
Eivind Lie Andreassen
Autom

atic M
odel Par allelism

 for D
eep Learning

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Eivind Lie Andreassen

Automatic Model Parallelism
for Deep Learning
Using Execution Time Modelling
and Evolutionary Computation
 

Master’s thesis in Computer Science

Supervisors: Keith L. Downing, Arjun Chandra & Lorenzo Cevolani

June 2020

Photo by Mike MacKenzie (cropped by Liam Huang). Source: https://www.flickr.com/photos/chen-meng/49203125457/. Licensed under CC-BY 2.0.





Eivind Lie Andreassen

Automatic Model Parallelism for Deep Learning
Using Execution Time Modelling
and Evolutionary Computation

Master project, spring 2020

Data and Artificial Intelligence Group
Department of Computer Science
Faculty of Information Technology and Electrical Engineering





i

Abstract

Using methods from the field of evolutionary computation combined with an ex-
ecution time simulator for deep neural networks, this project aims to automate
the configuration of model parallel training strategies for deep learning. Recent
years have seen significant advances in the power and utility of deep learning, but
also an increase in the complexity of deployed models, leading to large computa-
tional requirements. Parallelism techniques have become essential, both in order
to reduce training time and to fit the models in the memory of available compu-
tational devices. Applying parallelism to deep learning is non-trivial, but much of
the complexity of the task can be alleviated by applying optimization techniques
such as evolutionary algorithms. Moreover, through the use of a simulation of the
training process, parallel configurations can be found without access to expensive
training hardware, while terminating faster than possible if evaluation runs on real
hardware were to be carried out.

This report presents an execution simulator for neural networks, and two op-
timization algorithms for finding configurations for neural networks – a genetic
algorithm, and a MAP-Elites algorithm. The focus is on solving the device place-
ment problem, in which the individual operations in a neural network are placed
onto a set of devices for model parallel execution. In the experiments, the two
algorithms are shown to outperform a baseline consisting of a hill climbing and
a simulated annealing algorithm. The algorithms are able to find good solutions
across several problem instances, with the optimal solution being found in the
simplest instances.

The impact of the execution simulator is also evaluated through experiments.
These indicate that the execution simulator gives an approximately correct or-
dering of solutions with regards to their quality, indicating that an optimization
process run against the simulator will yield solutions that are valid for application
in the real world.



ii

Sammendrag

Dette prosjektet tar sikte p̊a å automatisk finne modell-parallelle konfigurasjoner
for dype nevrale nettverk ved hjelp av en kombinasjon av evolusjonære algoritmer
og simulering av kjøretid for dyp læring. De siste årene har kraften og nyttever-
dien av dyp læring økt betydelig, men kompleksiteten til modellene har samtidig
økt, noe som har ledet til et stort behov for regnekraft. Dette har gjort paral-
lelliseringsteknikker helt essensielle – b̊ade for å redusere tiden det tar å trene
opp slike modeller, og for å f̊a plass til modellene i hurtigminnet til tilgjengelige
prosesseringsenheter. Bruken av parallellisering for dyp læring er et ikke-trivielt
problem, men mye av denne kompleksiteten kan avlastes ved å benytte moderne
optimeringsteknikker, slik som evolusjonære algoritmer. Videre kan bruken av en
simulering av treningsprosessen muliggjøre en slik prosess uten behov for tilgang
til dyr treningsmaskinvare. Dette vil ogs̊a la prosessen terminere fortere enn hvis
evalueringen skal foreg̊a gjennom testing p̊a den fysiske maskinvaren.

Denne rapporten presenter en kjøretidssimulator for nevrale nettverk, og to
optimeringsalgoritmer som kan finne treningskonfigurasjoner for nevrale nettverk
– en genetisk algoritme, og en MAP-Elites-algoritme. Fokuset er p̊a å løse en-
hetsplasseringsproblemet, som innebærer å plassere individuelle operasjoner fra
et nevralt nettverk p̊a prosesseringsenheter, slik at nettverket kan bli trent i en
modell-parallell konfigurasjon. I eksperimentene gir de to optimeringsalgoritmene
bedre resultater enn et sammenlikningsgrunnlag best̊aende av ”Hill Climbing”-
algoritmen og ”Simulated Annealing”-algoritmen. De evolusjonære algoritmene er
i stand til å finne gode løsninger for en rekke probleminstanser, og finner optimale
løsninger i de enkleste instansene.

P̊avirkningen kjøretidssimulatoren har p̊a løsningene blir ogs̊a evaluert gjennom
eksperimentene. Resultatene indikerer at simulatoren gir en tilnærmet korrekt
sortering av løsningene basert p̊a kjøretid. Dette betyr at en optimeringsprosess
som bruker simulatoren for evaluering av løsninger vil ende opp p̊a en endelig
løsning som er gyldig for bruk i den virkelige verden.



iii

Preface

This master project was carried out at the Norwegian University of Science and
Technology in the spring of 2020, as part of the course TDT4900 – Computer Sci-
ence, Master’s Thesis. It concludes my five-year education in Computer Science.
The project was conducted in collaboration with Graphcore, and was supervised by
professor Keith L. Downing of NTNU, and Arjun Chandra and Lorenzo Cevolani
of Graphcore.

There is no doubt that deep learning has accomplished numerous impressive
feats in the last few years, and it is a highly interesting field of research. I was
therefore never in doubt that I wanted my master’s thesis to touch this field. One
option would be to look into the application of deep learning to a specific problem.
However, what appealed to me about the topic that I ended up writing about, was
how it is an important foundational issue for deep learning, the solution of which
can facilitate improvements within all areas of deep learning research. I also think
it is important to always consider what tools actually fit the task at hand, instead
of using whatever is most popular at the moment, as I think we often tend to do.
The ability to combine the classic discipline of evolutionary computation with the
current public favourite – deep learning – was therefore particularly alluring.

Parallel to this project, the world has faced one of the greatest crises of our time.
A highly contagious virus has spread throughout the globe, paralyzing society in
countries all around the world. In a way, the crisis has made matters such as
education and scientific research seem quite small. At the same time, we have
seen how technology can be a massive aid and enable us to carry on even through
such extreme situations. I am therefore proud to be able to, in a small way, make
a contribution to the advancement of technology.

I would like to thank my supervisors for valued input and guidance. A special
thanks goes to my supervisors at Graphcore for the initial problem proposal, and
for also allowing me to choose my own direction within its boundaries. Thanks
also to family and friends for supporting me throughout the project.

Finally, thank you, who at this point have made it through the first few pages
of my thesis. I hope that you will find the following parts interesting – I very much
enjoyed the work behind them.

Eivind Lie Andreassen
Trondheim, June 12, 2020



iv



Contents

1 Introduction 1

1.1 Goal and Research Questions . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background Theory and Motivation 5

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . 5

2.1.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Data Parallelism . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.4 Model Parallelism . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.5 Evolutionary Computation . . . . . . . . . . . . . . . . . . . 13

2.2 Literature Review Protocol . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Device Placement Optimization . . . . . . . . . . . . . . . . 21

2.3.2 Performance Modelling . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Transfer Learning of Device Placement . . . . . . . . . . . . 23

2.3.4 Evolutionary Computation for Process Scheduling . . . . . . 24

2.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Method and Technology 29

3.1 Execution Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Detailed Description of the Execution Simulator . . . . . . . 30

3.2 Optimization Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Solution Encoding . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.3 MAP-Elites . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 PyTorch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

v



vi CONTENTS

4 Experiments and Results 41
4.1 Experimental Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1 E1 — Influence of Tensor Size on Communication Bandwidth 46
4.3.2 E2 — Stability of batch training times . . . . . . . . . . . . 47
4.3.3 E3 — Comparison of Optimization Algorithms . . . . . . . . 49
4.3.4 E4 — Transfer of Solutions During Optimization . . . . . . 54
4.3.5 E5 — Comparison of Simulation and Benchmarks . . . . . . 60

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Conclusion 67
5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Bibliography 71

Appendices 77

A Additional Experiment Results 79
A.1 E4 — Transfer of Solutions During Training . . . . . . . . . . . . . 79
A.2 E5 — Comparison of Simulation and Benchmarks . . . . . . . . . . 83

A.2.1 AlexNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.2.2 ResNet-50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.2.3 Inception V3 . . . . . . . . . . . . . . . . . . . . . . . . . . 87



List of Figures

2.1 Illustration of a multilayer perceptron neural network. . . . . . . . 6

2.2 Illustration of a 2D convolution, where a kernel is mapped over the
input grid, producing an output grid. In this case, the kernel is a
sharpen operation, commonly used in image processing. The kernel
takes the value of a given pixel and surrounding pixels, multiplies
it by the corresponding weight, and takes the sum of the individual
results to produce a single value. . . . . . . . . . . . . . . . . . . . 8

2.3 Examples of execution timelines of two pipeline configurations of
deep learning on four distinct devices. In both implementations,
stages consisting of consecutive operations in the network are placed
on individual devices. However, the scheduling of computations dif-
fer between the approaches, with the näıve approach only allowing a
single batch of data in the pipeline at any time, while the PipeDream
approach allows as many batches as there are devices in the pipeline
at any given time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 High-level overview of the execution simulator. . . . . . . . . . . . . 31

3.2 Illustration of the solution encoding used by all optimization algo-
rithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Transfer times of tensors of varying size between CPU and GPU
on Malvik and Luke01 servers. Theoretical bandwidth is shown as
horizontal dashed line. . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Average batch time residuals for first experiment run . . . . . . . . 48

4.3 Average batch time residuals for second experiment run, with the
last batch in the data set dropped. . . . . . . . . . . . . . . . . . . 48

4.4 Comparison of optimization algorithms without any restrictions. . . 50

4.5 Comparison of optimization algorithms with memory limited so that
all GPUs must be utilized. . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Comparison of optimization algorithms with four batches allowed
in the system at once. Times are averaged over 10 batches. . . . . 52

vii



viii LIST OF FIGURES

4.7 Event trace of one of the best pipelined placements for the Inception
network. Colours represent operations from individual batches, with
each colour being present in two shades: one for the forward pass,
and one for the backward pass. . . . . . . . . . . . . . . . . . . . . 54

4.8 Optimization of ResNet-50 with limited available memory, with the
population transferred from the simulator to the real hardware at
generation 500. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.9 Comparison of a GA running on real hardware from generation 50
to a GA only using the simulator when optimizing ResNet-50 for a
limited-memory version of Malvik. . . . . . . . . . . . . . . . . . . . 56

4.10 Comparison of a GA running on real hardware from generation 50
to a GA only using the simulator when optimizing ResNet-50 for a
limited-memory version of Malvik. . . . . . . . . . . . . . . . . . . . 57

4.11 Comparison of a genetic algorithm and a MAP-Elites run when
transferred to a server that is already under heavy load at step 20000. 58

4.12 Comparison of a genetic algorithm and a MAP-Elites run when
transferred to a server that is already under heavy load at step 20000. 58

4.13 Comparison of simulated and benchmarked batch times of place-
ments from a genetic algorithm run optimizing device placement
for AlexNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.14 Comparison of simulated and benchmarked batch times of place-
ments from a genetic algorithm run optimizing device placement
for AlexNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.15 Comparison of simulated and benchmarked batch times of place-
ments from a genetic algorithm run optimizing device placement
for ResNet-50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.16 Comparison of simulated and benchmarked batch times of place-
ments from a genetic algorithm run optimizing device placement
for Inception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.17 Scatter plot comparing simulated and benchmarked execution times
for AlexNet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.18 Scatter plot comparing simulated and benchmarked execution times
for ResNet-50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.19 Scatter plot comparing simulated and benchmarked execution times
for Inception V3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.1 Full run of GA optimizing ResNet-50 for Malvik with 50 simulated
and 300 benchmarked generations, including spike in batch time
due to increased load on server around generation 210. . . . . . . . 80



LIST OF FIGURES ix

A.2 Optimization of ResNet-50 on Malvik, optimizing for 1500 gener-
ations against the simulator, and 100 generations against bench-
marked times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.3 Optimization of ResNet-50 on Malvik with limited available mem-
ory, optimizing for 500 generations against the simulator, and 100
generations against benchmarked times. . . . . . . . . . . . . . . . . 81

A.4 Optimization of ResNet-50 on Malvik with limited available mem-
ory, optimizing for 200 generations against the simulator, and 100
generations against benchmarked times. . . . . . . . . . . . . . . . . 81

A.5 Optimization of Inception on Malvik with limited available memory,
optimizing for 200 generations against the simulator, and 100 gener-
ations against benchmarked times. The jump at the transfer point
is larger than for ResNet-50 runs because the numerical accuracy of
the simulator is lower for this network, as observed in Section 4.3.5. 82



x LIST OF FIGURES



List of Tables

4.1 Hardware of the Malvik server . . . . . . . . . . . . . . . . . . . . . 43
4.2 Hardware of the Luke01 server . . . . . . . . . . . . . . . . . . . . . 43
4.3 Parameters for the genetic algorithm . . . . . . . . . . . . . . . . . 45
4.4 Parameters for the MAP-Elites algorithm. For the archive dimen-

sions, −1 means that the dimension was automatically set to be the
same as the number of distinct possible values for this property. . . 45

xi



xii LIST OF TABLES



Chapter 1

Introduction

Recent years have seen many impressive results produced by deep learning meth-
ods. In games such as Go and chess, deep neural networks have advanced to
proficiency levels comparable to or exceeding that of humans [Silver et al., 2016,
2017]. Deep learning models are able to accurately recognize the content of images
and the words of human speech [He et al., 2016; Synnaeve et al., 2019]. However,
the models used in these applications are massive in both size and complexity,
leading to immense computational costs. The training process of neural networks
may stretch over several days, and the models often do not fit into the memory of
any single computational device. Furthermore, the requirements of deep learning
currently grows at a higher rate than advances in hardware technology.

In order to meet the requirements of deep learning, multiple computational de-
vices must be utilized simultaneously. In general, there are two different methods
for doing this. Data parallelism performs the same type of computation on all
devices, but with each device processing different data. Conversely, model paral-
lelism splits the model across devices, with each device performing parts of the
total calculation. Data parallelism can greatly reduce the execution time of the
training process, but since the entire model is replicated across all devices, it does
not reduce the memory consumption on a single device. Consequently, model par-
allelism is the only option when the memory of any single device is insufficient to
hold the entire model.

The task of finding the right model parallel training configuration for a large
neural network is a non-trivial one. Moreover, it is often desirable to combine
model and data parallelism in order to exploit the advantages of both, further
increasing the complexity of the task. This leads to a need for significant experience
in order to solve this task effectively, hurting the accessibility of this type of models.
In addition, this task expends valuable time that could otherwise be put towards
improving the model itself.

Modern optimization methods can be utilized to automate this task. Previous

1



2 CHAPTER 1. INTRODUCTION

works have applied both reinforcement learning [Mirhoseini et al., 2017; Addanki
et al., 2019] and dynamic programming [Jia et al., 2018a] to this end. Other op-
timization methods such as evolutionary algorithms should be equally applicable.
The automation of this task frees up time for the deep learning experts that can
be put towards other tasks. Conceivably, such automated systems may also be
able to discover non-trivial solutions that can provide additional speed-ups over
expert placements.

Optimization algorithms rely on frequent evaluation of an objective function –
in this case, the execution time of a given network configuration. Using end-to-end
benchmarking of a neural network for this purpose requires significant amounts of
time – even if only running for a few training steps. Improving the speed of a
single evaluation can lead to a substantial speed-up of the process as a whole. One
method for improving the evaluation time is through the introduction of a model
of the network execution time [Jia et al., 2018b; Addanki et al., 2019]. By using
such a model for evaluations instead of benchmarks, the time until convergence
for the optimization process can be drastically reduced.

1.1 Goal and Research Questions

There are clear advantages to automating the process of distributing operations of
a neural network over multiple devices. I call this problem the device placement
problem, inspired by the terminology established by Mirhoseini et al. [2017]. Pre-
vious approaches have largely focused on the application of reinforcement learning
to this problem, but evolutionary computation has previously been successfully
applied to similar problems. For this project, a genetic algorithm and a MAP-
Elites algorithm was implemented, and the evaluation of these algorithms form
the first part of the research goal.

An execution simulator was also implemented. The application of such a sim-
ulator when solving the device placement problem can yield significant speed-ups.
However, if this has a large negative impact on the final solutions produced through
the optimization, the use of this simulator may not be justifiable. Evaluating the
impact of the execution simulator was therefore a crucial task.

Combining these two factors, the overall goal of the project was as follows:

Goal Evaluating the performance of two simulation-based evolutionary algorithms
for optimizing device placement of deep neural network, and the impact of
the simulator on produced solutions.

The first research question formalizes the evaluation of the optimization meth-
ods. There are two main properties of an optimization algorithm that need to be
considered: how good the solutions it produces are, and how much computation



1.2. RESEARCH METHOD 3

is needed to arrive at these solutions. Since a simulator was used in this project,
securing an efficient process, it was decided that the quality of the solutions was
the most important factor. However, in order to ensure a fair comparison, the
available computation time must be equal for all methods. The evaluation must
also be performed against some baseline. In this project, this baseline consisted of
a combination of two simple optimization methods – hill climbing and simulated
annealing – and, when available, trivial solutions to the problem.

Research Question 1 How does the performance of the genetic algorithm and
the MAP-Elites algorithm compare to a simple baseline of trivial solutions
and classic optimization methods, with respect to the quality of solutions
produced within a fixed amount of computational time?

The second research question formalizes the evaluation of the execution sim-
ulator. The execution simulator was only meant to be used in the optimization
process itself, and therefore the strict accuracy of the simulator was secondary. The
primary measurement for the viability of the execution simulator was its ability
to facilitate the production of good solutions to the device placement problem. It
was therefore most important to determine its impact on the quality of solutions.

Research Question 2 How does the use of an execution simulator influence the
quality of device placements proposed by an algorithm that uses simulated run
time as an objective function during optimization?

1.2 Research Method

This project used an experimental, empirical approach to research. Prototypical
implementations were made of proposed methods, and experiments based on test
runs and calculations of suitable metrics formed the basis for evaluation of the
methods. Whenever possible, multiple test runs were performed for each exper-
imental configuration, allowing statistical analysis of the results, and decreasing
the impact of random fluctuations in performance. However, due to the nature of
the methods and problem, some experiments were so computationally expensive
that they by necessity had to be limited to a smaller number of runs. In such
cases, qualitative evaluation became essential.

Practical experiments provide good data on how the methods perform when
applied to real problems. Additionally, evolutionary algorithms do not lend them-
selves to theoretical analysis. Therefore, empirical evaluation was the only appli-
cable option.



4 CHAPTER 1. INTRODUCTION

1.3 Contributions

The contributions of this paper are an execution simulator for neural networks,
building on previous efforts by Qi et al. [2016] and Addanki et al. [2019], along
with the evaluation of two evolutionary algorithms for solving the device placement
problem. The simulator supports the estimation of run time for any device place-
ment of a given neural network on a given device configuration, without requiring
access to the hardware itself. Furthermore, it does so at a fraction of the time
required for benchmarking the real execution time. Together, these components
form a novel system for solving the device placement problem.

1.4 Thesis Structure

The rest of this thesis is structured as follows. Chapter 2 goes into the background
for the thesis. An overview of concepts that are important for understanding
the rest of the report is given in Section 2.1. Section 2.2 contains the protocol
outlining the process of the literature review, while Section 2.3 presents related
work. Section 2.4 gives the motivation for this project, based on the concepts
introduced in the preceding sections.

Chapter 3 presents the system developed in this project, and relevant tech-
nologies that have been used. Section 3.1 presents the execution simulator, while
Section 3.2 presents the genetic algorithm and the MAP-Elites algorithm that
have been implemented for solving the device placement problem. Section 3.3
gives a brief overview of PyTorch, which is the deep learning framework used for
benchmarking neural networks on real hardware. Finally, Section 3.4 gives a short
summary of the chapter.

Chapter 4 contains the presentation of the experiments that have been carried
out in order to evaluate the system, along with the presentation and analysis of
their results. Section 4.1 gives an overview of the experimental plan and an outline
of each experiment, while Section 4.2 goes into details about the experimental setup
that is shared across experiments. Section 4.3 then gives a detailed description of
each individual experiment, along with its results and their analysis. Section 4.4
summarizes the experiments chapter.

Chapter 5 concludes the report. Section 5.1 contains the discussion, while
Section 5.2 summarizes the contributions of this report. Finally, Section 5.3 gives
an outline of possible directions for future research.



Chapter 2

Background Theory and
Motivation

This section goes into the background theory necessary for understanding this
thesis, and earlier work that has been done within the fields of automatic device
placement and distribution strategies for deep learning, execution modelling of
deep neural networks, and evolutionary computation for process scheduling prob-
lems. Section 2.1 explains some important background concepts necessary for the
understanding of the rest of the thesis. Section 2.2 contains the review proto-
col, explaining how the sources for the related work were discovered. Section 2.3
presents the most relevant related work in the field. Section 2.4 motivates the
work done for this thesis, with a basis in the background theory and related work
presented in the preceding sections.

A literature review was carried out in the project preceding this thesis [An-
dreassen, 2019]. This chapter contains an amended version of the corresponding
chapter from that report. In particular, a section describing related work in the
field of using evolutionary computation for process scheduling has been added.

2.1 Background

2.1.1 Artificial Neural Networks

An artificial neural networks is a type of model inspired by the human brain, con-
sisting of a network of interconnected neurons. In their simplest form, each of
these neurons is a linear combination of its inputs and a set of associated weights.
By changing the weights of the neuron, the contribution of each input to the out-
put can be controlled, thus modifying the behaviour of the model. In order to
introduce some non-linearity to the model, increasing its predictive power, an ac-

5



6 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

tivation function is typically applied to the aggregated output of a neuron. Due
to the process used for training neural networks, this function needs to be dif-
ferentiable. A popular choice has historically been sigmoid functions such as the
logistic function:

f(x) =
1

1 + ex
. (2.1)

In recent years, the simpler rectified linear unit (ReLU) has become the domi-
nant activation function:

f(x) = max(0, x) (2.2)

The linear combination of weights and inputs, and the non-linear activation
function together constitute a single neuron. [Mitchell, 1997, pp. 81-95]

Figure 2.1: Illustration of a multilayer perceptron neural network.

In order to increase the power of the model, allowing it to represent a larger
variety of functions, neurons are arranged in networks called multilayer percep-
trons (MLP), as shown in Figure 2.1. Multilayer perceptrons are often also called
feed-forward networks, as the data flows in one direction through the network, or
fully connected networks, since all layers use all the outputs from the previous
layer. An individual layer in such a network is often called a densely connected or
simply dense layer, since it is connected to all the neurons in the previous layer.
[Goodfellow et al., 2016, pp. 164-167]

Neural networks are normally optimized using a process called gradient descent.
The intuition behind this method is that we can follow a path in the steepest
downward direction towards a minimum in our error space. Mathematically, this
is defined as going in the reverse direction of the gradient of the error with regards



2.1. BACKGROUND 7

to the parameters that we want to update, which in this case are the trainable
weights of our neural network model. If the gradients for the entire error space
could be calculated, a minimum could be found analytically. In practice, this is
not possible, and instead the gradients are calculated and the weights updated
using what is called the backpropagation algorithm. This entails a forward and
a backward pass through the network. In the forward pass, the inputs for the
given training sample are fed into the network, and the outputs of each neuron are
calculated, all the way to the output layer. In the backward pass, the chain rule
for differentiation is repeatedly applied using the calculated outputs (often called
activations) of each neuron in order to calculate the gradients. Once the gradients
for the relevant inputs are calculated, a small step is taken in the direction opposing
the gradient of each trainable parameter, and the process is repeated. [Mitchell,
1997, pp. 95-100]

Originally, the entire available data set would be used to calculate the gradients
for each training step. However, this is computationally expensive for large data
sets. Moreover, this method has proven to be susceptible to getting stuck in local
minima. Instead, a smaller fraction of the total data set is used to calculate
the gradients for each training step. This is called stochastic gradient descent,
since we no longer follow the true gradient, but an approximation, introducing
some stochasticity. This stochasticity enables the algorithm to get out of some
local minima, in addition to being much faster to execute, since a much smaller
amount of data is used for each training step. The extreme variant of stochastic
gradient descent is using only a single training sample for each step. This is rarely
used; instead, we rely on minibatch stochastic gradient descent. Minibatches,
often only called batches, are subsets of the training data that are used for each
step, providing a balance between extreme stochastic gradient descent and the
deterministic variant. [Mitchell, 1997, pp. 92-93]

Most operations used in neural networks can be defined as operations on ma-
trices or their generalization: tensors. For instance, the functionality of a single
simple neuron can be written as a matrix multiplication combined with an element-
wise application of the activation function. All such operations can be generalized
to operations on tensors, where minibatches can be included as one of the dimen-
sions of the tensor. This allows the representation of an entire training step on the
network as iteratively applying a set of operators on tensors. These operations and
intermediate tensors are often collected in computational graphs, where each node
is an operation, and each edge represents the flow of tensors between operations.
This representation has multiple advantages. Firstly, such tensor operations are
easily mapped to modern GPUs, providing access to accelerated execution. Sec-
ondly, such a graph allows simple distribution of computation between multiple
devices. [Goodfellow et al., 2016, pp. 205-210]



8 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

Figure 2.2: Illustration of a 2D convolution, where a kernel is mapped over the
input grid, producing an output grid. In this case, the kernel is a sharpen oper-
ation, commonly used in image processing. The kernel takes the value of a given
pixel and surrounding pixels, multiplies it by the corresponding weight, and takes
the sum of the individual results to produce a single value.

2.1.2 Deep Learning

Deep learning is a special class of machine learning methods based on artificial
neural networks. Deep learning entails the use of artificial neural networks that are
considered ”deep” — typically with more than one hidden layer (or equivalently,
with more than three layers in total). One application of deep learning is to simply
increase the expressive power of classic feed-forward neural networks. However, the
direction of deep learning that has recently received the most attention in research
and practical applications is the use of more specialized layers. This allows a
neural network to automatically discover good features as part of training. Two
popular examples are convolutional neural networks (CNNs), which excel at image
recognition, and recurrent neural networks (RNNs), which are good at recognizing
patterns that develop over time, such as in speech recognition.

Convolutional neural networks introduce convolutional layers that map a ker-
nel over all input values, as illustrated in Figure 2.2. The same kernel is used
to produce outputs from all input values. The figure shows a 2D convolution,



2.1. BACKGROUND 9

but in principle, any dimensionality is possible, as long as it corresponds to the
dimensions of the input data. 2D convolutions are well known from the field of
image processing, with specific kernels available for operations such as sharpening,
blurring, and edge detection. When used in a convolutional network, however,
the weights of the kernel are trainable parameters. This enables a convolutional
network to produce features from the raw input values that will aid it in the clas-
sification task, removing the need for expert-generated features. Typically, several
kernels are combined in a single convolutional layer to produce multiple outputs.
[Goodfellow et al., 2016, pp. 330-334]

An important characteristic of convolutional layers is their ability to offer trans-
lational invariance; that is, the positioning of a given element in an image does not
affect the model’s ability to classify it correctly. This is achieved in part because
the same parameters are used for the entire input. However, another mechanism
that helps achieve this is pooling layers, which are often applied directly after
convolutional layers. Pooling layers map a kernel over the input in a similar way
to a convolutional layer, and produce an aggregated result. The aggregate can
be either the maximum or minimum value, or the average. Using the maximum
value, producing what is called max-pooling, is the most common.

The recurrent neural network is a different type of specialized deep neural
network. Such networks are fed with sequential data, and have mechanisms for
saving the values of previous outputs in the network. Such mechanisms come in
the form of backwards connections in the network, and explicit memory struc-
tures in individual neurons that can be controlled by the networks. Recurrent
neural networks excel at applications where temporal relations are important, and
have been successfully applied to fields such as speech recognition and machine
translation. [Goodfellow et al., 2016, pp. 373-420]

Deep learning typically requires massive amounts of data and processing power.
The increase in the number of layers massively expands the number of trained
parameters. This sets high requirements for the availability of memory and com-
putational power. Moreover, the current trends in machine learning are towards
progressively larger models, with a state-of-the-art CNN having upwards of 101
layers and ∼829M parameters [Mahajan et al., 2018], and a state of the art RNN
having ∼1.5B parameters [Radford et al., 2019].

2.1.3 Data Parallelism

The massive computational requirements of deep learning necessitates techniques
for distributing the load over multiple devices. Data parallelism is one such tech-
nique. When using data parallelism, the entire model is replicated across multiple
computational devices. Each device processes part of the total input data, carrying
out both forward and backward passes. This allows large parts of the computa-



10 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

tional load to be parallelized, and provides good load balancing, since all devices
carry out the same amount of computation.

During training, the parameters of the network are updated in order to improve
the predictions made by the network. In order to maintain the same network on
all devices, a synchronization technique is therefore required. This technique can
be either centralized or decentralized. In the centralized case, a single parameter
server is responsible for all updates on trainable parameters, and individual workers
send gradients and fetch updated parameters from this server. In the decentralized
case, all workers must exchange gradients so that these can be aggregated and
applied in a parameter update by each worker, ensuring that all workers carry out
an equal update of the parameters.

In both cases, significant amounts of communication is required. This can con-
stitute a serious overhead, and reduce the utilization of individual devices as they
are required to wait for communication to complete. Due to this issue, data par-
allelism is most efficient for sparsely connected architectures or architectures with
a significant computational load, leading to the speed-up in computations out-
weighing the overhead introduced by communication. An example of a sparsely
connected architecture is the two-tower version of AlexNet [Krizhevsky et al.,
2012], where the initial inputs are fed into two branches with a series of convo-
lutional operations trained on separate GPUs, with the outputs of the branches
only combined in the last couple of layers. This allows the network to train on two
devices while minimizing communication.

The size of modern deep neural networks does not only constitute a computa-
tional obstacle — the size of parameters and activations may also be so large that
the network does not fit into the memory of a single device. Since data parallelism
replicates the entire network across all devices, it does not solve this problem.

2.1.4 Model Parallelism

Model parallelism is another technique for distributing a neural network over mul-
tiple devices. When model parallelism is applied, each device executes a separate
part of the model from all the other devices. Examples include distributions of
the layers of a network, the neurons of a single densely connected layer, or dif-
ferent kernels in a convolutional layer, across multiple devices. Parallelizing over
more domain-specific dimensions such as the width or height of an image in a
convolutional layer is also possible.

As with data parallelism, communication overheads can significantly increase
the execution time of the network when using model parallelism. However, un-
like data parallelism, the manner in which the network is parallelized can deeply
impact this overhead when using model parallelism. This is due to the difference
in number of connections and size of transferred data between different parts of



2.1. BACKGROUND 11

the network. Therefore, utilizing model parallelism requires knowledge about the
network architecture in order to determine suitable dimensions for parallelism.
Applying model parallelism is therefore often more complicated than using data
parallelism.

Since the network itself is distributed between devices when using model par-
allelism, the memory consumption on each individual device is reduced. Model
parallelism can thus solve the problem of models growing too large to fit onto a
single device. Typically, this has been the reason for applying model parallelism,
with data parallelism being preferred when the goal is a computational speed-up.

Pipeline Parallelism

Pipeline parallelism is a special case of model parallelism that has gained some
attention in recent years. When using pipeline parallelism, the model is divided
into multiple stages consisting of consecutive layers, with each stage mapped to a
separate GPU. This creates a pipeline, similar to the execution of different tasks
in a modern CPU. In the trivial case, with a single batch of data being handled by
the network at any given time, as shown in Figure 2.3a, this is slower than using a
single GPU. At any given time, only a single GPU will be executing, with all other
GPUs waiting for the data required for them to execute their part of the network.
Moreover, the distribution of the network between devices adds communication to
the process.

However, if multiple batches are allowed to be executed at once, different de-
vices can process different batches at the same time, allowing for true parallelism.
This is shown in Figure 2.3b, which visualizes the execution of pipeline parallelism
in the PipeDream system [Harlap et al., 2018]. In this case, the network is dis-
tributed across four devices, and a maximum number of four batches are allowed
in the system at any given time. As can be seen, after an initialization phase,
a degree of parallelism of four is achieved, providing full utilization of devices.
Furthermore, computation and communication can be overlapped, reducing the
impact of communication times.

Pipeline parallelism is a fairly complicated technique. Careful scheduling of
batches is required in order to achieve good utilization of resources. Moreover,
since multiple batches are being executed at the same time, trainable parameters
must be versioned in order to ensure that forward and backward passes are car-
ried out using the same weights. This also means that many of the calculations
in the network will be carried out using stale weights, impacting the output of
the optimization process. Consequently, when using pipeline parallelism, the final
result of the training process is not necessarily the same as if no parallelism was
applied. Finally, the saving of versioned weights considerably increases the mem-
ory requirements of the training process. This means that pipeline parallelism is



12 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

(a) A näıve pipeline implementation for a deep learning task. A sin-
gle batch is processed, completing both forward and backward passes,
before a new batch is started. Notice how there is no real parallelism
here, and there is a huge under-utilization of resources.

(b) A more advanced pipeline strategy taken from the PipeDream sys-
tem [Harlap et al., 2018]. Notice how after the system has reached
steady state, all devices are being utilized at the same time, with a
degree of parallelism equal to the number of devices.

Figure 2.3: Examples of execution timelines of two pipeline configurations of deep
learning on four distinct devices. In both implementations, stages consisting of
consecutive operations in the network are placed on individual devices. However,
the scheduling of computations differ between the approaches, with the näıve ap-
proach only allowing a single batch of data in the pipeline at any time, while the
PipeDream approach allows as many batches as there are devices in the pipeline
at any given time.



2.1. BACKGROUND 13

unsuitable when the problem is models being too large for device memory, but it
is an option for increasing the throughput of the training process.

2.1.5 Evolutionary Computation

Evolutionary computation – also called evolutionary algorithms – is a category
of optimization algorithms inspired by natural evolution. It can be considered a
framework into which several algorithms fit – notably also some classic algorithms
that are not directly inspired by evolution, such as hill climbing and simulated
annealing. Evolutionary algorithms iteratively improve a solution or set of so-
lutions by for each step creating variations of the solutions and evaluating their
performance. The main components of an evolutionary algorithm are:

• representation

• evaluation function

• population

• parent selection mechanism

• variation operators

• survivor selection mechanisms.

The representation specifies how candidate solutions should be defined in the
algorithm. The evaluation function provides the means through which the quality
of any given solution is evaluated. The population contains the candidate solu-
tion(s) at any given step in the algorithm run. The variation operators specify how
new solutions are produced from the existing solutions. These may take a single
or multiple parent solution(s) as input. The former is often called mutation, while
the latter is usually called crossover. Finally, parent and survivor selection mech-
anisms determine which solutions form the input to the variation operators, and
which outputs from the variation operators should be accepted into the population,
respectively. [Eiben et al., 2015, pp. 25-34]

Hill Climbing

Hill climbing is a simple local search optimization algorithm. Algorithm 1 shows
pseudo-code for hill climbing, with the problem formulated as a maximization
problem. It starts from a single initial solution, and continually considers neigh-
bouring solutions. Any time a better solution is found, this solution is accepted as
the new solution, and the neighbours of this solution are then similarly evaluated.



14 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

Random hill climbing, in which a random neighbour is selected at each step, fits
into the evolutionary computation framework with a population size of one, ran-
dom mutation as the only variational operator, deterministic selection of the only
solution in the population as parent, and deterministic selection of the best of the
new candidate and existing solution as survivor selection. There are also other
variations of the hill climbing algorithm, such as steepest-ascent hill climbing, in
which all neighbours are evaluated at each step, with the best neighbour being
selected. [Russell and Norvig, 2016, pp. 122-125]

Algorithm 1: Random Hill Climbing

Result: locally optimal solution s
1 s← generate random solution
2 f ← evaluate s using evaluation function
3 for N iterations do
4 s1 ← pick a random neighbour of s
5 f1 ← evaluate s1 using evaluation function
6 if f1 > f then
7 s← s1

8 f ← f1

9 end

10 end

In a convex space, the hill-climbing algorithm is guaranteed to find the op-
timal solution. However, in solution spaces with local optima, the hill-climbing
algorithm is prone to getting stuck in these. Nevertheless, it is a simple algorithm
to implement, and is often used as a baseline for optimization problems.

The behaviour of the hill climbing algorithm is largely deterministic, with only
the initial solution and the order in which neighbours are considered being random,
and it does not have any tweakable hyperparameters.

Simulated Annealing

Simulated annealing can be seen as an improved hill climbing algorithm. As dis-
cussed above, the hill climbing algorithm is prone to getting stuck in local optima,
since it never accepts a solution that is worse than the current solution. Simu-
lated annealing will accept any evaluated neighbour solution that is better than
the current one, just as in hill climbing. However, it will also have a small chance
of selecting the neighbour solution even if it has a worse score than the current
solution. In the evolutionary computation framework, this change in the survivor
selection mechanism is the only difference between hill climbing and simulated
annealing. Algorithm 2 shows pseudo-code for the simulated annealing algorithm,



2.1. BACKGROUND 15

with the problem formulated as a minimization problem.

Algorithm 2: Simulated Annealing

Data: temperature schedule T
Result: solution s

1 s← generate random solution
2 f ← evaluate s using evaluation function
3 for N iterations do
4 s1 ← pick a random neighbour of s
5 f1 ← evaluate s1 using evaluation function
6 ∆E ← f1 − f
7 r ← select a random number between 0 and 1
8 T1 ← use T to calculate current temperature
9 if f1 < f OR r < 1

1+exp ( ∆E
T1

)
then

10 s← s1

11 f ← f1

12 end

13 end

The probability of selecting a worse solution is given by a selection function,
which takes into account how much worse the new solution is, together with a
temperature parameter T1. In Algorithm 2, the following selection function is
used:

P =
1

1 + exp (∆E
T1

)
, (2.3)

where P is the probability of selecting the new solution, ∆E = new score-
old score is the difference between the score of the old and new solution, and T1

is the temperature. A cooling schedule T is typically applied to T1, lowering its
value as the optimization process progresses. Consequently, the algorithm will
move more randomly in the initial stages of the run, while in later stages it will
move more determinedly towards the nearest optimum. This process is inspired
by the natural process of annealing, in which metal or glass is heated to high
temperatures, and then gradually allowed to cool. [Russell and Norvig, 2016, p.
125]

The main parameter of simulated annealing is the temperature and cooling
schedule, determining the amount of stochasticity in the search.

Genetic Algorithms

The genetic algorithm is a typical evolutionary algorithm. As opposed to the
hill climbing and simulated annealing algorithms, the genetic algorithm evolves



16 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

a population of several candidate solutions. Usually, both parent and survivor
selection mechanisms are applied, and for the variational operators, both crossover
and mutation are used. The population consists of encoded solutions, named the
genotypes, that can be decoded into the actual solutions, named the phenotypes.

Algorithm 3: Genetic Algorithm

Data: population size q, mutation rate m, crossover rate c, elite size e,
generations N

Result: approximately optimal solution s
1 P ← initialize a population of size q
2 for N generations do
3 evaluate and rank P
4 E ← select the e best solutions from P
5 S ← select q · c individuals from P for reproduction
6 S ← S ∪ E
7 C ← apply crossover to pairs of individuals from S to produce offspring
8 apply mutation to the individuals in C using the mutation rate m
9 P ← select q − e survivors from P ∪ C

10 P ← P ∪ E
11 end
12 s← the best individual in P

Algorithm 3 shows an implementation of a genetic algorithm with elitism, which
means that the best solutions of each generation are always carried over to the
next. The first step is the generation of the initial population. This can be done
randomly, through the application of domain-specific heuristics, or with trivial
solutions. Evolution is then performed through iterative application of the genetic
operations.

For each generation, the current population is evaluated and ranked according
to the evaluation function. The set of parents for crossover are then selected based
on the parent selection mechanism. An elite consisting of the e best solutions is
also determined, and added to the set of parents. The parents are arranged into
pairs.

Next, crossover is applied to each pair of parents, producing a pair of offspring.
A variety of crossover operations exist, and it can be tailored to implement domain-
specific heuristics. However, two normal variants are single-point crossover, in
which both parents are split at a randomly selected point and the tails exchanged,
or uniform, in which each gene is randomly assigned to one or the other of the
offspring. There also exists a variation of single-point crossover named n-point
crossover, in which multiple crossover points are selected. The crossover operation
builds on the idea that certain features of candidate solutions may be beneficial,
and that these can be combined through the combination of the parents. As



2.1. BACKGROUND 17

such, it should be constructed so that it facilitates the transfer of good properties
between candidates.

After the crossover is finished, mutation is applied to the offspring. As with
crossover, there are a number of different mutation types, and they may be domain
specific. However, a typical implementation is the random selection of a new value
for each gene with probability m. Mutation is usually applied in order to increase
the diversity of explored solutions, counteracting premature convergence.

Finally, after the variational operations are applied, the survivor selection
mechanism determines which of the candidates are carried over into the next gen-
eration. With elitism, the elite is guaranteed to be included, and the selection
mechanism therefore selects q − e of the candidates.

The selection mechanisms are usually either rank-based, where sampling is
performed based on a distribution over the candidates in order of their fitness, or
tournament-based, in which the best candidate from a group of randomly sampled
candidates are selected. It is also possible to apply fitness-proportionate selection,
where the distribution is directly based on the fitness score of the candidates.

Genetic algorithms can be implemented in a variety of different versions, with
the addition or removal of certain features. One notable example is elitism, as
applied in the implementation explained above. Some implementations also use
either just crossover or just mutation. However, the general structure of the algo-
rithms are similar.

Important parameters in a genetic algorithm are the population size, crossover
and mutation rates, and if elitism is applied, the elite size. In addition, the geno-
type representation is important, as it determines how the crossover and mutation
operations will impact the solution, and how much of the real solution space is
reachable by the algorithm.



18 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

2.2 Literature Review Protocol

With the goal and research questions in mind, a set of inclusion criteria that
would identify relevant papers was formulated. The main concerns of the thesis
can be split into two categories: automating device placement for deep learning,
and modelling the performance of deep neural network. However, the field of
automated device placement is still quite young and small, and to the best of my
knowledge, little work has been done on applying evolutionary computation to this
problem. Therefore, work done on applying evolutionary computation to process
scheduling, and specifically multiprocessor scheduling, which is a highly related
field for which evolutionary computation has been successfully applied, was also
included.

The inclusion criteria were as follows:

Inclusion Criteria

IC1 The main concern of the paper is one of: 1. the automation of training
configuration for deep learning, 2. the use of evolutionary computation for
multiprocessor scheduling, or 3. performance modelling of deep neural net-
works.

IC2 The paper is from a primary study.

IC3 The paper presents a novel method, or a novel variation of a previously
published method.

In addition to evaluating the relevance of the papers using the inclusion criteria,
the quality of the papers was evaluated against the following quality criteria:

Quality Criteria

QC1 There is a clear statement of the aim of the research.

QC2 The study is put into the context of other research.

QC3 System and algorithm design decisions are justified.

QC4 Where applicable, the test data set is reproducible.

QC5 The study algorithm is reproducible.

QC6 The experimental procedure is thoroughly explained and reproducible.

QC7 It is clearly stated in the study what other algorithms or methods the algo-
rithm(s) or method(s) of the study have been compared with.



2.2. LITERATURE REVIEW PROTOCOL 19

QC8 The performance metrics used in the study are explained and justified.

QC9 The test results are thoroughly analysed.

QC10 The test evidence supports the findings that are presented in the paper.

The criteria were individually and qualitatively applied to each paper, with pa-
pers deemed of insufficient quality being excluded from the background literature.

This master’s project is based on an initial proposal provided by the super-
visors from Graphcore, along with which a set of relevant papers were provided.
From these, the papers Device Placement Optimization with Reinforcement Learn-
ing [Mirhoseini et al., 2017] and Beyond Data and Model Parallelization for Deep
Neural Networks [Jia et al., 2018b] were included. Especially the paper by Mirho-
seini et al. proved to be an important formative paper for the field of automatic
device placement. Therefore, papers citing this paper were considered for inclu-
sion.

The search for papers citing Mirhoseini et al. [2017] was carried out using
Google Scholar. From this set of papers, the papers A Hierarchical Model for De-
vice Placement [Mirhoseini et al., 2018], Spotlight: Optimizing Device Placement
for Training Deep Neural Networks [Gao et al., 2018], Placeto: Learning Gener-
alizable Device Placement Algorithms for Distributed Machine Learning [Addanki
et al., 2019], GDP: Generalized Device Placement for Dataflow Graphs [Zhou et al.,
2019], and Simulating Performance of ML Systems with Offline Profiling [Huang
et al., 2020] were included.

Many of the papers mentioned until now use reinforcement learning. However,
the application of evolutionary computation to the device placement problem was
considered equally relevant, and became a chosen focus of this project. Searches
were therefore conducted in Google Scholar for ”device placement evolutionary
computation” and ”device placement evolutionary algorithms”, yielding no rele-
vant results. This indicates that the application of evolutionary computation to
this problem is largely unexplored.

The search was then expanded to include applications of evolutionary compu-
tation to similar problems, as reflected in IC1. Since this is a field in which a lot
of work has been done, the search was constrained to the application of genetic
algorithms to the problem, as the genetic algorithm had been chosen as the main
candidate for this project. A search was conducted in Google Scholar for ”ge-
netic algorithm multiprocessor scheduling”. From the results of this search, the
papers A Genetic Algorithm for Multiprocessor Scheduling [Hou et al., 1994], An
Incremental Genetic Algorithm Approach to Multiprocessor Scheduling [Wu et al.,
2004], and Scheduling Multiprocessor Tasks with Genetic Algorithms [Corrêa et al.,
1999] were included.



20 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

Parallel to the master project, I participated in a course on evolutionary com-
putation, wherein the MAP-elites algorithm was discussed. This algorithm was
deemed a relevant candidate for this project, due to its ability to produce multi-
ple diverse solutions of good quality. The algorithm was introduced in the paper
Illuminating search spaces by mapping elites [Mouret and Clune, 2015], which has
been included as related work.



2.3. RELATED WORK 21

2.3 Related Work

In this section, the main works in fields relating to this project are presented. The
works are coarsely grouped according to the main topics of the papers, with Sec-
tion 2.3.1 presenting works that explore automated solutions to the device place-
ment problem, Section 2.3.2 looking at papers that explore performance modelling
of deep neural networks, Section 2.3.3 presenting papers that explore the trans-
fer of device placement policies to networks that were excluded from the training
set, and Section 2.3.4 presenting work done on the application of evolutionary
computation to the related multiprocessor scheduling problem. However, there is
significant overlap between the groups.

2.3.1 Device Placement Optimization

Mirhoseini et al. [2017] introduced the use of reinforcement learning for auto-
mated optimization of device placement for a computational graph. They used a
sequence-to-sequence recurrent neural network to encode placement of a set of op-
eration groups on a set of devices. The execution time of the produced placement,
as evaluated by training the placement for a few steps on the actual hardware,
was used as a reward signal, and the network was trained using the REINFORCE
policy gradient method [Williams, 1992]. Since this method becomes prohibitively
expensive when the number of operations is large, operations were manually placed
in co-location groups based on a set of heuristics. The authors reported speed-ups
of up to 23.5% over expert-designed placements on a set of well-known models.
However, the time required to create the placement was significant. Moreover, the
use of manually-created co-location groupings limited the effective search space. I
will refer to this method as ColocRL.

Building on ColocRL, Mirhoseini et al. [2018] introduced an extra network to
the model, creating a hierarchical approach. The new network was a feed forward
network that learnt effective groupings of operations, removing the need for man-
ually created co-location groups. Embeddings for each group were then created
and passed into a sequence-to-sequence RNN similar to the one used in ColocRL.
The networks were jointly trained using REINFORCE. Experiments showed that
the hierarchical model performed at least as well as expert-designed placement
on all but one network architecture. Moreover, the hierarchical approach outper-
formed ColocRL on the same network trained on a set of slower processors than
the ones used by ColocRL. However, the method still required running the net-
work on the actual hardware for each evaluated placement, binding up valuable
computation time. I will refer to the method introduced in [Mirhoseini et al., 2018]
as HierarchicalRL.

Gao et al. [2018] also built on the work done with ColocRL, focusing on improv-



22 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

ing it by applying proximal policy optimization, which is a newer reinforcement
learning algorithm than the REINFORCE algorithm used in the earlier paper.
Another contribution was a mathematical formulation of the device placement
problems as a Markov decision problem, which in turn allowed the authors to offer
a proof of guaranteed improvements in the device placement problem. Building
on the mathematical foundations, they presented the Spotlight algorithm, which
iteratively maximized the performance lower bound of the device placement. The
algorithm used co-location groupings created with the same heuristics as ColocRL.
The experiments showed an improved execution time of the placements produced
by Spotlight when compared with both expert placements, placements produced
by a graph partitioning algorithm combined with a cost model for execution time,
and placements produced by ColocRL.

2.3.2 Performance Modelling

A problem with an end-to-end approach for finding efficient training configurations
is the substantial amount of time required in order to evaluate each proposed con-
figuration. Jia et al. [2018a] introduced a modelling approach in order to alleviate
this problem. The algorithm took a computational graph and a device graph as in-
put, and produced an assignment of operations to devices. Evaluation was carried
out by benchmarking individual operations on the different devices, and simulat-
ing data transfer between devices by using the bandwidth of the interconnects. A
dynamic programming approach was used to find an optimal solution given the
simulated run-time costs. Another contribution of the paper was the introduction
of a more comprehensive search space, allowing parallelization of individual layers
of the neural network across all dimensions, including sample, width and height,
and channel. Due to difficulties related to implementing such parallelization in ex-
isting deep learning frameworks, the authors opted to implement their system in a
low-level parallelization framework called Legion [Bauer et al., 2012]. Experiments
showed improvements in training throughput over pure data parallelism, a triv-
ial model parallelism technique, and Krizhevsky’s One Weird Trick [Krizhevsky,
2014]. I will refer to this approach as OptCNN.

Building on OptCNN, Jia et al. [2018b] further expanded and formalized the
search space used in finding optimal device placements. They dubbed the search
space SOAP, which included the search space used by OptCNN in the form of
the Sample, Attribute, and Parameter dimensions, as well as allowing cross-layer
parallelism in the Operator dimension. The authors showed that this search space
includes previous approaches as special cases. In order to allow searching over
such a large space, the authors employed an execution simulator built on the same
principles as the one used in OptCNN. A Markov-chain Monte Carlo method,
namely the Metropolis-Hastings algorithm [Hastings, 1970] was used to explore



2.3. RELATED WORK 23

this search space. Experiments showed improvements in throughput over pure
data parallelism and expert-designed approaches over a variety of architectures.
The approach was also shown to outperform ColocRL on Inception v3 [Szegedy
et al., 2016] and GNMT [Wu et al., 2016], and OptCNN on the Inception v3,
GNMT, RNNLM [Zaremba et al., 2014], and RNNTC [Kim, 2014] networks. I will
refer to this method as FlexFlow.

Qi et al. [2016] presented Paleo, a performance model tailored for deep neural
networks. Paleo relied on estimations of the number of floating point operations
required by each operation in the network, dividing this by the peak floating
point operations per second carried out by the respective processing unit to get
the execution time of the operation. It also applied a model of communication
time based on link bandwidths, with models of several implementations of the
MPI allreduce operation, which is frequently used for synchronization of network
parameters in data parallel settings. This allowed Paleo to make predictions of
the execution time of a variety of network architectures on any number of workers
of a given type connected with a given network. The main focus of Paleo was
modelling how networks scale with data parallelism, but estimation of a limited
class of model parallel configurations was also possible – namely, parallelization
of convolutional layers across the channel dimension. The experiments showed
remarkably accurate predictions when compared with actual run times of the given
networks and configuration in the TensorFlow framework.

Huang et al. [2020] proposed using a benchmarking approach similar to the one
used for OptCNN and FlexFlow, where individual operations are benchmarked
while communication is simulated, combined with archiving of the results. Fur-
thermore, they suggested that such an archive of benchmarking results can be
crowd-sourced, with users being able to contribute results from their given hard-
ware configuration and software versions. Experiments showed impressive accu-
racy, with estimated training time of VGG-19 [Simonyan and Zisserman, 2014],
Resnet50, and ResNet152 [He et al., 2016] being within 2% of real execution time.
However, building a comprehensive archive would require significant effort, and
the chance of specific configurations not being present in the archive means that
access to the training hardware would still be required.

2.3.3 Transfer Learning of Device Placement

Addanki et al. [2019] proposed a method for learning generalizable device place-
ment strategies, named Placeto. By producing embeddings of the computation
graphs, Placeto could generalize to previously unseen graphs. A neural network
was trained to produce device placements based on given graph embeddings. Ex-
periment results showed that placements produced by Placeto on previously unseen
computation graphs were almost as good as the ones produced by Placeto when



24 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

trained specifically to optimize the placement for that particular graph, while
requiring significantly less time to produce the placement. It should be noted,
however, that even in the generalized case, Placeto trained a model for that par-
ticular hardware configuration, and any hardware changes would require training
a new model.

Addanki et al. also utilized an execution simulator in Placeto in order to
reduce optimization time, similar to the ones used in OptCNN and FlexFlow.
The simulator initially identified all operations of the network, profiling them by
measuring their run time on all available devices. As such, access to the hard-
ware that the network would be trained on was required. The simulation was
then performed using an event based system, with events for all tasks related to
executing the network handled in the order of execution. The execution time of
individual operations was estimated using the times from the profiling stage, while
communication times were estimated by dividing the transferred data by the link
bandwidth, assuming full utilization of the channel.

Zhou et al. [2019] also looked into generalizable device placement, in a system
named GDP. The system combined a graph neural network, producing embed-
dings for a variety of computational graphs, with a placement network, with both
networks being trained end-to-end. As opposed to HierarchicalRL and Placeto,
which both combined a network for grouping operations with an LSTM network,
GDP utilized an attentive Transformer-based network [Vaswani et al., 2017; Dai
et al., 2019]. This type of network is better at capturing long-term dependencies,
removing the need for the grouping of operations. Moreover, it enables prediction
of the full placement of a graph in a single time step, making for faster training.
Experiments tested GDP trained both for a single graph and batch training of
multiple graphs, with both approaches showing similar or better results than Hi-
erarchicalRL for all tested graphs. Results also showed that for some graphs, the
model that was trained on a batch of graphs performed better than the one trained
only on the specific graph. Experiments on generalized predictions for graphs not
in the training set showed only slightly worse performance than HierarchicalRL,
with little difference between predictions made with and without fine-tuning to
the relevant graph.

2.3.4 Evolutionary Computation for Process Scheduling

To the best of my knowledge, evolutionary computation has not been applied to the
device placement problem. However, there is relevant work done on the application
of evolutionary algorithms to similar problems. In particular, the multiprocessor
scheduling problem, in which a set of partially interdependent tasks are scheduled
onto a set of heterogeneous processors, is very similar. The individual operations
of a neural network can be considered tasks, and the data flow through the network



2.3. RELATED WORK 25

constitutes dependencies between the tasks. In fact, the multiprocessor scheduling
problem is a more complex problem than the device placement problem, as the
order of tasks must be considered. For neural networks, this is typically handled
by a deep learning framework.

Hou et al. [1994] proposed a genetic algorithm approach to minimizing the
makespan for a multiprocessor scheduling problem. They used an encoding of
the solution as a list of lists, with each sublist containing the processes to be
executed on a given processor, in the order that they would be executed. Initial-
ization, crossover and mutation procedures were designed so as to preserve order
constraints within the processes executing on each processor. This was done by
ordering the list by height, defined as the number of predecessors in the task graph.
This restriction made parts of the solution space inaccessible. For the crossover
operation, a random height was chosen, and the tails of equal processor lists with
height higher than this number were exchanged between the chromosomes. The
mutation operator would select a task at random, find another task in the chro-
mosome with the same height, and exchange the two tasks. Ordering constraints
between processors were handled in the calculation of the fitness, which was de-
fined as the inverse of the makespan when these constraints were satisfied. The
fitness function did not consider communication costs. In the experiments, the
algorithm was unable to find the optimal solution to the test problems, but it was
within 10% of the optimal solution across a variety of task graphs.

Corrêa et al. [1999] built on the work done by Hou et al., removing the re-
strictions which made parts of the search space unreachable. In order to achieve
this, they removed the restriction that tasks must be scheduled in order of increas-
ing height. For initialization, tasks were picked at random from the set of tasks
to which all predecessors had been scheduled, and assigned to a random process,
until all tasks were assigned. For crossover, tasks were divided into two sets V1

and V2. For V1, all predecessors of any task were guaranteed to be contained in
the set. The tasks in V2 were then rescheduled according to a list heuristic based
on their ordering in the other parent. For mutation, the entire chromosome was
regenerated based on similar heuristics. A second version of the algorithm was also
implemented, integrating knowledge-based heuristics in the crossover and muta-
tion operations. Experiments showed improvement over the algorithm developed
by Hou et al. for both implemented versions, with the knowledge-enhanced version
performing best overall. This showed that both the increased search space and the
integration of knowledge-based heuristics improved the quality of solutions. How-
ever, this came at an increase in computational cost.

Wu et al. [2004] introduced a different approach to applying genetic algorithms
to the multiprocessor scheduling system. Instead of selecting a representation that
was guaranteed to be valid, they considered validity when calculating the fitness



26 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

score. Moreover, they introduced a dynamic fitness score, which would increase
the difficulty of the problem as the search progressed. Individuals were represented
as a list of tuples, with each tuple assigning a task to a processor, and the order
of tuples defining the ordering of tasks. Simple 1-point crossover was used, while
mutation consisted of randomly selecting a new value for either the task number or
processor number of a tuple. The fitness score was a weighted sum of the validity
and makespan of the solution. Validity was defined as a combination of the frac-
tion of tasks present in the solution, and the fraction of valid sequences of a given
length. The gradual increase in problem difficulty was achieved by considering in-
crementally longer sequences, until finally the whole individual represented a valid
solution. Experiments compared the genetic algorithm with heuristic algorithms
for solving the multiprocessor scheduling problem, and showed that the genetic
algorithm generally performed equally good or better. Moreover, the quality of
solutions produced by the genetic algorithm on more complex problem instances
was higher, indicating more flexibility. However, the computational cost of the
genetic algorithm was considerably higher than the heuristic methods.

It can often be beneficial to produce more than one good solution to a problem.
For the device placement problem, this is relevant when using a simulator for
optimization, and then transferring the solution to the training hardware. Having
multiple solutions allows the selection of the solution that works best in the real
application.

Mouret and Clune [2015] proposed a technique to this end, named MAP-Elites.
The algorithm preserves an archive of solutions, each of which are the best solution
of their respective niche, with niches defined by pre-selected phenotypic properties
of the solutions. For each step, a single solution is selected from the archive,
mutated, evaluated, and placed into its corresponding niche if it outperforms the
niche’s current elite solution. The result of this process is a set of quality solutions
that are guaranteed to be diverse according to pre-selected phenotypic properties.
Experiments showed that the MAP-Elites algorithm yielded better coverage of the
solution space than a traditional evolutionary algorithm, multi-objective search
against novelty and local competition scores [Lehman and Stanley, 2011], and
random sampling. Moreover, it also outperformed these algorithms with respect
to the quality of the solution.

2.4 Motivation

With the size of modern deep learning models, the problem of partitioning neural
networks across multiple devices is a prevalent one. Moreover, the complexity of
this task constitutes a palpable impediment for the development and application
of such models. The automation of this process would therefore be advantageous.



2.4. MOTIVATION 27

As presented in Section 2.3, there have been numerous attempts at handling
this problem. Multiple approaches rely on end-to-end reinforcement learning, re-
quiring an extensive number of expensive network evaluations in order to find
a good placement. This leads to a time-consuming process that negatively im-
pacts the combined time of finding a placement and training the network. Some
works have explored the use of benchmarking-based simulators, greatly reducing
the amount of direct evaluations required. However, such approaches still require
access to the hardware itself – access that may be a valuable resource, and which is
often a shared commodity. Building databases of benchmarking results can allevi-
ate this, but there will still occasionally be operations or hardware configurations
that have not been benchmarked. As such, the dependency on the hardware is
still present. Recent works have also explored the training of generalizable neural
networks that perform device placement. However, these networks are tuned to a
specific hardware configuration, and therefore require a new model to be fitted to
each computer system that training will be run on.

Through the application of an execution modelling approach, the optimization
time can be greatly reduced over end-to-end approaches, and the optimization can
be carried out without access to specialized hardware. Thus it becomes possible to
optimize the placement of the network on a commodity computer before commit-
ting the training process to expensive, specialized hardware. Consequently, more
computation time on the specialized hardware can be put towards training deep
models themselves.

Reinforcement learning has been the prevalent method for device placement
optimization. Jia et al. also explored dynamic programming [Jia et al., 2018a] and
local search in the form of the Metropolis-Hastings algorithm [Jia et al., 2018b].
However, methods from the field of evolutionary computation have to the best of
my knowledge not been applied to this problem. Such methods should be highly
capable of performing this type of optimization – supported by their success in
related fields such as multiprocessor scheduling, and may possibly even provide
improved results over previously tested methods.



28 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION



Chapter 3

Method and Technology

This chapter gives a detailed explanation of the system implemented for this
project, along with a brief overview of central technologies that have been utilized.
Section 3.1 describes the execution simulator for neural networks, with a detailed,
step-wise explanation in Section 3.1.1. Section 3.2 presents the two optimization
algorithms, with Section 3.2.1 describing their shared encoding of candidate so-
lutions, Section 3.2.2 detailing the implementation of the genetic algorithm, and
Section 3.2.3 providing the same description for the MAP-Elites algorithm. Sec-
tion 3.3 gives a brief overview of the PyTorch framework for deep learning, which
is used for benchmarking purposes. Finally, Section 3.4 gives a summary of this
chapter.

Parts of this section has been adapted from a previous report in the master
project [Andreassen, 2019]. The section about the execution simulator is largely
the same as in the previous report. The sections about the solution encoding
and the genetic algorithm are based on the corresponding sections in the previous
report, but have been rewritten.

Both the execution simulator and the optimization algorithms are available as
open source [Andreassen, 2020a].

3.1 Execution Simulator

The execution simulator is a key part of the optimization system, enabling esti-
mation of the runtime for a given computation graph in a timescale that is orders
of magnitude faster than doing a benchmark run. It runs independent of both any
specific deep learning framework and the simulated hardware itself.

The execution simulator is based on previous work done by Addanki et al.
[2019] on Placeto, and Qi et al. [2016] on Paleo, with a majority of the simulator
consisting of a combination of the two. Specifically, the general approach for

29



30 CHAPTER 3. METHOD AND TECHNOLOGY

simulating the scheduling of operations and communication is inspired by Placeto,
while code from Paleo, which is open source, is used to estimate individual run
times of operations and communication times of single data transfers.

The simulator supports convolutional and deconvolutional layers, pooling lay-
ers, fully connected layers, and dropout layers. Other layer types are modelled as
requiring no computational time. As this set of layers constitutes the majority of
computation in a convolutional neural network, with other operations requiring
negligible computational time, this makes the simulator suitable for simulating
CNNs as well as fully connected networks. However, it does not support recurrent
neural networks.

In order to enable the execution time simulation, a number of assumptions are
made:

A1 The run time of an individual operation is equal to the number of floating
point operations required by the operation divided by the number of floating
point operations carried out per second by the relevant processor, yielding
perfect utilization of the processor.

A2 The transfer time of an object over a communication channel is equal to the
size of the transmitted object divided by the bandwidth of the communica-
tion channel, yielding perfect utilization of the communication channel.

A3 Both processors and communication devices carry out operations according
to the first in – first out principle.

A4 There is no time delay in neither processors nor communication channels. An
operation is processed by the processor as soon as it is ready, and an object
is transferred by a communication channel as soon as it is available and the
channel is free.

It should be noted that the system implements mechanisms for relaxing some
of these assumptions, such as the ability to introduce a penalty to execution and
communication times for relaxation of A1 and A2, respectively.

3.1.1 Detailed Description of the Execution Simulator

Figure 3.1 shows a high-level overview of the most important components of the
execution simulator, while Algorithm 4 describes the simulation process. The
entire system is event based, with three types of events:

wakeup Triggered when a computational device or communication channel that
was previously idle is tasked with either executing an operation or transfer-
ring a tensor, respectively.



3.1. EXECUTION SIMULATOR 31

Figure 3.1: High-level overview of the execution simulator.

Algorithm 4: Execution Simulator

Data: Computation Graph C, Device Graph D
Result: Execution Time T , Event Trace E

1 Q← initialize priority queue
2 O ← initialize FIFO queues for each device in D
3 C ← initialize FIFO queues for each communication channel in D
4 for each input operation i in C do
5 d← device of i
6 if Od is empty then
7 add new wakeup event to Q
8 end
9 insert i into Od

10 end
11 while Q is not empty do
12 e← dequeue first event from Q
13 handle e using corresponding event handler, described in Algorithms 5,

6 and 7
14 add e to E

15 end
16 T ← end time of last event in E



32 CHAPTER 3. METHOD AND TECHNOLOGY

op done Triggered when an operation has finished executing on a device.

transfer done Triggered when a tensor has finished transferring over a commu-
nication channel.

Each event is saved with metadata about the event type, timestamp that the
event started and was finished, which batch the event was part of, which operation
that was executed/which tensor that was transferred, which device that it was
executed on/transferred over, and which devices it was transferred to and from, if
applicable.

Central to the execution of the simulator are a number of queues. For each
device, an operation queue is maintained, while a similar transfer queue is kept
for each communication channel. Both of these queue types are FIFO queues,
implementing the assumptions made in A3. There is also a single event queue,
which is a priority queue placing events with the lowest end timestamps first,
ensuring that they are handled in the order of execution.

The inputs to the simulator are a computation graph, defining the network
that is to be simulated, and a device graph, defining the hardware that we want
to simulate execution of the network on. Each operation in the computation
graph is assigned to a specific device in the device graph. During initialization,
the simulator determines which operations in the computation graph are input
operations, defined by not having any parent operations. These are scheduled on
their respective devices by enqueuing them in the device’s operation queue. The
initialization procedure also adds wakeup events for all relevant devices to the
event queue.

After initialization, the simulator continuously removes the first event from the
event queue, and passes it on to the relevant event handler. Since the event queue
is prioritized by the end time of the events, this ensures that the events are handled
in the order that they are executed. Algorithms 5, 6 and 7 describe the different
event handlers. The wakeup handler simply dequeues the first waiting operation
or transfer for the relevant device, uses Paleo to estimate the time required by
the operation or transfer, and creates the corresponding op done or transfer done
event. The op done and transfer done event handlers both go through all children
of the executed operation or transferred tensor, checking whether they are ready to
be executed or whether the output of the operation must be transferred to another
device. Operations and transfers are correspondingly scheduled on the operation
and transfer queues. The op done handler then checks if there are any waiting
operations in the device operation queue, and either immediately executes the
first operation, adding the corresponding op done event, or marks the device as
free. The transfer done handler does the corresponding actions with the transfer
queue.



3.1. EXECUTION SIMULATOR 33

The simulator continues to handle events until the event queue is empty, at
which point the simulation has reached its conclusion. During the simulation,
each handled event is appended to a list, resulting in a complete event trace when
the simulation finishes. The simulated execution time of the computation graph
is simply the end time of the last event in the list, but the event trace enables
the calculation of peak memory usage as well as visualization and analysis of
the execution of the computation graph. It should be noted that the memory
estimation provided by the event trace only takes into consideration the weights
of all layers and the saving of activations and gradients. When performing the
real training process, there are typically other operations that need to keep track
of state, such as optimizers using momentum. The simulator allows limiting the
usable fraction of the device memory in order to make room for such data, which is
useful when running optimization for a device architecture with limited memory.

Multiple batches can be executed by the simulator at once, which allows sim-
ulation of a simple pipeline parallelism. The simulator will function in the exact
same way, with operations and events created for all batches. Events and oper-
ations are tagged with the batch number that they belong to. The scheduling
mechanism is very simple: the system will schedule the execution of a new batch
when all the devices of the input operations are idle.

Algorithm 5: wakeup Event Handler

Data: event e, operation queues O, communication queues C, event
queue Q

1 if subtype of e is transfer then
2 d← get transfer device from e
3 t← dequeue first transfer object from Cd

4 T ← estimate transfer time of t using Paleo
5 add new transfer done event to Q with start time = end time of e, end

time = start time + T
6 else if subtype of e is operation then
7 d← get device from e
8 o← dequeue first operation from Od

9 T ← estimate execution time of o using Paleo
10 add new op done event to Q with start time = end time of e, end time

= start time + T
11 end



34 CHAPTER 3. METHOD AND TECHNOLOGY

Algorithm 6: op done Event Handler

Data: event e, operation queues O, communication queues C, event
queue Q

1 o← get operation from e
2 d← get device of o
3 for each child c of o do
4 dc ← get device of c
5 if dc 6= d then
6 if transfer of the relevant tensor to dc is not already scheduled then
7 cc← get communication channel between d and dc
8 enqueue transfer to Ccc

9 add wakeup event if cc is free

10 end

11 else if all inputs of c are available on d then
12 enqueue c to Od

13 end

14 end
15 if Od is non-empty then
16 o← dequeue first operation from Od

17 T ← estimate execution time of o using Paleo
18 add new op done event to Q with start time = end time of e, end time

= start time + T
19 else
20 mark d as free
21 end



3.1. EXECUTION SIMULATOR 35

Algorithm 7: transfer done Event Handler

Data: event e, operation queues O, communication queues C, event
queue Q

1 t← get transferred tensor from e
2 d← get target device from e
3 cc← get communication channel from e
4 for each child c of t do
5 if all inputs of c are available on d then
6 enqueue c to Od

7 add wakeup event if d is free

8 end

9 end
10 if Ccc is non-empty then
11 t← dequeue first tensor scheduled for transfer from Ccc

12 T ← estimate transfer time of t using Paleo
13 add new transfer done event to Q with start time = end time of e, end

time = start time + T
14 else
15 mark cc as free
16 end



36 CHAPTER 3. METHOD AND TECHNOLOGY

3.2 Optimization Algorithms

In the project, two main optimization algorithms were implemented – both being
evolutionary algorithms. The first of the two is the genetic algorithm, which is a
classic algorithm typical of evolutionary computation. The second is the MAP-
Elites algorithm, which is a more recent advancement that allows the evolution of
a set of diverse solutions that each are the elite of their own niche.

3.2.1 Solution Encoding

The encoding of solutions is essential in all evolutionary computation methods.
The encoding must possess sufficient expressive power, allowing the entire search
space to be represented – or at least guaranteeing that the optimal solutions can
be represented. Preferably, the encoding has a one-to-one relation with the actual
solutions, giving full coverage while eliminating redundancy and invalid encod-
ings. Moreover, the encoding must properly support the operations used by the
algorithms, such as mutation and crossover.

Figure 3.2: Illustration of the solution encoding used by all optimization algo-
rithms.

All algorithms implemented in this project use the same encoding for solu-



3.2. OPTIMIZATION ALGORITHMS 37

tions, illustrated in Figure 3.2. A solution to the device placement problem is
the assignment of each operation to a single device. To produce the encoding,
the operations of the neural network are sorted in topological order. The encoded
solution is then a list corresponding to this order – the highlighted portion in the
middle of the figure, with each element of the list being a single number assigning
the corresponding operation to a processing device with that ID.

This encoding has a one-to-one relation with the solution space, guaranteeing
full representability without redundancy. Moreover, since operations are sorted
in topological order, dependency relations are partly represented in the encoding,
with neighbouring operations tending to be placed consecutively. In fact, for linear
networks, all neighbours in the network will be neighbours in the encoding. This
allows crossover and mutation operations to capture solution properties related to
these relations, which is highly relevant when considering communication between
operations. Finally, the encoding is both simple to implement in itself, and allows
for the use of standardized variational operators.

One drawback of the encoding is that it makes for a significant search space.
However, this is a result of the solution space itself being considerable. As men-
tioned above, it is typically desirable to have full representability and a one-to-one
relation. Heuristics that aid the traversal of the search space can be implemented
in the variational operations.

3.2.2 Genetic Algorithm

The genetic algorithm used in the project employs a quite standard implementation
with elitism, following the outline described in Section 2.1.5. It uses the solution
encoding described above, and initializes the population with randomly generated
individuals, optionally also including trivial solutions – i.e. solutions that only use
a single device.

The fitness function for the genetic algorithm is the inverse of the execution
time of the solution, with a penalty equal to the memory overflow measured in MB
added to the time if the memory of any device is exceeded. This ensures that the
algorithm is encouraged to firstly find solutions that fit into memory, and secondly
find the most efficient solutions among these.

For the parent selection mechanism, both tournament selection and rank se-
lection is implemented, with the rank selection supporting linear and exponential
distributions, with the latter providing the most selection pressure. Survivor se-
lection is either done implicitly by letting all offspring of crossover and mutation
operations survive when no elitism is applied, or by taking the union of the elite
and a random sample of the offspring if elitism is applied.

For crossover operations, both uniform crossover and n-point crossover are
supported. The main mutation operator consists of randomly selecting a new



38 CHAPTER 3. METHOD AND TECHNOLOGY

device for individual genes, with the probability for each gene of this happening
being determined by the mutation rate. The algorithm also employs a second
mutation type customized for the problem at hand, in which a randomly selected
zone of consecutive genes are all assigned to the same device. I use the name
zone mutation for this mutation type. This adds some bias towards solutions with
consecutive operations placed on the same device, which is heuristically good.
However, care should be taken not to use a too high mutation rate for the zone
mutation, as this will harm diversity.

Self-adaptation [Bäck, 1992] is applied to the mutation rates. This is done
by placing the mutation rate into the chromosome, and evolving it along with the
solution itself. For mutation, the self-adapted mutation rate is mutated before it is
being used in the mutation of the solution itself. As such, the mutation rate of a fit
chromosome can be interpreted as the mutation rate that created the fit solution.
Mutation of the mutation rate is done by adding a value sampled from a gaussian
distribution, leading to a small random change in the mutation value. Crossover is
applied by calculating a weighted average. A random weight α between 0 and 1 is
chosen. The new mutation rate of the first child is then mc1 = α ·m1 +(1−α) ·m2,
where m1 and m2 are the mutation rates of parent 1 and parent 2, respectively.
Conversely, the mutation rate of the second child is mc2 = α ·m2 + (1 − α) ·m1.
Due to the self-adaptation, the algorithm is less sensitive to the mutation rate
parameters, which only determine initial mutation rates.

The algorithm applies elitism both for parent and survivor selection. Conse-
quently, the elite, as determined by the elite size, is guaranteed both to be included
in crossover operations, and in the final population of the generation. The elitism
ensures that previously found good solutions are carried over into consecutive gen-
erations. Consequently, the best fitness in the population will never decrease.

3.2.3 MAP-Elites

In the original paper, the MAP-Elites algorithm is described more as a loose set
of strategies than as a strict algorithm. The main idea is the use of an archive of
the elite solutions in a set of niches instead of a general population, as used in the
genetic algorithm.

For this project, the archive was divided into niches according to three dimen-
sions of the phenotypic solutions: the number of devices used by the solution, the
number of tensor transfers required by the solution, and the statistical mode of
the devices used – i.e. the device on which the highest number of operations are
executed. Intuitively, in homogeneous systems, the device mode is unimportant,
as all processors provide the same performance. However, when transferring so-
lutions to a shared system, in which some processors may experience higher load
from external processes, this can be a crucial property. Moreover, it is beneficial



3.2. OPTIMIZATION ALGORITHMS 39

to also support heterogeneous computer systems.

MAP-Elites processes a single solution at a time, chosen from the archive. In
the original paper, this selection is performed completely at random, encouraging
exploration. However, for this project, it was determined that some selection pres-
sure was desirable – especially considering that there are large groups of solutions
that are invalid due to them not fitting into the memory of the available devices.
Therefore, a tournament selection mechanism was introduced. The tournament
size should typically be kept low, so as to still encourage exploration, albeit to
a lesser degree. It should be observed that with a tournament size of one, this
selection scheme is equal to random selection.

The MAP-Elites implementation employs a number of different mutation op-
erators. The random mutation operator, as described above for the genetic algo-
rithm, is used as the main mutation operator, and the main source of diversity.
However, three customized mutation operators that add some bias to the solutions
are also used. One of these is the zone mutation described above for the genetic
algorithm. The other two are the replace mutation, in which all genes for a given
device is replaced with another device, and the copy mutation, in which the device
of a gene is replaced with the device of the preceding gene. All of these operators
add bias towards solutions using fewer devices, and solutions where consecutive
operations are placed on the same device. Care should be taken not to use too
large mutation rates for these mutations. However, due to the preservation of
diversity in niches, this is a less pressing problem for the MAP-Elites algorithm
than for the genetic algorithm.

As opposed to the original MAP-Elites algorithm, this implementation also
uses crossover. The same crossover operations as for the genetic algorithm are
supported. If crossover is to be applied at a given iteration, two parents are
selected from the archive, and a single offspring is produced. Mutation is then
applied to this individual.

After all variational operations have been applied, the candidate is considered
for insertion into the archive. This is done by determining the niche of the candi-
date, and comparing its fitness with the fitness of the previous elite in this niche.
If the new candidate is better, it replaces the current elite. Similarly, if the niche
is currently empty, the candidate is inserted into the niche. However, if the new
candidate is worse than the current elite of the niche, it is discarded. It is there-
fore important that the archive is large enough to give a decent chance of new
candidates being preserved.

The implementation supports parallel execution, which can considerably speed
up the algorithm. This is done by calculating several steps that would usually
be performed sequentially, in parallel. Consequently, the algorithm may deviate
slightly from the standard execution when running in parallel. This happens if



40 CHAPTER 3. METHOD AND TECHNOLOGY

two steps executed in parallel operate on the same niche. One step may then
use a parent that is essentially outdated. However, the odds of this happening
frequently is low, due to the size of the archive and the stochasticity in the selection
mechanism. The advantage of parallel execution far outweighs the slightly slower
convergence this may result in.

3.3 PyTorch

Whenever the execution of the neural networks on real hardware is required for
benchmarking purposes, the system uses network implementations in PyTorch
[Paszke et al., 2019]. PyTorch is a framework for deep learning that provides
implementations of primitives such as tensors and tensor operations, as well as
the normal neural network layer types – e.g. convolutions, dropout, and fully
connected layers. PyTorch allows the user to specify the architecture of a neural
network at a high level, along with the placement of parts of the network onto
specific computational devices. PyTorch then handles fine-grained scheduling of
the required operations, including transfers between devices, automatically.

3.4 Summary

The system implemented in this project consists of two parts: a set of optimiza-
tion algorithms that can solve the device placement problem, and an execution
simulator that can significantly speed up evaluations during this process. Two
main optimization algorithms have been implemented: a genetic algorithm, and
a MAP-Elites algorithm. The main difference between the two is that the MAP-
Elites algorithm employs explicit niching of solutions, guaranteeing the discovery
of a diverse set of solutions.

The execution simulator mimics the execution of a neural network on a given
device architecture, but uses idealized models based on FLOPS and bandwidth
characteristics of processors and communication channels in order to estimate the
time required for individual operations, and the training process as a whole. This
results in a significant speed-up, and removes the dependency on specific training
hardware.

The optimization algorithms can also use benchmarking of the networks as
an evaluation function. In this project, these benchmarks were carried out using
PyTorch, which is a deep learning framework.



Chapter 4

Experiments and Results

A number of experiments were carried out in order to evaluate the optimization
methods and the execution simulator, with a focus on answering the research
questions. This chapter presents the experiments and their results, along with
providing an analysis of the results. In Section 4.1, the experimental plan is
outlined, with each experiment presented briefly. Section 4.2 details the parts of
the experimental setup that are shared among experiments. Section 4.3 presents
each experiment in detail, along with presenting the results and their analysis.

The source code for the experiments is available online [Andreassen, 2020b].

4.1 Experimental Plan

The experiments presented in this chapter are:

E1 Benchmarking the practical bandwidth of the PCIe3 bus.

E2 Measuring variance in batch times during a neural network training process.

E3 Comparing optimization methods when run against the execution simulator.

E4 Transferring solutions from simulation to real hardware during the optimiza-
tion process.

E5 Comparing simulated and real batch times for different training configurations.

Experiments E1 and E2 aimed at testing some important assumptions made
for the execution simulator and benchmark processes, and also giving the data
needed to relax these assumptions, if necessary. In E1, the practical bandwidth
of a PCIe3 bus was benchmarked at different data packet sizes, and compared to
the theoretical bandwidth, to see how the communication simulation held up. In

41



42 CHAPTER 4. EXPERIMENTS AND RESULTS

E2, individual batch times for a neural network training process were measured,
in order to see if there were any clear outliers. For example, it is conceivable that
the first batch may require more time due to initialization. In such a case, some
batch times may have to be dropped when doing benchmarking.

Experiment E3 aimed at evaluating the applicability of the implemented opti-
mization algorithms to the device placement problem. The two main algorithms –
the genetic algorithm and MAP-Elites, were evaluated against two simple baseline
algorithms – hill climbing and simulated annealing. For the instances where this
was possible, the results were also compared to the trivial solution of using a single
GPU. All runs were performed against the simulator in this experiment.

Experiment E4 looked at the behaviour of the optimization process when run
against the simulator as compared to running on benchmarked execution times.
This was done through the transfer of candidate solutions between these two envi-
ronments during training. By looking at the stability of the training process before
and after this transfer, an indication of the impact of the simulator on the training
process could be extracted. Due to the large number of function evaluations in
the optimization process, and the computational cost of performing benchmarks,
it was impractical to perform a large number of runs for this experiment. The
results were therefore exclusively analysed in a qualitative fashion.

Finally, E5 endeavoured to produce a quantitative evaluation of the applicabil-
ity of the simulator in the optimization process. To this end, the batch execution
times estimated by the simulator, and those measured through benchmarks, were
compared for a number of different placements of a set of neural networks. Through
this, it could be determined whether the ordering of solutions produced by using
simulated execution times was approximately correct.

4.2 Experimental Setup

The experiments presented in the reports were run on two different servers, named
Malvik and Luke01. Table 4.1 and Table 4.2 present the main hardware of these
servers. Both servers have two CPUs, but these are treated as a single processor in
both the execution simulator and PyTorch. Therefore, they are listed as a single
device, with both the number of threads and peak FLOPS reported as the total
between the two CPUs. On both servers, each GPU is connected to the CPU with
a dedicated PCIe3x16-bus, with a theoretical bandwidth of 128Gbit/s.

Malvik was the main server used for experiments both in the execution simu-
lator and for real benchmarks, and was the server used in the experiments unless
otherwise specified. For some experiments utilizing only the execution simulator,
device graphs derived from the Malvik setup were used, with varying numbers of
GPUs. For some experiments, the device memory available to the system was



4.2. EXPERIMENTAL SETUP 43

programmatically limited.

Table 4.1: Hardware of the Malvik server

ID Device Processor Clock Peak GFLOPS RAM
0 2x Intel Xeon Gold 6132 56 x 2.6 GHz 1800 755 GB
1 NVIDIA V100 1.3 GHz 14000 32 GB
2 NVIDIA V100 1.3 GHz 14000 32 GB

Table 4.2: Hardware of the Luke01 server

ID Device Processor Clock Peak GFLOPS RAM
0 2x Intel Xeon E5-2650 v4 48 x 2.2 GHz 800 504 GB
1 NVIDIA P100 1.2 GHz 9300 16 GB
2 NVIDIA P100 1.2 GHz 9300 16 GB

Three different neural network architectures were used in the experiments:
AlexNet [Krizhevsky et al., 2012], ResNet-50 [He et al., 2016], and Inception V3
[Szegedy et al., 2016]. All networks are convolutional networks designed for classi-
fying the ImageNet [Deng et al., 2009] dataset. AlexNet is a fairly shallow network
with 8 layers, while ResNet-50 and Inception are deep networks with 50 and 48
layers, respectively.

For benchmarking purposes, implementations of the models were taken from
the torchvision library [PyTorch, 2020], and modified so as to allow the operations
of the network to be placed on specific devices on demand. Several steps of gra-
dient descent on batches of randomly generated images were performed, and the
measured time for all batches averaged to find the benchmarked time required for
executing a single batch.

Two mechanisms were employed for monitoring memory consumption during
benchmarking. If the physical memory of any device was exhausted, an OOM
error was raised by PyTorch and then caught by the system. A constant penalty
would then be applied if the benchmark was used for optimization. However,
for some experiments, there was a need to introduce an artificial memory limit
that was lower than the physical memory. This was done by monitoring the peak
memory on all devices, and comparing it to the artificial limit after the training
had finished.

The parameters of the two main optimization algorithms – the genetic algo-
rithm and the MAP-Elites algorithm – were tuned by hand. The same parameters
were used for all experiments, unless otherwise specified, and the parameters were
tuned to perform well over all problem instances. In most cases, it may be possi-
ble to achieve better results by tuning the parameters specifically for the problem



44 CHAPTER 4. EXPERIMENTS AND RESULTS

at hand. However, since an important part of the utility of a device placement
optimizer is that it removes the need for expert knowledge, it is desirable to avoid
such tuning. Replacing the need for expert knowledge about device placement
with a need for expert knowledge about evolutionary computation would in this
case be counter-productive. Therefore, the parameters were kept constant, so that
the experiments evaluated the performance of a generalized system.

The main parameters of the genetic algorithm are given in Table 4.3, and
the main parameters of the MAP-Elites algorithm are given in Table 4.4. For
the genetic algorithm, the set-up was quite generic, with the exception of the
zone mutation. Single-point crossover was used, and the algorithm used rank-
based parent selection with a linear distribution, providing some selection pressure.
Elitism was applied, with an elite size of 5. The MAP-Elites algorithm had some
additional mutation operators, and accordingly a few more mutation rates. The
archive size was set to be automatically calculated for the device mode and devices
used dimensions, while the dimension size for the number of tensor transfers was
set to 40, which reduced the size of the archive for the larger networks. Tournament
selection was used, as this is quite similar to the random sampling in the original
paper, but with some added selection pressure. A tournament size of 10 was used.



4.2. EXPERIMENTAL SETUP 45

Table 4.3: Parameters for the genetic algorithm

Parameter Value
Population size 50
Mutation rate 0.5

Zone mutation rate 0.2
Crossover rate 0.2
Crossover type Single-point

Parent selection mechanism Rank
Parent selection distribution Linear

Elite size 5

Table 4.4: Parameters for the MAP-Elites algorithm. For the archive dimensions,
−1 means that the dimension was automatically set to be the same as the number
of distinct possible values for this property.

Parameter Value
Archive dimensions (-1, -1, 40)

Mutation rate 0.4
Copy mutation rate 0.4

Replace mutation rate 0.01
Zone mutation rate 0.05

Crossover rate 0.4
Selection type Tournament

Tournament size 10



46 CHAPTER 4. EXPERIMENTS AND RESULTS

4.3 Experiments

4.3.1 E1 — Influence of Tensor Size on Communication
Bandwidth

The simulator assumes perfect utilization of the communication channels. How-
ever, in practice, the computer is unlikely to be able to utilize the full bandwidth.
Moreover, due to overheads in the communication process, the observed bandwidth
may vary as a function of the size of the transferred package. An experiment was
conducted in order to measure this effect.

Randomly initialized tensors of sizes in the range 10i bytes, i = 3, 4, ..., 9 were
transferred from the CPU to GPU 0 on Malvik and Luke, with the end-to-end
transfer time being recorded. Each transfer was repeated ten times, and the re-
sulting transfer times were used to estimate the bandwidth. Results are displayed
in Figure 4.1, showing the mean bandwidth along with a 95% confidence interval.

103 104 105 106 107 108 109

Tensor size (Bytes)

0

20000

40000

60000

80000

100000

120000

Ba
nd

wi
dt

h 
(M

bi
t/s

)

Transfer from cpu to cuda:0

Malvik
Luke01

Figure 4.1: Transfer times of tensors of varying size between CPU and GPU on
Malvik and Luke01 servers. Theoretical bandwidth is shown as horizontal dashed
line.

As can be seen, the observed bandwidth varies significantly as a function of
the tensor size. Moreover, even at the peak, the bandwidth is far lower than the
theoretical bandwidth of 128 Gbit/s, marked with a dashed line. On average,



4.3. EXPERIMENTS 47

the bandwidth utilization is 17% on Malvik, and 28% on Luke. The different
utilization between the servers may be due to load, as these are shared machines.

Notably, the bandwidth on Luke drops off between tensor sizes of 107 and 108

bytes. No definite cause for this has been established, but it may be due to buffers
filling up, necessitating the use of slower memory, in turn yielding lower utilization
of the communication channel. On Malvik, which is equipped with more powerful
hardware, the bandwidth flattens for similar tensor sizes.

Based on these results, a constant penalty on available bandwidth was intro-
duced in the simulator, limiting the bandwidth used in estimation of communica-
tion costs to 25% of the theoretical bandwidth. For further accuracy improvement,
the bandwidth may be made dependent on tensor size. However, this would re-
quire comprehensive benchmarking in order to create the bandwidth model for
each device graph that the system should simulate.

4.3.2 E2 — Stability of batch training times

The various deep learning systems behave in different ways when it comes to how
batches are processed, what types of initialization are necessary and so on. This
may manifest as variations in the time required for processing individual batches,
with for example the first batch requiring more time than consecutive batches.

A simple experiment was conducted to map out such effects. 75 different
training configurations for AlexNet were run for 50 batches on Malvik, with the
time required for each individual batch recorded.

Figure 4.2 shows the results. The run time of each configuration has been
normalized by subtracting and dividing by the mean, yielding residuals as fraction
of the mean run time. These results have in turn been averaged to produce the
plot.

The plot shows a clear trend of a periodic drop in run time. It was determined
that this likely resulted from the last batch in the data set being smaller, so a new
run was performed with this batch being dropped.

Figure 4.3 shows the results of the second run. The periodic drop in batch
time is now eliminated, and the magnitude of the variation is smaller. There is a
tendency of the first batch of the training process requiring significantly shorter
time than the following batches. Apart from this, there is only what appears to
be random noise, with small magnitude – all less than 1.5% of the mean time.
This shows that the first batch should be dropped when doing benchmarking.
Averaging the rest of the batch times should yield a representative execution time.



48 CHAPTER 4. EXPERIMENTS AND RESULTS

0 10 20 30 40 50
Batch

0.03

0.02

0.01

0.00

0.01

R
es

id
ua

l b
at

ch
 tr

ai
ni

ng
 ti

m
e 

(fr
ac

tio
n 

of
 m

ea
n)

Average batch time residuals

Figure 4.2: Average batch time residuals for first experiment run

0 10 20 30 40 50
Batch

0.06

0.05

0.04

0.03

0.02

0.01

0.00

0.01

R
es

id
ua

l b
at

ch
 tr

ai
ni

ng
 ti

m
e 

(fr
ac

tio
n 

of
 m

ea
n)

Average batch time residuals (without last batch in dataset)

Figure 4.3: Average batch time residuals for second experiment run, with the last
batch in the data set dropped.



4.3. EXPERIMENTS 49

4.3.3 E3 — Comparison of Optimization Algorithms

The following set of experiments evaluated the performance of the two main opti-
mization algorithms developed in this project – a genetic algorithm and a MAP-
Elites algorithm, against two simpler algorithms – random hill climbing and simu-
lated annealing. The goal was to verify that the more advanced algorithms outper-
form a simple baseline, and exploring how the complexity of the problem affects
this relationship.

The random hill climbing algorithm has no parameters, and was implemented
as described in Section 2.1.5. For the simulated annealing algorithm, an implemen-
tation from the Python library scipy was used – namely scipy.optimize.dual an-
nealing with the no local search parameter set to True, yielding classic simulated
annealing. Other parameters were kept at defaults.

In order to give a fair comparison of the quality of produced solution with
the same amount of computations, the number of function evaluations was set to
20000 for all algorithms. For the hill climbing, simulated annealing, and MAP-
Elites algorithms, this translated to 20000 steps, while for the genetic algorithm
with a population size of 50, this translated to 400 generations. This was sufficient
time for the score of all the algorithms to have largely converged for all the problem
instances.

The optimization algorithms were run against simulated execution times only.
Assuming the simulator provides a reasonable model of the real hardware, this is
a similar problem to optimizing on the hardware itself. Each configuration was
repeated 50 times, except in the pipelined case, where each configuration was only
repeated 10 times. This was due to simulation of the 10 batches run in the pipeline
case requiring 10 times the computation. In all experiments, device placements
were produced for three different networks: AlexNet, ResNet-50, and Inception
V3.

In the first version of the experiment, named the normal version, the networks
were optimized for running on a simulated version of the real Malvik server, as
described in Section 4.2. This has two GPUs, each with enough memory to fit each
of the three networks. In this case, the optimal configuration is known to be using
a single GPU to train the network, as this avoids communicational overheads.
As such, the experiment evaluated whether the algorithms were able to find the
solution to the trivial version of the device placement problem.

Figure 4.4 shows the results of the normal version. The bars show mean batch
execution time across all repeats, while the lines on each bar display a 95% con-
fidence interval. It is clear that for all networks, the hill climbing algorithm per-
formed much worse than the other algorithms. This is to be expected, and indicates
that this is a problem space with local optima. For AlexNet, the other optimiz-
ers were all able to find the optimal solution. However, for the more complex



50 CHAPTER 4. EXPERIMENTS AND RESULTS

Hill C
lim

bin
g

Sim
ula

ted
 Ann

ea
lin

g

Gen
eti

c A
lgo

rith
m

MAP-el
ite

s

Sing
le 

GPU
0

10

20

30

40

50

60

70

AlexNet

Hill C
lim

bin
g

Sim
ula

ted
 Ann

ea
lin

g

Gen
eti

c A
lgo

rith
m

MAP-el
ite

s

Sing
le 

GPU
0

200

400

600

800

1000

1200

1400

ResNet-50

Hill C
lim

bin
g

Sim
ula

ted
 Ann

ea
lin

g

Gen
eti

c A
lgo

rith
m

MAP-el
ite

s

Sing
le 

GPU
0

200

400

600

800

1000

1200

1400

Inception V3
Ba

tc
h 

tra
in

in
g 

tim
e 

(m
s)

Figure 4.4: Comparison of optimization algorithms without any restrictions.

problems of ResNet-50 and Inception, the simulated annealing algorithm was no
longer able to get close to this solution. The genetic algorithm was also not able to
find the exact optimal solution, but it came significantly closer. The MAP-Elites
algorithm was able to find the best solution for all the networks, which indicates
that its focus on diversity was beneficial in this case. By careful tweaking of the
genetic algorithm’s parameters fitted to each network, it is likely that this small
gap could be closed.

In the next version of the experiment, named the limited version, the networks
were optimized to be run on a device architecture derived from Malvik, but with
four GPUs. Moreover, the memory of each GPU was limited so that the network
must be placed on all GPUs, or alternatively, the CPU must be utilized. The
memory limits of each GPU were set to 200MB for AlexNet, 2.5GB for ResNet-50,
and 2.5GB for Inception. Since all GPUs have the same properties, the problem
here can be formulated as finding a configuration that fits into the memory of each
GPU, while minimizing the communication cost. This is a much more complex
problem than the normal version, with no trivial solution.

Figure 4.5 shows the results of the limited version of the experiment. For
AlexNet, there was now more separation between the methods than in the normal
version. Hill climbing was still significantly worse than the other methods, but the
simulated annealing algorithm was no longer able to perform on the same level as



4.3. EXPERIMENTS 51

Hill C
lim

bin
g

Sim
ula

ted
 Ann

ea
ling

Gen
eti

c A
lgo

rith
m

MAP-e
lite

s
0

10

20

30

40

50

60

70

80

AlexNet

Hill C
lim

bin
g

Sim
ula

ted
 Ann

ea
ling

Gen
eti

c A
lgo

rith
m

MAP-e
lite

s
0

200

400

600

800

1000

1200

1400

ResNet-50

Hill C
lim

bin
g

Sim
ula

ted
 Ann

ea
ling

Gen
eti

c A
lgo

rith
m

MAP-e
lite

s
0

200

400

600

800

1000

1200

1400

Inception V3

Ba
tc

h 
tra

in
in

g 
tim

e 
(m

s)

Figure 4.5: Comparison of optimization algorithms with memory limited so that
all GPUs must be utilized.

the genetic algorithm and MAP-Elites algorithm. The genetic algorithm and the
MAP-Elites algorithm had similar performance.

For ResNet-50 and Inception, the trend is even clearer, with the genetic al-
gorithm performing much better than the simulated annealing algorithm. Inter-
estingly, even the hill climbing algorithm outperformed the simulated annealing
algorithm on the Inception network, indicating that it was able to find local minima
that performed reasonably well.

The MAP-Elites algorithm performed slightly worse than the genetic algo-
rithm on the ResNet-50 and Inception networks. This is not unexpected – the
MAP-Elites algorithm is designed to find a diversity of good solutions, and will
not necessarily outperform a regular genetic algorithm when only comparing the
single best solution found. An important reason for this is that the MAP-Elites al-
gorithm uses more computational resources for discovering novel solutions – what
is typically called exploration, while the genetic algorithm will often converge on
a single or small number of good solutions – it has a higher focus on exploitation.
Consequently, the MAP-Elites algorithm can be expected to benefit from being
allowed to run longer, while the solution of the genetic algorithm is unlikely to
change much.

In the final version of the experiment, named the pipelined version, multiple



52 CHAPTER 4. EXPERIMENTS AND RESULTS

batches were allowed to enter the system at once. The experiment was run on an
equivalent of the Malvik server with four GPUs, and four batches were allowed in
the system at once. This allowed a theoretical parallelism degree of four, but the
true achievable parallelism can be expected to be lower than this. There was no
penalty for memory usage, as long as the memory of the devices was not exceeded.
The experiment therefore tested if the optimizers were able to exploit pipeline
parallelism in order to achieve higher throughput than when running the training
process on a single GPU. In order to allow batch training times to stabilize, each
instance was run for ten batches.

Note that the quality of pipeline-parallel configurations produced by the system
was not benchmarked on real hardware, as the task of running a neural network
in a pipeline-parallel manner is a non-trivial task in itself, and out of scope for
this project. Nevertheless, the task of finding pipeline parallel configurations on
the simulator is a complex one, and thus a fitting test case for the optimizers.

Hill C
lim

bin
g

Sim
ula

ted
 Ann

ea
ling

Gen
eti

c A
lgo

rith
m

MAP-e
lite

s

Sin
gle

 GPU
0

10

20

30

40

AlexNet

Hill C
lim

bin
g

Sim
ula

ted
 Ann

ea
ling

Gen
eti

c A
lgo

rith
m

MAP-e
lite

s

Sin
gle

 GPU
0

200

400

600

800

ResNet-50

Hill C
lim

bin
g

Sim
ula

ted
 Ann

ea
ling

Gen
eti

c A
lgo

rith
m

MAP-e
lite

s

Sin
gle

 GPU
0

200

400

600

800

1000

Inception V3

Ba
tc

h 
tra

in
in

g 
tim

e 
(m

s)

Figure 4.6: Comparison of optimization algorithms with four batches allowed in
the system at once. Times are averaged over 10 batches.

Figure 4.6 shows the results of the pipelined version. The diagram shows aver-
aged batch times, and the time required for running a batch on a single GPU is also
shown for comparison. For AlexNet, all optimizers were able to find placements
that outperform the use of a single GPU. The genetic algorithm and MAP-Elites
algorithm performed equally, while the hill climbing and simulated annealing al-



4.3. EXPERIMENTS 53

gorithm performed worse.

When running on the ResNet-50 and Inception networks, neither the hill climb-
ing nor the simulated annealing algorithm were able to outperform the single GPU
placement. This indicates that they struggled to navigate the considerably more
complex problem space. It is interesting to observe that for these two networks,
there is significant variance in the quality of solutions produced by the hill climbing
algorithm. This indicates that there were many local minima of varying quality,
and consequently, the algorithm was sensitive to the initial candidate solution. It
should be noted, however, that the sample size was much smaller for this version
than for the preceding two versions, which will naturally increase the confidence
interval.

Looking at the results for the genetic algorithm and MAP-Elites algorithm
on ResNet-50 and Inception, it is clear that both outperformed the placement
of all operations to a single GPU. MAP-Elites performed slightly better in both
problems, especially for Inception, which indicates that the increased diversity
aided it in finding a better solution. However, for ResNet-50, the difference is
non-significant (t(18) = 1.56, p = 0.1371).

An interesting observation is that although the solutions of the genetic algo-
rithm and the MAP-Elites algorithm for ResNet-50 and Inception outperformed
the single GPU placement, the reduction in time is less than 50%. This can in-
dicate that the size of data packages transferred between the layers in these two
networks introduced a communicational cost that largely outweighed the speedup
acquired through pipeline parallelism. In fact, inspection shows that very few of
the solutions utilized all four GPUs, with multiple only using two GPUs.

Figure 4.7 shows an event trace of one of the best solutions produced by MAP-
Elites for the Inception network. Each batch is represented by two shades of colour
– one for the forward pass, and one for the backward pass. Blocks represent an
operation running on a given processor, and red lines represent tensor transfers
between processors. It is evident that in this case, three devices were utilized, but
device 1 carried out very little computation. On average, the degree of parallelism
was less than two, which is consistent with the observations above. Notably,
processing of different batches were interleaved on a single processor – this is clearly
visible on device 3. This could indicate that there is room for improvement in the
pipeline scheduling system – this is quite simplistic in the execution simulator, and
Harlap et al. [2018] note that this is a crucial aspect of pipeline systems. A better
scheduling mechanism might therefore increase the potential for speedups through
pipeline parallelism. This is out of the scope of the project.



54 CHAPTER 4. EXPERIMENTS AND RESULTS

0 200 400 600 800 1000 1200 1400 1600
Time (ms)

1

3

4

De
vi

ce

Figure 4.7: Event trace of one of the best pipelined placements for the Inception
network. Colours represent operations from individual batches, with each colour
being present in two shades: one for the forward pass, and one for the backward
pass.

4.3.4 E4 — Transfer of Solutions During Optimization

The following set of experiments looked at the transfer of the population from
the simulator to the real hardware during optimization, performing parts of the
training on simulated results, and parts on benchmarked results. This was done in
order to evaluate the stability of the optimization process during such a transfer,
and the difference between the optimization process when using simulated and
benchmarked times.

In order to reduce the computational load for the benchmarking part of the
optimization processes, the population size was reduced from 50 to 30. This did
not appear to have a large impact on the performance of the algorithm. When
moving the population from the simulator to the real hardware, the transfer was
done by preserving the 30 best solutions in the current population.

In the first instance, a GA optimization process of ResNet-50 with limited
available memory was run for 500 generations against the simulator, allowing it
time to converge. The solution was then transferred to the real hardware, and run
for another 100 generations optimizing against benchmarked execution times. The
result is shown in Figure 4.8. As can be observed, by the time the transfer was
made, the algorithm had converged. Moreover, the fitness score stayed stable even
after transferring to the real hardware, indicating that this was a stable point with



4.3. EXPERIMENTS 55

0 100 200 300 400 500
Generation

400

600

800

1000

1200

1400

1600

Ba
tc

h 
tra

in
in

g 
tim

e 
(m

s)

Figure 4.8: Optimization of ResNet-50 with limited available memory, with the
population transferred from the simulator to the real hardware at generation 500.

benchmarked results as well. Note that the small jump in batch execution time at
generation 500 is due to the difference in simulated and benchmarked results for
the same solution.

In the next experiment instance, a genetic algorithm was used to optimize
ResNet-50 for Malvik with limited available memory. The genetic algorithm was
run for 50 generations on the simulator, allowing it to filter out the worst solutions
that would take excessive time to benchmark. It was then run for 300 genera-
tions against benchmarked evaluations. Another run of the genetic algorithm was
performed on the exact same problem, but running exclusively on simulated times.

Figure 4.9 shows the result of this run. The plot is cut at generation 210, as at
this point during the benchmarked run, the server experienced a sudden increase
in load, leading to a spike in training time. The entire history is available in
Appendix A. For the simulated run, the benchmarked time of the final solution
is displayed from generation 190 to generation 210, so the final times of the two
runs are directly comparable.

The fitness history of the two runs follow a similar path, indicating that the
optimization process is similar when running on the simulator and the real hard-
ware. There is some difference, but the genetic algorithm is a stochastic method,
so there will always be some variance between different runs. Observe that the



56 CHAPTER 4. EXPERIMENTS AND RESULTS

0 50 100 150 200
Generation

500

750

1000

1250

1500

1750

2000

2250

Ba
tc

h 
ex

ec
ut

io
n 

tim
e 

(m
s)

Benchmarked
Simulated

Figure 4.9: Comparison of a GA running on real hardware from generation 50 to
a GA only using the simulator when optimizing ResNet-50 for a limited-memory
version of Malvik.

quality of the solution for the two algorithms around generation 200 is practically
equal. This shows that for this problem, the use of the simulator does not impact
the quality of the produced solution.

Figure 4.10 shows another instance with the same setup, in which the bench-
marked experiment was allowed to run uninterrupted until completion. This shows
the same trend, with the two optimization processes showing similar profiles, and
arriving at solutions of approximately equal quality. In this case, it is also clear
that both runs have converged, indicating that little further improvement would
take place if the algorithm was run for a longer time. (The jump in the plot at gen-
eration 330 for the simulated run is simply due to the execution time of the same
configuration being slightly different in the simulator compared to a benchmark.)

This run also allows an estimation of the difference in time requirements when
doing optimization against real hardware, as opposed to when using simulated
evaluations. The full optimization run using benchmarking shown in Figure 4.10
took 19.5 hours. In comparison, the corresponding simulation-based run took 55
seconds. This is a difference of roughly three orders of magnitude. Moreover,
this was while running the first 50 generations for the benchmarking run against
the simulator, thus removing the most time-consuming part of the optimization
process. Note, however, that the simulated run ran on a powerful server, and



4.3. EXPERIMENTS 57

0 50 100 150 200 250 300 350
Generation

750

1000

1250

1500

1750

2000

2250

2500

2750

Ba
tc

h 
tra

in
in

g 
tim

e 
(m

s)

Benchmarked
Simulated

Figure 4.10: Comparison of a GA running on real hardware from generation 50 to
a GA only using the simulator when optimizing ResNet-50 for a limited-memory
version of Malvik.

employed massive parallelism. Still, the advantage of the simulator-based approach
with regards to optimization time is clear.

Oftentimes, neural networks are trained on powerful servers that are shared
between several users. The server may therefore already be under significant load
when the training task is submitted, directly impacting the optimal placement for
the given task. In the next experiment, the optimization process was by design
applied for a server on which another large deep learning task was already running.
An optimization run was performed using both the genetic algorithm and the
MAP-Elites algorithm, and the optimizers were tasked with finding a suitable
configuration for ResNet-50. Both algorithms were allowed to run for a total
of 20000 function evaluations against the simulator, before the population was
transferred to the real hardware. For MAP-Elites, the 50 best solutions were then
benchmarked, and the best selected, while the genetic algorithms was allowed to
run 10 generations of fine-tuning.

The result is shown in Figure 4.11, with Figure 4.12 showing a magnified view
of only the results after the transfer to the real server, allowing easier comparison.
The result of the genetic algorithm is initially off the charts after the transfer,
indicating that the system runs out of memory when attempting to run this con-
figuration. Through the fine-tuning, the genetic algorithm was able to find a



58 CHAPTER 4. EXPERIMENTS AND RESULTS

0 5000 10000 15000 20000
Step

0

500

1000

1500

2000

Ba
tc

h 
tra

in
in

g 
tim

e 
(m

s)

Genetic Algorithm
MAP-Elites

Figure 4.11: Comparison of a genetic algorithm and a MAP-Elites run when trans-
ferred to a server that is already under heavy load at step 20000.

19900 20000 20100 20200 20300 20400 20500
Step

0

500

1000

1500

2000

Ba
tc

h 
tra

in
in

g 
tim

e 
(m

s)

Genetic Algorithm
MAP-Elites

Figure 4.12: Comparison of a genetic algorithm and a MAP-Elites run when trans-
ferred to a server that is already under heavy load at step 20000.



4.3. EXPERIMENTS 59

configuration that fits into the available memory, but it performed quite poorly.
The MAP-Elites algorithm, on the other hand, was able to find a good solution
from its repertoire through the benchmarking operation. It appears to have been
able to exploit one of the GPUs seeing lower load than the other, yielding a mas-
sive increase in performance over the solution produced by the genetic algorithm.
Furthermore, it did this in 50 function evaluations of benchmarking, while the ge-
netic algorithm used 150 to arrive at a much poorer solution. This demonstrates
the utility of producing a diverse set of quality solutions that can all be considered
when doing the solution transfer.



60 CHAPTER 4. EXPERIMENTS AND RESULTS

4.3.5 E5 — Comparison of Simulation and Benchmarks

The following set of experiments aimed at evaluating the accuracy and applicability
of simulated batch times to the optimization process by comparing simulated and
benchmarked execution times for the same network placements. A varied set of
placements for a given network were produced by running a genetic algorithm,
and saving the best placement of the population at a given interval. The saved
placements were then benchmarked on real hardware, in order to allow direct
comparison. This process was repeated 20 times for each of the three networks –
AlexNet, Inception, and ResNet-50. For AlexNet, the genetic algorithm was run
for 50 generations, with a checkpoint each generation, resulting in 50 measurements
each run, for a total of 1000. For ResNet-50 and Inception, the genetic algorithm
was run for 400 generations, with a checkpoint each fifth generation, yielding 80
measurements per run, and 1600 in total for each network.

0 10 20 30 40 50
Generation

50

100

150

200

250

Ba
tc

h 
ex

ec
ut

io
n 

tim
e 

(m
s)

Simulated
Benchmarked

Figure 4.13: Comparison of simulated and benchmarked batch times of placements
from a genetic algorithm run optimizing device placement for AlexNet

Figure 4.13 shows an example of such a run for AlexNet. Batch times are plot-
ted against the generation from which the given placement is taken. The solid blue
line shows the simulated times which the genetic algorithm used in the optimiza-
tion process, while the dashed green line shows the mean benchmarked time with a
95% confidence interval. Since the simulated times are from an optimization pro-
cess, these will naturally decrease as the generation increases. The benchmarked



4.3. EXPERIMENTS 61

results show some of the same trend, but with considerable noise – notably, there
is a large spike around generation 15-20. Noisy results are prevalent in most of the
AlexNet runs.

0 10 20 30 40 50
Generation

50

100

150

200

250

300

Ba
tc

h 
ex

ec
ut

io
n 

tim
e 

(m
s)

Simulated
Benchmarked

Figure 4.14: Comparison of simulated and benchmarked batch times of placements
from a genetic algorithm run optimizing device placement for AlexNet

AlexNet is by far the simplest network used in the experiments, and runs con-
siderably faster than both ResNet-50 and Inception. This makes it more suscep-
tible to interference from other processes on the computer, as the lower computa-
tional cost of the network means that the cost of other processes is larger, relatively
speaking. It is likely that this can account for much of the noise observed in the
AlexNet runs. This is corroborated by the fact that the confidence intervals in
the plots of the AlexNet benchmarks are quite large – especially for anomalous
regions. This indicates significant fluctuations between the benchmarks of a single
placement, which indicates that there may very well be even greater fluctuations
between benchmarks of different placements. Moreover, as shown in Figure 4.14
from around generation 20, such anomalies sometimes appear in regions in which
the algorithm has already converged, meaning that there is little change in the
solution itself. This indicates that the noise is external.



62 CHAPTER 4. EXPERIMENTS AND RESULTS

0 50 100 150 200 250 300 350 400
Generation

0

2000

4000

6000

8000

10000

Ba
tc

h 
ex

ec
ut

io
n 

tim
e 

(m
s)

Simulated
Benchmarked

Figure 4.15: Comparison of simulated and benchmarked batch times of placements
from a genetic algorithm run optimizing device placement for ResNet-50

0 50 100 150 200 250 300 350 400
Generation

400

600

800

1000

1200

1400

1600

1800

Ba
tc

h 
ex

ec
ut

io
n 

tim
e 

(m
s)

Simulated
Benchmarked

Figure 4.16: Comparison of simulated and benchmarked batch times of placements
from a genetic algorithm run optimizing device placement for Inception

The two larger networks gave clearer results. Figure 4.15 shows a comparison
plot for ResNet-50. Here, there is a clear trend that solutions from later gener-



4.3. EXPERIMENTS 63

ations are better when running on the real hardware than solutions from earlier
generations. There is still some noise, which may result from inaccuracies in the
simulator or interference from other processes. However, towards the later genera-
tions, the benchmarked execution times for the later generations were both stable
and low, indicating that solutions that were good on the simulator were also good
on the real hardware.

Figure 4.16 shows similar results for Inception V3. In this case, the numerical
results of the simulator were less accurate, but the trends in the plot are the
same – the solutions in later generations were better than the solutions in earlier
generations. The numerical results could be improved by tweaking communication
and computation penalty factors in the simulator. However, for an optimization
process, the exact simulated times are unimportant – as long as the ordering of
solutions is correct, the optimizer will arrive at the correct solution.

More comparison plots of the kind shown above are available in Appendix A.

40 60 80 100 120 140
Simulated batch time (ms)

0

50

100

150

200

250

300

350

Be
nc

hm
ar

ke
d 

ba
tc

h 
tim

e 
(m

s)

Figure 4.17: Scatter plot comparing simulated and benchmarked execution times
for AlexNet.

In order to make a clearer comparison between simulated and benchmarked
execution times, all observations for each network were gathered, and scatter plots
comparing the two measurement types were produced. These plots are displayed
in Figure 4.17, Figure 4.18, and Figure 4.19 for AlexNet, ResNet-50, and Incep-
tion, respectively. In each plot, a line fitted with linear regression is also shown.



64 CHAPTER 4. EXPERIMENTS AND RESULTS

500 1000 1500 2000 2500 3000
Simulated batch time (ms)

0

2000

4000

6000

8000

10000

Be
nc

hm
ar

ke
d 

ba
tc

h 
tim

e 
(m

s)

Figure 4.18: Scatter plot comparing simulated and benchmarked execution times
for ResNet-50.

The Pearson correlation coefficients are RA = 0.672 for AlexNet, RR = 0.939 for
ResNet-50, and RI = 0.804 for Inception.

The AlexNet results are quite noisy, which is consistent with the previous
observations. However, for ResNet-50 and Inception, there is a clear positive
correlation. The exact numerical values do not match, but as noted above, this is
irrelevant for the optimization process itself, as long as the ordering of solutions is
preserved. The correlation is especially strong for ResNet, but it is significant also
for Inception. The results from ResNet-50 and Inception therefore give a strong
indication that the results produced through optimization against the simulator
are valid.

While noisy, the results from AlexNet also show a positive correlation. It
is likely that the simulator is equally valid for AlexNet, and that much of the
noise is a result of the chaotic environment that is a modern computer. This also
highlights a different observation: optimizing against the execution simulator is
an easier problem than optimizing against the real hardware, since external noise
is eliminated altogether.

It cannot be entirely excluded that parts of the anomalous results for AlexNet
might be caused by inaccuracies in the simulator, however. Such anomalous re-
gions can also be observed for the other two networks, although they are both less



4.3. EXPERIMENTS 65

400 600 800 1000 1200 1400 1600 1800
Simulated batch time (ms)

500

750

1000

1250

1500

1750

2000
Be

nc
hm

ar
ke

d 
ba

tc
h 

tim
e 

(m
s)

Figure 4.19: Scatter plot comparing simulated and benchmarked execution times
for Inception V3.

prevalent and less severe. These anomalies typically appeared in early stages of
the optimization processes. Solutions in these stages are characterized by there
being a larger spread of operations across devices, leading to more communica-
tion. It is therefore most likely that any inaccuracy is located in the part of the
system responsible for simulation of communication. E1 showed that the real
communication bandwidth is quite far from the idealized model, with packet sizes
having a strong influence on the practical bandwidth. When communication oc-
curs more often, queueing of transfers in communication channels will also have
a larger influence on communication times. The system does model queueing of
transfer operations, but modelling the behaviour of a computer system exactly
is non-trivial. In fact, modelling the impact of transfers external to the training
process in these queues is practically impossible.

Nevertheless, the trend is that the solutions on which the optimizer arrives are
good solutions when measured by benchmarks as well. Since the anomalous regions
typically appear in early stages of the optimization, they only affect solutions
that are considered of low quality by both simulated and benchmarked measures.
The anomalies are therefore unlikely to impact final solutions much. They may,
however, prove to be a more severe problem in even more complex problem settings
– that is, problems with computation spread over a larger number of devices,



66 CHAPTER 4. EXPERIMENTS AND RESULTS

thereby requiring more communication.

4.4 Summary

In this section, five experiments have been presented. E1 explored the behaviour
of bandwidth on a PCIe3 bus when transferring data packets of different sizes,
showing both that practical performance is significantly lower than theoretical,
and that it depends a lot on packet sizes. E2 looked at the stability of batch
training times in PyTorch, and showed that representative results can be achieved
by dropping the time of the first batch in the process. E3 compared the results of
the genetic algorithm and the MAP-Elites algorithm with that of a hill climbing
and a simulated annealing algorithm, showing that the genetic algorithm and the
MAP-Elites algorithm outperformed the control algorithms overall, with the two
alternatingly performing best.

E4 looked at optimization processes that were in part performed on simulated
and in part on benchmarked execution times. It showed that the process was
stable when transferring from simulation to benchmarks, and that optimization
performed against simulation and benchmarks showed similar profiles. A com-
parison of the genetic algorithm and the MAP-Elites algorithm when transferring
solutions to a busy server indicated the utility of the diverse solution set produced
by MAP-Elites, which aided the discovery of a good solution in a sub-optimal
environment.

Finally, E5 directly compared simulated with benchmarked execution times
of the same network configurations. Apart from noisy results when running on
the AlexNet network, the results showed a clear positive correlation, with good
solutions on real hardware being good on the simulator, and vice versa.



Chapter 5

Conclusion

In this chapter, the results of the experiments and their implications are discussed
at a high level, with respect to the research questions. Section 5.1 contains the
main discussion, while Section 5.2 gives a summary of the main contributions of
this project, and Section 5.3 concludes the report by giving an outline of possible
directions for future work.

5.1 Discussion

The goal of this project was twofold: to evaluate the performance of the two
evolutionary algorithms when applied to the device placement problem, and to
determine the impact of the simulator when used as a part of this optimization
process. To this end, the experiments presented in Chapter 4 were carried out.

Experiment E3 demonstrated that the two evolutionary algorithms were able
to perform well on the device placement problem, finding the optimal solution
to the trivial version of the problem, and significantly outperforming the baseline
on more complex problems. The experiments were performed at a fixed number
of function evaluations, which approximately translates to the same amount of
computation being allowed for each method. As such, they tested the ability of
the algorithms to reach a good solution in a set amount of computational time.
The limit on function evaluations was set to a number that would allow most
of the algorithms to converge, which it can be argued favours the more complex
algorithms. However, due to the efficiency of function evaluations when using the
execution simulator, the cost of extra evaluations is quite low. Therefore, the
quality of solutions found upon convergence becomes the most important goal.
Moreover, the evolutionary algorithms are easier to parallelize, which translates to
the same amount of function evaluations requiring less wall clock time.

The results of E3 did not show any clear difference between the genetic algo-

67



68 CHAPTER 5. CONCLUSION

rithm and the MAP-Elites algorithm, with these two performing equally in some
cases, and alternatingly performing best in others. This is as expected, as the two
solve problems in slightly different ways, with neither being clearly better than
the other when it comes to producing the best single solution. MAP-Elites focuses
heavily on diversity and exploration, which may translate to higher quality solu-
tions in some cases. However, the higher selection pressure of the genetic algorithm
may in other cases aid convergence in such a way that the final solution is better
than the one discovered by MAP-Elites.

Experiment E4 gave indications that the optimization process will progress in
similar ways when run against the simulator and against real benchmarks. The
gradients of the fitness plots produced in these runs are very similar. Additionally,
the quality of solutions produced by the optimization runs were very similar when
both were measured by benchmarks. This indicates that the optimization process
will progress in similar ways, and that solutions produced by optimizing against
the simulator are valid for transfer to real hardware. However, the limited number
of runs means that no argument can be made as to the statistical significance of
these results.

Another interesting observation from E4 is the comparison between the genetic
algorithm and the MAP-Elites algorithm when attempting to find a good place-
ment for a server that was under heavy load. In this run, the MAP-Elites algorithm
was able to find a solution that outperformed the one produced by the genetic al-
gorithm using just a few benchmark operations. This property can help bridge the
gap between finding good placements on the simulator, and finding placements
that perform well on the actual training hardware. It should be observed that also
in this case, the limited number of runs is a drawback.

The ability of the MAP-Elites algorithm to find a diverse set of solutions
can also help bridge another gap that is a prevalent problem of deep learning.
Most modern machine learning methods, including the reinforcement learning ap-
proaches that have previously been applied to the device placement problem, are
so-called black-box methods. This means that they do not provide any justifica-
tion for the solution they propose. This can impede the adoption of the method
in the industry, as experts may have little confidence in the results. While the
MAP-Elites algorithm does not provide any justification of its solutions per se,
the production of a set of candidate solutions enables an expert to take control
over the selection of a final solution. In this way, the MAP-Elites algorithm can
function as a decision support system rather than a fully automated system. Note
that this is also achievable with a regular genetic algorithm, if excessive conver-
gence is avoided. However, the MAP-Elites algorithm is guaranteed to provide
diverse results.

Experiment E5 offers further support to the validity of solutions produced



5.2. CONTRIBUTIONS 69

by the execution simulator. The results show that the ordering of solutions was
generally the same when using simulated and benchmarked execution times. The
estimated execution times were not fully accurate, but this is not necessary for the
optimization process to be valid. Moreover, the task of providing entirely accurate
results is impractical, as a computer system is highly complex, with a number of
external factors potentially affecting benchmark results. However, as long as the
ordering of tasks is correct, an optimization process will arrive at a valid solution.

Nevertheless, there were anomalies that should not be ignored. The mea-
surements show significant noise. Much of this can likely be attributed to external
factors, but some anomalies are severe enough that they indicate systematic errors.
These anomalies typically concern placements requiring a lot of tensor transfers,
implying that an error may exist in the way communication is simulated. In that
case, a likely cause is the way scheduling on communication is handled by the
simulator – especially regarding how busses are arranged in the computer archi-
tecture itself. Achieving a fully correct simulation of these systems may require
large increases to the complexity of the simulator.

It is important to observe that due to the large speed-up of the optimization
process, some loss of quality in the produced solutions can be accepted. Since
significant time is already saved by using simulated results during optimization,
a slower solution can still lead to shorter total time – i.e. including both the
optimization and the actual training of the network. The speed-up is estimated
to be in the range of about three orders of magnitude. Using the example from
which this estimation was derived, there was a speed up from 55 seconds, which is
practically instantaneous, to 19.5 hours. By using the simulator for optimizing the
device placement of this training process, the training itself could commence 19.5
hours earlier than if using real benchmarks. Even for a training process spanning
several days, an immense speed-up would be required in order to justify using this
amount of extra time for the optimization process.

5.2 Contributions

This report has presented a new execution simulator for deep neural networks,
building on previous efforts by [Qi et al., 2016] and Addanki et al. [2019]. The
simulator allows the estimation of execution time for a given neural network when
placed in a specified way onto a given device graph. It supports the main layer
types present in typical convolutional neural networks, which account for a large
portion of modern state-of-the-art deep learning models. The simulator allows for
the simulation of multiple concurrent batches of data, enabling the simulation of a
simple type of pipeline parallelism. Due to the simulator being independent from



70 CHAPTER 5. CONCLUSION

the hardware it simulates, and three orders of magnitude faster than benchmark-
ing, it facilitates the efficient solution of the device placement problem without
requiring access to the training hardware. Experiments indicate that solutions
produced when optimizing against the simulator are valid for application in the
real world.

This report has also introduced two evolutionary algorithms for solving the de-
vice placement problem. To the best of my knowledge, this is the first application
of evolutionary algorithms to the device placement problem. Results of the exper-
iments indicate that these types of algorithms are highly capable of solving this
problem. Tests also show that the ability of the MAP-Elites algorithm to produce
multiple quality solutions can help the system to find a good solution when trans-
ferring solutions from a simulator-based optimization process to the real world. In
this way, it alleviates any negative impact the simulator may have on produced
solutions.

Combined, the execution simulator and the optimization algorithms form a
novel system for solving the device placement problem.

5.3 Future Work

In this project, evolutionary algorithms for solving device placement problems
have been evaluated against a baseline of classic algorithms and trivial solutions,
indicating that they are highly capable of providing improved results. However,
reinforcement learning has also been applied to this problem in multiple previous
instances. A natural next step is therefore the direct comparison of the methods
introduced in this report with the current state-of-the-art reinforcement learning-
based methods for solving the device placement problem.

This report also introduces a new execution simulator that yields multiple
advantages when used in the solution of the device placement problem. In this
project, the simulator has been used together with evolutionary algorithms. How-
ever, the nature of the simulator allows it to be used with any optimization algo-
rithms. A possible direction for future work is therefore to look at the integration
of the simulator with other optimization methods – for example reinforcement
learning.

The simulator currently supports regular feed-forward networks as well as most
convolutional network designs. Together, this constitutes a large fraction of current
deep learning models. However, there are other large groups of networks – in
particular, the recurrent neural networks and attention networks frequently applied
to natural language processing. Expanding the list of layer types supported by the
simulator would therefore enable it to process a larger range of models.

The simulator is able to simulate hardware independent of access to it. In



5.3. FUTURE WORK 71

fact, it is able to simulate hardware independent of the very existence of that
hardware. This enables not only the evolution of placement of neural networks
onto the given hardware, but the evolution of the hardware itself. By co-evolving
hardware configurations and the placement of networks onto said hardware, it may
be possible to discover hardware configurations that have not been conceived by
human engineers, and that may possibly outperform current hardware for deep
learning applications. It is likely that the simulator would need further improve-
ment in order to facilitate such a process, as higher granularity and accuracy may
be required.



72 CHAPTER 5. CONCLUSION



Bibliography

Addanki, R., Venkatakrishnan, S. B., Gupta, S., Mao, H., and Alizadeh, M. (2019).
Placeto: Learning generalizable device placement algorithms for distributed ma-
chine learning. arXiv preprint arXiv:1906.08879.

Andreassen, E. L. (2019). Optimizing device placement for deep learning using
heuristic search and execution time modeling. Project report in TDT4501, De-
partment of Computer Science, NTNU – Norwegian University of Science and
Technology.

Andreassen, E. L. (2020a). Exprimo: A performance model for deep neural net-
works. https://github.com/Lagostra/exprimo.

Andreassen, E. L. (2020b). Exprimo: Source code for experiments. https://doi.
org/10.5281/zenodo.3878186.

Bäck, T. (1992). Self-adaptation in genetic algorithms. In Proceedings of the first
european conference on artificial life, pages 263–271. The MIT Press, Cambridge,
MA.

Bauer, M., Treichler, S., Slaughter, E., and Aiken, A. (2012). Legion: Expressing
locality and independence with logical regions. In SC’12: Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis, pages 1–11. IEEE.

Corrêa, R. C., Ferreira, A., and Rebreyend, P. (1999). Scheduling multiprocessor
tasks with genetic algorithms. IEEE Transactions on Parallel and Distributed
systems, 10(8):825–837.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V., and Salakhutdinov, R. (2019).
Transformer-xl: Attentive language models beyond a fixed-length context. arXiv
preprint arXiv:1901.02860.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee.

73

https://github.com/Lagostra/exprimo
https://doi.org/10.5281/zenodo.3878186
https://doi.org/10.5281/zenodo.3878186


74 BIBLIOGRAPHY

Eiben, A. E., Smith, J. E., et al. (2015). Introduction to evolutionary computing.
Springer, 2nd edition.

Gao, Y., Chen, L., and Li, B. (2018). Spotlight: Optimizing device placement
for training deep neural networks. In International Conference on Machine
Learning, pages 1662–1670.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Harlap, A., Narayanan, D., Phanishayee, A., Seshadri, V., Devanur, N., Ganger,
G., and Gibbons, P. (2018). Pipedream: Fast and efficient pipeline parallel dnn
training. arXiv preprint arXiv:1806.03377.

Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and
their applications.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778.

Hou, E. S., Ansari, N., and Ren, H. (1994). A genetic algorithm for multiprocessor
scheduling. IEEE Transactions on Parallel and Distributed systems, 5(2):113–
120.

Huang, H., Cheng, P., Xu, H., and Xiong, Y. (2020). Simulating performance of
ml systems with offline profiling. arXiv preprint arXiv:2002.06790.

Jia, Z., Lin, S., Qi, C. R., and Aiken, A. (2018a). Exploring hidden dimensions in
parallelizing convolutional neural networks. arXiv preprint arXiv:1802.04924.

Jia, Z., Zaharia, M., and Aiken, A. (2018b). Beyond data and model parallelism
for deep neural networks. arXiv preprint arXiv:1807.05358.

Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882.

Krizhevsky, A. (2014). One weird trick for parallelizing convolutional neural net-
works. arXiv preprint arXiv:1404.5997.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105.

Lehman, J. and Stanley, K. O. (2011). Evolving a diversity of virtual creatures
through novelty search and local competition. In Proceedings of the 13th annual
conference on Genetic and evolutionary computation, pages 211–218.



BIBLIOGRAPHY 75

Mahajan, D., Girshick, R., Ramanathan, V., He, K., Paluri, M., Li, Y., Bharambe,
A., and van der Maaten, L. (2018). Exploring the limits of weakly supervised
pretraining. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 181–196.

Mirhoseini, A., Goldie, A., Pham, H., Steiner, B., Le, Q. V., and Dean, J. (2018).
A hierarchical model for device placement.

Mirhoseini, A., Pham, H., Le, Q. V., Steiner, B., Larsen, R., Zhou, Y., Kumar, N.,
Norouzi, M., Bengio, S., and Dean, J. (2017). Device placement optimization
with reinforcement learning. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pages 2430–2439. JMLR. org.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, Inc., New York, NY,
USA, 1 edition.

Mouret, J.-B. and Clune, J. (2015). Illuminating search spaces by mapping elites.
arXiv preprint arXiv:1504.04909.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al. (2019). Pytorch: An imperative
style, high-performance deep learning library. In Advances in Neural Information
Processing Systems, pages 8024–8035.

PyTorch (2020). torchvision. https://github.com/pytorch/vision.

Qi, H., Sparks, E. R., and Talwalkar, A. (2016). Paleo: A performance model for
deep neural networks.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019).
Language models are unsupervised multitask learners. OpenAI Blog, 1(8).

Russell, S. J. and Norvig, P. (2016). Artificial intelligence: a modern approach.
Malaysia; Pearson Education Limited,.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman,
S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach,
M., Kavukcuoglu, K., Graepel, T., and Hassabis, D. (2016). Mastering the game
of go with deep neural networks and tree search. Nature, 529:484–503.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot,
M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T. P., Simonyan, K., and
Hassabis, D. (2017). Mastering chess and shogi by self-play with a general
reinforcement learning algorithm. CoRR, abs/1712.01815.

https://github.com/pytorch/vision


76 BIBLIOGRAPHY

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556.

Synnaeve, G., Xu, Q., Kahn, J., Grave, E., Likhomanenko, T., Pratap, V., Sri-
ram, A., Liptchinsky, V., and Collobert, R. (2019). End-to-end asr: from su-
pervised to semi-supervised learning with modern architectures. arXiv preprint
arXiv:1911.08460.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2818–2826.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser,  L., and Polosukhin, I. (2017). Attention is all you need. In Advances in
neural information processing systems, pages 5998–6008.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Machine learning, 8(3-4):229–256.

Wu, A. S., Yu, H., Jin, S., Lin, K.-C., and Schiavone, G. (2004). An incremental
genetic algorithm approach to multiprocessor scheduling. IEEE Transactions
on parallel and distributed systems, 15(9):824–834.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun,
M., Cao, Y., Gao, Q., Macherey, K., et al. (2016). Google’s neural machine
translation system: Bridging the gap between human and machine translation.
arXiv preprint arXiv:1609.08144.

Zaremba, W., Sutskever, I., and Vinyals, O. (2014). Recurrent neural network
regularization. arXiv preprint arXiv:1409.2329.

Zhou, Y., Roy, S., Abdolrashidi, A., Wong, D., Ma, P. C., Xu, Q., Zhong, M., Liu,
H., Goldie, A., Mirhoseini, A., et al. (2019). Gdp: Generalized device placement
for dataflow graphs. arXiv preprint arXiv:1910.01578.



Appendices

77





Appendix A

Additional Experiment Results

For some of the experiments presented in this report, aggregation and statistical
analysis of the results is impractical. The results section of the report therefore
presents a selection of results that are representative and aids the analysis. Results
from additional runs of the experiments are included in this appendix.

A.1 E4 — Transfer of Solutions During Training

In this experiment, presented in Section 4.3.4, optimization of device placements
for different networks were initially performed against the execution simulator for
a given number of generations, before the population was transferred to the real
hardware, and the optimization process continued with benchmarked scores. In
the figures below, the best execution times in the population is plotted against the
generation. The vertical dashed line indicates the point at which the transfer from
simulator to real hardware was made.

79



80 APPENDIX A. ADDITIONAL EXPERIMENT RESULTS

0 50 100 150 200 250 300
Generation

600

800

1000

1200

1400

1600

1800

2000

Ba
tc

h 
ex

ec
ut

io
n 

tim
e 

(m
s)

Figure A.1: Full run of GA optimizing ResNet-50 for Malvik with 50 simulated
and 300 benchmarked generations, including spike in batch time due to increased
load on server around generation 210.

200 400 600 800 1000 1200 1400
Generation

500

1000

1500

2000

2500

Ba
tc

h 
tra

in
in

g 
tim

e 
(m

s)

Figure A.2: Optimization of ResNet-50 on Malvik, optimizing for 1500 generations
against the simulator, and 100 generations against benchmarked times.



A.1. E4 — TRANSFER OF SOLUTIONS DURING TRAINING 81

100 200 300 400 500 600
Generation

600

800

1000

1200

1400

1600
Ba

tc
h 

tra
in

in
g 

tim
e 

(m
s)

Figure A.3: Optimization of ResNet-50 on Malvik with limited available memory,
optimizing for 500 generations against the simulator, and 100 generations against
benchmarked times.

50 100 150 200 250
Generation

400

600

800

1000

1200

1400

1600

Ba
tc

h 
tra

in
in

g 
tim

e 
(m

s)

Figure A.4: Optimization of ResNet-50 on Malvik with limited available memory,
optimizing for 200 generations against the simulator, and 100 generations against
benchmarked times.



82 APPENDIX A. ADDITIONAL EXPERIMENT RESULTS

50 100 150 200 250 300
Generation

600

800

1000

1200

1400

1600

1800

Ba
tc

h 
tra

in
in

g 
tim

e 
(m

s)

Figure A.5: Optimization of Inception on Malvik with limited available memory,
optimizing for 200 generations against the simulator, and 100 generations against
benchmarked times. The jump at the transfer point is larger than for ResNet-50
runs because the numerical accuracy of the simulator is lower for this network, as
observed in Section 4.3.5.



A.2. E5 — COMPARISON OF SIMULATION AND BENCHMARKS 83

A.2 E5 — Comparison of Simulation and Bench-

marks

In this experiment, presented in Section 4.3.5, a variety of configurations for a
single network were created by running an optimization process using a genetic
algorithm, and checkpointing the best network of generations at a given interval.
These configurations were then transferred to the real hardware, and the batch
execution time was benchmarked. The result plots show a comparison between
simulated and benchmarked batch execution times. Runs for different networks
are separated in the subsections below.

A.2.1 AlexNet

0 10 20 30 40 50
Generation

50

75

100

125

150

175

200

225

Ba
tc

h 
ex

ec
ut

io
n 

tim
e 

(m
s)

Simulated
Benchmarked

0 10 20 30 40 50
Generation

50

100

150

200

250

300

Ba
tc

h 
ex

ec
ut

io
n 

tim
e 

(m
s)

Simulated
Benchmarked

0 10 20 30 40 50
Generation

0

50

100

150

200

250

Ba
tc

h 
ex

ec
ut

io
n 

tim
e 

(m
s)

Simulated
Benchmarked

0 10 20 30 40 50
Generation

50

100

150

200

250

300

350

400

Ba
tc

h 
ex

ec
ut

io
n 

tim
e 

(m
s)

Simulated
Benchmarked



84 APPENDIX A. ADDITIONAL EXPERIMENT RESULTS

0 10 20 30 40 50
Generation

50

100

150

200

250

300

350
Ba

tc
h 

ex
ec

ut
io

n 
tim

e 
(m

s)
Simulated
Benchmarked

0 10 20 30 40 50
Generation

50

100

150

200

250

Ba
tc

h 
ex

ec
ut

io
n 

tim
e 

(m
s)

Simulated
Benchmarked

0 10 20 30 40 50
Generation

50

100

150

200

250

300

350

Ba
tc

h 
ex

ec
ut

io
n 

tim
e 

(m
s)

Simulated
Benchmarked

0 10 20 30 40 50
Generation

50

100

150

200

250

Ba
tc

h 
ex

ec
ut

io
n 

tim
e 

(m
s)

Simulated
Benchmarked

0 10 20 30 40 50
Generation

50

100

150

200

250

300

Ba
tc

h 
ex

ec
ut

io
n 

tim
e 

(m
s)

Simulated
Benchmarked

0 10 20 30 40 50
Generation

0

50

100

150

200

Ba
tc

h 
ex

ec
ut

io
n 

tim
e 

(m
s)

Simulated
Benchmarked



A.2. E5 — COMPARISON OF SIMULATION AND BENCHMARKS 85

A.2.2 ResNet-50

0 50 100 150 200 250 300 350 400
Generation

0

1000

2000

3000

4000

5000

6000

7000

Ba
tc

h 
ex

ec
ut

io
n 

tim
e 

(m
s)

Simulated
Benchmarked

0 50 100 150 200 250 300 350 400
Generation

0

2000

4000

6000

8000

10000

Ba
tc

h 
ex

ec
ut

io
n 

tim
e 

(m
s)

Simulated
Benchmarked

0 50 100 150 200 250 300 350 400
Generation

0

1000

2000

3000

4000

5000

6000

7000

Ba
tc

h 
ex

ec
ut

io
n 

tim
e 

(m
s)

Simulated
Benchmarked

0 50 100 150 200 250 300 350 400
Generation

0

1000

2000

3000

4000

5000

6000

7000

8000

Ba
tc

h 
ex

ec
ut

io
n 

tim
e 

(m
s)

Simulated
Benchmarked

0 50 100 150 200 250 300 350 400
Generation

0

2000

4000

6000

8000

10000

Ba
tc

h 
ex

ec
ut

io
n 

tim
e 

(m
s)

Simulated
Benchmarked

0 50 100 150 200 250 300 350 400
Generation

0

2000

4000

6000

8000

10000

Ba
tc

h 
ex

ec
ut

io
n 

tim
e 

(m
s)

Simulated
Benchmarked



86 APPENDIX A. ADDITIONAL EXPERIMENT RESULTS

0 50 100 150 200 250 300 350 400
Generation

0

2000

4000

6000

8000

Ba
tc

h 
ex

ec
ut

io
n 

tim
e 

(m
s)

Simulated
Benchmarked

0 50 100 150 200 250 300 350 400
Generation

0

2000

4000

6000

8000

Ba
tc

h 
ex

ec
ut

io
n 

tim
e 

(m
s)

Simulated
Benchmarked

0 50 100 150 200 250 300 350 400
Generation

0

2000

4000

6000

8000

10000

Ba
tc

h 
ex

ec
ut

io
n 

tim
e 

(m
s)

Simulated
Benchmarked

0 50 100 150 200 250 300 350 400
Generation

0

1000

2000

3000

4000

5000

6000

7000

Ba
tc

h 
ex

ec
ut

io
n 

tim
e 

(m
s)

Simulated
Benchmarked



A.2. E5 — COMPARISON OF SIMULATION AND BENCHMARKS 87

A.2.3 Inception V3

0 50 100 150 200 250 300 350 400
Generation

400

600

800

1000

1200

1400

1600

Ba
tc

h 
ex

ec
ut

io
n 

tim
e 

(m
s)

Simulated
Benchmarked

0 50 100 150 200 250 300 350 400
Generation

400

600

800

1000

1200

1400

1600

1800

Ba
tc

h 
ex

ec
ut

io
n 

tim
e 

(m
s)

Simulated
Benchmarked

0 50 100 150 200 250 300 350 400
Generation

400

600

800

1000

1200

1400

1600

1800

Ba
tc

h 
ex

ec
ut

io
n 

tim
e 

(m
s)

Simulated
Benchmarked

0 50 100 150 200 250 300 350 400
Generation

400

600

800

1000

1200

1400

1600

1800

2000

Ba
tc

h 
ex

ec
ut

io
n 

tim
e 

(m
s)

Simulated
Benchmarked

0 50 100 150 200 250 300 350 400
Generation

250

500

750

1000

1250

1500

1750

2000

Ba
tc

h 
ex

ec
ut

io
n 

tim
e 

(m
s)

Simulated
Benchmarked

0 50 100 150 200 250 300 350 400
Generation

400

600

800

1000

1200

1400

1600

1800

2000

Ba
tc

h 
ex

ec
ut

io
n 

tim
e 

(m
s)

Simulated
Benchmarked



88 APPENDIX A. ADDITIONAL EXPERIMENT RESULTS

0 50 100 150 200 250 300 350 400
Generation

400

600

800

1000

1200

1400

1600

1800
Ba

tc
h 

ex
ec

ut
io

n 
tim

e 
(m

s)
Simulated
Benchmarked

0 50 100 150 200 250 300 350 400
Generation

400

600

800

1000

1200

1400

1600

Ba
tc

h 
ex

ec
ut

io
n 

tim
e 

(m
s)

Simulated
Benchmarked

0 50 100 150 200 250 300 350 400
Generation

400

600

800

1000

1200

1400

1600

1800

Ba
tc

h 
ex

ec
ut

io
n 

tim
e 

(m
s)

Simulated
Benchmarked

0 50 100 150 200 250 300 350 400
Generation

400

600

800

1000

1200

1400

1600

Ba
tc

h 
ex

ec
ut

io
n 

tim
e 

(m
s)

Simulated
Benchmarked



Eivind Lie Andreassen
Autom

atic M
odel Par allelism

 for D
eep Learning

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Eivind Lie Andreassen

Automatic Model Parallelism
for Deep Learning
Using Execution Time Modelling
and Evolutionary Computation
 

Master’s thesis in Computer Science

Supervisor: Keith L. Downing

June 2020

Photo by Mike MacKenzie (cropped by Liam Huang). Source: https://www.flickr.com/photos/chen-meng/49203125457/. Licensed under CC-BY 2.0.


	Introduction
	Goal and Research Questions
	Research Method
	Contributions
	Thesis Structure

	Background Theory and Motivation
	Background
	Artificial Neural Networks
	Deep Learning
	Data Parallelism
	Model Parallelism
	Evolutionary Computation

	Literature Review Protocol
	Related Work
	Device Placement Optimization
	Performance Modelling
	Transfer Learning of Device Placement
	Evolutionary Computation for Process Scheduling

	Motivation

	Method and Technology
	Execution Simulator
	Detailed Description of the Execution Simulator

	Optimization Algorithms
	Solution Encoding
	Genetic Algorithm
	MAP-Elites

	PyTorch
	Summary

	Experiments and Results
	Experimental Plan
	Experimental Setup
	Experiments
	E1 — Influence of Tensor Size on Communication Bandwidth
	E2 — Stability of batch training times
	E3 — Comparison of Optimization Algorithms
	E4 — Transfer of Solutions During Optimization
	E5 — Comparison of Simulation and Benchmarks

	Summary

	Conclusion
	Discussion
	Contributions
	Future Work

	Bibliography
	Appendices
	Additional Experiment Results
	E4 — Transfer of Solutions During Training
	E5 — Comparison of Simulation and Benchmarks
	AlexNet
	ResNet-50
	Inception V3



