
Audun W
igum

 Arbo, Even D
alen

D
om

ain-Independent Perception for Autonom
ous D

riving

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Audun Wigum Arbo
Even Dalen

Domain-Independent Perception for
Autonomous Driving

Master’s thesis in Computer Science

Supervisor: Frank Lindseth

June 2020

Audun Wigum Arbo
Even Dalen

Domain-Independent Perception for
Autonomous Driving

Master’s thesis in Computer Science
Supervisor: Frank Lindseth
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

i

Abstract

The idea of vehicles driving autonomously has been an ongoing topic of research
ever since the inception of artificial intelligence. With the big resurgence of neural
networks in the 2010s, new approaches using end-to-end imitation learning began
to surface. In contrast to classical autonomous driving methods, the end-to-end
neural network learns to drive by imitating an expert driver, learning from the
recorded driving data alone.

In this thesis, we build on several promising results from the end-to-end au-
tonomous driving research field, and implement a neural network for driving both
in simulation and in the real world. Other authors often use raw RGB images
to give their driving system an understanding of the surrounding environment,
but that approach does not support transfer of the system to the real world. We
investigate techniques for being able to train a model in a simulator, and then
deploy it to the real world, in some cases without any additional fine-tuning.
We approach this problem of domain transfer by creating a two-part architec-
ture: a perception model, which creates generalized semantic segmentation and
depth maps; and a driving model, which learns to drive from the more abstracted
outputs of the perception model.

Our first experiment explores different design choices for the perception model,
finding that a MobileNet + SegNet model gives the best predictions relative to
computational costs. Furthermore, we find that multi-task learning with seg-
mentation and depth predictions further improves the perception model. In the
second experiment, we test multiple perception models in a simulated driving
environment, to learn how different perception models affect real driving. We
evaluate seven models in an autonomous driving simulator, and find that pre-
dicting both segmentation and depth leads to the best driving performance.

Finally, we deploy our model to a real-world environment — using a small four-
wheeled vehicle in a closed track mimicking real roads. We show that our per-
ception model abstracts away the visual differences between a simulator and the
real world, and allows for a driving model only trained in simulation to perform
simple driving in real-life as well.

ii

Sammendrag

Idéen om at et kjørtetøy kan kjøre helt autonomt har vært et aktivt forskn-
ingsspørsm̊al i mange år — og har vært forsket p̊a helt siden man begynte å stud-
ere kunstig intelligens. Med nevrale nettverks økende popularitet p̊a 2010-tallet,
ble det samtidig publisert mye nytt og spennnende om bruk av ende-til-ende-
nettverk for imitasjonslæring. I motsetning til klassiske metoder for autonom
kjøring, lærer ende-til-ende-nettverkene å kjøre ved å imitere en ekspert-sj̊afør;
dette gjøres ved å kun se p̊a opptak av kjøredata.

I denne masteroppgaven bygger vi p̊a flere lovende resultater innen ende-til-ende-
kjøring, og vi implementerer et nevralt nettverk som kan kjøre b̊ade i simu-
lator og i virkeligheten. I relatert arbeid har det ofte blitt brukt rene RGB-
bilder for å gi kjøresystemet sitt en forst̊aelse av omgivelsene, men denne fram-
gangsm̊aten støtter ikke overføring av kjøresystemet fra simulator til virkelighet,
eller omvendt. Vi utforsker teknikker som kan åpne opp for å trene en modell i
simulator for s̊a å bruke den p̊a ekte kjøretøy, i gitte tilfeller uten å trenge noen
finjusteringer i det hele tatt. Vi prøver å løse dette domene-overføringsproblemet
ved å lage en todelt arkitektur. Den første delen er en persepsjonsmodell som
lager generaliserte segmenterings- og dybdeprediksjoner, og den andre er en
kjøremodell som lærer å kjøre fra det mer abstrakte resultatet fra persepsjon-
smodellen.

I v̊art første eksperiment prøver vi ut forskjellige designvalg for persepsjonsmod-
ellen, og vi finner ut at en MobileNet + SegNet-modell gir den beste kombinasjo-
nen av høy treffsikkerhet og lite komputasjonelt arbeid. Videre konkluderer vi
med at en persepsjonsmodell som b̊ade lærer segmenterings- og dybdeprediksjon
yter best. I v̊art andre eksperiment tester vi ulike persepsjonsmodeller ved hjelp
av v̊ar kjøremodell, dette for å forst̊a hvordan forskjellige persepsjonsmodeller
p̊avirker reell kjøring. Vi evaluerer syv kjøremodeller i en simulator for autonom
kjøring, og konkluderer med at de som tar nytte av b̊ade segmenterings- og dybde-
data kjører best.

Til slutt prøver vi ut v̊ar kjøremodell i virkeligheten, der vi kjører et lite firehjulet
kjøretøy i en lukket veibane. Vi viser at v̊ar persepsjonsmodell abstraherer bort de
visuelle forskjellene mellom en simulator og den virkelige verden, og gjør det mulig
for en kjøremodell trent kun i simulering til å utføre enkel kjøring i virkeligheten.

iii

Preface

This Master’s thesis in Computer Science is a part of the research conducted
within the NTNU Autonomous Perception Laboratory (NAPLab)1 research group
at the Norwegian University of Science and Technology (NTNU).

We would like to thank our supervisor Frank Lindseth for giving access to the
required equipment and resources needed to complete the project, as well as his
invaluable feedback during the exploration, experimentation, and writing phases
of this thesis.

Audun Wigum Arbo, Even Dalen

Trondheim, June 14, 2020

1https://www.ntnu.edu/web/ntnu-autonomous-perception/naplab

https://www.ntnu.edu/web/ntnu-autonomous-perception/naplab

iv

Contents

1 Introduction 1

1.1 Background and motivation . 1

1.2 Goals and research questions . 2

1.3 Contributions . 3

1.4 Report structure . 4

2 Background and Related Work 5

2.1 Theory . 5

2.1.1 Deep learning . 5

2.1.2 Image classification . 12

2.1.3 Object detection . 14

2.1.4 Segmentation . 14

2.1.5 Depth estimation . 20

2.1.6 Data preparation . 22

2.1.7 Approaches for autonomous driving 23

2.2 Technology . 25

v

vi CONTENTS

2.2.1 Machine learning software 25

2.2.2 Simulator . 25

2.2.3 The SPURV Research vehicle 27

2.3 Related Work . 28

2.3.1 ALVINN: An Autonomous Land Vehicle in a Neural Net-
work (1989) . 29

2.3.2 Off-Road Obstacle Avoidance through End-to-End Learn-
ing. (2005) . 30

2.3.3 End to End Learning for Self-Driving Cars (2016) 30

2.3.4 End-to-end Driving via Conditional Imitation Learning (2017) 31

2.3.5 Driving Policy Transfer via Modularity and Abstraction
(2018) . 33

2.3.6 Autonomous Vehicle Control: End-to-end Learning in Sim-
ulated Urban Environments (2019) 34

2.3.7 Multimodal End-to-End Autonomous Driving (2019) 35

2.3.8 Urban Driving with Conditional Imitation Learning (2019) 37

3 Methodology 39

3.1 Perception . 40

3.1.1 Data collection . 40

3.1.2 Data preparation . 41

3.1.3 Architecture . 43

3.1.4 Evaluation and metrics . 45

3.2 Driving . 45

3.2.1 Data collection . 45

CONTENTS vii

3.2.2 Data preparation . 48

3.2.3 Architecture . 50

3.2.4 Evaluation and metrics . 53

3.3 Real-world validation . 53

4 Experiments and Results 55

4.1 Experiment 1: Perception model 55

4.1.1 Setup . 56

4.1.2 Experiment 1-1: Encoder-decoder models 56

4.1.3 Experiment 1-2: Training data 58

4.1.4 Experiment 1-3: Multi-task perception 60

4.1.5 Discussion . 62

4.2 Experiment 2: Driving model . 62

4.2.1 Setup . 63

4.2.2 Results . 67

4.2.3 Discussion . 69

4.3 Experiment 3: Real-world validation 69

4.3.1 Setup . 70

4.3.2 Results . 73

4.3.3 Discussion . 76

5 Discussion 79

5.1 Simulation to real-world domain transfer 79

5.1.1 Perception model . 79

viii CONTENTS

5.1.2 Driving model . 80

5.1.3 Real-world driving . 81

5.2 Comparison to related work . 82

5.3 Fulfillment of research questions 83

5.4 Potential shortcomings and reflection 84

6 Conclusion and Future Work 87

6.1 Conclusion . 87

6.2 Future work . 88

Bibliography 90

A CVCS Paper: Autonomous Driving in Simulation using Domain-
Independent Perception 97

B SPURV Pipeline Manual 113

B.1 Pipeline overview . 114

B.2 Script development . 114

B.2.1 Automatic deployment to SPURV 115

B.3 Transferring models - transfer models.sh 115

B.4 Running models - run master keras models.py 116

B.4.1 Xbox controls . 116

B.5 Collecting data . 117

B.5.1 Training data collection - steer and collect training data.py 117

B.5.2 Data collection for testing - collect training data only.py . . 119

CONTENTS ix

C Model Architectures 121

C.1 Perception model - Keras implementation 121

C.2 Driving model - Keras implementation 123

x CONTENTS

List of Figures

2.1 A fully connected feed forward network. 6

2.2 Backpropagation. 8

2.3 A typical convolution layer, divided into three different steps. . . . 10

2.4 The first convolution stage. 11

2.5 ResNet architecture. 13

2.6 Illustration of various segmentation tasks. 15

2.7 A basic FCN network based on AlexNet. 16

2.8 The SegNet architecture. 17

2.9 The U-Net architecture. 18

2.10 The PSPNet architecture. 19

2.11 Comparison of FCN and PSPNet. 19

2.12 An illustration of the differences between a modular and an end-
to-end system. 23

2.13 An example image from CARLA. 26

2.14 A picture of the SPURV Research vehicle, taken from the front. . . 28

2.15 The ALVINN architecture as presented in the original paper. . . . 29

xi

xii LIST OF FIGURES

2.16 The DAVE-2 architecture as presented in the original paper. 31

2.17 An illustration of different approaches for incorporating HLC into
a end-to-end driving network. 32

2.18 Architecture of Müller et al.’s system for transfer of driving policy
between different domains. 33

2.19 A high-level overview of Haavaldsen et al.’s architecture. 35

2.20 An overview of the various approaches Xiao et al. [46] built for
including depth information in a CIL network. 36

2.21 The end-to-end neural network architecture of Hawke et al. [19]. . 37

3.1 An overview of the architectures used in this thesis. 40

3.2 Sample from the Mapillary Vistas dataset. 42

3.3 Compared depth maps between datasets. 42

3.4 Perception data augmentations. 43

3.5 A visualization of the MobileNet+U-Net architecture with an ad-
ditional depth branch. 44

3.6 An overview of different camera configurations in CARLA. 47

3.7 Triangular noise in real-world training data. 48

3.8 A training image with augmentations applied to it. 50

3.9 Driving network architecture. 51

3.10 The SPURV pipeline, consisting of three main steps. 54

4.1 Images segmentation samples. 57

4.2 Final perception model samples. 61

4.3 A picture from CARLA’s Town02. 65

4.4 Evaluation routes in CARLA’s Town02. 65

LIST OF FIGURES xiii

4.5 A picture from CARLA’s Town07. 66

4.6 Evaluation routes in CARLA’s Town07. 66

4.7 SPURV Research vehicle during evaluation. 71

4.8 Real-world evaluation routes. 72

4.9 Real-world driving data. 73

4.10 Experiment 3 - Driving samples. 75

4.11 Experiment 3 - Real-world segmentation issues. 76

B.1 The SPURV pipeline, consisting of three main steps. 114

xiv LIST OF FIGURES

List of Tables

3.1 The contents of each driving data point gathered. 46

4.1 Experiment 1-1 - Evaluation of encoder-decoder architectures. . . . 57

4.2 Experiment 1-2 - Evaluation of perception datasets. 59

4.3 Experiment 1-3 - Evaluation of multi-task perception model. . . . 61

4.4 Experiment 2 - Overview of evaluated driving models. 63

4.5 Experiment 2 - Results of driving evaluation in CARLA. 67

4.6 Experiment 2 - Overview of MCR for all tested models. 68

4.7 Experiment 3 - Results from real-world evaluation. 74

B.1 Overview of Xbox controls for run master keras model.py. 117

B.2 Description of field in the data.csv file. 118

B.3 Overview of Xbox controls for steer and collect training data.py. . 118

xv

xvi LIST OF TABLES

Chapter 1

Introduction

This chapter provides a brief introduction to the thesis. This includes the back-
ground and motivation for conducting this project, the overall goals and research
questions, our contributions, and finally an outline of the thesis.

1.1 Background and motivation

In the recent years, autonomous vehicles have become an increasingly popular
research domain. Improvements in sensor technology, machine learning and other
relevant fields have made fully autonomous vehicles probable in the near future.
The traditional approach to autonomous vehicles has been the modular approach,
where the driving task is divided into several sub-tasks, such as perception, lo-
calization and planning. As each module in the vehicle will have to be fine-tuned
individually, and handle a vast amount of driving situations, the scalability of
the modular approach has been questioned.

A competing approach to modularity is the end-to-end approach, where a sin-
gle module is responsible for the entire driving task. The module starts from a
set of input sensors such as radar, camera and GPS and directly outputs driv-
ing commands, similar to how humans drive. End-to-end driving requires large
amounts of data in order to handle most scenarios, and simulation has therefore
been explored to reduce the amount of real-world data required.

1

2 CHAPTER 1. INTRODUCTION

A simulated driving environment such as CARLA [10] can be used to gather
data in a variety of weather- and light conditions, as well as validate end-to-
end models in a reproducible way. However, as simulated environments differ
significantly from real-world, the training done in simulation does not necessarily
transfer to real-world environments. Therefore, a domain-independent perception
and motor control representation would be useful to take advantage of simulated
environments, both for data generation and model validation.

During this master’s thesis, we will explore ways to allow end-to-end driving
models to be transferred from simulation to the real world. The main focus
will be on abstracting away perception using higher level image representations
such as semantic segmentation and depth estimation. To reduce the need to
gather real-world data, we will use public datasets to generate models that work
in real-world environments. We will further use a combination of simulation
and self-collected real-world data to fine-tune the models and optimize for our
environments. The models will be tested and validated both in simulation and
the real world, in order to verify that the results we achieve in simulation are
representative for the real world as well.

In order to validate that our models transfer adequately to the real-world domain,
we will use a downsized vehicle, called SPURV Research. The vehicle uses a single
forward facing camera and accepts desired speed and turning angle as controls.
It will be driven on a representative test road including lane lines, intersections
and more.

1.2 Goals and research questions

The overall goal of this thesis is to make an autonomous driving system that
utilizes both simulation and real-world data to drive; both to reduce the amount
of real-world data needed, and to be able to learn scenarios that are expensive,
dangerous, or rare in real-world driving. The models created should be evaluated
both in simulation and in the real world, to validate that the simulation results
are representative for real-world performance.

Subgoal 1 Develop a driving model able to generalize the perception task from
a simulated to a real-world domain using only public image datasets and
simulation data.

Subgoal 2 Validate driving results from simulation in a real-world environment.

1.3. CONTRIBUTIONS 3

To help guide our research, we formulate a set of research questions (RQs) related
to our goals. These questions will be revisited and addressed in the discussion,
specifically in Section 5.3.

RQ 1 Can an end-to-end model learn to drive from the segmentation and op-
tionally depth maps of a pre-trained perception model?

RQ 2 Can a perception model trained on real-world public datasets generalize
to simulated environments?

RQ 3 Can an end-to-end driving model trained exclusively on simulated driving
data successfully drive in the real world?

1.3 Contributions

This thesis’ main contribution is a suggested architecture for improving the
domain-independence of end-to-end driving models that uses a separate percep-
tion model. We show that dividing end-to-end driving into a perception task and
driving task opens up for utilizing public image datasets; reducing the amount
of real-world driving data required when training an end-to-end driving model.
Our work within domain-independent simulated driving is presented in a paper
currently under review for the Colour and Visual Computing Symposium 2020
(CVCS 2020)1, which can be read in full in Appendix A.

Summarized, these are our main contributions:

1. A perception model for extracting a domain-independent scene
understanding. The model combines segmentation and depth prediction
as a multi-task learning model.

2. Evaluation of multiple perception models in simulation. We both
quantitatively and qualitatively evaluate three approaches for a perception
model: using no perception model, prediction of segmentation, and predic-
tion of both segmentation and depth. Moreover, we determine how different
types of segmentation and depth training data affects the performance of
both perception and driving.

1https://www.cvcs.no/

https://www.cvcs.no/

4 CHAPTER 1. INTRODUCTION

3. Demonstrating the real-world viability of an autonomous driving
system trained in simulation. We demonstrate that our models trained
in simulation can be transferred to the real world.

1.4 Report structure

This section provides a brief overview of the structure of this thesis.

Chapter 1: Introduction Introduces the work done — its goals, research ques-
tions, and contributions.

Chapter 2: Background and Related Work Covers the background know-
ledge relevant for the work done in this thesis, introduces relevant hardware
and software, and presents related work.

Chapter 3: Methodology Covers the various methods used, including data
collection and processing, machine learning architectures, and our SPURV
pipeline.

Chapter 4: Experiments and Results Contains the three main experiments
conducted during this project. We show setup, results, and related discus-
sion for each of the experiments.

Chapter 5: Discussion Discusses the work done in the master’s project, in-
cluding experimental results, consistency to related work, research ques-
tions and some reflection from our point of view.

Chapter 6: Conclusion and Future Work Presents a summary of the the-
sis’ contributions, which findings are of most interest, and how these find-
ings can be used in future work.

Chapter 2

Background and Related
Work

This chapter introduces the background for our thesis. First, we explain the rele-
vant theory from the fields of neural networks, computer vision, and autonomous
driving. Later, we go through the technology used to implement and test our
systems. The remainder of the chapter is focused on providing a brief history
of end-to-end driving, starting from the earliest approaches to state-of-the-art
results published while we were conducting our own research.

2.1 Theory

2.1.1 Deep learning

2.1.1.1 Deep feedforward networks

The deep feedforward network is according to Goodfellow et al. [14] probably the
most important deep learning model. The goal of such a model is to approximate
a given function, from a set of datapoints to an output class or value.

Neural networks are loosely inspired by biological neurons where each unit, also

5

6 CHAPTER 2. BACKGROUND AND RELATED WORK

called artificial neuron, has a set of input values and output values, and the
output is determined by the total sum of input values. The network consists of
a set of layers, where each layer has one or more artificial neurons. The first
layer is called the input layer, and the input flows further through hidden layers
in a feedforward manner. The final output is determined by the last layer called
the output layer. An illustration of a feedforward network can be seen in Figure
2.1. By including feedback connections into the network, we get a network called
Recurrent Neural Network (RNN), which is described further in Section 2.1.1.7.

X
x1

x2

x3

W Ho

y

Figure 2.1: A fully connected feed forward network. The network has one input
layer, one output layer and one hidden layer. The input starts at the first layer, and is
propagated to all the nodes in the next layer. In the connections between each node,
we find a trainable weight and bias, which determines how much the input of the first
node should affect the latter node.

The computed output of a single node is based on its set of input values xi, the
connections weight wi, and a bias value bn. The computation for a node n with
input connection i is described in Equation 2.1

fn,i(x) = Wn,i · x+ bn (2.1)

We can also describe the entire network as a chain of functions, where each layer
is represented as a link in the chain. The network’s depth will then be equal to
the length of the chain. A network of depth three could then be visualized by
the following Equation 2.2.

f(x) = f (3)(f (2)(f (1)(x))) (2.2)

The goal of a neural network is to a approximate a function. In order to ap-
proximate almost any function, it is important to introduce nonlinearity to the

2.1. THEORY 7

network. Leshno et al. [32] described this in their paper from 1993. This is
achieved by introducing a non-linear function into each node, called an activa-
tion function.

2.1.1.2 Activation functions

Activation functions are used for several reasons. One is to squash the output
of a computational node into a given range, another is to introduce non-linearity
to a neural network. The activation function is applied after the weighted sum
in each computational node in the networks. Originally, the step function was
the activation function used in neural networks, but now the activation function
has been generalized to include functions such as Rectified Linear Unit (ReLU),
sigmoid, and tanh.

ReLU was introduced by Hahnloser et al. [18] in 2000, and is possibly the most
used activation function in modern deep neural networks. It is a relatively simple
function that is a linear mapping for all input above 0, and 0 otherwise. This
can be represented as the max function, seen in Equation 2.3. Another popular
function is sigmoid, which maps all input values to the interval [0, 1]. Tanh is a
variant of sigmoid, however scaled and shifted to map values to the interval [-1,
1]. Tanh can be seen in Equation 2.4, and is often preferred over sigmoid as it
improves convergence, as shown by Lecun et al. [30].

f(x) = max(0, x) (2.3)

tanh(x) = 2 · σ(2x)− 1 =
2

1 + e−2x
− 1 (2.4)

2.1.1.3 Learning

A neural network is trained by tweaking the weights and biases until the model
approximates the function mapping the training data to training labels satisfac-
tory. An approximation is satisfactory when it has minimized the total error on
the dataset, calculated using a loss function. The weights are first initialized to
small random values; however, a lot of research has been done to optimize the
weight initialization to improve convergence.

8 CHAPTER 2. BACKGROUND AND RELATED WORK

Through backpropagation, we adjust the weights and biases repeatedly in order to
minimize a measure between the predicted label and actual label. The measure
is called a loss function, and can for instance be Mean Squared Error (MSE).
After doing a forward pass and getting a predicted label, the error is propagated
backwards, first through the hidden layers all the way to the input layers. The
error is used to calculate the gradient, which in turn allows us to optimally adjust
the weights and biases to reduce the error. Figure 2.2 shows a visualization of
how the error gets propagated backwards in a feed forward network.

Output

Ho

RMSE

Error

Figure 2.2: Backpropagation. Finding the error with root mean squared error and
propagating it backwards.

2.1.1.4 Loss functions

Loss functions are as previously mentioned used as the function we want to
minimize, in order to get the best possible function approximation. Several loss
functions were used in this thesis, such as Root Mean Squared Error (RMSE).
RMSE is useful for regression tasks, and can be seen in Equation 2.5. A specific
loss for depth estimation is described in Section 2.1.5.

RMSE =

√√√√ 1

n

n∑
i=1

(Yi − Ŷ)2 (2.5)

2.1.1.5 Optimizers

Optimizers serve a vital role in neural network learning, as they have the role of
adjusting the weight values to minimize the loss function.

Stochastic Gradient Descent (SGD) calculates the loss gradient based on the

2.1. THEORY 9

weights, which is used to update the weights. SGD additionally uses a learning
rate α - a number which specifies the magnitude of change when updating weights.
A SGD weight update is shown in Equation 2.6.

wt+1
i,j = wti,j − α ∗

∂L

∂wt+1
i,j

(2.6)

AdaDelta is was proposed by Zeiler [48] in 2012, and improves upon SGD with-
out any noticeable computational overhead. It introduces separate and adaptable
learning rates per dimension, and the authors claim that it requires no manual
tuning of hyperparameters, including learning rate.

The Adam optimizer was introduced by Kingma and Ba [25] in 2014, and
has later become one of the most commonly used optimizers. The authors de-
scribe the optimizer as both simple and computationally efficient, well fit for
high-dimensional parameter spaces and large datasets. The way the Adam opti-
mizer works is by first calculating an adaptive learning rate from the first (the
mean) and second (the uncentered) moments of the gradient. Equation 2.7 shows
the actual weight update of the optimizer. m̂t and v̂t are the first and second
momentums, respectively. α is the specified learning rate, and ε is a constant
with a recommended default value of 1e−8.

wt+1 = wt − α√
v̂ + ε

∗ m̂t (2.7)

2.1.1.6 CNNs

Convolutional Neural Networks (CNNs) were first introduced by LeCun et al.
[29] in 1998. They are neural networks specialized in processing grid-like data
structures, such as images, where it can utilize spatial information in the images
to reduce computation.

Typically, a convolutional layer consists of three stages. During the first stage,
several convolutions are performed to generate a set of feature maps. Then
the feature maps are typically sent through an activation function, and finally a
pooling function is used to further modify the input, and often lower the resolution
of the result. The three stages can be seen in Figure 2.3

10 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.3: A typical convolution layer, divided into three different steps.
Convolution operations on the input using kernels, non-linear activation function and
finally pooling. Adapted from Goodfellow et al. [14].

The convolution step involves sliding kernels across the input and doing convo-
lution operations for each step, generating a new feature map for each kernel.
These kernels have weights, and can be trained to detect features such as edges.
See Figure 2.4 for an illustrative description.

2.1. THEORY 11

Figure 2.4: The first convolution stage. Feature maps are generated by sliding
the kernels across the input while doing kernel operations. Adapted from Goodfellow
et al. [14].

According to Goodfellow et al. [14], the use of convolutional layers is motivated by
three main advantages: sparse interactions, parameter sharing, and equivariant
representations. Oppositely to fully connected, sparse interaction mean that each
input unit does not interact with each unit on the next layer. Kernels are often
smaller size than the input, which means we can store fewer parameters using less
computation. Overall, these advantages mean a more scalable and performant
layer than fully connected layers.

2.1.1.7 RNNs

Recurrent neural networks (RNNs) are another family of neural network that are
specialized in processing sequential data. They are often used in applications
such as translation, speech recognition and image sequences. Using feedback
connections, these networks can use information from previous time steps to
determine the output of the current time step.

Long short-term memory unit (LSTM) was introduced by Hochreiter and Schmid-
huber [21] in 1997, and is a computational unit often used in RNNs. Intuitively,
the LSTM cell can capture important features early in the input sequence, and
then remember the feature for several iterations. This way, it can capture long-
term dependencies in the data. This is further described by Chung et al. [5]

12 CHAPTER 2. BACKGROUND AND RELATED WORK

2.1.2 Image classification

One of the first computer vision tasks that utilized CNNs was image classification.
In this task, a model is given an image and predicts its class from a set of
predefined classes. An example would be that it is given a picture showing a cat,
with the correct prediction being the class ”cat”. In the next subsections, we will
describe a few of the most common models (backbones) for image classification
relevant to this thesis.

2.1.2.1 VGG (2014)

VGG is a CNN architecture for image classification introduced by Simonyan and
Zisserman [42] in 2014. VGG was one of the earlier architectures that gave
significantly improved results on the ImageNet [40] dataset. Perhaps the most
important contribution from VGG was the demonstration that the network’s
depth was heavily correlated to its ImageNet score. This opened for further
work on deep networks for improved performance. An important predecessor
to VGG was AlexNet [27], which is a CNN from 2012 that revolutionized image
recognition tasks, by performing 10.8 percentage points better than the follow-up
in the ImageNet competition.

2.1.2.2 ResNet (2015)

ResNet was introduced by He et al. [20] in 2015 and is another CNN with out-
standing performance in computer vision tasks. It improves upon previous ap-
proaches such as VGG by adding residual blocks in order to increase network
depth while minimizing the computational cost. ResNet uses shortcut connec-
tions to allow the network to skip unneeded layers, which in turn allows the
network to have a large number of layers. Figure 2.5 show a visualization of
these skip connections, compared to both a plain network and VGG.

2.1. THEORY 13

Figure 2.5: ResNet architecture. A visualization of ResNet compared to a plain
network without skip connections and VGG. Adapted from He et al. [20].

2.1.2.3 MobileNets (2017)

MobileNets were introduces by Howard et al. [22] in 2017, and was a counter
to the continued push for higher complexity models with marginally increased
accuracy. As neural networks were used more in real-world settings, performance
in memory and processing was of increasing importance. MobileNets are a class of
networks created for mobile and embedded vision applications. They use depth-
wise separable convolutions to build lightweight neural networks. As part of
the paper, Howard et al. also include two hyper-parameters that allow the user
to find the perfect tradeoff between resource usage and accuracy for their use
case. They also include a set of comparisons between MobileNets and previous
conventional networks, and show that MobileNets give comparable performance
with drastically increased efficiency.

MobileNets use a type of convolution called Depthwise Separable Convolution,
initially introduced by Sifre and Mallat [41] in 2014. The convolution process
works by first doing a single 2D convolution for each depth channel (Separable
Convolution), and then doing a convolution using a 1x1 filter with the desired
depth value (Pointwise Convolution). Dividing this process into two steps —
compared to a single step for regular convolutions — reduces the number of
operations required drastically, and is the way MobileNets are able to reduce the
computational requirements while keeping most of the accuracy.

14 CHAPTER 2. BACKGROUND AND RELATED WORK

2.1.3 Object detection

Object detection is a computer vision task focused on localizing and identifying
a set of objects in an image. It takes image classification a step further, and
typically predicts bounding boxes with corresponding class labels of what it can
localize and identify in an image. Neural network-based object detection gener-
ally utilize a so-called backbone to extract features, often based on one of the
architectures described in Section 2.1.2.

2.1.4 Segmentation

Segmentation is a computer vision task with the goal of classifying each pixel of
an image as one of n possible classes. This can be interpreted as object local-
ization and detection, only with pixel sized bounding boxes and no overlap. The
segmentation task is often divided into two approaches: semantic segmentation
and instance segmentation. Semantic segmentation only classifies what class each
pixel belongs to, and two people in a picture will both be classified as the same
”person” class. Instance segmentation however, cares about the instances in the
image. That is, it should separate two people from each other, labelling them as
two distinct people. A downside of instance segmentation implementaions is that
they often cannot classify background classes, such as ”sky” or ”road” very well.

A third segmentation approach, panoptic segmentation, proposed in 2018 by
Kirillov et al. [26], combines the best from both segmentation approaches, and
can both classify every pixel on the screen, while additionally separating them
into instances. Figure 2.6 shows an example of ground truth data for each of
these tasks.

In this thesis, we focus on the applications of semantic segmentation, as it is
able to give a good scene understanding while at the same time having lower
computational cost compared to panoptic segmentation. In the next section, we
present a few networks used for semantic segmentation.

2.1.4.1 Fully Convolutional Networks (FCNs) (2015)

Long et al. [33] proposed fully convolutional networks (FCNs), a class of neural
networks where all layers are convolutional. They utilized recent improvements in
CNNs with dense output layers (e.g. for object detection) to make several FCN-

2.1. THEORY 15

(a) Original image (b) Semantic segmentation

(c) Instance segmentation (d) Panoptic segmentation

Figure 2.6: Illustration of various segmentation tasks. Adapted from Kirillov
et al. [26].

.

16 CHAPTER 2. BACKGROUND AND RELATED WORK

based networks. Here, they replaced the final dense layers with deconvolutions —
layers that can learn spatial upsampling — resulting in a pixel-wise segmentation.
Figure 2.7 illustrates a basic FCN network.

The authors of the paper observed that using an output stride of 32 resulted in
the segmentation outputs being overly coarse. They addressed this problem by
adding skip connections between earlier layers and the output layer, where the
earlier layers had a lower stride. The original model without skips were named
FCN-32, while the models using one and two skips were named FCN-16 and
FCN-8, respectively. FCN-8 performed best of the models, but any additional
skip additions led to diminishing returns.

96

38
4

25
6 40

96
40
96 21

21

backward/learning

forward/inference

pi
xe

lw
ise

 p
re

di
ct

ion

se
gm

en
ta

tio
n

g.t
.

25
6

38
4

Figure 2.7: A basic FCN network based on AlexNet. Adapted from Long et al.
[33].

2.1.4.2 SegNet (2015)

SegNet was introduced by Badrinarayanan et al. [2] in 2015. The network is a
part of the FCN class, and is in many ways similar to the FCN networks proposed
by Long et al. [33]. The architecture itself consists of an encoder and a decoder
network. The encoder network is based on the first 13 layers of VGG16, which
allows SegNet to start training with well-chosen pretrained weights.

The main difference between Long et al. [33]’s models and SegNet is that SegNet

2.1. THEORY 17

does not use skips, but rather a more lightweight approach, to achieve the same
goal. Instead of fusing feature maps as in Long et al. [33], SegNet saves the pixel
indices used in its encoder’s pooling layers, and uses these to reconstruct the
same pixels in its decoder’s upscaling. Figure 2.8 shows how the pooling indices
are applied when upscaling the feature maps in the decoder.

Convolutional Encoder-Decoder

Pooling Indices

Input

Segmentation

Output

Conv + Batch Normalisation + ReLU
Pooling Upsampling Softmax

RGB Image

Figure 2.8: The SegNet architecture. Adapted from Badrinarayanan et al. [2]

2.1.4.3 U-Net (2015)

Ronneberger et al. [39] proposed a segmentation network for application in med-
ical imaging, U-Net. Its name comes from its U-shape, shown in Figure 2.9, and
is an FCN network. The architecture is similar to SegNet, but concatenates the
encoder’s feature maps to the corresponding deconvoluted feature maps of the
decoder. When concatenating, each encoder feature map is cropped to match the
dimensions of the decoder feature map it is being concatenated with.

18 CHAPTER 2. BACKGROUND AND RELATED WORK

copy and crop

input
image

tile

output
segmentation
map

641

128

256

512

1024

max pool 2x2

up-conv 2x2

conv 3x3, ReLU

57
2

x
57

2

28
4²

64

128

256

512

57
0

x
57

0

56
8

x
56

8

28
2²

28
0²

14
0²

13
8²

13
6²

68
²

66
²

64
²

32
²

28
²

56
²

54
²

52
²

512

10
4²

10
2²

10
0²

20
0²

30
²

19
8²

19
6²

39
2

x
39

2

39
0

x
39

0

38
8

x
38

8

38
8

x
38

8

1024

512 256

256 128

64128 64 2

conv 1x1

Figure 2.9: The U-Net architecture. Adapted from Ronneberger et al. [39]

2.1.4.4 Pyramid Scene Parsing Network (PSPNet) (2017)

The Pyramid Scene Parsing Network (PSPNet), introduced by Zhao et al. [49],
employ a novel network module, the pyramid pooling module, and won the Ima-
geNet scene parsing challenge of 2016. An overview of the network can be found
in Figure 2.10.

2.1. THEORY 19

Figure 2.10: The PSPNet architecture. It takes an input image (a), which is first
run through a CNN to get a feature map (b). The feature map is then sent to the
pyramid pooling module (c), which splits the map into four sub-region representations
with their own convolutions. The feature maps of each of the four modules are then
upsampled by bilinear interpolation, and concatenated depth-wise with the original
feature map from (b). Lastly, the concatenated feature map is sent through a final
convolution, giving the final segmentation prediction (d). Adapted from Zhao et al. [49]

PSPNet addresses the issue of previous semantic segmentation networks not uti-
lizing the global context of an image when making local predictions. An example
mentioned in their paper is the classification of a pillow lying on a bed with a
duvet of the same color and texture, see Figure 2.11. FCN was shown to struggle
with separating the pillow from the blanket, as it only sees the local context,
the texture. PSPNet’s pyramid pooling module is able to understand the global
context of the image, e.g. that the pillow is on the top-end of the bed, and that
they are both in a bed in a room. This enables PSPNet to successfully segment
the pillow.

Figure 2.11: Comparison of FCN and PSPNet. The predictions of FCN (c) and
PSPNet (d) for an image of a bed (a) with ground-truth (b) is shown. PSPNet can
account for not only the texture on the pillow itself, but the context from the rest of
the image as well. Adapted from Zhao et al. [49]

20 CHAPTER 2. BACKGROUND AND RELATED WORK

2.1.4.5 Intersection over Union (IoU)

A common metric when evaluating segmentation models is Intersection over
Union (IoU), also referred to as the Jaccard index. IoU is calculated by tak-
ing the area of intersection for each segmentation class, and dividing it by the
area of union for each class. The equation for IoU can be seen in Equation 2.8,
where TP, FP and FN is true positive, false positive and false negative respec-
tively. IoU is often used as it accounts for true positives, false positives and false
negatives in the result.

IoU =
TP

FP + TP + FN
(2.8)

For segmentation, IoU can also be weighted based on the different classes to
predict. Common metrics are Mean IoU, calculated by finding the mean of each
class-wise IoU. Frequency-based IoU is another metric, where the Mean IoU is
weighted based on the number of occurrences (frequency) of the class in the given
image.

2.1.5 Depth estimation

Depth estimation takes an image as an input, and aims to estimate each of its
pixel’s distance to the camera that captured the image. This allows one to un-
derstand the geometry of a scene, without the use of LIDARs, stereo cameras, or
other depth-measuring sensors. Depth images can be generated by having several
cameras, or estimated by a single camera, called monocular depth estimation.

A well-performing monocular depth estimation model called Monodepth2 was
introduced by Godard et al. [13] in 2019. This model is trained with a technique
called self-supervised monocular training, where a model learns by using a syn-
chronized stereo image pair or monocular video to generate labeled ground truth
estimation, which is further used to optimize a perception model. This is further
described by Godard et al.

2.1.5.1 Accuracy within threshold

In order to measure estimated depth, a common accuracy measure used is accu-
racy within threshold. This metric is used in several papers [28, 4] when evaluating

2.1. THEORY 21

single image depth estimations. Accuracy within threshold is calculated by first
finding the accuracy (δ) as seen in Equation 2.9. A pixel is then counted as a
match if δ is above a given threshold, where we used th = 1.25, th = 1.252 and
th = 1.253, adapted from the papers previously referenced.

δ = max(
dgt
dp
,
dp
dgt

), δ > th (2.9)

2.1.5.2 Loss functions for depth estimation

Loss functions can be customized to a given problem domain, in order to optimize
model performance. Alhashim and Wonka [1] describe such a loss function for
depth estimation. The goal of this loss function is according to Alhashim and
Wonka to balance between reconstructing the original image while also penalizing
important features in the image’s depth changes. This typically corresponds to
edges of objects.

The first loss function, defined in Equation 2.10, is the point-wise loss between the
actual depth map and the estimation. This corresponds to the goal of reproducing
the original image.

Ldepth(y, ŷ) =
1

n

n∑
p

|yp − ŷp| (2.10)

The second loss function, defined in Equation 2.11, is based on the image’s depth
gradient, meaning the image’s changes in depth, and handles penalizing impor-
tant object boundaries.

Lgrad(y, ŷ) =
1

n

n∑
p

|gx(y, ŷ)|+ |gy(y, ŷ)| (2.11)

In this context, gx and gy is a function for computing the difference in gradient
between y and ŷ in x and y direction, respectively.

The final function is called Structural Similarity (SSIM), which tries to capture
the difference in images on a higher level using groups of pixels, as opposed to a
pixel-wise loss function. We represent SSIM as LSSIM (y, ŷ). Finally, we combine
Equation 2.10, 2.11, and LSSIM (y, ŷ) to create the final depth loss function shown

22 CHAPTER 2. BACKGROUND AND RELATED WORK

in Equation 2.12. λ is a weight for the depth loss, empirically set to 0.1 by
Alhashim and Wonka [1].

L(y, ŷ) = λLdepth(y, ŷ) + Lgrad(y, ŷ) + LSSIM (y, ŷ) (2.12)

2.1.6 Data preparation

2.1.6.1 One-hot encoding

In many classification tasks, it is important that the model does not find unwanted
correlation between classes. One-hot encoding is a popular encoding type for
classifications for this reason. It assigns each class to an index in a list, instead
of perhaps the intuitive way using a single number where each numeric value is
a specific class (eg. 1, 2, 3), where the model could find incorrect correlations
between class x and x+1. One-hot encoding works by having a list of length equal
to the number of classes, where all values are 0 except the correct class which is
1. This also has the advantage that along with the softmax activation function,
the result will be the probability distribution of classes. A comparative study of
different encoding schemes and a further description is provided by Potdar et al.
[38].

2.1.6.2 Augmentation

It has been shown that neural networks give better results proportional to the
amount of data they have available for training. Perez and Wang [36] showed this
when they released a dataset with a trillion-word corpus, which in turn drastically
increased the performance of many text-models — even though the data was very
unstructured and had lots of errors. Augmentation works similarly, where many
datasets include a limited amount of data points, and most ways to increase the
dataset will also improve the models.

Augmentation in our context means doing different type of affine transformations,
cropping, hue/saturation and color changes to images as a data-preparation step
to increase the available training data. Other, more advanced augmentation
are also possible, such as shown in Perez and Wang [36], where a Generative
adversarial network (GAN) is used to generate image variations.

2.1. THEORY 23

2.1.7 Approaches for autonomous driving

Yurtsever et al. [47] divides the algorithmic design of autonomous driving systems
into two approaches: modular approaches and end-to-end approaches. Modular
approaches, sometimes referred to as mediated approaches, splits the complex
task of driving into smaller tasks that are easier to implement separately. The
end-to-end approaches, also referred to as direct perception approaches, directly
map sensor inputs and known environment information to vehicle control actions.
Figure 2.12 shows a comparison of the two approaches.

Figure 2.12: An illustration of the differences between a modular and an
end-to-end system. Adapted from Yurtsever et al. [47].

2.1.7.1 Modular approach

Within modular systems, the implementation is divided into modules based on
simpler tasks that together can form a driving system. The reasoning behind
this approach is that it is much simpler to solve each problem individually, and
then combine them into a bigger pipeline. Figure 2.12 (a) shows a typical mod-
ular system, with separate modules for object detection, localization, behavior
prediction, planning, and control.

A run-through of such a pipeline could work along these lines: An autonomous
car drives down a road, with a car in front of it. A camera image frame is sent
into the object detection module, which detects a bounding-box for the car in
front. The behavior prediction module predicts the movement of the detected car
based on both this bounding box and previous bounding boxes it received. The

24 CHAPTER 2. BACKGROUND AND RELATED WORK

planning module then uses this information to plan a safe path for the vehicle to
move in, which the control module converts into actuator commands.

2.1.7.2 End-to-end approach

End-to-end systems, as shown in Figure 2.12 (b), are quite different from the mod-
ular systems. While both consume sensor data and output actuator commands,
the end-to-end system treats everything in-between as one big decision-maker.
There is no distinction between the roles of the neural network, as early lay-
ers that typically would do object detection could additionally be responsible for
planning or even output controls. There are several approaches within end-to-end
driving, and Yurtsever et al. [47] mention deep reinforcement learning and imi-
tation learning as common approaches. We will not dive into deep reinforcement
learning, but rather focus on imitation learning; a class of machine learning tasks
focused on learning a policy by imitating the actions of an expert. In this thesis,
we will work with behavioral cloning — a subclass of imitation learning where we
in our case try to learn a driving policy by looking at examples from an expert
driver. Note that imitation learning is often used interchangeably with behav-
ioral cloning, but is actually a broader class of tasks that include reinforcement
learning-based approaches as well.

Behavioral cloning. Imitation learning by behavioral cloning is a specific case
of supervised learning. To gather training data, an expert performs the desired
task, and we record the state of the environment and the expert’s action in
the given state. When doing this over time, we get a set of (state, action)-
pairs, which can be used as inputs and targets for a supervised learner. In
the context of autonomous driving, a state will typically be the outputs of the
vehicle’s sensors, e.g. a camera frame and speedometer reading. The action would
then be a command for controlling the vehicle, which could be a new steering
angle, throttle, and brake.

A big advantage behavioral cloning has over normal supervised learning, is that
the data does not need labeling. The reason for this is that the target values,
which is what you would normally need to label, is the outputs of the expert
itself — gathered while doing data collection. As with any other type of learning,
behavioral cloning has its own disadvantages. In driving, the set of (state, action)
pairs are sequential; where a given state is dependent of the last action. This
violates the independent and identically distributed (i.i.d.) principle of supervised
learning. Another disadvantage is that the learner will only be able to learn what

2.2. TECHNOLOGY 25

the expert driver did. Consequently, if the expert driver breaks traffic rules, or
even crashes, the learner will try to learn this. This emphasizes the importance
of having good training data from a wide variety of scenarios and from a reliable
expert driver.

2.2 Technology

This section introduces the specific technology used in the thesis, from machine
learning and simulation software, to physical equipment.

2.2.1 Machine learning software

To design and train our neural networks, we use Keras 2.2.4 with Tensorflow
1.13.1. Keras is a Python library which exposes an easy-to-use API for building
neural networks. It does not train models itself, but rather abstracts it away to
”backends” — libraries that implement the machine learning algorithms. In our
case, the backend is Tensorflow. Tensorflow implements all the necessary building
blocks for constructing neural networks, and provides GPU-accelerated (CUDA)
implementations of these. This allows us to greatly improve both training and
inference time relative to CPU-based implementations.

Training hardware. We use an Ubuntu desktop with a NVIDIA GeForce
GTX 1080 Ti for training. With 11 GB of GPU memory, we can efficiently train
large models with large data sets.

2.2.2 Simulator

Much of the early work within the field of autonomous driving were conducted
using real-life vehicles (Pomerleau [37], LeCun et al. [31], Bojarski et al. [3]), and
researches without access to such vehicles were at a great disadvantage. The
Car Learning to Act (CARLA) simulator, introduced by Dosovitskiy et al. [10]
in 2017, aims to make autonomous driving research available for everyone, by
providing a leading open-source simulator for autonomous vehicle research. It
is built upon Unreal Engine 4, which provides state-of-the-art real-time graphics
and physics.

26 CHAPTER 2. BACKGROUND AND RELATED WORK

The simulator allows for simulating multiple vehicles, traffic flow, pedestrians,
weather conditions, and more. It comes with several built-in environments (called
towns), varying from small villages to highways — all of which can be used out-
of-the-box. It has powerful APIs for both C++ and Python, which makes it
possible to control most aspects of the simulation with custom scripts. Figure
2.13 shows an example of an environment in the simulator.

Figure 2.13: An example image from CARLA. The image was captured from a
vehicle in Town07 at sunset.

As of CARLA 0.9.9, there are eight built-in towns, of which we mainly use
Town01, Town02, and Town07. The weather API allows for extensive control
of both the weather and time of day, which are both configured by a weather
control parameters object. Some examples of weather control parameters are
wind intensity, sun angle (controls day/night-cycle), cloudiness, and rain inten-
sity. CARLA additionally provides an expanding variety of simulated sensors
and outputs: RGB cameras, segmentation maps, depth maps, LIDARs, radars,
GNSSes, IMUs, among others.

A problem with outside real-world experiments is that the environment is in
constant change. It is impossible to reproduce the same conditions multiple
times; as time progresses, weather changes, and external objects might move.
In a simulator, we can control every aspect of the world, and if the simulator

2.2. TECHNOLOGY 27

is deterministic, we can reproduce the exact same environment multiple times.
CARLA has a mode where the simulation runs step-by-step as controlled by a
user, where the whole simulation is independent of real-time frames per second.
There are still some issues that prevent 100% determinism, but for most cases
the simulator can be regarded as deterministic.

A driving simulator was essential for our early work, as it provided a reproducible
environment for both data gathering and testing of our proposed models. CARLA
had already been used by several authors (Codevilla et al. [6], Müller et al.
[34], Xiao et al. [46], Haavaldsen et al. [17]), and seemed to be the best tool
for our work. The simulator greatly helped saving time in the early phases of
development of our models, as it eliminated the need to conduct time-consuming
real-world experiments. The reproducibility and the deterministic behavior of
CARLA further helped ruling out external factors from the experiments. This
allows us to be confident that we will get the same results each time we perform
an experiment, and that changes in performance is only dependent on our own
models and evaluation code.

2.2.3 The SPURV Research vehicle

To conduct our real-world experiments, we used the SPURV Research — a small
four-wheeled vehicle developed by KVS Technologies1 for research in robotics
and autonomous vehicles. The SPURV is battery-driven and contains a NVIDIA
Jetson TX2 board with an integrated Tegra X2 GPU. This allows it to run CUDA-
accelerated machine learning models, which Tensorflow supports creating, at a
relatively high inference rate. All models tested in our real-world experiments
were able to run an inference rate of at least 20 images per second. The robot
is fitted with two RGB cameras, one facing forward, and one facing backwards,
both at a height of approximately 20 cm above the ground. See Figure 2.14 for
a picture of the SPURV.

1https://www.kvstech.no/

https://www.kvstech.no/

28 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.14: A picture of the SPURV Research vehicle, taken from the front.

The NTNU Autonomous Perception Laboratory (NAPLab) acquired a SPURV
in 2018, and Kastet and Neset [23] used it to conduct autonomous driving experi-
ments. Kastet and Neset did comprehensive work to enable the vehicle to be used
for research, and wrote manuals to set up the necessary hardware and software
for deep learning. Because of their work, the SPURV already had CUDA and
Tensorflow available, and with easy-to-use manuals for commonly needed tasks;
including data gathering, executing pre-trained machine learning models, and
manually controlling the vehicle via Wi-Fi. We expanded on Kastet and Neset
[23]’s work where we updated the existing software and created a new set of tools
to complement theirs. These changes are further explained in Section 3.3.

2.3 Related Work

This section contains selected papers on end-to-end autonomous driving relevant
to our thesis. We present the papers chronologically, giving a brief image of the
field’s history and a build-up to the state-of-the-art work.

2.3. RELATED WORK 29

2.3.1 ALVINN: An Autonomous Land Vehicle in a Neural
Network (1989)

The work of Pomerleau [37] is one of the most well-known within autonomous
driving, and was the first to use neural networks to create an end-to-end driving
system. The ALVINN network, shown in Figure 2.15, consists of one input layer,
one hidden layer, and one output layer; all of which are fully connected. The
input layer contains input data from a camera and a range finder, which is then
fed through the 29-unit hidden layer, and finally to the output layer. The output
layer serves to output a steering angle for the vehicle, and consists of 46 neurons.
Each neuron corresponds to a distinct steering angle, except one labeled ”Road
Intensity Feedback Unit”, which states if the road is lighter or darker than the
rest of the image. The road intensity feedback unit is fed into the next prediction
as an input. Pomerleau showed that ALVINN was able to follow simple roads
without intersections and forks, and they were optimistic to future applications
of neural networks within autonomous driving.

Figure 2.15: The ALVINN architecture as presented in the original paper.
Adapted from Pomerleau [37]

30 CHAPTER 2. BACKGROUND AND RELATED WORK

2.3.2 Off-Road Obstacle Avoidance through End-to-End
Learning. (2005)

LeCun et al. [31] built upon the work of Pomerleau [37], creating a novel network
named DAVE. They present three major differences between ALVINN and DAVE:
Firstly, they trained the network to do off-road obstacle avoidance instead of road
following. Secondly, they used two cameras side-by-side to give the network stereo
information. Instead of using known techniques to gather depth information from
the stereo camera setup — and then use this as input for the network — they
input the raw images and let the network learn its own representation. Lastly,
they made use of convolutional layers to process the input images. The network
itself consisted of six layers: four convolutional layers, where the first layer took
a 147x56x6 input (two 147x56 images with three color channels each), a fully
connected layer of size 100, and a fully connected output layer with two neurons;
steer left or right.

To gather training data and test the network, LeCun et al. constructed a small
four-wheeled vehicle with a length of 50 cm. The network itself was run on a
remote computer, where a radio transmitter transferred the inputs and outputs
of the network between the vehicle and the computer. They showed that an end-
to-end system can perform some tasks as good or better than classical algorithms,
with the network robustly detecting and avoiding obstacles in real-time.

2.3.3 End to End Learning for Self-Driving Cars (2016)

Inspired by the promising results of DAVE, Bojarski et al. [3] developed a new
network, DAVE-2, by building upon the ideas of LeCun et al. [31]. DAVE-2
was designed to control full-scale cars on real roads, and was shown to drive
on both highways and in residential areas, in diverse weather conditions. To
improve upon both ALVINN and DAVE, they increased the number of trainable
parameters from ∼72 000 in DAVE to ∼250 000 in DAVE-2. While the preceding
networks had been limited by the computing capabilities of their time, Bojarski
et al. could take advantage of GPU-accelerated neural networks that allowed for
deeper networks and faster inference. Their final network consisted of one image
normalization layer, five convolutional layers, and three fully-connected layers, as
shown in Figure 2.16. The final layer outputs the inverse of the desired steering
angle. 72 hours of varied driving data were used as input to the network. To
improve error correction when driving, the data was additionally augmented by
shifting and rotating the input images. When using the augmented images for

2.3. RELATED WORK 31

training, the steering angles were adjusted to correct for the changed perspectives.

Figure 2.16: The DAVE-2 architecture as presented in the original paper.
The output is a single node containing the raw steering angle. The image was adapted
from Bojarski et al. [3].

2.3.4 End-to-end Driving via Conditional Imitation Learn-
ing (2017)

In 2017, end-to-end imitation learning approaches like Eraqi et al. [11]’s had al-
ready shown great promise for lane- and road following. However, adapting these
models to roads with intersections and forks was still a largely unexamined prob-
lem. Previous models were trained to learn one correct steering direction, and
a road forking into two was therefore not something they could possible reason
about. Codevilla et al. [6] addressed this problem by introducing a new input to
behavioral cloning models — a High-Level Command (HLC) — thus naming the
new type of imitation learning Conditional Imitation Learning (CIL). The paper
includes a baseline implementation of CIL, where they define four HLCs to dic-
tate the behavior in road forks: continue (follow the road), turn left, turn right,

32 CHAPTER 2. BACKGROUND AND RELATED WORK

or drive straight. By providing this additional navigational information during
data collection, the model was able to resolve any ambiguities about where to
drive, and learn to choose a fork based on the given command. This allows for
a person or even a route planner to choose which turn to take in a intersection,
without explicitly telling it how it should control the vehicle.

Codevilla et al. [6] experimented with two alternatives for incorporating the HLC
into the driving model. They both share a common component, a CNN which
extracts features from images, which are then concatenated with the speed of the
vehicle. The first architecture, shown in Figure 2.17a, concatenates the current
HLC (as a one-hot encoded vector) with the image features and speed. This is
then used as input for a small fully-connected network. The second approach,
shown in Figure 2.17b, does not use the HLC as an input itself, but rather as a
switch for selecting one of k (in our case 4) smaller fully-connected networks. Both
networks outputted the same predictions: a steering angle, throttle amount, and
brake amount. In their experiments, the switch-based network performed best,
and they demonstrated that it could drive and follow commands in both a driving
simulator and with a real RC car. To be able to run in both simulation and in
the real world, they trained two models: one on only simulation data and the
other only on real-world data.

(a)
(b)

Figure 2.17: An illustration of different approaches for incorporating HLC
into a end-to-end driving network. The approach in Figure 2.17a is titled command
input network, and uses HLC as an input to the model. Figure 2.17b shows the branched
network architecture, where HLC is used as switch for different sets of learnable output
layers. The figure is adapted from Codevilla et al. [6].

2.3. RELATED WORK 33

2.3.5 Driving Policy Transfer via Modularity and Abstrac-
tion (2018)

Müller et al. [34] proposed a CIL model that was able to be trained solely in a
driving simulator and then drive in both the simulator and in the real world. The
motivation for their work was that driving simulators allow for data collection and
testing of models in a safe, cheap, and diverse environment. The problem with
simulators is that the perception data differs considerably from real-world data,
which makes directly transferring the models impossible. Müller et al. proposed
to abstract the input data into a domain-independent format; a format where the
same scene would be represented identically, independent of the environment (e.g.
simulator or real-world) of the scene. In their implementation, they first trained
a separate model, the ”perception module”, to predict a binary segmentation
map from images. The perception module segmented images into the categories
”road” or ”not road”, which was then used as input for the CIL network, the
”driving policy”. When training the driving policy, the weights of the perception
module were held constant. With a perception model trained on only real-world
images, they got good enough road segmentation of images from both simulation
and real world. Figure 2.18 shows an overview of Müller et al.’s architecture.

Figure 2.18: Architecture of Müller et al.’s system for transfer of driving
policy between different domains. The image gets processed by a perception mod-
ule, and is then used for a CIL driving network. The outputs of the driving network
are waypoints that a PID controller uses to control the vehicle. The figure is adapted
from Müller et al. [34].

To test their implementation, they first evaluated it in a driving simulator, and
then on a 1/5-scale robotic truck. They achieved best results when adding two
important changes to their architecture: Firstly, to not overfit their model to
the specific camera configuration of the simulated car, they varied the camera’s
mount height, vertical field-of-view, and pitch. Secondly, the vehicle dynamics
(how the vehicles react to steering, physics, etc.) differed from the simulated
car and the robotic truck. Therefore, they abstracted away the raw steering

34 CHAPTER 2. BACKGROUND AND RELATED WORK

angle and throttle outputs, instead outputting waypoints relative to the vehicle.
With these adjustments, their model was able to drive in highly varied real-
world environments, without any fine-tuning despite only learning to drive in a
simulator.

2.3.6 Autonomous Vehicle Control: End-to-end Learning
in Simulated Urban Environments (2019)

Haavaldsen et al. [17] proposed a CIL-based driving model with the addition of a
LSTM network. Most of the earlier solutions for end-to-end driving only process
spatial information, i.e. information from a single image, run through convo-
lutions. Haavaldsen et al. built upon the idea that humans gather information
from the scene over time, to get a good enough understanding to drive in ur-
ban environments. Their network, shown in Figure 2.19, combined a CNN with
LSTM cells to learn from both spatial and temporal dependencies. Additionally,
they separated steering and throttle/brake into two separate models, only sharing
input images, HLCs and environmental information.

2.3. RELATED WORK 35

Figure 2.19: A high-level overview of Haavaldsen et al.’s architecture.
Adapted from Haavaldsen et al. [17].

2.3.7 Multimodal End-to-End Autonomous Driving (2019)

The majority of papers on end-to-end autonomous driving focus mainly on RGB
images as input sensor data, but using depth information has shown promising
results in other computer vision tasks (see Viereck et al. [45], Gualtieri et al. [15]).
Xiao et al. [46] pointed out that many autonomous vehicles are not only equipped
with cameras, but with depth measuring sensors such as LIDARs as well. They
proposed to use depth information received from such a sensor to train a driving
model that performs better than with images only.

Xiao et al. experimented with three approaches for including the depth infor-
mation into their CIL network. Figure 2.20 shows the approaches: early fusion,

36 CHAPTER 2. BACKGROUND AND RELATED WORK

mid fusion, and late fusion. Their results showed that early fusion resulted in
the best driving performance. Early fusion incorporates the depth data from
the start of the network, by channel-wise concatenation of the RGB image and
depth map, thus creating an RGBD (RGB and depth) representation. To test
the driving performance of their network, they ran it through a driving simulator
which generated camera images and accurate depth maps.

In addition to the models using both RGB and depth information, they also
trained two separate control networks using exclusively RGB images or depth
maps. As an extra experiment, they trained a separate network that created
depth estimates from the RGB images, and used this as the input to their early
fusion network, instead of the ground truth depth from the simulator. They
showed that this variant could in some cases outperform both networks trained
on ground truth depth only and images only, and noted that it was an approach
worth pursuing in the future.

(1) Early Fusion (EF)

(2) Mid Fusion (MF)

(3) Late Fusion (LF)

P (RGBD)

J (RGBD, m)

c

A c

RGBD

Action a

P (RGB)

J (RGB, D, m)

M (m)

A c

Measurement
m

Action a

M (m)Measurement
m

RGB
P (D)

J (D, m)

M (m)

P (RGB)

J (RGB, m)

A c

Action a

M (m)

Measurement
m

A c

Depth

P (D)

Conv. FC Branch Concatenation Steering Brake Throttle

RGB

Depth

c

c

Figure 2.20: An overview of the various approaches Xiao et al. [46] built
for including depth information in a CIL network. Early Fusion (1) fuses the
image and depth data immediately. Mid Fusion (2) extracts features from both inputs
separately, then fuses the features. Late Fusion (3) builds a separate CIL network
for each input, and fuses their predictions together as input for a final fully-connected
network. Adapted from Xiao et al. [46].

2.3. RELATED WORK 37

2.3.8 Urban Driving with Conditional Imitation Learning
(2019)

Hawke et al. [19] released a paper in late 2019 where they attempted to improve
upon earlier end-to-end autonomous driving approaches. As opposed to most
recent papers on end-to-end driving, Hawke et al. trained and validated their
model solely on real-world data. Using CIL and a perception model pre-trained
on public datasets, they were able to drive a car in urban environments with
simple traffic.

Their driving policy was an end-to-end neural network, but it was conceptually
divided into three components: perception, sensor fusion, and control.

The perception component had a deep encoder-decoder architecture and used
multi-task learning inspired by Kendall et al. [24] to create multiple predictions
from the scene: an RGB image reproduction, segmentation, and monocular depth
estimation. The perception component was pre-trained on several large, hetero-
geneous research datasets for vision, such as Mapillary [35] and CityScapes [8],
to create a data efficient and robust perception component. When training the
control component, only the encoded features were used, containing the learned
compressed representation of the scene, which can be seen in Figure 2.21.

Figure 2.21: The end-to-end neural network architecture of Hawke et al.
[19]. The architecture is divided into three components: perception, sensor fusion and
control. Adapted from Hawke et al. [19].

38 CHAPTER 2. BACKGROUND AND RELATED WORK

In addition to the multi-task perception model, intermediate features from the
separate optical flow model PWC-Net [44] was concatenated with the features
from the separate multi-task perception model, resulting in a set of features
complete with semantics, geometry, and motion information.

Hawke et al. also used sensor fusion to give the model full observability of rel-
evant information, using two additional cameras; one to each side. The three
cameras were joined into a single representation using sensor fusion. However,
this increased the model’s issue with basing its driving on non-causal elements,
such as deciding driving speed based only on the input speed limit (called causal
confusion, and described further by de Haan et al. [9]). Therefore techniques
such as augmentation, noise (e.g. Gaussian) and dropout were used on the input
to reduce the model’s dependency on spurious information.

Finally, the control commands were generated from a network with fully con-
nected layers, where the command input (HLC) was concatenated with each
layer, as showed improved robustness. The output was a motion plan repre-
sented by a parameterized line for both steering and speed. During training, the
loss was calculated by finding the mean squared error between the output motion
plan and the actual expert driving N timesteps in the future, where the error
was discounted by a factor for each timestep.

Chapter 3

Methodology

This chapter describes the methodology of our work. The first section contains a
thorough description of the data we used, our neural network architectures, and
metrics used to evaluate them.

Our approach to end-to-end driving is inspired mainly by two papers. Müller
et al. [34] attempted to use modularity and abstraction to transfer their driving
model directly from simulation to real-world. They pre-trained a perception
model to learn semantic segmentation. The segmentation maps were then used
when training a driving model in simulation. The driving model could then
be transferred directly to real-world, using the more abstract representation for
perception. Hawke et al. [19] expand their pre-trained perception model to use
multi-task learning, generating depth estimations and RGB reproduction. The
model has an encoder-decoder architecture, where the decoder is removed and
only the encoded representation of the driving scene is used when training the
driving model. Hawke et al. used only real-world data, and the paper did not
focus on the simulation to real-world problem.

The approach used in this thesis attempts to incorporate elements from the paper
by Hawke et al. into the approach by Müller et al. Specifically, we use multi-
task learning where the perception model generates depth maps in addition to
segmentation maps. We also expand to use five segmentation classes, as opposed
to Müller et al. who used binary classification of road/no-road. Several combi-
nations of training datasets are used in our experiments, where the goal was to
get the best model using as little real-world data as possible. Public perception

39

40 CHAPTER 3. METHODOLOGY

datasets were utilized for training the perception model, as it did not require
any further data-collection. Figure 3.1 shows an overview of our network, where
a pre-trained perception model predicts segmentation and depth maps that are
further used as input to the driving model.

Speed

Angle

Driving Data

+
+

+

HLC

Traffic light state
Speed limit

Current Speed

Perception Model Driving Model

Semantic Segmentation

Depth Estimation

Figure 3.1: An overview of the architectures used in this thesis. The percep-
tion model takes driving data as input, which it converts to segmentation and depth
maps. The output is then used as input to the driving model, which also process HLC
and other high level information and finally outputs the angle of steering and speed.

3.1 Perception

The perception model is trained separately to the driving model, and therefore we
first focused on finding the optimal perception model. The model was chosen by
testing a different set of neural network architectures for semantic segmentation.
The architectures were then trained on combinations of real-world and simulation
datasets. The real-world dataset was the public Mapillary Vistas dataset [35]
(henceforth Mapillary), while the simulation dataset was generated in CARLA.

3.1.1 Data collection

Simulated data. In order to improve the performance during driving in sim-
ulation, we included a synthetic dataset from CARLA. This was generated using
a Python script that spawns a large variety of moving vehicles and pedestrians.
Images were taken by cameras with a random distribution of yaw angle and field

3.1. PERCEPTION 41

of view. The camera height was fixed to three meters above ground, as we wanted
to avoid having the camera blocked by any of the vehicles it was mounted on.

During data-collection, environmental conditions were also randomized. The
weather conditions were changed periodically between varying cloudiness, amount
of rain, time of day and more. The numbers and locations of pedestrians and
vehicles were also randomized between 40-80 and 0-40 respectively. The total
size of the synthesized dataset is about 20 000 images.

Real-world data. The Mapillary Vistas dataset is a high quality, street-level
dataset from driving situations from around the world. The dataset includes
fine-grained annotations of both semantic segmentation and instance-specific im-
age segmentation, with the semantic segmentation dataset including 66 different
classes. During this thesis, we only used the semantic segmentation images.

3.1.2 Data preparation

The Mapillary and CARLA segmentations and images were first cropped and
resized to 384x384 pixels. Then we reduced the number of classes in the segmen-
tation annotations to five: road, lane markings, humans, vehicles and unlabeled
(all other classes). The images were normalized using mean normalization, where
the mean values are computed from the whole ImageNet dataset, similar to most
implementations of VGG (Simonyan and Zisserman [42]).

As we wanted to train monocular depth estimation in addition to segmentation,
we needed to find a dataset for depth images. To reuse a lot of work done with
the Mapillary dataset, we decided to generate depth labels for the dataset using
the pre-trained Monodepth2 model [13]. The Monodepth2 model was pre-trained
on the KITTI dataset [12], and the data format was a depth value for each pixel.
The depth value was represented as a normalized value between [0, 1], where 0
was 0.001m and 1 was 80m. For the CARLA dataset, these depth maps were
built into the software, and we could therefore choose to generate depth maps
as well as segmentation maps and RGB images. The depth value of a pixel in
CARLA represented a distance in space 0m to 1000m forward (CARLA’s max
render distance), and was normalized to the range [0, 1], closer and farthest away
respectively. Figure 3.2 shows an example of Mapillary data with segmentation
and our generated depth maps.

42 CHAPTER 3. METHODOLOGY

Figure 3.2: Sample from the Mapillary Vistas dataset. A selected image from
the Mapillary training data. It shows the original image to the left and the labeled
segmentation in the center. The right-most image is a depth map generated by Mon-
odepth2.

The depth information had some differences between the datasets, which may
make it difficult to train models on combinations of the datasets. A possibly
improved approach could have been to use Monodepth2 to generate depth images
from CARLA data as well. A visual comparison between the different formats can
be seen in Figure 3.3. Note that the CARLA data has a higher maximum depth
value, and the depth visualization is therefore stretched over a longer interval, as
the visualization uses the min and max value to determine the color value for a
given depth.

Figure 3.3: Compared depth maps between datasets. The leftmost image is the
original image. The center image shows the source of truth image from CARLA, while
the final rightmost image shows the generated depth map from Monodepth2.

Before training, the images were augmented in order to increase the dataset size.
The augmentation used was the built-in augmentation to the prediction library
we used [16]. These augmentations, some of which are shown in Figure 3.4, in-

3.1. PERCEPTION 43

clude cropping, affine transformations (e.g. rotation, translation), blur, contrast
change, and hue/saturation changes. For the depth models, these augmentations
were not used as we did not implement new augmentations for depth.

Figure 3.4: Perception data augmentations. A set of randomly generated aug-
mentations from a single image from the Mapillary dataset. Each image includes several
different augmentation of different magnitudes. Some of the obvious augmentations or-
dered from top left are: greyscale (second image), rotation (third image), mirroring
(sixth image) and hue/saturation changes (eight image). The top left image is the
original.

3.1.3 Architecture

The architectures used in this thesis are well known existing segmentation models
or variations of these. A library with implementations of many popular segmenta-
tion networks called image-segmentation-keras [16] allowed us to explore several
different architectures, as well as compare these using the relevant driving data
we had collected. Several encoders and decoders were tested for our model archi-
tecture, with encoders being MobileNet [22], ResNet-50 [20], and a vanilla CNN.
The decoders we experimented with were SegNet [2], U-Net [39], and PSPNet
[49].

Multi-task learning was also explored as an attempt to improve the overall predic-
tion performance. Standley et al. [43] showed good improvements when training
segmentation with depth estimation. Depth estimation has also been used suc-

44 CHAPTER 3. METHODOLOGY

cessfully by several papers [45, 15] as a means to generalize between simulated
and real-world data. One of our approaches was therefore to train the segmen-
tation models on an additional depth estimation task. A visualization of one of
our main architectures using both depth estimation and semantic segmentation
can be seen in Figure 3.5.

Figure 3.5: A visualization of the MobileNet+U-Net architecture with an
additional depth branch. MobileNet encodes the image, while two similar U-Net
decoders up-sample the encoding to a segmentation map and a depth map. The vi-
sualization is not an exact representation of the final architecture, and the detailed
description can be seen in Appendix C.

The depth estimation branch was implemented similar to the existing U-Net seg-
mentation architecture. The two branches differ in the activation function used
on the final layer, loss function, and number of channels in the final layer. As
depth estimation only predicted a single value per pixel, we reduced the last layer
to only include one channel, as opposed to five channels for semantic segmenta-
tion (one for each of the predicted classes). The final layer activation function
was changed from softmax to sigmoid to represent depth estimation as a regres-
sion task instead of classification. Finally, a loss function for depth estimation,
adapted from Alhashim and Wonka [1], was implemented as an additional loss
function to the categorical crossentropy used in segmentation. It is described
further in Section 2.1.1.4. All models were trained with the AdaDelta optimizer,
see Section 2.1.1.5.

3.2. DRIVING 45

3.1.4 Evaluation and metrics

To evaluate the perception models, two different metrics were used: one for
semantic segmentation and one for depth estimation. Semantic segmentation
was evaluated using Intersection over Union (IoU), also referred to as the Jaccard
index. IoU is calculated by taking the area of intersection (true positives) for each
segmentation class, and dividing it by the area of union (true positives + true
negatives + false negatives) for each class. Calculating the mean of the class-wise
IoU, we end up with Mean IoU. IoU is further described in Section 2.1.4.5.

For depth evaluation, we used the accuracy within threshold metric. We set the
threshold th to 1.25, 1.252, and 1.253, adapted from Cao et al. [4]. The actual

accuracy δ was calculated by δ = max(
dgt
dp
,
dp
dgt

), δ > th, where dp is the predicted

depth value and dgt is the ground truth value calculated for each pixel. Accuracy
within threshold is further described in Section 2.1.5.

3.2 Driving

The driving model passes images through the perception model, and then uses
the estimated segmentation and depth maps as inputs to a CNN. These training
images are collected during recordings made from an expert driver’s driving.
This data was generated in CARLA. The CNN processes the images, and uses
a HLC and known information about the vehicle and its environment to output
control signals for the vehicle to apply. To evaluate the models, we use a metric
measuring the mean completion rate for each validation route.

3.2.1 Data collection

For the driving model, we gathered data both from an autopilot in CARLA and
manual driving with SPURV. A summary of the information we collected per
data point is shown in Table 3.1.

46 CHAPTER 3. METHODOLOGY

Data Description Simulated Real

Forward center image
The image from the camera later
used for inference

490x224 PNG 432x324 JPEG

Forward left image
Image from left-aligned front-
facing camera

490x224 PNG N/A

Forward right image
Image from right-aligned front-
facing camera

490x224 PNG N/A

Steering angle
The steering angle [left, right] of
the vehicle

float [-1, 1] float [1, -1]

HLC
The given high-level command:
left (1), right (2), straight (3), or
follow lane (4)

int int

Target speed The desired speed of the vehicle float (m/s) float (m/s)
Speed The speed of the vehicle float (m/s) float (m/s)

Speed limit
The speed limit at the vehicle’s
location

float (m/s) N/A

Traffic light
1 if not affected by a traffic light
or it is green, 0 otherwise

int N/A

Table 3.1: The contents of each driving data point gathered. N/A specifies
that the data were not collected in the given domain.

Simulated data. We used CARLA 0.9.9 to generate the simulated training
data. To get the information we need, we utilized CARLA’s Python API to
make a script that automatically drove a vehicle through a set of routes in various
CARLA maps. The script is based on Haavaldsen et al. [17]’s work, and uses the
API’s built-in autopilot which has access to the full state of the virtual world.
This includes the location and velocity of all vehicles and pedestrians and a HD
map of the whole environment. The information is used to generate waypoints
for a driving path, which is fed into a PID controller which outputs steering angle
and throttle values. Note that this dataset is different from the one described
in Section 3.1.1, as it consists of continuous sequences of images from the same
vehicle, paired with its controls and environment state.

Our script supports capturing data from different camera configurations, inspired
by Müller et al. [34]. This allows us to make a dataset with images from a diverse
set of different camera heights, fields of view, and camera pitches. The reason
for doing this is to make the driving network learn to drive independently of
the camera specifications and where the camera is put on the vehicle. Figure
3.6 shows several camera configurations in CARLA, some which were used in
the training set. We varied the following camera parameters when generating
training data:

3.2. DRIVING 47

• The horizontal field of view, alternating between 65◦, 90◦, and 110◦.

• The camera height, alternating between 2.8m, 2.3m, 1.8m, and 0.8m (as
opposed to the fixed 3m used in the perception dataset).

• The camera’s pitch, alternating between −5◦, 0◦, and 5◦.

The lower the camera is positioned, and the lower field of view, the less informa-
tion is gained about the scene.

(a) Camera at 2.3 m and 5◦ pitch downwards (b) Camera at 1.8 m and 5◦ pitch downwards

(c) Camera at 0.8 m and 5◦ pitch downwards (d) Camera at 0.3 m and 5◦ pitch. Not used
in training, but approximates SPURV’s camera
configuration.

Figure 3.6: An overview of different camera configurations in CARLA.

Real-life data. We collected real-life data by driving the SPURV on a set of
small-scale roads. We collected 22530 data points; mostly while following the
right-side of the road, occasionally taking turns in intersections. In an attempt
to learn steering correction, we applied noise to our steering angles, which we
manually had to correct while driving.

48 CHAPTER 3. METHODOLOGY

Automatic noise generation has been important for adequate performance, de-
scribed by Codevilla et al. [6]. We adapted their technique for including trian-
gular noise in the steering signal during data-collection. The algorithm worked
by first randomly selecting a noise magnitude and direction. Then over a fixed
period the noise was gradually increased until the max value, following a similar
reduction until it reached no noise. This process was then repeated for the entire
data-collection period.

The generated noise was excluded from the training data to ensure the model
only learned from the expert drivers driving signal and not the noise signal. A
visualization of the entire noise process can be seen in Figure 3.7

Figure 3.7: Triangular noise in real-world training data. A visualization of
a period with triangular noise generated during data-collection. The blue line is the
actual control signal from the expert driver, the red line is the noise and the green line
is the final output steering. In stage (a), the vehicle starts drifting from the noise signal.
During stage (b), the expert driver has started correcting to the noise. Finally, in (c),
the expert driver slowly reduces the correction as the vehicle straightens and the noise
signal is reduced.

3.2.2 Data preparation

To utilize the collected data better, we employed various data augmentation and
balancing techniques.

3.2. DRIVING 49

Randomly moving HLCs. To prevent the network from learning an identity
mapping between a HLC and steering, e.g. always steering left when getting a
”turn left in next intersection” HLC, we randomly move some HLCs back a few
frames, such that it is activated before the intended turn. This method is based
on Haavaldsen et al. [17]’s work.

Balancing. The data we gather from CARLA initially has a skewed data distri-
bution. Many of the data points are quite repetitive, as they capture the vehicle
driving straight while following a lane, or the vehicle waiting for a green light.
If the data contains considerably more examples of a certain action, the driving
model will become biased to that action. To counteract the bias effect, we bal-
ance the data. To learn all HLCs equally good, we down-sample with respect to
HLCs by removing data points until we get a equal amount per HLC.

Image augmentation. To help our models generalize, we apply augmentation
to our training images. Each mini-batch has a 25% probability of being aug-
mented with one of the augmentations shown in Figure 3.8. These are the same
augmentations as were used in Haavaldsen et al. [17]: Gaussian blur, adjusted
hue, adjusted brightness, simulated rain, and simulated shadows.

50 CHAPTER 3. METHODOLOGY

(a) Original picture (b) Gaussian blur

(c) Adjusted hue (d) Adjusted brightness

(e) With lines representing rain (f) With polygons representing shad-
ows

Figure 3.8: A training image with augmentations applied to it.

3.2.3 Architecture

The driving model architecture is built to use the outputs of the perception
model (segmentation and depth maps), a HLC, and known information about
the environment and the vehicle state. These inputs are processed within the

3.2. DRIVING 51

network to produce two outputs: a steering angle and a target speed. Figure 3.9
shows a simplified version of the model. Note that we concatenate the HLC value
with the output of several layers. This is an approach taken from Hawke et al.
[19], where they suggest that it improves the model’s robustness.

HLC

Traffic light state
Speed limit
Current speed

Speed

+

+

+

Angle

Figure 3.9: Driving network architecture. A simplified illustration of the driving
network. The segmentation and depth maps inputs are concatenated directly from
the outputs of the perception model, shown in Figure 3.5. See Appendix C for the
implementation.

The driving model first processes the outputs from the perception model. We
concatenate its predicted segmentation and depth map channel-wise such that
we get an input of size 112x112x6 (112x112x5 segmentation map concatenated
with 112x112x1 depth map), inspired by Xiao et al. [46]’s best performing ap-
proach, early fusion. The combined segmentation and depth representation is
then processed through five convolutional blocks consisting of zero padding of
1, a 2D convolution, batch normalization, a ReLu activation, and finally max
pooling with pool size of 2. The convolutions have the following parameters, in
order:

1. 64 filters and kernel size of 3

2. 128 filters and kernel size of 3

3. 256 filters and kernel size of 3

4. 256 filters and kernel size of 3

52 CHAPTER 3. METHODOLOGY

5. 256 filters and kernel size of 3

The resulting feature map then gets flattened into a vector of length 2 304. This
is concatenated with the following inputs:

• info input : a vector of size 3. It contains the traffic light state (1 for green
or if the vehicle is not near any traffic lights, 0 otherwise), the speed limit in
km/h, and the current speed of the vehicle, in km/h. Both the speed limit
and current speed values are normalized by division of 30 and subtraction
of 1. The number 30 was chosen as the original intended maximum speed
was 30 km/h, but was not adjusted subsequently.

• hlc input : the current HLC, one-hot encoded ([left, right, straight, follow
lane]).

The resulting vector of length 2 311 is followed by a fully-connected layer of
size 100. The outputs are concatenated with the HLC vector, and followed by a
LSTM layer with 10 cells. The output of the LSTM is once again concatenated
with the HLC vector, before branching off to the two outputs of the model:

• steer pred : The predicted steering angle, with ReLu activation. To get
the correct angle in CARLA, we multiply the value by 2 and subtract 1,
mapping the value to the [-1, 1] range. ReLu activation was chosen over
sigmoid because we saw slight improvement in convergence during training.

• target speed pred : The predicted target speed, with sigmoid activation. To
get the target speed in km/h, multiply the value by 100.

The sequence length used for the LSTM layer is always 1, so no temporal depen-
dencies are considered because of this. The LSTM was put into the architecture
early in the design process, and we decided not to remove it — even though
it served no real purpose — as many models had already been trained with it,
and we did not want to introduce changes which could make the comparison of
models incorrect. Moreover, the inclusion of the LSTM layer allows for inclusion
of temporal dependencies in any future extensions of the network. The Adam
optimizer (see Section 2.1.1.5) was used for training, just as in Haavaldsen et al.
[17].

3.3. REAL-WORLD VALIDATION 53

3.2.4 Evaluation and metrics

Many machine learning tasks include standardized metrics validating the perfor-
mance of models. These metrics can usually be calculated directly when vali-
dating the models on a separate test dataset. However, for the task of imitation
learning for autonomous driving, there are no such standardized metrics, partly
because there could be several correct driving actions for a given point in time.
While there has been some work on creating methods to better compare different
solutions (see Codevilla et al. [7]), there is no standard methods for evaluation.
We follow the work of Haavaldsen et al. [17], and use the mean completion rate
(henceforth abbreviated as MCR) to measure our driving models’ performance.
MCR is defined in Equation 3.1, where dc is the completed distance of the model,
dt the total distance of the route, and R the set of all routes.

MCR =

∑
rεR

dc
dt

|R|
(3.1)

We additionally watch the validation loss of each model, calculated from the 20%
of the driving dataset not used in training. We discovered that many of our
trained models had a significantly higher loss than the best-performing ones, and
we used that as a rough method to weed out failed training sessions. Our most
successful models all had a validation loss of less than 0.20, and we therefore
discarded any model with higher values.

3.3 Real-world validation

The work of Kastet and Neset [23] got us started using the SPURV, and we ended
up building on this when we made our own tools. After applying some initial
software updates, we made new scripts for data collection and model evaluation.
Our data collection scripts supports recording of steering angles and HLCs, where
the HLC was collected by manually pressing buttons on the Xbox controller used
for driving during data collection. The buttons used were: X (turn left), Y (keep
straight) and B (turn right). Additionally, we used a button to optionally enable
the triangular noise explained in Section 3.2.1. Finally, the model evaluation
script was upgraded such that it could switch between models in quick succession.

Figure 3.10 gives a brief overview of our work related to the SPURV, which we
call the SPURV pipeline. With these tools, it should be relatively easy to collect
training data, train models, and then finally test them on the SPURV. For more

54 CHAPTER 3. METHODOLOGY

information about the pipeline, see Appendix B, which provides documentation
and a user manual.

SPURV

Data collection Training Validation

SPURV Pipeline

Execute motor
commands

Run trained models:
run_master

_keras_model.py

Host
Steer spurv and log

training data:
steer_and_collect
_traning_data.py

Training
computer

Train on data received
from host, then send
trained models back

Transfer training
data to training

computer

Transfer models to SPURV:
transfer_models.sh

Log image and motor data:
collect_training_data_only.py

Figure 3.10: The SPURV pipeline, consisting of three main steps. Our host
machine was a laptop which connected to the SPURV via Wi-Fi, while the training
computer is any computer with suitable hardware for neural network training.

Chapter 4

Experiments and Results

We conducted three main experiments as a part of our work. The first experiment
was created to determine the best perception model for further experiments. The
second experiment uses the perception model and a second driving model to train
and evaluate driving performance in the simulated driving environment CARLA.
Each model’s generalizability is also tested by using different previously unseen
environments. The third and final experiment attempts to validate the final
driving model in a real-world environment. This experiment is conducted on a
downscaled urban driving environment, using a small four-wheeled vehicle by the
name of SPURV Research.

4.1 Experiment 1: Perception model

This experiment consists of three sub-experiments that were created in order
to determine which perception model has the best performance. The first sub-
experiment trains three encoders and two decoders on the Mapillary dataset in
order to optimize segmentation performance. The second sub-experiment uses
different combinations of the Mapillary and CARLA datasets, with and without
augmentation. The third sub-experiment uses a second decoder branch that
generates depth maps in addition to the segmentation maps. The results are
then compared to a subset of the data configurations from sub-experiment 2. All
the perception experiments use the same dataset for evaluation, and the result
can therefore be compared across experiments.

55

56 CHAPTER 4. EXPERIMENTS AND RESULTS

4.1.1 Setup

To train and test several architectures on image segmenation, we adapted an
existing library by Gupta [16] that had implemented a set of the most common
encoders and decoders for image segmentation. As described in Section 3.1.2, we
used an existing dataset from Mapillary, as well as a synthesized dataset from
CARLA to train the different architectures. The models were evaluated using
a common CARLA dataset with 4 400 images with corresponding segmentation
maps and depth maps. Some of the models were also evaluated on Mapilliary
data, where that test dataset was 2 000 images taken directly from the Mapillary
test set. Evaluation of segmentation results were done with Mean IoU and Fre-
quency Weighted IoU as described in Section 2.8, while depth estimations were
evaluated using accuracy within threshold as described in Section 2.9.

4.1.2 Experiment 1-1: Encoder-decoder models

This experiment attempts to find the best encoder and decoder to use for the
perception network. We evaluated six combinations consisting of three different
encoders and two decoders.

4.1.2.1 Setup

In order to evaluate the different encoder-decoder combinations, we used a set of
pre-defined models from the image-segmentation-keras library [16]. All variations
of encoders and decoders were tested in combination. The encoders tested were
VanillaCNN, MobileNet and ResNet50, while the decoders tested were SegNet
and U-Net. The dataset was Mapillary with 18 000 images for training and 2
000 for validation without any augmentation. All the models were trained for 90
epochs, and the version with lowest validation loss was chosen. Time per epoch
was set as the total training time divided by number of epochs. The evaluation
data was a synthesized dataset from CARLA, and the models are therefore tested
in an unseen domain.

4.1. EXPERIMENT 1: PERCEPTION MODEL 57

4.1.2.2 Results

Model Mean IoU Weighted IoU Time per Epoch

VanillaCNN-SegNet 0.324 0.712 37s
VanillaCNN-U-Net 0.351 0.705 55s
MobileNet-SegNet 0.368 0.775 19s
MobileNet-U-Net 0.403 0.774 24s
ResNet50-SegNet 0.405 0.767 71s
ResNet50-U-Net 0.383 0.733 98s

Table 4.1: Experiment 1-1 - Evaluation of encoder-decoder architectures.
Evaluation of three different encoders and two decoders on a CARLA evaluation dataset.
Weighted IoU is shortened from Frequency Weighted IoU. Each model was trained on
the Mapillary dataset. The best scores are marked in bold and the table is sorted by
encoders of increasing complexity. Higher values are better in Mean IoU and Weighted
IoU, and lower values are better in Time per Epoch. A description of the IoU metrics
can be found in Section 2.1.4.5.

Figure 4.1: Images segmentation samples. This image shows an original image
from CARLA, with segmentation maps generated by ResNet50-SegNet, MobileNet-
SegNet and VanillaCNN-SegNet in order from left to right. Note that the models were
trained on real-world data and therefore have never seen a simulated environment.

4.1.2.3 Discussion

Figure 4.1 shows the outputs of some of the trained models. Table 4.1 show a
correlation between the complexity and size of a model to the resulting segmen-
tation result, perhaps unsurprisingly. U-Net shows a better performance paired
with the VanillaCNN and MobileNet, however, it performs worse when paired
with ResNet. While SegNet showed overall shorter training times than U-Net,
the use of MobileNet as the encoder showed the most drastic improvement in
training time overall.

Looking at the resulting Mean IoU, Weighted IoU and time per epoch, MobileNet-
U-Net showed overall best results. It had comparable performance to ResNet50-

58 CHAPTER 4. EXPERIMENTS AND RESULTS

SegNet with almost three times less training and prediction time. MobileNet-
U-Net was therefore chosen for the next experiments. Note that as the models
were trained for slightly different number of epochs, time per epoch is just an
estimation for training time duration.

4.1.3 Experiment 1-2: Training data

This experiment uses the MobileNet-U-Net architecture chosen in Experiment 1-
1, and introduces different variations of training data and augmentation in order
to improve the overall results in both simulated and real-world environments.

4.1.3.1 Setup

The dataset variations introduced in this experiment was a CARLA dataset and a
set of augmentation techniques. We created a dataset from a combination of Map-
illary and CARLA data, naming it Mapillary+CARLA. The Mapillary+CARLA
dataset consisted of 20 000 datapoints from the Mapillary dataset and 3 250 sam-
ples from Town01 and Town02 in CARLA. In addition to a combined dataset,
we created a dataset of only CARLA data, with 15 000 samples from Town 1-4
for training, and 4 000 samples from Town 5 for validation. We evaluated the
dataset on a separate dataset from Town 1-2.

We trained most datasets with and without augmentations, where augmenta-
tions included rotation, translation, cropping, hue and saturation changes, blur,
noise, among others. The different augmentations are described more in depth
in Section 3.1.2.

The resulting models were evaluated on both the original CARLA test data, as
well as a second Mapillary test dataset. We included evaluation with Mapillary
as we wanted to find the model that generalized best between the two domains.

4.1. EXPERIMENT 1: PERCEPTION MODEL 59

4.1.3.2 Results

CARLA Eval Mapillary Eval Mean

Training dataset mIoU wIoU mIoU wIoU mIoU wIoU

Mapillary 0.425 0.771 0.632 0.887 0.529 0.829

Mapillary+Aug 0.436 0.809 0.574 0.873 0.505 0.841

Mapillary+CARLA 0.469 0.846 0.633 0.889 0.551 0.868

Mapillary+CARLA+Aug 0.478 0.850 0.568 0.874 0.523 0.862

CARLA+Aug 0.572 0.909 0.384 0.785 0.478 0.847

Table 4.2: Experiment 1-2 - Evaluation of perception datasets. mIoU is short-
ened from Mean IoU, while wIoU is shortened from Frequency Weighted IoU. A table
of the MobileNet-U-Net model trained on different datasets. All models were evaluated
on a CARLA and Mapillary dataset. The best results are in bold and higher values are
better in all the metrics.

4.1.3.3 Discussion

Table 4.2 shows the resulting metrics for each model. Introducing CARLA data
into the Mapillary dataset seem to be very beneficial. The Mapillary+CARLA
model had a slight increase in performance on the Mapillary dataset, and a large
increase on the CARLA dataset, compared to the original model trained on Map-
illary data only. We also see that the CARLA data gives, perhaps as expected,
the best result when evaluating on CARLA data; however, the performance de-
creases drastically when evaluated on Mapillary data. It seems a model trained
on real-world data is able to generalize better to simulation than the other way
around.

Augmentation as part of the training gave varied results. Mapillary improved its
results on CARLA data when introducing augmentation, however, it decreased
the results on real-world data compared to the model trained only on the Mapil-
lary dataset. The same results are shown on the augmented Mapillary+CARLA
dataset. An interpretation could be that the model generalizes better, however
penalizing perfomance on data similar to the training dataset. In continued ex-
periments, we do not include augmentations even though it seemed to increase
the generalizability, which could have further improved the perception model on
real-world driving data.

60 CHAPTER 4. EXPERIMENTS AND RESULTS

On average, Mapillary+CARLA data performed best overall in both mIoU and
wIoU, with a mean value on both datasets of 0.551 and 0.868 respectively. As
there is only a small difference in results, and no model with best performance
on both datasets, we continue to use most of the datasets in further experiments,
with the main training dataset being Mapillary+CARLA.

4.1.4 Experiment 1-3: Multi-task perception

Training a model on multiple perception tasks has shown to improve the per-
formance on each task in general. For instance, Standley et al. [43] shows that
training a segmentation model with depth estimation improves the segmentation
model’s performance by 4.17%. Similarly, Hawke et al. [19] and Xiao et al. [46]
introduced depth as part of their models with good results. In this experiment,
we added a second decoder branch and trained the segmentation model on both
segmentation and depth estimation simultaneously using multi-task learning.

4.1.4.1 Setup

The MobileNet-U-Net model was further expanded to include a second decoder
branch for depth estimation, as described in Section 3.1.3. Depth maps were gen-
erated by using a pre-trained monocular depth estimation model for the Mapillary
data, as it did not include depth information originally. CARLA data included
depth maps as part of our data-generation scripts, and we thereby had access
to ground-truth depth maps for both datasets. The models were trained on
the same dataset combinations as in Experiment 1-2, however we removed the
augmentation as we had not implemented depth augmentations.

The depth estimation performance was evaluated using accuracy withing thresh-
old, as described in Section 2.9. Note also that all models were evaluated using
only CARLA data.

4.1. EXPERIMENT 1: PERCEPTION MODEL 61

4.1.4.2 Results

Segmentation Depth

Training dataset Mean IoU Weighted IoU δ < 1.25 δ < 1.252 δ < 1.253

Mapillary 0.458 (+7.8%) 0.817 0.320 0.572 0.684

Mapillary+CARLA 0.520 (+10.9%) 0.854 0.295 0.542 0.679

CARLA 0.717 (+25.3%) 0.960 0.775 0.806 0.816

Table 4.3: Experiment 1-3 - Evaluation of multi-task perception model. The
table shows metrics for both the segmentation and depth branches of the model, eval-
uated on CARLA data. Mean IoU is also compared to the Mean IoU from Experiment
1-2 on the corresponding dataset. Depth is estimated using accuracy within threshold,
where the set threshold is presented in the column title. Higher values are better in all
the metrics. The numbers in parenthesis shows change in Mean IoU from non-depth
equivalents, non-augmented if available.

Figure 4.2: Final perception model samples. This image illustrates the perfor-
mance of the final perception architecture trained on Mapillary+CARLA data. The
top image is from CARLA during rainy weather, while the bottom image is from the
real-world Mapillary test set.

4.1.4.3 Discussion

The results show that the segmentation model improves its performance on every
dataset variation. On the CARLA dataset, the increase is most drastic, with

62 CHAPTER 4. EXPERIMENTS AND RESULTS

25.3% increase in accuracy. As the CARLA data is the only dataset with perfect
ground truth depth annotations, this may have impacted the results as well.

The depth performance is just an indication of how well the models performed.
As the model trained on only CARLA data was evaluated on a similar dataset,
it has an advantage when compared to the other two models. Therefore, the
improvements in segmentation compared to models without depth estimation is
the most interesting part of these results.

Compared to what was reported by Standley et al. [43] with a 4.17% increase in
performance when training segmentation with depth, we saw significantly better
results with an average of 14.67% increase in performance. We believe that
the perfect CARLA depth data was an important factor for our much better
performance, as the increase for Mapillary is similar to Standley et al.’s.

4.1.5 Discussion

The final model was trained on a combination of Mapillary and CARLA data,
as we wanted a model that performed good in both real-world and simulated
environments. A depth estimation branch was also included as it improved the
overall segmentation performance.

Choosing a perception model by training on different architectures and dataset
variations was difficult, however we believe we found a model with overall good
performance. We had some issues with dataset differences, which again impacted
the resulting metrics for each model, for instance depth estimation, where the
CARLA and Mapillary data formats had some differences. Depth performance
was therefore difficult to compare between models and datasets.

Furthermore, we did not continue with augmentations after seeing good gen-
eralization results on Experiment 1-2. In retrospect, we would have included
augmentation in the final depth model as well.

4.2 Experiment 2: Driving model

In this experiment, we tested the performance of various driving models based
on the best-performing perception models from Experiment 1. Instead of doing
static testing, i.e., predicting frame-by-frame vehicle controls from an unseen

4.2. EXPERIMENT 2: DRIVING MODEL 63

dataset, we ran the models in CARLA. The models are given control of a vehicle
by applying the model outputs to the vehicle controls. The same vehicle is fitted
with a camera and can provide all the inputs the model requires. A consequence
of this real-time evaluation is that each prediction will affect the state of the next
input, meaning that one incorrect prediction could possibly lead to unrecoverable
errors.

4.2.1 Setup

4.2.1.1 Driving Models and Training Data

In Experiment 1, we explored several different architectures for building a per-
ception model to be used for our system. This experiment seeks to verify that
such perception models are able to provide good enough scene understanding
information such that a driving model can drive based on it. We compare the
best-performing perception models to a baseline driving model that only uses raw
RGB images as input. A brief summary of the models is shown in Table 4.4.

Model Perception model Perception data

RGB N/A N/A
S-CARLA Segmentation CARLA
S-Mapillary Segmentation Mapillary
S-Combined Segmentation Mapillary+CARLA
SD-CARLA Segmentation + depth CARLA
SD-Mapillary Segmentation + depth Mapillary
SD-Combined Segmentation + depth Mapillary+CARLA

Table 4.4: Experiment 2 - Overview of evaluated driving models. Perception
models and data are explained in Experiment 1. RGB does not use any perception
model, indicated by N/A in the table.

The driving dataset used for this experiment comes from CARLA, and was col-
lected as described in Section 3.2.1. We did, however, not collect the driving data
using multiple camera angles; only from a height of 2.3 meters, camera pitch of
5◦ downwards, and field of view of 90◦. This experiment was conducted before
any real-world testing, and the camera configuration bias was irrelevant as we
evaluated the models using the same camera configuration as in the training data.
Additionally, we did not include augmentation of the driving data as we wanted
to keep the training fast, simple, and reproducible.

64 CHAPTER 4. EXPERIMENTS AND RESULTS

4.2.1.2 Evaluation and Metrics

Haavaldsen et al. [17] conducted evaluation of models in a similar way to what
we wanted; therefore, we used their scenario runner source code as a base for
our evaluation. The scenario runner works as follows: It loads the model to be
evaluated, and creates an accompanying vehicle in an empty CARLA town. The
runner inputs the information that the model needs from the vehicle into the
model, and sends the outputs of the model to the vehicle’s controller.

The scenario runner is designed to create scenarios which each model should try
to complete. Each scenario consists of spawning the vehicle at a start location,
then giving it HLCs to navigate through a predefined route. The route consists of
a set of waypoints, which each specifies a HLC to activate when the vehicle passes
it. The performance of a model is measured by its mean completion rate (MCR),
as mentioned in Section 3.2.4. The scenario runner calculates the completion
rate of a route by summing the distance between all the waypoints it has passed.
A scenario ends either when the vehicle completes the route, or if any of the
following happens: the vehicle gets stuck, it drives in the oncoming lane without
returning after five seconds, or it ignores a given HLC.

The scenario runner runs each model through the same routes in different weather,
and repeats all route and weather combinations three times. The reason for re-
peating each configuration multiple times is that CARLA 0.9.9 is not perfectly
deterministic, which in some cases resulted in slightly different results with the
same configurations.

4.2.1.3 Environments and Routes

The models were tested in two environments, Town02 and Town07. There are
three routes in each environment, which the models will try to complete in six
different weather conditions. Three of the weather conditions have already been
observed in the training data, while the three remaining are unknown to the
model. The training data only contain samples from day-time weathers, but two
of the unknown weathers are at midnight.

Town02, seen in Figure 4.3, has many similar features to Town01, the town used
for collection of the training data. It is situated in an urban setting, and its
roads only meet in perpendicular intersections — just as in Town01. It includes
both a fenced parking lot with a few parked cars, and a larger paved area with a
stationary police car. The three routes in Town02 are shown in Figure 4.4. Route

4.2. EXPERIMENT 2: DRIVING MODEL 65

1 and 2 partly overlap, and feature several HLC following tasks in intersections.
Route 3 starts with a sharp turn, and includes a long stretch of high speed limit.

Figure 4.3: A picture from CARLA’s Town02.

End 1

Start 1

Start 3

End 3

Start 2

End 2

Figure 4.4: Evaluation routes in CARLA’s Town02.

Town07, shown in Figure 4.5, is quite different from the two others. It is located
in a rural area with narrow roads (some without any centre marking), fields, and
barns. Some of the intersections, which can be seen along with the routes in

66 CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.6, are perpendicular, but many are not. Route 1 covers a long section of
road in a curved and hilled forest road. Route 2 starts with a sharp turn, before
turning and continuing over a bridge. Route 3 starts in the middle of a field,
with limited sight in its intersections.

Figure 4.5: A picture from CARLA’s Town07.

Start 3

End 3

End 1

Start 1

Start 2
End 2

Figure 4.6: Evaluation routes in CARLA’s Town07.

4.2. EXPERIMENT 2: DRIVING MODEL 67

4.2.2 Results

4.2.2.1 Quantitative results

The results in Table 4.5 presents the MCR of the driving models in all the routes
and weather conditions from the evaluation. Table 4.6 shows the MCR calculated
from all runs, revealing the final score of each model.

Seen weather Unseen weather

Model Clear (D) Rain (D) Wet (S) Clear (N) Rain (N) Fog (S) Mean
RGB 100.00 % 28.72 % 36.05 % 100.00 % 11.22 % 100.00 % 62.67 %
SD-CARLA 100.00 % 43.30 % 55.36 % 100.00 % 23.46 % 44.96 % 61.18 %
S-CARLA 93.83 % 7.23 % 43.51 % 100.00 % 24.61 % 66.66 % 55.97 %
SD-Mapillary 88.51 % 42.16 % 67.22 % 100.00 % 11.59 % 24.91 % 55.73 %
SD-Combined 93.53 % 9.92 % 47.42 % 100.00 % 9.92 % 46.53 % 51.22 %
S-Combined 90.71 % 44.02 % 23.12 % 72.12 % 2.72 % 7.23 % 39.98 %
S-Mapillary 72.12 % 43.30 % 40.85 % 39.34 % 2.72 % 2.72 % 33.51 %

(a) Results for Town02.

Seen weather Unseen weather

Model Clear (D) Rain (D) Wet (S) Clear (N) Rain (N) Fog (S) Mean
SD-CARLA 84.95 % 61.14 % 84.95 % 60.81 % 88.88 % 17.19 % 66.32 %
SD-Mapillary 77.28 % 77.28 % 55.54 % 51.61 % 33.33 % 14.84 % 51.65 %
SD-Combined 50.52 % 61.14 % 57.39 % 38.60 % 66.67 % 33.33 % 51.27 %
S-Combined 77.83 % 55.10 % 55.10 % 17.32 % 50.65 % 33.33 % 48.22 %
RGB 44.49 % 44.49 % 44.49 % 44.49 % 49.75 % 44.49 % 45.37 %
S-CARLA 55.10 % 55.10 % 57.39 % 17.32 % 17.32 % 61.87 % 44.02 %
S-Mapillary 51.61 % 50.52 % 44.49 % 55.10 % 44.49 % 0.00 % 41.04 %

(b) Results for Town07.

Table 4.5: Experiment 2 - Results of driving evaluation in CARLA. Mean
completion rate (MCR) in (a) Town02 and (b) Town07, in six weather conditions. See
Table 4.4 for explanation of the models. Day, Sunset and Night is shortened to D, S,
N respectively. The individual cells are colored on a scale where green is the best, and
red is the worst.

68 CHAPTER 4. EXPERIMENTS AND RESULTS

Model Combined MCR

SD-CARLA 63.75%
RGB 54.02%
SD-Mapillary 53.69%
SD-Combined 51.25%
S-CARLA 50.00%
S-Combined 44.10%
S-Mapillary 37.27%

Table 4.6: Experiment 2 - Overview of MCR for all tested models. The MCR
of a model is the mean completion rate from all its runs (all weather configurations and
all routes).

With a combined MCR of 63.75%, SD-CARLA performed significantly better
than all other models. In Town01, SD-CARLA performed considerably better
than RGB in most weathers, but worse overall because it only had a 44.96%
completion rate in Fog (S). In Town02, however, it had the highest score; much
better than RGB. RGB got a combined MCR of 54.02%. It was the best per-
forming model in Town01, as it drove perfectly in Fog (S). In Town07, which was
completely unknown, RGB’s performance degraded considerably; it was only able
to complete around half of the routes in each weather condition.

SD-Mapillary had the third best combined MCR, 53.59%, very close to RGB.
The model worked well in most situation, and tackled previously seen weather
in Town07 well. While not as good as SD-CARLA, it showed impressive results
despite not having been trained on CARLA perception data at all. SD-Combined
was not able to compete with SD-CARLA and SD-Mapillary, and got a slightly
lower combined MCR of 51.25%. In Town01, it struggled with rainy weather,
but performed better than RGB in Town07.

S-CARLA got a combined MCR of 50.00%, not too far away from SD-Combined.
As with the rest of the segmentation-only models, it was not able to perform
as good as the segmentation + depth models. S-Combined ended up with a
combined MCR of 44.10%, which indicates that combined segmentation data
might benefit driving performance. The worst overall model was S-Mapillary,
with a combined MCR of only 37.27%. It worked decently in known weather but
struggled with a lot of the unknown weather types.

4.3. EXPERIMENT 3: REAL-WORLD VALIDATION 69

4.2.2.2 Qualitative results

In addition to providing quantitative results for each model, we recorded a video
of SD-CARLA, the best performing model overall. The video shows the model
in some of the evaluation routes and weather conditions where it performed the
best. The video itself can be accessed at https://youtu.be/gf0qNRXXwX0.

4.2.3 Discussion

The results clearly show that the usage of depth data (in addition to segmentation
data) improves driving performance. It might not come as a big surprise that
SD-CARLA beats SD-Mapillary, as it is fine-tuned to CARLA. However, we
predicted that SD-Combined would be better than SD-Mapillary as it had seen
some CARLA data. We are not exactly certain why it performed worse, but the
following results of the segmentation-only models may give us a hint of what has
happened.

S-CARLA is performing best as expected; but here, S-Combined works better
than S-Mapillary. Our intuition is therefore that the CARLA segmentation and
Mapillary segmentation go well together, but that the difference between the
CARLA depth data and Monodepth2-generated depth data from Mapillary is
too large; thus, hindering the prediction quality of the combined model.

The RGB model performed surprisingly well in Town07, considering that it is
trained only on driving images from Town01. From Table 4.5 we can see that its
good score is mainly from its 100% completion rate of Clear (D), Clear (N), and
Fog (S) in Town01. In the other weathers in Town01, the model’s performance
degraded. Overall, we can conclude that the RGB model is able to generalize to
some unseen weathers, but struggles with unseen environments.

4.3 Experiment 3: Real-world validation

This experiment attempts to validate that our results from simulated environ-
ments are representative in the real-world. We use model architectures created
from the two previous experiments, and deploy them to a real-world vehicle in
two different routes in a downscaled urban driving environment.

https://youtu.be/gf0qNRXXwX0

70 CHAPTER 4. EXPERIMENTS AND RESULTS

4.3.1 Setup

4.3.1.1 Driving Models and Training Data

The models used for this experiment were derived from the results of the last two
experiments. All models use the Mapillary+CARLA perception data, as well as
the multi-task architecture with depth and segmentation.

The data used in the experiment is a combination of CARLA driving data, like
Experiment 2 but with multiple camera configurations, as described in Section
3.2.1. An additional dataset was included, which was created from the same driv-
ing environment as the real-world evaluation. The first model tested was trained
only on CARLA data, while the second model was trained on a combination of
CARLA data and real-world SPURV data.

The CARLA dataset included about 66 000 datapoints before HLC balancing and
45 000 datapoints after balancing, where 20% of the data was used for validation.
Each datapoint included three images, so the dataset was therefore practically
three times the original size. The real-world dataset has 22 530 datapoints, where
also here 20% was used for validation. Both the CARLA dataset and real-word
SPURV data is further described in Section 3.2.1. As an extra measure for making
the driving models robust, we apply the augmentation described in Section 3.2.2
when training.

4.3.1.2 Evaluation and Metrics

The real-world experiments were conducted using the SPURV Research vehicle
(shown in Figure 4.7, which is further described in Section 2.2.3. The vehicle is
a small four-wheeled vehicle with a single forward-facing camera, and a GPU for
running machine learning models.

4.3. EXPERIMENT 3: REAL-WORLD VALIDATION 71

Figure 4.7: SPURV Research vehicle during evaluation. An image of the
SPURV Research vehicle while driving on our test track. The driving environment is a
downscaled urban environment with intersections and traffic lights.

The testing track is a bike path in a downscaled urban driving environment,
created to teach bike riding in an urban environment. A bird’s-eye view of the
routes used is shown in Figure 4.8.

Measuring performance was done by counting the number of interactions we
had with the vehicle during driving. The performance measure was inspired by
Codevilla et al. [6], where an interaction was counted if the vehicle drove outside
its lane for more than four seconds, or if it was about to crash with an obstacle.
Codevilla et. al also included more measures to test HLC performance, however
we excluded the same metrics because good HLC performance was not a focus
of this thesis.

4.3.1.3 Environments and Routes

Two different routes were used for evaluation, one for simple lane following and
the other for more complex behavior and variable light conditions. Both routes
are displayed in Figure 4.8.

72 CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.8: Real-world evaluation routes. An aerial view of the training track
as well as mapping of the different routes. Blue waypoints mark the beginning of the
route, while the red and white squares mark the end. Each route was driven in both
directions every other lap.

Route 1 is a simple lane-following route, where we verify if the vehicle is able
to follow the correct side of the road, as well as stay on the road even when the
lane markings are worn off. Figure 4.9 shows a sample of where the lane line has
worn off, and the vehicle still must stay inside the road. Route 2 is a longer and
more complicated route that includes shadows from trees and an intersection for
testing HLC.

4.3. EXPERIMENT 3: REAL-WORLD VALIDATION 73

Figure 4.9: Real-world driving data. A visualization of a road without lane lines.
The left image is the original image from the vehicle’s camera, while the right im-
age is the resulting segmentation after processing by the perception model. Yellow is
categorized as road, blue is lane lines and red is unlabeled.

4.3.2 Results

4.3.2.1 Quantitative results

Each training dataset was tested for four laps on both routes. The metric mea-
sures number of interactions required to complete the lap.

74 CHAPTER 4. EXPERIMENTS AND RESULTS

Training dataset Lap 1 Lap 2 Lap 3 Lap 4 Mean

CARLA 1 1 1 7 2.5

Combined 2 0 2 1 1.25

(a) Results for route 1.

Training dataset Lap 1 Lap 2 Lap 3 Lap 4 Mean

CARLA 2 0 1 0 0.75

Combined 6 6 N/A N/A 6

(b) Results for route 2.

Table 4.7: Experiment 3 - Results from real-world evaluation. The tables
show the number of interactions from real-world driving with one model trained only in
simulation (CARLA) and one trained with a combination of simulation and real-world
data (Combined). N/A in this case means that the lap was canceled because of poor
performance. A final model trained only on real-world data was not included in the
results as it failed to complete most laps.

4.3.2.2 Qualitative results

The following figures show two samples from SPURV evaluation laps. Figure
4.10a shows the vehicle successfully following the correct lane line. The second
figure, Figure 4.10b shows a failed attempt, where the SPURV drives outside its
lane.

4.3. EXPERIMENT 3: REAL-WORLD VALIDATION 75

(a) The SPURV successfully following the road.

(b) The SPURV had issues with segmentation of the road because of shadows, and ended
up driving into the wrong lane.

Figure 4.10: Experiment 3 - Driving samples. These figures show two different
driving events. Both images are read from top left and the sequence is numbered. The
driving model was trained only on CARLA driving data.

76 CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.11: Experiment 3 - Real-world segmentation issues. An image
from the SPURV’s perspective driving a part of Route 2 with a lot of shadow. The
segmentation in the center image is very poor, which again caused the SPURV to drive
out of the road. Note that the segmentation in similar situations often were much
better, where this is an outlier.

A video that displays a summary of the real-world driving is available at: https:
//youtu.be/gf0qNRXXwX0?t=46. Note that the models driving in the video is
trained exclusively on CARLA driving data, unless stated otherwise, and that
we let the model continue driving after completing its route.

4.3.3 Discussion

Overall, the results show that the model trained in simulation handles real-world
adequately, especially Route 2, where it manages two laps without any interac-
tion, even including a correct HLC turn. The model trained only on real-world
data performed worst, and was therefore removed from the resulting table, as
it did not complete any laps. Finally, the model trained on combined data per-
formed similarly to only CARLA data.

We found testing in the real-world to be much more unpredictable than in sim-
ulation. Models we expected to perform good (trained on similar data to the
real-world testing) performed very poorly, while the model trained in simulation
performed very well. The exact results, with drastically different results between
the models should therefore be taken with a grain of salt. The experiment’s main
contribution is therefore the validity that the model’s trained in simulation can
drive in the real-world as well to some extent.

As seen in Figure 4.11, the perception model had some issues with shadows,
which further made the driving model perform poor in situations with a lot of
shadows. This impacted especially the Combined model, as it was trained on

https://youtu.be/gf0qNRXXwX0?t=46
https://youtu.be/gf0qNRXXwX0?t=46

4.3. EXPERIMENT 3: REAL-WORLD VALIDATION 77

very noisy steering angles (see triangular noise in Section 3.2.1), which in turn
made the driving model quickly drive out of the road when the perception was
inconclusive. The model trained only in simulation on the other hand had less
sharp turns, and was therefore often able to correct itself before driving out of
the road.

78 CHAPTER 4. EXPERIMENTS AND RESULTS

Chapter 5

Discussion

5.1 Simulation to real-world domain transfer

5.1.1 Perception model

The choice of perception model was important as it was the main tool for increas-
ing the generalizability of our finished architecture. We therefore did extensive
testing on everything from encoder-decoder variations and datasets, to additional
perception tasks. Luckily, we found a library with implementations of the most
popular encoder and decoder architectures, which allowed us to test many varia-
tions. Finally, we found the MobileNet encoder with a U-Net decoder to be the
best combination of computational cost and accuracy.

Finding 1: MobileNet with U-Net achieves the best Mean IoU relative to com-
putational cost of the tested architectures.

A disadvantage of selecting U-Net was that the architecture did not allow for
using the immediate representation as seen in Hawke et al. [19]. The architecture
heavily depends on information from the encoder layers, which in turn means
that no single point will include all the compressed information by the encoder.

We further expanded the perception model to use a technique described by Hawke
et al. [19] where we include another perception task in order to improve the

79

80 CHAPTER 5. DISCUSSION

model’s overall understanding of the image. This improved the overall results
significantly, with the multi-task model improving both existing segmentation
accuracy and overall driving performance, even outperforming the driving model
trained on raw images.

Finding 2: Perception models trained to predict both segmentation and depth
maps achieves up to 25.3% better Mean IoU score for segmentation compared to
models predicting only segmentation.

The improved results when including depth information was, however, only the
case for models trained exclusively on either CARLA or Mapillary data, not
combined. As described in Section 3.1.2, there were differences in the depth
formats from Mapillary and CARLA, which in turn seems to decrease the overall
performance of the segmentation model. A possible improvement could therefore
be to better normalize the depth maps between CARLA and Monodepth2. Using
Monodepth2 to generate depth maps from CARLA data could also be a solution,
as we can then guarantee that the data formats are equal between datasets.

Finding 3: The data format when combining simulated with real-world depth
data is critical for the overall perception performance.

5.1.2 Driving model

We tested a total of seven driving models, where the choice of perception model
made big impacts. We found that using only segmentation maps, the driving
models were stripped of too much scene information to drive properly; the original
RGB images worked much better.

Finding 4: A driving model only trained on segmentation maps will not perform
as good as just using the original RGB images.

The driving performance was tightly connected with the perception training data
we used: CARLA data was enough to drive decently, but pure Mapillary data
made it difficult for the model to drive in a simulated environment.

5.1. SIMULATION TO REAL-WORLD DOMAIN TRANSFER 81

Finding 5: Using only Mapillary segmentation data for the perception model
results in a driving model struggling with anything but the easiest routes.

When we introduced depth estimation to our perception model, we saw clear
driving improvements. It seems that the addition of a predicted geometry of the
scene helps the driving model learn. In all but one case, the models using depth
estimations performed better than all others, regardless of whether they had a
perception model trained on CARLA, Mapillary, or combined data.

Finding 6: Driving models utilizing depth predictions drives better than all but
one of those with segmentation only.

Finally, we found that using the resulting image representation generated by the
perception model makes it easier to learn driving, in comparison to the original
RGB images.

Finding 7: Using both estimated segmentation and depth maps yields mostly
better driving performance than the original RGB images, in addition to being
more general.

5.1.3 Real-world driving

In Experiment 4.3 we show that a driving policy trained solely in CARLA can
drive on a real road as well. As the driving model only requires semantic seg-
mentation and depth maps, it should be able to drive in any environment where
a perception model can perform sufficiently well.

Finding 8: Our perception model provides segmentation and depth maps which
are domain independent, and makes domain transfer from simulation to real
world feasible.

Our initial attempts at transferring our models to the real world did not work
as well, as we had not yet started using multiple camera configurations in our
training data. This resulted in a driving policy that was overfitted to the specific
camera configuration we had set up in CARLA, which differed significantly from
the one of the SPURV. The static camera configuration we used from the start

82 CHAPTER 5. DISCUSSION

is the one shown in Figure 3.6a, while the SPURV’s camera is approximated in
Figure 3.6d.

Finding 9: A driving policy can easily overfit if the camera configuration in the
training data is static.

After training with the additional camera configurations shown in Figure 3.6, we
went from seemingly random behavior to a model that understands the environ-
ment around itself and use this to drive. The model was able to follow roads
without any forks or intersections without problem, and were able to follow high-
level command with moderate success, even if it only had been trained on driving
from a CARLA autopilot.

Finding 10: A driving model with perception data from both CARLA and
Mapillary, and driving data only from CARLA, can follow roads and will try to
respect HLCs.

5.2 Comparison to related work

Our model combines ideas and techniques from several existing papers, thus
making it natural to compare our results to theirs. Xiao et al. [46] evaluates
several methods for incorporating semantic segmentation and depth maps into
a driving model. The paper’s focus was mainly on the usage of the maps, and
not their origin, i.e. if they are predictions or ground truth data. They showed
that using channel-wise concatenation of ground-truth segmentation and depth
maps as input to a CIL network performs better than both raw RGB images and
segmentation alone. Our results showed similar relative performance, where our
channel-wise concatenated predicted segmentation and depth maps performed
best overall.

Müller et al. [34] did not research the use of multimodal input data; they focused
on predicting a binary segmentation of images — either road or not road — to
use as input for their CIL network. We extend their idea of a perception module
to segmentation with five classes and depth prediction within the same network.
Müller et al.’s system was able to learn to drive using a perception module trained
on a real-world segmentation dataset, and with a driving policy trained only on
driving in CARLA. They showed that their control abstraction using waypoints

5.3. FULFILLMENT OF RESEARCH QUESTIONS 83

is essential to their approach. We only abstracted away our vehicle control to
steering angle and target speed, and we might have experienced performance
gains if we were to implement an abstraction like theirs. However, we showed
that our approach, too, can learn to drive in both simulation and in real-world
environments from similar training data.

The driving model presented in Hawke et al. [19] extended the idea of a perception
module, which included prediction branches for reconstructing the input image,
semantic segmentation maps, and depth maps. The perception module did not
output the predicted values, but rather an intermediate representation of the
scene which is common for all the prediction branches. The output of their
driving policy is a motion plan, and thus more abstract than our outputs. They
accomplished very impressive results in real-world driving, but with no focus on
domain transfer. It is plausible that our approach would have benefited from
their approaches of using intermediate layers and vehicle control abstractions.

Our work is based on previous work originating from the NAPLab research group,
specifically Haavaldsen et al. [17] and the same authors’ master thesis. Their work
focused mostly on how to create a driving model that could tackle complex simu-
lated environments, and suggested future work on how to improve upon this. We
decided to go in a slightly different direction, instead focusing on domain transfer
from simulation to the real world, but with simpler simulated environments. Fu-
ture research within the NAPLab could utilize both our and Haavaldsen et al.’s
findings, and we believe that a combination of these will provide directions for
further research in the field.

5.3 Fulfillment of research questions

RQ 1 In the first research question, we wanted to see if a end-to-end model
can learn to drive solely on segmentation maps, or segmentation + depth maps,
generated by a pre-trained perception model. Our findings show that our end-to-
end driving model learned to drive, both in simulation and in real-world scenarios.
In most cases, the driving model using the pre-trained perception models performs
best, better than the baseline RGB models. Depth estimations is also shown to
improve the baseline results by a significant margin.

RQ 2 The second research question focused on the generalizability of our per-
ception model, where we asked if a perception model trained only on real-world

84 CHAPTER 5. DISCUSSION

data could generalize to simulated environments. We found that a model trained
only on the Mapillary dataset was able to generalize to CARLA images to some
extent. However, we saw that a combination of Mapillary and CARLA data
performed better on both real and simulated images.

RQ 3 The last research question sought to determine if an end-to-end model
trained exclusively on driving data from simulation, could successfully drive in the
real-world. We showed that by first using a perception model trained on public
datasets, we were able to transfer the entire driving model trained exclusively
in CARLA to a real-world environment. Using the SPURV Research vehicle,
the model was able to follow a path in clear weather, and handle simple visual
obstacles, specifically shadows. It was also able to adhere to the provided High
Level Commands in most situations.

5.4 Potential shortcomings and reflection

While we are satisfied with our research and results, we wanted to address any
potential shortcomings of this thesis. To design our architecture, we had to ob-
tain knowledge on many subjects: autonomous vehicles, conditional imitation
learning, segmentation tasks, monocular depth estimation, vehicle control, sim-
ulation, among others. Many possible directions were left unexplored, simply
because there were time constraints and that we wanted to demonstrate a sys-
tem that could drive both in simulation and in the real world. In the process of
achieving this goal, we had to skip investigating many possible directions, where
some could have helped us considerably.

Müller et al. [34] and Hawke et al. [19] both had a greater focus on the driving
outputs, and it is shown to improve their driving performance significantly. Had
we implemented a similar abstraction from the start, maybe we could have ended
up with even better performance. However, we did not realize the full extent of
their benefits before we were well into our own evaluation; and we deemed it too
late to make any major design changes.

We made several design choices during this project, where many were inspired
by work of others. However, we did not verify every choice before applying it to
our work, and we cannot prove that they improved our system; only that they
seemed to be good based on other author’s results. Again, a possible solution
could have been to properly investigate the effects of these choices early on, for

5.4. POTENTIAL SHORTCOMINGS AND REFLECTION 85

example by conducting preliminary experiments which tested them.

Here we present a few specific improvements that we believe might have impacted
the overall driving results:

• Representing the output steering value of the driving model using a more
abstract representation, perhaps using motion plans such as Hawke et al.
[19].

• Include motion/temporal information in the perception model or driving
model, through optical flow, or recurrent networks respectively.

• Equal data formats for depth data in Mapillary and CARLA data.

• Using a decoder network optimal for compressing the perception semantics
into a single network layer, which in turn would allow us to use only the
encoded intermediate representation for the driving model.

86 CHAPTER 5. DISCUSSION

Chapter 6

Conclusion and Future
Work

In this chapter, we conclude based on the results and findings of this thesis, and
suggest directions for future work.

6.1 Conclusion

We conclude our work by looking back at our initial goal: to make an end-to-
end autonomous driving system that can utilize both simulated and real-world
data to drive. This was a bold goal as domain transfer from simulation to the
real world has been extensively researched and has shown to be a very difficult
problem. During this thesis, we have mainly explored how existing computer
vision datasets and the simulated CARLA environment can be used to reduce
the amount of real-world driving data required for training autonomous vehicles.
We used a separate perception model that was pre-trained on these computer
vision datasets, and thereby was able to interpret difficult driving scenes in both
simulation and the real world. This allowed us to train a separate driving model
in simulation, while simplifying the specifics of each domain into segmentation
and depth maps. Finally, we showed how this driving model trained solely in
simulation was able to successfully drive on a bike path with lane lines and
intersections.

87

88 CHAPTER 6. CONCLUSION AND FUTURE WORK

A lot of research has been conducted using end-to-end models for autonomous
driving, both in the real world and in simulated environments. However, few of
these papers have focused on a combination of the two. We used inspiration from
recent papers that had state-of-the-art results from both the simulated and real-
world domain, and attempted to combine the successful approaches from each
domain into a domain-independent solution. There are still many approaches
left to explore, such as using an immediate driving scene representation for the
driving model input, as shown by Hawke et al. [19], or focusing on better and
more abstract steering and velocity output representations.

As with any work, this thesis also has its set of shortcomings. Looking back,
we have found several situations where our approach could have been improved.
Inconsistent depth map representations between simulated and real-world envi-
ronments, not fine-tuning the perception model to our real-world environment, as
well as selecting a decoder architecture that did not easily allow for directly using
the compressed scene representation are a few of these. Often, these were early
design decision that were difficult to revert because of the time constraints on
the thesis. In situations where we encountered such shortcomings, we attempted
to highlight them so they could be improved upon in future work.

During the work with this master’s thesis, we wrote a paper covering the parts
of this thesis related to driving in the CARLA simulator. The paper is currently
being reviewed for the Colour and Visual Computing Symposium 2020 (CVCS
2020)1, and is available in full in Appendix A.

6.2 Future work

We believe our work has shown promising results, and is an interesting approach
for future work in end-to-end driving for autonomous vehicles. There are still
many directions left unexplored, as well as plenty of possible improvements to the
directions we did explore. Throughout this thesis, we have highlighted situations
were the results could have been improved. In this section, we will attempt to
extract a few of the directions we believe would have the largest impact on the
results, and therefore are good candidates for future work.

A lot of this master’s thesis was inspired by Hawke et al. [19], and we imple-
mented a few of their approaches with good results. However, there are still
several approaches that we did not try. For our perception model, we found four

1https://www.cvcs.no/

https://www.cvcs.no/

6.2. FUTURE WORK 89

important improvements in Hawke et al.’s work:

• Only include the encoded features of the perception model as input to the
driving model, which we believe would significantly increase the end-to-end
model’s efficiency and maybe even driving performance.

• Use a perception model trained on an additional RGB reproduction task,
in addition to the existing segmentation- and depth maps, to improve the
overall scene understanding of the driving model.

• Train the perception model on several datasets (e.g. Cityscapes and Map-
illary) to improve the generalizability of the perception model.

• Include motion information using a separate optical flow model to incorpo-
rate temporal information.

Another direction we did not focus on, but that we later understood the impor-
tance of, was the output representation of our driving model. Our approach used
the target speed and steering angle as output representations, while Hawke et al.
and Müller et al. [34] attempted to improve upon this representation with more
abstract outputs. Two approaches worth exploring based on these two papers
are:

• Output the speed and steering as a parameterized line for the motion plan
on the current and future timesteps, as opposed to only a single value on
the current timestep for more stable and robust vehicle control.

• Use estimated waypoints on the road instead of steering angle, which could
improve transferability of steering between domains, where the model does
not have to take into account differences in speed and steering feedback.

During real-world driving, our driving model had issues with instabilities when
encountering inconclusive perception results. When the perception model had
temporary issues with interpreting the driving scene, the driving model had issues
handling the situation, as it lacked context. An interesting approach could be to
include temporal information to the model — perhaps similar to how Haavaldsen
et al. [17] used a recurrent neural network to give their driving model temporal
information.

90 CHAPTER 6. CONCLUSION AND FUTURE WORK

Finally, we would like to conclude with the hope that future work can use what
we have learned during this thesis, and continue exploring domain-transfer for
end-to-end autonomous driving. Our source code is available on GitHub.23

2https://github.com/AudunWA/master-thesis-code
3https://github.com/AudunWA/autonomous-vehicle

https://github.com/AudunWA/master-thesis-code
https://github.com/AudunWA/autonomous-vehicle

Bibliography

[1] I. Alhashim and P. Wonka. High quality monocular depth estimation via
transfer learning. arXiv:1812.11941 [cs], Mar 2019. URL http://arxiv.

org/abs/1812.11941. arXiv: 1812.11941.

[2] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A
deep convolutional encoder-decoder architecture for image segmentation.
arXiv:1511.00561 [cs], Oct 2016. URL http://arxiv.org/abs/1511.

00561. arXiv: 1511.00561.

[3] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal,
L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and
K. Zieba. End to End Learning for Self-Driving Cars. 2016.

[4] Y. Cao, T. Zhao, K. Xian, C. Shen, Z. Cao, and S. Xu. Monocular depth es-
timation with augmented ordinal depth relationships. arXiv:1806.00585 [cs],
Jul 2019. URL http://arxiv.org/abs/1806.00585. arXiv: 1806.00585.

[5] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv:1412.3555 [cs], Dec
2014. URL http://arxiv.org/abs/1412.3555. arXiv: 1412.3555.

[6] F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy. End-
to-end Driving via Conditional Imitation Learning. arXiv:1710.02410 [cs],
Oct. 2017. URL http://arxiv.org/abs/1710.02410. arXiv: 1710.02410.

[7] F. Codevilla, E. Santana, A. M. López, and A. Gaidon. Exploring the Limi-
tations of Behavior Cloning for Autonomous Driving. arXiv:1904.08980 [cs],
Apr. 2019. URL http://arxiv.org/abs/1904.08980. arXiv: 1904.08980.

[8] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele. The cityscapes dataset for semantic
urban scene understanding. arXiv:1604.01685 [cs], Apr 2016. URL http:

//arxiv.org/abs/1604.01685. arXiv: 1604.01685.

91

http://arxiv.org/abs/1812.11941
http://arxiv.org/abs/1812.11941
http://arxiv.org/abs/1511.00561
http://arxiv.org/abs/1511.00561
http://arxiv.org/abs/1806.00585
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1710.02410
http://arxiv.org/abs/1904.08980
http://arxiv.org/abs/1604.01685
http://arxiv.org/abs/1604.01685

92 BIBLIOGRAPHY

[9] P. de Haan, D. Jayaraman, and S. Levine. Causal confusion in imitation
learning. arXiv:1905.11979 [cs, stat], Nov 2019. URL http://arxiv.org/

abs/1905.11979. arXiv: 1905.11979.

[10] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An
open urban driving simulator. In Proceedings of the 1st Annual Conference
on Robot Learning, pages 1–16, 2017.

[11] H. M. Eraqi, M. N. Moustafa, and J. Honer. End-to-End Deep Learning for
Steering Autonomous Vehicles Considering Temporal Dependencies. 2017.

[12] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: the
kitti dataset. The International Journal of Robotics Research, 32:1231–1237,
09 2013. doi: 10.1177/0278364913491297.

[13] C. Godard, O. Mac Aodha, M. Firman, and G. Brostow. Digging into self-
supervised monocular depth estimation. arXiv:1806.01260 [cs, stat], Aug
2019. URL http://arxiv.org/abs/1806.01260. arXiv: 1806.01260.

[14] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[15] M. Gualtieri, A. t. Pas, K. Saenko, and R. Platt. High precision grasp
pose detection in dense clutter. arXiv:1603.01564 [cs], Jun 2017. URL
http://arxiv.org/abs/1603.01564. arXiv: 1603.01564.

[16] D. Gupta. Image segmentation keras : Implementation of seg-
net, fcn, unet, pspnet and other models in keras., 2020. URL
https://github.com/divamgupta/image-segmentation-keras/blob/

31d1ba660ec16d6032d8719841c4f00c6bf934b0/keras_segmentation/

data_utils/augmentation.py.

[17] H. Haavaldsen, M. Aasboe, and F. Lindseth. Autonomous Vehicle Control:
End-to-end Learning in Simulated Urban Environments. arXiv:1905.06712
[cs], May 2019. URL http://arxiv.org/abs/1905.06712. arXiv:
1905.06712.

[18] R. H. R. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, and
H. S. Seung. Digital selection and analogue amplification coexist in a cortex-
inspired silicon circuit. Nature, 405(6789):947–951, June 2000. ISSN 1476-
4687. doi: 10.1038/35016072. URL https://doi.org/10.1038/35016072.

[19] J. Hawke, R. Shen, C. Gurau, S. Sharma, D. Reda, N. Nikolov, P. Mazur,
S. Micklethwaite, N. Griffiths, A. Shah, and A. Kendall. Urban Driving with
Conditional Imitation Learning. arXiv:1912.00177 [cs], Dec. 2019. URL
http://arxiv.org/abs/1912.00177. arXiv: 1912.00177.

http://arxiv.org/abs/1905.11979
http://arxiv.org/abs/1905.11979
http://arxiv.org/abs/1806.01260
http://www.deeplearningbook.org
http://arxiv.org/abs/1603.01564
https://github.com/divamgupta/image-segmentation-keras/blob/31d1ba660ec16d6032d8719841c4f00c6bf934b0/keras_segmentation/data_utils/augmentation.py
https://github.com/divamgupta/image-segmentation-keras/blob/31d1ba660ec16d6032d8719841c4f00c6bf934b0/keras_segmentation/data_utils/augmentation.py
https://github.com/divamgupta/image-segmentation-keras/blob/31d1ba660ec16d6032d8719841c4f00c6bf934b0/keras_segmentation/data_utils/augmentation.py
http://arxiv.org/abs/1905.06712
https://doi.org/10.1038/35016072
http://arxiv.org/abs/1912.00177

BIBLIOGRAPHY 93

[20] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. arXiv:1512.03385 [cs], Dec 2015. URL http://arxiv.org/

abs/1512.03385. arXiv: 1512.03385.

[21] S. Hochreiter and J. Schmidhuber. Long Short-term Memory. Neural com-
putation, 9:1735–80, 1997. doi: 10.1162/neco.1997.9.8.1735.

[22] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv:1704.04861 [cs], Apr 2017.
URL http://arxiv.org/abs/1704.04861. arXiv: 1704.04861.

[23] A. Kastet and R. C. Neset. End-to-End Steering Angle Prediction for Au-
tonomous Vehicles. NTNU, 2018. URL http://hdl.handle.net/11250/

2566504.

[24] A. Kendall, Y. Gal, and R. Cipolla. Multi-task learning using uncertainty to
weigh losses for scene geometry and semantics. arXiv:1705.07115 [cs], Apr
2018. URL http://arxiv.org/abs/1705.07115. arXiv: 1705.07115.

[25] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization.
arXiv:1412.6980 [cs], Jan. 2017. URL http://arxiv.org/abs/1412.6980.
arXiv: 1412.6980.

[26] A. Kirillov, K. He, R. B. Girshick, C. Rother, and P. Dollár. Panoptic
segmentation. CoRR, abs/1801.00868, 2018. URL http://arxiv.org/abs/

1801.00868.

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classi-
fication with Deep Convolutional Neural Networks, page 1097–1105.
Curran Associates, Inc., 2012. URL http://papers.nips.cc/paper/

4824-imagenet-classification-with-deep-convolutional-neural-networks.

pdf.

[28] L. Ladicky, J. Shi, and M. Pollefeys. Pulling things out of perspective. page
89–96, Jun 2014. doi: 10.1109/CVPR.2014.19.

[29] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, Nov. 1998. doi: 10.1109/5.726791.

[30] Y. Lecun, L. Bottou, G. Orr, and K.-R. Müller. Efficient backprop. 2000.

[31] Y. LeCun, U. Muller, J. Ben, E. Cosatto, and B. Flepp. Off-Road Obstacle
Avoidance through End-to-End Learning. 2005.

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1704.04861
http://hdl.handle.net/11250/2566504
http://hdl.handle.net/11250/2566504
http://arxiv.org/abs/1705.07115
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1801.00868
http://arxiv.org/abs/1801.00868
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

94 BIBLIOGRAPHY

[32] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken. Multilayer feedforward
networks with a nonpolynomial activation function can approximate any
function. 6(6):861–867, 1993.

[33] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for
semantic segmentation. In 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3431–3440, 2015.

[34] M. Müller, A. Dosovitskiy, B. Ghanem, and V. Koltun. Driving Policy
Transfer via Modularity and Abstraction. arXiv:1804.09364 [cs], Dec. 2018.
URL http://arxiv.org/abs/1804.09364. arXiv: 1804.09364.

[35] G. Neuhold, T. Ollmann, S. Rota Bulò, and P. Kontschieder. The map-
illary vistas dataset for semantic understanding of street scenes. In In-
ternational Conference on Computer Vision (ICCV), 2017. URL https:

//www.mapillary.com/dataset/vistas.

[36] L. Perez and J. Wang. The effectiveness of data augmentation in image
classification using deep learning. arXiv:1712.04621 [cs], Dec 2017. URL
http://arxiv.org/abs/1712.04621. arXiv: 1712.04621.

[37] D. A. Pomerleau. Advances in Neural Information Processing Systems 1,
page 305–313. Morgan Kaufmann Publishers Inc., 1989. ISBN 978-1-55860-
015-7. URL http://dl.acm.org/citation.cfm?id=89851.89891.

[38] K. Potdar, T. Pardawala, and C. Pai. A comparative study of categor-
ical variable encoding techniques for neural network classifiers. Interna-
tional Journal of Computer Applications, 175:7–9, 2017. doi: 10.5120/
ijca2017915495.

[39] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks
for biomedical image segmentation. arXiv:1505.04597 [cs], May 2015. URL
http://arxiv.org/abs/1505.04597. arXiv: 1505.04597.

[40] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, and et al. Imagenet large scale
visual recognition challenge. arXiv:1409.0575 [cs], Jan 2015. URL http:

//arxiv.org/abs/1409.0575. arXiv: 1409.0575.

[41] L. Sifre and S. Mallat. Rigid-motion scattering for texture classification.
arXiv:1403.1687 [cs], Mar 2014. URL http://arxiv.org/abs/1403.1687.
arXiv: 1403.1687.

[42] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv:1409.1556 [cs], Apr 2015. URL http://

arxiv.org/abs/1409.1556. arXiv: 1409.1556.

http://arxiv.org/abs/1804.09364
https://www.mapillary.com/dataset/vistas
https://www.mapillary.com/dataset/vistas
http://arxiv.org/abs/1712.04621
http://dl.acm.org/citation.cfm?id=89851.89891
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1403.1687
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556

BIBLIOGRAPHY 95

[43] T. Standley, A. R. Zamir, D. Chen, L. Guibas, J. Malik, and
S. Savarese. Which tasks should be learned together in multi-task learn-
ing? arXiv:1905.07553 [cs], May 2019. URL http://arxiv.org/abs/1905.

07553. arXiv: 1905.07553.

[44] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. Pwc-net: Cnns for optical flow
using pyramid, warping, and cost volume. arXiv:1709.02371 [cs], Jun 2018.
URL http://arxiv.org/abs/1709.02371. arXiv: 1709.02371.

[45] U. Viereck, A. t. Pas, K. Saenko, and R. Platt. Learning a visuomo-
tor controller for real world robotic grasping using simulated depth im-
ages. arXiv:1706.04652 [cs], Nov 2017. URL http://arxiv.org/abs/1706.

04652. arXiv: 1706.04652.

[46] Y. Xiao, F. Codevilla, A. Gurram, O. Urfalioglu, and A. M. López. Multi-
modal End-to-End Autonomous Driving. arXiv:1906.03199 [cs], June 2019.
URL http://arxiv.org/abs/1906.03199. arXiv: 1906.03199.

[47] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda. A Survey of
Autonomous Driving: Common Practices and Emerging Technologies.
arXiv:1906.05113 [cs, eess], June 2019. URL http://arxiv.org/abs/

1906.05113. arXiv: 1906.05113.

[48] M. D. Zeiler. ADADELTA: an adaptive learning rate method. CoRR,
abs/1212.5701, 2012. URL http://arxiv.org/abs/1212.5701.

[49] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene parsing net-
work. arXiv:1612.01105 [cs], Apr 2017. URL http://arxiv.org/abs/

1612.01105. arXiv: 1612.01105.

http://arxiv.org/abs/1905.07553
http://arxiv.org/abs/1905.07553
http://arxiv.org/abs/1709.02371
http://arxiv.org/abs/1706.04652
http://arxiv.org/abs/1706.04652
http://arxiv.org/abs/1906.03199
http://arxiv.org/abs/1906.05113
http://arxiv.org/abs/1906.05113
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1612.01105
http://arxiv.org/abs/1612.01105

96 BIBLIOGRAPHY

Appendix A

CVCS Paper: Autonomous
Driving in Simulation using
Domain-Independent
Perception

97

Autonomous Driving in Simulation using
Domain-Independent Perception

Audun Wigum Arbo?[0000−0002−8572−2402], Even Dalen*[0000−0001−6032−3678],
and Frank Lindseth??[0000−0002−4979−9218]

Norwegian University of Science and Technology, Trondheim, Norway

Abstract. There have been great advancements within the fields of
computer vision and autonomous driving in recent years. Autonomous
vehicle systems have typically consisted of mostly handmade algorithms
and rules, where neural networks have been assisting in perception tasks.
However, increased usage of neural network have shown promising re-
sults, and many state-of-the-art systems now utilize these for increasingly
complex tasks.
This paper builds upon recent work in building end-to-end networks for
autonomous driving. Conditional imitation learning is combined with
a perception network that generate high level abstractions from RGB
images. We examine the driving performance implications of learning
to drive from raw images, semantic segmentation, and depth estimates.
Secondly, we propose a driving network which uses raw images to predict
semantic segmentation and depth maps of the scene, which furthermore
is used to predict output steering angle and target speed for the vehi-
cle. The models are evaluated in CARLA, an open-source simulator for
autonomous driving research, in various environments: an urban town,
a rural road with surrounding farms and fields, and in greatly varied
weather conditions.
Our experiments show that the driving network trained on higher lever
abstractions generalize better than a model trained directly on RGB
images in simulation, even when the perception model is trained on real-
world data. We also show that the perception model trained on several
tasks using multi-task learning, leads to better-performing driving poli-
cies than learning only semantic segmentation.

Keywords: End-to-end Autonomous Driving · AV Domain Transfer ·
Multi-task Learning · Conditional Imitation Learning · Semantic Seg-
mentation · Depth Estimation

1 Introduction

Autonomous vehicles have been a popular research domain for many years, and
there has recently been large investments from both technology and car compa-
nies to be the first to solve the problem. The most prominent approach in recent

? These authors contributed equally to this work.
?? Corresponding author.

2 A.W. Arbo, E. Dalen, F. Lindseth

years has been the modular approach, where the driving is divided into several
sub-tasks such as perception, localization, and planning. The modular approach
often results in a very complex solution, where each module has to be fine tuned
individually. The scalability of this approach, when the vehicles has to tackle
more complex environments, has been questioned.

Another rising approach is the end-to-end approach, where the entire driving
policy is generated within a single system. The system then takes sensor-input
and converts it directly to driving commands, similar to how humans drive vehi-
cles. End-to-end systems for autonomous vehicles require large amounts of data,
and the ability to train on many different scenarios. Therefore, simulated envi-
ronments have been approached for the ability to train for different scenarios.
These environments, however, differ significantly from the real world, and the
learned driving policy does not transfer adequately between environments.

This paper attempts to improve the ability for driving policies to be trans-
ferred between domains by abstracting away both the perception task, raw throt-
tle and brake control of the vehicle, with focus on perception. Existing public
datasets is used for perception in a real-world driving environment, as well as
the autonomous vehicle simulator CARLA [8] for both driving and perception
data. The ultimate goal of this paper is to reduce the amount of real-world data
required to train an autonomous vehicle, by utilizing simulated environments for
training.

The paper is structured as follows: Section 2 investigates related work, while
additionally providing a brief history of the field itself. Section 3 presents our
method, including the data, neural network architectures, and evaluation met-
rics. Section 4 describes our experiments, their results, and discussion related to
these. Section 5 discusses the overall implications of the experimental results, and
compare our results with conclusions from related work. Section 6 draws a final
conclusion of the work conducted, and addresses the paper’s merits, weaknesses,
and potential future work.

2 Related Work

Autonomous vehicle control research is mainly divided into two categories: mod-
ular approaches and end-to-end approaches. Modular approaches divides the re-
sponsibility of driving into several sub-tasks, such as perception, localization,
planning, and control. Conversely, end-to-end approaches can be defined as a
function f(x) = a where x is any input needed to make decisions — typically
sensor data and environmental information — and a, the controls which are sent
to the vehicle’s actuators.

The end-to-end approach was first demonstrated in the ALVINN project,
described by Pomerleau [21]. While being able to follow simple tracks, ALVINN
had no means to handle more complex environments. Since then, large advance-
ments have been done within neural networks, resulting in new research within
end-to-end vehicle control. Bojarski et al. [3] approaches the problem using
modern techniques, and showcase a driving policy capable of driving on both

Domain-Independent Perception in Autonomous Driving 3

highways and residential roads; in varied weather conditions. More recent ap-
proaches [5, 19, 14, 13, 25] are based on Conditional Imitation Learning (CIL),
introduced by Codevilla et al. [5] in 2017, where the driving policy is given
instructions — high-level commands (HLCs) — on which actions to take (e.g.
turn left in next intersection). Codevilla et al. [5] shows that an architecture
can be re-used for both simulated and physical environments, but they make
no attempt to use the same weights across the two domains. Codevilla et. al
outputs a steering angle, and either throttle or brake, which are sent to the
vehicle’s control systems. Hawke et al. [14] outputs the target speed of the ve-
hicle, leaving the raw throttle and brake adjustments to a lower-level system.
Müller et al. [19] proposes to abstract the commands even further; into several
waypoints in space. Their model outputs two waypoints, 5 and 20 meters away
from the vehicle, which a PID controller uses to control the vehicle’s steering
and velocity.

Transfer from simulation to real world. A lot of studies have been done
on transferring learning from simulation to the real world. Johnson-Roberson
et al. [17] used images from the driving game Grand Theft Auto, to train their
object detection model, and achieved state of the art performance on the KITTI
[9] and Cityscapes [7] datasets. ?] successfully used simulation to train a model
for robotic grasping of physical unseen objects. Among the techniques used was
applying randomization in the form of random textures, lighting, and camera
position, to enable their model to generalize from the simulated source domain
to their physical target domain.

Transferring driving policy between domains also require an abstraction of
the perception data. Müller et al. [19] uses a perception model to generate seg-
mentation maps which are forwarded to the driving model, in order to generate
similar perception environments for both simulation and real-world. Xiao et al.
[25] combines ground-truth segmentation and depth data from CARLA to in-
crease driving performance. Hawke et al. [14] uses an encoder-decoder network
with three decoder-heads — segmentation, depth estimation and original RGB
reproduction — to maximize the model’s scene understanding. Hawke et al. also
removes the decoding-process when training their driving policy, making their
driving policy model take only the compressed encoding of scene understand-
ing as input. Kendall et al. [18] finds that the performance of such multi-task
prediction models depend highly on the relative weighting between each task’s
loss. Tuning these weights manually is an error prone and expensive process, and
they therefore suggest a solution for tuning weights based on the homoscedastic
uncertainty of each task. They show that the multi-task approach outperformes
separate models trained individually. The uncertainty based weighing was later
used by Hawke et al. and produced good results for generating optimal encod-
ing of a driving scene. Depth images has also been proven as a useful approach
in other simulation-to-real world knowledge transfers, such as robotic grasping
[24, 11].

4 A.W. Arbo, E. Dalen, F. Lindseth

3 Data and Methods

Our approach consists of two separately trained models: a perception model
and a driving model. The reason for this separation is to decouple the task of
scene understanding from the task of driving. This opens up the possibility of
improving the tasks independently, and we can train the models separately and
with different data sets. An important goal was then to make the output of the
perception model domain-independent, which in turn makes the driving policy
model domain-independent. Domain independence is in this context defined as
the ability to generalize between multiple domains (e.g. simulated and real), as
well as completely unseen domains.

The perception model is trained on datasets containing RGB images paired
with semantic segmentation and depth information. These data sets can contain
images not directly related to driving, as they are used to train a general scene
understanding.

The driving model is trained on data sets recorded from an expert driver. The
data set contains RGB images and driving data such as steering angle, current
speed and target speed. The data sets for both models can either be collected
from the real world, generated from the CARLA simulator, or a combination of
both real-world and simulated data.

3.1 Perception Model

The perception model takes raw RGB images as input, and tries to predict one
or more outputs related to scene understanding; always semantic segmentation,
and in some experiments an additional depth map. The model has an encoder-
decoder structure, compressing the input into a layer with few neurons (encoder)
before expanding towards one or more prediction outputs (decoders). Figure 2
shows a high-level illustration of the model. The model was trained on data
from driving situations in different environments and geographics. Some exper-
iment also use data generated from CARLA as a means to improve the model’s
performance in simulated environments.

Data. The Mapillary Vistas dataset [20] (henceforth Mapillary) was used for
RGB and ground-truth semantic segmentation data. The dataset consists of
25 000 high-resolution images from different driving situations, with a large
variety of weather and geographical locations. To simplify the environment for
the perception network, the number of classes for segmentation was reduced from
the original 66 object classes, to five classes; unlabeled, road, lane markings,
humans and vehicle. To train the model’s depth decoder, ground truth depth
maps were generated using the Monodepth2 network from Godard et al. [10], as
Mapillary lacks this information. Figure 1 shows a sample from this dataset.

Domain-Independent Perception in Autonomous Driving 5

Fig. 1: Sample of the data used when training the perception model. The left image
is the original RGB. The center image is segmentation ground truth from Mapillary.
The right depth map was generated from RGB images with the Monodepth2 network.

In addition to using real-world perception data, we generated synthesized
data in CARLA. A Python script spawns a large variety of vehicles and pedes-
trians, and captures RGB, semantic segmentation, and depth data from the
vehicles as they navigate the simulated world. The field of view (FOV) and cam-
era yaw angle were randomly distributed to generalize between different camera
setups. The simulated weather was additionally changed periodically; varying
cloudiness, amount of rain, time of day, and other modifiable weather parame-
ters in CARLA. The final size of this synthesized dataset is about 20 000 images.

Architecture. Several encoders and decoders were explored when deciding the
model’s architecture. Encoders tested were: MobileNet [16], ResNet-50 [15] and a
vanilla CNN, while decoders tested were: U-Net[22] and SegNet[2]. To generate
a network which could predict both depth and segmentation estimations, we
modified the existing MobileNet-U-Net architecture to include a second U-Net
decoder. The decoder was modified to predict only one value per pixel, use the
sigmoid activation function, and train with a regression loss function for depth
estimation, adapted from Alhashim and Wonka [1].

Fig. 2: A simplified illustration of the perception model. The different architectures all
used a variant of the encoder-decoder architecture. The figure represents the MobileNet-
U-Net model with a second depth estimation decoder, where each layer in the encoder
is connected to the corresponding layer in the decoder.

6 A.W. Arbo, E. Dalen, F. Lindseth

Evaluation and Metrics. The segmentation prediction was evaluated using In-
tersection over Union (IoU), calculated with the following equation: gt∩p

gt∪p , where
gt is the ground truth segmentation and p is the predicted segmentation. Mean
IoU was used as the main indicator for performance, calculated by taking the
mean of the class-wise IoU. Frequency weighted IoU was also calculated, mea-
sured as the mean IoU weighted by the number of pixels for each class.

The metric used for depth estimation was ”accuracy within threshold th”,
where th was set to 1.25, 1.252 and 1.253, equal to Cao et al. [4]. The actual

accuracy δ was calculated by δ = max(
dgt
dp
,

dp
dgt

), δ > th, where dp is the predicted

depth value and dgt is the ground truth value calculated for each pixel.

3.2 Driving Model

The driving model runs raw RGB images through the perception model, and
uses its output segmentation and depth predictions as input. These images are
coupled with driving data recorded from an expert driver, which is further de-
scribed in Data below. The driving model processes these inputs through its own
layers, before outputting a steering angle and target speed.

Data. The driving data was generated in CARLA version 0.9.9. This was done
by making an autopilot control a car in various environments, and recording
video from three forward-facing cameras, its steering angles, speed, target speed,
and HLCs (left, right, straight, or follow lane). The autopilot has access to the full
state of the world, which includes a HD map, its own location and velocity, and
the states of other vehicles and pedestrians. It uses this information to generate
waypoints, which are finally fed into a PID-based controller to apply throttle,
brake, and steering angle. The collected training data was unevenly distributed
in regards to HLCs and steering angles, and we therefore down-sampled over-
represented values for an improved data distribution.

Various data sets were gathered for training the driving policy, all of which
were collected in Town01. These have different amount of complexity; steering
noise magnitude the autopilot has to account for, different weather conditions
and different light conditions. 30 641 samples were collected in total, where the
weather varied according to CARLA’s 15 default weather presets. The training
data was effectively multiplied by three, as we made two copies of each data
point, where we used the recorded image from each side camera instead of the
main camera. To adjust for a slightly modified camera perspective, we added
an offset of 0.05 and -0.05 in steering angle respectively for the left and right
camera variants. This technique was first introduced by Bojarski et al. [3], and
has later proved successfully in other papers [5, 13].

Architecture. The input of the driving model is a concatenation of the output
from the perception model and an information vector containing the HLC (one-
hot encoded), current speed, current speed limit, and the upcoming traffic light’s

Domain-Independent Perception in Autonomous Driving 7

state. The driving model is trained on simulation data with all the layers of
the perception model frozen (that is, non-trainable) to preserve generalizability.
Figure 3 shows an overview of the model.

HLC

Traffic light state
Speed limit
Current speed

Speed

+

+

+

Angle

Fig. 3: A simplified illustration of the driving network. The segmentation and depth
maps inputs are concatenated directly from the outputs of the perception model, shown
in Figure 2.

The segmentation and depth output of the perception model are concate-
nated channel-wise, and resemble a RGBD (RGB + depth) image. This rep-
resentation is then run through 5 convolutional blocks, each consisting of zero
padding of 1, 2D-convolution with kernel 3, batch normalization, ReLu acti-
vation, and finally max-pooling with pool size 2. The filter sizes are 64, 128,
256, 256, 256, respectively. The current HLC, whether the traffic light was red
or not, speed, and speed limit are concatenated with feature vectors generated
from the perception data. The last layers are a combination of fully-connected
layers, where we concatenate the HLC vector at each step, similar to Hawke
et al. [14]. The first output of the model is the steering prediction; one neuron
outputting the optimal steering (between 0 and 1, 0 being max leftward, 1 being
max rightward), later mapped to CARLA’s [-1, 1] range. The second output is
the optimal vehicle speed, outputted as a percentage of 100 km/h (between 0
and 1).

Evaluation and Metrics. The main metric used for measuring driving model
performance was Mean Completion Rate (MCR) during real-time evaluation.
This is calculated by dividing the completed distance dc by the total route
distance dt of each run-through of a route, averaged over all run-throughs R:∑

rεR
dc
dt

|R| . Traffic violations were not included as metrics, as the scope of this

paper is mainly within completing routes without major incidents. The model’s

8 A.W. Arbo, E. Dalen, F. Lindseth

validation loss was also used as a rough metric for performance. By empirical
observations we only picked models with validation loss / 0.03 for further eval-
uation. The validation loss metric was used as an initial performance estimation
because the MCR evaluation was very time consuming.

4 Experiments and results

There are two main experiments conducted in this paper. The first experiment
and its sub-experiments focuses on generating the best perception model to
be used when training the driving network. Model architecture, dataset vari-
ants, augmentation, and multi-task learning are parameters experimented with
to increase performance. The second experiment is conducted in CARLA. This
experiment assess the driving policy performance given the different models de-
rived in the first set of experiments. The generalizability of each model is tested
using different unseen environments. Each perception model is then compared
to a baseline model trained only on the CARLA dataset using Mean Completion
Rate as the metric.

4.1 Experiment 1: Perception Model

The perception experiments use semantic segmentation and occasionally depth
estimation to generalize the driving environment when training and testing the
driving models. All of the perception experiments use the same dataset for
evaluation, and the results can therefore be compared across experiments. The
CARLA data generated and used for evaluation consists of 4 400 images with
corresponding ground truth segmentation and depth maps from Town 3-4. The
Mapillary evaluation dataset is a set of 2 000 images from the original Mapillary
test set.

Experiment 1-1: Encoder-decoder models. This experiment attempts to
find the best encoder and decoder to use for the perception network. All the
encoders tested were picked because they have previously shown good results in
other papers, and were implemented in a common library by Gupta [12].

The three encoders showed increased performance as the complexity and size
of the encoder increased. The Vanilla CNN encoder performed worst with the
lowest Mean IoU score, however, it was also the fastest model during training
and testing. MobileNet gave better results while keeping a lot of the speed advan-
tage from the Vanilla CNN network. MobileNet also showed very good results,
with MobileNet-U-Net displaying the best overall performance when combin-
ing scores. ResNet50 performed good as expected with a higher Mean IoU than
MobileNet-U-Net, however the difference from MobileNet-U-Net was less than
expected. MobileNet was used for futher experiments as it was significantly faster
than ResNet50.

Domain-Independent Perception in Autonomous Driving 9

Model Mean IoU Weighted IoU

VanillaCNN-SegNet 0.324 0.712
VanillaCNN-U-Net 0.351 0.705
MobileNet-SegNet 0.368 0.775
MobileNet-U-Net 0.403 0.774
ResNet50-SegNet 0.405 0.767
ResNet50-U-Net 0.383 0.733

Table 1: Evaluation of three different encoders (Vanilla CNN, Mobilenet and
ResNet50), and two decoders (SegNet and U-Net). Each model was trained on the
Mapillary dataset (18 000 samples for training and 2 000 for validation) without any
augmentation. The best scores are marked in bold.

Experiment 1-2: Training data. To improve the model further some CARLA
data was introduced to the Mapillary dataset. Augmentation was also introduced
for further improvements and better generalization. The Mapillary+CARLA
dataset consisted of 20 000 datapoints from the Mapillary dataset and 3 250
samples from Town01 and Town02 in CARLA. The dataset with only aug-
mented CARLA data (CARLA+Aug) used a different dataset of 15 000 samples
from Town 1-4, and 4 000 samples from Town 5 as validation. The results were
evaluated on Town 3-4 as Town 1-2 was used when training Mapillary+CARLA.
The augmentation included consists of among others gaussian noise, translation,
rotation, hue and saturation augmentations, and was adapted from Gupta [12].

CARLA Eval Mapillary Eval

Training dataset Mean IoU Weighted IoU Mean IoU Weighted IoU

Mapillary 0.425 0.771 0.632 0.887

Mapillary+Aug 0.436 0.809 0.574 0.873

Mapillary+CARLA 0.469 0.846 0.633 0.889

Mapillary+CARLA+Aug 0.478 0.850 0.568 0.874

CARLA+Aug 0.572 0.909 0.384 0.785

Table 2: Evaluation of different datasets on the MobileNet-U-Net model. Mapillary is
the original dataset while the CARLA dataset was generated directly from CARLA.
Each dataset consist of about 20 000 samples, and the Mapillary+CARLA dataset con-
sist of about 80/20 Mapillary and CARLA data respectively. The two sets of columns
show evaluation on CARLA data and Mapillary data respectively. The best scores are
marked in bold.

The dataset experiment shows that including CARLA data as a compo-
nent when training the perception models increases the total performance. As

10 A.W. Arbo, E. Dalen, F. Lindseth

the model’s goal is to make good predictions in both real and simulated en-
vironments, combining data from both seems to be a reasonable approach.
CARLA+Aug achieves great results when evaluating on CARLA data, however
the performance decreased drastically when predicting in real-world environ-
ments. Models trained on real-world data tends to generalize better to unseen
simulated environments than the other way around. Incorporating some CARLA
data into the real-world data in addition to augmenting the images yields the
best results overall.

Experiment 1-3: Multi-task perception. Inspired by Hawke et al. [14] we in-
troduced a depth estimation decoder to the MobileNet-U-Net model. The model
was trained with ground truth data generated by the Monodepth2 network using
images from the Mapillary dataset, while depth maps for the CARLA data was
included in the generated CARLA dataset.

Segmentation Depth

Training dataset Mean IoU Weighted IoU δ < 1.25 δ < 1.252 δ < 1.253

Mapillary 0.458 (+0.03) 0.817 0.320 0.572 0.684

Mapillary+CARLA 0.520 (+0.05) 0.854 0.295 0.542 0.679

CARLA 0.717 (+0.15) 0.960 0.775 0.806 0.816

Table 3: Results after adding a depth estimation decoder to the Mobilenet-U-Net
model. Each model was trained on the same dataset as in Experiment 2. Mean IoU
additionally presents a difference in parantheses: the difference between these models’
mean IoU and their counterparts’ from Experiment 1. Depth is estimated using accu-
racy within threshold, where the set threshold is presented in the column title. A high
value is best for all metrics in the table.

Including a depth estimation decoder increases the segmentation performance
for each model. The mean increase in IoU on the CARLA test set is 8%, which
conforms with the results reported by Standley et al. [23], who reported a 4.17%
increase in performance when training semantic segmentation with depth esti-
mation. An increase in overall scene understanding can also be expected as depth
is introduced to the model, however this has to be verified as part of the overall
driving policy experiments.

4.2 Experiment 2: Driving Model

This experiment aims to assess the overall performance of the two-part (percep-
tion and driving policy) architecture. We run real-time evaluations on variants
of our proposed architecture, including a baseline network where the complete
network is trained at once. The evaluation is conducted with a custom scenario

Domain-Independent Perception in Autonomous Driving 11

runner for CARLA, originally introduced by Haavaldsen et al. [13], and extended
for our experiments. The real-time nature of this experiment makes it different
from the previous experiments: The models’ steering and speed outputs affect
the camera input in subsequent simulation steps, and each prediction is therefore
dependent on the ones before.

The scenario runner. The scenario runner makes each model drive through
a predefined set of routes, each of which is defined by a set of waypoints. The
model navigates each route using HLCs provided automatically when passing
each waypoint. Each attempt at a route ends either when the vehicle completes
the route, or when the vehicle enters any of the following erroneous states: stuck
on an obstacle, leaving its correct lane and not returning within five seconds, or
ignoring a HLC. Quantitative measurements are made by logging the distance
completed and traffic violations (e.g. lane touches and collisions) of each route
attempt. The models are then compared mainly on their mean route completion
rate and mean traffic violations per route.

Environments and Routes. The models were tested in two environments,
Town02 and Town07. Town02 is similar, but not identical to the one in the
driving policy’s training data, which is Town01. Town07 is quite different, and
is rural with narrow roads (some without any centre marking), fields, and barns.
There are three routes in each environment, which the models will try to com-
plete in six different weather conditions. Three of the weather conditions have
already been observed in the training data, while the three remaining are un-
known to the policy. The training data only contain samples from day-time
weathers, but two of the unknown weathers are at midnight.

Results. Table 4 summarizes the driving performance of the different models.
The model trained only on driving data and without a frozen perception model,
RGB, was the best-performing model on Town02, but it struggles with Town07.

The model names starting with SD indicates that they use the segmen-
tation and depth perception model (henceforth SD). SD-CARLA, which uses
SD trained only on perception data from CARLA, outperforms all other models
when ranked by Mean Completion Rate (MCR) over both towns. To demonstrate
its performance, we made a video (https://youtu.be/HL5LStDe7wY) showing
some of its good performing moments. SD-Mapillary uses SD as well, but only
had perception training data from Mapillary. While not performing as good as
SD-CARLA, it still has impressive results. Its perception model has not seen any
CARLA data, but is still able to predict segmentation and depth good enough
for the driving model to beat even the RGB model. SD-Combined used percep-
tion data from both Mapillary and CARLA, and performs a little bit worse than
SD-Mapillary.

The model names starting with S indicates that they use the segmentation-
only perception model (henceforth S). S-CARLA is the S-counterpart of SD-
CARLA, and it performs very well in Town02. In Town07 however, it struggles

12 A.W. Arbo, E. Dalen, F. Lindseth

Seen weather Unseen weather

Model Clear (D) Rain (D) Wet (S) Clear (N) Rain (N) Fog (S) Mean
RGB 100.00 % 28.72 % 36.05 % 100.00 % 11.22 % 100.00 % 62.67 %
SD-CARLA 100.00 % 43.30 % 55.36 % 100.00 % 23.46 % 44.96 % 61.18 %
S-CARLA 93.83 % 7.23 % 43.51 % 100.00 % 24.61 % 66.66 % 55.97 %
SD-Mapillary 88.51 % 42.16 % 67.22 % 100.00 % 11.59 % 24.91 % 55.73 %
SD-Combined 93.53 % 9.92 % 47.42 % 100.00 % 9.92 % 46.53 % 51.22 %
S-Combined 90.71 % 44.02 % 23.12 % 72.12 % 2.72 % 7.23 % 39.98 %
S-Mapillary 72.12 % 43.30 % 40.85 % 39.34 % 2.72 % 2.72 % 33.51 %

(a) Results for Town02.

Seen weather Unseen weather

Model Clear (D) Rain (D) Wet (S) Clear (N) Rain (N) Fog (S) Mean
SD-CARLA 84.95 % 61.14 % 84.95 % 60.81 % 88.88 % 17.19 % 66.32 %
SD-Mapillary 77.28 % 77.28 % 55.54 % 51.61 % 33.33 % 14.84 % 51.65 %
SD-Combined 50.52 % 61.14 % 57.39 % 38.60 % 66.67 % 33.33 % 51.27 %
S-Combined 77.83 % 55.10 % 55.10 % 17.32 % 50.65 % 33.33 % 48.22 %
RGB 44.49 % 44.49 % 44.49 % 44.49 % 49.75 % 44.49 % 45.37 %
S-CARLA 55.10 % 55.10 % 57.39 % 17.32 % 17.32 % 61.87 % 44.02 %
S-Mapillary 51.61 % 50.52 % 44.49 % 55.10 % 44.49 % 0.00 % 41.04 %

(b) Results for Town07.

Table 4: Mean completion rate in (a) Town02 and (b) Town07, in six weather condi-
tions. Day, Sunset and Night is shortened to D, S, N respectively. The individual cells
are colored on a scale where green is the best, and red is the worst.

with night-time weather. S-Mapillary is the S-counterpart of SD-Mapillary, and it
has the lowest MCR in both towns. In any run with Fog (S), it fails almost imme-
diately. S-Combined uses combined perception data, the same as SD-Combined.
It is performing a bit better than S-Mapillary in Town02, and is the fourth best
in Town07.

5 Discussions

5.1 Results in comparison to related work

Xiao et al. [25] uses ground-truth semantic segmentation data generated from
CARLA, not predicted as we do, and combine segmentation with both ground-
truth depth maps and depth estimated by a separate network. Their results
aligns with our results; using semantic segmentation data beats just using raw
images, and combining both segmentation and depth performs the best. With a
combination of ground truth segmentation and estimated depth, their policy is
still able to beat the raw image-based policy. Our models estimate both segmen-
tation and depth, and is still able to perform good in comparison to our baseline
RGB-model.

Müller et al. [19] use predicted binary segmentation (road/not road) as driv-
ing input, and our work extends this with predicted depth, giving additional

Domain-Independent Perception in Autonomous Driving 13

performance benefits. Haavaldsen et al. [13] achieved higher completion rates
even with traffic, but focused more on the impact of larger data sets and en-
coding temporal information in the model, while this paper focused mainly on
generalizability.

The driving model by Hawke et al. [14] did not include the perception model’s
decoding layers in its architecture, which seems to be an overall more efficient
approach. Because the U-Net architecture used in our paper had connections
between each encoder-decoder layer, information could have been lost by not
including the decoding layers. In future work, a model without connections be-
tween the encoder-decoder layers could be explored to take advantage of Hawke
et al.’s approach.

5.2 Driving models

We find that models with a learned understanding of both the semantics and/or
geometry of the scene are able to navigate never-before-seen environments and
weather. Our real-time experiment shows that these driving models often per-
form better than learning from raw image inputs directly, with models utilizing
both semantics and geometry performing best overall.

Variance. It is important to note that we observed a high variance when train-
ing and evaluating our models. Two models trained from the exact same setup
could perform significantly different, despite having the exact same training data.
We suspect that this is the same variance problem as Codevilla et al. [6] expe-
rienced. The variance was handled by training and testing the models several
times to make sure the results were representative. Still, conclusions based on
the results in Experiment 2 must be drawn carefully. A more robust approach
could be to train multiple models with the same parameters, and averaging their
results.

6 Conclusion

Splitting end-to-end models for autonomous vehicles into separate models for
perception and driving policy is shown to give good results in simulated en-
vironments. Perception models trained from public datasets such as Mapillary
Vistas can be used to reduce the amount of driving data needed when training
an end-to-end driving policy network. This approach opens up for training the
driving policy in a simulated environment, while still getting good performance
in real-world environments.

Future work should explore how these results transfers into the real world.
Evaluating the performance of a model trained solely in simulation directly in a
real-world environment will be an important next step as a means of testing the
validity of these results.

Bibliography

[1] Alhashim, I., Wonka, P.: High quality monocular depth estimation via trans-
fer learning. arXiv:1812.11941 [cs] (Mar 2019), URL http://arxiv.org/

abs/1812.11941, arXiv: 1812.11941
[2] Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: A deep convolutional

encoder-decoder architecture for image segmentation. arXiv:1511.00561 [cs]
(Oct 2016), URL http://arxiv.org/abs/1511.00561, arXiv: 1511.00561

[3] Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal,
P., Jackel, L.D., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J.,
Zieba, K.: End to End Learning for Self-Driving Cars (2016)

[4] Cao, Y., Zhao, T., Xian, K., Shen, C., Cao, Z., Xu, S.: Monocular depth es-
timation with augmented ordinal depth relationships. arXiv:1806.00585 [cs]
(Jul 2019), URL http://arxiv.org/abs/1806.00585, arXiv: 1806.00585

[5] Codevilla, F., Müller, M., López, A., Koltun, V., Dosovitskiy, A.: End-to-
end Driving via Conditional Imitation Learning. arXiv:1710.02410 [cs] (Oct
2017), URL http://arxiv.org/abs/1710.02410, arXiv: 1710.02410

[6] Codevilla, F., Santana, E., López, A.M., Gaidon, A.: Exploring the Limi-
tations of Behavior Cloning for Autonomous Driving. arXiv:1904.08980 [cs]
(Apr 2019), URL http://arxiv.org/abs/1904.08980, arXiv: 1904.08980

[7] Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson,
R., Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic
urban scene understanding. arXiv:1604.01685 [cs] (Apr 2016), URL http:

//arxiv.org/abs/1604.01685, arXiv: 1604.01685
[8] Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: An

open urban driving simulator. In: Proceedings of the 1st Annual Conference
on Robot Learning, pp. 1–16 (2017)

[9] Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The
kitti dataset. International Journal of Robotics Research (IJRR) (2013)

[10] Godard, C., Mac Aodha, O., Firman, M., Brostow, G.: Digging into self-
supervised monocular depth estimation. arXiv:1806.01260 [cs, stat] (Aug
2019), URL http://arxiv.org/abs/1806.01260, arXiv: 1806.01260

[11] Gualtieri, M., Pas, A.t., Saenko, K., Platt, R.: High precision grasp pose
detection in dense clutter. arXiv:1603.01564 [cs] (Jun 2017), URL http:

//arxiv.org/abs/1603.01564, arXiv: 1603.01564
[12] Gupta, D.: Image segmentation keras : Implementation of seg-

net, fcn, unet, pspnet and other models in keras. (2020), URL
https://github.com/divamgupta/image-segmentation-keras/blob/

31d1ba660ec16d6032d8719841c4f00c6bf934b0/keras_segmentation/

data_utils/augmentation.py
[13] Haavaldsen, H., Aasboe, M., Lindseth, F.: Autonomous Vehicle Control:

End-to-end Learning in Simulated Urban Environments. arXiv:1905.06712
[cs] (May 2019), URL http://arxiv.org/abs/1905.06712, arXiv:
1905.06712

Domain-Independent Perception in Autonomous Driving 15

[14] Hawke, J., Shen, R., Gurau, C., Sharma, S., Reda, D., Nikolov, N., Mazur,
P., Micklethwaite, S., Griffiths, N., Shah, A., Kendall, A.: Urban Driv-
ing with Conditional Imitation Learning. arXiv:1912.00177 [cs] (Dec 2019),
URL http://arxiv.org/abs/1912.00177, arXiv: 1912.00177

[15] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recog-
nition. arXiv:1512.03385 [cs] (Dec 2015), URL http://arxiv.org/abs/

1512.03385, arXiv: 1512.03385
[16] Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand,

T., Andreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv:1704.04861 [cs] (Apr 2017),
URL http://arxiv.org/abs/1704.04861, arXiv: 1704.04861

[17] Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K.,
Vasudevan, R.: Driving in the matrix: Can virtual worlds replace human-
generated annotations for real world tasks? arXiv:1610.01983 [cs] (Feb
2017), URL http://arxiv.org/abs/1610.01983, arXiv: 1610.01983

[18] Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to
weigh losses for scene geometry and semantics. arXiv:1705.07115 [cs] (Apr
2018), URL http://arxiv.org/abs/1705.07115, arXiv: 1705.07115

[19] Müller, M., Dosovitskiy, A., Ghanem, B., Koltun, V.: Driving Policy Trans-
fer via Modularity and Abstraction. arXiv:1804.09364 [cs] (Dec 2018), URL
http://arxiv.org/abs/1804.09364, arXiv: 1804.09364

[20] Neuhold, G., Ollmann, T., Rota Bulò, S., Kontschieder, P.: The mapil-
lary vistas dataset for semantic understanding of street scenes. In: In-
ternational Conference on Computer Vision (ICCV) (2017), URL https:

//www.mapillary.com/dataset/vistas

[21] Pomerleau, D.A.: Advances in Neural Information Processing Systems 1, p.
305–313. Morgan Kaufmann Publishers Inc. (1989), ISBN 978-1-55860-015-
7, URL http://dl.acm.org/citation.cfm?id=89851.89891

[22] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for
biomedical image segmentation. arXiv:1505.04597 [cs] (May 2015), URL
http://arxiv.org/abs/1505.04597, arXiv: 1505.04597

[23] Standley, T., Zamir, A.R., Chen, D., Guibas, L., Malik, J., Savarese,
S.: Which tasks should be learned together in multi-task learning?
arXiv:1905.07553 [cs] (May 2019), URL http://arxiv.org/abs/1905.

07553, arXiv: 1905.07553
[24] Viereck, U., Pas, A.t., Saenko, K., Platt, R.: Learning a visuomotor

controller for real world robotic grasping using simulated depth images.
arXiv:1706.04652 [cs] (Nov 2017), URL http://arxiv.org/abs/1706.

04652, arXiv: 1706.04652
[25] Xiao, Y., Codevilla, F., Gurram, A., Urfalioglu, O., López, A.M.: Multi-

modal End-to-End Autonomous Driving. arXiv:1906.03199 [cs] (Jun 2019),
URL http://arxiv.org/abs/1906.03199, arXiv: 1906.03199

Appendix B

SPURV Pipeline Manual

This manual assumes that you have already followed the steps in Appendix A of
Kastet and Neset [23], and therefore have a client with the needed software for
communicating with and controlling a SPURV with an Xbox controller. We use
the same terminology of host machine and SPURV as in their manual. This is a
copy of the manual provided in our own specialization project, updated with new
changes.

113

114 APPENDIX B. SPURV PIPELINE MANUAL

B.1 Pipeline overview

The pipeline helps streamline the following recurring tasks within end-to-end
model research: data collection, training, and validation of performance. Figure
B.1 shows an overview of the pipeline, and where and what the scripts are used
for.

SPURV

Data collection Training Validation

SPURV Pipeline

Execute motor
commands

Run trained models:
run_master

_keras_model.py

Host
Steer spurv and log

training data:
steer_and_collect
_traning_data.py

Training
computer

Train on data received
from host, then send
trained models back

Transfer training
data to training

computer

Transfer models to SPURV:
transfer_models.sh

Log image and motor data:
collect_training_data_only.py

Figure B.1: The SPURV pipeline, consisting of three main steps.

B.2 Script development

We recommend using PyCharm Professional1 to develop Python scripts for the
SPURV. To be able to run scripts on the host machine, PyCharm needs to be
run through bash, as ROS-based scripts requires the shell environment defined
in ∼/.bashrc. PyCharm can easily be launched this way by running

1https://www.jetbrains.com/pycharm/

B.3. TRANSFERRING MODELS - TRANSFER MODELS.SH 115

/snap/pycharm-professional/current/bin/pycharm.sh

(or whatever the install path of PyCharm is) from a bash instance.

B.2.1 Automatic deployment to SPURV

PyCharm Professional has a feature that automatically uploads scripts to a re-
mote destination as they are saved or run. This enables us to develop scripts on
the host machine and instantly run them on the SPURV. To set up this workflow
for yourself, follow PyCharm’s guide on setting up a remote interpreter: https://
www.jetbrains.com/help/pycharm/configuring-remote-interpreters-via-ssh.

html. Use

nvidia@spurv:22

as the SSH connection host and port. Remember to choose Python 2 as the
interpreter on the SPURV..0

PyCharm will attempt to start the script using Python directly, but this will fail
as the ROS environment is not loaded. As a workaround, we have made a small
wrapper which can be inserted into each script, which restarts the script in the
correct environment. An example usage of this wrapper is found in the

run_master_keras_models.py

script.

B.3 Transferring models - transfer models.sh

To streamline the process of transferring models, we have made a script called
transfer models.sh, which transfers all the models (files ending with .h5) in the
working directory and subdirectories to the

/home/nvidia/ros/src/spurv_research/spurv_examples/src/models

https://www.jetbrains.com/help/pycharm/configuring-remote-interpreters-via-ssh.html
https://www.jetbrains.com/help/pycharm/configuring-remote-interpreters-via-ssh.html
https://www.jetbrains.com/help/pycharm/configuring-remote-interpreters-via-ssh.html

116 APPENDIX B. SPURV PIPELINE MANUAL

directory on the SPURV. This is the directory used by the run master keras models.py
script. Alternatively, one can use the SCP command or mount the SPURV’s file
system over SSH.

B.4 Running models - run master keras models.py

The run master keras models.py script handles the selection and execution of
models. It is designed to work with any model that fulfills the following criteria:

• It is in the HDF5 format (.h5 extension)

• It is compatible with Python 2, Tensorflow 1.10.0, and Keras 2.2.0.

• If it has any custom layers, its implementation has to be copied to the
SPURV for loading. See the model structures folder for examples.

• It has an input layer named forward image input for inputting images with
shape (w,h,3) in the BGR color space. The image input will be normalized,
based on VGG16’s normalization, before being sent to the model.

• It has an input layer named hlc input of dimension 4, containing an one-hot
encoded high-level command (left, right, or straight, or follow lane).

• Its second output layer contains one node whose value is the desired speed,
as a fraction of 100 km/h, of the SPURV.

• It has an output layer named steer pred which consists of 1 node whose
value is a steering angle in the range [0, 1]. 0 is 100% to the left, 1 is 100%
to the right.

B.4.1 Xbox controls

The model selection, starting and stopping, and all other interactions with the
script is done with an Xbox controller. Table B.1 contains an overview of all
available actions.

B.5. COLLECTING DATA 117

Xbox buttom Action

D-pad (left and
right)

Iterate through available models (in the mod-
els directory).

RB If no model is loaded: load the selected model.
If a model is loaded: start autonomous mode.

LB Stop autonomous mode.
X Apply HLC=left(1).
B Apply HLC=right(2).
Y Apply HLC=straight(3).
A Apply HLC=follow lane(4).

Table B.1: Overview of Xbox controls for run master keras model.py.

B.5 Collecting data

This section covers the process of collecting data, both during training and while
running a model. This is an alternative to using the rosbag utility of ROS.

B.5.1 Training data collection - steer and collect training data.py

This script allows you to collect training data while steering the SPURV. The
data will be saved in the directory ∼/data dump/%iso time%. A file with the
name data.csv will be created, and it contains data values for each time step. A
description of the columns in data.csv is found in table B.2.

118 APPENDIX B. SPURV PIPELINE MANUAL

Field name Description

speed The speed of the SPURV, in m/s.
angle The steering angle of the SPURV, in the range [-1,

1].
high level
command

The current high-level command (HLC). It is either
left (0), straight (1), or right (2).

image path The absolute path (on host machine) of the recorded
image.

Field defined below are only available in steer and collect training data.py :

ackerman
timestamp

The nanosecond timestamp of the latest Ackermann
(steering command) message. Note: Based on the
host machine clock.

img timestamp The nanosecond timestamp of the saved image.
Note: Based on the SPURV OS clock.

angle w noise The steering angle which is sent to the SPURV. This
is the raw steering angle from the Xbox controller,
plus a generated triangular noise.

Table B.2: Description of field in the data.csv file.

All recorded images will be saved in the images folder. For an overview of the
available actions in the script, see table B.3.

Xbox buttom Action

Left joystick (left and right) Steer left or right
Right joystick (up and down) Set desired speed.
Start Toggle recording of data.
Back Toggle triangular noise.
LB Stop autonomous mode.
X Apply HLC=left(1) for 10 seconds.
B Apply HLC=right(2) for 10 seconds.
Y Apply HLC=straight(3) for 10 seconds.
A Apply HLC=follow lane(4) until

changed.

Table B.3: Overview of Xbox controls for steer and collect training data.py.

B.5. COLLECTING DATA 119

B.5.2 Data collection for testing - collect training data only.py

This script is meant to be run simultaneously as a model is running. It collects
the camera images and the steering commands executed by the SPURV, and
saves them in a similar format to steer and collect training data.py. This script
uses only the Start button of the Xbox controller, which toggles recording of
data. The data format is specified in Table B.2

120 APPENDIX B. SPURV PIPELINE MANUAL

Appendix C

Model Architectures

C.1 Perception model - Keras implementation

"""
A lot of this code is modified code from the library
utilized during model implementation.
The original source can be found at:
https://github.com/divamgupta/image-segmentation-keras

See references chapter for more detailed citation.
"""

def relu6(x):
return K.relu(x, max_value=6)

def _conv_block(inputs, filters, alpha, kernel=(3, 3), strides=(1, 1)):

filters = int(filters * alpha)
x = ZeroPadding2D(padding=(1, 1), name='conv1_pad')(inputs)
x = Conv2D(filters, kernel,

padding='valid',
use_bias=False,
strides=strides,
name='conv1')(x)

x = BatchNormalization(name='conv1_bn')(x)
return Activation(relu6, name='conv1_relu')(x)

def _depthwise_conv_block(inputs, pointwise_conv_filters, alpha,
depth_multiplier=1, strides=(1, 1), block_id=1):

pointwise_conv_filters = int(pointwise_conv_filters * alpha)

121

122 APPENDIX C. MODEL ARCHITECTURES

x = ZeroPadding2D((1, 1),
name='conv_pad_%d' % block_id)(inputs)

x = DepthwiseConv2D((3, 3),
padding='valid',
depth_multiplier=depth_multiplier,
strides=strides,
use_bias=False,
name='conv_dw_%d' % block_id)(x)

x = BatchNormalization(name='conv_dw_%d_bn' % block_id)(x)
x = Activation(relu6, name='conv_dw_%d_relu' % block_id)(x)

x = Conv2D(pointwise_conv_filters, (1, 1),
padding='same',
use_bias=False,
strides=(1, 1),
name='conv_pw_%d' % block_id)(x)

x = BatchNormalization(name='conv_pw_%d_bn' % block_id)(x)
return Activation(relu6, name='conv_pw_%d_relu' % block_id)(x)

def get_mobilenet_encoder():

input_height = 226
input_width = 226
alpha = 1.0
depth_multiplier = 1
dropout = 1e-3

img_input = Input(shape=(input_height, input_width, 3))

x = _conv_block(img_input, 32, alpha, strides=(2, 2))
x = _depthwise_conv_block(x, 64, alpha, depth_multiplier, block_id=1)
f1 = x

x = _depthwise_conv_block(x, 128, alpha, depth_multiplier,
strides=(2, 2), block_id=2)

x = _depthwise_conv_block(x, 128, alpha, depth_multiplier, block_id=3)
f2 = x

x = _depthwise_conv_block(x, 256, alpha, depth_multiplier,
strides=(2, 2), block_id=4)

x = _depthwise_conv_block(x, 256, alpha, depth_multiplier, block_id=5)
f3 = x

x = _depthwise_conv_block(x, 512, alpha, depth_multiplier,
strides=(2, 2), block_id=6)

x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=7)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=8)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=9)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=10)
x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=11)
f4 = x

x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier,
strides=(2, 2), block_id=12)

x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier, block_id=13)
f5 = x

return img_input, [f1, f2, f3, f4, f5]

def get_unet_decoder(levels, n_classes):

C.2. DRIVING MODEL - KERAS IMPLEMENTATION 123

[f1, f2, f3, f4, f5] = levels
o = f4
o = (ZeroPadding2D((1, 1)))(o)
o = (Conv2D(512, (3, 3), padding='valid' , activation='relu'))(o)
o = (BatchNormalization())(o)

o = (UpSampling2D((2, 2)))(o)
o = (concatenate([o, f3]))
o = (ZeroPadding2D((1, 1)))(o)
o = (Conv2D(256, (3, 3), padding='valid', activation='relu'))(o)
o = (BatchNormalization())(o)

o = (UpSampling2D((2, 2)))(o)
o = (concatenate([o, f2]))
o = (ZeroPadding2D((1, 1)))(o)
o = (Conv2D(128, (3, 3), padding='valid' , activation='relu'))(o)
o = (BatchNormalization())(o)

o = (UpSampling2D((2, 2)))(o)

o = (concatenate([o, f1], axis=MERGE_AXIS))

o = (ZeroPadding2D((1, 1)))(o)
o = (Conv2D(64, (3, 3), padding='valid', activation='relu'))(o)
o = (BatchNormalization())(o)

o = Conv2D(n_classes, (3, 3), padding='same')(o)

return o

img_input, levels = get_mobilenet_encoder()

segm_output = get_unet_decoder(levels, n_classes)

depth_output = get_unet_decoder(levels, 1)

output_segm = (Reshape((output_height * output_width, -1)))(output_segm)
output_segm = (Activation('softmax', name="segm_pred"))(output_segm)

output_depth = (Activation('sigmoid', name="depth_pred"))(output_depth)

model = Model(inputs=img_input, outputs=[output_segm, output_depth])

loss_weights = {"depth_pred": 0.5, "segm_pred": 0.5}

model.compile(loss=['categorical_crossentropy', depth_loss_function],
loss_weights=loss_weights,
optimizer="adadelta",
metrics=['accuracy'])

C.2 Driving model - Keras implementation

"""
The model is partly based on these sources:

124 APPENDIX C. MODEL ARCHITECTURES

- "Autonomous Vehicle Control:
End-to-end Learning in Simulated Urban Environments"
by Hege Haavaldsen and Max Aasboe

- https://github.com/divamgupta/image-segmentation-keras
"""
def get_lstm_model(freeze_segmentation: bool, segm_model: str):

hlc_input = Input(shape=(1, 4), name="hlc_input")
info_input = Input(shape=(1, 3), name="info_input")

Load the correct perception model,
either with trainable weights or frozen weights
segmentation_model = get_segmentation_model(segm_model, freeze_segmentation)
[_, height, width, _] = segmentation_model.input.shape.dims
forward_image_input = Input(shape=(1, height.value, width.value, 3),

name="forward_image_input")
x = TimeDistributed(segmentation_model)(forward_image_input)

Based on the vanilla encoder
from https://github.com/divamgupta/image-segmentation-keras
kernel = 3
filter_size = 64
pad = 1
pool_size = 2
x = TimeDistributed(ZeroPadding2D((pad, pad)))(x)
x = TimeDistributed(Conv2D(filter_size, (kernel, kernel),

padding='valid'))(x)
x = TimeDistributed(BatchNormalization())(x)
x = TimeDistributed(Activation('relu'))(x)
x = TimeDistributed(MaxPooling2D((pool_size, pool_size)))(x)

x = TimeDistributed(ZeroPadding2D((pad, pad)))(x)
x = TimeDistributed(Conv2D(128, (kernel, kernel),

padding='valid'))(x)
x = TimeDistributed(BatchNormalization())(x)
x = TimeDistributed(Activation('relu'))(x)
x = TimeDistributed(MaxPooling2D((pool_size, pool_size)))(x)

for _ in range(3):
x = TimeDistributed(ZeroPadding2D((pad, pad)))(x)
x = TimeDistributed(Conv2D(256, (kernel, kernel),

padding='valid'))(x)
x = TimeDistributed(BatchNormalization())(x)
x = TimeDistributed(Activation('relu'))(x)
x = TimeDistributed(MaxPooling2D((pool_size, pool_size)))(x)

x = TimeDistributed(Flatten())(x)
x = concatenate([x, hlc_input, info_input])

x = TimeDistributed(Dense(100, activation="relu"))(x)
x = concatenate([x, hlc_input])

We have a LSTM layer, but the sequence length is always 1
x = CuDNNLSTM(10, return_sequences=False)(x)
hlc_latest = Lambda(lambda x: x[:, -1, :])(hlc_input)
x = concatenate([x, hlc_latest])

steer_pred = Dense(1, activation="relu", name="steer_pred")(x)
target_speed_pred = Dense(1, name="target_speed_pred",

activation="sigmoid")(x)

model = Model(inputs=[forward_image_input, hlc_input, info_input],

C.2. DRIVING MODEL - KERAS IMPLEMENTATION 125

outputs=[steer_pred, target_speed_pred])

return model

Audun W
igum

 Arbo, Even D
alen

D
om

ain-Independent Perception for Autonom
ous D

riving

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Audun Wigum Arbo
Even Dalen

Domain-Independent Perception for
Autonomous Driving

Master’s thesis in Computer Science

Supervisor: Frank Lindseth

June 2020

	Introduction
	Background and motivation
	Goals and research questions
	Contributions
	Report structure

	Background and Related Work
	Theory
	Deep learning
	Image classification
	Object detection
	Segmentation
	Depth estimation
	Data preparation
	Approaches for autonomous driving

	Technology
	Machine learning software
	Simulator
	The SPURV Research vehicle

	Related Work
	ALVINN: An Autonomous Land Vehicle in a Neural Network (1989)
	Off-Road Obstacle Avoidance through End-to-End Learning. (2005)
	End to End Learning for Self-Driving Cars (2016)
	End-to-end Driving via Conditional Imitation Learning (2017)
	Driving Policy Transfer via Modularity and Abstraction (2018)
	Autonomous Vehicle Control: End-to-end Learning in Simulated Urban Environments (2019)
	Multimodal End-to-End Autonomous Driving (2019)
	Urban Driving with Conditional Imitation Learning (2019)

	Methodology
	Perception
	Data collection
	Data preparation
	Architecture
	Evaluation and metrics

	Driving
	Data collection
	Data preparation
	Architecture
	Evaluation and metrics

	Real-world validation

	Experiments and Results
	Experiment 1: Perception model
	Setup
	Experiment 1-1: Encoder-decoder models
	Experiment 1-2: Training data
	Experiment 1-3: Multi-task perception
	Discussion

	Experiment 2: Driving model
	Setup
	Results
	Discussion

	Experiment 3: Real-world validation
	Setup
	Results
	Discussion

	Discussion
	Simulation to real-world domain transfer
	Perception model
	Driving model
	Real-world driving

	Comparison to related work
	Fulfillment of research questions
	Potential shortcomings and reflection

	Conclusion and Future Work
	Conclusion
	Future work

	Bibliography
	CVCS Paper: Autonomous Driving in Simulation using Domain-Independent Perception
	SPURV Pipeline Manual
	Pipeline overview
	Script development
	Automatic deployment to SPURV

	Transferring models - transfer_models.sh
	Running models - run_master_keras_models.py
	Xbox controls

	Collecting data
	Training data collection - steer_and_collect_training_data.py
	Data collection for testing - collect_training_data_only.py

	Model Architectures
	Perception model - Keras implementation
	Driving model - Keras implementation

