
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Halvor Mundal

Why are neural networks vulnerable to
adversarial examples?

Master’s thesis in Computer Science

Supervisor: Jingyue Li

June 2020





Halvor Mundal

Why are neural networks vulnerable to
adversarial examples?

Master’s thesis in Computer Science
Supervisor: Jingyue Li
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science





Abstract

Neural networks have in the last decade shown to have excellent performance in
a wide range of tasks and even outperform humans in some areas. However, they
have also shown to be vulnerable to small, imperceptible perturbations in the input,
called adversarial examples, causing them to miss-classify instances they would
otherwise have classified correctly. As neural networks are being applied a wide
specter of solutions, many requiring complete trust in their predictions, it is crucial
that we find a way to defend against adversarial examples. Although much research
is done on adversarial examples, and some hypotheses have been presented, it still
remains a mystery why they are able to fool the neural networks. This thesis aims
to explain why neural networks are vulnerable to adversarial examples and how to
negate them. I divide the different hypotheses about adversarial examples from the
literature into four research questions and investigate the research questions by mea-
suring the robustness of neural networks with different hyperparameters and with
adversarial examples as training input. I show that the neural networks’ vulnera-
bility to adversarial examples most likely is caused by the neural networks having
the decision boundary too close to the training examples. Additionally, the results
show that the defensive method of Madry et al. (2017) is robust to any possible
adversarial attacks under certain conditions.



Sammendrag

Nevrale nettverk har det siste tiåret vist seg å ha utmerket ytelse i et bredt spekter av
oppgaver, og kan til og med utkonkurrere mennesker på enkelte områder. Imidlertid
har de også vist seg å være sårbare for små, umerkelige forandringer i inndataen,
kalt motstandereksempler(adversarial examples), som får de nevrale nettverkene
til å feilklassifisere eksempler de normalt ville klassfisert korrekt. Siden nevrale
nettverk blir brukt i et bredt spekter av løsninger som krever full tillit til deres
prediksjoner, er det avgjørende at vi finner en måte å forsvare oss mot motstanderek-
semplene. Selv om det forskes mye på motstandereksempler, og enkelte hypoteser
er blitt presentert, er det fortsatt et mysterium hvorfor de klarer å lure de nevrale
nettene. Denne masteroppgaven har som mål å forklare hvorfor nevrale nettverk
er sårbar mot motstandereksempler og hvordan man kan unngå dem. Jeg inndeler
hypotesene om motstandereksempler fra litteraturen i fire forskningsspørsmål, og
unersøker forskningsspørsmålene ved å måle robustheten til nevrale nettverk med
forskjellige hyperparametre og med motstandereksempler som treningsdata. Jeg
viser at den mest sannsylige hypotesen for hvorfor neverale nettverkene er sårbare
for motstandereksempler er at de nevrale nettverhene har beslutningsgrensen(decision
boundary) for nær treningseksemplene. I tillegg viser resultatene at forsvaret til
Madry et al. (2017) er robust mot alle mulige motstanderangrep under enkelte for-
rhold.
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Chapter 1
Introduction

1.1 Neural networks
Neural networks are a type of machine learning that in the last decade have given us artificial in-
telligence systems with exceptionally high performance. They are very versatile and are applied
to a wide range of tasks such as detecting particles at CERN (Ciodaro et al. (2012)), playing the
game Go (Silver et al. (2017)) and classifying skin cancer (Esteva et al. (2017)). Their versatil-
ity and ability to perform just as good as humans, or even better as shown by He et al. (2015b)
and Taigman et al. (2014), make them very appealing and push their appliance into new fields.
Many of those fields are security-critical, such as self-driving cars (Bojarski et al. (2016)) and
unmanned aircrafts (Julian et al. (2016)).

1.2 Adversarial examples
Recent research has shown that neural networks are vulnerable to adversarial examples. Szegedy
et al. (2013) showed that perturbations in the input that are too small for humans to recognize
can fool the networks and change their predictions to something completely wrong. These
perturbated examples, called adversarial examples, make the neural networks vulnerable to
malicious attacks that humans cannot detect. Liu et al. (2016) showed that these adversarial
examples were transferable between different neural networks, making it possible to perform
black-box attacks where the attacker has no knowledge of the underlying system. Eykholt et al.
(2017) and Kurakin et al. (2016a) showed that it was possible to create adversarial examples
in the real world. This indicates that adversarial examples are not just carefully selected noise
maximized to fool a model, but true shortcomings of neural networks that can be repeated over
multiple models and in the real world. If we want to use neural networks for security-critical
use, it is essential that we can trust them, which is impossible as long as adversarial examples
can fool the networks.

Negating adversarial attacks

Many defenses against adversarial attacks have been created, such as defensive distillation by
Papernot et al. (2015b) or training on adversarial examples by Shaham et al. (2018). However,
these two defensive methods were defeated by Carlini and Wagner (2017) and Madry et al.
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(2017) respectively. Although new defensive methods are being developed to combat new at-
tacks, it is apparent that it is not enough to prove that a defensive method holds against known
attacks to guarantee robustness. Other researchers such as Kolter and Wong (2017) and Raghu-
nathan et al. (2018) train neural networks that can be proven to be robust within an Lp ball, but
these methods are computationally exhausting and not likely to scale to bigger problems.

1.3 Causes of adversarial examples
We do not know why neural networks are vulnerable to adversarial examples. Although several
hypotheses about adversarial examples are proposed, we do not know which of them, if any, are
correct. No research systematically tests the hypotheses, and thus it is very difficult to create
neural networks robust against adversarial examples, as the premise of a robust neural network
is uncertain. It seems reasonable that before we can defend against adversarial examples, we
must understand why neural networks are vulnerable to them.

1.4 Testing the hypotheses
This paper aims to test hypotheses about NN and adversarial examples found in the literature.
To do this, I categorize the hypotheses into four categories; 1) neural networks are vulnerable to
adversarial examples because they are too non-linear, 2) neural networks are vulnerable to ad-
versarial examples because they are too linear, 3) neural networks are vulnerable to adversarial
examples because they overfit, and 4) neural networks are vulnerable to adversarial examples
because the decision boundary of the neural networks is too close to the data samples. The first
three categories of hypotheses are tested by systematically changing the hyperparameters and
measuring how they affect the neural networks’ robustness to adversarial examples. The last
category of hypotheses is tested by training on adversarial examples. By doing this, I show that
the decision boundary is the most factor to influence the robustness of neural networks and that
the other factors investigated in this study are unlikely to be relevant to the robustness of neural
networks. In my experiments, I also show that the defensive method of Madry et al. (2017)
creates neural networks robust to any attack under certain conditions.



Chapter 2
Background

Parts of this chapter is based on a term paper written in the autumn of 2019.

2.1 Neural networks
Neural networks are machine learning algorithms designed to learn and solve tasks, which
have shown to perform exceptionally well. The idea behind neural networks is to mimic the
biological neurons found in the brain, as described by Rosenblatt (1958). The artificial neurons
are represented by nodes that lie in layers, where each node in a layer is connected to all neurons
in the next layer by an edge. When the node receives a signal, represented by a number, it is
sent along all edges. In the first layer, the input signal is a data sample from the task we want to
learn. Each edge contains a weight, which is a number that the signal is multiplied with. In the
next layer, each neuron sums up all the individual signals multiplied by the different weights
connected to the neuron plus a bias. The sum is then applied to a non-linear function, called the
activation function, and sent forward as a signal to the next layer. Commonly used activation
functions are the sigmoid function, shown in equation 2.1, and the relu function, shown in
equation 2.2.

sigmoid(x) =
1

1 + e−x
(2.1)

relu(x) = max(0, x) (2.2)

At the last layer, the softmax function is commonly used, which gives a probability estimate
for each class given the input sample. The softmax function for the i-th output in a network
with j output nodes is shown in equation 2.3.

softmax(x)i =
exp(xi)∑
j exp(xj)

(2.3)

To train the neural networks, the difference between the output, y, and the desired output
values for a data instance, y′, is calculated using a loss function. Common loss functions are the
cross-entropy and the mean square error (MSE), seen in equation 2.4 and 2.5. The gradients of
the loss function w.r.t. the weights and biases are then calculated, and the weights and biases
are updated in the gradients’ negative direction to minimize the loss. The size of the update is
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controlled by a variable called the learning rate, which is multiplied with the gradients before
they are applied to the weights and biases. This is done multiple times with multiple data
instances until the neural network converges at a loss value.

crossentropy(y, y′) = −
n∑
i=1

y′ilog2(yi) (2.4)

MSE(y, y′) =
1

n

n∑
i=1

(y′i − yi)2 (2.5)

Neural networks can be seen as a way to approximate functions that solve specific problems
and have in recent years been applied to an increasingly wide range of tasks. Helmstaedter et al.
(2013) used neural networks to reconstruct neural circuits in the mouse retina, Ciodaro et al.
(2012) used neural networks for detecting particles at CERN, Silver et al. (2017) used neural
networks to create a program that defeated the world champion in the game of Go and Esteva
et al. (2017) used neural networks to create Dermatologist-level classification of skin cancer.
Clearly, neural networks have been implemented in a wide range of fields. In addition to being
applied to a broad range of tasks, neural networks have also shown to perform exceptionally
well, sometimes even better than humans, as shown by He et al. (2015b) and Taigman et al.
(2014). As neural networks have gained popularity and larger neural nets are being used, depth
has been preferred to width as wide networks seem to memorize the samples more than gener-
alize over them, causing the neural networks to overfit. Deeper neural networks have shown to
generalize well since they can learn features at various levels of abstraction in each layer.

2.1.1 Convolutional neural networks
Convolutional neural networks (CNN) (Lecun et al. (1998)) is a type of neural network pri-
marily used for image classification, which is better at detecting patterns in the images. In a
convolutional neural network, the signal goes through a feature mapping before the activation
function. In the feature mapping, pixels close to each other are multiplied with a matrix, called
the filter or the kernel, and then summed together. This is shown in figure 2.1. By using multiple
filters, we get different feature maps that can learn different patterns in the images. In the case
of multiple channels such as in an RGB image or when we have multiple feature maps, three-
dimensional kernel arrays are used. The kernel size is defined as the size of the two dimensions
which are not affected by the number of channels.

2.2 Adversarial examples
Although neural networks have shown to have superhuman performance, they also become easy
victims of malicious attacks. By slightly distorting the data input, researchers have been able to
make state of the art neural networks produce incorrect outputs while still being highly confident
in the results. Szegedy et al. (2013) were the first to describe this counter-intuitive property
of neural networks. Before this paper, it was assumed that neural networks generalized well
locally. Researchers already knew that neural networks have a superior ability to generalize non-
locally to examples far away from the training examples, as long as they have some of the same

1Convolutional Neural Network. Brilliant.org. Retrieved 12:38, April 28, 2020, from
https://brilliant.org/wiki/convolutional-neural-network/



Figure 2.1: Image visualizing neural network convolution. To the left, we see how multiple pixels
correspond to a single pixel in one feature map. To the right, the calculation done by the feature mapping
shown. The images are from brilliant.org1.

structural properties. Because of this, it was believed they also generalized to examples in close
vicinity to the training examples. However, Szegedy et al. (2013) showed that this assumption
does not hold and that very small perturbations are able to alter a neural network’s classification
of an example. They named these slightly distorted examples "adversarial examples." In figure
2.2, we see adversarial noise added to an image of a panda. While the original example and the
adversarial example look identical to human eyes, it was able to change the prediction given by
the neural network "GoogLeNet" of Szegedy et al. (2014a) from a panda to a gibbon.

Figure 2.2: A demonstration of an adversarial example from Goodfellow et al. (2014). By applying
equation 3.2 on an image of a panda, they are able to alter the prediction of GoogLeNet from "panda"
to "gibbon" while keeping the difference between the original and the altered image imperceptible to
human eyes.

Adversarial examples also have other interesting properties, such as transferability and real-
world applicability. Although the strongest attacks create noise that is tailored to maximize the
error for a specific model, we see that there are other ways to create adversarial examples. Liu
et al. (2016) show that it is possible to create adversarial examples that generalize to multiple
neural networks which they were not made for, making it possible to fool a model without hav-
ing direct access to it. Athalye et al. (2017) show that simple augmentation, such as re-scaling,
translation, and rotation, is able to produce adversarial examples. They also print adversary 3D
models that are adversary over various angles, showing that it is possible to create real-world



physical adversarial examples. Eykholt et al. (2017) and Kurakin et al. (2016a) also show that
real-world adversarial examples are possible with other methods such as creating subtle stickers
that alter a model’s prediction.

2.2.1 Why are neural networks susceptible to adversarial examples?
While it is relatively easy to show that neural networks are susceptible to adversarial examples,
we still do not know why this behavior occurs. Although there are multiple hypotheses about
adversarial examples, it is difficult to reach a conclusion to which hypothesis is correct and to
why adversarial examples exits. Szegedy et al. (2013) hypothesize that the adversarial examples
consist of high-dimensional "pockets" with values rarely observed in the data sets that still are
close to the samples, much like rational numbers have decimal numbers that are rarely used, but
close to the often used integers. Gu and Rigazio (2014) show that the sizes of these "blind-spots"
are rather large and relatively continuous.

With the hypothesis that high-dimensional pockets of rarely seen values cause adversarial
examples, it is implicit that the high non-linearity of neural networks makes them vulnerable
to adversarial examples, according to Goodfellow et al. (2014). They argue that "Previous
explanations for adversarial examples invoked hypothesized properties of neural networks, such
as their supposed highly non-linear nature." They deny that adversarial examples are caused by
high non-linearity, but rather too much linearity in the neural network. Although the activation
functions are supposed to provide non-linearity, the relu function, which is the de facto standard
activation function for neural networks, is linear for all inputs over zero. Other, more non-linear
activation functions such as sigmoid, are usually tuned to spend the most time in their more
linear parts of the function to avoid saturation. They argue this linearity makes the neural
networks vulnerable to attacks that maximize their activations over multiple dimensions.

Tanay and Griffin (2016) disagree with the linear hypothesis of Goodfellow et al. (2014).
They argue that if the linearity hypothesis is true, then increasing the resolution of the images
should let the attacks maximize their activations over more dimensions, and thus decrease the
neural networks’ robustness. They show that increasing the resolution of the images does not
make the neural networks more vulnerable to adversarial examples, and present the "boundary
tilting perspective" hypothesis. This hypothesis states that the decision boundary lies in such
a way that the training data is classified correctly, but with the boundary tilted close to the
training data in some places. They believe the models are overfitted on components with low
variance in the data set and that adversarial examples occur when we change these components
in the directions of the low variance. Although Tanay and Griffin (2016) reject the theory of
Goodfellow et al. (2014) that adversarial examples are caused by linearity, Goodfellow et al.
(2014) use the linearity hypothesis to create the state of the art Fast Gradient Sign Method
(FGSM) attack.

Rozsa et al. (2016) argue that adversarial examples stem from what they call evolutionary
stalling. When the network is training, the weights are gradually changed until they classify
the samples correctly. When the samples are correctly classified, they no longer contribute to
the change in the weights. Although the samples are correctly classified, we also need broad
flat regions around them to prevent adversarial examples. They argue that since the samples’
contribution to the weights stops once they are classified correctly, the samples are left close to
the decision boundary, making the neural networks susceptible to adversarial attacks. Madry
et al. (2017) also believe the decision boundary is left too close to the samples. They create a
defensive technique that trains on adversarial examples to push the boundary further away from



the samples.
In summary, we can divide the different hypotheses for the existence of adversarial examples

in four categories: 1) Adversarial examples stem from "pockets" of low probability examples
in the data distribution that the neural networks are not able to generalize over as they are too
non-linear. 2) The neural networks are too linear, causing them to give too high probability to
adversarial examples that exploit their linearity. 3) Adversarial examples are caused by overfit-
ting. 4) The neural networks’ decision boundary is too close to the data samples.

2.3 Applications of neural networks to safety-critical systems
Due to neural networks’ ability to learn complex problems, they are being considered and tested
in many areas where it is essential that they behave as expected. Bojarski et al. (2016) use a
convolutional neural network for self-driving cars in an end to end approach where images from
a camera are fed to a network which outputs the steering command of the vehicle. Julian et al.
(2016) use neural networks in a collision-avoidance system for aircraft. Robertson et al. (2011)
use neural networks to predict blood glucose levels in the body, which could be used for a
device administering insulin. In all of these cases, an error in the neural network’s decision
could result in significant damages and even death, and self-driving cars have already resulted
in several fatalities (Yadron and Tynan (2016); Levin and Wong (2018)). Even in systems where
lives are not necessarily at risk, we must be able to trust the neural networks before we can use
them. For example, Graves et al. (2013) use neural networks in speech recognition. If neural
network-based speech recognition is used in voice commands, an attacker could use adversarial
attacks to create silent adversarial noise, which would be detected as a voice command by the
neural network. These commands could be used to perform malicious tasks such as giving the
attacker sensitive information about the owner. Neural network-based malware classification,
as done by Dahl et al. (2013), is another such example since adversarial malware would not be
detected, rendering the malware classifier useless. As long as neural networks are being used
in increasingly more fields, the need for them to be robust against adversarial attacks will also
increase.

2.4 Measuring the robustness of a neural network
To measure the robustness of a model for a sample, x, we can look at the samples in close
proximity to x and the model’s predictions for these samples. We would expect a robust model
to have the same predictions for x and the samples in close proximity. The smallest adversarial
distortion needed on x to change the model’s classification would then be the model’s robustness
for x [Boopathy et al. (2018)]. Consider a classifier f(x)→ y where x is an sample consisting
of n features {x1, x2, ..., xn} in the input space X and y is a class of Y . The robustness of f for
x is then

min
x′∈X

D(x, x′), f(x) 6= f(x′) (2.6)

where D(x, x′) is the distance between x and x′. The robustness of a model for a sample is
visualized in figure 2.3.



Figure 2.3: A 2D visualization of the robustness for a function, f , given an sample, x. The blue and red
dots represents adversarially distorted versions of x, x′, with the blue dots giving the same output as x,
f(x) = f(x′blue), and the red dots giving a different output, f(x) 6= f(x′red). The stapled line shows the
robustness boundary of f for x and the gray area shows the area where we consider f robust for x.

2.4.1 Distance metrics
For images, which we focus on in this paper, previous work [Grosse et al. (2016); Carlini and
Wagner (2017); Boopathy et al. (2018)] suggests that the conventional way to characterize the
proximity between an instance and its neighbor is by an Lp norm ball around x with radius ε.
In this case ε = D(x, x′). To calculate the Lp norm we have

ε = ||x− x′||p = (
n∑
i=1

|xi − x′i|p)
1
p (2.7)

We find that there are four different Lp norms which are used in previous works; L0, L1,
L2 and L∞. It should be noted that the L0 "norm" is not a proper norm and does not fit into
equation 2.7. Instead, it is the number of non-zero elements in the vector x− x′.

• L0 "norm" distance. TheL0 distance "norm" counts the number of pixels where xi 6= x′i,
which is the number of pixels altered. Carlini and Wagner (2017) use this "norm" to
minimize the adversarial distortion in the images created by their L0-attack, and Papernot
et al. (2015c) use it to measure the robustness of their models when arguing that defensive
distillation is secure against adversarial attacks.

• L1 norm distance. The L1 norm gives us the Manhattan distance between x and x’,
which is the sum of all pixel differences. Chen et al. (2017) use the L1 norm when
creating adversarial examples in their Elastic-Net Attacks, and Boopathy et al. (2018) use
this norm for calculating the lower bound of neural network models’ robustness.

• L2 norm distance. The L2 norm gives us the Euclidean distance between x and x’. The
Euclidean distance penalizes larger pixel changes. Szegedy et al. (2013) uses the L2 norm
to generate adversarial examples with minimal distortion. Carlini and Wagner (2017) use
this norm to minimize the adversarial distortion in the images created by their L2-attack.
This norm is also used by Boopathy et al. (2018) and Madry et al. (2017).

• L∞ norm distance. The L∞ norm gives us the largest pixel distortion, which can be
written as L∞ = max(|x1− x′1|, ..., |xn− x′n|). Carlini and Wagner (2017) use this norm



to minimize the adversarial distortion in the images created by their L∞-attack. Grosse
et al. (2016) argue for the L∞ norm to be used in computer vision, but use the L1 norm
as they have binary input, making the L∞ norm inappropriate. This norm is also used by
Kurakin et al. (2016b), Boopathy et al. (2018), Singh et al. (2019b), Singh et al. (2019a),
Katz et al. (2017), Papernot and McDaniel (2016) and Madry et al. (2017).

Using different norms changes the calculated proximity of distorted images and, consequently,
the neighborhood around a sample. Figure 2.4 shows the different adversarial examples when
different norms are used to minimize the distortion created by the attacks while still causing
the model to misclassify. In addition to changing the neighborhood using different norms also
changes the range of ε. While using the L∞ norm, ε ranges from 0, when no pixel is distorted,
to 1 where we have maximal distortion of a pixel. The L1 norm, however, ranges from 0 to
the number of pixels in the image, where all pixels have maximal distortion. For a 28x28 pixel
large image, the maximum L1 value is 784.

Although these metrics make it easy to compare various neural networks, they are not a
perfect measurement for how similar humans perceive the images. For example, a perturbation
on only one pixel in an image could give a maximum L∞ distance, even though the images
would be considered relatively equal by a human. It is also important to note that this definition
of a neural network’s robustness only gives the robustness for one instance. A network proven
robust on an instance may not be robust on the whole data set, and if proven robust on the data
set, it may not be robust on other data sets.

Figure 2.4: The result of attack norms on five different classes from the MNIST (left) and GTSRB
(right) data sets. We see the original images on the left side of the data sets, all correctly classified by a
neural network. On the rights side of the data sets, we see adversarial examples created by attacks using
different Lp norms, all misclassified by the network. The L0, L2 and L∞ attacks are created using the
attack algorithms of Carlini and Wagner (2017), and the L1 attack uses the Elastic-Net attack of Chen
et al. (2017).



2.5 Estimating the robustness of a neural network
To find the exact ε where the neural network no longer classifies the the samples in close prox-
imity to x correctly is an NP-complete problem and thus not computationally possible for large
networks, as shown by Katz et al. (2017). In the literature, I find three different approaches
to evaluate the robustness of a neural network, which are less time-consuming than the NP-
complete solution. The first is to prove an upper bound of the robustness. The second is to
prove a lower bound of robustness, and the third is to evaluate the accuracy of a network on
multiple adversarial examples with a given ε.

2.5.1 Proving an upper bound
To find the upper bound robustness of a neural network, we can use an attack method to find the
smallest distortion that the neural network cannot correctly classify. This requires the attack al-
gorithm to be sufficiently strong to find a small enough distortion to be useful. The upper bound
is often used to compare the strength of different attacking algorithms. Carlini and Wagner
(2017) and Moosavi-Dezfooli et al. (2015) use this evaluation technique when comparing their
attack method against other methods. The strength of this method is that it tests the neural net-
works’ robustness against existing threats. However, this is also a weakness, as this estimation
of the robustness cannot be stronger than the strongest attack.

2.5.2 Proving a lower bound
The lower bound is found by proving there is a neighborhood bounded by a max distance, ε,
where the neural network always classifies the adversarial examples correctly. This can be seen
as finding the worst-case robustness and has lately received much attention. Notable examples
are CNN-cert of Boopathy et al. (2018) and RefineZono of Singh et al. (2019a). The strength of
this method is that it is attack-agnostic and ensures robustness for the neural networks regardless
of future attacks. However, this method might create very loose bounds, giving the impression
that the networks are less robust than they are.

2.5.3 Success rate
The model’s accuracy on multiple adversarial examples, given a set attack distance, gives the
success rate. To evaluate the robustness of a neural network with this method, we use an attack
algorithm to create multiple adversarial examples that maximize the error of a neural network,
while keeping the distortion within a predetermined bound. After the adversarial examples are
created, we test the accuracy of the model on the distorted examples. This method is often used
to show the efficiency of methods to defend against adversarial attacks. Papernot et al. (2015b),
Shaham et al. (2018) and Madry et al. (2017) use this technique to prove the robustness of their
defensive methods. A term that is closely related to the success rate is the adversarial error,
which is the model’s accuracy on the non-perturbed test set minus the model’s accuracy on
adversarial examples created from the test set. The adversarial error gives us the effectiveness
of the attack on the neural network.

The strength and weaknesses of this method are much the same as with upper bounds. It
shows the neural networks’ performance against existing threats but does not show how they



perform against future attacks. This method also requires that the ε of the attack is held constant,
which limits the attacks.



Chapter 3
Related work

Parts of this chapter is based on a term paper written in the autumn of 2019.

3.1 Adversarial attacks

3.1.1 L-BFGS
Szegedy et al. (2013) were the first to show that neural networks are vulnerable to adversarial
examples. To show this, they use box-constrained limited-memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) to find an approximation of the closest adversary that fools the neural net-
work. That is, given an image x in the input space X , a model f and a targeted class for the
adversary ya which is different from the true label class yl, they find an adversarial perturbation
x′ within X that minimizes the sum of the loss and the l2 distance of x′ times a constant, c.

min
x′∈X

c||x− x′||2 + Lf (x
′, yl) (3.1)

The value for c is found using linear search by finding the minimal c > 0 where the output of
equation 3.1 gives an x′ so that f(x′) = ya. By using this method, they were able to create
adversarial perturbations, not visible to humans, which altered the class of the image.

3.1.2 FGSM
Goodfellow et al. (2014) hypothesize that the adversarial examples are caused by neural net-
works being too linear and that they are vulnerable to linear distortions. To exploit this vul-
nerability, they create the Fast Gradient Sign Method (FGSM) attack. The idea of the attack is
to perturb the image x in the sign direction of the gradient of the loss function w.r.t. the input
pixels. The function used to calculate the FGSM is

x′ = x+ εSign(∇xLf (x, yl)) (3.2)

where Lf (x, y) is the loss for the model f given x and its correct label yl. ε defines the l∞
distance between x′ and x. This method of creating adversarial neural networks is very fast and
has a low computational cost compared to other methods, such as L-BFGS, BIM (see section
3.1.5) and the C&W (see section 3.1.6) attacks. However, it also creates weaker adversarial
examples.
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3.1.3 JSMA
Papernot et al. (2015a) present the Jacobian-based Saliency Map Attack (JSMA) based on the
L0 norm. The attack uses the gradients of the network output, w.r.t the input to compute a
saliency map, which is used to monitor the pixels’ effect on the network’s classification. The
attack then modifies the most effective pixel to change the classification of the image. This is
done on one pixel at a time until the classification is changed.

3.1.4 DeepFool
Moosavi-Dezfooli et al. (2015) proposed the DeepFool attack, which is based on the L2 norm.
The attack approximates the decision boundary to a polyhedron using an iterative approach.
Then, the robustness of the images is found by selecting the part of the polyhedron, which is
closest to the original image. They show that DeepFool is able to create adversarial examples
with lower perturbation than FGSM.

3.1.5 BIM and MIM
Kurakin et al. (2016a) extend the idea of FGSM by taking multiple smaller steps in the gradi-
ents’ direction, instead of taking one large step. In each step, the step direction is adjusted with
the gradients’ direction. The algorithm then becomes:

x′n+1 = ClipX,ε(x
′
n + αSign(∇x′nLf (x

′
n, yl))), x′0 = x (3.3)

where x′n is the adversarial example at step n, α is the step size andClipX,ε keeps the adversarial
images within the valid pixel range of X and ε, the predetermined L∞ distance of x. They
call the method the Basic Iterative Method (BIM), but other names such as Projected Gradient
Decent (PGD) and Iterative Gradient Sign Method (IGSM) are also used for this method in the
literature.

Dong et al. (2018) extend this idea even further and add momentum to the BIM method,
making it the Momentum Iterative Method (MIM):

x′n+1 = ClipX,ε(x
′
n + αSign(gt+1)), gt+1 = µgt +

∇x′nLf (x
′
n, yl)

||∇x′nLf (x
′
n, yl)||1

(3.4)

where µ is the decay rate of the momentum. The gradients are also normalized to account for
the different scales of the gradients in each iteration.

3.1.6 C&W
Carlini and Wagner (2017) created their attacks as a follow up to the defensive distillation
of Papernot et al. (2015b), which was a proposed defense against adversarial examples. The
Carlini-Wagner (C&W) attacks are similar to the L-BFGS attack. However, they have some
differences in that they use the logits instead of the softmax loss and use tanh to constrain the
range of the adversarial examples. The attacks were created on the l0, l2, and l∞ norm, all
of which defeats defensive distillation. They also show that their attacks are able to create
adversarial examples with less perturbation than other attacks such as FGSM, BIM, Deepfool
and JSMA. For FGSM and BIM, they searched over ε to find the smallest perturbation able to
fool the network.



3.1.7 EAD
Chen et al. (2017) noted that there had been little development on adversarial attacks relying on
the L1 norm, despite the L1 norm being popular in fields of image processing such as denois-
ing and restoration. To account for this, they present the Elastic-Net Attack (EAD), which is
based on the C&W attacks and Elastic-Net Regularization. They show that this attack creates
adversaries with a much smaller L1 distance than the C&W L2 attack.

3.1.8 BA and HSJA
Brendel et al. (2017) propose the Boundary Attack (BA) that does not need access to any parts
of the neural network, but only its predictions. The idea of the algorithm is to use an adversarial
example x′, which is pixel-wise far from the original image and then change x′ towards the
original image. When the border where x′ no longer is an adversarial example is found, the
attack changes x′ along with the decision border so that x′ still is an adversarial image and
the distance to the original image is reduced. They show that this attack gives adversarial
images which have a slightly higher distance from the original image than the C&W, making
BA slightly worse. However, it also uses much less information from the neural networks to
create adversarial examples.

Chen et al. (2019) present the HopSkipJumpAttack (HSJA) based on BA and improve it by
using an estimation of the pixel gradient direction. The estimated pixel gradient direction is
derived from the results gained in the previous steps in the algorithm and is used to update the
steps along the boundary more effectively. They show that HSJA creates adversarial examples
with much fewer perturbations than BA while also requiring fewer iterations to converge. The
HSJA uses the L2 and L∞ norm to minimize the perturbation.

3.2 Defences against adversarial attacks

3.2.1 Defensive distillation
Papernot et al. (2015b) suggest using distilation to create more robust neural networks. Distil-
lation is a method where knowledge is transferred between a large network or an ensemble of
networks to a smaller network (Hinton et al. (2015)). Using this method Papernot et al. (2015b)
were able to make the network gradients exploited by adversarial attacks smaller and reduce the
variations around the input. This made the network generalize better to adversarial examples,
and they were able to reduce the effectiveness of created adversarial examples from 95% to less
than 0.5%. Although defensive distillation proved to be very promising, it was later bypassed
by new attack methods. Carlini and Wagner (2017) argue that defensive distillation does not
increase the robustness of neural networks. By creating three new attack algorithms, they fooled
the neural networks created using defensive distillation 100% of the time. Papernot and Mc-
Daniel (2017) propose a new variant of defensive distillation that addresses these attacks and
are less susceptible to them.

3.2.2 Training on adversarial examples
Shaham et al. (2018) propose to increase the robustness by using perturbated examples to train
their neural network. They use a minimum-maximum procedure where the training data is



iteratively replaced by the worst-case perturbed data. The function they wish to optimize is:

min
θ

m∑
i=1

max
δi∈Si

L(θ, xi + δi, yi) (3.5)

Where (x, y) are observation pairs, θ are the trained parameters, and L denotes the loss of
the network given x, y, and θ. δ is the amount of perturbation, and S is the set of allowed
perturbations. The worst case, xi + δi, for the data samples, was calculated using a method
similar to the FGSM method of Goodfellow et al. (2014). For each mini-batch, all the samples
were replaced with the worst case before the network parameters were updated using gradient
descent. Shaham et al. (2018) show that their networks achieve much higher accuracy than
a standard neural network when tested on adversarial examples created in the same way they
created the worst-case perturbed data. Going from 0% accuracy using a standard neural network
to 79.96% using their network on the MNIST dataset and from 0% to 65.01% on the CIFAR-10
data set.

Madry et al. (2017) also suggest using a minimum-maximum procedure like in equation
3.5 to minimize the loss over the architecture parameters given the maximum loss over the
allowed perturbations. Instead of using FGSM to maximize the inner part of the equation, they
propose to use BIM to find the worst case of xi + δi. By doing this, they managed to get 45.8%
accuracy on the CIFAR-10 data set when tested against adversarial examples created by the
BIM algorithm. Comparatively, a normal neural network got 3.5% accuracy, and a network
trained the FGSM attack achieved 0%, breaking the FGSM-training defense method. Training
on the BIM attack also showed good results against the FGSM attack and the C&W attacks with
over 90% accuracy on the MNIST set against both attacks. They also show that wider neural
networks achieve higher accuracy against adversarial attacks.

3.2.3 Defensive architectures using verified evaluation
Raghunathan et al. (2018) argue that adversarial training such as the minimum-maximum tech-
niques in section 3.2.2 is problematic as the worst-case loss is based on a lower bound. This
causes the optimizer to be misled when the bound is loose and thus makes it hard to generalize
to new attack methods. However, calculating the exact worst-case perturbation is not a good
solution either as it is computationally infeasible, as shown by Katz et al. (2017). Raghunathan
et al. (2018) proposes to use an upper bound on the worst-case loss using a method based on
semidefinite relaxation. By using this method, their neural network had a 16% error on the
MNIST set against the BIM attack algorithm with a perturbation of 0.1 in the L∞ norm, and a
certified upper bound of 35% error against any attack. Comparatively, the worst-case error of
the network from Madry et al. (2017) was at 11% on the MNIST when tested against multiple
attacks with a perturbation of in the L∞ norm. The network trained on the BIM attack algo-
rithm thus performs better than the one based on semidefinite relaxation against known attacks.
However, Raghunathan et al. (2018) argue this might be because they use a smaller network
with fewer layers. The neural network they used was a relatively small network of only two
layers, which is too small for most problems.

Kolter and Wong (2017) propose a similar approach by creating a convex outer adversarial
polytope, which is "the set of all final-layer activations that can be achieved by applying a norm-
bounded perturbation to the input"[Kolter and Wong (2017)]. Using the convex outer bound,
they compute the worst-case loss and use this to minimize the loss over the architecture param-
eters like minimum-maximum methods in section 3.2.2. With this approach on the MNIST set,



they obtain a classifier that can be proven to have less than 5.8% error for any adversarial attack
with perturbations less or equal to 0.1 on the L∞ norm. It should be noted that this is a com-
putationally expensive method and used 5 hours to train on a Titan X GPU. MNIST is a rather
small problem, on which you can easily achieve over 98% accuracy with a standard laptop CPU
in a couple of minutes. It is unlikely that this method could scale to bigger problems.

3.3 The relationship between accuracy and robustness
Su et al. (2018) analyze the robustness of several neural networks to explore the tradeoff be-
tween robustness and accuracy. To get the robustness of the networks, they use the evaluation
methods listed in section 2.5, the lower bound, the upper bound, and the success rate. However,
instead of using the success rate, they use the attack success rate, which is one minus the suc-
cess rate. For the success rate, they use the FGSM, BIM, C&W, and EAD attack. For the upper
bound, they use the BIM attack with a predetermined ε and the C&W attack, and for the lower
bound, they use CLEVER of Weng et al. (2018b). With these robustness estimation techniques,
they show that robustness and accuracy are linked, and that robustness increases logarithmically
with the classification error. Additionally, their results indicate that the size and depth of the
neural networks have little influence on the neural networks’ robustness.

3.4 The effect of the hyperparameters of nerual networks
Burkard and Lagesse (2019) test the robustness of various nerual networks with different hy-
perparameters. To evaluate the robustness of the neural networks, they use the C&W attack
on the L2 norm to create an upper bound of the robustness on the MNIST dataset. They find
that the hyperparameters impact the neural networks’ robustness. However, changing the hy-
perparameters alone is not enough to create a viable defense against adversarial examples. The
hyperparameters with a high impact on the robustness was dropout, pool size, and kernel size,
whereas the number of filters in the CNNs and depth were not important for the robustness.
The and activation function was not important for the robustness either, except if tanh was used,
which lowered the robustness of the neural networks substantially.



Chapter 4
Design and implementation

4.1 Motivation
With the increased application of neural networks to solve security-critical real-life tasks, such
as self-driving cars, it is crucial that we can trust the neural networks and their results. With
the discovery of adversarial examples, there has been much research to understand why neural
networks are vulnerable to them [Szegedy et al. (2013); Gu and Rigazio (2014); Goodfellow
et al. (2014); Tanay and Griffin (2016); Rozsa et al. (2016)] and how to negate them [Paper-
not et al. (2015b); Papernot and McDaniel (2017); Shaham et al. (2018); Madry et al. (2017);
Raghunathan et al. (2018); Kolter and Wong (2017)]. Unfortunately the defensive methods are
either susceptible to new attack methods, such as the methods of Papernot et al. (2015b) and
Shaham et al. (2018), or not proven to be able to scale to big problems as the methods of Raghu-
nathan et al. (2018) and Kolter and Wong (2017). To make the matter even worse, we still do
not know precisely why neural networks are vulnerable to adversarial examples or what causes
them. Although there are several hypotheses about adversarial examples, as listed in section
2.2.1, we do not know which of them is correct. Some of theme are even contradictory such
as the linearity and non-linearity hypotheses. In the literature, I find no experiments to test the
hypotheses up against each other.

The linear, non-linear, and overfitting hypotheses can be directly tested by changing relevant
hyperparameters. The decision boundary hypothesis can be tested by changing the training
input given to the neural networks. In this thesis, I intend to test the four hypotheses listed in
section 2.2.1. By doing this, I aim to strengthen or disprove the hypotheses, which I believe
will help to create more robust neural networks in the future by furthering our understanding of
adversarial examples.

4.1.1 Research questions
The motivation behind this research was to understand what makes neural networks vulnerable
to adversarial examples and how we can make more robust neural networks. Based on this
research motivation, I formulated four research questions:

• RQ1 Are the neural networks vulnerable to adversarial examples because they are too
linear? If so, how can this be used to improve the robustness of neural networks?
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• RQ2 Are the neural networks vulnerable to adversarial examples because they are too
non-linear? If so, how can this be used to improve the robustness of neural networks?

• RQ3 Are the neural networks vulnerable to adversarial examples because they overfit to
the adversarial examples? If so, how can this be used to improve the robustness of neural
networks?

• RQ4 Are the neural networks vulnerable to adversarial examples because their decision
boundary is too close to the training samples? If so, how can this be used to improve the
robustness of neural networks?

4.2 Method
To answer the research questions, I conducted two experiments that tested how the hyperpa-
rameters and the training input affected the neural networks. For the first experiment, I trained
multiple neural networks with different hyperparameters and calculated their robustness using
multiple robustness estimation methods. By doing this I expected to answer RQ1, RQ2 and
RQ3, which is explained further in section 4.2.1, 4.2.2 and 4.2.3. For the second experiment,
I trained on adversarial examples in order to answer RQ4. This is further explained in section
6.5. In both experiments, I used multiple datasets with varying complexity.

4.2.1 Design to answer RQ1
Independent variables

To answer RQ1, I wanted to test the linearity hypothesis described in section 2.2.1. Of the
hyperparameters in a neural network, I expected the activation function and depth to affect the
linearity. Certain activation functions are more non-linear than others, and thus using a more
non-linear activation function should decrease the linearity of a neural network. For each layer
in a neural network, the activation function is applied, making the neural network increasingly
non-linear with the depth.

Because I expected the activation function and the depth to change the linearity of neural
networks. They were used as independent variables in my first experiment, where I tested the
robustness of neural networks with different hyperparameters.

Dependent variables

The dependent variable of my first experiment would optimally be the neural networks’ robust-
ness. However, as written in section 2.5, calculating the exact robustness of a neural network
is an NP-complete problem and not computationally possible. To overcome this, I used the
estimations of the neural networks’ robustness as dependent variables. In section 2.5, there are
listed three ways to estimate the robustness of neural networks that are used in the literature;
calculating the success rate, the upper bound, and the lower bound. As mentioned, there are
strengths and weaknesses in all techniques.

When Su et al. (2018) compare the robustness of multiple neural networks, they use all three
techniques. To ensure the potential trends seen in the robustness of the neural networks are cor-
rect, I used decided all three methods as well. For example, if increasing some hyper-parameter
also increases the upper bound, there could be two possible explanations. The first explanation



is that the actual robustness of the model was increased. However, a second explanation is that
the attack algorithm just performed worse even though the true robustness of the network was
not increased. Using multiple methods will give a broader picture and make it easier to un-
derstand how the hyperparameters correctly affect the robustness. The implementations of the
robustness estimation techniques are listed in section 4.3.

Hypotheses concerning the effect of the depth on the neural networks’ robustness

From the independent and dependent variables I had several predictions about how the depth
affect the robustness that I wanted to prove. The dependent variables chosen are described in
section 4.3. For each prediction I formulated two hypothesis statements:

Null Hypothesis 1 (NH1). The depth does not correlate with the lower bound.

Alternative

Alternative Hypothesis 1 (H1). The depth is correlated with the lower bound.

Null Hypothesis 2 (NH2). The depth does not correlate with the C&W based upper bound.

Alternative Hypothesis 2 (H2). The depth is correlated with the C&W based upper bound.

Null Hypothesis 3 (NH3). The depth does not correlate with the HSJA upper bound.

Alternative Hypothesis 3 (H3). The depth is correlated with the HSJA based upper bound.

Null Hypothesis 4 (NH4). The depth does not correlate with the BIM success rate.

Alternative Hypothesis 4 (H4). The depth is correlated with the lower BIM success rate.

Null Hypothesis 5 (NH5). The depth does not correlate with the lower MIM success rate.

Alternative Hypothesis 5 (H5). The depth is correlated with the lower MIM success rate.

Hypotheses concerning the effect of the activation functions on the neural networks’ ro-
bustness

As with the depth, I had several predictions about how the activation functions affect the robust-
ness that I wanted to prove:

Null Hypothesis 6 (NH6). The more non-linear activation functions and relu affect the lower
bound equally.

Alternative Hypothesis 6 (H6). The more non-linear activation functions have either a positive
or a negative effect on the lower bound when compared to relu.

Null Hypothesis 7 (NH7). The more non-linear activation functions and relu affect C&W based
upper bound equally.

Alternative Hypothesis 7 (H7). The more non-linear activation functions have either a positive
or a negative effect on the C&W based upper bound when compared to relu.

Null Hypothesis 8 (NH8). The more non-linear activation functions and relu affect the HSJA
upper bound equally.



Alternative Hypothesis 8 (H8). The more non-linear activation functions have either a positive
or a negative effect on the HSJA upper bound when compared to relu.

Null Hypothesis 9 (NH9). The more non-linear activation functions and relu affect the BIM
success rate equally.

Alternative Hypothesis 9 (H9). The more non-linear activation functions have either a positive
or a negative effect on the BIM success rate when compared to relu.

Null Hypothesis 10 (NH10). The more non-linear activation functions and relu affect the MIM
success rate equally.

Alternative Hypothesis 10 (H10). The more non-linear activation functions have either a pos-
itive or a negative effect on the MIM success rate when compared to relu.

Data analyses

To analyze the data, I used correlation analysis, t-tests, and linear regression analysis. The
correlation analysis gave me the correlation between each independent and dependent variable,
which was calculated for each dataset individually and on the result of all the datasets combined.
The correlation was used on NH1 to NH5. For NH6 to NH10 t-test was used. However, corre-
lation analyses and t-tests do not control for the effect of other independent variables, meaning
that the other variables can interfere with the result of the tested variable. To account for this,
I also used multiple linear regression, which gives the effect of the independent variables after
controlling for the impact of the other variables.

Accounting for the accuracy

According to Su et al. (2018), the robustness of the neural networks’ decreases with their accu-
racy. Because of this, I would have preferred that all neural networks I had the same accuracy.
However, this was not the case as different hyperparameters led to different accuracies in the
neural networks. There were two possible strategies to avoid that the hyperparameters that gave
neural networks with high accuracy were penalized. The first was to discard all neural net-
works without sufficient accuracy and only use the remaining neural networks for the analyses.
The second strategy was to let accuracy be an independent variable of the regression so that
the regression would account for the accuracy. The second strategy was only possible with
regression.

I decided to mainly use the first strategy and discard all neural networks with an accuracy
of less than 95%. However, for the most challenging datasets, the second approach was used
for the regression. For these datasets, the neural networks with less than 50% accuracy were
discarded regardless as the robustness became very high for neural networks with very low
accuracy. In the correlation analyses, these datasets were not used at all. The test accuracy was
used to determine the accuracy of the network.

Analyses of the categorical variables in the regression analysis

According to dum (1993), we can use regression on categorical variables by defining a set of
dummy variables and use the dummy variables in the regression. To do this, we create a unique
dummy variable for each category and set them to 1 if the category is present and 0 if not. Since



the last category value can be represented by the absence of the other category values, we need
one less dummy variable than there are categories. As the activation function is a categorical
variable, this strategy will be used for the activation function, and relu will be the category left
out.

Norms

Since it is uncertain how different the norms affect the neural networks’ robustness in relation to
the hyperparameters, I decided to use multiple Lp norms when estimating the robustness. This
is described in further detail in section 4.3.

Range of the hyperparameters

When running the experiment, I noticed that very deep networks caused the estimation tech-
niques to use too much time to compute. Because of this, I did not test neural networks deeper
than five layers. Thus the depths of the neural networks ranged from 1 to 5. For the activa-
tion functions, I used relu, which is the most commonly used activation function in addition
to sigmoid, arctan, and tanh, which are more non-linear than relu. To correctly determine the
impact of the activation function, all the layers in the neural networks used the same activation
function.

Neural network architecture

To limit the scope of the experiment, I restricted the data sets to image data sets and the type of
neural networks to CNNs. I chose image datasets as most research on adversarial examples is
done on images, making it easier to compare to and build upon previous works. Additionally,
images and differences between images are easy to display and understand. CNNs were chosen
as most state of the art image classification models such as the GoogLeNet of Szegedy et al.
(2014b), the VGGNet of Simonyan and Zisserman (2014) and the ResNet of He et al. (2015a)
use convolution in their networks. Different varieties of CNNs, such as the skip connections,
found in the ResNet, or inception layers, found in the GoogLeNet, are not considered in this
experiment to keep the scope within a reasonable size.

4.2.2 Design to answer RQ2
To answer RQ2, I wanted to test the non-linearity hypothesis described in section 2.2.1. Since
this hypothesis is just a contradiction of the linearity hypothesis, the same method used to
answer RQ1 was used to test this hypothesis.

4.2.3 Design to answer RQ3
Independent variables

According to Goodfellow et al. (2016), overfitting occurs when neural networks with high ca-
pacity memorize properties of the training set. As deeper and wider networks have higher
capacity, increasing the depth and width should cause more overfitting and thus make the neu-
ral networks less robust if the overfitting hypothesis described in section 2.2.1 is true. Because



of this, the number of filters, which is the width of a CNN, was added as an independent vari-
able to the first experiment. The depth was already added as an independent variable in order to
answer RQ1 and RQ2.

In the experiments, I used early stopping to avoid overfitting when training the neural net-
works. However, the early stopping only considers the loss on the validation data, which does
not contain adversarial examples, and thus overfitting on adversarial examples should happen
anyway.

Dependent variables, Data analysis and Configuration

The same dependent variables, norms, and architecture used to answer RQ1 and RQ2 were
used to answer RQ3. The range of the depth is described in section 4.2.1. The width, or the
number of filters, ranged from 4 to 80. To test hypothesis NH11 to NH15, listed in section 4.2.3,
I used correlation analyses.

The number of filters is usually increased with the depth of the CNNs so that they start with
few filters in the first layer and have many in the last layer. To correctly determine the impact
of the width, all the layers in the neural networks had an equal amount of filters.

Hypotheses concerning the effect of the activation functions on the neural networks’ ro-
bustness

As with the depth and activation functions, listed in section 4.2.1 and 4.2.1, I had several pre-
dictions about how the width of the neural networks affect their robustness that I wanted to
prove:

Null Hypothesis 11 (NH11). The width does not correlate with the lower bound.

Alternative Hypothesis 11 (H11). The width is correlated with the lower bound.

Null Hypothesis 12 (NH12). The width does not correlate with the C&W based upper bound.

Alternative Hypothesis 12 (H12). The width is correlated with the C&W based upper bound.

Null Hypothesis 13 (NH13). The width does not correlate with the HSJA upper bound.

Alternative Hypothesis 13 (H13). The width is correlated with the HSJA based upper bound.

Null Hypothesis 14 (NH14). The width does not correlate with the BIM success rate.

Alternative Hypothesis 14 (H14). The width is correlated with the BIM success rate.

Null Hypothesis 15 (NH15). The width does not correlate with the MIM success rate.

Alternative Hypothesis 15 (H15). The width is correlated with the MIM success rate.

4.2.4 Design to answer RQ4
Independent variable

To answer RQ4, I decided to train neural networks on adversarial examples. If the neural net-
works’ vulnerability to adversarial examples is caused by the decision boundary being to close
to the training examples, then training on adversarial examples should increase the robustness
closely to the ε used in the attack. Because of this, the ε of the attack is used when training the
networks was used as the independent variable in the second experiment.



Adversarial attack and dependent variable

The attack algorithm chosen for the adversarial examples was the BIM attack. Madry et al.
(2017) had already created neural networks trained on this attack, which they show to perform
well against the FGSM, C&W, and BIM attack. However, the defensive methods of Shaham
et al. (2018) and Papernot et al. (2015b) show that it is not enough to prove defenses are effective
against known attacks, as both were broken when newer attacks were created. Because of
this, I wanted to see if this defensive method also increased the lower bound, as the lower
bound is attack agnostic. Thus, the lower bound of the neural networks was used as the second
experiment’s dependent variable. For RQ4 I have one pair of hypotheses that I want to test:

Null Hypothesis 16 (NH16). The ε of the attack used to train a neural network does not corre-
late with the lower bound of the neural network.

Alternative Hypothesis 16 (H16). The ε of the attack used to train a neural network correlates
with the lower bound of the neural network.

Data analysis and configuration

I used a correlation analysis to find the correlation between the ε of the attack and the lower
bound. To have a decent population size, I trained 25 neural networks for each ε. For the
hyperparameters, the relu activation function was used. The depth and number of filters ranged
from 1 to 5 and 8 to 72. As the hyperparameters are not used as independent variables in this
experiment, I do not consider them to be particularly relevant, and they were chosen arbitrarily.
Still, I have listed them for reproducibility purposes.

For this experiment, all neural networks with a test accuracy of less than 50% were dis-
carded. Additionally, when Madry et al. (2017) trained on adversarial examples, they used
ten steps of the BIM attack for Cifar and 40 for MNIST, with a step size of 1.33∗ε

steps
. For this

experiment, I used 20 steps for all datasets and the same step size as Madry et al. (2017).

4.3 Implementation

4.3.1 Trainig the neural networks
To train the neural networks for my experiments, I used Keras1 with tensorflow2 as the back-
end. Tensorflow is an open-source machine learning library, and Keras is a high-level neural
networks API running on top of TensorFlow, making it easier to create neural networks. Both
data augmentation and early stopping were applied when training the neural networks to obtain
as high accuracy as possible. Early stopping measures the loss on the validation set between
each epoch. When the validation loss has not improved over a certain amount of epochs, the
weights from the epoch with the lowest validation loss is restored. This ensures that the neu-
ral network is trained for an optimal number of epochs and that overfitting and underfitting is
avoided. Augmentation lets us create synthetic data by applying different augmentation tech-
niques such as zooming and rotation to the training images. By doing this, we get a larger
training set, which makes it possible to train on more samples before the neural networks start
to overfit.

1https://keras.io/
2https://www.tensorflow.org/

https://keras.io/
https://www.tensorflow.org/


4.3.2 Calculation of lower bound
As mentioned in section 2.5.2, recent research has provided methods that can give us a certified
minimum value of the robustness. To find the optimal tool to calculate the lower bound, I
searched previous literature and found and compared seven state of the art methods: CLEVER
by Weng et al. (2018b), DeepZ by SINGH et al. (2018), DeepPoly by Singh et al. (2019b),
RefineZono by Singh et al. (2019a), Fast-Lin by Weng et al. (2018a), CROWN by Zhang et al.
(2018) and CNN-Cert by Boopathy et al. (2018). For the lower bounds, I wanted to use the
method that gave the highest lower bounds that were fast enough to test all my neural networks
within a reasonable time.

CLEVER, which is used by Su et al. (2018), does not give a certified lower bound, meaning
that it cannot guarantee that the robustness is lower than the robustness, making it less trust-
worthy than the other lower bound methods. Figure 4.1 and 4.2 show that CNN-Cert performs
as good as or better than Fast-Lin, DeepZ, CROWN, and DeepPoly in both speed and tightness
of bound. Figure 4.3 shows that RefineZono gives a tighter bound than DeepZ and DeepPoly,
which have bounds comparable to CNN-Cert, but is also a lot slower, sometimes using over
1000 times more time than DeepZ and DeepPoly to reach their results. Thus, CNN-Cert was
chosen over RefineZono as RefineZono was considered too computationally expensive.

Table 4.1: Tables comparing the speed and bounds of Fast-Lin, DeepZ, DeepPoly, and, CNN-Cert. The
tables are from the Github page of CNN-Cert3.

CNN-Cert allows for testing the L1, L2 and L∞ norms, and all these norms were used
to test the lower bound. For each neural network in the experiments, CNN-Cert was used to
estimate the average lower bound on ten images for all three norms, using the top-2 prediction

3https://github.com/IBM/CNN-Cert



Table 4.2: Tables from Boopathy et al. (2018) comparing the speed and bounds of CROWN and CNN-
Cert.

Table 4.3: Table from Singh et al. (2019a) comparing the speed and bounds (in the percentage of the
true robustness) of DeepZ, DeepPoly, and RefineZono.



for the adversary’s target. Although ten images don’t give the lower bound of the whole dataset,
I expect it to reveal trends when used on multiple neural networks and data sets. The top-2
prediction was used as CNN-Cert only can calculate the robustness for one target, and the top-2
prediction was expected to give adversarial example closest to the original.

4.3.3 Calculation of upper bound
As described in section 2.5.1, finding the upper bound for an image consists of finding the
smallest perturbation that can fool the network. For this, I find the C&W attacks and the EAD
attack, described in section 3.1, the best candidates since they create adversarial examples with
the least perturbation when compared to other attacks using the same distance norm. Another
potential candidate is the HSJA, as it performs better than BA, which is slightly worse than
C&W. I was not able to find any comparison between C&W and HSJA in the literature, making
me unsure which of them are the best. Because of this, both attacks were used.

Like with the lower bound, many norms were used to calculate the upper bound of the
robustness. To compare the results with the lower bounds, the same methods were used, with
ten images for each neural network and estimating the robustness with the top-2 prediction
as the target. Additionally, the same norms used in the lower bounds were used in the upper
bounds as well. The EAD was used for the L1 norm and both HSJA and C&W for the L2

and L∞ norm. However, I experienced the HSJA algorithm to get stuck while searching for
examples predicted to be within the adversarial target’s class, even when it was initiated with
an example of the target class. Because of this, I decided to use non-targeted HSJA, which lets
the algorithm use any class as a target for the adversarial examples.

For the C&W and EAD attacks, the parameters were set to the recommended values, us-
ing 10000 iterations for the L1 and L2 attack and 1000 iterations for the L∞ attack. For the
HSJA attack, the parameters were also set to the recommended values, except for the number
of iterations, which increased from 40 to 150 in an effort to create tighter bounds.

4.3.4 Calculation of success rate
Although the C&W, EAD, and HSJA attacks have shown to give the lowest bounds when cre-
ating adversarial examples, they do not seem to find the strongest adversary when we search
within a predetermined border. Zhang and Li (2019) compares the percentage of adversarial ex-
amples able to fool the network of several adversarial attacks. Their results can be seen in table
4.4. Their work seems to indicate that non-targeted BIM and non-targeted Deepfool creates the
adversarial examples that most often fool the neural networks. However, they do not explain
how their results are obtained. Additionally, which parameters are used, such as whether they
use a maximum perturbation boundary, how many iterations of the attacks are used, and which
type of neural networks used remains elusive. Vargas and Kotyan (2019) also compares the
strength of several adversarial examples, and their results can be seen in table 4.5. Their results
indicate that BIM is much stronger than Deepfool. However, they too do not explain how they
obtain their results and what parameters are used.

The literature seems to indicate that MIM and BIM create the strongest adversaries when
a predetermined maximum boundary for the perturbation is set. In addition to this, they are
also more suited to find adversarial examples when we have a predetermined boundary. C&W,
EAD, and HSJA are made to find the smallest adversary perturbation that is able to change
the model’s prediction. BIM and MIM find the adversarial example within a predetermined



Table 4.4: Tables from Zhang and Li (2019) comparing the success rate of different adversarial attacks.
Note that the success rate used by Zhang and Li (2019) is not the success rate used in section 2.5.3 but
the success rate for the adversarial examples.

Table 4.5: Tables from Vargas and Kotyan (2019) comparing the adversarial success rate and the L2

distance achieved by different adversarial attacks.



boundary, which the model gives the least probability for having the original label. Because
of this, I decided to use MIM and BIM when calculating the success rate. The MIM and BIM
attacks are only made for the L∞ norm, and thus only this norm will be used for the success
rate.

A problem with the success rate is that it penalizes neural networks with low natural accu-
racy as the neural network’s initial accuracy limits the maximum success rate. The adversarial
error overcomes this as the success rate is subtracted from the initial accuracy. However, this
penalizes neural networks with high accuracy as they need a higher success rate to keep the er-
ror low. To overcome this, I decided to use the success rate, but divide it by the initial accuracy
to account for lower accuracy neural networks.

4.3.5 Datasets
To ensure that the results from the experiments were generalizable, I chose to have six different
data sets to train neural networks and measure robustness on. It was important that the data sets
were different enough to ensure generalization. However, they also had to be simple enough for
the convolutional neural networks to classify nearly all instances in the sets correctly.

Four metrics for choosing data sets that I expected could be relevant for the end robustness,
were used when selecting the data sets. The first metric was content as different image contents
may be easier or harder to create adversarial examples, causing the neural networks to have
different robustness levels. The second metric was the number of classes. I expect this to be
relevant for the robustness since increasing the number of classes increases the attack surface of
the neural networks, giving the attacker more ways to fool the neural network. The third metric
is the number of color channels. Having three color channels (RGB) instead of one (gray-scale)
gives the attack algorithm more input to distort, thus making it likely to affect the robustness.
The fourth metric is the complexity of the data set or how easy the data set is to learn for the
neural networks. I believe results would generalize to almost any dataset if it generalized over
datasets with differences in all these metrics.

The data sets chosen were MNIST, Sign Language MNIST (SLM), Caltech 101 silhou-
ettes(CS), Rock-Paper-Scissors(RPS), Cifar, and the German Traffic Sign Recognition Bench-
mark(GTSRB). The datasets and the metrics used when choosing them are listed in table 4.6.

MNIST

The MNIST data set of LeCun and Cortes (2010) is a well known and well-tested data set. It
consists of handwritten numbers stored in 28 by 28 pixels gray-scale images and has ten classes,
which depicts the first numbers from zero to nine, as seen in figure 4.1. The MNIST data set
consists of many samples and is a fairly easy data set for the neural networks to learn. To
boost the accuracy of the networks, I added vertical and horizontal augmentation when training,
which is applied before each batch. This shifts the images up to 10% of the images’ height and
width in the vertical and horizontal direction.

Figure 4.1: The different classes from the MNSIT data set.



Sign language MNIST

The SLM dataset4 depicts 24 of the 26 sign language letters from the English sign alphabet
(J and Z require motion). The images are 28 by 28 pixels and in gray-scale. This data set is,
like MNIST, fairly easy for convolutional neural networks to learn and with a lot of samples.
However, with more classes than MNIST, it is slightly more complex. For this data set, I have
added the same augmentation as with MNIST. Ten of the classes can be seen in figure 4.2

Figure 4.2: Ten classes from the Sign language data set.

Caltech 101 silhouettes

The CS dataset5 contains the silhouettes from the Caltech 101 dataset of Fei-Fei et al. (2006).
In consists of 101 different classes in 28 by 28 pixels wide grayscale images. This data set has
only 8671 samples, which gives an average of 86 images per class. Because of this and the
similarities between some of the classes, CS is a hard data set to learn for the neural networks.
To increase the accuracy, I added augmentation. The augmentation consisted of rotating the
images up to 15 degrees in either direction, shifting the images up to 15% in the horizontal
and vertical directions, shearing them up to 15%, zooming in up to 15% of the image size and
flipping the image horizontally 50% of the time before each batch. Ten of the classes from the
Caltech 101 silhouettes data set can be seen in figure 4.3.

Figure 4.3: Ten classes from the Caltech 101 silhouettes data set.

Rock paper scissor

The RPS data set of de la Bruère-Terreault consists of images depicting the three legal moves
from the game "rock paper scissor." The dataset consists of 2188 samples of 300 by 200 pixel
RGB images, but the images were resized to 60 by 60 pixels. Due to the few classes, this dataset
is less complex than CS. Since the images are larger than SLM, and it has three channels, I
expected RPS to be harder for the neural networks to learn than the SLM dataset. The same
augmentation as with CS was done on this dataset, in addition to vertical flipping. The classes
of the RPS dataset can be seen in figure 4.4

4https://www.kaggle.com/datamunge/sign-language-mnist
5https://people.cs.umass.edu/ marlin/data.shtml

https://www.kaggle.com/datamunge/sign-language-mnist
https://people.cs.umass.edu/~marlin/data.shtml


Figure 4.4: The classes from the RPS data set.

Cifar

The Cifar dataset of Krizhevsky et al. consists of ten classes of various vehicle types and
animals. There are 50000 different samples in the dataset, which are 32 by 32 pixel RGB
images. I expected this dataset to be harder to learn than RPS as it has more classes. The same
augmentation used on CS is used for this dataset. The classes of the Cifar dataset can be seen
in figure 4.5

Figure 4.5: The classes from the Cifar data set.

GTSRB

The GTSRB dataset of Stallkamp et al. (2012) consists of different traffic signs. The dataset has
39209 different RGB images of various sizes, which were reshaped to 32 by 32 pixels, and has
43 classes. I expected this dataset to be more complex than Cifar as it has more classes. The
augmentation used on this dataset was 5% rotation, 10% zoom, and 10% vertical and horizontal
shift. Ten of the GTSRB classes can be seen in figure 4.6.

Figure 4.6: Ten classes from the GTSRB data set.

Data set Content Classes Color Complexity
Channels

MNIST Numbers 10 1 Low
Sign Language Sign language letters 24 1 Low/meduim
Caltech 101 silhouettes Silhouettes 101 1 High
RPS Hands 3 3 Medium
Cifar Vehicles and animals 10 3 Medium/high
GTSRB Signs 43 3 High

Table 4.6: The content, number of classes, number of samples, and expected complexity of the datasets
used in the experiments.



4.3.6 Experimental Setup
My experiments were done on The NTNU IDUN HPC cluster6. The code for running the
experiments can be found on github7 along with the python libraries used in the code and their
version number. The slurm files used to run on the IDUN cluster can also be found in the
repository. For my experiments, I used python version 3.7.2. and TensorFlow version 1.13.1.

6https://www.hpc.ntnu.no/idun
7https://github.com/halvorbmundal/What-causes-robustness-in-neural-networks

https://www.hpc.ntnu.no/idun
https://github.com/halvorbmundal/What-causes-robustness-in-neural-networks


Chapter 5
Results

5.1 Accuracy
In figure 5.1, the accuracies of the neural networks with more than 50% accuracy are plotted
against the lower bounds. We see that for most of the datasets, the majority of the neural
networks achieved over 95% accuracy, which was the threshold for discarding the networks,
as described in section 4.2.1. The Cifar and the CS datasets did not have any network with
more than 95% accuracy, and as a result, they were not used in the correlation analyses. In
the regression analyses, the accuracy was used as one of the independent variables for those
datasets.

5.2 Results from exploring RQ1 and RQ2
In order to answer RQ1 and RQ2, the effect of the depth and the activation functions on the
neural networks’ robustness were tested as described in section 4.2.1 and 4.2.2. To thoroughly
examine the effect of these parameters, the lower bound was calculated on three norms. The
upper bound was calculated using both the C&W and the HSJA algorithms on three and two
norms, respectively, and the success rate was calculated using BIM and MIM as attacking al-
gorithms. In total, ten regression analyses on six data sets, and ten correlation analyses on four
data sets were conducted to get a thorough understanding of the effect of the depth and the
activation functions on the neural networks’ robustness.

5.2.1 Lower bound of the datasets
Only some of the data from the regression analyses using lower bound as the dependant variable
are listed in this section. For a complete list see appendix section A.

The effect of the neural networks’ depth on the lower bound

From the correlation analyses in table 5.1, we see that the lower bound is negatively correlated
with the depth for all datasets and on all norms. Additionally, every coefficient has a statistically
significant p-value. However, the correlation coefficient is only around 0.5, which is not high.
In the regression analyses in table 5.3 and 5.4, we see that the depth affects the lower bound
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Figure 5.1: Lower bounds of the different datasets plotted against the accuracy.



negatively for all three norms on the CS and Cifar datasets as well, with statistically significant
p-values. Because of this, we can reject NH1 and accept H1.

L∞ L2 L1

Dataset Coefficient P-value Coefficient P-value Coefficient P-value
MNIST -0.59152 0.0000 -0.73637 0.0000 -0.66927 0.0000

SL -0.52772 0.0000 -0.64872 0.0000 -0.58016 0.0000
RSP -0.69719 0.0000 -0.49804 0.0000 -0.38221 0.0000

GTSRB -0.77327 0.0000 -0.80504 0.0000 -0.68218 0.0000
Combined -0.43186 0.0000 -0.51825 0.0000 -0.43018 0.0000

Table 5.1: The coefficient and p-values from linear correlation analyses between the neural networks’
depth and the lower bound on the l∞, L2 and L1 norm.

The effect of the neural networks’ activation function on the lower bound

Table 5.2 shows the mean of the neural networks when the different activation functions are
used and the p-value of the t-test between relu and the other activation functions. We see
that the lower bound when using arctan and tanh is much smaller than when using relu, and
that the t-test shows the difference is statistically significant. The average lower bound when
using sigmoid is slightly higher than when using relu, although the difference is not statistically
significant for the L∞ norm. We cannot reject NH6 from the results as the differences are not
statistically significant.

In the regression, relu is represented by the absence of the other activation functions. In
table 5.3 and 5.4, we see that sigmoid increase the lower bound when used instead of relu,
while arctan and tanh decrease the lower bound.



L∞ L2 L1

Activation Dataset Mean P-value Mean P-value Mean P-value
function

Relu

Mnist 0.01807 - 0.09671 - 0.24789 -
SL 0.00753 - 0.04941 - 0.14497 -

RPS 0.00744 - 0.06902 - 0.27362 -
GTSRB 0.00698 - 0.07381 - 0.28952 -

Combined 0.01034 - 0.07161 - 0.22662 -

Arctan

Mnist 0.00923 0.0000 0.07775 0.0000 0.22619 0.0361
SL 0.00315 0.0000 0.02929 0.0000 0.10022 0.0000

RPS 0.00452 0.0000 0.07727 0.0877 0.37030 0.0004
GTSRB 0.00445 0.0000 0.05406 0.0000 0.19226 0.0000

Combined 0.00590 0.0000 0.05443 0.0000 0.17688 0.0000

Sigmoid

Mnist 0.01763 0.3306 0.11188 0.0000 0.31530 0.0000
SL 0.00636 0.0000 0.04775 0.2494 0.15425 0.1276

RPS 0.01159 0.0000 0.18103 0.0000 0.81428 0.0000
GTSRB 0.00707 0.6589 0.07594 0.4181 0.27736 0.3843

Combined 0.01083 0.0673 0.08587 0.0000 0.28372 0.0000

Tanh

Mnist 0.00898 0.0000 0.07527 0.0000 0.21769 0.0029
SL 0.00318 0.0000 0.02917 0.0000 0.09854 0.0000

RPS 0.00471 0.0000 0.07792 0.0517 0.35967 0.0008
GTSRB 0.00426 0.0000 0.05001 0.0000 0.17214 0.0000

Combined 0.00575 0.0000 0.05286 0.0000 0.16972 0.0000

Table 5.2: The mean lower bound when using the different activation functions on the l∞, L2 and L1

norm. The p-values come from a t-test between the mean lower bound of neural networks using relu and
neural networks using the activation function in question.

Caltech 101 silhouettes
L∞ L2 L1

Coefficient P-value Coefficient P-value Coefficient P-value
Bias 0.03412 0.0000 0.18850 0.0000 0.45561 0.0000
Accuracy -0.01697 0.0000 -0.13209 0.0000 -0.44145 0.0000
Depth -0.00305 0.0000 -0.01907 0.0000 -0.05162 0.0000
Filter -0.00001 0.3547 -0.00019 0.0000 -0.00089 0.0000
Arctan -0.00127 0.0063 0.00849 0.0199 0.03545 0.0039
Sigmoid 0.00253 0.0000 0.04656 0.0000 0.19225 0.0000
Tanh -0.00172 0.0001 0.00475 0.1770 0.02581 0.0288

Table 5.3: The coefficient and p-values from linear regression of the lower bounds for neural networks
trained on the CS set.



Cifar
L∞ L2 L1

Coefficient P-value Coefficient P-value Coefficient P-value
Bias 0.01416 0.0000 0.16034 0.0000 0.57363 0.0000
Accuracy -0.01221 0.0000 -0.15834 0.0000 -0.62755 0.0000
Depth -0.00076 0.0000 -0.00895 0.0000 -0.03613 0.0000
Filter 0.00001 0.0000 0.00012 0.0000 0.00050 0.0000
Arctan -0.00097 0.0000 -0.01105 0.0000 -0.04784 0.0000
Sigmoid 0.00097 0.0000 0.01286 0.0000 0.05894 0.0000
Tanh -0.00104 0.0000 -0.01219 0.0000 -0.05277 0.0000

Table 5.4: The coefficient and p-values from linear regression of the lower bounds for neural networks
trained on the Cifar set.

5.2.2 C&W upper bound
Only some of the data from the regression analyses using the C&W based upper bounds as the
dependant variable are listed in this section. For a complete list, see appendix section B.

The effect of the neural networks’ depth on the C&W based upper bound

In the correlation analyses in table 5.5 we see that the depth is positively correlated with the
C&W upper bound on the L∞ norm, less so on the L2 norm and negatively correlated on the
L1 norm. For RPS, the depth is negatively correlated with the C&W upper bound on the L2

norm. From the table, we see that when we combine the data from the different datasets, the
correlation between depth and the C&W upper bound is not statistically significant on the L1

norm. Because of this, we cannot reject NH2.
For the regression analyses in table 5.7 and 5.8, we see that the depth is negatively correlated

with the C&W upper bound for all norms on the Cifar dataset.

L∞ L2 L1

Dataset Coefficient P-value Coefficient P-value Coefficient P-value
MNIST 0.27709 0.0000 0.07917 0.0410 -0.30177 0.0000

SL 0.33206 0.0000 0.10822 0.0010 -0.05350 0.1109
RSP 0.08211 0.1019 -0.12942 0.0173 -0.27169 0.0000

GTSRB 0.43972 0.0000 0.15081 0.0003 -0.28360 0.0000
Combined 0.15268 0.0000 0.06817 0.0007 0.01196 0.5555

Table 5.5: The coefficient and p-values from linear correlation analyses between depth and the C&W
upper bound on the l∞, L2 and L1 norm.

The effect of the neural networks’ activation function on the C&W based upper bound

Table 5.6 shows the mean C&W upper bound of the neural networks when the different ac-
tivation functions are used and the p-value of the t-test between relu and the other activation
functions. We see that the lower bound when using arctan, tanh, and sigmoid is smaller than
when using relu, and that the t-test shows the difference is statistically significant. In the re-
gression of CS and Cifar in table 5.7 and 5.8, sigmoid has a positive impact on the C&W upper



bound when compared to relu, while arctan and tanh have a negative impact on the C&W upper
bound. Since the values from the regression indicate that the more non-linear activation func-
tions are both have a more and less positive on the C&W upper bound, the NH7 hypothesis
cannot be rejected.

L∞ L2 L1

Activation Dataset Mean P-value Mean P-value Mean P-value
function

Relu

Mnist 0.08265 - 0.92240 - 6.66316 -
SL 0.02226 - 0.11828 - 2.57310 -

RPS 0.02626 - 1.39991 - 28.27362 -
GTSRB 0.02837 - 0.53838 - 8.68137 -

Combined 0.03682 - 0.65369 - 10.06971 -

Arctan

Mnist 0.04181 0.0000 0.40631 0.0000 5.31840 0.0000
SL 0.01080 0.0000 0.03204 0.0000 1.40806 0.0000

RPS 0.01501 0.0000 0.68434 0.0000 21.42987 0.0000
GTSRB 0.01644 0.0000 0.18714 0.0000 4.57143 0.0000

Combined 0.02375 0.0000 0.24481 0.0000 5.19733 0.0000

Sigmoid

Mnist 0.06561 0.0000 0.72780 0.0000 6.24042 0.0318
SL 0.01611 0.0000 0.07308 0.0000 2.12608 0.0000

RPS 0.02253 0.0000 1.30038 0.2437 28.23207 0.9688
GTSRB 0.02224 0.0000 0.35017 0.0000 7.12563 0.0000

Combined 0.03260 0.0011 0.44413 0.0000 7.31726 0.0000

Tanh

Mnist 0.04191 0.0000 0.45300 0.0000 5.27453 0.0000
SL 0.01088 0.0000 0.03286 0.0000 1.39086 0.0000

RPS 0.01615 0.0000 0.73164 0.0000 22.84184 0.0000
GTSRB 0.01544 0.0000 0.16724 0.0000 4.38462 0.0000

Combined 0.02343 0.0000 0.26180 0.0000 5.20923 0.0000

Table 5.6: The mean C&W upper bound when using the different activation functions on the l∞, L2

and L1 norm. The p-values come from a t-test between the mean C&W upper bound of neural networks
using relu and neural networks using the activation function in question.

Caltech 101 silhouettes
L∞ L2 L1

Coefficient P-value Coefficient P-value Coefficient P-value
Bias 0.08467 0.0000 1.40068 0.0000 11.02496 0.0000
Accuracy -0.07539 0.0000 -2.25382 0.0000 -11.77071 0.0000
Depth 0.00111 0.1145 0.01518 0.4178 -0.54151 0.0000
Filter 0.00006 0.1648 0.00157 0.1992 -0.00417 0.5207
Arctan -0.01862 0.0000 -0.37565 0.0000 -0.22600 0.6328
Sigmoid 0.00505 0.0289 0.23417 0.0002 1.22411 0.0002
Tanh -0.01847 0.0000 -0.31045 0.0003 -0.40771 0.3706

Table 5.7: The coefficient and p-values from linear regression of the C&W upper bounds for neural
networks trained on the CS set.



Cifar
L∞ L2 L1

Coefficient P-value Coefficient P-value Coefficient P-value
Bias 0.01982 0.0000 0.50961 0.0000 13.19607 0.0000
Accuracy -0.01746 0.0000 -0.53687 0.0000 -12.61983 0.0000
Depth -0.00042 0.0000 -0.01927 0.0000 -0.72953 0.0000
Filter 0.00001 0.0001 0.00063 0.0000 0.02519 0.0032
Arctan -0.00213 0.0000 -0.04941 0.0000 -0.07225 0.9036
Sigmoid 0.00190 0.0000 0.05023 0.0000 1.04111 0.0059
Tanh -0.00212 0.0000 -0.04943 0.0000 -0.58483 0.3150

Table 5.8: The coefficient and p-values from linear regression of the C&W upper bounds for neural
networks trained on the Cifar set.

5.2.3 HSJA upper bound
Only some of the data from the regression analyses using the HSJA upper bound as the depen-
dant variable are listed in this section. For a complete list see appendix section C.

The effect of the neural networks’ depth on the HSJA upper bound

We see from table 5.9 that the neural networks’ depth is positively correlated with the HSJA
upper bound on the L∞ norm. On the L2 norm, the only statistically significant coefficient
shows that the depth is negatively correlated with the HSJA upper bound. From the table, we
see that when we combine the data from the different datasets, the correlation between depth
and the HSJA upper bound is not statistically significant on the L2 norm. Because of this, we
cannot reject NH3.

From the regression analysis in table 5.11 and 5.12, we see that the depth has a negative
impact on the CS and Cifar data sets on both the L∞ norm and the L2 norm.

L∞ L2

Dataset Coefficient P-value Coefficient P-value
MNIST 0.28794 0.0000 -0.04949 0.1096

SL 0.35431 0.0000 0.03959 0.1893
RSP -0.05886 0.2856 -0.21808 0.0001

GTSRB 0.25217 0.0000 0.00775 0.8462
Combined 0.16425 0.0000 0.00768 0.6698

Table 5.9: The coefficient and p-values from linear correlation analyses between depth and the HSJA
upper bound on the l∞, L2 and L1 norm.

The effect of the neural networks’ activation function on the HSJA upper bound

Table 5.10 shows the mean HSJA upper bound of the neural networks when the different ac-
tivation functions are used and the p-value of the t-test between relu and the other activation
functions. We that the lower bound when using arctan, tanh, and sigmoid is smaller than when
using relu, and that the t-test shows the difference is statistically significant. In the regression of
Cifar in table 5.11 and 5.12, sigmoid has a positive impact on the HSJA upper bound when com-
pared to relu, while arctan and tanh have a negative impact on the HSJA upper bound. Since the



values from the regression indicate that the more non-linear activation functions are both have
a more and less positive on the HSJA upper bound, the NH8 hypothesis cannot be rejected.

L∞ L2

Activation Dataset Mean P-value Mean P-value
function

Relu

Mnist 0.09418 - 1.10281 -
SL 0.02385 - 0.14003 -

RPS 0.07576 - 2.61424 -
GTSRB 0.04270 - 0.62663 -

Combined 0.05573 - 0.95679 -

Arctan

Mnist 0.05603 0.0000 0.57620 0.0000
SL 0.01192 0.0000 0.05079 0.0000

RPS 0.06592 0.0715 1.55991 0.0000
GTSRB 0.03650 0.1463 0.36724 0.0000

Combined 0.03633 0.0000 0.39351 0.0000

Sigmoid

Mnist 0.07437 0.0000 0.89403 0.0000
SL 0.01744 0.0000 0.10446 0.0000

RPS 0.10946 0.0000 3.17473 0.0057
GTSRB 0.03299 0.0008 0.53447 0.0004

Combined 0.04789 0.0000 0.72429 0.0000

Tanh

Mnist 0.05441 0.0000 0.54569 0.0000
SL 0.01166 0.0000 0.04851 0.0000

RPS 0.06467 0.0271 1.60101 0.0000
GTSRB 0.03321 0.0171 0.30962 0.0000

Combined 0.03478 0.0000 0.37187 0.0000

Table 5.10: The mean HSJA upper bound when using the different activation functions on the l∞, L2

and L1 norm. The p-values come from a t-test between the mean HSJA upper bound of neural networks
using relu and neural networks using the activation function in question.

Caltech 101 silhouettes
L∞ L2

Coefficient P-value Coefficient P-value
Bias 0.08220 0.0000 1.40228 0.0000
Accuracy -0.04893 0.0009 -1.16000 0.0002
Depth -0.00227 0.0001 -0.13968 0.0000
Filter 0.00020 0.0000 0.00127 0.1685
Arctan -0.00694 0.0135 -0.01012 0.8643
Sigmoid -0.02230 0.0000 -0.14500 0.0004
Tanh -0.00999 0.0002 -0.11030 0.0532

Table 5.11: The coefficient and p-values from linear regression of the HSJA upper bound for neural
networks trained on the CS set.



Cifar
L∞ L2

Coefficient P-value Coefficient P-value
Bias 0.02112 0.0000 0.69728 0.0000
Accuracy -0.01499 0.0388 -0.69512 0.0000
Depth -0.00021 0.5739 -0.03042 0.0000
Filter 0.00002 0.4564 0.00060 0.0062
Arctan -0.00189 0.2730 -0.05714 0.0002
Sigmoid 0.00321 0.0033 0.06643 0.0000
Tanh -0.00170 0.3122 -0.05696 0.0001

Table 5.12: The coefficient and p-values from linear regression of the HSJA upper bound for neural
networks trained on the Cifar set.

5.2.4 BIM success rate
Only some of the data from the analyses regression using the BIM success rate as the dependant
variable are listed in this section. For a complete list see appendix section D.

The effect of depth on the BIM success rate

From table 5.13, we see that the depth is positively correlated with the BIM success rate and
has a statistically significant p-value for all the datasets in the correlation analyses, although the
coefficient is not high. However, in the regression analyses listed in table 5.15, we see that for
the CS and Cifar datasets, the depth of the neural network is negatively correlated with the BIM
success rate, with statistically significant p-values. Because of this, we cannot reject NH4 as
the different datasets behave differently.

Dataset Coefficient p-value
MNIST 0.3508 0.0000

SLM 0.4275 0.0000
RPS 0.1934 0.0030

GTSRB 0.3594 0.0000
Combined 0.34554 0.0000

Table 5.13: The coefficient and p-values from linear correlation analyses between the number of depth
in the neural networks and their BIM success rate.

The effect of the activation functions on the BIM success rate

Table 5.14 shows the mean BIM success rate of the neural networks when the different acti-
vation functions are used and the p-value of the t-test between relu and the other activation
functions. We that the lower bound when using arctan, tanh, and sigmoid is smaller than when
using relu, and that the t-test shows the difference is statistically significant. In the regression
of Cifar in table 5.15, sigmoid has a positive impact on the BIM success rate when compared to
relu, while arctan and tanh have a negative impact. Since the values from the regression indicate
that the more non-linear activation functions are both have a more and less positive on the BIM
success rate, the NH9 hypothesis cannot be rejected.



Dataset Relu Arctan Sigmoid Tanh

Coef

MNIST 0.8387 0.4240 0.7558 0.4075
SLM 0.6514 0.2350 0.3934 0.2024
RPS 0.5301 0.0314 0.4000 0.1797

GTSRB 0.5643 0.3377 0.5664 0.3035
Combined 0.65554 0.34059 0.58246 0.31928

P-value

MNIST - 0.0000 0.0000 0.0000
SLM - 0.0000 0.0000 0.0000
RPS - 0.0000 0.0107 0.0000

GTSRB - 0.0000 0.9356 0.0000
Combined - 0.0000 0.0000 0.0000

Table 5.14: The mean BIM success rate when using the different activation functions on the l∞, L2 and
L1 norm. The p-values come from a t-test between the mean BIM success rate of neural networks using
relu and neural networks using the activation function in question.

Dataset Bias Original Depth Filters Arctan Sigmoid Tanh
accuracy

Coef
CS 0.6274 -0.2419 -0.0142 0.0009 -0.1991 -0.2229 -0.1952

Cifar 0.5918 -0.4990 -0.0275 0.0005 -0.1414 0.2216 -0.1636

P-value
CS 0.0000 0.0328 0.0010 0.0009 0.0000 0.0000 0.0000

Cifar 0.0000 0.0007 0.0001 0.2313 0.0000 0.0000 0.0000

Table 5.15: The coefficient and p-values from linear regression of the BIM success rate for neural
networks trained on the cifar and CS datasets.

5.2.5 MIM success rate
Only some of the data from the regression analyses using the MIM success rate as the dependant
variable are listed in this section. For a complete list see appendix section E.

The effect of depth on the MIM success rate

From table 5.16, we see that the depth is positively correlated with the MIM success rate and
has a statistically significant p-value for all the datasets in the correlation analyses. However,
in the regression analyses listed in table 5.18, we see that for the Cifar dataset, the depth of the
neural network is negatively correlated with the MIM success rate, with a statistically significant
p-value. Because of this, we cannot reject NH5 as the different datasets behave differently.

Dataset Coefficient p-value
MNIST 0.3647 0.0000

SLM 0.3712 0.0000
RPS 0.2293 0.0004

GTSRB 0.2450 0.0000

Table 5.16: The coefficient and p-values from linear correlation analyses between the number of depth
in the neural networks and their MIM success rate.



The effect of the activation functions on the MIM success rate

Table 5.17 shows the mean MIM success rate of the neural networks when the different ac-
tivation functions are used and the p-value of the t-test between relu and the other activation
functions. We that the lower bound when using arctan, tanh, and sigmoid is smaller than when
using relu, and that the t-test shows the difference is statistically significant. In the regression
of Cifar in table 5.18, sigmoid has a positive impact on the MIM success rate when compared
to relu, while arctan and tanh have a negative impact on the MIM success rate. Since the values
from the regression indicate that the more non-linear activation functions are both have a more
and less positive on the MIM success rate, the NH8 hypothesis cannot be rejected.

Dataset Relu Arctan Sigmoid Tanh

Coef

MNIST 0.8560 0.4378 0.7736 0.4355
SLM 0.6217 0.2820 0.4778 0.3163
RPS 0.6284 0.0924 0.4185 0.2623

GTSRB 0.6324 0.4334 0.6043 0.4072
Combined 0.67545 0.35577 0.60079 0.37445

P-value

MNIST - 0.0000 0.0000 0.0000
SLM - 0.0000 0.0000 0.0000
RPS - 0.0000 0.0000 0.0000

GTSRB - 0.0000 0.1607 0.0000
Combined - 0.0000 0.0000 0.0000

Table 5.17: The mean MIM success rate when using the different activation functions on the l∞, L2 and
L1 norm. The p-values come from a t-test between the mean MIM success rate of neural networks using
relu and neural networks using the activation function in question.

Dataset Bias Original Depth Filters Arctan Sigmoid Tanh
accuracy

Coef
CS 0.6289 -0.2287 -0.0013 0.0008 -0.2062 -0.1959 -0.2042

Cifar 0.7371 -0.5117 -0.0328 0.0011 -0.1470 0.1414 -0.1650

P-value
CS 0.0000 0.0153 0.7091 0.0003 0.0000 0.0000 0.0000

Cifar 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 5.18: The coefficient and p-values from linear regression of the MIM success rate for neural
networks trained on the cifar and CS datasets.

5.2.6 Summary of results concerning RQ1 and RQ2
The effect of the neural networks’ depth on their robustness

The depth did not affect the lower bound any differently when considering the distance norms
used, while both the C&W upper bound and the HSJA upper bound had a more negative correla-
tion with the depth when the norm decreased. Only the lower bound and the C&W upper bound
were used to measure the L1 robustness, and in both cases, there was a negative correlation be-
tween the measured robustness and the depth. For the L2 norm, the lower bound was negatively
correlated with the depth, the BIM success rate did not have statistically significant p-values,



and the C&W upper bound was positively correlated with the depth. On the L∞ norm, the C&W
upper bound, the BIM success rate, and the MIM success rate was positively correlated with
the depth for all datasets except cifar and CS, while the lower bound was negatively correlated
for all datasets. In table 5.19 we see that of the null hypotheses concerning the hyperparameters
effect on the robustness from section 4.2.1, only NH1 could safely be rejected.

Hypothesis Rejected
NH1 Yes
NH2 No
NH3 No
NH4 No
NH5 No

Table 5.19: The hypotheses concerning the effect of the depth of the neural networks on their robustness.

The effect of the neural networks’ activation function on their robustness

From the results, it is clear that neural networks using arctan and tanh as activation function has
lower robustness for all estimation methods than those using relu, and that neural networks using
sigmoid have robustness much closer to those using relu. When using the sigmoid function,
the neural networks had higher lower bounds than when using relu. However, this was not
statistically significant on the L∞ norm.

None of the alternative hypotheses concerning the activation functions could be accepted,
although H7, H8, H9, and H10 could be accepted if the results from the regression of the Cifar
and CS datasets are removed. If so, then relu has a positive effect on the HJSA upper bound,
C&W upper bound, BIM success rate, and MIM success rate when compared to the non-linear
activation functions.

Hypothesis Rejected
NH6 No
NH7 No
NH8 No
NH9 No

NH10 No

Table 5.20: The hypotheses concerning the effect of the activation functions of the neural networks on
their robustness.

5.3 Results from exploring RQ3
To answer RQ3, the effect of the depth and the number of filters, on the neural networks’
robustness were tested as described in section 4.2.3. As the effect of the depth on the robustness
was covered when testing RQ1 and RQ2, only the number of filters considered was considered
in the following section. As with RQ1 and RQ2, ten regression analyses on six data sets, and
ten correlation analyses on four data sets were conducted.



5.3.1 The effect of the neural networks’ width on the lower bound
From the correlation analyses in table 5.21, we see that the correlation coefficients with statisti-
cal significance are both positive and negative, but have high p-values. All the coefficients from
the regression analyses listed in table 5.3 and 5.4. When all the datasets are combined, we see
that the coefficients on the L2 norm and the L1 norm are statistically significant, but also very
low. We see that in some cases, such as with MNIST, the correlation gives high p-values, while
the regression gives low p-values. This indicates that we must adjust for the other variables
used in the regression. From the results of the regression analyses, we see that the number of
filters affects the lower bound both negatively and positively. The NH11 hypothesis cannot be
rejected from the results as the correlations on the L∞ norm is not significant, and the regression
coefficients are both positive and negative.

L∞ L2 L1

Dataset Coefficient P-value Coefficient P-value Coefficient P-value
MNIST 0.04947 0.0673 -0.01701 0.5339 -0.03326 0.2257

SL 0.05510 0.0363 -0.02665 0.3119 -0.03782 0.1532
RSP 0.17801 0.0003 -0.18513 0.0005 -0.25039 0.0000

GTSRB 0.10571 0.0068 0.00138 0.9719 0.02488 0.5266
Combined 0.01592 0.3222 -0.09754 0.0000 -0.12692 0.0000

Table 5.21: The coefficient and p-values from linear correlation analyses between the number of filters
and the lower bound on the l∞, L2 and L1 norm.

5.3.2 The effect of the neural networks’ width on the C&W upper bound
From the correlation analyses in table 5.22, we see that the C&W upper bound is positively
correlated with the number of filters for all datasets and all norms. When we combine the
results from the datasets, the coefficients for the L2 and L1 norm change sign. This could be
because the correlation is weak. Because of this, we cannot conclude that the width correlates
with the C&W upper bound, and NH12 is not rejected. We also see in table 5.7 and 5.8 that the
number of filters affects the C&W upper bound positively on the Cifar and CS datasets with the
exception of CS on the L1 norm.

L∞ L2 L1

Dataset Coefficient P-value Coefficient P-value Coefficient P-value
MNIST 0.18628 0.0000 0.23345 0.0000 0.19848 0.0000

SL 0.28349 0.0000 0.32064 0.0000 0.31573 0.0000
RSP 0.22419 0.0000 0.14691 0.0068 0.02119 0.7044

GTSRB 0.29060 0.0000 0.36014 0.0000 0.34968 0.0000
Combined 0.10059 0.0000 -0.04157 0.0379 -0.17613 0.0000

Table 5.22: The coefficient and p-values from linear correlation analyses between the number of filters
and the C&W upper bound on the l∞, L2 and L1 norm.

5.3.3 The effect of the neural networks’ width on the HSJA upper bound
From the correlation analyses in table 5.23, we see that the HSJA upper bound is positively
correlated with the number of filters for all datasets and all norms except for the RPS dataset.



When we combine the correlations, we see that the p-value of the L∞ norm is not statistically
significant, and thus we cannot reject NH13. We also see that the statistically significant coeffi-
cient of the L2 norm is very low. In table 5.11 and 5.12, we see that the number of filters affects
the HSJA upper bound positively on the Cifar and CS datasets as well.

L∞ L2

Dataset Coefficient P-value Coefficient P-value
MNIST 0.17374 0.0000 0.18153 0.0000

SL 0.29375 0.0000 0.17561 0.0000
RSP -0.26031 0.0000 0.01767 0.7551

GTSRB 0.22128 0.0000 0.37827 0.0000
Combined -0.00194 0.9123 -0.08724 0.0000

Table 5.23: The coefficient and p-values from linear correlation analyses between the number of filters
and the HSJA upper bound on the l∞, L2 and L1 norm.

5.3.4 The effect of the neural networks’ width on the BIM success rate
From table 5.24, we see that there is a positive correlation between the number of filters and the
BIM success rate. From the regression analyses listed in table 5.15, we see that the number of
filters has a positive effect on the CS and Cifar datasets as well. Because of this, we can reject
NH14 and accept H14. However, we see that the coefficient is also low, which inticates a weak
correlation.

Dataset Coefficient P-value
MNIST 0.1149 0.0001
SLM 0.2794 0.0000
RPS 0.2620 0.0001
GTSRB 0.2447 0.0000
Combined 0.15110 0.0000

Table 5.24: The coefficient and p-values from linear correlation analyses between the number of filters
and the BIM success rate for neural networks trained on various datsets.

5.3.5 The effect of the neural networks’ width on the MIM success rate
From table 5.25, we see that there is a positive correlation between the number of filters and the
MIM success rate. From the regression analyses listed in table 5.18, we see that the number of
filters has a positive effect on the CS and Cifar datasets as well. Because of this, we can reject
NH14 and accept H14. However, we see that the coefficient is also low, which indicates a weak
correlation.



Dataset Coefficient P-value
MNIST 0.0984 0.0111
SLM 0.0777 0.0304
RPS 0.2336 0.0003
GTSRB 0.0698 0.0979
Combined 0.08985 0.0000

Table 5.25: The coefficient and p-values from linear correlation analyses between the number of filters
and the MIM success rate for neural networks trained on various datsets.

5.3.6 Summary of results concerning RQ3
In table 5.26, we see that there is only the NH14 and NH15 hypotheses from section 4.2.3 which
were rejected. For the other hypotheses, the p-values were too high, or the correlation differed
between the norms. We also see that for all the coefficients with statistical significance, the
correlation is low.

Hypothesis Rejected
NH11 No
NH12 No
NH13 No
NH14 Yes
NH15 Yes

Table 5.26: The hypotheses concerning the effect of the width of the neural networks on their robustness.

5.4 Results from exploring RQ4
This experiment was conducted to answer RQ4 to see if it is possible to push the decision
boundary of the neural networks. In table 5.27, we see the average lower bounds for the neural
networks trained on natural examples, and in table 5.28 and 5.29 we see the average lower
bounds for the same networks trained on adversarial examples. The ε is set to roughly 5 and 10
times the mean lower bounds measured for the neural networks without adversarial training. For
the largest epsilons, Cifar and CS are not shown as the neural networks did not converge during
the training. From the tables, we see a substantial increase in the average lower bound when the
neural networks are trained on adversarial neural networks. We also see that the accuracy on
natural examples, the examples not generated by an adversarial attack algorithm, stays roughly
the same when the neural networks are trained against adversarial examples. From table 5.30,
we see that the ε used when training neural networks on the BIM attack is strongly correlated
with the lower bound for all datasets. Additionally, the coefficients have very low p-values.
Because of this NH16 can be rejected and H16 accepted.



Dataset Lower bound Accuracy
MNIST 0.0183 99.1%
SLM 0.0062 100.0%
CS 0.0096 68.6%
RPS 0.0078 100.0%
Cifar 0.0017 76.2%
GTSRB 0.0068 99.5%

Table 5.27: The avrage lower bound and accuracy for the nerual networks without adversarial training.

Dataset ε Average Robustness Average natural Average adversarial
lower bound increase accuracy accuracy

MNIST 0.1 0.0761 417% 98.8% 96.8%
SLM 0.03 0.0187 302% 100.0% 99.6%
CS 0.05 0.0440 460% 67.4% 55.3%
RPS 0.04 0.0264 337% 96.3% 89.2%
Cifar 0.01 0.0080 465% 62.5% 45.3%
GTSRB 0.05 0.0283 414% 99.2% 90.1%

Table 5.28: The ε used for the adversarial training and the average lower bound and accuracy for the
nerual networks.

Dataset ε Average Robustness Average natural Average adversarial
lower bound increase accuracy accuracy

MNIST 0.2 0.1354 707% 98.6% 94.6%
SLM 0.06 0.0223 360% 99.9% 93.0%
RPS 0.08 0.0422 671% 97.9% 88.9%
GTSRB 0.1 0.0379 552% 98.7% 78.7%

Table 5.29: The ε used for the adversarial training and the average lower bound and accuracy for the
nerual networks.

Dataset Coefficient P-value
MNIST 0.9651 1.456e-39
SL 0.7203 9.816e-13
CS 0.9462 1.061e-21
RSP 0.9391 2.952e-26
Cifar 0.6179 1.276e-04
GTSRB 0.7847 5.567e-16

Table 5.30: The coefficients and p-values of the correlation between the ε used when training neural
networks and the neural networks’ lower bounds.



Chapter 6
Discussion

6.1 Changing the hyperparameters is not enough to create
robust neural networks

From the results, we see that the hyperparameters alone are not enough to create sufficiently
robust neural networks. If we look at GTSRB and the L∞ norm as an example, then according
to the coefficients from the lower bound regression, the largest lower bound within the hyper-
parameters used in the experiment is 0.010, a bit less than twice the average lower bound of
all the networks on the GTSRB dataset. The lower bound regression is listed in the appendix
table A.4 and the average lower bounds for the neural networks are listed in the appendix, table
A.5. The highest C&W upper bound we can get using the coefficients and the hyperparameters
from the regression is 0.049, slightly higher than twice the mean C&W upper bound. The C&W
regression is listed in the appendix, table B.4. We see the same for the other datasets with the
maximum lower and upper bounds from optimal hyperparameters being close to twice the mean
bounds for the neural networks. It should be noted that the parameters used to maximize the
lower bound are not the same as those used to maximize the upper bound. The hyperparameters
that maximize both the upper and lower bounds would yield much lower bounds. In figure 6.1
we see adversarial attacks on the GTSRB set using the BIM attack with ε equal to 0.01 and
0.05 on the L∞ norm. As we can see, the images are quite similar, and a self-driving car fooled
by the ε = 0.05 attack would not be considered safe. This is a bit better on the data sets that
have inherently more robust neural networks such as MNIST, where the neural networks have
a maximum upper bound of 0.111, given the hyperparameters used in the experiment and the
coefficients from the regression listed in appendix table B.1. However, it is also worse for the
data sets that have less robust neural networks such as Cifar and Sign language.

The results of Burkard and Lagesse (2019) show that the depth, width, and activation func-
tions of the neural networks have a low impact on the neural networks’ robustness. This is
in line with my results, making it likely that these hyperparameters are unimportant for the
robustness of neural networks.

6.2 Implication of the results of RQ1 and RQ2
To answer RQ1 and RQ2, the analyses in section 5.2 were conducted to determine how the
depth and the activation function of the neural networks affect their robustness. If neural net-
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Figure 6.1: Adversarial examples created using the BIM attack with ε equal to 0.01 and 0.05 on the L∞
norm on five images from the GTSRB set. The upper row contains the original images, while the middle
row contains the adversarial images with L∞ distance 0.01, and the bottom row contains the adversarial
images with L∞ distance 0.05.

works are vulnerable to adversarial examples because they are too linear, making the neural
networks deeper and using a more non-linear activation function should increase the robustness
of the neural networks. The opposite should happen if the neural networks are vulnerable to
adversarial examples because they are too non-linear.

6.2.1 Depth
From the results, we see there were only we see that only the NH1 hypothesis could safely be
rejected. Thus, it cannot be concluded that the depth of neural networks correlates with their
robustness. This aligns with the results of Su et al. (2018), who find that neural networks within
the same architectural family have similar robustness regardless of depth. Since the best case
hyperparameters did not result in sufficient robustness, and the result does not show correlation,
it seems unlikely that the depth of neural networks affects their robustness to more than an
insignificant extent.

6.2.2 Activation functions
From the results from section 5.2, none of the null hypotheses could be rejected unless the
regression analyses of Cifar and CS were discarded. If they are discarded, the results indicate
that using relu as activation function produces neural networks more robust than if the more non-
linear activation functions are used for all estimation methods except for the lower bound. In
the regression of Cifar and CS, the accuracy of the neural networks were used as an independent



variable to controll for the accuracy’s effect on the robustness. Since the accuracy is correlated
with the activation functions, there is multicollinearity in the regression analyses, which can
affect the coefficients. Because of this, it is probable that the regression of Cifar and CS cannot
be trusted. If the regressions are discarded, then the non-linearity hypothesis from 2.2.1 is
more likely than the linearity hypothesis. However, the difference between the effect of relu
and sigmoid on the robustness estimations is small. As discussed in section 6.1, the best case
effect of all the hyperparameters is small. Also, the lower bound increased when the neural
networks had sigmoid as activation function as opposed to relu. Because of this, the non-
linearity hypothesis seems unlikely as well.

6.3 Implication of the results of RQ3
The analyses in section 5.3 were conducted to answer RQ3 and determine how the width affects
the neural networks’ robustness. If the neural networks’ vulnerability stems from overfitting,
increasing the depth and width should reduce the networks’ robustness.

From the results, we see that only NH14 and NH15 could be rejected, and we cannot con-
clude that the width of neural networks affects their robustness. The results of Madry et al.
(2017) showed that the width neural networks were positively correlated with their success rate
against the BIM attack. This is in line with my findings. Still, I find that the correlation is
weak, and I am unable to reproduce the correlation with the upper and lower bound robustness
estimations.

The result of Su et al. (2018) show that the size of the neural networks model does not affect
the robustness much. This fits better with my results, as the results with statistical significance
show that the correlation is low. This, combined with the result discussed in section 6.1, that
the best-case robustness from the hyperparameters is still low, makes it unlikely that the width
of the neural networks affects their robustness much.

The results of Burkard and Lagesse (2019) show that the pool size of the max-pooling
and dropout increased the robustness of neural networks. These parameters are often used to
reduce overfitting of neural networks. However, if neural networks’ vulnerability to adversarial
examples stems from overfitting, then the width and depth should affect the robustness. Both
my results and the results of Burkard and Lagesse (2019) show that this is not the case. Thus
the overfitting hypothesis seems unlikely.

6.4 Implication of the results of RQ4
The experiment in section 5.4 was conducted to answer RQ4, to see how the training input
affects the neural networks’ robustness. From the results of the experiment, we see that the
lower bound increases considerably on all datasets when the neural networks are trained on ad-
versarial examples created by the BIM attack algorithm. For the GTSRB, the lower bound gets
increased to 0.0379, which is almost four times larger than the lower bound of the best possi-
ble combination of hyperparameters. We also see that the ε of the attack is strongly correlated
with lower bound, with statistically significant p-values. Because of this, the decision boundary
hypothesis seems to be the most likely hypothesis.



6.5 How to use the decicion boundary hypothesis to create
more robust neural networks

From the experiment, we see that we can make the neural networks more robust against adver-
sarial examples by training on examples created by the BIM attack. Madry et al. (2017) have
already shown that this method improves the neural networks’ robustness against the FGSM,
BIM, and C&W attacks. However, as described in section , it is not enough to prove robust-
ness against existing attacks to prove robustness against all attacks. By showing that a certified
lower bound of the neural networks increases when training on the BIM attack, I prove that this
method is effective against any attack on the L∞ norm.

Since neural networks’ vulnerability to adversarial examples most likely is caused by the
training input being to close to the decision boundary, training on any adversarial attack would
increase the robustness, provided the attack is sufficiently strong. A downside with using the
BIM attack is that it slows down training of the neural networks significantly. In my experiment,
I used 20 steps of BIM, which required the gradients of the neural networks to be calculated
20 times before every training step. By using faster attacks, one could reduce the training time
required to make robust neural networks.

We also see that training on adversarial examples creates a more difficult problem for the
neural networks to learn. When the ε of the attack was increased, the neural networks were not
able to converge on the Cifar and CS datasets, and the accuracy on the other datasets decreased.
This means that we need stronger neural networks to ensure they converge when training on
neural networks.

6.6 Threats to validity

6.6.1 Internal threats
In my experiments, I have used multiple datasets and methods to collect evidence for my con-
clusions. For the experiments concerning RQ1, RQ2, and RQ3, I conducted ten different re-
gression analyses on six different datasets and ten correlation analyses on four datasets. The
analyses gave statistically significant values for most of the analyses. However, since some of
the analyses gave different results, I believe there a bias for the hyperparameters within some of
the robustness estimation techniques. I do not consider this to be a problem as the main reason
for using multiple robustness estimation methods was to detect bias, which is accounted for in
my conclusion.

For the experiments concerning RQ4, I only used the lower bound as the robustness esti-
mation technique. Since I used the same hyperparameters for all tests, I do not believe there is
any bias. This belief is strengthened as the same results as I had were observed with a different
robustness estimation technique by Madry et al. (2017). All the correlation analyses gave sta-
tistically significant p-values, which makes me certain there is enough evidence to support the
claim that the decision boundary hypothesis is the most likely hypothesis to be true.

When testing RQ1, RQ2, and RQ3, the average estimated robustness for ten images was
used to determine the robustness for each neural network in all estimation methods. Although
this is too few examples to capture the whole dataset’s robustness correctly, I expect the error
was evened out over the multiple neural networks and that the correct trends were visible in the
regression. Additionally, one might argue that estimated robustness for all ten images should



be used, and not just the average. In hindsight, this might have been better. However, I believe
the trends among the hyperparameters would have been the same as I used a large number of
neural networks.

6.6.2 External threats
For all my experiments, I have used six different datasets to ensure generalizability. Since my
results repeated across the datasets, they will most likely generalize to other datasets as well.
However, in my experiments, I only tested image sets. There is a possibility that other types of
datasets, such as audio sets behave differently. On the other hand, this is unlikely if the decision
boundary hypothesis is correct.

For my experiments, I have also only used CNNs and not other neural network architectures
such as VGGNets or ResNets. It is possible that my results do not generalize to other neural
network architectures.



Chapter 7
Conclusion and future work

7.1 Conclusion
To utilize the excellent performance of neural networks, we must be sure they are reliable and
trustworthy. This is only possible as long as we know where adversarial examples stem from
and that the neural networks we use are robust. In this paper, I have presented and tested four
hypotheses as to why neural networks are vulnerable to adversarial examples.

The first hypothesis was that neural networks are vulnerable to adversarial examples because
they are too linear. If this hypothesis is true, then making the neural networks more non-linear
by either using a more non-linear activation function or applying more layers of the non-linear
function should increase the robustness. From my results, it is difficult to conclude how the
depth affects the robustness, as the results differ depending on the estimation method and Lp
norm. However, we see that the arctan and tanh give much lower robustness than relu, even
though they are more non-linear. Because of this, the linearity hypothesis from RQ1 seems
unlikely.

The second hypothesis was that neural networks are vulnerable to adversarial examples be-
cause they are too non-linear. If this hypothesis is correct, making the neural networks more
non-linear by either using a more non-linear activation function or applying more layers of
the non-linear function should decrease the robustness. Although we see that arctan and tanh
decrease the robustness compared to relu, we also see that sigmoid and relu give similar robust-
ness, even though sigmoid is more non-linear than relu. When we look at the best-case scenario
from the regression, we also see that there is not much robustness to be gained by changing the
hyperparameters. This makes it unlikely that the non-linearity hypothesis from RQ2 is correct.

The third hypothesis was that neural networks are vulnerable to adversarial examples be-
cause they overfit. If this is true, increasing the neural networks’ capacity too much, by making
them too wide and deep should decrease their robustness. Since there is not much robustness to
be gained by changing the hyperparameters, this hypothesis seems unlikely as well. Addition-
ally, I hypothesize that the lower bound of CNN-cert gets looser on wide neural networks. If
my hypothesis is true, the overfitting hypothesis is even more unlikely, as the width increased
all the robustness estimations except for the lower bounds.

The fourth hypothesis was that neural networks are vulnerable to adversarial examples be-
cause the decision boundary is left to close to the training examples. In my results, I show that
training on adversarial examples greatly increases the lower bound. I also show that the increase
in the lower bound is strongly correlated with the ε of the attack used when training the neural
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networks. This strengthens the decision boundary hypothesis and makes it the hypothesis most
likely to be true. From the results regarding the decision boundary hypothesis, I also show that
training on the BIM attack makes the neural networks robust to any attack, as the lower bound
is an attack agnostic metric.

7.2 Future work
From my results, I think exploring the decision boundary and how it can be pushed in the right
direction is the most interesting path ahead. I used 20 steps of the BIM attack when training on
the adversarial examples, which lead to the neural networks taking much longer time to train.
However, if only one step is used, the BIM attack turns in to the FGSM attack, which has been
shown to create non-robust networks when used in training. It would be interesting to see what
the optimal number of steps is, or if there is another attack that trains the neural networks against
adversarial examples faster. Additionally, the BIM attack only uses the L∞ norm. It would be
interesting to see if it was possible to train neural networks that are robust on all norms.
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Appendix A
Lower bounds

A.1 Regression

MNIST
L∞ L2 L1

Coefficient P-value Coefficient P-value Coefficient P-value
Bias 0.02998 0.0000 0.13804 0.0000 0.24346 0.0000
Depth -0.00292 0.0000 -0.02239 0.0000 -0.06479 0.0000
Filter 0.00001 0.0269 -0.00007 0.0458 -0.00035 0.0039
Arctan -0.00880 0.0000 -0.01911 0.0000 -0.02216 0.0004
Sigmoid -0.00084 0.0013 0.01143 0.0000 0.05588 0.0000
Tanh -0.00904 0.0000 -0.02133 0.0000 -0.03056 0.0000

Table A.1: The coefficient and p-values from linear regression of the lower bounds for neural networks
trained on the MNIST set.

Sign Language
L∞ L2 L1

Coefficient P-value Coefficient P-value Coefficient P-value
Bias 0.01054 0.0000 0.05369 0.0000 0.09177 0.0000
Depth -0.00099 0.0000 -0.00869 0.0000 -0.02831 0.0000
Filter -0.00000 0.7005 -0.00006 0.0000 -0.00023 0.0000
Arctan -0.00437 0.0000 -0.02012 0.0000 -0.04583 0.0000
Sigmoid -0.00144 0.0000 -0.00421 0.0000 0.00079 0.7785
Tanh -0.00436 0.0000 -0.02016 0.0000 -0.04638 0.0000

Table A.2: The coefficient and p-values from linear regression of the lower bounds for neural networks
trained on the SL set.
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Rock paper scissor
L∞ L2 L1

Coefficient P-value Coefficient P-value Coefficient P-value
Bias 0.01042 0.0000 0.07017 0.0000 0.00185 0.9554
Depth -0.00112 0.0000 -0.01291 0.0000 -0.04846 0.0000
Filter 0.00002 0.0069 -0.00023 0.0097 -0.00114 0.0426
Arctan -0.00076 0.0282 0.02118 0.0000 0.11418 0.0000
Sigmoid 0.00357 0.0000 0.09613 0.0000 0.45056 0.0000
Tanh -0.00068 0.0418 0.02077 0.0000 0.10071 0.0000

Table A.3: The coefficient and p-values from linear regression of the lower bounds for neural networks
trained on the RPS set.

GTSRB
L∞ L2 L1

Coefficient P-value Coefficient P-value Coefficient P-value
Bias 0.01144 0.0000 0.08843 0.0000 0.18574 0.0000
Depth -0.00122 0.0000 -0.01544 0.0000 -0.06464 0.0000
Filter -0.00000 0.7822 -0.00004 0.0587 0.00016 0.1458
Arctan -0.00207 0.0000 -0.00965 0.0000 -0.03502 0.0000
Sigmoid -0.00015 0.1655 0.00417 0.0005 0.01486 0.0171
Tanh -0.00234 0.0000 -0.01262 0.0000 -0.04361 0.0000

Table A.4: The coefficient and p-values from linear regression of the lower bounds for neural networks
trained on the GTSRB set.

Mean of lower bounds
Dataset Li L2 L1

MNIST 0.0134 0.0900 0.2504
SLM 0.0051 0.0390 0.1250
Caltech Silhouettes 0.0105 0.0747 0.2301
RPS 0.0074 0.1628 0.8044
Cifar 0.0023 0.0276 0.1037
GTSRB 0.0060 0.0700 0.2697

Table A.5: The mean lower bounds for the neural networks on the different data sets, calculated on the
L∞, L2, and L1 norm.



Appendix B
C&W upper bounds

B.1 Regression

MNIST
L∞ L2 L1

Coefficient P-value Coefficient P-value Coefficient P-value
Bias 0.03124 0.0000 0.10021 0.1403 4.21098 0.0000
Depth 0.00600 0.0000 0.04292 0.0000 -0.29424 0.0000
Filter 0.00025 0.0000 0.00486 0.0000 0.01405 0.0000
Arctan -0.04083 0.0000 -0.52718 0.0000 -1.34476 0.0000
Sigmoid -0.01644 0.0000 -0.16648 0.0000 -0.40110 0.0031
Tanh -0.04082 0.0000 -0.47321 0.0000 -1.38986 0.0000

Table B.1: The coefficient and p-values from linear regression of the C&W upper bounds for neural
networks trained on the MNIST set.

Sign Language
L∞ L2 L1

Coefficient P-value Coefficient P-value Coefficient P-value
Bias 0.00468 0.0000 0.00960 0.0963 1.22133 0.0000
Depth 0.00210 0.0000 0.00645 0.0000 -0.00231 0.8786
Filter 0.00007 0.0000 0.00062 0.0000 0.00888 0.0000
Arctan -0.01069 0.0000 -0.07930 0.0000 -1.07398 0.0000
Sigmoid -0.00511 0.0000 -0.03973 0.0000 -0.39414 0.0000
Tanh -0.01055 0.0000 -0.07860 0.0000 -1.07641 0.0000

Table B.2: The coefficient and p-values from linear regression of the C&W upper bounds for neural
networks trained on the SL set.
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Rock paper scissor
L∞ L2 L1

Coefficient P-value Coefficient P-value Coefficient P-value
Bias 0.00492 0.0002 0.08938 0.5319 19.90521 0.0000
Depth 0.00281 0.0000 0.08835 0.0002 -0.53545 0.1045
Filter 0.00010 0.0000 0.00766 0.0002 0.03510 0.3022
Arctan -0.01610 0.0000 -0.89396 0.0000 -6.82215 0.0000
Sigmoid -0.00219 0.0016 -0.09114 0.2164 -1.32588 0.2003
Tanh -0.01467 0.0000 -0.83660 0.0000 -5.43824 0.0000

Table B.3: The coefficient and p-values from linear regression of the C&W upper bounds for neural
networks trained on the RPS set.

GTSRB
L∞ L2 L1

Coefficient P-value Coefficient P-value Coefficient P-value
Bias -0.00483 0.0000 -0.16585 0.0000 4.95038 0.0000
Depth 0.00386 0.0000 0.04685 0.0000 -0.32573 0.0000
Filter 0.00011 0.0000 0.00334 0.0000 0.03053 0.0000
Arctan -0.00992 0.0000 -0.27345 0.0000 -3.09511 0.0000
Sigmoid -0.00334 0.0000 -0.12256 0.0000 -1.08221 0.0000
Tanh -0.01016 0.0000 -0.27623 0.0000 -3.16962 0.0000

Table B.4: The coefficient and p-values from linear regression of the C&W upper bounds for neural
networks trained on the GTSRB set.

Mean of upper bounds
Dataset Li L2 L1

MNIST 0.0580 0.6270 5.8632
SLM 0.0157 0.0693 1.9621
Caltech Silhouettes 0.0539 0.7263 5.3560
RPS 0.0232 1.1427 26.0387
Cifar 0.0071 0.0656 3.1562
GTSRB 0.0234 0.3897 7.1474

Table B.5: The mean C&W upper bound for the neural networks on the different data sets, calculated
on the L∞, L2, and L1 norm.



Appendix C
HSJA upper bounds

C.1 Regression

MNIST
L∞ L2

Coefficient P-value Coefficient P-value
Bias 0.03712 0.0000 0.47536 0.0000
Depth 0.00640 0.0000 -0.00050 0.9333
Filter 0.00029 0.0000 0.00368 0.0000
Arctan -0.03830 0.0000 -0.53028 0.0000
Sigmoid -0.01827 0.0000 -0.20074 0.0000
Tanh -0.03998 0.0000 -0.56118 0.0000

Table C.1: The coefficient and p-values from linear regression of the HSJA upper bound for neural
networks trained on the MNIST set.

Sign Language
L∞ L2

Coefficient P-value Coefficient P-value
Bias 0.00376 0.0000 0.04878 0.0000
Depth 0.00250 0.0000 0.00360 0.0001
Filter 0.00011 0.0000 0.00063 0.0000
Arctan -0.01109 0.0000 -0.08931 0.0000
Sigmoid -0.00490 0.0000 -0.03359 0.0000
Tanh -0.01142 0.0000 -0.09161 0.0000

Table C.2: The coefficient and p-values from linear regression of the HSJA upper bound for neural
networks trained on the SL set.
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Rock paper scissor
L∞ L2

Coefficient P-value Coefficient P-value
Bias 0.02047 0.0175 0.46465 0.1830
Depth 0.00507 0.0003 0.04268 0.4522
Filter -0.00037 0.0008 0.00777 0.1130
Arctan -0.02763 0.0000 -1.29312 0.0000
Sigmoid 0.02964 0.0000 0.40161 0.0264
Tanh -0.02855 0.0000 -1.23325 0.0000

Table C.3: The coefficient and p-values from linear regression of the HSJA upper bound for neural
networks trained on the RPS set.

GTSRB
L∞ L2

Coefficient P-value Coefficient P-value
Bias -0.01832 0.0024 0.03721 0.4274
Depth 0.00649 0.0000 0.01999 0.0023
Filter 0.00032 0.0000 0.00459 0.0000
Arctan -0.00230 0.5253 -0.19193 0.0000
Sigmoid -0.00498 0.0721 -0.05110 0.0179
Tanh -0.00448 0.1958 -0.24230 0.0000

Table C.4: The coefficient and p-values from linear regression of the HSJA upper bound for neural
networks trained on the GTSRB set.

Mean of HSJA upper bounds
Dataset Li L2

MNIST 0.0698 0.7813
SLM 0.0166 0.0860
CS 0.0568 0.6669
RPS 0.0797 2.4484
Cifar 0.0115 0.1091
GTSRB 0.0376 0.5112

Table C.5: The mean HSJA upper bound scores for the neural networks on the different data sets,
calculated on the L∞, L2, and L1 norm.



Appendix D
BIM success rate

D.1 Regression

Dataset Bias Original Depth Filters Arctan Sigmoid Tanh
accuracy

Coef

MNIST 0.1756 - 0.0860 0.0012 -0.4525 -0.0901 -0.4501
SLM -0.0768 - 0.1131 0.0026 -0.4128 -0.2309 -0.4496
CS 0.6274 -0.2419 -0.0142 0.0009 -0.1991 -0.2229 -0.1952
RPS -0.4615 - 0.1290 0.0044 -0.5862 -0.1607 -0.5302
Cifar 0.5918 -0.4990 -0.0275 0.0005 -0.1414 0.2216 -0.1636
GTSRB -0.3562 - 0.0928 0.0026 -0.1970 0.0401 -0.2097

P-value

MNIST 0.0000 - 0.0000 0.0000 0.0000 0.0000 0.0000
SLM 0.0136 - 0.0000 0.0000 0.0000 0.0000 0.0000
CS 0.0000 0.0328 0.0010 0.0009 0.0000 0.0000 0.0000
RPS 0.0002 - 0.0000 0.0000 0.0000 0.0032 0.0000
Cifar 0.0000 0.0007 0.0001 0.2313 0.0000 0.0000 0.0000
GTSRB 0.0000 - 0.0000 0.0000 0.0000 0.0161 0.0000

Table D.1: The coefficient and p-values from linear regression of the BIM success rate for neural net-
works trained on various datsets.
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Appendix E
MIM success rate

E.1 Regression

Dataset Bias Original Depth Filters Arctan Sigmoid Tanh
accuracy

Coef

MNIST 0.2172 - 0.0948 0.0009 -0.4407 -0.0958 -0.4378
SLM 0.0981 - 0.0836 0.0003 -0.3259 -0.1215 -0.3110
CS 0.6289 -0.2287 -0.0013 0.0008 -0.2062 -0.1959 -0.2042
RPS -0.2747 - 0.1463 0.0027 -0.7775 -0.2747 -0.6925
Cifar 0.7371 -0.5117 -0.0328 0.0011 -0.1470 0.1414 -0.1650
GTSRB 0.3428 - 0.0507 0.0002 -0.1963 -0.0139 -0.2100

P-value

MNIST 0.0000 - 0.0000 0.0008 0.0000 0.0000 0.0000
SLM 0.0153 - 0.0000 0.3695 0.0000 0.0000 0.0000
CS 0.0000 0.0153 0.7091 0.0003 0.0000 0.0000 0.0000
RPS 0.0008 - 0.0000 0.0000 0.0000 0.0000 0.0000
Cifar 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GTSRB 0.0000 - 0.0000 0.5367 0.0000 0.4830 0.0000

Table E.1: The coefficient and p-values from linear regression of the MIM success rate for neural net-
works trained on various datsets.
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