
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Ola Toft

Performance Modeling of Adaptive
Mesh Refinement for the Shallow Water
Equations

Master’s thesis in Computer Science

Supervisor: Jan Christian Meyer

June 2020

Ola Toft

Performance Modeling of Adaptive
Mesh Refinement for the Shallow
Water Equations

Master’s thesis in Computer Science
Supervisor: Jan Christian Meyer
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Problem Description

This study aims to create experimentally validated performance models for adaptively
refined finite difference solutions to the shallow water equations, and use them to identify
performance and scalability characteristics.

i

Abstract

In this thesis we study the performance and scalability characteristics of adaptively refined
finite difference solutions to the shallow water equations.

The shallow water equations (SWE) are a set of equations used to describe the move-
ment of fluids, such as tides, tsunami waves and storm surges. Finite difference methods
(FDM) are one way to solve the SWE numerically. Adaptive mesh refinement (AMR) is a
technique for providing the necessary resolution when solving equations numerically, but
only in the necessary places in space and time, in order to keep the performance as high as
possible.

In this thesis we develop a proxy application which solves the SWE using the Mac-
Cormack FDM and AMR. We create a performance model and use it to make predictions
about the performance and scalability of the application, and experimentally validate those
predictions. We set up initial disturbances shaped like waves in the fluid. Each of our ex-
periments uses one or two different waves.

Our results show that if we add an extra level of refinement, the total number of points
will increase with a factor between 1 and r3 + 1, where r is the refinement between two
levels. If the load balance is unchanged and there is no communication, the runtime will
increase by the same factor.

For strong scaling, the wave with the better load balance scales better with the number
of nodes, both for the total runtime and for the computation time. The parallel efficiency
decreases by about the same factor as the load balance. The communication time is a small
share of the total runtime.

For weak scaling, as we increase the problem size and the number of nodes N by the
same factor, the computation time is about the same. The communication time does not
increase with N for N > 1. The sum of the computation and the communication time is
stable for N > 1. This means we can increase the number of nodes and get more work
done in the same time.

ii

Samandrag

I denne avhandlinga studerer me ytings- og skalerings-karakteristikkar ved adaptivt raffin-
erte endelege differansar-løysingar av gruntvasslikningane.

Gruntvasslikningane er eit sett med likningar som blir nytta til å beskrive rørsler i
væsker, slik som tidevatn, tsunamiar og stormflo. Endelege differansar-metodar er ein
måte å løyse gruntvasslikningane numerisk. Adaptiv mesh-raffinering er ein teknikk for å
sørgje for den naudsynte oppløysinga ved løysing av numeriske likningar, men kun på dei
naudsynte plassane i tid og rom, for å halde ytinga så høg som mogleg.

I denne avhandlinga utviklar me ein proxy-applikasjon som løyser gruntvasslikningane
ved bruk av MacCormack sin endelege differansar-metode, samt adaptiv mesh-raffinering.
Me lagar ein ytingsmodell og bruker han til å gjere prediksjonar av ytinga og skalerbarheita
til applikasjonen, og validerer desse prediksjonane eksperimentelt. Me set opp initielle
forstyrringar forma som bølgjer i væska. Kvart av eksperimenta våre nyttar éi eller to
ulike bølgjer.

Resultata våre viser at om me legg til eit ekstra nivå med raffinering, vil det totale
antalet punkt auke med ein faktor mellom 1 og r3 +1, der r er raffineringa mellom to nivå.
Dersom lastbalansen er uendra og det ikkje er nokon kommunikasjon, vil køyretida auke
med den same faktoren.

For sterk skalering vil bølgja med best lastbalanse skalere betre med antal nodar, både
for den totale køyretida og for berekningstida. Den parallelle effektiviteten minkar med
omlag same faktor som lastbalansen. Kommunikasjonstida utgjer ein låg andel av den
totale køyretida.

For svak skalering, når me aukar problemstorleiken og antal nodarN med same faktor,
vil berekningstida vere omtrent den same. Kommunikasjonstida aukar ikkje med N for
N > 1. Summen av berekningstida og kommunikasjonstida er stabil for N > 1. Det
betyr at me kan auke antal nodar og få meir arbeid utført på like lang tid.

iii

Acknowledgements

I would like to thank my supervisor Jan Christian Meyer for introducing me to the field of
performance modeling, for valuable discussions about interesting ideas, for helpful feed-
back, and for inspiration and motivation.

The experiments were performed on resources provided by the NTNU IDUN/EPIC
computing cluster, and on resources provided by UNINETT Sigma2 - the National Infras-
tructure for High Performance Computing and Data Storage in Norway.

iv

Table of Contents

Problem Description i

Abstract ii

Samandrag iii

Acknowledgements iv

Table of Contents vii

List of Tables ix

List of Figures xii

Abbreviations xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Scope . 1
1.3 Structure . 2

2 Background 3
2.1 Shallow Water Equations (SWE) . 3

2.1.1 Mathematics . 4
2.2 Finite Difference Methods (FDM) . 4
2.3 Boundary Conditions . 5

2.3.1 Types . 5
2.3.2 Ghost Points . 6
2.3.3 Boundaries, Borders and Terminology 6

2.4 Adaptive Mesh Refinement . 7
2.4.1 Mesh Refinement . 7
2.4.2 Adaptive Mesh Refinement . 7

v

2.5 Parallel Programming APIs . 9
2.5.1 Shared Memory Systems . 9
2.5.2 GPU platforms . 10
2.5.3 Distributed Memory Systems 11

2.6 Proxy Applications . 11
2.7 Performance Modeling . 12

2.7.1 Amdahl’s Law . 12
2.7.2 Gustafson’s Law . 13
2.7.3 Bulk-Synchronous Parallelism (BSP) 14
2.7.4 Roofline . 14

2.8 Related Work . 15

3 Proxy Application 17
3.1 Data Structure . 17

3.1.1 Variations and Choices for Grids 17
3.1.2 Grid Refinement . 18

3.2 Algorithm . 19
3.2.1 Initialization . 19
3.2.2 Integration . 20
3.2.3 AMR . 20
3.2.4 Rank Borders . 22
3.2.5 Full Overview . 23

3.3 Parallel Programming APIs . 23

4 Integration 25
4.1 SWE . 25

4.1.1 SWE as relation between time and space difference 25
4.1.2 FDM . 26
4.1.3 Finite Difference Equations for the SWE 26

4.2 Boundary Conditions . 28

5 Adaptive Mesh Refinement 29
5.1 Regridding . 29
5.2 Grid Borders . 30
5.3 Integrate Children . 30
5.4 Downsampling . 31

6 Performance Modeling 33
6.1 Parts . 33

6.1.1 Integration . 33
6.1.2 AMR . 35
6.1.3 Rank Borders . 37
6.1.4 Overview . 38

6.2 Comparison of Parts . 38
6.2.1 Sum of Length and Width of Boundaries and Borders vs Product . 38
6.2.2 Number of Child Points vs Total Number of Points 38

vi

6.2.3 Regridding Interval vs Every Timestep 39
6.2.4 Communication vs Computation 39
6.2.5 Summary . 40

6.3 Load Balance . 40
6.4 Performance Model . 41
6.5 Predictions . 42

6.5.1 Cost of an Extra Level of Refinement 42
6.5.2 Strong Scaling . 46
6.5.3 Weak Scaling . 47

7 Experimental Setup 49
7.1 Machine Setup . 49

7.1.1 Idun . 49
7.1.2 Vilje . 49

7.2 Parameter Space . 51
7.2.1 Amount of Refinement . 51
7.2.2 Size of Refinement . 51
7.2.3 Initial Condition . 51
7.2.4 Refinement Requirement . 51
7.2.5 Regridding Interval . 52
7.2.6 Size of Domain . 52

7.3 Setup For Validation of Predictions . 52
7.3.1 Cost of an Extra Level of Refinement 53
7.3.2 Strong Scaling . 56
7.3.3 Weak Scaling . 56
7.3.4 Summary . 58

8 Results and Discussion 59
8.1 Cost of an Extra Level of Refinement 59

8.1.1 Measurements . 59
8.1.2 Summary . 60

8.2 Strong Scaling . 62
8.2.1 Measurements . 62
8.2.2 Summary . 65

8.3 Weak Scaling . 67
8.3.1 Measurements . 67
8.3.2 Summary . 68

9 Conclusion 71
9.1 Future work . 71

Bibliography 73

vii

viii

List of Tables

6.1 Overview of the different parts, equations for their number of points, and
their relevant hardware parameters . 38

7.1 Properties of Idun . 50
7.2 Properties of Vilje . 50
7.3 Parameters which all experiments have in common 53
7.4 Experimental setup for cost of extra level 56
7.5 Experimental setup for strong scaling 57
7.6 Experimental setup for weak scaling . 57
7.7 Summary of setups for the different experiments 58

ix

x

List of Figures

2.1 The height of the columns represent the height and the velocity of the fluid
at different points in space. 5

2.2 Domain with ghost points. The points in the domain are shown as the in-
tersection of the solid lines. The boundary points are the outermost points
in the domain. The ghost points are shown at the intersection of the dotted
lines. 6

2.3 Full refinement: The layout and resolution of the grid in an application
which does not use mesh refinement. 8

2.4 Mesh refinement: The layout and resolution of grids in an application
which uses mesh refinement. 8

2.5 Regular, static mesh refinement when the parts that require a higher reso-
lution change over time. 9

2.6 Adaptive mesh refinement after the parts that require a higher resolution
have moved to the right. 10

3.1 Relation between the grids shown in Figure 2.4. 18
3.2 Overview of the main algorithm and its parts at the coarsest level. ”xt”

denotes ”run T times”. 19
3.3 Overview of the integration step and how its substeps fit together. 20
3.4 Overview of the AMR step and how its substeps fit together. ”xr” denotes

”run r times”. 21
3.5 Rank boundary: Figure 3.5a and 3.5b: Each rank sends its boundary val-

ues to the ghost cells of its neighbor rank. Figure 3.5c: This exchange of
boundary values makes it possible to treat the domain as if it were contin-
uous. 22

3.6 Full overview of all the parts of the application and how they fit together.
”xr” and ”xT” denote ”run r or T times”. 24

5.1 The value of point A in the blue child grid is derived from spacial interpo-
lation of points B, C, D and E in its black parent grid. 30

xi

5.2 The ghost value A in the blue child grid is derived from space-time inter-
polation of points B, C, D and E in its black parent. The ghost value A
can then be used to find the new value of boundary point F in the child grid. 31

5.3 Recursive evolution of the solution in time for different levels of refine-
ment. tl,i is the time at the beginning of timestep number i in the reference
system of a grid at level l. In this example the refinement in time between
each level is 2. 32

5.4 Downsampling: The values of points A-I in the black parent grid are re-
placed with values from points A-I in the blue child grid. 32

7.1 Wave from edge initially. The refined area has a higher density of points. . 54
7.2 Wave from edge after moving across the domain. The refined area has a

higher density of points. 54
7.3 Wave from middle initially. The refined area has a higher density of points. 55
7.4 Wave from middle after being split and moving outwards. The refined

areas have a higher density of points. 55

8.1 Factor of increase in the total number of points from adding an extra level
of refinement. 60

8.2 Factor of increase in the total runtime from adding an extra level of refine-
ment. 61

8.3 Cost of extra level: Ratio between measured and modeled increase in runtime 61
8.4 Load balance for two different initial waves as we scale up the number of

nodes . 62
8.5 Strong scaling of total runtime: Speedup relative to 1 node as we scale up

the number of nodes . 63
8.6 Strong scaling of total runtime: Parallel efficiency relative to 1 node as we

scale up the number of nodes . 64
8.7 Strong scaling: Share of communication relative to the total runtime, mea-

sured in percentage . 64
8.8 Strong scaling of computation time: Speedup relative to 1 node as we scale

up the number of nodes . 65
8.9 Strong scaling of computation time: Parallel efficiency relative to 1 node

as we scale up the number of nodes . 66
8.10 Strong scaling of computation time: Ratio between measured and modeled

speedup relative to 1 node as we scale up the number of nodes 66
8.11 Weak scaling: Total runtime: Parallel efficiency relative to 1 node as we

increase the number of nodes and the problem size by the same factor . . 67
8.12 Weak scaling: Computation + communication time: Parallel efficiency

relative to 1 node as we increase the number of nodes and the problem
size by the same factor . 68

8.13 Weak scaling: Computation time: Parallel efficiency relative to 1 node as
we increase the number of nodes and the problem size by the same factor 69

xii

Abbreviations

AMR = Adaptive Mesh Refinement
CFL = Courant-Friedrichs-Lewy
FDM = Finite Difference Methods
HPC = High Performance Computing
MPI = Message Passing Interface
SWE = Shallow Water Equations

xiii

xiv

Chapter 1
Introduction

1.1 Motivation

The shallow water equations (SWE) are used by physicists to model the flow in the deep
ocean, coastal areas and rivers. They are used to describe phenomena such as tides,
tsunami waves and storm surges [1]. Finite difference methods (FDM) are one way to
implement and solve the SWE numerically.

Adaptive mesh refinement (AMR) is a technique for providing the necessary resolution
when solving such equations, while keeping the performance as high as possible. This is
done by only applying the necessary resolution where it is required, both in space and in
time.

Our motivation for creating a performance model for adaptively refined finite differ-
ence solutions to the SWE is to make it possible to make better decisions about when
and how to use such an application, and to provide a starting point for understanding the
performance and scalability of different real-world applications using the SWE, FDMs,
AMR, or some combination of them.

1.2 Scope

In this thesis we develop a proxy application which solves the SWE using the MacCor-
mack FDM and AMR. The application is parallelized using an MPI and OpenMP hybrid
solution. We create a performance model and use it to make predictions about the perfor-
mance and scalability of the application. We make predictions about the cost of an extra
level of refinement, the strong scaling and how it is impacted by the load balance, and
the weak scaling. We run experiments on two machines, Idun and Vilje, to validate the
predictions of our performance model.

1

Chapter 1. Introduction

1.3 Structure
The rest of this thesis is structured as follows: In Chapter 2 we provide background in-
formation about the different parts which can be used to implement the SWE, parallelize
them and model them, as well as related work.

In Chapter 3 we give an overview of how our proxy application works. In Chapter 4
and 5 we describe the different parts of our proxy application in more detail. In Chapter 4
we describe the integration parts and how we solve the SWE using an FDM. In Chapter 5
we describe the AMR parts.

In Chapter 6 we derive our performance model and make predictions about the perfor-
mance and scalability of our application. In Chapter 7 we describe the experimental setup
for validation of our predictions. In Chapter 8 we describe and discuss the results from our
experiments and whether they validate our predictions.

In Chapter 9 we provide a conclusion of our work and point to ideas for future work.

2

Chapter 2
Background

In this chapter we provide background information the different parts which can be used
to implement the SWE, parallelize them and model them, as well as related work.

First we describe the SWE and what they are used for. Then we describe what FDMs
are. Next we talk about different types of boundary conditions and how to handle them.
Then we describe AMR and its advantages. Next we classify and describe a set of different
parallel programming APIs. Then we describe what a proxy application is and attempt
to classify our proxy application. Next we talk about performance modeling and some
important models and aspects of it. Finally, we summarize some work related to our
thesis.

2.1 Shallow Water Equations (SWE)
In this section we describe the shallow water equations and what they are used for.

The shallow water equations (SWE) are a set of hyperbolic partial differential equa-
tions. They are used to describe the movement in a fluid that is relatively shallow. In
this context, shallow means that the horizontal dimension is much larger than the vertical
dimension. An ocean can be deep, but it’s also far more wide than it is deep, making it
relatively shallow.

Scientists use the SWE to model oceans, coastal regions and rivers to predict phenom-
ena such as tides, storm surge levels and ocean currents.

3

Chapter 2. Background

2.1.1 Mathematics
The shallow water equations are given as

∂(ρη)

∂t
+
∂(ρηu)

∂x
+
∂(ρηv)

∂y
= 0 (2.1)

∂(ρηu)

∂t
+

∂

∂x

(
ρηu2 +

1

2
ρgη2

)
+
∂(ρηuv)

∂y
= 0 (2.2)

∂(ρηv)

∂t
+
∂(ρηuv)

∂x
+

∂

∂y

(
ρηv2 +

1

2
ρgη2

)
= 0 (2.3)

Where

• ρ: Fluid density

• η: Total fluid column height

• u, v: The fluid’s horizontal flow velocity

• g: Gravity

Equation 2.1 describes the relation between the change in the fluid column height over
time and the change in the horizontal velocity over space. Equation 2.2 describes the
change in the horizontal velocity in the X direction over time in relation to the change
over space. Equation 2.3 describes the equivalent for the Y direction.

2.2 Finite Difference Methods (FDM)
Finite difference methods (FDM) are a way to discretize differential equations into systems
of difference equations that be solved by a computer.

FDM models the SWE as a regular grid of points, where each point represents the
height and the velocity of the fluid at a given Cartesian coordinate.

Figure 2.1 illustrates the values of the height and the velocity of the fluid at different
points in space with columns of different height. Each column can be thought of as in-
finitely thin and only valid at its specific point. The points should be thought of as lying
at the intersection of coordinates, not between them. For the fluid column height (η) the
height of the columns map straightforwardly to the height of the fluid at that point. For
the velocity in the Y direction a positive column height maps to a positive velocity in the
Y direction and the fluid moving forward in the Y direction, while a negative column
height maps to a negative velocity and the fluid moving backward in the Y direction. The
mapping for the X direction is equivalent.

The value of a point at the next time step depends on the current values of its neighbor
points. This means that a given point will only have to access the memory describing
its neighbor points. If the order of the method is increased, we will need to access the
neighbor second removed, third removed and so on, but the application memory access
pattern will still be quite local.

4

2.3 Boundary Conditions

Figure 2.1: The height of the columns represent the height and the velocity of the fluid at different
points in space.

Only the edge of the Cartesian coordinates on a shared memory node is sent to its
neighbor nodes. This means the amount of network communication relative to local mem-
ory accesses is low, and that the amount of network communication scales linearly with
the number of nodes. Nodes and shared memory are explained in Section 2.5.

Sod provides a survey of several different FDMs [2].

2.3 Boundary Conditions
Boundary conditions are constraints which are used to provide appropriate values at the
boundary of a domain solved by differential equations [3].

2.3.1 Types
Dirichlet and Neumann are two major types of boundary conditions. The Dirichlet bound-
ary condition specifies the value of a function. The Neumann boundary condition specifies
the value of the derivative of the function.

In addition there are different types of combinations of Dirichlet and Neumann bound-
ary conditions. The Robin boundary condition consists of a linear combination of Dirich-
let and Neumann boundary conditions. The mixed boundary condition applies either the
Dirichlet or the Neumann boundary condition to different parts of the domain. The Cauchy
boundary condition applies two constraints, one Dirichlet and one Neumann boundary
condition, on the whole domain. This is different from the Robin boundary condition,

5

Chapter 2. Background

x

y

-1 0 1 2 3 4 5

-1

0

1

2

3

4

5

Figure 2.2: Domain with ghost points. The points in the domain are shown as the intersection of the
solid lines. The boundary points are the outermost points in the domain. The ghost points are shown
at the intersection of the dotted lines.

which applies only one constraint, but as a linear combination of the two major types of
boundary conditions.

2.3.2 Ghost Points
The points at the edge of the domain are included in the calculations of an FDM. Ghost
points are extra points outside the domain and the boundary points. This is illustrated
in Figure 2.2. Ghost points can be used to implement the boundary condition in a finite
difference method. This is done by setting the values of the ghost points in a specific way,
depending on the boundary condition. Then the boundary points can read the ghost points
as if they were a normal point in the domain, and use the same scheme as all the other
points in the domain.

2.3.3 Boundaries, Borders and Terminology
Boundary conditions are used at the boundary of the global domain. When solving a
problem numerically, we may split the global domain into multiple subdomains. Two
such types of subdomains are the grids mentioned in Section 2.4 and the ranks mentioned
in Section 2.5.3.1. Each instance of both of these types of subdomains have their own
internal borders with their own border points, and depending on the implementation, may
also have their own ghost points. These internal borders do not deal with reflection or
any other boundary condition of that type. Their goal is simply to propagate the solution

6

2.4 Adaptive Mesh Refinement

as smoothly as possible, as if there were no partitioning into subdomains. In some cases
that may involve imperfect interpolation, but the goal of simply propagating the solution
remains the same.

As such, we will use the phrase ”boundary condition” exclusively for the handling of
the boundary of the global domain, and use the phrases ”grid borders” and ”rank borders”
for internal borders.

2.4 Adaptive Mesh Refinement

Adaptive mesh refinement (AMR) [4] [5] is a technique to refine only the parts of the
domain that require higher resolution, and adaptively update which areas are refined over
time. Thus, the required accuracy can be achieved at a potentially far lower cost than from
refining every part of the domain at all times.

In this section we first describe regular, static mesh refinement, and its advantage rel-
ative to full refinement. We then show how AMR builds upon and improves mesh refine-
ment.

2.4.1 Mesh Refinement

Mesh refinement is a technique to refine only the parts of the domain that require higher
resolution.

Figure 2.3 shows the layout and resolution of the grid in an application which doesn’t
use mesh refinement. All parts of the domain are given a high level of refinement if this is
required by some part of the domain. This is computationally expensive.

Figure 2.4 shows the layout and resolution of grids in an application which uses mesh
refinement. Only the parts of the domain that require a certain resolution are refined to the
necessary level. The other parts are given a coarser refinement. This is far less computa-
tionally expensive, but still provides the required accuracy.

Mesh refinement is well suited for applications where the parts that require a higher
resolution don’t change over time, such as for an airfoil.

2.4.2 Adaptive Mesh Refinement

Regular, static mesh refinement is less suited if the parts that require a higher resolution
change over time. An example of this is a tsunami moving towards the coast. The idea of
AMR is to also adaptively update which areas are refined over time, moving the refined
areas along with the parts that require a higher resolution.

Consider a case where some of the parts that required a higher resolution in Figure 2.4
move to the right. For regular, static mesh refinement, we have to increase the size of the
refined grids for all timesteps in order to cover the refinement requirement for all parts for
all timesteps, as shown in Figure 2.5. Since the area which is refined in each timestep is
larger than when the parts that require a higher resolution do not move, the computational
cost increases.

7

Chapter 2. Background

Grid 0 (level 0, root grid)

Figure 2.3: Full refinement: The layout and resolution of the grid in an application which does not
use mesh refinement.

Grid 0 (level 0, root grid)

Grid 0.0 (level 1)

Grid 0.1 (level 1)

Grid 0.1.0 (level 2)

Figure 2.4: Mesh refinement: The layout and resolution of grids in an application which uses mesh
refinement.

8

2.5 Parallel Programming APIs

Grid 0 (level 0, root grid)

Grid 0.0 (level 1)

Grid 0.1 (level 1)

Grid 0.1.0 (level 2)

Figure 2.5: Regular, static mesh refinement when the parts that require a higher resolution change
over time.

This is assuming we know which areas will need refinement. If this cannot be known,
regular, static mesh refinement will have have to refine everything at maximum resolution
all the time, identically to an application with no mesh refinement.

By contrast, an application using AMR will adaptively update which areas are refined
over time, as shown in Figure 2.6. This reduces the area which will have to be refined, and
keeps the computational cost low.

2.5 Parallel Programming APIs

In this section we look at some APIs for making our program parallel. For each API we
give a short description and talk about which systems it is suited for.

2.5.1 Shared Memory Systems

Shared memory is memory which can be accessed by multiple compute units. An example
of a shared memory system is a node, which is a collection of compute units, for instance
CPUs, where each compute unit can read and write the same local memory. In this section
we describe two APIs which can be used to run programs in parallel on shared memory
systems.

9

Chapter 2. Background

Grid 0 (level 0, root grid)

Grid 0.0 (level 1)

Grid 0.1 (level 1)

Grid 0.1.0 (level 2)

Figure 2.6: Adaptive mesh refinement after the parts that require a higher resolution have moved to
the right.

2.5.1.1 POSIX Threads

POSIX threads, or pthreads, is an implementation of threads on POSIX systems [6]. It
specifies a library which can be used to start threads, make the threads work on a problem
in parallel, and stop the threads when they are done. The developer has to manually start,
stop and assign different pieces of work to the threads.

2.5.1.2 OpenMP

OpenMP is an API for multi-platform shared-memory parallel programming in C/C++ and
Fortran [7]. It provides special functions and preprocessor directives which make it simple
to provide parallelism within a multi-core node [6]. By specifying a directive before a
for loop, OpenMP will take care of creating a team of threads and dividing the work in
the for loop between the threads.

2.5.2 GPU platforms

Graphics Processing Units, or GPUs, have hundreds of parallel single instruction, multiple
data-like processors. In this section we describe two APIs for using GPUs for general-
purpose computing.

10

2.6 Proxy Applications

2.5.2.1 CUDA

CUDA is a co-evolved hardware-software architecture that enables HPC developers to
harness the computational power of the GPU in the environment of the C programming
language [8]. Developers write a specially declared C function, called a kernel, to do a
computation for one index in some data collection. Then that function is invoked with as
many threads as the data collection has elements, and the GPU performs the computation
in parallel with one thread per index. CUDA can only be used with NVIDIA GPUs.

2.5.2.2 OpenCL

OpenCL is an open standard for general purpose parallel programming across CPUs,
GPUs and other processors [9]. Similarly to CUDA, developers write kernels which may
be executed in parallel on a GPU. OpenCL is platform-independent and can be used with
GPUs from multiple vendors.

2.5.3 Distributed Memory Systems
Distributed memory is memory which cannot be directly accessed by all compute units.
An example of a distributed memory system is a node cluster, which is a collection of
nodes with an interconnect network for communication between nodes. In this section
we describe two APIs which can be used to distribute work between compute units with
distributed memory.

2.5.3.1 MPI

Message Passing Interface (MPI) is a standardized API typically used for distributed-
memory parallel programming in C/C++ and Fortran [10]. It defines a library of functions
which can be used to provide parallelism between multiple nodes [6]. For instance, MPI
can be used to explicitly send different parts of an array to different nodes to work on.
Each node typically runs one unique instance of the program, identified by a rank. After
each node completes its work, MPI can be used to combine the results again.

2.5.3.2 Chapel

Chapel is a global-view parallel language [11]. This means that the developer can treat the
program and its data as if the program ran on one compute unit with shared memory, while
the language transparently and implicitly distributes the work between different processors
on different distributed-memory nodes.

2.6 Proxy Applications
A proxy application is a small, simplified application which shares important features
and characteristics of a complete application. The advantage of proxy applications are
their smaller size and complexity. Because of this they are often used as models for
performance-critical computations [12].

11

Chapter 2. Background

Dosanjh et al. provide a classification of different types of proxy applications [13]. Our
proxy application is similar to what is called a compact app in that it provides a simplified,
but complete physics simulation. However, our application differs from a compact app in
that our application can be useful in early design studies, and in its lower number of lines
of code. In those regards it is more similar to a miniapp. Our application differs from a
miniapp in that it attempts to capture many rather than one or a few performance-impacting
aspects.

2.7 Performance Modeling
Performance modeling is used to predict and understand the performance and scalability of
running an application on a system. A good performance model enables us to make good
choices regarding our application and our system, and may help in detecting bottlenecks.

In this section we explore a set of different performance models, their parameters, and
their suitability to different situations.

2.7.1 Amdahl’s Law
Amdahl describes that as we increase the resources of a system while keeping the total
problem size constant, the speedup will be limited by the inherently serial part of the
program [14]. Suppose we have a program with serial runtime Tserial. The program can
be divided into the part that can be parallelized, and the part which cannot be parallelized
and is inherently serial. The runtime of the parallel program can be modeled as

Tparallel =
p× Tserial

N
+ (1− p)× Tserial (2.4)

Where

• p: Share of program which can be parallelized

• N : Number of resources which can be used to parallelize. Examples: Number of
processors, or number of nodes

The speedup of the parallel program relative to the serial program is then given as

S =
Tserial
Tparallel

=
Tserial

p×Tserial

N + (1− p)× Tserial
(2.5)

As we increase the resources of the system, the speedup will go towards

lim
N→∞

S =
Tserial

(1− p)× Tserial
(2.6)

which simplifies to

lim
N→∞

S =
1

1− p
(2.7)

12

2.7 Performance Modeling

Suppose, for example, that p = 0.9. Then regardless of how much we increase the
resources of our system, the speedup of our program will be at most

lim
N→∞

S =
1

1− 0.9
= 10 (2.8)

The process of increasing the resources of a system while keeping the total problem
size constant is known as strong scaling.

The parallel efficiency of this speedup is defined as

E =
S

N
(2.9)

A linear speedup will give an efficiency of 1.

2.7.2 Gustafson’s Law

Gustafson describes that as we increase the resources of a system, we often also want to
increase the total problem size [15]. Instead of doing the same work in less time, we often
want to do more work in the same time. Gustafson finds that it is often the parallel part of
a program which scales with the problem size, while the inherently serial part is constant.
Then the share of the inherently serial part 1 − p is reduced. Thus, Gustafson finds that
Amdahl’s law is too pessimistic.

The process of increasing the resources of a system and the total problem size by the
same factor is known as weak scaling. For weak scaling the problem size per resource
stays the same.

The scaled speedup is defined as the factor or more work done in the same time as we
increase the resources of a system. This can be expressed as

Ss = N(1− p) + p (2.10)

The parallel efficiency of this scaled speedup is given as

E =
Ss

N
=
N(1− p) + p

N
(2.11)

which simplifies to

E = p+
1− p
N

(2.12)

As we increase the resources of the system and the problem size by the same amount,
the parallel efficiency will tend towards

lim
N→∞

E = p (2.13)

Theoretically, we can increase N as much as we want and get N × p times as much
work done in the same time.

13

Chapter 2. Background

2.7.3 Bulk-Synchronous Parallelism (BSP)
Bulk-Synchronous Parallelism (BSP) aims to be a bridging model between hardware and
software for parallel computation [16]. The model consists of three parts:

1. A number of components which perform processing and/or memory functions.

2. A router which delivers messages between pairs of components.

3. A way to synchronize all or some of the components after a regular interval of L
time units.

BSP combines all these parts into supersteps. In each superstep, all components
perform some amount of processing and/or memory functions, all routers deliver some
amount of messages, and the superstep ends with a synchronization of the components,
before the next superstep begins.

The cost of one superstep for N components is modeled as

N
max
n

(wn) +
N

max
n

(hn × g) + l (2.14)

Where

• wn: Cost of local computation for component n

• hn: Number of messages sent or received by component n

• g: Cost of delivering one message of size 1

• l: Cost of synchronizing all components

BSP models the computation with one parameter for the number of operations to be
done. The model assumes that accessing the local memory needed and performing one
operation can be done in one time step. The communication is modeled as the throughput
times the number of messages to be sent, plus the latency or startup cost. Synchronization
is assumed to be done every L units of time. Programs are written for v virtual parallel
processors, and run on p physical processors.

The different parts of the superstep are often found in HPC applications, where a num-
ber of processors perform some computation and a number of messages is sent between
nodes, before all the processors are synchronized. Once the synchronization is completed,
we can be sure that all nodes have the necessary information, and we are ready to continue
to the next step of our program.

2.7.4 Roofline
Roofline aims to provide insight into multicore architectures, while at the same time have
low complexity [17]. It has two parameters, off-chip memory traffic measured in bytes
per second, and peak floating-point performance, measured in floating-point operations
per second. The number of floating-point operations per byte of DRAM traffic is called

14

2.8 Related Work

operational intensity. A low operational intensity means that the program likely is memory
bound. A high operational intensity means that the program likely is processor-bound.

The attainable FLOPS per second can then be calculated as

[FLOP/s]A = min([FLOP/s]P , BW ×OI) (2.15)

Where

• [FLOP/s]P : Peak FLOP/s

• BW : Peak memory bandwidth, measured in bytes per second (B/s)

• OI: Operation intensity

The attainable FLOPS/s given the operational intensity can be plotted into a graph,
showing that the performance gradually increases as the operational intensity increases
and the program becomes less and less memory bound, until it hits the ”roofline” and
becomes compute bound.

2.8 Related Work
Berger compares the computation time between AMR, a coarse and a fine solution for four
example problems, each with a single set of parameters [4]. The comparison successfully
shows that there are cases where AMR is faster than a fine solution and still reasonably
accurate. Whether the author specifies the cost of the overhead, specifies how much is
refined or even gives a general description of how much is refined, varies from problem
to problem. The performance of one of the examples suffer from floating point underflow,
and another from execution overhead. The article provides a formula for how often re-
gridding should be performed in order to minimize the cost of the algorithm, given as a
balance between the cost of integration and regridding. A cost estimate for integration and
for regridding would be needed to use the formula.

Jameson compares lower-order AMR schemes to higher-order non-AMR schemes, and
finds that the former are computationally more expensive than the latter when the goal is
to reduce the error of the solution to a certain amount [18]. The author also states that
the work of a higher-order AMR scheme can be less than the work of a higher-order non-
AMR scheme. It is enough to look at the integration part to show that lower-order AMR
schemes have a higher computational cost than higher-order non-AMR schemes. Thus,
the article does not describe the other parts of AMR, neither their amount of work nor
their computational cost. We provide details of how often the other parts are performed,
and make estimates of their computational cost relative to each other. The article focuses
at serial performance, while we describe at the effect of parallelization and scalability.

Erduran et al. evalute the performance of finite volume solutions to the shallow water
equations [19]. They briefly consider finite difference methods in the introduction, but
decide to focus on finite volume solutions because they can be implemented on unstruc-
tured grids and are easier to implement shock capturing capabilities for. Kubatko et al.
study the performance of two finite element methods [1]. They attempt to address a weak-
ness of finite element methods compared to finite difference methods, namely the high

15

Chapter 2. Background

computational cost. We study the performance of an application using a finite difference
method.

Sætra et al. provide an implementation of the SWE using a finite-volume method and
AMR on the GPU [20]. The article makes measurements of accuracy and performance
for some examples. We implement the SWE using a finite-difference method and AMR
on the CPU, create a performance model and experimentally verify the predictions of our
performance model.

16

Chapter 3
Proxy Application

We have made a proxy application which solves the SWE using an FDM and AMR. The
application models a body filled with a fluid. It starts out from an initial disturbance in
the fluid, and then models the development of this disturbance, how it spreads to different
coordinates over time, is reflected by the walls, and how different waves interact with each
other. This affects which parts are refined and to what degree, which in turn affects the
solution as well as the performance.

In this chapter we describe how our proxy application works. First we describe the
grid, a data structure which is central to our application. Then we give a short description
of the main algorithm and its different parts, and show how all the parts fit together. Further
details about each part are described in separate chapters. Finally we describe which
parallel programming APIs we choose to parallelize our application, and why.

3.1 Data Structure
The main data structure of AMR is the grid. A grid is responsible for finding the solution
in a specified area. It may have a number of child grids with a higher level of refinement in
space and time if required. These child grids in turn are responsible for finding the solution
in a subarea of their parent grid, and may recursively hold even more refined child grids of
their own. The coarsest grid is referred to as the root grid. Figure 2.4 shows an example
of a nested grid hierarchy with three different levels of refinement. Figure 3.1 shows how
the grids in Figure 2.4 relate to each other.

3.1.1 Variations and Choices for Grids
There are several variations for how to implement grids in AMR. In this section we briefly
explain these variations, what we choose and why.

Each child grid could either be patched into, i.e. exist instead of, or overlay, i.e. exist
in addition to, some region of its parent. Patching reduces the number of points that need
processing. However, it requires storage overhead and processing typically proportional

17

Chapter 3. Proxy Application

Grid 0

Grid 0.0 Grid 0.1

Grid 0.1.0

Level 0

Level 2

Level 1

Figure 3.1: Relation between the grids shown in Figure 2.4.

to the number of points. Overlaying makes it possible to integrate each grid independently
of any possible child grids. Furthermore, no additional work is needed for a parent grid
if a child grid is removed during regridding. Overlaying also gives each grid a uniform
structure. This make them well suited for vectorization and parallelization of operations,
as well as caching and prefetching of memory, on modern processors. For these reasons,
we choose to let each child grid overlay its parent.

For simplicity, we choose to only allow rectangular grids, and child grids may not be
rotated with respect to parent grids. We also choose to let each child grid be contained
within only one parent grid, instead of overlapping multiple parent grids.

We choose to have one root grid for each node. That is, the global domain is divided
evenly among the nodes. This ensures good parallelism between nodes.

We choose to use a block-based strategy instead of cell-based strategy. A cell-based
strategy refines each single point if and only if the refinement criteria is met. A block-
based strategy refines blocks of cells that have been grouped together and are used to
create grids. These blocks may contain some points which do not require refinement,
which is something that will not happen in a cell-based strategy. However, a block-based
strategy can achieve better cache locality and memory access patterns, and gives a lower
cost from handling grid borders than that of a cell-based strategy. It is also possible to
achieve the effect of a cell-based strategy by setting the block size to 1. The effect of such
a small block size is discussed in Section 5.1.

3.1.2 Grid Refinement
We choose the same refinement in time as in space, that is

rt = ry = rx (3.1)

Where

18

3.2 Algorithm

Init

Integrate

AMR

Rank border

Done

xT

Figure 3.2: Overview of the main algorithm and its parts at the coarsest level. ”xt” denotes ”run T
times”.

• ra: Refinement in direction a

The reason for this is to keep the Courant number constant for all levels of refinement.
That way, by choosing a Courant number which satisfies the Courant-Friedrichs-Lewy
(CFL) condition [21] at the root level, we can be confident that the CFL condition will
hold for all levels of refinement.

3.2 Algorithm
Figure 3.2 shows the main algorithm and its parts at the coarsest level. After a short
initialization the algorithm enters the main loop. The loop starts by integrating the solution
of the SWE in time. Then it performs AMR-specific actions to refine the solution at the
necessary places. Finally, we handle the rank border by exchanging necessary values with
neighbor ranks. The loop is run I times, where I is the number of timesteps we specify.
After completing the loop, the application is done.

3.2.1 Initialization
Our application is run with a certain problem size and a certain number of nodes. Two of
the parameters of the problem are the length X and the width Y , which together define the
area and the number of points for a given timestep at the coarsest level of refinement. We
assign one MPI rank to each node, and split the area equally among all the ranks.

We set up one root grid for each rank. Then we initialize the fluid column height
and the velocity at each point in those grids. We create some disturbance in the fluid, for

19

Chapter 3. Proxy Application

Integrate

SWE

Boundary

Figure 3.3: Overview of the integration step and how its substeps fit together.

instance a wave from the edge of the domain. Our goal is to let our application evolve this
disturbance and its changes to the fluid over time.

3.2.2 Integration

The integration step is the main step of our application. This is where we evolve the
solution in time. It consists of two subsequent substeps, as shown in Figure 3.3: solving
the equations, in our case the SWE, and handling the boundary conditions.

3.2.2.1 SWE

In the SWE step we evolve the solution of our equations in time. In our case this means
solving the SWE using an FDM for a given timestep. The details of how we solve the
SWE using an FMD are described in Section 4.1.

3.2.2.2 Boundary Conditions

We choose to handle the boundary conditions by reflecting the fluid height and velocity.
The details of how we achieve this are given in Section 4.2.

3.2.3 AMR

We use the AMR step to refine only the parts of the domain which require higher res-
olution, and adaptively update which areas are refined over time. Figure 3.4 shows the
substeps of the AMR step and how they fit together with each other and with the integra-
tion step. AMR, its datastructures and its substeps are described in more detail in Chapter
5.

3.2.3.1 Regridding

Regridding is the process of changing the layout of child grids. This is performed in order
to adapt the layout to the new features of the solution. Regridding is described in more
detail in Section 5.1.

20

3.2 Algorithm

Integrate

AMR
Regrid

Grid borders

Integrate children

Downsample

xr

Figure 3.4: Overview of the AMR step and how its substeps fit together. ”xr” denotes ”run r times”.

3.2.3.2 Grid Borders

In this step we handle the borders of the child grids. We derive the ghost values of a child
grid from interpolation of the values of points in its parent grid. The grid border step is
described in more detail in Section 5.2.

3.2.3.3 Integrate Children

After the regridding and the handling of the grid border, a grid may have one or more child
grids. In this step we recursively integrate each of these child grids in the same way as we
did in Section 3.2.2. The child grids are more refined in both space and time than their
parent, and therefore produce a more accurate solution.

When a child grid has finished the integration step, it continues to the AMR step and
the regridding and grid borders substeps, as shown in Figure 3.4. After those substeps,
the child grid may have one or more child grids itself. In that case those child grids are
integrated themselves in the same way as their parent. This recursion continues to deepen
until we reach grids which have no children themselves. At that point those grids continue
to the next step. Each child grid runs r timesteps. After completing those timesteps the
recursion is gradually nested back up, and the root grid eventually moves on to the next
step of the application.

The integrate children step is described in more detail in Section 5.3.

21

Chapter 3. Proxy Application

0 1 2 3

0

1

2

x

y
(a) Left rank (solid line) with ghost points (dotted
line)

2 3 4 5

0

1

2

x

y
(b) Right rank (solid line) with ghost points (dotted
line)

0 1 2 3

0

1

2

x

y

4 5

(c) What the domain looks like to the application
after the exchange of rank boundary values in Fig-
ure 3.5a and 3.5b.

Figure 3.5: Rank boundary: Figure 3.5a and 3.5b: Each rank sends its boundary values to the ghost
cells of its neighbor rank. Figure 3.5c: This exchange of boundary values makes it possible to treat
the domain as if it were continuous.

3.2.3.4 Downsampling

Downsampling is the process of replacing the solution in the parent grid with values from
the child grid. The point of this is to achieve a more accurate solution in the parent grid.
Downsampling is described in more detail in Section 5.4.

3.2.4 Rank Borders

The domain is divided into ranks, with each rank running on one distributed-memory node.
Each rank sends its boundary values to the ghost points of its neighbor rank, as illustrated
in Figure 3.5a and 3.5b. This exchange makes it possible to treat the domain as if it were
continuous, as illustrated in Figure 3.5c.

For simplicity, we choose to only let the root grids handle the rank borders, and then
let the child grids get their border values from their parents, as described in Section 5.2.

22

3.3 Parallel Programming APIs

3.2.5 Full Overview
Figure 3.6 combines all the parts we have looked at into a full overview of all the parts of
the application and how they fit together.

3.3 Parallel Programming APIs
In this section we describe which parallel programming APIs we choose to parallelize our
application and why.

The SWE, FDMs and AMR work well on both CPUs and GPUs. We choose to im-
plement our application on the CPU, but note that repeating our experiments on the GPU
could of interest.

We choose to use MPI for parallelization and communication between distributed-
memory nodes. MPI is a widely available industry standard for parallelization on dis-
tributed memory, and MPI implementations are highly optimized and tuned for specific
machines.

We choose to use OpenMP for parallelization of operations on collections between
processors in shared memory. pthreads gives the user a lot of control, but is also error-
prone. OpenMP is implemented using pthreads, but hides the implementation details.
This makes OpenMP easy to use and less error-prone.

23

Chapter 3. Proxy Application

Init

Integrate

SWE

Boundary

AMR
Regrid

Grid borders

Integrate children

Downsample

Rank borders

Done

xTxr

Figure 3.6: Full overview of all the parts of the application and how they fit together. ”xr” and ”xT”
denote ”run r or T times”.

24

Chapter 4
Integration

The integration is the main step of our application. This is where we evolve the solution
in time. In this chapter we look at the details of how the integration is implemented in our
application. First we look at how we solve the SWE using an FDM. Then we look at how
we handle the boundary conditions.

4.1 SWE

In this section we describe how we use a finite difference method (FDM) to implement
the shallow water equations (SWE). First we rewrite the SWE into a form more suited for
conversion to our difference equations. Then we describe the idea of one specific finite
difference method and present its general equations. Finally we explain how this method
can be used to implement the SWE.

4.1.1 SWE as relation between time and space difference

The shallow water equations from Section 2.1 can be rewritten to express the relation
between the time difference and the space difference:

∂(ρη)

∂t
= −∂(ρηu)

∂x
− ∂(ρηv)

∂y
(4.1)

∂(ρηu)

∂t
= − ∂

∂x

(
ρηu2 +

1

2
ρgη2

)
− ∂(ρηuv)

∂y
(4.2)

∂(ρηv)

∂t
= −∂(ρηuv)

∂x
− ∂

∂y

(
ρηv2 +

1

2
ρgη2

)
(4.3)

25

Chapter 4. Integration

4.1.2 FDM
We choose the MacCormack method as our finite difference method. MacCormack is a
predictor-corrector method which is well suited for non-linear hyperbolic partial differen-
tial equations [22].

The predictor step uses the forward Euler method [23] in time and a forward difference
in space.

un+1
i = uni −∆t

(
f(uni+1)− f(uni)

∆x

)
(4.4)

Where

• u: Value at a given coordinate at a given time

• ∆a: Discrete step size in direction a

The corrector step is similar to the predictor step, but takes the average of the cur-
rent time step and the predictor step, uses backward differences, and divides the spatial
difference in half.

un+1
i =

uni + un+1
i

2
− ∆t

2

(
f(un+1

i)− f(un+1
i−1)

∆x

)
(4.5)

4.1.3 Finite Difference Equations for the SWE
4.1.3.1 Fluid height

Predictor step:
To better explain the conversion from the shallow water differential equations to the

finite difference equations, we note that Equation 4.4 can also be written as

un+1
i − uni

∆t
= −

f(uni+1)− f(uni)

∆x
(4.6)

By applying Equation 4.6 to Equation 4.1 we get a difference equation describing the
fluid column height at the predictor step:

ρηt+1 − ρηt

∆t
= −ρηux+1 − ρηux

∆x
+
ρηvy+1 − ρηvy

∆y
(4.7)

We rewrite the equation to express the predictor time step as the difference between
the current time step and forward difference in space:

ρηt+1 = ρηt −∆t

(
ρηux+1 − ρηux

∆x
+
ρηvy+1 − ρηvy

∆y

)
(4.8)

Corrector step:
By applying Equation 4.5 to Equation 4.1 in the equivalent way to what we did for

the predictor step, we get a difference equation describing the fluid column height at the
corrector step:

26

4.1 SWE

ρηt+1 =
ρηt + ρηt+1

2
− ∆t

2

(
ρηut+1

x − ρηut+1
x−1

∆x
+
ρηvt+1

y − ρηvt+1
y−1

∆y

)
(4.9)

4.1.3.2 Velocity in x-direction

By applying Equation 4.4 and 4.5 to Equation 4.2 in the equivalent way to Section 4.1.3.1,
we get a set of difference equations describing the predictor and the corrector step for the
velocity in the x-direction:

Predictor step:

ρηut+1 = ρηut −∆t

(
duy,x+1 − duy,x

∆x
+
ρηuvy+1,x − ρηuvy,x

∆y

)
(4.10)

Where duy,x is shorthand notation for

duy,x = ρηu2y,x +
1

2
ρgη2y,x (4.11)

Corrector step:

ρηut+1 =
ρηut + ρηut+1

2
− ∆t

2

(
duy,x − duy,x−1

∆x
+
ρηuvy,x − ρηuvy−1,x

∆y

)
(4.12)

4.1.3.3 Velocity in y-direction

By applying Equation 4.4 and 4.5 to Equation 4.3 in the equivalent way to Section 4.1.3.1
we get a set of difference equations describing the predictor and the corrector step for the
velocity in the y-direction:

Predictor step:

ρηvt+1 = ρηvt −∆t

(
dvy+1,x − dvy,x

∆y
+
ρηuvy,x+1 − ρηuvy,x

∆x

)
(4.13)

Where dvy,x is shorthand notation for

dvy,x = ρηv2y,x +
1

2
ρgη2y,x (4.14)

Corrector step:

ρηvt+1 =
ρηvt + ρηvt+1

2
− ∆t

2

(
dvy,x − dvy−1,x

∆y
+
ρηuvy,x − ρηuvy,x−1

∆x

)
(4.15)

27

Chapter 4. Integration

4.2 Boundary Conditions
We choose to handle the boundary conditions by reflecting the fluid height and velocity.
This can be implemented using the Neumann boundary condition [24]. We achieve this
effect by specifying that the derivative of the function should be 0.

∂A

∂n
= 0 (4.16)

Where

• A: The value we want to find, in our case the fluid height and velocity

• n: The normal to the boundary over which the change takes place, in our case the
spatial dimensions X and Y in which the components of the changes in the fluid are
moving

In a finite difference method, this can be implemented using ghost points. By setting
the values of the ghost points to be equal to the values of the points inside the domain
which are next to the boundary points, we ensure that the derivatives of the values of the
boundary points are 0. Thus, a reflection effect is created.

28

Chapter 5
Adaptive Mesh Refinement

In this chapter we look at Adaptive Mesh Refinement (AMR) and its different parts in
more detail.

5.1 Regridding
Regridding is the process of changing the layout of child grids. This is performed regularly
after a given number of timesteps, in order to adapt the layout to the new features of the
solution. It may involve adding, removing, changing or keeping existing child grids.

Our regridding algorithm can be summarized as follows:

1. Flag the points which require refinement.

2. Cluster the flagged points into rectangles. For this purpose we use the algorithm of
Berger and Rigoutsos [25]. A brief overview of the algorithm is given below.

3. Create new child grids defined by the areas covered by the rectangles. Let these new
child grids replace the old child grids.

In short, the algorithm of Berger and Rigoutsos checks if a large enough share of the
points in a given rectangle require refinement. If this share is above the requirement, the
rectangle is accepted and a new child grid is created based on it. Otherwise, the rectangle
is split in such a way that neighboring points end up in the same rectangle to the largest
extent possible, and the algorithm is performed recursively on each new rectangle. A
rectangle is also accepted if the algorithm is unable to find a way split it, but it contains at
least one point which requires refinement.

The major goal of our algorithm, and of AMR in general, is to refine as few unneces-
sary points as possible. Thus, our rectangles should contain as few points which do not
require refinement as possible. This can be achieved by increasing the share of flagged
points required to accept a rectangle, which leads to a larger number of and smaller rect-
angles, covering a smaller area in total. However, a large amount of small rectangles also

29

Chapter 5. Adaptive Mesh Refinement

B C

E D

A

Figure 5.1: The value of point A in the blue child grid is derived from spacial interpolation of points
B, C, D and E in its black parent grid.

leads to a longer cumulative boundary, which increases the overhead from handling grid
borders. Thus, in order to get the best performance we should try to strike a balance
between refining as few unnecessary points as possible, and having as few rectangles as
possible.

The values of a new child grid are derived from spatial interpolation of points in its
parent. This is done by taking a weighted linear average of the values of the closest points
in the parent, as illustrated in Figure 5.1.

5.2 Grid Borders
Figure 5.2 illustrates how child grids handle their borders. The ghost values of a child grid
are derived from space-time interpolation of points in its parent. This is done by taking a
weighted linear average of the values of the closest points in space and time in the parent.
The ghost values are then used to find the new values of the border points through normal
time integration.

For simplicity of implementation, we choose to let all child grids get their grid border
values from their parents, instead of letting those child grids who have a neighbor child
grid get their grid border values from that neighbor.

5.3 Integrate Children
Figure 5.3 shows how the integrate children step recursively evolves the solution in time
for different levels of refinement. tl,i is the time at the beginning of timestep number i in
the reference system of a grid at level l. Each timestep evolves the solution from time tl,i
to tl,i+1. The algorithm first makes a timestep in the root grid, at level 0, from time t0,0 to
t0,1. The root grid now has the knowledge to interpolate the boundaries of its child grids.
Each child grid has a refinement in time which is r times that of its parent. Thus, each
child has to perform r timesteps in its own reference system, each of size 1

r times the size
of a timestep in the reference system of its parent, in order to get to the same point in time
as its parent. But even after just one timestep, a child grid at level 1 has the knowledge
to interpolate the boundaries of its child grids at level 2, and the algorithm can recursively

30

5.4 Downsampling

A

B C

DE

F

Figure 5.2: The ghost value A in the blue child grid is derived from space-time interpolation of
points B, C, D and E in its black parent. The ghost value A can then be used to find the new value
of boundary point F in the child grid.

evolve the solution r timesteps at level 2, then take another timestep at level 1, and finally r
new timesteps at level 2. At this point, all grids will recursively have evolved up to the end
of the first timestep at the root level, and the root grid can proceed with the next timestep.

5.4 Downsampling
Downsampling is the process of replacing the solution in the parent grid with values from
the child grid. This is done to achieve a more accurate solution in the parent grid. Further-
more, if a child grid disappears during regridding, the parent grid will already contain the
more accurate solution based on the child grid, and so no additional work is required for
the parent grid during regridding.

Figure 5.4 illustrates how downsampling is performed. The values of the points in the
parent grid which overlap with the child grid are replaced with values from overlapping
points in the child grid. For instance, in Figure 5.4 the values of point D and E in the parent
grid are replaced by the values of point D and E in the child grid. The point in the child
grid between D and E, however, is not used to update the parent grid directly. Such points
are only used internally in the child grid to find better values of D and E than the parent
grid could do on its own.

31

Chapter 5. Adaptive Mesh Refinement

Time t

Refinement level l

t0, 0 t0, 1

t1, 0 t1, 1 t1, 2

t2, 0 t2, 1 t2, 2 t2, 3 t2, 4

0

1

2

Figure 5.3: Recursive evolution of the solution in time for different levels of refinement. tl,i is the
time at the beginning of timestep number i in the reference system of a grid at level l. In this example
the refinement in time between each level is 2.

A B C

D E F

G H I

Figure 5.4: Downsampling: The values of points A-I in the black parent grid are replaced with
values from points A-I in the blue child grid.

32

Chapter 6
Performance Modeling

In this chapter we derive our performance model. First we model the runtime of each part
of our application on a single node. Then we combine the different parts into one model
and describe how the model is affected by scaling the number of nodes. Finally we make
predictions about the performance and scalability of our application.

6.1 Parts
In this section we model the performance of each part of our application on a single node
in a given timestep. Table 6.1 provides an overview of some important properties of each
part. The relevant hardware parameters for the different parts are

• FLOP/s: Floating point-operations per second

• MBW : Memory bandwidth

• MA: Memory allocation performance

• commlocal: Local communication, that is, point-to-point communication between
nodes

6.1.1 Integration
6.1.1.1 SWE

The runtime of the SWE step is modeled as

TSWE = PSWE ×WSWE (6.1)

Where

• PSWE : Number of points in the SWE step

33

Chapter 6. Performance Modeling

• WSWE : How fast a point is processed in the SWE step

The number of points in the SWE step is given as

PSWE = P =

G∑
g

Xg × Yg (6.2)

Where

• P : Total number of points

• G: All grids at all levels at all timesteps

• Xg, Yg: Length in direction in grid g

Relevant Hardware Parameters
The SWE step in our application solves the equations given in Section 4.1.3 by apply-

ing floating-point operations to data saved in shared memory. Thus, we argue the relevant
hardware parameters for this step are FLOP/s and MBW . Both of these are determined
by characteristics of a node class.

6.1.1.2 Boundary Conditions

The runtime of handling the boundary conditions is modeled as

TB = PB ×WB (6.3)

Where

• PB : Number of points in the handling of the boundary condition

• WB : How fast a point is processed in the handling of the boundary condition

The number of points in the handling of the boundary conditions is given as

PB = 2(X + Y) (6.4)

Where

• X,Y : Length of domain in direction

Relevant Hardware Parameters
We handle the boundary conditions by applying floating-point operations to data saved

in shared memory. Thus, we argue the relevant hardware parameters for this step are
FLOP/s and MBW . Both of these are determined by characteristics of a node class.

34

6.1 Parts

6.1.2 AMR
6.1.2.1 Regridding

The runtime of regridding is modeled as

TR = TRA + TAR (6.5)

Where

• TRA: Runtime of the regridding algorithm itself, where we figure out how the child
grids should be regridded

• TAR: Runtime of applying the regridding specified by the regridding algorithm to
the child grids

Regridding Algorithm
The regridding algorithm takes a grid with a number of points, looks at which points

require refinement, and figures out how to organize those points into child grids.
We model the runtime of the regridding algorithm as

TRA = PRA ×WRA (6.6)

Where

• PRA: Number of points which go into the regridding algorithm

• WRA: How fast a point is processed in the regridding algorithm

The number of points which go into the regridding algorithm is given as as

PRA =
pparent
RI

=

∑Gparent

g Xg × Yg
RI

(6.7)

Where

• pparent: Total number of points in parents

• Gparent: All parent grids at all levels at all timesteps

• RI: Regridding interval, number of timesteps between each regridding

Dividing by the regridding interval gives an amortized cost of the regridding algorithm
for a given timestep.

Regridding Algorithm: Relevant Hardware Parameters
The regridding algorithm applies floating-point operations to data saved in shared

memory. Thus, we argue the relevant hardware parameters for this step are FLOP/s
and MBW . Both of these are determined by characteristics of a node class.

Apply Regridding
The applying of the regridding consists of taking the result from the regridding al-

gorithm and applying them to the child grids of the input grid. It may involve adding,
removing, changing or keeping existing child grids.

35

Chapter 6. Performance Modeling

The runtime of the applying of the regridding is modeled as

TAR = PAR ×WAR (6.8)

Where

• PAR: Number of points in the applying of the regridding

• WAR: How fast a point is processed in the applying of the regridding

The number of points in the applying of the regridding is modeled as

PAR =
pchild
RI

=

∑Gchild

g Xg × Yg
RI

(6.9)

Where

• pchild: Total number of points in children

• Gchild: All child grids at all levels at all timesteps

Apply Regridding: Relevant Hardware Parameters
We apply the regridding by allocating and reallocating memory, as well as setting that

memory by applying floating-point operations on data saved in shared memory. Based on
this we argue that the relevant hardware parameters for this step are FLOP/s, MBW and
MA. All of these are determined by characteristics of a node class.

6.1.2.2 Grid Borders

The runtime of handling the grid borders is modeled as

TGB = PGB ×WGB (6.10)

Where

• PGB : Number of points in the handling of the grid borders

• WGB : How fast a point is processed in the handling of the grid borders

The number of points in the handling of the grid borders is given as

PGB =

G∑
g

2(Xg + Yg) (6.11)

Relevant Hardware Parameters
We handle the grid borders by applying floating-point operations to data saved in mem-

ory. Thus, we argue the relevant hardware parameters for this step are FLOP/s and
MBW . Both of these are determined by characteristics of a node class.

36

6.1 Parts

6.1.2.3 Integrate Children

The integration of child grids is part of the AMR algorithm. However, in our performance
model we choose to model the integration of all grids, both parent grids and root grids,
under one common integration part. The performance model for the integration part is
described in Section 6.1.1.

6.1.2.4 Downsampling

The runtime of downsampling is modeled as

TD = PD ×WD (6.12)

Where

• PD: Number of points in the downsampling

• WD: How fast a point is processed in the downsampling

The number of points in the downsampling is given as

PD =
pchild
r3

=

∑Gchild

g Xg × Yg
r3

(6.13)

Relevant Hardware Parameters
We handle the downsampling by applying floating-point operations to data saved in

memory. Thus, we argue the relevant hardware parameters for this step are FLOP/s and
MBW . Both of these are determined by characteristics of a node class.

6.1.3 Rank Borders

The runtime of handling the rank borders is modeled as

TRB = PRB ×WRB (6.14)

Where

• TRB : Runtime of handling the rank borders

• PRB : Number of points at the rank borders

• WRB : How fast a point is processed in the handling of the rank borders

6.1.3.1 Relevant Hardware Parameters

We handle the rank borders by exchanging values at the rank borders with neighbor ranks.
Thus, we argue the relevant hardware parameter for this step is commlocal.

37

Chapter 6. Performance Modeling

6.1.4 Overview
Table 6.1 provides an overview of the different parts, equations for their number of points,
and their relevant hardware parameters. We note that 5 out of 9 parts have both FLOP/s
and MBW as relevant hardware parameters, and 4 parts have those as their only relevant
hardware parameters. Thus, if we wanted to model how fast a point is processed in each
part, Roofline [17] could be a good starting point, as it depends on precisely those param-
eters.

Part Number of points Hardware parameters
SWE PSWE = P =

∑G
g Xg × Yg FLOP/s, MBW

Boundary conditions (B) PB = 2(X + Y) FLOP/s, MBW

Regridding algorithm (RA) PRA =
pparent

RI =
∑Gparent

g Xg×Yg

RI FLOP/s, MBW

Applying of regridding (AR) PAR = pchild

RI =
∑Gchild

g Xg×Yg

RI FLOP/S, MBW , MA

Grid borders (GB) PGB =
∑G

g 2(Xg + Yg) FLOP/S, MBW

Downsampling (D) PD = pchild

r3 =
∑Gchild

g Xg×Yg

r3 MBW

Rank borders (RB) commlocal

Table 6.1: Overview of the different parts, equations for their number of points, and their relevant
hardware parameters

6.2 Comparison of Parts
In this section we compare the different parts in Section 6.1 with each other, and identify
which of them are likely to have a large impact on the total runtime.

6.2.1 Sum of Length and Width of Boundaries and Borders vs Prod-
uct

Both PGB and PSWE depend on the length and width of each grid. However, PGB de-
pends on the sum of the length and width, while PSWE depends on the product. We as-
sume that no sides have a very short length, for instance 1. Then we expect that PSWE �
PGB , and therefore that TSWE � TGB .

PB depends on the sum of the length and width of just the domain. Thus, we expect
that PGB > PB , and therefore that PSWE � PB and TSWE � TB .

6.2.2 Number of Child Points vs Total Number of Points
PAR and PD both depend on the number of child points pchild, while PSWE depends on
the total number of points P . The relation between P and pchild is

P = proot + pchild (6.15)

Where

38

6.2 Comparison of Parts

• proot: Total number of points in the root grids

which means that pchild < P . pchild is also limited by the share of points which are
refined. The number of points at a level l is given as

pl = reql−1 × pl−1 × r3 (6.16)

Where reql−1 is the share of points at level l−1 which are refined. pchild is then given
as

pchild =

L∑
l

pl (6.17)

If reql−1 > 1
r3 for all levels then pchild will grow exponentially from level to level, and

pchild ≈ P . However, the number of levels L is limited by factors such as floating-point
precision, the granularity of the physical system, and user choices about requirements.
Thus, there are multiple factors limiting pchild, and therefore PAR and PD.

In addition, applying of regridding is only run everyRI timestep, while downsampling
is only run for every r3 point. By comparison, the SWE step is run for every point for all
timesteps. In total, this makes us claim that both PAR and PD are small compared to
PSWE , which in turn makes us claim that TAR and TD are small compared to TSWE .

6.2.3 Regridding Interval vs Every Timestep
The applying of regridding is only run every RI timestep. This is also true for the regrid-
ding algorithm. In addition, PRA depends on PP . The relation between P and Pparent

is

P = pparent + pleaf (6.18)

Where pleaf is the number of leaf child points, child points which do not themselves
have children. This means that P ≥ pparent. AMR applications are useful in cases where
at least some of the points are refined. In that case, pparent will be smaller than P .

In total, these factors make us claim that TRA is small compared to TSWE .

6.2.4 Communication vs Computation
TRB depends on the performance of local communication between neighbor nodes. All
the other parts depend on resources that are characteristics of node type, namely FLOP/s,
MBW and MA. This makes the scalability of TRB fundamentally different to the other
parts.

As we increase the number of nodes, the number of points of each of the other parts
may be divided among the nodes, and each node may get less work to do for each of these
parts.

The rank border part, on the other hand, will have no work for 1 node. As we increase
the number of nodes, a given rank will get more neighbors to communicate with during
border exchange, until it has 4 neighbors, one on each side. From that point, even as we

39

Chapter 6. Performance Modeling

continue to scale up the number of nodes, and thus the total amount of communication, the
amount of communication per node will begin to decrease due to the shorter rank border.
PRB depends on the sum of the sides of each rank, while PSWE depends on the product
of the sides of the rank in addition to the product of the sides of each child grid within a
rank. Thus, we expect that P � PRB .

We recognize that TRB is part of the total runtime, but due to the fundamentally dif-
ferent scalability properties of TRB , as well as its dependence on a different class of hard-
ware parameters, namely parameters between nodes, a detailed model of TRB is beyond
the scope of this thesis.

6.2.5 Summary
We claim the runtime of the other parts are small compared to the runtime of the SWE part.
All parts depend on hardware parameters which are characterized by the node type, except
the handling of the rank borders, which depends on the performance of local communica-
tion between nodes. The way the handling of the rank borders scales with the number of
nodes is more complicated than for the other parts.

6.3 Load Balance
The load balance measures how well work is distributed. The load balance is perfect if all
compute units, for instance processor cores or nodes, have work which take the same time.
The load balance is lower than perfect if one or a few compute units have work which
takes a long time, while the other compute units have to wait while doing nothing.

Our application consists of a number of timesteps. A given node can not start with the
next timestep until it has exchanged border values with its neighbor nodes. If one of its
neighbors has a lot of work to do, the node will have to wait as long as if it had the same
amount of work to do as its neighbor. For this reason we define the load balance LB as

LB =
P

PLB
(6.19)

Where

• P : Total number of points for all timesteps for all nodes

• PLB : Total number of points for all timesteps for all nodes if all nodes had the same
number of points in a given timestep as the node with the largest number of points
in that timestep

PLB can be expressed and measured as

PLB =

I∑
i

N
max
n

(Pn)×N (6.20)

Where

40

6.4 Performance Model

• n: Node number

• N : Number of nodes

• Pn: Number of points for node number n

This is similar to BSP [16], which models the cost of the local computation for a given
superstep as

N
max
n

(wn) (6.21)

PLB can not be smaller than P . Thus, the load balance will be a number between 0
and 1, with 1 indicating a perfect load balance, and a number close to 0 indicating a very
bad load balance, strongly influencing the runtime.

6.4 Performance Model
In Section 6.2 we argued that the runtime of the other parts likely is small compared to the
runtime of the SWE part. We also argued that the handling of the rank borders was the
only part which depended on communication instead of resources internal to a node, and
that the handling of the rank border did not scale with the number of nodes in the same
way that the other parts did. In Section 6.3 we argued that the load balance impacts the
scalability of our application.

In this section we use these arguments to build a model for the runtime of our applica-
tion. We model the runtime of our application as

Ttot = Tcomp + Tcomm (6.22)
Where

• Ttot: Total runtime

• Tcomp: Runtime of the computation

• Tcomm: Runtime of the communication between ranks

The runtime of the computation is modeled as

Tcomp =
TSWE

LB ×N
(6.23)

This can be expanded as

Tcomp =
P ×WSWE

LB ×N
(6.24)

The runtime of the computation is simply modeled as

Tcomm = TRB (6.25)
This means our model can be written as

Ttot =
P ×WSWE

LB ×N
+ TRB (6.26)

41

Chapter 6. Performance Modeling

6.5 Predictions
In this section we make predictions based on our performance model.

6.5.1 Cost of an Extra Level of Refinement
In this section we show that the runtime of our application will be between 1 and r3 + 1
times larger if we add an extra level of refinement rather than keeping the current number
of levels of refinement.

First we show that the most refined level has between 1 and r3 times as many points
as the second most refined level. Then we show that the total number of points will be
between 1 and r3 + 1 times larger if we add an extra level of refinement. Finally we show
that this increase in the number of points will lead to the same increase in the runtime of
our application.

6.5.1.1 Cost of the Most Refined Level in Number of Points

Let

Al,g,ref = Yl,g,ref ×Xl,g,ref (6.27)

Where

• Al,g,ref : Area of grid g at level l in reference system ref

• Yl,g,ref , Xl,g,ref : Area of grid g in direction Y or X at level l in reference system
ref

Note that this definition of area is focused on the number of points in a grid at a given
timestep, and not necessarily on the space a grid takes up in the global reference system,
since our focus is on the number of points, which depends on the number of points in each
grid, as well as the number of timesteps.

Then the area of a parent grid in its own reference system is larger than or equal to the
sum of the areas of its children in the parent’s reference system:

Gparent∑
g

AL,g,parent ≤ AL−1,parent,parent (6.28)

This is because the children of a grid may refine all or some of the grid’s areas, but not
more, as they are bound by the borders of their parent.

Assuming that the refinement r is the same in both spatial directions, the area of a child
grid is r2 times larger in the child’s own reference system than in the reference system of its
parent. From this it follows that the sum of the areas of the children in their own reference
system is up to r2 times larger the area of their parent in its own reference system:∑Gparent

g AL,g,self

AL−1,parent,self
≤ r2 (6.29)

42

6.5 Predictions

The number of points for all timesteps is defined by the product of the number of steps
in the temporal and both of the spatial dimensions. Assuming that the refinement is the
same in the temporal dimension as in both spatial dimensions, the number of timesteps of
a child is up to r times that of its parent. Combining this with Equation 6.29 we find that
the sum of the number of points for each child of a grid is up to r3 times larger than the
number of points of the parent: ∑Gparent

g pL,g

pL−1,parent
≤ r3 (6.30)

Where

• pl,g: Number of points in a grid g at level l

Since this holds for every grid at every level, the relation can be rewritten for the total
number of points for all grids at a given level:

pL
pL−1

≤ r3 (6.31)

Where

• pl: Number of points at level l

Thus we have shown that the most refined level has up to r3 more points than the
second most refined level.

6.5.1.2 Total Cost of an Extra Level of Refinement in Number of Points

The total number of points for an application with L levels is

PL =

L∑
l

pl (6.32)

Equation 6.31 can be rewritten as

pL ≤ r3pL−1 (6.33)

This recursive relation can be expanded to

pL ≤ r3(r3pL−2) (6.34)

and simplified as

pL ≤ r3×2pL−2) (6.35)

Fully expanded this becomes

pL ≤ r3Lproot (6.36)

Combining this with Equation 6.32 gives

43

Chapter 6. Performance Modeling

PL ≤ proot
L∑
l

r3L (6.37)

This is a geometric series which can be written as

PL ≤ proot
1− r3L

1− r3
(6.38)

Adding an extra level of refinement yields

PL

PL−1
(6.39)

times more points than by keeping the maximum refinement level at L− 1.
Inserting Equation 6.32 into Equation 6.39 gives∑L

l pl∑L−1
l pl

(6.40)

which can be written as ∑L−1
l pl + pL∑L−1

l pl
(6.41)

If the area and number of timesteps refined at level L is low, pL will go towards 0, and
adding an extra level of refinement will yield∑L−1

l pl∑L−1
l pl

= 1 (6.42)

times more points than by keeping the maximum refinement level at L − 1, making
this the lower bound on the cost of adding an extra level of refinement. Conversely, if the
area and number of timesteps refined at level L is high, pL will tend towards r3. The upper
limit on the cost of adding an extra level of refinement can then be found as follows:

Inserting Equation 6.38 into Equation 6.39 gives

proot
1−r3L
1−r3

proot
1−r3(L−1)

1−r3
(6.43)

This can be simplified as

1− r3L

1− r3(L−1)
(6.44)

For the smallest case with only two levels, this becomes

1− r3×2

1− r3
(6.45)

which simplifies to

44

6.5 Predictions

1 + r3 (6.46)

In the more general case we have that

lim
L→∞

1− r3L

1− r3(L−1)
= lim

r→∞

1− r3L

1− r3(L−1)
=

r3L

r3(L−1)
(6.47)

which simplifies to

lim
L→∞

1− r3L

1− r3(L−1)
= lim

r→∞

1− r3L

1− r3(L−1)
= r3 (6.48)

To summarize the upper and lower bound:

1 ≤ Pcost ≤ r3 + 1 (6.49)

for L→ 2 ∧ r → 0, and

1 ≤ Pcost ≤ r3 (6.50)

for L→∞∨ r →∞.
Where

• Pcost: Cost of an extra level of refinement measured as the number of points after
adding an extra level of refinement relative to keeping the number of levels un-
changed.

This means that if we add an extra level of refinement, the number of points will
increase by a factor

1 ≤ Pcost ≤ r3 + 1 (6.51)

for all L and r.

6.5.1.3 Total Cost of an Extra Level of Refinement in Runtime

In this section we examine the effects of an extra level of refinement on the runtime.
Equation 6.24 gives the runtime of the computation as

Tcomp =
P ×WSWE

LB ×N
(6.52)

If we keep N constant, then increasing P from PA to PB will increase Tcomp by

Tcomp,cost =
Tcomp,B

Tcomp,A
=

PB×WSWE

LBB×N
PA×WSWE

LBA×N
(6.53)

Where Tcomp,cost is the cost of adding an extra level of refinement, measured in the
runtime of the computation.

In the general case, this can be simplified as

45

Chapter 6. Performance Modeling

Tcomp,cost =
Tcomp,B

Tcomp,A
=
PB × LBA

PA × LBB
(6.54)

If LBA = LBB , this can be further simplified as

Tcomp,cost =
Tcomp,B

Tcomp,A
=
PB

PA
(6.55)

If A is the case before we add an extra level of refinement, and B is the case after, then
PB = PA × Pcost. In that case we have that

Tcomp,cost =
Tcomp,B

Tcomp,A
= Pcost (6.56)

Since 1 ≤ Pcost ≤ 1 + r3, we have that

1 ≤ Tcomp,cost ≤ 1 + r3 (6.57)

Since N is unchanged, Tcomm will also be unchanged.

6.5.1.4 Summary

We predict that if the load balance is unchanged, the runtime of our application will be
between 1 and r3 + 1 times larger, in addition to some constant communication overhead,
if we add an extra level of refinement rather than keeping the current number of levels of
refinement. Furthermore, the increase in the runtime will be equal to the increase in the
number of points.

6.5.2 Strong Scaling
In this section we predict what happens as we scale up the number of nodes while keeping
the problem size constant. This is known as strong scaling.

Equation 6.24 gives the runtime of the computation as

Tcomp =
P ×WSWE

LB ×N
(6.58)

If LB is perfect for all N , and we keep P constant, then increasing N from NA to NB

will give Tcomp a speedup of

Scomp =
Tcomp,A

Tcomp,B
=

P×WSWE

LB×NA

P×WSWE

LB×NB

(6.59)

Where

• Scomp: Speedup of the computation

• Tcomp,A, Tcomp,B : Runtime of computation for configurations A and B

• NA, NB : Number of nodes for configurations A and B

46

6.5 Predictions

This can be simplified as

Scomp =
Tcomp,A

Tcomp,B
=
NB

NA
(6.60)

If LB is not perfect for all N , and we keep P constant, then increasing N from NA to
NB will give Tcomp a speedup of

Scomp =
Tcomp,A

Tcomp,B
=

P×WSWE

LBA×NA

P×WSWE

LBB×NB

(6.61)

Where LBA and LBB are the load balance for configurations A and B. This can be
simplified as

Scomp =
Tcomp,A

Tcomp,B
=
LBB ×NB

LBA ×NA
(6.62)

Tcomm will be greater than 0 for N > 1. However, due to the communication being
local, we expect Tcomm to stabilize asN increases enough to make some nodes reach their
maximum number of neighbors.

6.5.2.1 Summary

We expect the speedup to increase with the number of nodes. However, an increase in N
may lead to a decrease in LB, which may dampen the speedup. Tcomm will stabilize as N
increases enough to make some nodes reach their maximum number of neighbors.

6.5.3 Weak Scaling
In this section we predict what happens to the runtime as we increase the problem size and
the resources by the same factor. This is known as weak scaling.

We increase the problem size by increasing P , and increase the resources by increasing
N . Equation 6.24 gives the runtime of the computation as

Tcomp =
P ×WSWE

LB ×N
(6.63)

If we increase P andN by the same factor, and LB remains unchanged, the runtime of
the computation internal to each node will be the same, and thus Tcomp will be the same,
and the parallel efficiencyE will be stable. If LB decreases whenN increases, Tcomp will
increase, and E will decrease.

Just as for the strong scaling, we expect Tcomm to stabilize as N increases enough to
make some nodes reach their maximum number of neighbors.

6.5.3.1 Summary

We expect that there will be some communication overhead for N > 1, but that it will
stabilize as N increases. If LB remains unchanged, we expect Ttot and E to stabilize, so
that we can increase N and get more work done in the same time.

47

Chapter 6. Performance Modeling

48

Chapter 7
Experimental Setup

In this chapter we describe the setup for our experiments. First we describe the setup of the
machines we run our experiments on. Then we describe the parameters which affect the
performance and scalability of the solution. Finally we describe the setup for validation of
our predictions.

7.1 Machine Setup

The experiments are performed on two machines, Idun and Vilje. On both machines we
assign 1 node to each MPI rank, and 1 processor core to each OpenMP thread.

7.1.1 Idun

Idun is a research cluster at NTNU which serves as a platform for rapid testing and pro-
totyping of HPC software [26]. Table 7.1 summarizes some important properties of the
hardware and software of Idun. Two of the node types of the machine are the Dell PE630
and the Dell PEC6420. We run our experiments on one of these node types at a time.
We set the thread affinity to assign OpenMP thread n+1 to processor core n by setting the
KMP AFFINITY environment variable to compact.

7.1.2 Vilje

Vilje is a SGI Altix ICE X system procured by NTNU together with met.no and UNINETT
Sigma [27]. Table 7.2 summarizes some important properties of the hardware and software
of Vilje. We set the thread affinity to assign OpenMP thread n+1 to processor core n by
wrapping our application command with the OMPLACE command.

49

Chapter 7. Experimental Setup

Property Value
Compiler ICC 19.0.5.281

Compiler flags -std=c99 -g -O3 -qopenmp -lm -liomp5
MPI Intel(R) MPI Library for Linux* OS,

Version 2018 Update 5 Build 20190404
OpenMP version 4.5

Node type a) Dell PE630, b) Dell PEC6420
Processor a) Intel Xeon E5-2630 v2, b) Intel Xeon Gold 6132

Processors per node 2
Cores per node a) 20, b) 28
Memory per node a) 128 GB, b) 192 GB

Table 7.1: Properties of Idun

Property Value
Compiler ICC 18.0.1

Compiler flags -std=c99 -g -O3 -qopenmp -lm -liomp5
MPI SGI MPT 2.14

OpenMP version 4.5
Processor Intel Xeon E5-2670 (’Sandy Bridge’)

Processors per node 2
Cores per node 16
Memory per node 32 GB

Table 7.2: Properties of Vilje

50

7.2 Parameter Space

7.2 Parameter Space
In this section we describe the parameters which affect the performance and scalability of
the solution.

7.2.1 Amount of Refinement
The coarsest level of refinement is defined by the size of its space steps and its time step.
Each finer level is defined by some refinement in both space and in time relative to its
parent level. There can either be infinitely many finer levels, or there can be some limit,
either defined by a maximum number of levels or by a maximum amount of refinement.
In our experiments we set a maximum number of levels.

Adding an extra level of refinement increases the amount of work that needs to be
done, which affects the performance of the application. In Section 7.3.1 we examine this
effect.

7.2.2 Size of Refinement
A large refinement between each level could mean less total work at levels between the
coarsest and the finest level. On the other hand, it could also mean that some areas are
refined more than necessary, and it could lead to a lower accuracy in the initial and border
values the child grids get from their parent. In our experiments we choose a refinement
ratio of 2.

7.2.3 Initial Condition
The initial condition of the height and velocity of the fluid may be changed. This will
affect the development of the solution, and thus the areas which require refinement as
well as their total size across different levels of refinement. This will in turn affect how
much work the integration algorithm has to do, and thus its performance. In Section 7.3.2
we set up two different initial conditions of the height and compare their effect on the
performance.

7.2.4 Refinement Requirement
The requirement for refining a given point may depend on something mathematical, like an
error estimate, or something physical, like the fluid height. The value of the requirement
affects the number of points which need refinement, which in turn affects the amount of
work and thus the performance for the integration step. In our experiments we require
refinement for a point if its fluid height is above some threshold. This threshold increases
with the refinement.

A subarea is refined using a grid if a large enough share of the points within that
subarea require refinement. A larger required amount results in a smaller unnecessarily
refined area in total, which leads to less amount of work and thus better performance for
the integration step. On the other hand, a larger required amount also leads to a larger
number of grids. This in turn leads to a longer border in total and thus a larger total

51

Chapter 7. Experimental Setup

overhead from border handling. This is explored in more detail in Section 5.1. In our
experiments we refine a subarea if at least 0.9 of the points require refinement.

7.2.5 Regridding Interval
Regridding is the process of changing the layout of child grids. The more often we regrid,
the more precisely we can refine only what is needed. We may increase the size of each
grid with a buffer to ensure that features which require refinement don’t move outside a
given grid before the next regridding. Then the more often we regrid, the smaller this
buffer can be, and thus a smaller area needs to refined, which means less work and thus
higher performance for the integration step. On the other hand, the more often we regrid,
the larger the total overhead from the regridding algorithm. In our experiments, we strike
a balance between these factors by setting the regridding interval to 5.

7.2.6 Size of Domain
The length and width in space, as well as the duration in time, affects the amount of work
to be done. In Section 7.3.2 we keep the total length and width of the domain, but decrease
one of these dimensions per node by increasing the number of nodes. In Section 7.3.3
we increase the one of these dimensions of the domain, but keep the length and the width
constant on each node by increasing the number of nodes.

7.3 Setup For Validation of Predictions
In Section 6.5 we made a number of predictions about the performance and scalability
characteristics of our application. In this section we describe our methodology for experi-
mentally validating those predictions. First we describe the setup that all our experiments
have in common. Then we describe the experiment-specific details. In Chapter 8 we
perform these experiments and discuss to what degree our predictions are validated.

We set up initial disturbances in the fluid height η shaped like waves. Each of our
experiments use one or both of the following waves:

• Wave from edge: Sine wave which starts at one edge of the domain, as shown in
Figure 7.1, and moves in the Y direction towards the other edge, as shown in Figure
7.2.

• Wave from middle: Sine wave which starts in the middle of the domain, as shown
in Figure 7.3, and moves outwards in both the positive and the negative Y directions,
as shown in Figure 7.4.

The figures show the refined areas as areas with a higher density of points. The waves
are adaptively refined over time as they move, and areas without a wave at a given timestep
are not refined.

A single point at the coarsest level requires refinement if

η − η0 > 0.1× ηwave,max × rL (7.1)

52

7.3 Setup For Validation of Predictions

Property Value
η0 1

ηwave,max 0.1
dyroot 0.01
dxroot 0.01
dtroot 1.25× 10−4

r 2
reqgrid 0.9
RI 5

Table 7.3: Parameters which all experiments have in common

Where

• η0: Normal fluid height

• ηwave,max: Max fluid height of wave above η0

• rL: Total refinement relative to root at refinement level L

This means we require refinement where a wave is located at any given time. Regions
with a wave will therefore have a higher number of points than regions without a wave,
and ranks with these regions will have a higher number of points than ranks without such
regions.

Table 7.3 summarizes some of the parameters of the setup which all experiments have
in common. dyroot, dxroot and dtroot are the step sizes in the spatial and temporal direc-
tions for root. reqgrid is the share of points in an area which require refinement in order to
make a child grid.

7.3.1 Cost of an Extra Level of Refinement
In this experiment we add levels of refinement and look at what happens to the number of
points and the total runtime. We run our experiment for 1, 2, 3 and 4 levels of refinement
L on Vilje and on both node types on Idun.

If we add an extra level of refinement, Equation 6.49 says the number of times more
points will be

1 ≤ Pcost ≤ r3 + 1 (7.2)

In our experiments the refinement ratio r is 2. In that case we have that

1 ≤ Pcost ≤ 9 (7.3)

We run our application on 1 node. Then LB will be perfect in all cases, and thus
unchanged. In that case Equation 6.57 predicts the cost in computation time Tcomp,cost of
adding an extra level will be

1 ≤ Tcomp,cost ≤ 1 + r3 (7.4)

53

Chapter 7. Experimental Setup

Figure 7.1: Wave from edge initially. The refined area has a higher density of points.

Figure 7.2: Wave from edge after moving across the domain. The refined area has a higher density
of points.

54

7.3 Setup For Validation of Predictions

Figure 7.3: Wave from middle initially. The refined area has a higher density of points.

Figure 7.4: Wave from middle after being split and moving outwards. The refined areas have a
higher density of points.

55

Chapter 7. Experimental Setup

Property Value
Machines Idun (PE630, PEC6420), Vilje
Wave type Edge

Y 64
X 32000
I 12000
N 1
L 1, 2, 3, 4

Table 7.4: Experimental setup for cost of extra level

and Pcost = Tcomp,cost.
Since we run on 1 node, Tcomm will be 0, and the increase in Ttot will be equal to

Tcomp,cost, and thus Pcost.
Table 7.4 summarizes some of the parameter values unique to the setup of this experi-

ment.

7.3.2 Strong Scaling
In Section 6.5.2 we predict that as we scale up the number of nodes N , the speedup will
increase. We also predict that the load balance LB may decrease as N increases, which
may dampen the speedup. Finally, Tcomm will stabilize as N increases enough to make
some nodes reach their maximum number of neighbors.

In our experiment we increase N and look at what happens to the speedup for the two
different waves. We expect the speedup of the computation part to be as in Equation 6.62,

Scomp =
Tcomp,A

Tcomp,B
=
LBB ×NB

LBA ×NA
(7.5)

In the case where NA = 1, we have that LBA = 1. Then the speedup from 1 to NB

nodes simplifies to

Scomp = LBB ×NB (7.6)

Based on this we predict that the wave with the highest LBB will have the highest
speedup for a given NB .

Table 7.5 summarizes some of the parameter values unique to the setup of this experi-
ment.

7.3.3 Weak Scaling
In this experiment we scale up the number of nodes and the problem size by the same
factor. We scale up the problem size by increasing the width X, from 512 for N = 1,
to 512 × 16 = 8192 for N = 16. We use a wave from the edge which moves in the Y
direction, and split the domain into ranks in the Y direction only. This ensures a perfect
load balance, as not only the area, but also the amount of work is scaled by the same
amount as the number of nodes.

56

7.3 Setup For Validation of Predictions

Property Value
Machines Vilje

Wave types Middle, Edge
Y 64
X 102400
I 12000
N 1, 2, 4, 8, 16
L 2

Table 7.5: Experimental setup for strong scaling

Property Value
Machines Idun (PE630), Vilje
Wave type Edge

Y 512
X 512 × N
I 40000
N 1, 2, 4, 8, 16
L 2

Table 7.6: Experimental setup for weak scaling

In that case, Gustafson and Equation 2.13 says that as we increase N , the parallel
efficiency E will tend towards

lim
N→∞

E = pcomp (7.7)

where pcomp is the share of the computation part of our application which can be par-
allelized. In our model we assume that pcomp = 1, and predict that the parallel efficiency
E of Tcomp relative to 1 node will be 1. The assumption that pcomp = 1 is of course
an approximation, but as long as pcomp ≈ 1, this assumption does not make much of a
difference for weak scaling.

Since the ranks are split in only one dimension, a rank will have at most 2 neighbors.
Therefore, we expect the communication time to be greater than 0 for N > 1, but to
stabilize as we increase N . To measure Tcomm we put in a barrier where all ranks have to
wait for each other to catch up, just before the handling of the rank border. Once all ranks
reach the barrier, we start measuring Tcomm. This ensures that we don’t end up measuring
the time some rank has to wait for another rank in addition to the communication.

We choose to also measure Ttot and Tcomp for this application with the barrier before
the communication. The downside is that the application without the barrier has better
performance. The upside is that by using the same measurement run for the different types
of values, we can remove one source of uncertainty.

Table 7.6 summarizes some of the parameter values unique to the setup of this experi-
ment.

57

Chapter 7. Experimental Setup

Property Extra level Strong scaling Weak scaling
Machines Idun (PE630, PEC6420), Vilje Vilje Idun (PE630), Vilje

Wave types Edge Middle, Edge Edge
Y 64 64 512
X 32000 102400 512 × N
I 12000 12000 40000
N 1 1, 2, 4, 8, 16 1, 2, 4, 8, 16
L 1, 2, 3, 4 2 2

Table 7.7: Summary of setups for the different experiments

7.3.4 Summary
Table 7.7 summarizes some of the values for the setup of the different experiments.

58

Chapter 8
Results and Discussion

In this chapter we look at the results from the measurements, compare them to the predic-
tions from our performance model, and discuss their implications for the performance and
scalability characteristics.

8.1 Cost of an Extra Level of Refinement
In this section we examine the cost of adding an extra level of refinement relative to keep-
ing the current level of refinement, and discuss to what extent our predictions are validated.
First we look at the increase in the number of points P from adding an extra level. Then
we look at the effect of the increase in P on the total runtime.

8.1.1 Measurements
8.1.1.1 Number of Points

Figure 8.1 shows the factor of increase in P from adding an extra level of refinement. The
measured results are well within the predicted range of 1 and r3 + 1 = 9.

The increase differs between different pairs of levels. We attribute this to different
requirements for refinement. Level 1 includes all the points in the root grid. Level 2 refines
only the points where the wave is present and has a height above the threshold, which
excludes much of the root grid. Level 3 and 4 refine most of the areas of their previous
levels, since that is where the wave is, but they have gradually stricter requirements for
refining a point.

8.1.1.2 Runtime

Figure 8.2 shows the factor of increase in P from adding an extra level of refinement. Our
modeled increase in Ttot is given as the measured increase in P , as shown in Figure 8.1.
Figure 8.3 shows the difference between the measured and the modeled increase Ttot. The

59

Chapter 8. Results and Discussion

1 to
2

2 to
3

3 to
4

M
in

pre
dic

tio
n

M
ax

pre
dic

tio
n

0

2

4

6

8

10

3.6

6.04

4.49

1

9

Change in number of levels

Fa
ct

or
of

in
cr

ea
se

Figure 8.1: Factor of increase in the total number of points from adding an extra level of refinement.

measured increase from 1 to 2 nodes is larger than modeled for all machines. We attribute
this to

• Caching: As we increase L, and thus the P , our memory usage increases. To
minimize effects of different cache levels with different performance on our runtime,
we have chosen a problem size which makes our memory usage larger than the
capacity of the L3 cache even for just 1 level of refinement. However, a larger share
of our memory will fit in L3 for 1 level of refinement than for 2 levels of refinement,
contributing to a larger increase in runtime.

• Other computation parts: In our model we exclude the parts of the computation
which have a low impact on Ttot. However, these parts still have an impact larger
than nothing. Regridding and downsampling are performed for 2 levels, but not 1
level, and will thus contribute to a larger increase in runtime.

8.1.2 Summary

If we add an extra level of refinement, the factor of increase in the number of points P
will be between 1 and r3 + 1 relative to the current level of refinement. If the load balance
is unchanged and there is no communication, the total runtime will increase by the same
factor as P .

60

8.1 Cost of an Extra Level of Refinement

1 to 2 2 to 3 3 to 4
0

2

4

6

Change in number of levels

Fa
ct

or
of

in
cr

ea
se

Idun (pe630)
Idun (pec6420)

Vilje
Modeled

Figure 8.2: Factor of increase in the total runtime from adding an extra level of refinement.

1 to 2 2 to 3 3 to 4
0

0.5

1

1.5

Change in maximum level of refinement

M
ea

su
re

d
/M

od
el

ed

Idun (pe630)
Idun (pec6420)

Vilje

Figure 8.3: Cost of extra level: Ratio between measured and modeled increase in runtime

61

Chapter 8. Results and Discussion

1 2 4 8 16
0

0.2

0.4

0.6

0.8

1
1 0.98 0.98

0.67 0.67

1

0.63 0.63

0.43 0.43

Number of nodes

Sh
ar

e
(p

er
ce

nt
ag

e)

Middle
Edge

Figure 8.4: Load balance for two different initial waves as we scale up the number of nodes

8.2 Strong Scaling
In this section we look at strong scaling. We make measurements of what happens as we
scale up the number of nodes, and discuss to what extent our predictions are validated.

First we measure the load balance of two different initial waves for different numbers
of nodes. Then we measure the total runtime for both waves, and compare their speedup.
Next, we measure the share of the communication relative to the the total runtime. Finally,
we compare the measured speedup of the computation part of the two waves to each other,
and to the modeled speedup.

8.2.1 Measurements
8.2.1.1 Load Balance

Figure 8.4 shows the load balance LB for the two initial waves as we scale up the number
of nodesN . LB decreases withN for both waves. Thus, we predict that the scalability for
both waves will be dampened by a factor of LB. The wave from the middle has a better
LB than the wave from the edge for all N > 1. Thus, we predict that the wave from the
middle will scale better with N than the wave from the edge.

8.2.1.2 Speedup of Total Runtime

Figure 8.5 shows the speedup of Ttot relative to 1 node as we scale up the number of
nodes. The total runtime includes both the time spent on computation and the time spent
on communication. Figure 8.6 shows the parallel efficiency of Ttot for the same case. The
wave with the best load balance for all N > 1, namely the wave from the middle, scales
better with N than the wave from the edge. The efficiency decreases with N for both

62

8.2 Strong Scaling

2 4 8 16

0

2

4

6

8

10

1.88

3.32

4.72

8.67

1.1

2.16
2.86

5.51

Number of nodes

Sp
ee

du
p

Middle
Edge

Figure 8.5: Strong scaling of total runtime: Speedup relative to 1 node as we scale up the number
of nodes

waves, to almost half for the wave from the middle, and to almost a third for the wave
from the edge.

8.2.1.3 Share of Communication

Figure 8.7 shows the share of the communication time Tcomm relative to the total runtime
Ttot, measured in percentage. The main takeaway is that Tcomm takes up a small share of
Ttot.

Some other notes of interest:

• Tcomm takes about the same share of Ttot for both waves.

• Tcomm increases with N . We expect that Tcomm will increase as each rank gets
more neighbor ranks. The highest number of neighbors a rank has for a given N
increases from each of our N to the next. Thus, we attribute the increase in Tcomm

to the increase in the number of neighbor ranks.

8.2.1.4 Speedup of Computation

Figure 8.8 shows the speedup of the computation time Tcomp relative to 1 node as we scale
up the number of nodes N . The modeled speedups from 1 node to N nodes are found by
putting the different pairs of N and LB from Figure 8.4 into Equation 7.6:

Scomp = LB ×N (8.1)

Where Scomp is the speedup of the computation part for strong scaling.

63

Chapter 8. Results and Discussion

2 4 8 16

0

0.2

0.4

0.6

0.8

1 0.94

0.83

0.59
0.540.55 0.54

0.36 0.34

Number of nodes

Pa
ra

lle
le

ffi
ci

en
cy

Middle
Edge

Figure 8.6: Strong scaling of total runtime: Parallel efficiency relative to 1 node as we scale up the
number of nodes

1 2 4 8 16

0

1

2

3

4

Number of nodes

Sh
ar

e
(p

er
ce

nt
ag

e)

Middle
Edge

Figure 8.7: Strong scaling: Share of communication relative to the total runtime, measured in
percentage

64

8.2 Strong Scaling

2 4 8 16
0

2

4

6

8

10

Number of nodes

Sp
ee

du
p

Middle (measured)
Middle (modeled)
Edge (measured)
Edge (modeled)

Figure 8.8: Strong scaling of computation time: Speedup relative to 1 node as we scale up the
number of nodes

The wave from the middle has an almost perfect load balance for 2 and 4 nodes. As
a result, the modeled speedup for those N are almost linear for that wave. The measured
speedup for the same configuration is also almost linear. All other N > 1 for both waves
have anLB smaller than 1. Figure 8.9 shows the parallel efficiency of the computation part
for strong scaling. The modeled efficiencies decrease with LB. The measured efficiencies
decrease by about the same factor.

Figure 8.10 shows the ratio between the measured and the modeled speedup of the
computation part relative to 1 node as we scale up the number of nodes. We attribute the
difference between measurements and model to

• Amdahl’s law: As we increase the resources of a system, the speedup will be lim-
ited by the inherently serial part of the program.

• Other computation parts: In our model we exclude the parts of the computation
which have a low impact on the total runtime. However, these parts still have an
impact larger than nothing. The downsampling and the applying of the regridding
only affect the points in child grids, which means they will make the load balance
slightly worse.

Both the model and the measurement shows that the wave with the best load balance
for all N > 1, namely the wave from the middle, scales better with N than the wave from
the edge.

8.2.2 Summary
The wave with the better load balance scales better with the number of nodes, both for
the total runtime and for the computation time. The parallel efficiency decreases by about

65

Chapter 8. Results and Discussion

2 4 8 16
0

0.2

0.4

0.6

0.8

1

Number of nodes

Pa
ra

lle
le

ffi
ci

en
cy

Middle (measured)
Middle (modeled)
Edge (measured)
Edge (modeled)

Figure 8.9: Strong scaling of computation time: Parallel efficiency relative to 1 node as we scale up
the number of nodes

2 4 8 16
0

0.2

0.4

0.6

0.8

1

Number of nodes

M
ea

su
re

d
sp

ee
du

p
/m

od
el

ed
sp

ee
du

p

Middle
Edge

Figure 8.10: Strong scaling of computation time: Ratio between measured and modeled speedup
relative to 1 node as we scale up the number of nodes

66

8.3 Weak Scaling

2 4 8 16
0

0.2

0.4

0.6

0.8

Number of nodes

Pa
ra

lle
le

ffi
ci

en
cy

Idun (pe630)
Vilje

Figure 8.11: Weak scaling: Total runtime: Parallel efficiency relative to 1 node as we increase the
number of nodes and the problem size by the same factor

the same factor as the load balance. The communication time is a small share of the total
runtime.

8.3 Weak Scaling
In this section we examine weak scaling. We measure the change in runtime as we scale
up the number of nodes and the problem size by the same factor, and discuss to what extent
our predictions are validated.

8.3.1 Measurements
8.3.1.1 Total Time

Figure 8.11 shows the parallel efficiency of the total runtime relative to 1 node as we
increase the number of nodes and the problem size by the same factor. The results vary
between the different numbers of nodes, and dip below 0.6 for N = 16. We attribute these
differences and the dip to different rates of computation between different nodes on both
our machines. We measure the time each node has to wait for the other nodes to reach the
barrier. Then we withdraw the difference between the maximum and the minimum time a
node has to wait from the total time.

8.3.1.2 Computation and Communication Time

After removing this wait time, we are left with the computation and the communication
time. The parallel efficiency of this time compared to 1 nodes is shown in Figure 8.12.

67

Chapter 8. Results and Discussion

2 4 8 16
0

0.2

0.4

0.6

0.8

Number of nodes

Pa
ra

lle
le

ffi
ci

en
cy

Idun (pe630)
Vilje

Figure 8.12: Weak scaling: Computation + communication time: Parallel efficiency relative to 1
node as we increase the number of nodes and the problem size by the same factor

The results are stable for all N > 1. This means we can increase the number of nodes 8
times from 2 to 16, and get 8 times as much work done in the same time.

The parallel efficiency is below 1. We attribute this to the communication time.
We attribute the share of the communication time relative to the combined computation

and the communication time to caching. The problem size of our experiment makes the
memory for each node fit in the L3 cache, which is faster than main memory. This makes
the computation part faster by some constant. The communication part is unaffected, and
thus takes up a larger share of the combined computation and communication time.

8.3.1.3 Computation time

Figure 8.13 shows the parallel efficiency of the computation time relative to 1 node as we
increase the number of nodes and the problem size by the same factor. The results show
that the computation part can handle about 16 times as much work in the same time if we
increase the number of nodes 16 times.

8.3.2 Summary
As we increase the problem size and the number of nodes by the same factor, the compu-
tation time is stable. The communication time does not increase with N for N > 1. The
sum of the computation and the communication time is constant for N > 1. This means
we can increase the number of nodes and get more work done in the same time.

68

8.3 Weak Scaling

2 4 8 16
0

0.2

0.4

0.6

0.8

1

Number of nodes

Pa
ra

lle
le

ffi
ci

en
cy

Idun (pe630)
Vilje

Figure 8.13: Weak scaling: Computation time: Parallel efficiency relative to 1 node as we increase
the number of nodes and the problem size by the same factor

69

Chapter 8. Results and Discussion

70

Chapter 9
Conclusion

In this thesis we have studied the performance and scalability characteristics of adaptively
refined finite difference solutions to the shallow water equations.

We have developed a proxy application which solves the SWE using the MacCormack
FDM and AMR. We have created a performance model and used it to make predictions
about the performance and scalability of the application, and experimentally validated
those predictions on two machines, Idun and Vilje. We have set up initial disturbances
shaped like waves in the fluid. Each of our experiments has used one or two different
waves.

Our results show that if we add an extra level of refinement, the total number of points
will increase with a factor between 1 and r3 + 1. If the load balance is unchanged and
there is no communication, the runtime will increase by the same factor.

For strong scaling, the wave with the better load balance scales better with the number
of nodes, both for the total runtime and for the computation time. The parallel efficiency
decreases by about the same factor as the load balance. The communication time is a small
share of the total runtime.

For weak scaling, as we increase the problem size and the number of nodes N by the
same factor, the computation time is about the same. The communication time does not
increase with N for N > 1. The sum of the computation and the communication time is
stable for N > 1. This means we can increase the number of nodes and get more work
done in the same time.

9.1 Future work

Our performance model acknowledges that there is some communication cost, but does
not model it in detail. A better model for the communication cost could improve our
understanding of the performance of the application, especially at very large scales.

The SWE using AMR have been successfully implemented on GPU. A performance
model for the SWE using an FDM and AMR, or a comparison to our CPU application,

71

Chapter 9. Conclusion

could give us a better understanding of the impact of hardware on the performance and
scalability of the application.

We show that the load balance can greatly impact the performance and scalability of
our application. A possible mitigation is to implement load balancing. However, such
a solution would come with an overhead. Investigating this trade-off could improve our
understanding of when and how to use load balancing.

72

Bibliography

[1] E. J. Kubatko, S. Bunya, C. Dawson, J. J. Westerink, and C. Mirabito, “A perfor-
mance comparison of continuous and discontinuous finite element shallow water
models,” Journal of Scientific Computing, vol. 40, no. 1-3, pp. 315–339, 2009.

[2] G. A. Sod, “A survey of several finite difference methods for systems of nonlinear
hyperbolic conservation laws,” Journal of computational physics, vol. 27, no. 1, pp.
1–31, 1978.

[3] (2020, April) What are Boundary Conditions? SimScale. [On-
line]. Available: https://www.simscale.com/docs/content/simwiki/numerics/
what-are-boundary-conditions.html

[4] M. J. Berger, “Adaptive mesh refinement for hyperbolic partial differential equa-
tions,” STANFORD UNIV CA DEPT OF COMPUTER SCIENCE, Tech. Rep. Re-
port No. STAN-CS-KL-924, 1982.

[5] M. J. Berger, P. Colella et al., “Local adaptive mesh refinement for shock hydrody-
namics,” Journal of computational Physics, vol. 82, no. 1, pp. 64–84, 1989.

[6] P. Pacheco, An Introduction to Parallel Programming. Elsevier, 2011.

[7] (2020, March) Home - OpenMP. OpenMP Architecture Review Board. [Online].
Available: https://www.openmp.org/

[8] D. Luebke, “CUDA: Scalable parallel programming for high-performance scientific
computing,” in 2008 5th IEEE international symposium on biomedical imaging: from
nano to macro. IEEE, 2008, pp. 836–838.

[9] A. Munshi, “The OpenCL specification,” in 2009 IEEE Hot Chips 21 Symposium
(HCS). IEEE, 2009, pp. 1–314.

[10] (2020, March) FAQ: General information about the Open MPI Project – What is
MPI? What is Open MPI? OpenMP Architecture Review Board. [Online]. Available:
https://www.open-mpi.org/faq/?category=general#what-is-mpi

73

https://www.simscale.com/docs/content/simwiki/numerics/what-are-boundary-conditions.html
https://www.simscale.com/docs/content/simwiki/numerics/what-are-boundary-conditions.html
https://www.openmp.org/
https://www.open-mpi.org/faq/?category=general#what-is-mpi

[11] B. L. Chamberlain, D. Callahan, and H. P. Zima, “Parallel programmability and the
Chapel language,” The International Journal of High Performance Computing Ap-
plications, vol. 21, no. 3, pp. 291–312, 2007.

[12] (2019, December) ECP Proxy Applications. Exascale Proxy Application Project.
[Online]. Available: https://proxyapps.exascaleproject.org/

[13] S. S. Dosanjh, R. F. Barrett, D. Doerfler, S. D. Hammond, K. S. Hemmert, M. A.
Heroux, P. T. Lin, K. T. Pedretti, A. F. Rodrigues, T. Trucano et al., “Exascale design
space exploration and co-design,” Future Generation Computer Systems, vol. 30, pp.
46–58, 2014.

[14] G. M. Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” in Proceedings of the April 18-20, 1967, spring joint com-
puter conference, 1967, pp. 483–485.

[15] J. L. Gustafson, “Reevaluating Amdahl’s law,” Communications of the ACM, vol. 31,
no. 5, pp. 532–533, 1988.

[16] L. G. Valiant, “A bridging model for parallel computation,” Communications of the
ACM, vol. 33, no. 8, pp. 103–111, 1990.

[17] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful visual per-
formance model for multicore architectures,” Communications of the ACM, vol. 52,
no. 4, pp. 65–76, 2009.

[18] L. Jameson, “AMR vs high order schemes,” Journal of scientific computing, vol. 18,
no. 1, pp. 1–24, 2003.

[19] K. Erduran, V. Kutija, and C. Hewett, “Performance of finite volume solutions to the
shallow water equations with shock-capturing schemes,” International journal for
numerical methods in fluids, vol. 40, no. 10, pp. 1237–1273, 2002.

[20] M. L. Sætra, A. R. Brodtkorb, and K.-A. Lie, “Efficient GPU-implementation of
adaptive mesh refinement for the shallow-water equations,” Journal of Scientific
Computing, vol. 63, no. 1, pp. 23–48, 2015.

[21] R. Courant, K. Friedrichs, and H. Lewy, “On the partial difference equations of math-
ematical physics,” IBM journal of Research and Development, vol. 11, no. 2, pp.
215–234, 1967.

[22] R. MacCormack, “The effect of viscosity in hypervelocity impact cratering,” Journal
of spacecraft and rockets, vol. 40, no. 5, pp. 757–763, 2003.

[23] A. Hindmarsh, P. Gresho, and D. Griffiths, “The stability of explicit euler time-
integration for certain finite difference approximations of the multi-dimensional
advection–diffusion equation,” International journal for numerical methods in flu-
ids, vol. 4, no. 9, pp. 853–897, 1984.

74

https://proxyapps.exascaleproject.org/

[24] (2020, April) Generalization: reflecting boundaries. Center for Biomedical Com-
puting. [Online]. Available: http://hplgit.github.io/INF5620/doc/pub/sphinx-wave/
. main wave003.html

[25] M. Berger and I. Rigoutsos, “An algorithm for point clustering and grid generation,”
IEEE Transactions on Systems, Man, and Cybernetics, vol. 21, no. 5, pp. 1278–1286,
1991.

[26] M. Själander, M. Jahre, G. Tufte, and N. Reissmann, “EPIC: An energy-
efficient, high-performance gpgpu computing research infrastructure,” arXiv preprint
arXiv:1912.05848, 2019.

[27] (2020, June) About Vilje. NTNU HPC GROUP. [Online]. Available: https:
//www.hpc.ntnu.no/ntnu-hpc-group/vilje/about-vilje

75

http://hplgit.github.io/INF5620/doc/pub/sphinx-wave/._main_wave003.html
http://hplgit.github.io/INF5620/doc/pub/sphinx-wave/._main_wave003.html
https://www.hpc.ntnu.no/ntnu-hpc-group/vilje/about-vilje
https://www.hpc.ntnu.no/ntnu-hpc-group/vilje/about-vilje

76

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Ola Toft

Performance Modeling of Adaptive
Mesh Refinement for the Shallow Water
Equations

Master’s thesis in Computer Science

Supervisor: Jan Christian Meyer

June 2020

	Problem Description
	Abstract
	Samandrag
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Motivation
	Scope
	Structure

	Background
	Shallow Water Equations (SWE)
	Mathematics

	Finite Difference Methods (FDM)
	Boundary Conditions
	Types
	Ghost Points
	Boundaries, Borders and Terminology

	Adaptive Mesh Refinement
	Mesh Refinement
	Adaptive Mesh Refinement

	Parallel Programming APIs
	Shared Memory Systems
	GPU platforms
	Distributed Memory Systems

	Proxy Applications
	Performance Modeling
	Amdahl's Law
	Gustafson's Law
	Bulk-Synchronous Parallelism (BSP)
	Roofline

	Related Work

	Proxy Application
	Data Structure
	Variations and Choices for Grids
	Grid Refinement

	Algorithm
	Initialization
	Integration
	AMR
	Rank Borders
	Full Overview

	Parallel Programming APIs

	Integration
	SWE
	SWE as relation between time and space difference
	FDM
	Finite Difference Equations for the SWE

	Boundary Conditions

	Adaptive Mesh Refinement
	Regridding
	Grid Borders
	Integrate Children
	Downsampling

	Performance Modeling
	Parts
	Integration
	AMR
	Rank Borders
	Overview

	Comparison of Parts
	Sum of Length and Width of Boundaries and Borders vs Product
	Number of Child Points vs Total Number of Points
	Regridding Interval vs Every Timestep
	Communication vs Computation
	Summary

	Load Balance
	Performance Model
	Predictions
	Cost of an Extra Level of Refinement
	Strong Scaling
	Weak Scaling

	Experimental Setup
	Machine Setup
	Idun
	Vilje

	Parameter Space
	Amount of Refinement
	Size of Refinement
	Initial Condition
	Refinement Requirement
	Regridding Interval
	Size of Domain

	Setup For Validation of Predictions
	Cost of an Extra Level of Refinement
	Strong Scaling
	Weak Scaling
	Summary

	Results and Discussion
	Cost of an Extra Level of Refinement
	Measurements
	Summary

	Strong Scaling
	Measurements
	Summary

	Weak Scaling
	Measurements
	Summary

	Conclusion
	Future work

	Bibliography

