion matrices for the Norwegian dataset. (a) and (b) are found
by setting the frequency limit to 30, and hence, threshold t = 0.221. On the
other hand, (c) and (d) are found by setting the frequency limit to 40, and hence
threshold t = 0.164. (b) and (d) contains normalised predictions.

144

B. Annotation Guidelines

This appendix presents the guidelines provided to the outside annotators as a part of the
user-based annotation of the Norwegian dataset. The guidelines are written in Norwegian,
but a short version is included in English in Section 4.2.2.

Retningslinjer for klassifisering

Du skal nå lese gjennom en og en kommentar og avgjøre hvilken kategori den tilhører på
en skala fra 1-5. Oppdater kolonnen “category” med tallet. Ikke nøl med å ta kontakt
dersom du har noen spørsmål.

NB! Dersom noe skal fjernes, marker med x. Dette er typisk kommentarer på et annet
språk enn norsk
NB2! Det er viktig med ytringsfrihet i Norge, og alt som er knyttet til ytringer rundt
politikk osv har høyere terskel for å oppfattes som ikke-nøytrale i en debatt. Det er helt
lov å være sterkt imot ulike politiske saker, men det blir regnet som ikke-nøytralt når det
bikker over i definisjonene vi har nedenfor.

Tips! Se for deg at du er en varslingsrobot. Hadde du reagert og ville sagt ifra til
brukeren at de burde tenke over hva de har skrevet en gang til før de publiserer denne
kommentaren?
Tips! Bruk de vedlagte eksemplene og følg retningslinjene, men om du fortsatt er i tvil
anbefales det å gå for den mildeste klassifiseringen, altså lavere tall.

145

B. Annotation Guidelines

Table B.1.: Annotation guidelines

Markering Kategori Definisjon
1 Nøytral Alt annet
Eksempler på nøytrale kommentarer:

1. Artig at det å påpeke hva som skjer i våre gater har blitt en forbrytelse. Også en
smule morsomt at 1.7 milliarder muslimer kalles en minoritet mot Norges 4
millioner nordmenn

2. blir forbanna over at listhaug sier at spagetti er en norsk verdi eller noe sånt
3. Tenker begge kjønn ghoster men at menn som regel er de som kommer med

møkkete svar. Uansett føles det vondt å bli ghostet, man er jo tross alt håpefull
når man matcher med noen. Jeg er hvertfall det.

4. Gud hjelpes for en gjeng

Mange kommentarer kan ofte oppleves å ikke være nøytrale hvis man tenker på kontekst
eller andre underliggende faktorer. Det er viktig i dette prosjektet å analysere og
annotere hver enkelt kommentar separert, og heller ikke ilegge forfatteren meninger som
ikke står eksplisitt. Med dette mener vi ikke at ironi og sarkasme alltid skal tolkes
nøytralt, men at kommentarer ikke skal tolkes i verste mening hvis den hadde blitt rettet
mot en bestemt type gruppe eller i en viss setting. Les den som den står med andre ord.

2 Provoserende

En ytring blir definert som provoserende om
den inneholder et aggressivt språk for å
uttrykke en mening eller kan oppfattes
upassende. Dette inkluderer bruk av banneord,
hersketeknikk, sarkasme og ironi for å
dekredibilitere motstanderen.

Eksempler på provoserende kommentarer:
1. Oi så flink du er til å forenkle fremstillinger. Er det derfor du ellers ser samfunnet

svart/hvitt? Media skriver om noe = løgn Gjevjon/Steigan etc skriver noe =
ufeilbarlige sannheter... Mester i nyanser og dyptenkning er du vel ikke

2. @USER Hvordan er det mulig å hate mennesker så intenst? Hva i all verden har
disse menneskene gjort denne gjengen? FRP er jo et råttent og superegoistisk
parti. Det er høyreekstreme som står for terroren i dette landet ikke muslimene.
Håper at folk begynner å se det nå

3. Ehhh ... om du er religiøs er du hjernevasket. Islam er en eneste stor sekt, hva
annet? Sekten holder 1,5+ milliarder mennesker nedtrykt i patriarkalske
strukturer, underutvikling og uvitenhet, ekstrem fattigdom ... hva godt gjør d for
menneskeheten å sitte å pugge koranvers?

4. Nok en gang viser det seg at islamkritikk ikke tåles, og er dødsens farlig. Og at
feminister og venstresiden™ heller bøyer seg for muslimer, enn å forsvare
ytringsfrihet og likestilling.,#JeSuisMila

146

5. Greta Thunberg er en BLØFF ! En stor løgn skapt kunstig av sosialister som blir
betalt for å lyve !

6. “NRK - Norges Islamistiske fyrtårn”

I utgangspunktet kan det se ut til at kommentar nummer 5 er nøytral ettersom den stort
sett er saklig og ikke kommer med nedsettende eller provoserende utsagn. Likevel kan
den ikke klassifiseres som et saklig innlegg i debatt fordi den har sterkt negativt ladede
ord som beskriver FrP. Selv om det er stor takhøyde for å diskutere politikk og ha ulike
synspunkt er det fortsatt ikke greit å dekredibilitere FrP ved å bruke så aggressivt språk.

3 Støtende
(“offensive”)

En ytring blir definert som støtende dersom den
inneholder sårende, nedsettende eller obskøne
(=vulgær, slibrig, ‘kjønnsord’) kommentarer,
enten rettet mot en gruppe mennesker eller mot
et individ.

Eksempler på støtende kommentarer:
1. Ja for bergens-feita, høyre SOSIALISTEN Solberg, gjorde ikke noe for å få ham

slengt ut; er hun mascokist?? Han erklærte jo på NRK at han skulle drepe henne.
Noe galt er det med feita

2. Vil bare hoppe inn her og si at du er ond og ræva, men først og fremst veldig dum,
Someone20004. Dårlig fungerende hjerne! Og det må vi respektere, alle er ikke
født med en ordentlig hjerne

3. Ingen respekt for de selvgode, snillisme-feminist-myndighetene våre...... Og hvem
ville vel det?????,Disse kjerringene støtter tvert imot denne kriminelle
"berikelsen"!!!!!!

4. Poenget me heila tingen va jo ka så va d stusta i England din fitte kuk
5. Milan bare endra tissen min fra stiv til halvkram, litt som å pule en feit hore

#fetehorer #æsj #fårdenikkeopp

Generelt oppfattes obskøne ord, som fitte, kuk, pikk, pule og lignende, som støtende.
Det kan finnes unntak, som her hvor det brukes til å kommentere innhold i et innslag
som har vært på Dagsrevyen: For mye pikk og fitte! -Det blir for mye? -Ja... for å si
det pent. Det som hovedsakelig skiller støtende kommentarer (kategori 3) fra moderat
hatefulle (kategori 4) er at de ikke retter seg mot en av de nevnte
gruppene/karakteristikkene i definisjonen nedenfor. Forskjellen mellom kategori 2 og 3
vil være alvorlighetsgraden, altså hvor nedsettende en kommentar er f.eks.

4 Moderat
hatefullt

Ytringer som er helt eller delvis motivert av hat
eller negative holdninger mot grupper eller
individ, basert på etnisitet, religion, seksualitet,
kjønn, alder, politisk syn, sosial status eller
funksjonsnedsettelser. Ytringene oppfordrer
ikke til handling, men de er et angrep på
integritet og er sterkt nedverdigende.

147

B. Annotation Guidelines

Eksempler på moderat hatefulle kommentarer:
1. Begriper ikke at noen kan slippe unna med et mordforsøk som dette var - eller

terror.mange media er også redde for å skrive at d er innvandrere - er på en måte
unødvendig da alle overfall utføres av disse jævlene... #islam #overfall
#mordforsøk

2. En ting er utlendinger, noe annet er radikal islam. Er mange typer kulturer
innvandret til Norge feks, ingen problem med dem, kun berikelse, noe komplett
annet er islam med økende andel radikaliserte, de må uten unntak vekk fra Vesten.

3. Ja, de flytter hit og vi får verre liv = klankultur, misogyni, høye økte offentlige
utgifter, press på skole og helsevesen, gjengproblematikk, æresrelatert vold, og aller
verst - en retardert, avskyelig religion! Bruker vi din logikk bør vel alle pakistanere
få komme inn og bli?

4. @USER Lan Marie Berg er ei fitte som har rævpult det norske folk på beskjed fra
idligere leder for MDG. Han har nok knulla henne så hardt at hun bare handler
uten å tenke. Samme med Raymond Myrengen i AP. Han er en svær kukk som har
vært i hele partiet som tar i mot svarte penger de

Ser man på de tre første kommentarene forstår man at dette er sterkt nedverdigende
ytringer mot en gruppe som innehar spesielle karakteristikker, i dette tilfellet deres
religion eller etnisitet. Kommentar nummer 4 er et eksempel på en ytring som er et
angrep på integriteten til et individ og er sterkt nedverdigende. Det er verdt å merke seg
at ingen av disse eksemplene oppfordrer til handling (call to action). Eksempler på
handling kan være “Send dem ut av landet”, “skyt dem”, “håper du hopper fra en bro”,
“finn deg en tbane og dett foran”, “repatrieres (=sende de ut av landet)”

5 Hatefult

Ytringer som er helt eller delvis motivert av hat
eller negative holdninger mot grupper eller
individ, basert på etnisitet, religion, seksualitet,
kjønn, alder, politisk syn, sosial status eller
funksjonsnedsettelser og som oppfordrer til
handling basert på dette.

Eksempler på hatefulle kommentarer:
1. Send henne hjem til Somalia med hele familien!
2. Når du trenes opp i bomber, kutter. strupen på barn og kvinner. Da er du et

hjernevasket sharia dyr. Og du er etnisk pakistansk. Bør du bli sendt til pakistan
med ett lite bidrag. De klarer av slikt. Send hennes influensere dit også!

3. Alle som jobber og sliter og blir mishandlet og fornedriget av disse kriminelle
monstrene er de samme som betaler regninga for deres liv i Europa. Send ALLE
kriminelle tilbake til hjemlandet og FORBY ISLAM!

148

Disse kommentarene oppfordrer til en handling basert på ulike karakteristikker av
grupper eller enkeltindivider, og det er dette som skiller kategori 4 og 5. Det er verdt å
merke seg at ikke all oppfordring til handling kan klassifiseres i denne kategorien. I
denne kommentaren: “Start med at sende kriminelle utlendinger hjem, og stopp
innvandring fra ikke vestlige land.” er det oppfordret til å sende kriminelle utlendinger
hjem og til å stoppe innvandring. Dette er politiske synspunkt som må være helt lov å
komme med i debatten, fordi ytringen angriper ingen spesielle grupper eller sier noe
nedverdigende om hvorfor innvandringen bør stoppes.

149

C. Collecting Social Media
Content

This appendix presents the search words, pages and names used to collect and preprocess
the annotated Norwegian dataset. The first section contains the search words used to
collect tweets from Twitter, while the second section contains the Facebook pages that
all used posts were found. In addition, this section lists all the first and last names that
were removed from the dataset.

C.1. Twitter search words

The following list of words were used to collect Twitter messages using the Twitter API.

pikk
lgbt
tispe
parasitt
hatprat

joede
heterofil
homse
send
rasist

mdg
utrydde
reis
korrupt
hat

transe
reis
hjem
islam
muslim

feminist
fitte
hore
homo

C.2. Facebook

C.2.1. Sites and posts

The following Facebook pages were browsed for posts to crawl:

VG
TV2
TV2 Nyhetene
Grønn Ungdom
NRK Nyheter
Hege Storhaug
Se og Hør

Frp
Aftenposten
Venstre
Dagbladet
Siv Jensen
Sylvi Listhaug
Lan Marie Berg

Dagens Næringsliv
Nei til mer bompenger
Norge fritt for Islam
Vi støtter Sylvi Listhaug,

innvandring- og
integreringsminister

151

C. Collecting Social Media Content

C.2.2. Names

This section contains two lists of first and last names, commonly used in Norway. The
lists are based on two lists of names provided by Statistisk Sentralbyrå (SSB), with
additional manually added names found in the dataset.

First names:

aaron
abdirahman
abdul
abdullah
abdullahi
abel
abigail
ada
adam
adele
adina
adine
adnan
adrian
adriana
agathe
agnar
agnes
agnete
agnethe
ahmad
ahmed
aida
aiden
ailin
ailo
aimee
aina
aisha
ajla
aksel
alan
alba
albert
albertine
albin

aleksander
aleksandra
alette
alex
alexander
alexsander
alexandra
alf
alfred
ali
alice
alicia
alicja
alida
alina
aline
alisa
alise
alisha
allan
alma
alva
alvar
alvilde
alvin
amadeus
amalia
amalie
amanda
amandus
amar
amelia
amelie
amin
amina
amine

amir
amira
amna
amund
amy
ana
anas
anastasia
anders
andré
andrea
andreas
andrine
ane
anea
anette
angela
angelica
angelika
angelina
anine
anisa
anita
anja
ann
annette
anna
annabel
annabell
anne
anne-kristine
anneli
anneline
annelise
anne-berit
annie

annika
anniken
anthony
anton
antoni
antonio
are
ari
arian
ariana
ariane
ariel
arild
arin
arman
arn
arna
arne
aron
arthur
arvid
arve
arvin
aryan
asbjørn
asgeir
ask
askil
aslak
astri
astrid
atle
audun
august
aune
aurora

ava
aven
axel
aya
ayla
aylin
ayman
aagot
aage
aase
adolf
adrian
agnes
aksel
albert
alexander
alf
alfhild
alfred
alma
amalie
anders
andre
andrea
andreas
anette
anita
ann
anna
anne
anne-lise
anton
arild
arne
arthur
arvid

152

C.2. Facebook

asbjørn
aslaug
astrid
aud
august
balder
bartosz
bastian
beate
beatrice
bella
ben
bendik
benedicte
benedikte
benjamin
berit
bernhard
bertine
betina
bettina
bianca
bilal
birgitte
birk
bjarne
bjørn
bjørnar
bo
brage
brede
brian
bror
brynjar
beate
benedicte
benjamin
bent
bente
benthe
berit
bernhard

bernt
bertha
birger
bjarne
bjørg
bjørn
bodil
borghild
brit
brita
britt
bård
børge
børre
camilla
carina
carine
carl
carlos
carmen
caroline
casper
caspian
cassandra
cathrine
cathrina
catarina
catalina
catharina
catharine
cecilia
cecilie
celin
celina
celine
cicilie
charlie
charlotte
chloe
chris
christer
christian
christiane

christin
christina
christine
christoffer
christopher
cindy
clara
colin
conrad
cornelia
cornelius
camilla
carina
cecilie
charlotte
dag
damian
dan
dani
danial
daniel
daniela
daniella
darin
david
dawid
denis
dennis
diana
didrik
dina
dominic
dominik
dorthe
dorthea
dag
dagmar
dagny
daniel
ea
ebba
edel
edin

edith
edvard
edvart
edvin
edward
edwin
egil
eileen
eilif
einar
eir
eira
eirik
eiril
eirill
eirin
eivind
eyvind
eivor
ela
eldar
elea
elen
elena
eli
eliah
elias
elida
elin
elina
eline
elisa
elisabeth
elise
eliza
elizabeth
ella
elle
ellen
ellie
ellinor
elliot
elsa

else
elvira
ema
emanuel
embla
emelie
emely
emil
emilia
emilian
emilie
emilija
emilio
emily
emina
emine
emir
emma
emmeli
emmelin
emmeline
emmy
emre
emrik
endre
enya
eric
erica
erik
erika
erle
erlend
erling
eskil
eskild
espen
ester
esther
eva
evan
evelina
evelyn
even

153

C. Collecting Social Media Content

edith
edvard
egil
einar
eirik
eivind
eli
elin
elisabeth
elise
ellen
elsa
else
emil
emilie
emma
erik
erlend
erling
erna
espen
ester
eva
even
fabian
fadi
falk
fanny
fatima
felicia
felix
ferdinand
filip
filippa
fillip
finn
fiona
franciszek
frank
frederik
fredrick
friedrich

fredrik
freddy
frederikke
fredrikke
freja
freya
frida
fride
frøya
frøydis
finn
frank
frida
frode
gabriel
gabriela
gabriella
gabrielle
gard
gaute
geir
georg
gina
gitte
gjermund
glenn
gunhild
gunnhild
gunnar
guro
gustav
geir
georg
gerd
grethe
gro
gudrun
gunda
gunhild
gunn
gunnar
gunvor
gustav

gøran
haakon
hafsa
hallvard
halvard
hallvar
halvor
hamza
hana
hanna
hannah
hanne
hans
harald
hasan
hassan
hauk
hedda
hedvig
hege
heidi
heine
helen
helena
helene
helga
helge
helin
helle
helmer
hennie
henning
henny
henriette
henrik
henrikke
henry
herman
hermann
hermine
hilde
hugo
hussein

halvor
hanna
hanne
hans
harald
harry
hege
heidi
helene
helga
helge
henriette
henrik
henry
hilda
hilde
hjalmar
hjørdis
håkon
håvar
håvard
håkon
håvard
ian
iben
iben
ibrahim
ida
idun
idunn
ilyas
iman
imre
ina
inan
ine
ines
inga
inge
ingolf
ingebjørg
ingeborg
ingelin

inger
ingmar
ingri
ingrid
ingunn
ingvild
ingvill
iqra
iren
irene
irine
iris
isa
isaac
isabel
isabell
isabella
isabelle
isac
isak
iselin
ismail
ivan
ivar
iver
ivo
ida
inga
ingebjørg
ingeborg
inger
ingrid
ingvald
ingvild
irene
ivar
jack
jacob
jakob
jakub
james
jamie
jahn

154

C.2. Facebook

jan
janet
janett
janie
janicke
janikke
janine
janne
jannicke
jaran
jarand
jarle
jasmin
jasmine
jasper
jeanett
jeanette
jennie
jennifer
jenny
jens
jeppe
jesper
jessica
jim
jimmy
jo
joachim
joakim
joar
joel
johan
johann
johanna
johanne
johannes
john
johnny
jon
jonah
jonas
jonatan

jonathan
jone
josef
josefine
joseph
josephine
joshua
jostein
julia
julian
juliane
julianne
julie
julius
june
juni
justin
jakob
jan
janne
jarle
jeanette
jenny
jens
joakim
johan
johanna
johanne
johannes
john
jon
jonas
jonny
jorun
jorunn
josefine
julie
jøran
jørgen
jørgen
jørn
kacper
kai

kaia
kaisa
kaja
kajsa
kamil
kamilla
karen
kari
karianne
kariann
karin
karina
karine
karl
karolina
karoline
karsten
kaspar
kasper
kaspian
katarina
katharina
kathrine
katinka
katja
katrine
kaya
kayla
ken
kenneth
kent
keth
ketil
kevin
khalid
kian
kim
kine
kira
kjartan
kjell
kjersti
kjetil

klara
klaudia
knut
konrad
kornelia
kornelius
krister
kristian
kristiane
kristin
kristina
kristine
kristoffer
krystian
kyrre
kaare
karen
kari
karin
karl
karoline
katrine
kenneth
kim
kine
kirsten
kjell
kjell-remi
kjersti
kjetil
klara
knut
konrad
kristian
kristin
kristina
kristine
kristoffer
kåre
laiba
laila
lana
lara

lars
lasse
laura
laurits
lauritz
lavrans
lea
leela
leah
leana
leander
leif
leila
lena
lene
leo
leon
leona
leonard
leonardo
leonora
lerke
levi
lia
liam
liana
lilja
lilje
lilli
lillian
lilly
lily
lina
linda
linde
line
linea
linn
linnea
linus
lisa
lise
liv

155

C. Collecting Social Media Content

liva
live
livia
loke
lone
lotta
lotte
louis
louise
lovise
luca
lucas
lucia
lucy
ludvig
ludvik
luis
luka
lukas
luna
lycke
lydia
lykke
laila
lars
laura
laurits
leif
lena
lene
lillian
lilly
lina
linda
line
linn
lisbeth
lisbet
lise
liv
lovise
ludvig

lærke
maciej
madeleine
madelen
madelene
mads
magdalena
magne
magnus
mahad
mahamed
mahdi
mai
maj
maj-linda
maia
maiken
maja
maksymilian
malaika
malak
malena
malene
mali
malin
marcel
marco
marcus
maren
margit
margrete
margrethe
mari
maria
mariam
marianne
marie
mariel
mariell
marielle
marina
mario
marion

marit
marita
marius
markus
marlene
marta
marte
martha
marthe
marthine
martin
martina
martine
martinius
martinus
martyna
marwa
mary
maryam
mateo
mateusz
mathea
matheo
matheus
mathias
mathilda
mathilde
matias
matilda
matilde
mats
matteo
matteus
mattias
mattis
maud
max
maxim
maximilian
maximillian
may
maya
medina

melina
melinda
melisa
melissa
melvin
mia
michael
michaela
michal
michelle
mie
mika
mikael
mikail
mikal
mikkel
mikolaj
mila
milan
milena
milian
milja
milla
mille
milo
mina
mio
mira
miriam
moa
mohamed
mohammad
mohammed
molly
mona
monica
monika
monique
mons
morgan
morten
muhammad
muhammed

muna
mustafa
magne
magnhild
magnus
malin
maren
margit
mari
maria
marianne
marie
marit
marita
marius
markus
marte
martha
martin
martine
mary
mathias
mathilde
mats
may
merete
merethe
mette
michael
mina
mona
monica
morten
nadia
najma
nanna
naomi
natalia
natalie
nataly
natan
nataniel
natasha

156

C.2. Facebook

nathalie
nathan
nathaniel
nellie
nelly
neo
nichlas
nicholas
nicklas
nickolai
niclas
nicolai
nicolas
nicolay
nicole
nicoline
niklas
nikola
nikolai
nikolas
nikolay
nikoline
nila
nils
nina
njål
noa
noah
noel
nojus
noor
nora
norah
nova
nikolai
nils
nina
nora
oda
odd
oddbjørn
oddvin

oddrun
odin
ola
olaf
olai
olander
olav
olava
ole
olea
oline
oliver
olivia
olivier
oliwia
oliwier
olve
omar
omer
oscar
oskar
othelie
othilie
otilie
ottar
otto
oda
odd
oddvar
ola
olaf
olaug
olav
olava
ole
olga
oline
oskar
ove
patrick
patrik
patryk
paul

paula
paulina
pauline
peder
pelle
per
pernille
peter
petra
petter
philip
phillip
pia
piotr
preben
paul
pauline
peder
per
petra
petter
pål
pål
rachel
rafael
ragna
ragnar
ragnhild
rakel
ramona
randi
rania
rasmus
ravn
rayan
raymon
raymond
rebecca
rebecka
rebekka
regine
remi
renate

renata
renathe
renatha
richard
rikke
rikard
robert
robin
rolf
ronja
rose
ruben
runa
runar
rune
ruth
ryan
ragna
ragnar
ragnhild
ragnvald
randi
rasmus
rebecca
reidar
reidun
rigmor
rita
roar
robert
robin
roger
rolf
ronny
roy
rune
ruth
sabrina
saga
sahra
said
sakarias
salma

sam
samantha
samira
samson
samuel
sander
sandra
sanna
sanne
sara
sarah
savannah
scott
sean
sebastian
selin
selina
seline
selma
selmer
serina
serine
severin
shawn
sienna
sigmund
sigbjørn
signe
sigrid
sigrun
sigurd
sigve
siham
silas
silja
silje
simen
simon
simone
sina
sindre
sine
sinisa

157

C. Collecting Social Media Content

siren
siri
siril
siv
sivert
sjur
snorre
sofia
sofie
sol
solveig
sondre
sonja
sophia
sophie
stefan
steffen
stein
steinar
stella
stian
stig
stina
stine
storm
sturla
ståle
sumaya
sunniva
susann
susanna
susanne
svein
svein-johnny
sveinung
sven
svenn
sverre
syed
synne
synnøve
syver

szymon
sander
sandra
sara
sebastian
signe
sigrid
sigurd
silje
simen
simon
sindre
siri
sissel
siv
sofie
solveig
sondre
stein
steinar
stian
stig
stine
susanne
svein
sverre
synnøve
sølve
tage
taha
tale
tallak
tara
tarald
tarik
tarjei
tea
teo
teodor
terese
teresa
terje
thale

thea
thelma
theo
theodor
therese
theresa
thilde
thomas
thor
thora
thorbjørn
thorvald
tia
tian
tilda
tilde
tilla
tim
timian
tina
tindra
tine
tinius
tiril
tirill
tobias
tom
tomas
tomine
tommy
tone
tonje
tony
tony-andré
tor
tora
torben
torbjørn
tord
tore
torgeir
torje
torjus

torkil
torhild
torild
tormod
torstein
tove
trine
tristan
trond
troy
trude
truls
trygve
trym
tuva
tyra
terje
thea
theodor
therese
thomas
thorvald
thorild
thorhild
tina
tobias
tom
tommy
tone
tonje
tor
tora
torbjørn
tore
torill
torild
tove
trine
trond
trude
trygve
turid
ulla

ulrik
ulrikke
una
unni
valentina
vanessa
vanja
varg
varman
vebjørn
vegar
vegard
vemund
vera
veronica
veronika
veslemøy
vetle
vibeke
vibekke
victor
victoria
vida
vidar
viktor
viktoria
vilde
vilhelm
vilja
viljar
vilje
vilma
vincent
vinjar
viola
vivian
valborg
vegard
veronica
vibeke
victoria
vidar
vigdis

158

C.2. Facebook

vilde
vår
vårin
weronika
wibeke
wiktor
wiktoria
wilhelm
william

wilma
wilmer
wenche
willy
yahya
yasin
yasmin
yassin
ylva
yngve

yosef
younes
yousef
yusra
yusuf
yvonne
zahra
zainab
zakaria
zander

zara
zoe
zofia
zuzanna
ådne
åse
åshild
åsmund
åsne
ørjan

øystein
øysten
øistein
øivind
øyvind
åge
ågot

Last names:

aa
aabel
aaberg
aaby
aabø
aadland
aae
aagaard
aagesen
aakre
aakvik
aaland
aalberg
aalvik
aam
aamodt
aamot
aandahl
aandal
aanensen
aanerud
aanes
aanestad
aanonsen
aanstad
aardal
aarflot
aarhus
aarnes
aarrestad

aarsand
aarseth
aarskog
aarsland
aarstad
aarum
aarvik
aarø
aas
aasberg
aasbø
aase
aasebø
aasen
aaserud
aaseth
aasgaard
aasheim
aasland
aaslund
aass
abbas
abdi
abdullah
abdullahi
abelsen
abrahamsen
adam
adan
aden

adolfsen
afzal
aga
aglen
ahlsen
ahmad
ahmadi
ahmed
aker
akhtar
akram
aksdal
akselsen
aksnes
albertsen
albrigtsen
aleksandersen
alexandersen
alfheim
alfredsen
alfsen
algrøy
ali
allum
alm
almaas
alme
almli
almås
alnes

alnæs
alsaker
alstad
alsvik
alver
alvestad
alvheim
alvær
amble
amdahl
amdal
amdam
amin
amiri
amlie
amundsen
anda
andersen
anderson
anderssen
andersson
andorsen
andreassen
andresen
andvik
anfinsen
angell
angelsen
angeltveit
angvik

anglevik
anthonsen
anti
antonsen
anwar
apeland
arctander
arneberg
arnesen
arnestad
arnevik
arntsen
arntzen
arnøy
aronsen
arshad
arvesen
asbjørnsen
asghar
asheim
ashraf
ask
aske
askeland
askevold
askildsen
askim
askvik
aslaksen
aslam

159

C. Collecting Social Media Content

asp
aspaas
aspelund
aspen
aspenes
asphaug
astrup
auestad
augestad
aukland
aulie
aunan
aune
aurdal
aure
aurstad
ausland
austad
austbø
austnes
austrheim
axelsen
aziz
baardsen
bach
backe
bakk
bakka
bakkan
bakke
bakkehaug
bakkejord
bakkeli
bakkelund
bakken
bakker
bakkerud
bakketun
bakstad
ballestad
balstad
baltzersen

bang
barka
barmen
barstad
barth
bartnes
bashir
bastiansen
bauer
bauge
baumann
baustad
bay
bech
beck
becker
begum
bekkelund
bekken
bekkevold
bell
belsvik
bendiksen
bendixen
bengtsson
benjaminsen
benonisen
bentsen
bentzen
berdal
berentsen
berg
bergan
berge
bergem
bergene
berger
bergersen
bergerud
bergesen
berget
berggren
bergh

bergheim
bergland
bergli
berglund
bergman
bergmann
bergo
bergquist
bergseng
bergset
bergseth
bergstrøm
bergsvik
bergtun
bergum
berisha
berland
bernhardsen
berntsen
berntzen
berre
berstad
bertelsen
berthelsen
bertheussen
betten
bhatti
bibi
bilstad
birkedal
birkeland
birkeli
birkelund
birkenes
bjelland
bjerga
bjerk
bjerkan
bjerke
bjerkeli
bjerkeland
bjerkelund
bjerkestrand

bjerkli
bjerknes
bjerkvik
bjerkås
bjordal
bjorøy
bjune
bjønnes
bjønness
bjørdal
bjørgan
bjørge
bjørgen
bjørgo
bjørgum
bjørheim
bjørk
bjørke
bjørkedal
bjørkhaug
bjørkheim
bjørkli
bjørklund
bjørkmo
bjørkum
bjørkås
bjørlo
bjørn
bjørndal
bjørndalen
bjørnerud
bjørnes
bjørnestad
bjørnevik
bjørnsen
bjørnstad
bjørnå
bjørnø
bjørnøy
bjørseth
bjørsvik
bjørvik
blakstad

blindheim
blix
blom
blomberg
blomvik
blystad
bodin
boge
bogen
bolme
bolstad
boldvik
bones
bonsaksen
borch
borchgrevink
bore
borg
borgan
borge
borgen
borgersen
borlaug
borsheim
bostad
botnen
botten
boye
braaten
braathen
bragstad
brakstad
brandal
brandt
brandtzæg
brandvik
braseth
brastad
brataas
bratberg
bratland
bratli
bratlie

160

C.2. Facebook

bratsberg
brattli
brattås
bratvold
braut
bredal
bredesen
breen
breiland
breistein
breivik
brekka
brekke
brekken
bremnes
bremseth
brenden
brenna
brenne
brevig
brevik
bringedal
brobakken
broch
brodahl
broen
brovold
brown
brox
bru
bruaset
brubakken
brudevoll
brudvik
bruheim
bruhaug
bruland
brun
brunhaug
brunborg
brunes
brunstad

brunvoll
bruseth
brustad
bruun
bruvik
bruvoll
bryhn
bryn
bryne
brynildsen
brynjulfsen
bråten
bråthen
brække
brækken
brænd
brænden
brøndbo
brønstad
bu
buan
bue
buene
buer
bugge
bugten
bui
buljo
bull
bunes
buraas
burås
burud
busch
buseth
busk
butt
buvarp
buvik
by
byberg
bye
byrkjeland

bårdsen
bækken
bærheim
bævre
bø
bødtker
bøe
bøen
bøhler
bøhn
børresen
børseth
børsheim
børstad
børve
bøthun
bøyum
cappelen
carlsen
carlson
carlsson
caspersen
celius
chan
chaudhry
chen
christensen
christiansen
christoffersen
christophersen
clausen
claussen
corneliussen
daae
dagestad
dagsland
dahir
dahl
dahlberg
dahle
dahlen
dahlgren
dahlstrøm

dalby
dale
dalen
dalene
daleng
dalhaug
dalheim
dalland
dalseth
dammen
dang
danielsen
davidsen
dehli
derås
devik
devold
didriksen
diesen
digernes
digre
dimmen
dirdal
ditlefsen
djupvik
djuve
djønne
do
doan
dokken
drabløs
drage
drageset
dragland
dramstad
drange
drevland
dreyer
drivenes
drønen
due
duong
dvergsdal

dyb
dybdahl
dybdal
dybvik
dybwad
dyngeland
dyrdal
dyrhaug
dyrkorn
dyrnes
dyrseth
dyrstad
dyrøy
dørum
ebbesen
eckhoff
edland
edvardsen
edvartsen
eeg
eek
ege
egeberg
egeland
egeli
egenes
eggan
egge
eggen
eggum
eid
eide
eidem
eidet
eidissen
eidsheim
eidsvik
eidsvåg
eie
eik
eike
eikeland
eikemo

161

C. Collecting Social Media Content

eiken
eikenes
eikrem
eikås
eilertsen
einan
einarsen
einvik
eira
ek
ekeberg
ekeland
ekeli
ekelund
ekerhovd
ekker
eklund
eknes
ekre
ekrem
ekren
ekroll
ekstrøm
elde
elden
eldevik
eliassen
ellefsen
ellingsen
elmi
elnes
elstad
elton
eltvik
elvebakk
elvenes
elverum
elvestad
elvik
emanuelsen
emberland
emblem

emilsen
endal
endresen
enersen
eng
engan
engdal
enge
engebakken
engebretsen
engebråten
engedal
engeland
engelsen
engelstad
engelund
engen
engenes
enger
engeset
engeseth
engevik
engh
englund
engstrøm
engum
engvik
enoksen
ensrud
erdal
erga
erichsen
eriksen
eriksrud
eriksson
erikstad
erland
erlandsen
ernstsen
ersland
erstad
ertsås
ervik

eskedal
eskeland
espe
espedal
espeland
espelid
espenes
espeseth
estensen
evanger
evenrud
evensen
evenstad
evertsen
evje
evjen
evju
fadnes
fagerbakke
fagereng
fagerhaug
fagerheim
fagerland
fagerli
fagermo
fagernes
fagertun
fagervik
fagervold
fagerås
falch
falck
falk
fallet
fanebust
farah
fardal
farestveit
farstad
fauskanger
fauske
feragen
ferkingstad

ferstad
fevang
fidje
fidjeland
figenschau
figenschou
fiksdal
fimland
fimreite
finne
finnerud
finnesand
finnøy
finseth
finsrud
finstad
fischer
fiske
fiskerstrand
fiskum
fiskvik
fiskå
fjeld
fjeldberg
fjelde
fjeldheim
fjeldstad
fjell
fjellanger
fjelldal
fjellestad
fjellheim
fjellstad
fjellvang
fjermestad
fjær
fjæreide
fjærestad
fjærli
fjørtoft
flaa
flataker
flatebø

flaten
flatland
flatmo
flatås
flatøy
fleischer
flem
flesland
flo
flåten
flø
flønes
fløtre
fløysvik
foldnes
folgerø
folkedal
folkestad
folkvord
folland
follestad
fonn
fonnes
forberg
forbord
forland
formo
fornes
forsberg
forseth
forsland
forsmo
fosen
foss
fossan
fossdal
fosse
fossen
fosshaug
fossheim
fossland
fossli
fossmark

162

C.2. Facebook

fossmo
fossnes
fossum
fotland
frafjord
framnes
frantzen
fredheim
fredriksen
fremstad
fretheim
friberg
friestad
frigstad
friis
frisvold
frivold
frogner
frostad
frydenberg
frydenlund
frøiland
frøland
frøseth
frøshaug
frøyen
frøyland
frøysa
frøystad
fuglerud
fuglestad
fure
furnes
furre
furset
furseth
furu
furuheim
furulund
furunes
furuseth
fyhn

fykse
fylkesnes
fylling
færøy
følstad
førde
føreland
førland
førre
førsund
gaarder
gabrielsen
gamst
gangstad
garberg
garcia
garnes
garshol
garvik
gashi
gaup
gausdal
gaustad
georgsen
gerhardsen
gilberg
gilde
gilje
gill
gillebo
gimse
giske
giæver
gjedrem
gjelstad
gjelsten
gjelsvik
gjendem
gjengedal
gjengstø
gjerde
gjerdingen
gjerdrum

gjerløw
gjermundsen
gjernes
gjerstad
gjersvik
gjersøe
gjertsen
gjeruldsen
gjervik
gjesdal
gjessing
gjestad
gjestvang
gjøen
gjønnes
gjøsund
glad
gleditsch
glesnes
gloppen
glosli
goa
gomes
gomez
godø
gonzalez
graff
gram
gramstad
gran
granberg
grande
granerud
granheim
granli
granlund
granly
granmo
grannes
granum
granås
grav
gravdahl

gravdal
gravem
grebstad
green
gregersen
greve
grimelund
grimelund-kjelsen
grimsmo
grimsrud
grimstad
grinde
grinden
grindhaug
grindheim
grini
grongstad
groth
grotle
grov
groven
grude
grue
grytten
grødem
grønbech
grønberg
grøndahl
grøndal
grøndalen
grøneng
grønhaug
grønli
grønlie
grønlien
grønlund
grønn
grønnestad
grønnesby
grønnevik
grønning
grønningen
grønningsæter

grønseth
grønstad
grønvik
grønvold
grønås
grøstad
grøtan
grøterud
grøtte
grøtterud
grøtting
gudbrandsen
guddal
gudmestad
gudmundsen
gulbrandsen
guldahl
guldberg
gullaksen
gulli
gulliksen
gundersen
gunnarsen
gunnerud
gunnerød
gunnes
gunnestad
gussiås
gustad
gustafsson
gustavsen
gustavson
guttorm
guttormsen
gården
gåsland
haagensen
haakonsen
haaland
haarberg
haarr
haarstad
haave

163

C. Collecting Social Media Content

haavik
habberstad
habbestad
haddal
haddeland
hadland
hafstad
haga
hagberg
hage
hageland
hagelund
hagen
hagenes
hagerup
hagland
haglund
haile
halden
haldorsen
hall
hallan
halland
hallberg
halle
halleland
halleraker
hallingstad
hals
halse
halsen
halseth
halstensen
halvorsen
halvorsrud
hamborg
hamilton
hammer
hammeren
hammersland
hammerstad
hammervold

hammerø
hamnes
hamre
hana
handeland
hannestad
hannisdal
hansen
hanssen
hansson
hanstad
haraldseid
haraldsen
haraldstad
haram
hareide
harestad
harkestad
harnes
harstad
harsvik
hartmann
hartveit
hartvigsen
hartviksen
hasan
hashi
hasle
hassan
hassel
hasselberg
hasund
hatland
hatlem
hatlen
hatlestad
hatlevik
hatløy
hatteland
hauan
haug
haugan
haugane

hauge
haugen
hauger
haugerud
haugland
haugli
hauglid
haugnes
haugo
haugom
haugsdal
haugseth
haugstad
haugsvær
haugum
haugvaldstad
haukaas
haukedal
haukeland
haukenes
haukland
haukås
hausken
haveland
haver
havik
havn
havnen
hay
hebnes
heen
hegdal
hegg
heggdal
hegge
heggedal
heggelund
heggem
heggen
heggernes
heggestad
heggheim
heggland

heggset
heggøy
hegland
hegna
hegre
hegstad
heia
heiberg
heide
heien
heier
heim
heimdal
heimstad
heistad
heitmann
helberg
heldal
helgeland
helgerud
helgesen
helgestad
helgheim
hella
helland
helle
hellebust
helleland
hellem
hellenes
helleren
hellerud
hellesø
hellevik
helliesen
hellstrøm
hellum
helmersen
helset
helseth
helstad
heltne
helvik

hem
hemmingsen
hemnes
henden
henningsen
hennum
henriksen
hepsø
herdlevær
herfindal
herheim
herigstad
herland
hermann
hermansen
hernes
hernæs
herstad
hervik
hesjedal
heskestad
hessen
hestad
hestenes
hestetun
hestnes
hestvik
hetland
hevrøy
hexeberg
heyerdahl
hidle
hilde
hildre
hildrum
hille
hilleren
hillestad
hilstad
hindenes
hinna
hjelde
hjelle

164

C.2. Facebook

hjelm
hjelmeland
hjelseth
hjelvik
hjorth
hjortland
hjulstad
hjørnevik
ho
hoang
hoddevik
hodne
hodneland
hoel
hoem
hoff
hoffmann
hofseth
hofstad
hoftun
hognestad
hogstad
hojem
hokstad
hol
holand
holberg
holden
hole
holen
holgersen
hollund
holm
holmberg
holme
holmedal
holmefjord
holmen
holmgren
holmsen
holmstrøm
holmvik

holmøy
holsen
holst
holstad
holt
holta
holtan
holte
holten
holter
holtet
holth
holthe
holum
holvik
homme
honningsvåg
hop
hope
hopen
hopland
hordvik
horgen
horn
horne
hornnes
horntvedt
horpestad
horten
horvei
hoseth
hotvedt
hov
hovd
hovda
hovdal
hovde
hovden
hove
hoven
hovind
hovland
hult

hunstad
hurlen
husa
husabø
husby
husdal
huse
huseby
husebø
husevåg
hussain
hussein
hustad
hustoft
hustveit
husum
husøy
huus
huynh
hval
hvattum
hveding
hveem
hvidsten
hylland
hynne
hystad
hågensen
håheim
håkonsen
håland
hånes
håpnes
hårstad
håvik
håvarsen
håvardsen
hægeland
hætta
høgberg
høgli
høglund
høgset

høgseth
høgås
høiberg
høiby
høie
høiland
høines
høiseth
høivik
hølland
høvik
hønsvik
høydahl
høydal
høye
høyem
høyer
høyland
høyvik
ibrahim
iden
idland
idsø
idsøe
igland
ihle
ihlen
ims
indahl
indergård
indrebø
ingebretsen
ingebrigtsen
ingvaldsen
innvær
iqbal
irgens
isachsen
isaksen
isdahl
isdal
isene
ismail

istad
iversen
jacobsen
jahnsen
jahr
jahren
jakobsen
jama
jansen
janssen
jansson
jensen
jensrud
jenssen
jentoft
jeppesen
jespersen
jessen
jevnaker
jevne
joa
joakimsen
johannesen
johannessen
johansen
johanson
johanssen
johansson
johnsen
johnson
johnsrud
johnstad
jonassen
jones
jonsson
jordal
jordalen
jordan
jordet
jordheim
josdal
josefsen
juell

165

C. Collecting Social Media Content

juliussen
justad
juul
juvik
jåsund
jæger
jønsson
jørgensen
jørstad
jøssang
kaasa
kaland
kaldestad
kaldal
kalland
kalleberg
kallestad
kallevik
kalstad
kalvik
kanestrøm
kapstad
karim
karimi
karlsen
karlson
karlsrud
karlsson
karlstad
karlstrøm
karoliussen
karstensen
kasin
kaspersen
kaupang
kaur
kausar
kavli
kaya
khalid
khalil
khan

kielland
kihle
kiil
kildahl
kildal
kile
kilen
killi
kind
kinn
kirkeby
kirkerud
kirkhus
kirknes
kittelsen
kittilsen
kjeldsberg
kjelsen
kjelsnes
kjeldsen
kjellevold
kjelsberg
kjelsrud
kjelstad
kjerstad
kjesbu
kjos
kjær
kjærstad
kjærvik
kjølberg
kjølstad
kjørstad
kjørsvik
kjøsnes
klakegg
klausen
klaussen
klavenes
kleiv
kleiveland
kleiven
klemetsen

klepp
kleppa
kleppe
klette
klev
kleveland
kleven
klingenberg
klokk
kloster
klungland
klungtveit
klyve
klæbo
klæboe
kløvstad
knapstad
knarvik
knoph
knotten
knudsen
knutsen
koch
kofoed
kolberg
kolbjørnsen
kolle
kolltveit
kolnes
kolseth
kolsrud
kolstad
kolstø
kolås
kommedal
kongshaug
kongsvik
konradsen
koppang
kopperud
koren
korneliussen
korslund

korsmo
korsnes
korsvik
korsvold
kowalski
kraft
krane
krasniqi
kringstad
kristensen
kristiansen
kristoffersen
krog
krogh
krogsrud
krogstad
krogsæter
krohn
kroken
kronstad
krosby
kruse
kryger
kråkenes
kulseth
kumar
kvaal
kvaale
kvale
kvalheim
kvalnes
kvalsund
kvalsvik
kvalvik
kvalvåg
kvalø
kvaløy
kvam
kvame
kvamme
kvammen
kvamsdal
kvandal

kvande
kvarme
kvello
kvernberg
kverneland
kvernmo
kvia
kvien
kvilhaug
kvinge
kvinnesland
kvistad
kviteid
kvitseid
kvitland
kvåle
kværner
kydland
kyllingstad
kyvik
kårstad
kåsa
laastad
lade
lagesen
laland
lam
lamo
landa
landaas
lande
landmark
landro
landrø
landsem
landsverk
langaas
langbråten
langdalen
lange
langedal
langeland
langemyr

166

C.2. Facebook

langen
langerud
langfeldt
langhelle
langholm
langli
langlo
langmo
langnes
langset
langseth
langvik
langåker
langås
langø
langørgen
langøy
larsen
larssen
larsson
lassen
laugen
lauritsen
lauritzen
laursen
lausund
lauten
lauvrak
lauvås
lavik
le
lea
lee
lehmann
lehn
lehne
leidland
leikanger
leiknes
leikvoll
lein
leine

leira
leirdal
leirvik
leirvåg
leistad
leite
leithe
leivestad
leknes
lekve
lekven
lende
lenes
leonhardsen
leren
lervik
lervåg
lerøy
levang
li
lia
liabø
lian
liberg
lid
lidal
lie
lied
lien
lieng
lier
liknes
liland
lilleberg
lilleby
lillebø
lilleeng
lillegård
lillehagen
lillejord
lilleland
lillemo
lilleng

lillestøl
lilletvedt
lillevik
lilleås
lima
lind
lindahl
lindal
lindanger
lindberg
lindblad
linde
lindgaard
lindgren
lindhjem
lindholm
lindland
lindquist
lindqvist
lindseth
lindstad
lindstrøm
lindtveit
lindvik
lindås
linge
linnerud
liseth
liu
lium
liverød
ljosland
lockert
lode
loe
loen
lofthus
log
lohne
lokøy
lomeland
lona
lone

longva
lorentsen
lorentzen
lossius
lothe
ludvigsen
ludviksen
lund
lundal
lundberg
lundby
lunde
lundeby
lundekvam
lundemo
lunden
lunder
lundestad
lundgren
lundgård
lundh
lundquist
lura
lutro
lydersen
lygre
lyng
lyngmo
lyngstad
lyngvær
lynum
lysaker
lyse
lysgård
lysgaard
lyshaug
lysne
lyssand
lystad
lysø
låstad
lægreid
lærum

løberg
løchen
lødemel
løge
løken
løkke
løkkeberg
løkken
løkås
løland
lønning
løset
løseth
løtveit
løvaas
løvberg
løvdal
løver
løvik
løvland
løvli
løvlie
løvlien
løvold
løvoll
løvseth
løvstad
løvås
løyning
madland
madsen
magerøy
magnus
magnussen
magnusson
mahamed
mahamud
mahmood
malde
malik
malm
malmedal
malmin

167

C. Collecting Social Media Content

malmo
malvik
mandal
mandelid
mannes
marcussen
marken
markhus
markussen
marstein
martens
marthinsen
marthinussen
martin
martinsen
martinussen
marvik
marøy
mathiassen
mathiesen
mathisen
matre
maudal
maurstad
mauseth
medhus
meek
mehl
mehlum
mehus
meier
meisingset
meland
melberg
melby
melbye
melgård
melheim
melhus
meling
mellem
mellemstrand

mellingen
mellum
melsom
melum
melvold
mentzoni
merkesdal
meyer
michaelsen
michalsen
michelsen
midtbø
midtgård
midthun
midtskogen
midttun
midtun
mikaelsen
mikalsen
mikkelborg
mikkelsen
milde
miljeteig
miller
minde
minge
mirza
misje
misund
mittet
mjelde
mjånes
mjøen
mjølhus
mjønes
mjøs
mo
moa
moan
moberg
moe
moen
mogen

mogstad
mohamed
mohammad
mohammadi
mohammed
mohamud
mohn
moholt
moi
moksnes
moland
molde
molden
moldestad
moldskred
molland
molnes
molstad
molteberg
moltu
molund
molvik
molvær
mong
monge
mongstad
monsen
monstad
mork
morken
morland
mortensen
morstad
moseng
moss
mossige
mostad
mostue
moum
muggerud
mundal
munkvold
munthe

muren
muri
mustafa
mydland
myhr
myhra
myhre
myhren
myhrer
myhrvold
myking
mykland
myklebost
myklebust
myller
myran
myrdal
myre
myren
myrene
myreng
myrekrok
myrhaug
myrland
myrseth
myrstad
myrvang
myrvold
myrvoll
mæhle
mæhlum
mæhre
mæland
mæle
mælen
møgster
møller
mørch
mørk
mørkved
mørland
naalsund
naas

nakken
narum
narvestad
natland
natvig
natvik
natås
naustdal
nedrebø
nedregård
negård
nekstad
nerdal
nereng
nergaard
nergård
nerheim
nerhus
nerland
nerli
nervik
nes
nesbø
nese
neset
nesheim
nesje
nesland
nesmoen
ness
nessa
nesse
nesset
nesvik
neteland
netland
neumann
neverdal
nevland
ngo
nguyen
nicolaisen
nicolaysen

168

C.2. Facebook

nielsen
nikolaisen
nilsen
nilssen
nilsson
nissen
nistad
njærheim
nodeland
nodland
nome
nomeland
noor
norberg
nord
nordahl
nordal
nordang
nordanger
nordberg
nordby
nordbø
nordeide
nordeng
nordengen
norderhaug
nordgaard
nordgård
nordhagen
nordhaug
nordheim
nordhus
nordland
nordli
nordlie
nordlien
nordlund
nordmark
nordmo
nordnes
nordrum
nordseth

nordskag
nordskog
nordstrand
nordstrøm
nordsveen
nordtveit
nordtømme
nordvik
nordås
noreng
norheim
norland
norli
norman
normann
nornes
norum
nowak
nur
nybakk
nybakken
nyberg
nyborg
nybråten
nybø
nydal
nygaard
nygren
nygård
nyhagen
nyheim
nyhus
nyhuus
nyland
nylund
nymark
nymo
nymoen
nyquist
nyrud
nyseth
nystad
nysted

nystrøm
nystuen
nysveen
nysæter
nysæther
nyvold
nyvoll
nærland
nærø
næs
næss
nævdal
nøkleby
nørstebø
nøttveit
obrestad
odden
odland
oen
ofstad
oftedal
ohnstad
oksnes
okstad
olafsen
olaisen
oland
olaussen
olavesen
olden
olesen
oliversen
olsen
olsnes
olsrud
olsson
olstad
olsvik
olufsen
oma
omar
omdahl
omdal

omholt
omland
ommedal
ommundsen
onarheim
onstad
opdahl
opdal
opedal
opgård
ophaug
opheim
ophus
opland
oppedal
oppegaard
oppegård
opsahl
opsal
opseth
opstad
orre
orvik
os
ose
osen
oshaug
oskarsen
osland
osman
osmundsen
osnes
oterhals
otnes
ottem
otterlei
ottersen
otterstad
ottesen
ottosen
overvik
overå
ovesen

owren
paasche
palm
parveen
paulsen
paulsrud
paus
pedersen
persen
persson
petersen
pettersen
petterson
pettersson
pham
phan
pihl
pilskog
pladsen
plassen
polden
pollestad
poulsen
prestegård
presthus
prytz
qvale
raa
raaen
raastad
rabben
rafoss
rahimi
rahman
raja
raknes
rakvåg
ramberg
ramfjord
ramsdal
ramsland
ramstad
ramsvik

169

C. Collecting Social Media Content

ramsøy
rana
randen
ranheim
ranum
rasch
rashid
rasmussen
ravn
ravndal
ravnås
raza
ree
reed
refsdal
refseth
refsland
refsnes
refvik
rehman
reiersen
reigstad
reime
rein
reinertsen
reinholdtsen
reistad
reitan
reite
reiten
rekdal
rekkedal
rekstad
reksten
remen
remme
remmen
remøy
reppe
reppen
repstad
resell

revheim
reyes
rian
ribe
richardsen
richter
riis
riise
riiser
rikardsen
rikstad
rimstad
rindal
rinde
rinden
ring
ringdal
ringen
ringheim
ringnes
ringstad
ringvold
risa
risan
risberg
risdal
rise
rishaug
risnes
rist
risvik
risøy
roald
robberstad
roberg
robertsen
robstad
rodal
roen
rognan
rogne
rognerud
rognes

rognli
rognlien
rognmo
rognstad
rogstad
rohde
rokne
rokstad
roksvåg
roland
rolfsen
rolfsnes
rolland
rolstad
romsdal
romstad
romundstad
rong
rongved
roos
rosenberg
rosenlund
rosenvinge
rosland
rosnes
ross
rossebø
rosseland
rossland
rostad
rosvold
roth
rovik
rud
rudshaug
rudi
rudolfsen
rue
rugland
rui
runde
rustad
rustand

rusten
ruud
ryan
rydland
rydningen
rye
ryen
ryeng
rygg
rygh
rykkje
ryland
rynning
rystad
rånes
ræstad
røberg
rød
rødal
rødland
rødseth
rødsjø
røe
røed
røen
røgeberg
røhne
røine
røise
røisland
røkenes
røkke
rømo
røneid
rønne
rønneberg
rønnestad
rønning
rønningen
røren
rørstad
rørtveit
rørvik

røsand
røsnes
røssland
røst
røstad
røste
røsten
røsvik
røv
røvik
røyland
røyrvik
røyset
røysland
saastad
sachse
saeed
safi
saga
sagli
sagbakken
sagen
sagmo
sagstad
sagstuen
said
sakariassen
sakshaug
salamonsen
salberg
salbu
saleh
salih
salomonsen
salte
saltnes
salvesen
samdal
samnøy
samuelsen
sand
sandaker
sandal

170

C.2. Facebook

sandanger
sandbakk
sandbakken
sandberg
sandbæk
sande
sanden
sander
sandersen
sandhåland
sandland
sandli
sandmo
sandnes
sandsmark
sandstad
sandtorv
sandum
sandve
sandven
sandvik
sandvold
sandvoll
sandvær
sandø
sandøy
sangolt
sanne
sannes
sara
saue
saur
schanche
schanke
schau
schei
scheie
schie
schjelderup
schjerven
schjetne
schjølberg

schmidt
schou
schrøder
schultz
schøyen
seeberg
seglem
seierstad
seim
sekkingstad
sekse
seland
seldal
sele
seljeseth
selle
sellevold
sellæg
selmer
selnes
selstad
selvik
selvåg
sem
semb
seppola
serigstad
sevaldsen
severinsen
shah
shala
sharif
sharma
sheikh
sigurdsen
sigvartsen
sikveland
silden
silseth
silva
simensen
simonsen
singh

singstad
sinnes
sirevåg
sirnes
sivertsen
sjaastad
sjo
sjursen
sjåstad
sjåvik
sjøberg
sjøen
sjøgren
sjøli
sjølie
sjøstrøm
sjøthun
sjøvold
sjøvoll
skaar
skaare
skadberg
skage
skagen
skagestad
skailand
skansen
skar
skarbø
skare
skaret
skarstad
skarstein
skarsvåg
skarshaug
skau
skauen
skaug
skauge
skaugen
skavhaug
skei
skeide

skeie
skevik
skille
skinnes
skinstad
skistad
skjeggestad
skjelbred
skjelstad
skjelvik
skjerdal
skjerping
skjerve
skjerven
skjervold
skjetne
skjemstad
skjevik
skjold
skjolden
skjong
skjæret
skjærstad
skjærvik
skjæveland
skjølberg
skjønberg
skjønhaug
skjørestad
skog
skoge
skogen
skogheim
skogland
skogli
skoglund
skogly
skogmo
skogseth
skogsrud
skogstad
skogvold
skogvoll

skomedal
skorpen
skorstad
skotnes
skotte
skovly
skram
skramstad
skrede
skretteberg
skretting
skråmestø
skuland
skullerud
skulstad
skurdal
skålevik
skår
skårdal
skåre
skårland
skøien
sleire
sletner
sletta
slette
slettebø
sletten
sletthaug
slettum
sletvold
slinning
slyngstad
slåen
slåtten
smeby
smedsrud
smedstad
smeland
smestad
smistad
smith
smørdal

171

C. Collecting Social Media Content

sneve
sogn
sola
solbakk
solbakken
solberg
soldal
solem
soleng
solevåg
solhaug
solheim
solli
sollid
sollie
sollien
solstad
solstrand
solsvik
soltvedt
soltveit
solum
solvang
solvik
solvoll
solås
soma
somby
sommer
sommerseth
sommerstad
sommervold
sortland
sparby
sperre
spilde
sporsheim
stabell
stadheim
staff
stamnes
standal

stang
stange
stangeland
starheim
stav
stava
stave
stavem
staven
stavenes
stavik
stavland
stavnes
stavrum
steen
steffensen
stein
steindal
steine
steinnes
steinsland
steinsvik
steiro
stenberg
stendal
stene
stenersen
stenerud
stenhaug
stensby
stensen
stenseth
stensland
stensrud
stenstad
stensvold
stenvik
stephansen
stiansen
stien
stigen
stjern
stokka

stokkan
stokke
stokkeland
stokken
stokkenes
stokland
stokstad
storbakk
stordahl
stordal
storebø
storeide
storesund
storhaug
storheim
storli
storlien
storm
stormark
stormo
stormoen
stornes
storsve
storsveen
storvik
storås
storøy
strand
strandberg
strande
stranden
strandheim
straume
stray
strøm
strømberg
strømme
strømmen
strømnes
strømsnes
strømstad
strømsvåg
stubberud

stuen
sture
styve
stålesen
støa
støen
stølan
støle
stølen
størdal
størkersen
størksen
størseth
støylen
suhr
sund
sundal
sundberg
sundby
sunde
sundet
sundgot
sundland
sundli
sundnes
sundseth
sundstrøm
sundt
svanberg
svanes
svanevik
svardal
svarstad
sveberg
svee
sveen
svela
svellingen
svendsen
svendsrud
svenkerud
svenning
svenningsen

svensen
svensli
svensson
sverdrup
sveum
sviggum
sviland
svindland
svingen
sværen
sylta
sylte
synnes
synnevåg
syrstad
systad
syversen
syvertsen
sæbø
sæland
sæle
sælen
sæter
sæterbø
sæterdal
sætermo
sæternes
sæther
sæthre
sætra
sætran
sætre
sætren
sævareid
sæverud
sævik
søberg
søbstad
sødal
søderholm
søfteland
søgaard
søgård

172

C.2. Facebook

søiland
sølvberg
sømme
søndenå
sønderland
søndergaard
sønsteby
sønstebø
sønsterud
sørby
sørbø
sørdal
søreide
søreng
sørensen
sørgård
sørhaug
sørheim
sørhus
sørland
sørli
sørlie
sørmo
sørnes
sørum
sørvik
søvik
søyland
tafjord
tahir
takle
taksdal
takvam
talberg
tallaksen
tandberg
tande
tandstad
tang
tangen
tangstad
taraldsen

taranger
taule
teien
teig
teige
teigen
teigland
telle
tellefsen
tengesdal
tenold
terjesen
tesdal
tessem
tetlie
tharaldsen
theodorsen
thoen
thomas
thomassen
thommesen
thompson
thomsen
thon
thorbjørnsen
thoresen
thorgersen
thorkildsen
thorsen
thorshaug
thorsrud
thorstensen
thorsø
thorud
thorvaldsen
thrane
throndsen
thu
thue
thuen
thune
thunes
thygesen

thøgersen
tidemann
tiller
titlestad
tjelle
tjelta
tjemsland
tjessem
tjore
tjøstheim
tjøsvoll
tjøtta
tobiassen
todal
todnem
toft
tofte
tokerud
tokle
tollefsen
tomren
tomter
tonheim
tonning
tonstad
torbergsen
torbjørnsen
toresen
torgersen
torheim
torjussen
torkelsen
torkildsen
torland
tornes
torp
torset
torstensen
torsvik
torvik
torvund
totland
tran

trana
trengereid
trondsen
trones
tronrud
tronstad
trulsen
truong
trydal
træet
trøan
trøen
trønnes
tuft
tufte
tungland
tunheim
turøy
tvedt
tveit
tveita
tveitan
tveite
tveiten
tveito
tverberg
tverå
tvete
tveten
tveter
tyldum
tysnes
tysse
tøllefsen
tømmervik
tømmerås
tømte
tøndel
tønder
tønnesen
tønnessen
tønsberg
tørstad

tøsse
ueland
ugelstad
ugland
ulland
ulleberg
ullestad
ulriksen
ulset
ulseth
ulstein
ulven
ulvestad
ulvik
ulvin
ulvund
underhaug
undheim
undrum
unhjem
unneland
urdal
urke
ursin
urstad
ustad
utgård
uthaug
utheim
uthus
utne
utnes
utsi
utvik
vaa
vaage
vabø
vadseth
vagle
vaksdal
valberg
valde
valderhaug

173

C. Collecting Social Media Content

valen
valla
valland
valle
vallestad
valseth
valstad
valvik
valø
vang
vangen
vangsnes
vanvik
varhaug
vartdal
vassbotn
vassdal
vatland
vatle
vatn
vatne
vea
vedal
vedvik
vedå
vedøy
vegsund
veiby
veivåg
veland
velde
velle
venås
vestad
vestby
vestbø
vestli
vestly
vestnes
vestre
vestrheim
vestvik

vestøl
vetrhus
veum
vevang
vevle
viddal
vie
vigdal
vigre
vik
vika
vikan
vikane
vikanes
vike
viken
vikene
vikse
vikøren
vilhelmsen
villanger
vindenes
vinje
visnes
vist
viste
vistnes
vo
vogt
vold
volden
voldsund
voll
vollan
volle
vollen
vonheim
vorland
vu
våga
våge
vågen
vågenes

vårdal
værnes
waage
waaler
wagner
wahl
wahlstrøm
walberg
walde
walderhaug
walle
wallin
walseth
walstad
wang
wangberg
wangen
wanvik
warholm
warsame
wathne
weberg
weiseth
welde
welle
wennberg
wennevold
wergeland
werner
wessel
westad
westberg
westby
westbye
westerheim
westerlund
westgaard
westgård
westlie
westrum
wetteland
weum
wibe

wiborg
wickstrøm
wie
wien
wiggen
wiig
wiik
wik
wiken
wiking
wiker
wiklund
wikstrøm
wilberg
wilhelmsen
willassen
wille
williams
willumsen
wilson
winge
winger
winje
winsnes
winther
wisløff
wist
wisth
with
wold
wolden
woldseth
wolff
woll
wollan
wong
worren
wright
wroldsen
wulff
wærnes
wøien
yagoub

yildirim
yildiz
yilmaz
yndestad
yri
ytreland
ytterland
ytterstad
yttervik
yusuf
zachariassen
zahl
zakariassen
zhang
zimmermann
ådland
ågotnes
åkre
åmodt
ånensen
ånestad
årdal
årnes
årseth
årvik
ås
åsebø
åsen
åsheim
åsland
ødegaard
ødegård
ødegården
øen
øglænd
øie
øien
øiestad
øiseth
økland
øksendal
øksnes
ølberg

174

C.2. Facebook

ølmheim
ørbeck
øren
ørmen
østberg
østby
østbye
østbø
østebø
østensen

østenstad
østerbø
østerhus
østerud
østerås
østgaard
østgård
østhus
østli
østlie

østlund
østmo
østrem
østreng
østvang
østvik
østvold
øverby
øverbø
øvereng

øvergaard
øvergård
øverland
øverli
øverås
øvrebø
øvrelid
øvretveit
øvrum
øvstebø

øvstedal
øvsthus
øwre
øyan
øyberg
øye
øyen
øygard
øygarden
øynes

175

M
aria H

ilm
o Jensen

D
etecting hateful utterances using an anom

aly detection approach

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Maria Hilmo Jensen

Detecting hateful utterances using an
anomaly detection approach

Master’s thesis in Computer Science

Supervisor: Heri Ramampiaro

June 2020

	Introduction
	Background and motivation
	Goals and research questions
	Research method and environment
	Contributions
	Thesis structure

	Background Theory
	Definition of hate speech
	Machine learning
	Learning algorithms
	Classical methods

	Anomaly detection
	Definition
	Approaches and algorithms
	Detecting anomalies in text
	Challenges

	Deep learning
	Artificial neural networks
	Recurrent neural network
	Convolutional neural network
	Autoencoders
	Attention

	Natural language processing
	Textual preprocessing
	Text representation

	Evaluation methodologies
	Techniques
	Metrics
	Inter-annotator agreement metrics

	Tools and libraries

	Related Work
	Hate speech detection
	Existing data collections
	Anomaly detection
	Features in hate speech detection
	Classification methods
	Hate speech detection for non-English languages
	Summary

	Preparation of Data Collection
	Collecting data
	Preprocessing

	Annotation procedure
	User-based annotation
	Guidelines
	Inter-annotator agreement

	Challenges
	Annotation
	Language issues

	The ADAHS Approach
	Text preprocessing
	Semi-supervised setting

	Model architecture
	System functionality
	Optimisation and regularisation

	Experiments and Results
	Experimental plan
	Experimental setup
	Datasets
	Semi-supervised setup
	Configurations and hyperparameters
	Evaluation methodology

	Experimental results
	Results using the English dataset
	Results using the Norwegian dataset
	Results from the baseline methods

	Evaluation and Discussion
	Evaluation
	General trends and observations
	Results using the English dataset
	Results using the Norwegian dataset

	Discussion
	Overall performance
	Advantages
	Disadvantages and challenges
	Improvements
	Language independence
	Dataset annotation
	Revisiting the research questions

	Conclusion and Future Work
	Conclusion
	Contributions
	Future Work

	Bibliography
	Appendices
	Additional Experimental Results
	Results using the English dataset
	Results using the Norwegian dataset

	Annotation Guidelines
	Collecting Social Media Content
	Twitter search words
	Facebook
	Sites and posts
	Names

