
Ljunggren, Erling
D

eep Learning for Blind Calibration of W
ireless Sensor N

etw
orks

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Ljunggren, Erling

Deep Learning for Blind Calibration of
Wireless Sensor Networks

A comparative study of convolutional and recurrent
neural networks

Master’s thesis in computer science

Supervisor: Kerstin Bach (IDI) and Sigmund Akselsen (Telenor

Research)

June 2020

Ljunggren, Erling

Deep Learning for Blind Calibration of
Wireless Sensor Networks

A comparative study of convolutional and recurrent
neural networks

Master’s thesis in computer science
Supervisor: Kerstin Bach (IDI) and Sigmund Akselsen (Telenor
Research)
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Temporal drift of low-cost sensors is a crucial problem when considering the applicability
of wireless sensor networks (WSN). Since they provide highly local measurements, which
is key to combat the ever increasing problem of air pollution, calibrating such networks
effectively becomes a high priority. The emergence of wireless sensor networks in lo-
cations without available reference data makes calibrating such networks without the aid
of true values a key area of research. While deep learning (DL) has proved successful
on numerous other tasks, it is sorely under-researched in the context of WSN calibration.
To further this research, this thesis will explore the applicability of DL for blind WSN
calibration by improving upon the only previously existing DL model and explore other
possible models. Promising architectures are found by a structured literature search on DL
methods in other related fields. To test architectures, a synthetic dataset has been imple-
mented after analysing real sensor data. The new models presented in this thesis obtains
a smaller calibration error with an order of magnitude compared to the previous model,
with temporal convolutions in 2 dimensions proving most promising. All code used in this
thesis is available at: https://github.com/ntnu-ai-lab/dl-wsn-calibration.

i

https://github.com/ntnu-ai-lab/dl-wsn-calibration

Preface

This report presents work done for the Department of Computer Science (IDI) at the Nor-
wegian University of Science and Technology (NTNU) during the Spring semester of 2020
for a master thesis. The scope and contents was decided upon in collaboration with asso-
ciate professor at IDI, NTNU, Kerstin Bach as supervisor, and senior research scientist
at Telenor, Sigmund Akselsen as co-supervisor. As such, I would like to express my
gratidute towards these people, whose help was invaluable in completing this report. A
special thanks to Exploratory Engineering at Telenor is also in order as they provided the
sensory data used in this project.

ii

Table of Contents

Abstract i

Preface ii

Table of Contents vi

List of Tables vii

List of Figures xii

Abbreviations xiii

Notation xiv

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 3
1.3 Thesis Outline . 4
1.4 Disclaimer Regarding Preliminary Work 4

2 Background and Theory 5
2.1 Measuring Air Quality . 5

2.1.1 Pollution in Technicality . 5
2.1.2 Sensors . 6
2.1.3 Wireless Sensor Networks . 7
2.1.4 Drift and Calibration . 7

2.2 Time Series Analysis . 8
2.2.1 Time Series Data . 8
2.2.2 Time Series Forecasting and Classification 9
2.2.3 Calibration as a TS Problem . 10

2.3 Deep Learning . 10
2.3.1 Artificial Neural Networks . 11

iii

2.3.2 Convolutional Neural Networks 12
2.3.3 Recurrent Networks . 15
2.3.4 Temporal Convolution . 18
2.3.5 Attention . 19

3 Literature Review 21
3.1 Background . 21
3.2 Search Setup . 22
3.3 Finding Relevant Papers . 23

3.3.1 Guidelines . 23
3.3.2 Aggregated Results . 24

3.4 Quality Assessment . 25
3.4.1 Criteria . 25
3.4.2 Results . 25

3.5 Related Work . 28
3.5.1 Calibration and WSN . 28
3.5.2 CNN . 29
3.5.3 RNN . 30
3.5.4 Other Methods . 30

3.6 Key Findings for WSN Calibration . 31

4 Data 33
4.1 Sensor Data . 33

4.1.1 Sensors Used . 33
4.1.2 Data-Stream . 34

4.2 Analysis of Sensor Data . 35
4.2.1 Analysis of Statistical Variables 35
4.2.2 Measurement Analysis . 35
4.2.3 Error Analysis . 37
4.2.4 Key Characteristics of Sensor Data 38

4.3 Data Simulation . 38
4.3.1 Background . 38
4.3.2 Locations . 39
4.3.3 Source Emissions . 40
4.3.4 Meteorological Variables . 41
4.3.5 Sensor Measurements . 41
4.3.6 Sensor Drift . 43

4.4 Data Preparation . 44

5 Model Architectures 47
5.1 Baselines . 47

5.1.1 Basic Baseline Architecture . 47
5.1.2 Extended Baseline Architecture 48
5.1.3 Reasons for Architectural Decisions 48
5.1.4 Pre-experiment Analysis . 49

5.2 Convolutional Model in One Dimension 50

iv

5.2.1 Architecture Overview . 50
5.2.2 Reasons for Architectural Decisions 51
5.2.3 Pre-experiment Analysis . 52

5.3 Convolutional Model in Two Dimensions 52
5.3.1 Architecture Overview . 52
5.3.2 Reasons for Architectural Decisions 53
5.3.3 Pre-experiment Analysis . 54

5.4 Stacked LSTM with Attention . 54
5.4.1 Architecture Overview . 54
5.4.2 Reasons for Architectural Decisions 56
5.4.3 Pre-experiment Analysis . 56

5.5 Discussing Core Modules . 56

6 Experiments 59
6.1 Overview of Experiments . 59
6.2 Hyperparameter Tuning . 60
6.3 Standard Test-Case . 63
6.4 Generalization To Far Future . 63
6.5 Generalization Through Drifts . 63
6.6 Hardware and Software . 64

7 Results 65
7.1 Key Results . 65
7.2 Hyperparameters . 66
7.3 HPT test . 69
7.4 Distant Generalization . 75
7.5 Generalization Through Drifts . 81

8 Discussion 87
8.1 Interpreting Results . 87

8.1.1 Overall Performance . 87
8.1.2 Comparing The Convolutional Models 87
8.1.3 Exploding Gradients For LSTMwA 88
8.1.4 Error over Time . 88
8.1.5 Ideal Model Size . 89

8.2 Adressing Research Questions . 89
8.2.1 Goal 1: SotA in DL relevant for WSN calibration 89
8.2.2 Goal 2: Synthetic data . 90
8.2.3 Goal 3: Choosing the most promising architecture 90

8.3 Validity . 91
8.3.1 Simulation Gap . 91
8.3.2 Experiment Specifics . 92
8.3.3 Comparison to Related Work . 93

8.4 Applicability . 93

v

9 Conclusion and Future Work 95
9.1 Summary . 95
9.2 Contributions . 95
9.3 Future Work . 96

Bibliography 99

Appendix 105
A.1 Training curves showing convergence of models 105
A.2 Locally Optimal HPs Used In Thesis . 107
A.3 More scatter-plots showing behaviour of models 112

A.3.1 HPT test . 112
A.3.2 Far Future . 114
A.3.3 Drifts . 116

A.4 Comparing The Two Possible Baselines 118

vi

List of Tables

3.1 Table showing results from review based on the found literature reviews. . 24
3.2 Table for Calibration methods . 24
3.3 Table for DL papers . 25
3.4 Quality assessment of selected papers from literature review 1 26
3.5 The papers included that were not possible to filter through the standard QA. 26
3.6 Quality assessment of selected papers from literature review 2 27
3.7 Quality assessment of papers from outside of the literature review 27

6.1 Space of hyperparameters for tuning the baseline models. 61
6.2 Space of hyperparameters for tuning the ResTDCN1D model 61
6.3 Space of hyperparameters for tuning the ResTDCN2D model 62
6.4 Space of hyperparameters for tuning the LSTMwA model 62

7.1 MSE scores on all experiments for all models 65
7.2 HPs complexity . 68
7.3 Performances on HPT test experiment 69
7.4 Performances on the far future experiment. 75
7.5 Performances on the drift generalization experiment. 81

A.1 Best HPs for basic baseline model. 107
A.2 Best HPs for extd. baseline model. 108
A.3 Best HPs for ResTDCN1D. 109
A.4 Best HPs for ResTDCN2D. 110
A.5 Best HPs for LSTMwA. 111
A.6 Scores for the baseline models . 118

vii

viii

List of Figures

2.1 WSN . 7
2.2 ANN . 10
2.3 The convolution operation . 13
2.4 Visualization of kernels with varying dilation rate. 14
2.5 Pooling layer . 14
2.6 Vanilla RNN and unrolled network . 16
2.7 Advanced recurrent cells . 17
2.8 Causal padding for convolutions in 1D. 18
2.9 Example temporal CNN . 19

4.1 Particle sensor schematic . 34
4.2 Raw sensor data . 34
4.3 Histogram of real PM2.5 values . 36
4.4 autocorrelation, direct and indirect . 36
4.5 scatterplot of pm10 against pm2.5 values 36
4.6 Scaled sensor data . 37
4.7 Meteorological scatter-plots . 37
4.8 Locations sampled for a synthetic WSN 39
4.9 Plots of synthetic PM2.5 values . 40
4.10 Behaviour of distance coefficient . 42
4.11 Plots showing locality of synthetic PM measurements 43
4.12 Neighborhood context . 45
4.13 The steps of data preparation. 45

5.1 baseline model . 49
5.2 The ResTDCN1D model. 51
5.3 The ResTDCN2D model. 53
5.4 The LSTMwA model. 55

6.1 The sliding window technique . 60
6.2 Data sectioning for the drifts experiment 64

ix

7.1 HPT result performances extreme values. 67
7.2 HPT result performances boxplot . 67
7.3 Scatterplots of true drift and predicted drift for PM2.5 in the HPT test ex-

periment. 71
7.4 Lineplots showing the drifted, calibrated, and true measurements for PM2.5

in the test-set of the HPT experiment. 71
7.5 Scatterplots of prediction error compared to drift values for PM2.5 in the

HPT test experiment. 72
7.6 Lineplots showing the MSE for PM2.5 in the test-set of the HPT experiment

over time. 72
7.7 Scatterplots of true drift and predicted drift for PM10 in the HPT test ex-

periment. 73
7.8 Lineplots showing the drifted, calibrated, and true measurements for PM10

in the test-set of the HPT experiment. 73
7.9 Scatterplots of prediction error compared to drift values for PM10 in the

HPT test experiment. 74
7.10 Lineplots showing the MSE for PM10 in the test-set of the HPT experiment

over time. 74
7.11 Scatterplots of true values and predicted values for PM2.5 in the far future

experiment. 77
7.12 Lineplots showing the drifted, calibrated, and true measurements for PM2.5

in far future experiment. 77
7.13 Scatterplots of prediction error compared to drift values for PM2.5 in the

far future experiment. 78
7.14 Lineplots showing the MSE for PM2.5 in the far future experiment over time. 78
7.15 Scatterplots of true drift and predicted drift for PM10 in the HPT test ex-

periment. 79
7.16 Lineplots showing the drifted, calibrated, and true measurements for PM10

in far future experiment. 79
7.17 Scatterplots of prediction error compared to drift values for PM10 in the

far future experiment. 80
7.18 Lineplots showing the MSE for PM10 in the far future experiment over time. 80
7.19 Scatterplots of true drift and predicted drift for PM2.5 in the drifts experiment. 83
7.20 Lineplots showing the drifted, calibrated, and true measurements for PM2.5

in the test-set of the drifts experiment. 83
7.21 Scatterplots of prediction error compared to drift values for PM2.5 in the

drifts experiment. 84
7.22 Lineplots showing the MSE for PM2.5 in the drifts experiment over time. . 84
7.23 Scatterplots of true drift and predicted drift for PM10 in the drifts experiment. 85
7.24 Lineplots showing the drifted, calibrated, and true measurements for PM10

in the drifts experiment. 85
7.25 Scatterplots of prediction error compared to drift values for PM10 in the

drifts experiment. 86
7.26 Lineplots showing the MSE for PM10 in the drifts experiment over time. . 86

A.1 The training curves for the HPT test experiment. 105

x

A.2 The training curves for the far future experiment. 106
A.3 The training curves for the drifts experiment. 106
A.4 Scatterplots of true values compared to predicted values for PM2.5 in the

HPT test experiment. 112
A.5 Scatterplots of true values compared to predicted values for PM10 in the

HPT test experiment. 112
A.6 Scatterplots of errors compared between PM sizes in the HPT test experi-

ment. 112
A.7 Scatterplots of prediction error compared to true values for PM2.5 in the

HPT test experiment. 113
A.8 Scatterplots of prediction error compared to true values for PM10 in the

HPT test experiment. 113
A.9 Scatterplots of prediction error compared to the change in true values for

PM2.5 in the HPT test experiment. 113
A.10 Scatterplots of prediction error compared to the change in true values for

PM10 in the HPT test experiment. 113
A.11 Scatterplots of true values compared to predicted values for PM2.5 in the

far future test experiment. 114
A.12 Scatterplots of true values compared to predicted values for PM10 in the

far future test experiment. 114
A.13 Scatterplots of errors compared between PM sizes in the far futre experiment.114
A.14 Scatterplots of prediction error compared to true values for PM2.5 in the

far future test experiment. 115
A.15 Scatterplots of prediction error compared to true values for PM10 in the far

future test experiment. 115
A.16 Scatterplots of prediction error compared to the change in true values for

PM2.5 in the far furure test experiment. 115
A.17 Scatterplots of prediction error compared to the change in true values for

PM10 in the far future test experiment. 115
A.18 Scatterplots of true values compared to predicted values for PM2.5 in the

drifts experiment. 116
A.19 Scatterplots of true values compared to predicted values for PM10 in the

drifts experiment. 116
A.20 Scatterplots of errors compared between PM sizes in the drifts experiment. 116
A.21 Scatterplots of prediction error compared to true values for PM2.5 in the

drifts experiment. 117
A.22 Scatterplots of prediction error compared to true values for PM10 in the

drifts experiment. 117
A.23 Scatterplots of prediction error compared to the change in true values for

PM2.5 in the drifts experiment. 117
A.24 Scatterplots of prediction error compared to the change in true values for

PM10 in the drifts experiment. 117
A.25 Scatterplots of the drift and predicted drift for PM2.5 by the baseline mod-

els on all experiments. 119

xi

A.26 Scatterplots of error against drift of PM2.5 values for the baseline models
on all experiments. 119

A.27 Lineplots showing the drifted, calibrated, and true measurements for PM2.5
bu the baseline models on all experiments. 120

xii

Abbreviations

WSN = Wireless Sensor Network
SN = Sensor Network
SotA = State of the Art
AQ = Air Quality
PM = Particulate Matter
TS = Time Series
MTS = Multivariate Time Series
UTS = Univariate Time Series
TSC = Time Series Classification
TSF = Time Series Forecasting
ML = Machine Learning
DL = Deep Learning
ANN = Artificial Neural Network
FFNN = Feed-Forward Neural Network
CNN = Convolutional Neural Network
FCN = Fully Convolutional Network
RNN = Recurrent Neural Network
LSTM = Long Short-Term Memory
GRU = Gated Recurrent Unit
ESN = Echo State Network

xiii

Notation

αβγ... = scalar variables
ABΓ... = one dimensional variables (a list)
ABΓ... = two dimensional variables (a matrix)
T = Maximum timestep in a TS
t, τ = timestep
i, j, k, l = generic index
n,m = generic sizes/dimensions
[·] = ordered list
{·} = un-ordered collection
f(·) = some functions f , other names can be given
xi,t or yi,t = datapoint at time t for TS i
Xi, Yi = A time series / ordered list of one dimension of size T [x1, x2, ..., xT]
X,Y = A collection of time series, all of same size T {Xi}
D = dataset, collection of tuples {(Xi, oi)} for classification
[X;Y] = the concatenation of X and Y
ali,t = activation, i.e. total input, to a node i at time t in an ANN at layer l
oli,t = output of a node i at time t in an ANN at layer l
w(i,j) = weight from node i to node j
b = batch size when training
W = set of weights for a network {w(i,j)}. Subscripted by purpose.
Ht = hidden state of a recurrent cell at time t
H = set of hidden states of a recurrent cell
Ct = cell-state of a recurrent cell at time t
Φ, Ψ, Ω = Forget, input, and output gates of LSTM
Γ, Λ = reset and update gates of GRU
I = input ”image” for a convolutional layer
K = kernel used in convolution
M = the resulting feature map of the convolutional layer
P = the resulting feature map of the pooling layer
St = Attention scores
Ct = Context vector, the last or a weighted sum of H
x̂ = Generated sample

xiv

Chapter 1
Introduction

This chapter presents the motivation behind this research, the main overarching goals, the
research questions to realize those goals, and finally a short overview over the structure of
this report.

1.1 Motivation

Ambient (outdoor) air pollution poses a major threat to both health and climate, with a
steadily increasing 4.2 million1 premature deaths per year worldwide due to stroke, heart
disease, lung cancer, and chronic cardiovascular and respiratory diseases as a result of
high pollution exposure. The economic impact of these health risks in the 15 countries
responsible for the most pollution is estimated to be more than 4% of their GDP2. Evi-
dently, this is in an important problem that needs high quality solutions fast. There are
already many models for forecasting air quality (AQ), which can help intelligently combat
the increasingly urgent problem of air pollution.

To enable such solutions however, it is important to be able to monitor the ambient
AQ accurately, as these models are no better than the underlying data used to justify their
predictions. Any prediction made by analysing faulty data will in all probability share the
error of the data. Unfortunately, the hyper-locality of AQ, varying from street to street
makes it difficult to monitor using accurate high-end sensors. The high cost of these sen-
sors renders a network of the required density to monitor local variations in AQ accurately
economically infeasible.

This economic problem can be solved by the emerging technology of wireless sensor
networks (WSNs). This is a set of low-cost sensors that enable large-scale local measuring,
as they are cheap enough to be placed in a very dense manner over a large area. This is
well suited for measuring AQ, shown by Kumar et al. (2015) as their model for estimating

124.04.20:https://www.who.int/health-topics/air-pollution#tab=tab_2
224.04.20:https://www.who.int/air-pollution/news-and-events/

how-air-pollution-is-destroying-our-health

1

https://www.who.int/health-topics/air-pollution#tab=tab_2
https://www.who.int/air-pollution/news-and-events/how-air-pollution-is-destroying-our-health
https://www.who.int/air-pollution/news-and-events/how-air-pollution-is-destroying-our-health

Chapter 1. Introduction

AQ in un-monitored locations performed better when trained with a data from a WSN
compared to a few high-quiality sensors.

Unfortunately, even though cheap WSNs enable highly local measurements, the main-
tenance, accuracy, and reliability of the sensors used remain a challenge. Fang and Bate
(2017) identify the problem of data quality as a result from various causes, but most im-
portantly by accumulating larger, varying, drift rates as they age. This leads to a demand
of calibrating the sensors often, which could happen in a laboratory setting, where this is a
solved process. However this is problematic for WSNs due to the sheer amount of sensors
usually deployed. It would require a lot of manual work to either ship each sensor back
to the lab, or to move around to each sensor with calibration equipment to fix emerging
errors.

The task of calibrating such sensor networks remotely then becomes very important.
This reduces maintenance costs considerably while keeping data quality high. This ap-
proach could also be more relevant for data quality as calibrating in a lab setting is some-
times argued to be invalid when deploying the sensors outside of controlled environments
because of environmental differences between the lab and the deployment location can
affect performance. When calibrating these WSNs remotely, one important factor is how
many high-quality reference-nodes are available. Ideally, we should be able to calibrate
the sensors without any, or at least requiring only a few, high-cost reference-sensors. This
is called blind or partially blind calibration, and is more and more becoming the focus
of research since it allows high quality measurements with less expensive sensors. Blind
calibration of WSNs will be the problem in focus for this thesis.

Deep learning (DL) for blind WSN calibration is a very under-researched field. De-
laine et al. (2019) provides a recent overview of calibration methods, showing that only a
handful is employing methods from the field of machine learning (ML). Furthermore, only
one paper reports experiments using DL (Wang et al. (2017)). While statistical and math-
ematical calibration models need to leverage explicit assumptions on the data, which may
not be exact and/or correct, DL can learn complex features found in the data itself without
assumptions leading to a perhaps much more general calibration model. The DL model
by Wang et al. (2017) was reported better than calibration methods at that time, which
coupled with the success of DL in other fields such as time series forecasting (TSF) and
classification (TSC), computer vision, and natural language processing, leads to a natural
hypothesis that a good DL model can be created for blind calibration. Advances in TSF
and TSC especially should be easily extended to the calibration task.

The goal of this thesis is to use advances in varying fields of DL, mainly TSF and
TSC, to improve blind WSN calibration for AQ sensors. The thesis will present three
DL models with designs based off of key advances in related fields of DL tailored to the
calibration problem. The three models use convolutions in one dimension, convolutions in
two dimensions, and LSTMs with attention as their key components. Because of delays in
sensor placement and thus the data aquisition as a consequence of Covid-19 will the data
in this thesis be synthetic. The simulation procedure will be presented in depth.

Per today there are no systematic tools and protocols for quantitative comparisons
between calibration models, leading to a sea of models decidedly difficult to navigate. Un-
like the common practice in ML, there are no standard test-dataset for comparison between
models, and the problem is furthered by most authors not publishing the code used in the

2

1.2 Goals

experiments. This leads to sparse comparisons between the models as re-implementation
is often necessary, making it difficult or near impossible to decide a final state of the art
(SotA) for any given use-case. And it is important to note that even if a SotA is found for
one use-case, the prevalence of differing assumptions used to build mathematical models
for calibration almost ensures that different model is needed for another network. As a
result, it will unfortunately be difficult to say exactly how successful ML- and DL-based
methods are for calibrating WSNs compared against existing mathematical methods in a
general sense. This paper will because of this focus on improving the model by Wang et al.
(2017) for the blind calibration problem.

1.2 Goals
The goals and research questions will be presented here as bullet-points.
GOAL 1: Get an understanding of the SotA in DL relevant for blind calibration of WSNs
for AQ.

• RQ1: Which DL-methods have been used for blind WSN calibration previously?

• RQ2: What is the current SotA for deep learning using time series data?

• RQ3: Which types of models are likely to be able to calibrate sensor data for AQ
well?

GOAL 2: Simulate a dataset for training a DL model

• RQ4: Which features and dependencies are prevalent in sensory data for PM?

• RQ5: Which features and dependencies need to be included in synthetic sensor drift
and measurement error?

GOAL 3: Decide which DL-architectures are most promising for blind WSN calibration

• RQ6: What type of models produces the lowest mean squared error (MSE) on the
synthetic data?

• RQ7: Which DL-architectures generalizes best over time?

• RQ8: Which DL-architectures generalizes best between different drift samples?

3

Chapter 1. Introduction

1.3 Thesis Outline
• Chapter 2 presents the necessary background and theory to understand the work

done in this thesis.

• Chapter 3 presents the related works to this thesis, and the literature search to find
them.

• Chapter 4 analyses real data and uses key features in to create a simulation proce-
dure to generate synthetic dataset to use in the experiments in this thesis.

• Chapter 5 describes and analyses the model architectures used in this thesis.

• Chapter 6 presents the experiments done for this thesis.

• Chapter 7 presents the results of the defined experiments.

• Chapter 8 discusses and analyses the results themselves and the validity and rele-
vancy of this work.

• Chapter 9 concludes this thesis by summarizing the work done and outlining the
contributions of this thesis. It also describes possible future work to further this
research.

1.4 Disclaimer Regarding Preliminary Work
Because this thesis is a continuation of my preliminary work (Ljunggren (2019)) there will
be sections in this thesis covering the same content as that report. That work is repeated
here in order to provide a cohesive and complete master thesis, covering the culmination
of a year’s work. Only the relevant parts of the previous work are repeated here, and
the repeated content is tailored and elaborated for the goals of this thesis. The sections
covering previous work have thus been altered and extended for the purposes of this work.

The sections covering content found in the preliminary work are: §3, §3.5, §4.1, §4.2.
Naturally, the sections in chapter 2, Background and Theory, also cover the same content,
but do not cover my research and should not be considered as repeated work similarly to
the mentioned sections.

4

Chapter 2
Background and Theory

This chapter will start by introducing air quality measurement, WNSs, and drift calibra-
tion. Later, a formalization of time series data and related tasks will follow. Then, we will
describe the aspects of DL necessary for this paper, feed forward networks, convolutional
networks, recurrent networks, and finally the attention mechanism.

2.1 Measuring Air Quality
This section will elaborate on air pollution, AQ sensors, sensor networks, and the problem
of accuracy and drift when deploying WSNs.

2.1.1 Pollution in Technicality
Air pollution is a term describing the concentration of harmful substances in the air, mainly
dust particles, gases, and biological molecules. The most important of these are particulate
matter (PM), and the most important gases are ozone (O3), nitrogen dioxide (NO2), and
sulfur dioxide (SO2). Because PM affects many people more so than the other pollutants
it is often used as a proxy indicator of local pollution levels.

Particulate matter is a complex mixture of many various particles of varying sizes,
where the most prevalent are sulfate, nitrates, ammonia, sodium chloride, black carbon,
mineral dust, and water. Because PM encapsulates so many particles, it is measured by
size, where the most important groupings are particles with a diameter of 2.5µm or less,
denoted PM2.5, and particles with a diameter of 10µm or less, denoted PM10.

The size of PM is also closely related to the dangers of inhaling polluted air. PM10 can
physically damage the lungs while breathing, but PM2.5 can bypass the lung barrier and
enter the blood stream, leading to higher risk of cardiovascular and respiratory diseases in
addition to lung cancer. PM2.5 is therefore often deemed a more dangerous particle, and
thus more important to measure accurately.

The concentration of PM is a local phenomenon. The reason for this locality is that PM
does not travel far and is emitted by many sources, e.g. traffic, industry, and fossil fuel.

5

Chapter 2. Background and Theory

This results in variations in PM-levels on a street-to-street level as relatively low amounts
of PM travel between emitting locations compared to locally emitted PM. The locality also
increases by size as the heavier particles are not carried as far as lighter particles by phe-
nomenons like wind. All this results in the mentioned challenge of accurately measuring
local variations in PM, and by extension pollution.

2.1.2 Sensors
The sensors used to measure pollution vary based on the measurand. Low-cost PM sensors
are almost exclusively measuring particle concentration optically. That is, they blow air
into a small chamber with a small fan and use a LED, or a low-powered laser, together with
a photo-diode to measure the concentration of the particles, as different concentrations
scatter the light differently. A schematic view of one such sensor can be seen in figure 4.1.
Low-cost gas sensors are usually electrochemical (EC). They consist of two electrodes,
and measure electric current between them caused by gas oxidation or de-oxidation at one
of these electrodes, called the working electrode.

The problem with varying low-cost sensors are still very similar, and can be grouped
into internal or external reasons as defined by Maag et al. (2018). Internal reasons are
errors originating in the sensor’s architecture and principles, and can be summarized as
follows:

• Boundaries of the sensor range define where the sensor responds to signals. Es-
pecially the lower limit of detection is important. Below this point the noise in the
sensor measurement starts to dominate, making it impossible to distinguish noise
and the real value of the measurand.

• Systematic errors are constant offsets in the sensor, possibly from lack of, or lack-
luster, calibration before deployment.

• Nonlinear response is when the output of the sensor depends non-linearly on the
real value of the measurand. Even if this can be handled by the manufacturer to
some extent, external conditions can amplify or decrease this behaviour. This is a
problem particularly for PM sensors with temperature.

• Signal drift defines the behaviour of degrading accuracy over time. This is usually
the cause of impurity effects or aging. This is the problem most often encountered
as it cannot be accounted for by manufacturers, and seriously impacts longevity of
sensors. One example, for PM sensors, is that dust can settled close to the optical
sensor, blocking the light and increasing measured value, or that the light source
becomes less efficient as the sensor age.

External error sources are error sources coming from the environment, and how the sensors
react to this. The most important external error sources are:

• Environmental dependencies are relationships between various environmental fac-
tors, most notably temperature and humidity, and the performance of the sensor.

• Low selectivity is a characteristic of EC sensors leading to high cross-sensitivity
where gases other than the measurand affects the sensor output.

6

2.1 Measuring Air Quality

Figure 2.1: A basic WSN. Sensor nodes measure their measurand and forward their data to the sink
node. The sink node then sends this to a database which can be used for data analysis.

• Sensor mobility can be a hurdle if the sensor is not designed for this purpose, as
more or less air-flow could impact the sensor output. This is one of the less re-
searched error sources as mobile sensors are relatively new.

2.1.3 Wireless Sensor Networks
A WSN is a collection of mobile or static sensors that monitors the same measurand in var-
ious locations, resulting in local measurements covering a large area. A basic architecture
can be found in figure 2.1. The connectivity of such a network is vital, as each deployed
sensor must be able to communicate and send its measurements to at least one sink node,
either directly or via another node. The placement is often modeled as k-coverage, where
k sensors are measuring data from any given point of interest. Unfortunately, using a high
k not ideal for AQ monitoring systems as it leads to deploying an economically infeasible
number of nodes as a consequence of the locality of PM. A WSN measuring AQ might
therefore not have many sensors, if any, that are redundant. Because of the low redundancy
and high error of sensors used, calibrating such a network is a challenging but important
task.

2.1.4 Drift and Calibration
In meteorological terms, calibration means to derive the relationship between the raw out-
put of the sensors and the real quantity measured by the sensors. From the error sources de-
scribed earlier, we can formalize this problem. Consider n sensors, labeled i = 1, 2, ..., n,
measuring a continuous signal at T discrete timesteps labeled t = 1, 2, ..., T . A sensor
output yi,t and its corresponding real measurement xi,t are then correlated as defined by
the following equation.

yi,t = αi,tx
βi,t

i,t + ci,t + εi,t (2.1)

7

Chapter 2. Background and Theory

Where α is the linear part of the error, β is the non-linear part, and c is the constant part. ε
defines the random noise at each measurement. Note that all drift variables are dependant
on time, which is because the drift variables are dependant on the age of the sensor, but
also history and exogenous variables.

The problem is very complex, and simpler relationships have been used to great suc-
cess in the past. By noting that manufacturers tend to correct for non-linearity with on-chip
post-processing, 2.1 can be simplified by removing β as follows:

yi,t = αi,txi,t + ci,t + εi,t (2.2)

Which is the equation most used in the literature. Further simplifications can be made
by assuming the exogenous variables have a miniscule effect on the measurement error
and ignore them, and by ignoring the effect of aging and temporal differences. This re-
sults in four main schools of calibration, utilizing relationships of varying complexity, by
employing none, either one or both of the mentioned simplifying assumptions.

The goal of calibration is then to find a function f(·) that minimizes the difference
between all measured and real values.

min
f(·)

∑
i

∑
t

|f(yi,t)− xi,t| (2.3)

Where | · | denotes absolute value and all xi,t are unknown in the case of blind calibra-
tion. For partially blind problem specifications, some sensors are known to be correct,
simplifying the problem.

2.2 Time Series Analysis
This section will elaborate and formalize the main tasks where time series data is used.
This is important for this thesis as sensor data is often viewed as time series, and calibration
can as such be viewed as a TS problem. This section is important as the literature will cover
the mentioned tasks, and it serves a purpose to enable parallels from the literature to the
calibration problem.

2.2.1 Time Series Data
A time series is no more than a series of datapoints ordered by time. There are two over-
arching types of TS:

• A univariate time series (UTS) X = [x1, x2, ..., xT] is an ordered list of length T ,
where all xi are values of the same variable at different times.

• A multivariate time series (MTS) of n-dimensions is a collection of n UTS
X = {X1, X2, ..., Xn}, where each Xi ∈ RT

The datapoints in the TS is often measured at a constant interval, but missing data or
other factors might result in irregular sampling. Then it becomes increasingly important
to note that the temporal ordering and structure of the data is a result of assumptions or

8

2.2 Time Series Analysis

metadata. Such information is not a part of the data, and must be included via other means,
often another TS. The data is in itself only a collection of datapoints.

A UTS can be decomposed into three key components that can be used for analysis:

• Seasonal refers to repetitions in the time series with fixed intervals. These cycles
can have varying interval times from time series to time series, if at all present.

• Trend refers to the overall movement of the time series, most notably whether it
increases, decreases, or remains stationary over time.

• Noise is the last decomposition, and contains all the information not vaptured by the
previous components.

Further analysis can be made by looking at the presence of stationarity in the TS, whether
the moving mean remains the same, and how autocorrelated the data is. This is important
for DL because DL-models only perform well on TS that is stationary and have high sea-
sonality and/or autocorrelation. Non-stationary TS can be made stationary by subtracting
the trend from the original TS. This is often encouraged before applying DL on TS data.

2.2.2 Time Series Forecasting and Classification
Forecasting

Time series forecasting is the task of predicting a set of future measures based on past
observations. Given a time seriesX that is either UTS or MTS, a given predictor P will use
previous data [x1, x2, ..., xt] to predict the next data-point xt+1. This shares similarities
with standard regression methods, with the target value being the next datapoint in the TS.
The training set for this task is usually created using the sliding window approach, for UTS
leading to a dataset such as

D = [(X1:t, xt+1), (X2:t+1, xt+2), ..., (XT−t−1:T−1, xT)]

.
When solving a TSF problem, the causality of the solution becomes very important

if results are needed in real-time. When talking about the causality of a TS, it is most
often used to show that any given timestep is a consequence of previous timesteps, but not
following timesteps. Using this relation to predict for previous timesteps do improve per-
formance, but it delays optimal performance until those values are obtained. Consequently,
designing a model that follows this causality is important.

Classification

Time series classification is the task of giving a label to a given time series. Given a dataset

D = {(X1, Y1), (X2, Y2), ..., (Xn, Yn)}

with n TS, where Xi can be either a UTS (like here) or MTS and Yi is a one-hot vector,
a classifier maps the time series onto a probability distributions over the labels. This
is basically identical to standard classification tasks found in deep learning, e.g. image
classification.

9

Chapter 2. Background and Theory

(a) A basic perceptron. Inputs, weights, activation,
output are marked x, w, a, o respectively. The
activation function is any non-linear function.

(b) A schematic of a feed forward neural network
with 3 input nodes and 2 output nodes. Each per-
ceptron p is marked with layers and node indices
as superscripts and subscripts respectively.

Figure 2.2: Figures showing the basics of an artificial neural network.

Sequence to sequence

Sequence to sequence (Seq2Seq) tasks define problems where the target is a new TS. The
most prevalent task of this structure is machine translation, where each element in the TS
represents a word. Note that the resulting TS may, but is not required to, contain the same
number of elements.

2.2.3 Calibration as a TS Problem

The task in this thesis, calibration, can be viewed as Seq2Seq, but one of a more strict
nature. Each element in either the original or computed TS corresponds to the element at
the same time in the other TS, and the the computation can be viewed as a mapping from
the original TS to the other. The resulting TS have the same number of elements.

Calibration also shows some similarities with TSF and TSC. TSC and calibration share
that the model output is not a continueation of the input TS, similar to Seq2Seq as well.
TSF and calibration share that causality is important, especially for real-time calibration.

The problem of calibration should them be able to use ideas found in all the mentioned
TS tasks. This is important as it opens parallels for the literature on DL on TSC, TSF, and
Seq2Seq to the problem of calibration.

2.3 Deep Learning

This section will describe all the basic modules used in DL necessary for time series anal-
ysis: ANN, CNN, RNN, Attention, and ESN.

10

2.3 Deep Learning

2.3.1 Artificial Neural Networks
The basics

The most essential part of modern machine learning is the artificial neural network (ANN).
It draws inspiration from biological neural systems and is designed to share common as-
pects with the inner workings of the brain. The basic ANN is built using perceptrons,
shown in figure 2.2a, that apply a non-linear function f(·) to the weighted sum ai of it’s
inputs ol−1, as seen in eqn. (2.4).

ali =
m∑
j=0

wl(j,i)o
l−1
j (2.4a)

oli = f(aln) (2.4b)

Where we are iterating over all m nodes with connections to node i, subscripts define
nodes, and superscripts define layers.

In its most simple form is the ANN a set of perceptrons connected by directed links
forming an acyclic graph, usually in a layered structure as can be see in figure 2.2b. This
is referred to as a feed forward neural network (FFNN), as all information flows forward
in the network between layers. The nodes processing the initial input are referred to as the
input layer, and likewise are the nodes producing the final output referred to as the output
layer. The intermediate layers are referred to as hidden layers. Common practice is to
use the sigmoid, tanh, or variants of the ReLU function for the activation function. This
is done in succession for each layer from the input layer, through the hidden layers and
output layers. The node outputs from the final output layers are the outputs of the network.

For certain architectures, amongst them the FFNN, are matrix notation a more intuitive,
or at least simpler, description of the behaviour of the network. It is as follows:

Al = WlOl−1 (2.5a)

Ol = f(Al) (2.5b)

Where W denote the weight matrix of the layer, A is the list of node activations, O is the
layer output as a list of node outputs, and the layer is denoted by the superscript.

Training Algorithm

Training such a network is almost always done with gradient descent on some loss/cost
function in the space defined by the weights of the network. This is done by applying
the chain rule of derivation on the gradient with respect to elements in the network in a
backwards fashion, which results in the equations shown here:

Output layer: δli =
∂Lxk

∂ali
(2.6a)

Hidden layer: δl−1
j =

n∑
i=0

[δliw(j,i)f
′(al−1

j)] (2.6b)

11

Chapter 2. Background and Theory

Algorithm 1: Backpropagation training algorithm
Input: learning rate η, batch size b, stopping conditions
Output: Tuned weight set W = {w(j,i)}
Data: Testing set X

1 while No stopping condition met do
2 pick a subset of data Xbatch = {xk} such that b = |Xbatch|
3 for xk in Xbatch do
4 compute ali and bli values for all nodes i in all layers l by eqn. (2.4)
5 compute δli values for all nodes i in all layers l by eqn. (2.6b)
6 end
7 update weights by gradient descent as defined in eqn. 2.7
8 end
9 return final weights

Where we are iterating over all n nodes with connections from a hidden node j with a and
b calculated for some data-sample xk with loss L. Using this, the backpropagation step
for weight w(j,i) using a training batch Xbatch with a learning rate η is as follows:

w(j,i) ← w(j,i) −
η

b

∑
xk∈Xbatch

(bl−1
j δli) (2.7)

For an output-node eqn.(2.6a) is used in gradient descent, while eqn.(2.6b) is used
for hidden nodes. With these formulas we can design the basic training algorithm for a
neural network, shown in alg.1. Note that this algorithm serves as the baseline for train-
ing all models, not just the simple ANN. When describing training algorithms for other
architectures, only changes from this baseline algorithm will be written.

2.3.2 Convolutional Neural Networks
Convolution in a Neural Network

Convolutional neural networks (CNNs) are designed to capture the spatial patterns in an
image, independent of location in that image. This is done by applying learnable filters, or
kernels, on each possible location in that image.

The output of a convolutional layer is defined as follows. A filter K is applied in
parallel at each location where it fits the input image I. The resulting map M of the image
from that kernel and can be described with the following equation, which is visualized in
figure 2.3.

M(k,l) =

n∑
i=0

m∑
j=0

c∑
f=0

K(i,j,f)I(k+i,l+j,f) = (I ∗K)[k, l] (2.8)

where k and l are indices in the feature map M, i and j are indices in the kernel with size
n ×m, and f is the channel index, with c being the number of channels in image I . The
dimensions of the resulting map M are reduced by n and m in their respective dimensions
compared to the image input I . This equation explains the name for the network, as the

12

2.3 Deep Learning

Figure 2.3: A simple
schematic showing the
convolution operation for
two output values. This
shows the computation of
output (0, 0), with the used
inputs and the produced
output marked with a black
outline.

operation is equivalent to a discrete convolution of the image using the filters. The output
of a CNN layer are a stack of maps produced by each filter in the layer, which are used as
the image input for the next layer each filter output corresponding to a channel.

Updating the weights of the filters used in the CNN is done by backpropagation fol-
lowing the structure of algorithm 1. Backpropagating the loss is done by transpose convo-
lution. The filter weights are updated by the total loss for all the output nodes. Because
each output from a filter share the weights, it is a very efficient model architecture when
looking at the number of trainable parameters, and by extension training time.

Kernel Variations

An essential part of controlling the output shape of a convolutional layer is padding. Be-
cause the output of a convolutional layer has reduced size will each subsequent layer work
on smaller and smaller images. This leads to output shapes that are more difficult to con-
trol. Padding the image along the edges with some set value, often zeros, will result in an
output image with the same dimensions as the one used for input. Other values based on
the values in the image along the edges can also be used, but are often a less safe bet as
this choice impacts the kernel outputs along the edges considerably.

Dilating the convolution kernel is a way to extend the area covered by a single convo-
lution without increasing the number of trainable parameters. It is done by skipping values
when convolving, as seen in figure 2.4, spreading a kernel over a larger area in the image.
The figure shows the dilated kernel in dark blue, and the receptive field of the next layer
in bright blue, assuming both used dilated convolution. This leads to only using values in
this grid-like manner and is known as the gridding problem. While this leads to a worse
measurement of local patterns, the receptive field grows significantly faster with respect to
network depth. As such, a much shallower network is needed to capture patterns spanning
the entire image. The gridding problem can be solved by using varying dilation rates in
the layers in the network, and is shown for 1D convolution in figure 2.9. When dilating
the convolutions, increasing the amount of padding can still keep the shape constant.

Changing the stride involves by changing the interval between each application of the
convolution filter. This results in a drastically reduced output size if the interval is larger
than 1. Fractional stride results in upscaling as the kernels produce output for interpolated
points between input samples. Note that padding should not be used to keep the output
shape if the stride is larger than one, as that would result in several kernel applications be

13

Chapter 2. Background and Theory

Figure 2.4: Visualization of kernels with varying dilation rate, in dark blue, and their effect of the
receptive field on the next network layer, in light blue. The green square shows the center of the
nodes in both layers.

Figure 2.5: An
example of max-
pooling with a
receptive field of
2x2, shown on 1
channel. Corre-
sponding outputs
and inputs share
colour.

on entirely padded data.

Pooling

In order to reduce the dimensions of the feature map, max- or average-pooling layers are
used in between convolutional layers. They take a subarea of the feature map, and as the
name suggest, do a max or average over these values, where max-pooling, shown in figure
2.5, is more common. The reason max-pooling is more common is that is shows if a feature
was found, because the pooling output value matches the output value of the kernel that
best overlapped with the learned pattern as that would produce the highest output value.
Using average pooling would smooth out the differences between the outputs, which may
reduce the information that a pattern was found, should the other outputs have low values.
Using pooling layers is often preferred over increasing the stride value because it can more
easily capture features of the image as the filters are applied at each location.

The equation describing the max-pool is shown here. Note that pooling only works on
a single channel at a time, and produces an output with corresponding channels.

P(k,l) = max
(i∈[k∗n,k∗n+n),j∈[l∗m,l∗m+m))

M(i,j) (2.9)

Where n is the pooling size. By using a pooling-size of 2, it reduces the image size to
a quarter size, which is what is usually done.

14

2.3 Deep Learning

2.3.3 Recurrent Networks
Recurrent Connections

To introduce the ability to model temporal dependencies in the data explicitly, connections
can be made from a node to itself in the network, forming a recurrent neural network
(RNN). A group of recurrent nodes in the same layer is referred to as a recurrent cell,
in this case the vanilla RNN cell seen in figure 2.6a. These recurrent connections enable
encoding of variable length time series without increasing the number of parameters, and
are thus one of the preferred network architectures when working with temporal data.

Inference for a single node in a RNN cell is similar to eqn. (2.4) for the basic ANN,
but it includes both the output of previous layers (or the network input), and the output of
the same recurrent cell from the previous timestep, as shown by the following equation.

At = W · [Ol−1
t ;Olt−1] (2.10a)

Olt = f(Alt) (2.10b)

Where we iterate over the m nodes in the previous layer, and the n nodes in this layer
(including node i). The outputs of the previous layers, the previous timestep, and this
timestep are denoted O, separated by subscript and superscript for timestep and layer
respectively. The output of an RNN cell is often called the hidden state since it holds a
representation, or memory, of the time series that is used in computing the output for the
next timestep.

While an RNN might look cyclical when viewed architecturally, when viewed over
time, a cell can unroll to a DAG over the input sequence, as seen in figure 2.6b. This is
important as it enables RNNs to use a similar method to algorithm 1, used by the FFNN,
to update weights. Weight update is done by unrolling the network for some number of
timesteps, and then performing weight update with the added constraints that weight up-
dates cannot differ between timesteps. This is done by adding the gradients for a weight
over all timesteps together, and use the total for weight update. This process is called back-
propagation through time (BPTT). Naturally, this limits the learning of an RNN because
the entire history is often not included in backpropagation, only approximating the real
gradient.

There are two key problems with this approach, vanishing gradients, which means the
gradient approaches zero for old timesteps, and exploding gradients, which means that the
gradient magnifies such that training becomes unstable. This is because the gradient is the
product of the many factors of the chain rule. Having very small intermediate gradients
leads to the end result vanishing, approaching 0, but too big gradients multiplied together
causes the gradient to explode, grow uncontrollably. While gradient clipping can combat
exploding gradients, the vanishing gradients are more subtle and difficult to deal with.
This results in a network that only learns short-term dependencies in the data, reducing
the networks ability to predict well. While this is by no means problems specifically for
RNNs, the fact that their effective depth in regards to backpropagation increases linearly
in relation to the number of timesteps makes this a much more prevalent problem in these
types of networks. By introducing gated memory, giving the model more control over what
memory is retained from old timesteps, can the effect of the TS length on the gradient be
reduced.

15

Chapter 2. Background and Theory

(a) A vanilla RNN cell
(b) An unrolled version of the vanilla RNN, showing how the recurrent
connections enable temporal learning.

Figure 2.6: Figures showing the vanilla RNN cell and the unrolled equivalent. The element-wise
multiplication of the concatenation of the hidden state H and the input x and the weight matrix is
shown as W in the figure. Any non-linear function can be used for f.

Advanced Recurrent Cells

The core concept in an LSTM cell is its cell state [eqn.(2.11e)], and the three gates to
update or use that state [eqn.(2.11a), eqn.(2.11b), and eqn.(2.11c)]. The cell state acts a a
memory, and since it is updated without learnable weights directly it can carry unchanged
loss from very distant timesteps to help combat the vanishing gradients problem. This is
because the gradients through time is not multiplied over multiple timesteps. The cell state
is not used as output, only the hidden state is passed onward. The gates controlling the cell
state update are the forget and input gate, and output gate controls the transition from cell
state to output. All gates uses the previous hidden state/output and the current input. Their
respective functions are: creating a vector to decide how much of the previous cell state to
retain, decide how much weight is given the input of the present timestep, and manipulate
the cell state to pass on as the next hidden state.

The notation for the following equations describing inference with LSTM, and for
figure 2.7a, are as follows. X , H , and C are input, hidden state, and cell state respectively.
Φ, Ψ, and Ω, are forget, input, and output gate values respectively. WΦ, WΨ, WΩ,
and WC are the weight matrices for the forget, input, and output gate, and the cell state
candidate. Subscripts denote timestep, and superscripts denote layer. These equations
assume one cell per layer.

0http://colah.github.io/posts/2015-08-Understanding-LSTMs/

16

2.3 Deep Learning

(a) The architecture of an LSTM cell (b) The architecture of a GRU cell

Figure 2.7: Figures showing the architectures of advanced recurrent cells. Both figures adapted
from colah’s blog1

Φt = σ(WΦ · [H l
t−1;X l−1

t]) (2.11a)

Ψt = σ(WΨ · [H l
t−1;X l−1

t]) (2.11b)

Ωt = σ(WΩ · [H l
t−1;X l−1

t]) (2.11c)

C̃t = f1(WC · [H l
t−1;X l−1

t]) (2.11d)

Clt = Φt � Ct−1l + Ψt � C̃t (2.11e)

H l
t = Ωt � f2(Clt) (2.11f)

Weight update for an RNN with the LSTM cell is done by BBPT, just like the standard
RNN. Each gate can be viewed as simple FFNN, and are thus optimized accordingly. This
leads to a more trainable parameters, but keepis the gradients farther back in time because
the cell state is not manipulated by the trainable parts of the LSTM, enabling efficient
training on longer time series. The result is a more expressive model that tends to have
better modeling of long-term dependencies.

The gated recurrent unit (GRU) is a middle-ground between vanilla RNN and LSTM.
It is simpler than the LSTM, but still retaining the gradient flow between timesteps that
partially solves gradient vanishing. It only has two gates, and forgoes the equivalent of
the hidden state in the LSTM. The two gates included are the reset and update gate. Their
functions are to decide how much old information to use in computation, and how how
much this timestep updates the hidden state. Because of these simplifications, it is more
resource-efficient than an LSTM while not loosing too much acuracy. The GRU still re-
tains much information from old datapoints using the hidden state, similar to the cell state
of LSTM.

The following notation describes the equations describing GRU inference and the GRU
schematic in figure 2.7b. Xt and Ht are the input and hidden states. Γt and Λt are the
reset and update gates, and H̃ is the hidden state candidate, all with their respective weight
matrices WΓ, WΛ, and WH .

17

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Chapter 2. Background and Theory

Γt = σ(WΓ · [Ht−1;Xt]) (2.12a)
Λt = σ(WΛ · [Ht−1;Xt]) (2.12b)

H̃t = tanh(WH · [Γt �Ht−1;Xt]) (2.12c)

Ht = (1− Λt)�Ht−1 + Λt � H̃t (2.12d)
(2.12e)

2.3.4 Temporal Convolution
CNNs are used to learn dependencies between values that are located closely in the used
data structure, but there are other phenomenons that can be captured in matrix-form,
most importantly for this thesis is timeseries. A UTS can naturally be expressed as a
1-dimensional matrix, and while an MTS can be expressed as a two-dimensional matrix,
with one dimension for time and one for variables, is using 1D convolutions with the vari-
ables in the channel dimension a possible option.

Traditionally, 1D convolutions are used for timeseries data, viewing the variables as
separate channels in the data. The reason for this is that there are no natural ordering
of variables, which results in the variables contained in the receptive field of any give
output node will be arbitrary. To ensure that the related variables are used together by the
convolution kernel, using all of them is a safe solution. While this makes the number of
trainable parameters linearly dependant on the number of variables, as they are used as
channels, the number of parameters from the two dimensional kernel also increases that
number. For a 2D convolution to have less parameters, we need that

c < k1 ∗ k2

where c is the number of channels, and k are the kernel sizes in the dimensions denoted by
the subscripts. The main difference comes from the 2D convolution being able to use the
second data dimension without increasing trainable parameters, but the 1D convolution
can facilitate more filters with the same number of parameters.

Compared to the recurrent models, the basic 1D-CNN has some flaws. The main flaw
considers temporal memory, as the backwards horizon of the CNN is restricted by the
hyper-parameters such as kernel size, dilation rate, and depth. Increasing kernel size and

Figure 2.8: Causal padding for convolutions in 1D. Only padding for past values forces the convo-
lutional nodes to only use previous timesteps for computation.

18

2.3 Deep Learning

Figure 2.9: An example temporal CNN with causal convolutions. Here the dilation increases ex-
ponentially, which increases temporal memory drastically, but enables all input values to affect the
output for time t. Adapted from van den Oord et al. (2016).

depth also increases the number of parameters, but increasing dilation rate does not. The
dilation rate is effectively a trade-off between being able to model short-term or long-term
dependencies. Using a diverse set of dilation values are therefore a good strategy. The
second flaw considers causality, as the standard padding-procedure enables the network to
use future values for any given prediction. This is more of a conceptual flaw, but has very
real impacts on certain tasks such as forecasting, where the temporal ordering is important.
It is easily remedied by only padding for past values in the temporal dimension, as shown
in figure 2.8.

To understand why causal padding solves this problem, it is important to note that the
convolutional operation does not work with time. It is applying the kernel on all possible
locations in the input data, which is enlarged by padding. By only padding for the past
variables are the kernel locations using future data removed. The newest kernel output is
then only computed using data up to and including the newest input. An example network
showcasing varying dilation rates with causal padding is found in figure 2.9

There are some pros of the temporal CNN compared to the RNN. Most importantly,
training time is considerably faster. While both networks share weights between timesteps,
only the CNN can be excecuted in parallell, because the hidden state of the RNN must be
sequentially updated. This results in faster training, which means it is a more feasible
architecture for low-end hardware, or for designing bigger models. Furthermore, because
CNNs view the input data directly over multiple timesteps, it is often better at extrapolating
short-term dependencies since there are no intermediate aggregated vector.

2.3.5 Attention

Attention is a mechanism introduced for sequence to sequence (Seq2Seq) models in order
to use information from all timesteps for output generation. The core idea is that for each
decoded output timestep, a weighted average over the hidden states of the encoder is used
to facilitate the predictions. These weights are calculated by a FFNN or a dot-product
followed by a softmax-operation.

19

Chapter 2. Background and Theory

This procedure is divided into 4 steps. Consider an encoder producing a set of hidden
states H = [H1, H2, ...,HT], and an decoder generating an output Ot at time t from its
previous hidden state Ḣt−1 using a context vector Ct. Then the steps can be written as
follows, using the decoder hidden state as a query to obtain attention scores.

St = A(H, Ḣt−1) = [s(t,1), s(t,2), ..., s(t,T)] (2.13a)

Št = softmax(St) = [e(t,1), e(t,2), ..., e(t,T)] (2.13b)

Ct = Ḣt−1 � Št (2.13c)

Ot, Ḣt = Decode(Ct, Ot−1) (2.13d)

Where the A is a general attention function, and attention scores St and weights Št are
intermediate values used to calculate relevancy of a the given hidden states. Ct can also
be used to create an attention map, increasing interpretability of the model by explaining
what was deemed important for a given output.

The attention function can be anything that can learn to output importance of one
vector given another. This is traditionally done by a FFNN, but other alternatives have
been developed. One exapamle is using matrix multiplication of key vectors generated
from the original vectors to be attended. Applying any attention function to the set of
hidden states means to apply it to each vector individually to obtain a score for each of
them.

The attention mechanism is extremely flexible. Even if traditionally recurrent methods
have been used for encoding and decoding, the attention mechanism can still encompass
temporal dependencies when the other model is time independent, or even alone. The
attention can be global, and span the entire finite TS, or be local, spanning over a sliding
window enabling its use in infinite TS. It can also use a vector from the set of vectors to
attend as a query, which is called self-attention.

20

Chapter 3
Literature Review

This chapter will describe the related works to this thesis. To that end, a structured litera-
ture review has been conducted, and will be described thoroughly before summarizing the
State-of-the-Art in the relevant research fields. This chapter addresses goal 1.

3.1 Background
When searching for calibration models for blind sensor network calibration, only Wang
et al. (2017) provided such a solution. As this clearly is an underresearched field, we
need to combine knowledge from other related fields. This results in the need for a broad
structured literature review because this project aims to compare models used in other,
related, fields of research on the calibration task. Because time series analysis tasks (most
notably TSF, TSC, and Seq2Seq) use similar data to calibration, those where the fields
selected as relevant. The scope of the SLR was then: blind sensor network calibration, and
DL for various TSC, TSF, and Seq2Seq.

Early on in the literature search we discovered literature reviews for all these fields,
limiting the need for a new literature search. The literature reviews was: Delaine et al.
(2019) on WSN calibration, Ismail Fawaz et al. (2019) on TSC, and Gasparin et al.
(2019) on TSF, all very recent and as such served as good starting points for a narra-
tive(snowballing) literature review.

The narrative literature review was unfortunately not considered complete enough to
get a complete overview of the research that can be considered relevant to the problem of
this paper, as some key flaws was uncovered in the found reviews. Delaine et al. (2019)
only mentions 2 DL-related methods, Ismail Fawaz et al. (2019) limits the review for
discriminative models only, and Gasparin et al. (2019) focuses on a single problem domain
(that was not calibration).

A small complimentary structured literature search was then conducted to solve these
problems, and otherwise complement the literature covered by the mentioned authors.
The goals can be formulated as follows: (1) Research other DL-models on blind sensor
calibration if they exist, (2) find more general discriminative and generative models for

21

Chapter 3. Literature Review

TSC and TSF, (3) research sequence-to-sequence methods in DL. Goal (1,2) is added to
complete the narrative review, and goal (3) is included because it was not included in the
narrative review, while being relevant to the project. Finally, because sensor drift is known
to be affected by exogenous variables, the goals are largely restricted to papers using MTS
data.

3.2 Search Setup
The narrative literature search was conducted by reviewing the references of the three lit-
erature reviews, and selecting relevant papers. The structured literature review was split in
two parts, calibration and DL for TSA, separately searching online databases and filtering
papers found during search similarly to the narrative literature review. This was done in
two steps for both review types:

• (1) Selecting possibly relevant papers based on title, abstract, and metadata

• (2) reviewing those papers in their entirety and filter out irrelevant ones.

What was done to complete the two steps are described below. The searching specifi-
cations naturally only applies to the SLR, but the rest of the method specifications apply
to both the narrative and structured literature review.

SLR Online databases

The databases used for SLR were: IEEE Xplore, ACM DL, and Scopus. When presenting
results for the SLR, results will be shown for each database and in total.

SLR Search Terms

There were two search terms used to collect papers from online databases for the SLR,
corresponding to the two parts of the SLR.

The search full term used for finding relevant papers on the calibration task was:

”Sensor Network” AND Calibration AND (Blind OR ”Deep Learning”)

with the following reason for each individual term

• ”Sensor Network”: Domain we are working on

• ”Calibration”: Method we are looking for

• ”Blind”: Enables non-DL results relevant for project.

• ”Deep Learning”: Project-specific papers

22

3.3 Finding Relevant Papers

The search full term used for finding relevant papers on deep learning for TSA was:

”Deep Learning” AND ”Time Series” AND Multivariate AND
(”Sequence to Sequence” OR Classification OR Forecasting)

with the following reason for each individual term

• ”Deep Learning”: Project-specific papers

• ”Time Series”: Sensory data is classified as this

• ”Multivariate”: For models that can use exogenous variables

• ”Sequence to Sequence”: Relevant method

• ”Classification”: Relevant method

• ”Forecasting”: Relevant method

3.3 Finding Relevant Papers

The guidelines presented here were made to assess the relevancy of a paper, where papers
satisfying the mentioned criteria are preferred to include further in both literature reviews.
A total of 37 papers were selected as relevant.

3.3.1 Guidelines

Calibration and WSN

For literature concerning calibration and WSNs, the following guidelines were used to
determine the relevancy of the papers in the first step of filtering.

• Uses DL

• Indicates general or novel architecture from 2017 or newer

• Provides insight in general AQ

For the second filtering step, the following guidelines guided inclusion of papers reporting
models. Papers giving insight in AQ passed this test by default.

• Model has not been surpassed by similar model

• Architecture can use exogenous variables

• Idea behind model might be relevant for a DL-model

23

Chapter 3. Literature Review

DL for TSA

For literature concerning DL on TS, the following guidelines were followed.

• For SLR: Metadata contains some keywords in search term

• Focus shows relevance to project

• Indicates general architecture or domain

• Shows to a novel model

For the second filtering step, the following guidelines was used.

• Presents a novel architecture that improves over other models

• Has not been surpassed by similar model

• Architecture can use MTS

3.3.2 Aggregated Results
The count of resulting papers and their source can be seen in table 3.1. We see a total
of 23 papers selected for as relevant after the secod-step procedure out of an initial set of
327 papers. 21 of these papers were unique, showing little overlap between the literature
reviews.

Reveiw Paper Field References For Review Selected
Delaine et al. (2019) Calibration 110 25 7
Ismail Fawaz et al. (2019) TSC 138 34 8
Gasparin et al. (2019) TSF 79 25 7
Total * 327 87 23
Unique - - - 21

Table 3.1: Table showing results from review based on the found literature reviews.

The aggregated paper count at each filtration step are found in table 3.2. Here we see only
8 papers deemed relevant out of a pool containing 75 papers. 6 papers were unique.

Source Search Results For Review Relevant
IEEE Xplore 20 5 4
ACM DL 5 0 0
Scopus 50 6 4
Total 75 11 8
Unique – 8 6

Table 3.2: Table for Calibration methods

24

3.4 Quality Assessment

The aggregated paper count at each filtration step are found in table 3.3. It shows that 14
papers were deemed relevant for this thesis, out of 123 papers found by the search. 10
papers were unique, showing some overlap between the databases.

Source Search Results For Review Relevant
IEEE Xplore 32 11 5
ACM DL 9 3 3
Scopus 82 19 6
Total 123 39 14
Unique — 30 10

Table 3.3: Table for DL papers

3.4 Quality Assessment

3.4.1 Criteria
The following criteria were used for the final quality assessment of the literature found.
Papers satisfying the criterion will get 1 point, and if not 0 points. If the paper partially
satisfies the criterion, it will get 0.5 points. A total of 8 was needed for the papers to be
considered good enough for inclusion, the high requirement justified by the amount of
papers relevant for the project.

1. QC1: Clear statement of aim

2. QC2: Clear research context

3. QC3: Good argumentation for model

4. QC4: Thorough description of model architecture

5. QC5: Reproducible test-data

6. QC6: Thorough description of experiment and procedure

7. QC7: Clear statement on compared studies

8. QC8: Justifiable and explained performance metrics

9. QC9: Thorough analysis of results

10. QC10: Results supporting claims

3.4.2 Results
The scores for individual papers can be seen in table 3.4 and table 3.6. Some papers were
deemed too relevant or important to exclude based on quality and is listed in table 3.5. The
QA of papers included from outside the literature search will be presented separately in
table 3.7 for clarity.

25

Chapter 3. Literature Review

Author 1 2 3 4 5 6 7 8 9 10 Sum
Boubrima et al. (2018) 1 1 1 1 0.5 1 1 1 1 1 9.5
Fang and Bate (2017) 1 0 0 0 0 0 0 1 0 0.5 2.5
Esposito et al. (2016) 1 0.5 0.5 1 0 1 0 1 1 1 7
Wang et al. (2017) 1 1 1 1 0.5 1 1 1 1 1 9.5
Zimmerman et al. (2018) 1 1 1 1 0 1 1 1 1 1 9
Yang et al. (2018b) 1 1 1 1 1 1 1 1 1 1 10
Rajan et al. (2018) 1 0.5 0 1 0.5 1 0 1 0 0 5
Yang et al. (2018a) 1 1 1 1 0 0 1 1 1 1 8
Stanković et al. (2018) 0.5 1 1 1 0.5 0 0 0 1 1 6
Becnel et al. (2019) 1 1 1 1 0 1 1 1 1 1 9
Bianchi et al. (2018) 1 1 1 1 1 1 1 1 1 1 10
Chouikhi et al. (2018) 1 1 0.5 0.5 1 0 1 0.5 1 1 7.5
Geng and Luo (2018) 1 1 1 1 1 1 1 1 1 1 10
Liu et al. (2019) 1 1 0 1 1 1 1 1 1 1 9
Vaswani et al. (2017) 1 1 1 1 1 1 1 1 1 1 10
Chen et al. (2019) 1 1 1 1 1 1 1 1 1 1 10
Bianchi et al. (2015) 1 1 0.5 1 0 1 1 1 1 1 8.5

Table 3.4: Quality assessment of selected papers from literature review 1

Author Justification
Kumar et al. (2015) Motivation for WSN use.
Maag et al. (2018) Vital information on low-cost sensors
Moltchanov et al. (2015) Provides experiences for WSN on AQ.
Gallicchio and Micheli (2019) Provides good overview, even if no own models

Table 3.5: The papers included that were not possible to filter through the standard QA.

26

3.4 Quality Assessment

Author 1 2 3 4 5 6 7 8 9 10 Sum
Kuo and Huang (2018) 1 1 0.5 1 0 0 1 1 1 1 7.5
Kong et al. (2019) 1 1 1 1 1 1 1 1 1 1 10
Wang et al. (2018) 1 1 0 1 0 1 1 1 1 1 8
Tian et al. (2018) 1 1 1 1 0 1 1 1 1 1 9
Wilms et al. (2018) 1 0.5 1 1 1 0 1 1 0 1 7.5
van den Oord et al. (2016) 1 1 1 0.5 1 0.5 1 0.5 0.5 1 8
Gehring et al. (2017) 1 1 1 1 1 1 1 1 1 1 10
Borovykh et al. (2017) 1 1 1 1 1 1 1 1 1 1 10
Du et al. (2018) 1 1 0.5 0.5 1 1 1 1 0.5 1 8.5
Karimi-Bidhendi et al. (2019) 1 1 1 1 1 1 1 1 1 1 10
Hong and Yoon (2017) 1 1 0 0 0.5 1 1 1 1 1 7.5
Huang et al. (2019) 1 1 1 1 1 0 1 1 1 1 9
Lai et al. (2018) 1 1 1 1 1 1 1 1 1 1 10
Wan et al. (2019) 1 1 1 1 1 1 1 1 1 1 10
Gautam and Singh (2019) 1 1 1 1 1 1 1 1 1 1 10

Table 3.6: Quality assessment of selected papers from literature review 2

Author 1 2 3 4 5 6 7 8 9 10 Sum
Yamamoto et al. (2017) 1 1 0 1 0.5 1 1 1 1 1 8.5
Li et al. (2019) 1 1 1 1 1 1 1 1 1 1 10
Shih et al. (2019) 1 1 1 1 1 1 1 1 1 1 10

Table 3.7: Quality assessment of papers from outside of the literature review

27

Chapter 3. Literature Review

3.5 Related Work
This section will summarize findings from the literature review grouped in calibration and
WSN, RNN based models, CNN based models, other models.

3.5.1 Calibration and WSN
In spite of the many drawbacks outlined by Maag et al. (2018), presented in §2.1.2, WSNs
have seen great success in monitoring AQ on a local level. Kumar et al. (2015) presented
increased accuracy of a fine-grained prediction model using WSNs as data source instead
of a few accurate sensors, and Boubrima et al. (2018) improved such solutions by optimis-
ing placement of the individual sensors according to the error of the prediction of one such
model.

Still, much research has been done in order to improve the accuracy of the networks,
most notably by calibration. Delaine et al. (2019) presents a taxonomy of various models
by 49 authors, where each model relaxes some assumptions by applying others. Blind
macro calibration, which is the most relevant category to this paper, began using localiza-
tion and geometrical constraints, but later evolved to be more general. Assumptions on
the network, such as coverage and redundancy, relaxed assumptions on the phenomenon
to be measured. Because of a lack of benchmark datasets, no comparison could be made
between all models.

Two important ideas are using a subspace projection and strategies based on consen-
sus. The projection methods are used to map the sensor data to some sub-dimensional
space where the drift is recoverable by leveraging assumptions on the nature of the drift
phenomenon and measurand. This performed well when these assumptions were close
to reality, but did not generalize too well. The consensus algorithms are mostly used on
mobile sensors where rendezvous can be used to update some pre-defined parameters. Be-
cause it does not necessarily use many assumptions of the phenomenon, these methods
tend to be more general. Stanković et al. (2018) managed to use this method on static
dense networks by leveraging assumptions on the locality of the measurand, unfortunately
reducing the generalizabilty of the solution.

Other methods are still being developed. Bayesian models by Yang et al. (2018a) and
Yang et al. (2018b) models the phenomenon like a known Gaussian process and by lever-
aging assumption on the drift, the two authors manage to outperform compared methods.
Becnel et al. (2019) uses a recursive definition on the calibration relationships between
the sensors in a network, propagating the attributes of reference sensors in the network to
calibrate other sensors.

Only a few models using machine learning have been applied to this problem. Wang
et al. (2017), the only author on blind calibration with DL, designed a convolutional net-
work that mapped the sensor data into a subspace defined by convolutional kernels, similar
to other subspace projection methods, and then retrieved the drift-free measurements using
stacked convolutions. Using DL relied less on assumptions because of the flexibility of the
model, and performed better than compared models. Unfortunately Yang et al. (2018a)
outperformed the model only a year later using Gaussian processes and explicitly using
long-term dependencies. Esposito et al. (2016) performed experiments on reference-based
calibration showing that dynamic networks outperformed standard MLPs, but independent

28

3.5 Related Work

of other research. Yamamoto et al. (2017) showed that a MLP could model non-linear de-
pendencies between exogenous variables and the measurand, and used that to calibrate
single sensors to considerable success. The same result was obtained on WSNs by Zim-
merman et al. (2018) by using random forests to model the inter-dependencies.

3.5.2 CNN

Following the result in computer vision, many authors designed TS-specific versions of
the convolutional networks. Changes needed to be made either to the model directly, or
the data in a pre-processing step before using the designed model.

There were many models proposed using CNNs, most using dilated convolutions. This
architecture, WaveNet, was originally designed for audio-generation by van den Oord et al.
(2016), which used stacked convolutions with exponential grows in dilation and resodial
connections between convolutional layers. Borovykh et al. (2017) expanded on this archi-
tecture for conditional forecasting by treating the condition and TS separately in the first
layer. They showed promising results for TSF, even with long-term dependencies. The
part conserning residual connections was expanded by Chen et al. (2019) by including a
second computation branch where each layer is connected to every succeeding layer in the
original computation branch.

For MTS specifically, using stacked 1D convolutions for each variable separately be-
fore merging the encoded TS with some ANN structure was a popular idea. Wan et al.
(2019) and Liu et al. (2019) both designing their own models following this principle, and
both reported good scores on the tested datasets. Liu et al. (2019) used 2D convolutions
as the merging structure, ending with a FFNN for the final prediction. Wan et al. (2019)
used a FFNN. Unfortunately, Ismail Fawaz et al. (2019) reported that this multiple branch
setup was outperformed by a standard ResNet.

Gehring et al. (2017) replaced RNNs with CNNs in the traditional Seq2Seq models
and used attention for temporal dependencies.

Another key idea, when considering TSC, is to map the TS to some image, and use
CNN models for image classification to predict the output. Karimi-Bidhendi et al. (2019)
and Gautam and Singh (2019) both map the time series to some 2-D matrix before us-
ing their respective models. Inspired by biology, Gautam and Singh (2019) employed a
CNN with a spiking layer before the final FFNN, improving the performance significantly.
Karimi-Bidhendi et al. (2019) employed transfer learning to use the pretrained Inception
v.3 network by Google for classification.

For imbalanced datasets, Geng and Luo (2018) designed a strategy to update some
weights determining how the loss affected training for each minibatch. Using this, the
model had much improved performance without over- or under-sampling.

Ismail Fawaz et al. (2019) reported the performance of 9 models for TSC, and convo-
lutional models won consistently. This shows CNNs can indeed replace RNNs for TSC,
which could be preferable due to their computational efficiency. However, from the re-
sults in the review on TSF by Gasparin et al. (2019) convolutional models fall behind on
accuracy.

29

Chapter 3. Literature Review

3.5.3 RNN

Recurrent methods are the traditional choice for DL on TS, and while there are few ad-
vances regarding the recurrent cell, new models are still being developed. Kong et al.
(2019) designed a model using a stacked LSTM to encode the main TS, and using the final
hidden state together with the exogenous variables as input to a FFNN that predicts the
next timestep. Wang et al. (2018) designed a similar model with GRUs, encoding only
the main TS with the recurrent network, but using all hidden states together as input to
their FFNN. Both reported increased performance when compared against their respective
baselines. The encoder-decoder structure was also shown promising by Du et al. (2018),
predicting accurately several steps ahead while keeping the two RNNs shallow. All three
models only predicted future variables, where Du et al. (2018) was the only paper reporting
multi-step predictions.

Combining the recurrent architecture with other models also showed promise. Com-
bining CNNs and LSTMs was done by both Lai et al. (2018) and Tian et al. (2018), where
LSTMs and CNNs were combined in sequence and parallell respectively. Tian et al. (2018)
merges the output of a CNN and a stacked LSTM with an FFNN to produce the forecasting
prediction. Lai et al. (2018) used a CNN first to capture short-term dependencies, and then
a stacked LSTM to capture long-term dependencies before merging that output with an
autoregessive model for the final prediction. While both reported good results, Shih et al.
(2019) outperformed Lai et al. (2018) with their LSTM model with attention. Shih et al.
(2019) designed a convolutional attention that attended the variables in the hidden states
of their LSTM-model, using the convolutional filters for temporal dependencies. This en-
ables the attention to learn different features per TS, which was shown to be important.
They fed the attention output through a FFNN for the forecast.

The performance of recurrent models are shown to be better than convolutional model
on the TSF task by Gasparin et al. (2019), where LSTM, GRU, and Seq2Seq models
are superior on many distinct datasets. They did not test ESNs. However, in the review
on TSC by Ismail Fawaz et al. (2019) recurrent methods, including ESNs, fall short of
convolutional methods.

3.5.4 Other Methods

Reservoir computing (RC), using networks with untrainable weights, includes a recurrent
network called the echo state network (ESN), which proved promising on chaotic TS espe-
cially. They were deemed a superior way to encode TS by Gallicchio and Micheli (2019)
as they got comparable results with deep RNNs with very simple predictors on the ESN
output. Bianchi et al. (2018) got good classification results when using stacked ESNs,
but also showed in earlier work (Bianchi et al. (2015)) that ESNs struggle with long term
dependencies.

Using only attention to model TS was first proposed by Vaswani et al. (2017), who
improved SotA in translation using only stacks of self-attention. Li et al. (2019) extended
this architecture to the TSF domain, with an attention mechanism using causal and dilated
connections. Huang et al. (2019) used the self-attention on the output of a CNN encoder,
and merged the output with an auto-regressive component. Both reported better results
than baselines.

30

3.6 Key Findings for WSN Calibration

3.6 Key Findings for WSN Calibration
Because the idea of using DL for WSN calibration is under-researched, with only one
paper reporting such a model, we cannot definitely state that the idea is unpromising.
While the model by Wang et al. (2017) was outperformed by Yang et al. (2018a), it does
not exclude the possibility that other DL models might prove promising. This is especially
true since the field of DL has seen significant improvements since 2017.

From the previous model comparisons by Gasparin et al. (2019) and Ismail Fawaz et al.
(2019) we can deduce that recurrent and convolutional models do have tasks they outper-
form the other in, as the two papers found recurrent and convolutional models to be the
best performing respectively. One possible conclusion from looking at these papers is that
CNNs perform best on the shorter timeseries found in TSC tasks, and the recurrent models
are preferred when working with longer timeseries for TSF. However, it is important to
note that the tasks vary in more ways than just the length of the data, and those aspects
may be more important for deciding the preferred architeture. Even if that means those
results are not directly usable to find models for calibration, it shows that this experiment
should result in a preferred method.

Because RNNs and CNNs seems to be the focus of other research, it should be the first
step in testing DL for blind WSN calibration as their success is well-tested. This means
that the ESN and attention models are left out of scope as, even if they are both interesting
approaches.

Even if there is no winner among CNN and RNN, some key findings are found within
those groups. CNNs perform better when using residual connections, as the gradient flows
more easily through the network. Those networks should also use dilated convolutions
to model long-term dependencies, as kernels that are not dilated is limited to short-term
dependencies. LSTMs should not be used alone, as they perform considerably better with
attention-mechanisms and similar. The combination of both architectures are inferior to a
LSTM network with attention.

Both architectural groups have models using an encoded TS together with exogenous
variables in a FFNN. A problem with those models is that they only produce output for
a single timestep, making it troublesome for calibrating an entire TS. Such architectures,
while proving promising doesn’t fit a model design if the goal is to output a TS.

Both groups also have reported encoder-decoder architectures. while this may perform
well on forecasting ahead multiple timesteps, those architectures are not suited for a task
where input timesteps and output timesteps correspond excactly. That correlation is lost
when only the last hidden state is used between the encoder and decoder. Because the
decoder uses the final hidden state, the causality is invalidated when predicting past values.

31

Chapter 3. Literature Review

32

Chapter 4
Data

This chapter will analyze real sensor data from Trondheim, Norway, and use the findings
to create a simulation algorithm to create a sensor network with drift that can be used for
training DL models. This chapter addresses goal 2.

4.1 Sensor Data

4.1.1 Sensors Used
For the data used in the anaysis, PM, temperature, and relative humidity was measured
with low-cost sensor nodes in Trondheim, Norway. The PM data was collected with a
Honeywell HPM series particle sensor. The sensor utilizes the light-scattering method to
measure PM2.5 in the range 0µg/m3 to 1000µ/m3 with a reported error of up to 15%
of the measured value. The PM10 are linearly extrapolated from the PM2.5 values. The
schematics of the sensor are found in figure 4.1. The other measurands are measured by a
ChipChap 2 temperature and humidity sensor from Telaire. For the purposes of this report,
these measurements are assumed to be satisfyingly accurate. A GPS is used to get location
info.

The sensors were deployed in small boxes with four tubes designed to let air flow
through, but limit water intake. This was necessary as some sensors were mounted on top
of buses, which were washed regularly.

There was one sensor placed together with a reference sensor, which will be used for
data analytics because it is enables analysis on the quality on this test-sensor by comparing
it to the reference sensor. The rest of the deployed sensors are ignored because the distance
between them is too large. The background for the chosen sensor is classified as city
background, i.e. no industry or excessive traffic in the neighbouring vicinity. Both the test
and reference sensors are mounted on top of the roof of the shopping centre, at an altitude
of of 1.8 meters above the roof for the reference sensor and 1.2 meters for the test sensor.
They are less than 1 meter apart, so their signal should correlate strongly if the test-sensor
is accurate.

33

Chapter 4. Data

Figure 4.1: Top-down schematic view of the particle sensor used in this report, with each measuring
step explained. Image from the original datasheet.

4.1.2 Data-Stream

The test sensor provides data for the mentioned features at interval of 2 mins, while the
reference sensor provides one measurement each hour. To enable direct comparison be-
tween the two sensors, we aggregated the data from the test sensor by averaging over the
values each hour. This also had the added benefit of reducing noise in the measurements.
Measurements with the same time-stamp were then synced together to start comparison.
The data used for comparison was collected between 12.12.2018 and 31.10.2019.

The data used for the analysis is plotted in figure 4.2, where the test measurements,
reference measurements, and the difference between them is shown. The difference is
calculated as reference-value subtracted from test-value.

There are some key anomalies with the test data that should be considered when de-
signing training data. For a considerable amount of time in January the test sensor outputs
a series of zero-values, only reacting to high spikes. Considering the placement of the
sensor and the fact that it was snowing heavily that time, it is feasible that the snow could

Figure 4.2: Then entire dataset used in the analysis, using the sensors placed at Trondheim torg.
The top, blue plot is the test-data. The middle, green plot is the reference data, and the bottom, red
plot is the difference calculated by test− reference

34

4.2 Analysis of Sensor Data

have blocked the air flow of the box storing the sensor. Another key anomaly is the sud-
den change in baseline value for the test sensor starting early September. Considering that
nothing important was reported regarding the sensor at that time, plausible reasons include
re-calibration or firmware update.

4.2 Analysis of Sensor Data

4.2.1 Analysis of Statistical Variables
• The Pearson coefficient between the test and reference values was 0.55 on PM2.5,

and 0.52 on PM10 indicating a good, but not perfect, correlation between the two
sensors, as expected because they are measuring the same measurand.

• The mean of the PM2.5 measurements are 2.31µg/m3 for the test-sensor and
5.89µg/m3 for the reference sensor, so the magnitude varies greatly between the
sensors.

• The standard deviation of the PM2.5 measurements are 1.71µg/m3 for the test-
sensor and 6.12µg/m3 for the reference sensor, indicating that the test sensor does
not respond as well to changes.

• The maximum PM2.5 measurements are 15.6µg/m3 for the test-sensor and
68.3µg/m3 for the reference sensor, further showing a lack of response or magni-
tude from the test-sensor.

One important takeaway from these numbers is, if we use the error equation from eq.
2.1, that the linear coefficient αi,1 is very important regarding the total error. The reason
for this is that the lowers mean, std, and maximum indicates that the test sensor operates on
a lower scale. One can further theorize that because the ratio of max values (68.3

15.6 = 4.38)
is larger that the ratio of the mean values (5.89

2.31 = 2.5), the sensor error is also dependant
on the exponent βi,t differing from 1, in this case being lower.

4.2.2 Measurement Analysis
The data in figure 4.2 seems to be a stationary time series, but with occasional spikes. The
spikes are very rare, and most of the measured values are within the range [0, 15], shown
in figure 4.3. The stationarity of the timeseries is important as it is necessary for good
performance of DL models on the data, but the rarity of the spikes is a problem since it
skews training data heavily towards lower values.

We don’t see that much direct effect from meteorological variables on PM values di-
rectly. We are however seeing the tallest spikes during winter, which tend to be dryer and
colder. Considering causes like increased heating and driving with studded tyres increases
PM levels, it would be safe to assume that the higher spikes are, albeit indirectly, related
to temperature and weather.

There is some periodicity found in the TS, as can be seen in figure 4.4a. The sine-
wave like behaviour of the auto-correlation curve hints at a slight daily period, but only
through indirect comparison between time lags as this behaviour is not seen in figure 4.4b.

35

Chapter 4. Data

Figure 4.3: Histogram of
PM25 values at the NILU sen-
sor located in Tromdheim city
center over the majority of
2019. This shows that the ma-
jority of the data have values
lower than 10. The values at
or above 30 are so few they are
not seen on the plot.

(a) autocorrelation of the first week of the dataset.
While we can see a slight daily correlation, it
quickly drops to within the variance level. This in-
dicates that there are no autocorrelation aside from
the first few days.

(b) partial autocorrelation of the pm2.5 values in
the dataset, where we see that only the immediate
preceding datapoint has a direct correlation with
the current datapoint.

Figure 4.4

Figure 4.5: scatterplot showing the correlation between pm2.5

and pm10. It shows that pm2.5 acts as a lower bound for pm10,
but that the correlation is significantly weaker when pm25 val-
ues are low.

36

4.2 Analysis of Sensor Data

The quick decrease of that autocorrelation, reduced to within variance limits after 6 days,
shows that autocorrelation, even indirect, is not a useful for long-term dependencies within
the data. This argument is furthered by the lack of partial autocorrelation after 1 hour.

Comparing PM2.5 with PM10 shows a clear pattern that PM2.5 acts as a lower bound for
PM10, seen in figure ??. We observe significantly less correlated values when the PM2.5
values are on the lower end. This is expected as PM10 encapsulates PM2.5 requiring PM10
to have higher values.

4.2.3 Error Analysis
The plot in figure 4.2 shows that the measurements follows approximately the same trend,
reacting to spikes at the same time. However, the magnitude of the spikes in the output of
the two sensors differ greatly. Even by accounting for the mean magnitude difference by
scaling up the test-sensor’s values, resulting in the lot in figure 4.6, it is evident that the
test-sensor does not report the actual values, but rather scaled within some pre-determined
range. The fact that the error is so closely related to the magnitude of true values makes it
difficult to analyse the error properly, as this error source is comparably larger.

This magnitude error makes it difficult to draw definitive conclusions, but some pat-
terns still emerge in the data. The high spikes in the data during winter are perhaps what
contributes to a larger error during low temperatures, which can be seen in figure 4.7a,
but because the errors are so large when there are few datapoints it still looks like lower

Figure 4.6: Measurements from the test sensor in blue scaled by the difference between the means
of the two sensors. Plotted against reference values in green.

(a) Effect of temperature on sensor measurement
errors

(b) Effect of humidity on sensor measurement er-
rors

Figure 4.7: Scatterplots between meteorological variables and measurement erros for PM2.5 and PM
on y-axis.

37

Chapter 4. Data

temperatures lead to faulty measurements. It looks like the error increases when the sen-
sor is outside the 10− 15C range, where lower temperatures leading to more severe error.
Errors from relative humidity, found in figure 4.7b, does not have such a clear-cut anal-
ysis, because the higher errors are at humidity-levels with the most data-points, and thus
where one would expect more varied measurements. We can still see some variance in
error where there are fewer points for lower humidity levels, perhaps indicating that low
humidity is one source of measurement error.

The age of the sensor is theorized to have a large impact on sensor quality, but because
the errors are so large in the early samples of the data, no such conclusion can be made for
this particular sensor. It is evident that the sensor is already faulty at the start-time for this
dataset, leading to less compared degradation over time.

4.2.4 Key Characteristics of Sensor Data
The measurements in the data appear random. Because only indirect autocorrelation ap-
pears present, a random walk process could simulate similar data as that would exhibit such
features. Still, small daily periods are present and should be added to synthetic data. Also,
while spikes are only really present in parts of the data, it is an important phenomenon,
and should be injected more often to get a good dataset for DL training.

While the error was difficult to analyse, we still see some effect from meteorological
variables. This means such dependencies should be injected in synthetic data. While
this sensors does not change performance with age, it is a known problem that should be
included anyway. Rejecting the scaling phenomenon seen on the test sensor seems logical,
it might just be this specific sensor since no reports have been made on such a behaviour
in the literature.

4.3 Data Simulation
An overview of the synthetic dataset used in this thesis is shown in figure 4.8 and 4.9.
Reasons for working on synthetic data are laid out, and the following subsections will
describe how the data is simulated.

4.3.1 Background
The data used in this thesis was simulated because real data was not available at the neces-
sary sensor density. Only a small amount of sensors were available during the work on this
thesis. While new sensors were originally promised, the deployment was understandable
delayed such that it was not available for experimentation when COVID-19 hit. In order
to get a dataset containing a large amount sensors in a dense enough fashion, simulating
that dataset became the logical solution.

Simulating the dataset also enabled us to solve some other problems regarding the data.
Because Norway in general has clean air, a model might get a good score by predicting
low values independent of the input. This problem is further elevated because spikes are
so rare in the data, the mean is ten times lower than the max value. By simulating this data,
we could create a diverse set of measurements more evenly distributed between high and

38

4.3 Data Simulation

Figure 4.8: An ex-
ample of a random
synthetic system.
Red points are static
sources, blue points
are static sensors,
and blue lines are
paths taken by mobile
sensors, measuring
in each vertex on
rotation. This system
has 20 sources, 15
static sensors, and 25
mobile sensors.

low PM values. We could also increase the frequency of spikes, enabling more training
data on that phenomenon, and also enabling analysis on the model’s performance during
spikes.

4.3.2 Locations

The locations of sources are simulated similarly to how Wang et al. (2017) dit it. 50
sources emitting pollution are placed randomly within a circle with radius 100 based on
a uniform distribution with a valid minimum distance X . Sources placed within the min-
imum distance of 12 from another source are re-sampled, and the minimum distance is
reduced slightly after 20 rejected samples. The minimum distance is included to ensure
local variations as much as possible for all possible sensor locations by spreading sources
evenly. No sources move during the experiment.

Sensors, of which there are 20 static and 30 mobile, measure pollution from all sources
with values scaled according to the distance and wind between the source and the sensor.
There are no phenomenons blocking the spreading of PM directly. Static sensors are sam-
pled similarly to sources, but within a circle of radius 80. The paths of mobile sensors are
sampled as 5 to 15 random points on a circle with varying radius for each location in the
path, the center if which is sampled with the same procedure as static sensors.

With the mobile sensors covering a large area, smart placement of the sensors became
less important. The min-distance rejection sampling method was used to ensure an even
spread of sensors, getting a as diverse dataset as possible. It would also mean that there
are very few redundant sensors, making for a more difficult dataset to solve.

The meteorological variables used in the experiment are sampled once and used glob-
ally, assuming that they are not so local as to differ considerably between rather close
locations, which is what the entire system is assumed to be.

39

Chapter 4. Data

(a) PM2.5-values for 5 randomly selected sources in the synthetic dataset.

(b) measured PM2.5-values for 5 randomly selected static sensors.

(c) measured PM2.5-values for 5 randomly selected mobile sensors.

Figure 4.9: Plots of example PM2.5 values from a synthetic dataset created by the described proce-
dure. Different colors within a plot are used to separate the sensors/sources.

4.3.3 Source Emissions

Source emissions are sampled in multiple steps for PM2.5 values. The PM10 values are
extrapolated from the PM2.5 values by raising them to the power of 1.1, subtracting by a
tenth of humidity values, adding a tenth of temperature values, and adding random noise
with a variance of 1. This was done instead of an individual PM10 sampling to ensure that
the two PM values remain correlated, adding the noise to limit that correlation as it was
noisy in the analyzed data.

The initial PM simulation used for further modification are sampled by a random walk
where steps are given by a clipped Gaussian distribution drifting very slightly towards 0.
Negative values were mirrored. The steps were clipped less harshly if they were positive,
to allow for more spikes in the data. The max step-size was 1 for negative steps, and 10 for
positive. To reduce noise and fluctuation, a longer walk was sampled, and averaged every
10 values.

After the random walk was sampled, the values were raised to the power of 7 to further
emphasize spikes in the data. To keep spikes more even, every month was scaled down to
an average max-value of 50 with a variance of 9. This ensured there was at least one spike
each month, which in turn lead to a more diverse dataset compared to the analyzed data
when considering PM values together with the exogenous variables.

Finally, daily, weekly, and yearly periods were added to the dataset, to create periods
seen in the data, and assumed true. The daily period increases the PM-value by 1 during
the day to simulate traffic and industry. Every weekend there was added a slight drop of 2
in PM-values, mostly for an added longer period in the data, but also because we assume
polution sources such as industry receded slightly on weekends. The yearly period, a sine
wave with values from 0 to 2, was added to make sure there were some small seasonal

40

4.3 Data Simulation

changes.

Each source is generated with slightly altered settings to reduce similarity between
locations in the data. The values were sampled uniformly between−20% and +20%, with
the values mentioned in the section above being averages. Still, each source is finalized
by adding a common trend that consist of a very slight downward slope from 2 to 0 over
the duration of the dataset and extra spikes. Each of these spikes, multiplied by a factor
varying between 0.5 and 1, is added to the source emission. 5 randomly selected sources
are shown in figure 4.9a, with the common trend in black.

4.3.4 Meteorological Variables

The meteorological variables are sampled using much simpler algorithms compared to the
PM values. Because the data studied for this thesis considers PM values, and not weather
phenomenons, is the main goal of simulating these variables to fill the possible variable
space to test the model.

Temperature is sampled by a random walk centered around 15◦C, as this was the best
temperature for the test-sensor analyzed earlier. The steps are sampled form a Gaussian
distribution with a mean leaning towards 15◦C, clipped with a maximum stepsize of 3.
Afterwards, an increase of 4◦C during the day is added in addition to a sinewave of am-
plitude 20◦C to simulate seasonal variations.

Relative humidity is simulated by a random walk centered around 50, simply because
it is the middle of allowed values 0 - 100. A sine wave with 4 periods over the course
of a year and amplitude of 10 is added to get some seasonal variations. The increased
seasonal frequency is because it allows to generate training data for more combinations
of temperature and humidity. Finally, the temperature values scaled to the range [0, 5] is
subtracted from the humidity values as it is known that relative humidity and temperature
is inversely correlated.

Wind speed is simulated by a random walk centered around 0 taken to the power of 2 to
get some wind bursts. A small noise vector is added because taking the power suppresses
the noise of the lower values. The wind direction at time t is sampled uniformly such that
the angle between the next and previous sample does not differ more than 60◦. This was
done to limit the fluctuation of the wind speed, which limits noise in PM measurement.

4.3.5 Sensor Measurements

Sensor measurements are done by adding the individual measurements from each source in
the system similar to the approach of Wang et al. (2017). However, the distance coefficient
used to decide how impactful a source is for any given sensor has been changed from their
original simulation procedure. It has been changed to factor in how the wind blows, in
addition to using past PM values for sources distant from the sensor. The true output y for

41

Chapter 4. Data

Figure 4.10: Our coefficient function plotted for the most extreme wind-values to show how it
behaves.

a given sensor i at time t is decided by the following equations.

oi,c,t =bdi,c,t2
5R
c (4.1a)

wc,i,t =
st
oi,c,t

oi,c,t∑
τ=0

2(1−
(φ(c,i),t−τ − φw,t−τ) mod π

π
)− 1 (4.1b)

ai,c,t =

(
10di,c,t

R
2 + R

2 (wi,c,t+1+(2
1
2wi,c,t)2)

+ 1)−1.5 if wi,c,t > 0

(
10di,c,t

R
2 + R

2 (wi,c,t+1)
+ 1)−1.5 otherwise

(4.1c)

yi,c,t =ai,c,tec,t−o (4.1d)

yi,t =

C∑
c=0

yi,c,t (4.1e)

whereR is the radius of the system, d is the distance between the source and the sensor,
o is the offset (which timestep to use when measuring), φc,i is the angle between the source
and sensor, φw is the angle of the wind, s is the wind speed, w is the wind coefficient
deciding how the wind affects the measurement, a is the measurement coefficient, e is the
emitted PM value, yi,c is the measurement of sensor i from the value for source c, and yi
is the total measured PM value.

To help visualizing how this new coefficient defined in eq. (4.1c) behaves, it’s values
for w = −1, w = 0, and w = 1 are shown in figure 4.10. It was designed to behave
like the original when the wind coefficient is 0, and increase or decrease depending on
the wind. The complex denominator was designed such that the wind affect linearly for
negative values and quadratic for positive values. This results in timestamps such as the
ones shown in figure 4.11, where sensor locations are plotted with colors based on PM
measurement to show the locality of the PM measurements in the synthetic data.

Because the distance coefficient a is always larger than 0, all sources always contribute
to a sensor measurement to some degree. This means common aspects between the sources
are caught up by the sensors 50 time each, which explains the lower amplitude of the
common trend used. It also enables the data to contain common spikes for almost all
sensors in addition to only local spikes.

42

4.3 Data Simulation

(a) synthetic WSN as time: 2422.
Here we see the impact of a spike
in the west with strong wind to-
wards north-east.

(b) synthetic WSN as time: 3149.
Here we see a cluster of high PM
values in the east with weak wind

(c) synthetic WSN as time: 5104.
Here we see that the higher PM
values in the south are not prop-
agated northwards due to south-
wards wind.

Figure 4.11: Scatterplots showing the emissions defined by sources, using grayscale coloring to
show how much pollution there is in the locations defined by the plot locations. All colorscales are
normalized for that timestep to better show PM differences between sensors.

4.3.6 Sensor Drift

While solving random sensor drift is argued for leading to general solutions by Wang et al.
(2017), we know from the research of Maag et al. (2018) that the errors of the sensors
depend on other phenomenons, like weather. Because of this, we designed a drift model
based on equation (2.1), repeated here for convenience, that uses meteorological variables
and history directly.

yi,t = αi,tx
βi,t

i,t + ci,t + εi,t(xi,t)

Drifting the values of a sensor is done in two steps, generating 19 unique coefficients
for both PM2.5 and PM10 individually dictating the behaviour of the sensor, and the using
them together with the variables in the dataset to simulate drift. Apart from generating
values for PM2.5 and PM10 independently, the method for simulating drift is identical. The
most important variable is the age rate rτ sampled for each sensor in the range [2.5e −
4, 1.25e− 4], which dictates at how quickly the sensor drifts, the other coefficients can be
grouped according to if they affect the constant parameter ci,t, the linear parameter αi,1 or
the exponent βi,t.

All error sources share a similar overarching structure. The effect from cumulative
PM measurements, temperature, and relative humidity are injected after scaling the TS to
a random range sampled for each sensor within [−0.2, 0.2] for meteorological constant
values, [−10, 10] cumulative measurement used for constant error, [0.95, 1.05] for all lin-
ear values and [0.99, 1.01] for all TS used for the exponent, possibly inverting the original
TS. They are multiplied together for α and β and summed together for c, and used to-
gether with an independent variable sampled for each sensor. For the constant error this
also includes random Gaussian noise with variance 0.5. The The final drifted output x is

43

Chapter 4. Data

then defined as follows:

αi,t =fα,i · scaled tempα,i,t · scaled humidityα,i,t · scaled historyα,i,t (4.2a)

βi,t =fβ,i · scaled tempβ,i,t · scaled humidityβ,i,t · scaled historyβ,i,t (4.2b)

ci,t =fc,i + scaled tempc,i,t + scaled humidityc,i,t + scaled historyc,i,t (4.2c)

xi,t =((1− τi,t) + (τi,tαi,t))y
(1−τi,t)+(τi,tβi,t)
i,t + τi,tci,t + +εt (4.2d)

Where ε is the random error noise, c is the constant error source, α is the linear error
source, and β is the exponential error source. f is the independent factor for the error
source defined by the subscript, and τ is the temporal factor deciding how drifted the
sensor i is at time t. The variable τ is linearly increasing with the factor rτ,i sampled for
each sensor and clipped such that all values for τ is smaller than or equal 1.

This leads to a drift value that is not stationary, but because the steadily increasing
values, cumulative measurement error and age rate, are bounded, the network only need to
predict values within a softly defined space. Because sensors must be replaced eventually,
the dataset does not need to include drifts that keep increasing, as you would see a soft
boundary around drift values because of this replacement. This should mean that it is a
problem that is theoretically solvable by an ANN.

4.4 Data Preparation
The synthetic WSN data is not ready to be fed into a neural network. Wang et al. (2017)
used normalized data directly, using values for all sensors together in a matrix as input.
This does not encode spatial relationships between the sensors, and their model uses a
matrix operation to move the values of related sensors close before convolution. The
prevalence of mobile sensors in modern WSNs makes such a solution infeasible, as you
would need to compute a rearrangement matrix for each new spatial arrangement of sen-
sors. Furthermore, the resulting matrix does not encode relative distance and direction. A
better solution can be found in the work of Yi et al. (2018) on AQ forecasting.

Yi et al. (2018) feeds a single sensors as main focus for the sample, together with
measurements from it’s geographical vicinity. This is done by partitioning that geograph-
ical space into 16 spaces by four lines and two circles with different radius, all centered
around the focused sensor. For all the 16 defined spaces, all sensor measurements within
the same space are aggregated to produce the value for that space. This is shown in fig-
ure 4.12 Their argumentation for this use of spatial context data boils down to it being
a scalable approach to encode spatial information, which they found to be important for
model performance. We use these 16 aggregated measurements together with the me-
teorological variables temperature, relative humidity, wind speed, and wind direction as
the context vector used together with the sensor measurements as input for out networks.
The wind direction is one-hot encoded to the directions used for the sensor measurement
partitioning.

This context provides some benefits when used for training a neural network. Firstly,
like Yi et al. (2018) mentioned, the input size is independent on how many sensors there

44

4.4 Data Preparation

(a) Neighborhood of selected,
black, sensor.

(b) Partitioning of neirghbor-
hood.

(c) Aggregating within parti-
tions.

Figure 4.12: Figures showing the three steps to creating the context values. Adapted from Yi et al.
(2018).

Figure 4.13: The steps of data preparation.

are in the network. This makes the solution very scalable. It also encodes relative posi-
tion, especially for mobile sensors, better than including those sensors as separate input
variables. This is due to how both direction and distance is encoded in the partitioning.
Even if the strategy was not explicitly designed for mobile sensors, it makes it easier to
deal with mobile sensors as no rearrangement matrix or similar needs to be computed.
Lastly, we cannot overshadow the data augmentation innate in the strategy. By creating a
training sample for each sensor at any given time, the size of the training data increases
not only in proportion to how much time is spent measuring, but also how many sensors
are available in the network. For the synthetic WSN simulated for this thesis is the training
size increased 50 times.

After the context for the data is created, the data is normalized into the range [0, 1]
before being fed into the model for training. The data is normalized by using all the
available values for all sensors. This is done because it ensures the scale is consistent
between all available sensors, making it possible to separate locations by overall pollution-
levels. An overview showing the entire pipeline from simulating data to ready for training
is shown in figure 4.13. The data returned from step 7, the normalized data, is used for
training the model.

45

Chapter 4. Data

46

Chapter 5
Model Architectures

This chapter will describe the architectures used in this comparative study, and provide
reasoning for architectural decisions made. This chapter lays necessary groundwork to
address goal 3.

5.1 Baselines

5.1.1 Basic Baseline Architecture
The only DL model originally designed for blind WSN calibration was by Wang et al.
(2017) and i shown, after some modifications, in figure 5.1 ignoring the context input
(InC). It is a fully convolutional model built in two parts, a projection part where the
intuition is to encode the drifted values in a sub-space, and a recovery part where the model
should extract the drift-values from the sub-space. Both parts are done with convolutional
operations, encoding the PM measurements in a sub-space defined by the filter-values of
an intermediate convolution-layer. The second part employs stacked convolutions with
residual connections before subtracting the final output from the drifted values used as
input, resulting in predicted true measured PM for each timestep and sensor.

The projection layer is left largely unchanged from the original PRNet. It remains
a single convolution with kernels spanning the entire variable dimension with a tunable
amount of filters. The layer is applied both to the faulty PM measurements and the drift
values themselves. The difference between the two projections are used as a secondary
output, and our change here is to reduce the output to the mean value, returning that for
loss calculation. Only the PM projection is used further in the network.

The first and last layer in the recovery-part is originally a re-arrangement layer, origi-
nally implemented as a well-defined matrix multiplication. This was changed to a convo-
lutional layer, with a number of kernels equal the number of sensors that are spanning the
entire variable space similar to the projection layer. The output is transposed so that the
filter dimension swaps position with the variable dimension.This entire operation is dis-
tributed over the channel dimension. The output shape is still the same as the input shape

47

Chapter 5. Model Architectures

to this layer.
The residual part of the network is stacked residual blocks, which are stacked con-

volutions with a residual connection. All convolutional layers in the model consist of the
convolution operation, batch normalization, and the ReLU activation function in that order.
The convolutional kernels used do not use dilation in any dimension.

The hyperparameters tuned for this models are mainly concerned with the ResNet
part of the network. Before that, the projection layer is governed by the hyperparameter
deciding the number of filters in the convolution. The residual convolutions have hyperpa-
rameters for number of residual blocks, number of convolutions in each block, the kernel
size for each block, and the internal filters in each block. The external filters along with
the reshaping layers have hyperparameters inferred from the data size passed to them.

5.1.2 Extended Baseline Architecture
In order to extend the functionality of the baseline model described earlier to fit the dataset
created, we created a new variant of that model to use as the main baseline for comparison,
shown in figure 5.1. Including PM10-calibration as well as PM2.5 was done by adding
those values as an extra channel in the input matrix, and the increasing the latent subspace
dimension in order to facilitate the increased number of input variables. The exogenous
values are concatenated with the sub-space projection in the channel dimension before
continuing feeding them onwards to the rest of the model. No other changes were made to
the model design described above.

The hyperparameters for this model are the same as the ones for the basic baseline
model.

5.1.3 Reasons for Architectural Decisions
Because PRNet by Wang et al. (2017) was the only model previously designed for this
task, it was an easy choice for a baseline model, but it was extended to use the entirety of
the synthetic data to provide more grounds for comparison. Keeping the original baseline
only calibrating PM2.5 was done in order to compare the two variants to see the impact of
the problem change.

The changes to the baseline architecture was designed to facilitate the synthetic data
used in the experiments, and the experiments themselves. The projection layer output
change was done in order to facilitate hyperparameter tuning, as the original output di-
mensions was dependent on a hyperparameter. This enabled a more stream-line approach.
The rearrangement matrix was changed because this data includes mobile sensors, and a
static rearrangement matrix was deemed inappropriate. We believe a convolutional layer
can learn a general enough ”rearrangement” to alleviate some potential problems with a
static matrix. If one such matrix is optimal, the convolutional design can learn that be-
haviour.

The extension of the problem to both PM10 and PM2.5 was fairly simple. The extension
of channels was done because it facilitated projecting both the PM sizes, without separat-
ing them. The design of the projection can of course learn weights simulating a separated
design. The inclusion point for exogenous variables were chosen because it fits with the
data structure, in addition to not interfering with the intuition of the PM projection layer.

48

5.1 Baselines

Figure 5.1: The extended baseline model used for comparison in this thesis. It is an extension of the
original PRNet by Wang et al. (2017) designed for WSN calibration. Inputs and outputs are denoted
by subscript ”C” for context input, ”PM” for PM input, ”D” for drift, input nodes without subscript
are general. Output shapes are given for layers changing them if they are not defined in the figure.
All filter dimensions, shown as f, are tuneable, and T and N are extrapolated from data.

5.1.4 Pre-experiment Analysis

There are some key flaws in this model on a conceptual level, most importantly that the
convolutions are not causal and dilated, but also regarding localization of the sensors.
When the convolutions are not causal, the model uses future variables for any output val-
ues. This hinders the model’s performance in a real-time application as mentioned pre-
viously, which reduces the usability of the resulting calibration and thus the model. Not
dilating the convolutional kernels harshly limits the temporal memory of the model, which
the same authors found to be important in their newer work (Yang et al. (2018a)) as sensor
drift is a very long-term process. Finally, the context for each sensor is limited by the
rearrangement matrix, and their approximate distance or direction is not included in the
model. Additionally, as exogenous variables is known to affect drift, not including this can
look like an oversight.

The residual subtract-connection spanning the entire network helps reduce the drift
problem to its core. While the dynamics of the PM measurements themselves may be
important to find the drift measurements, having the subtracting connection removes the
necessity to model it for the output of the model. This enables the model to partially ignore
some variance in the data and focus on the phenomenon we want to model, the sensor drift.
Because it is using the input, the connection does not increase training capabilities of the
model by being a loss ”highway”.

Because the extended baseline model, in contrary to the original PRNet, is using ex-
ogenous variables and calibrating both PM sizes in the dataset. It will be the main baseline
used when analysing results as this model’s performance will be more directly compara-
ble to the other models. This is due to the task changing drastically as soon as exogenous
variables are introduced, and calibrating both of the PM sizes simultaneously is a more
challenging task.

49

Chapter 5. Model Architectures

It is important to notice that the same overarching structure is in the extended model
responsible to model two, twice as many, timeseries, e.g. measurements for both PM10
and PM2.5. This leads to less computational power available for each PM size, which can
affect performance if the model size is not increased accordingly.

5.2 Convolutional Model in One Dimension

5.2.1 Architecture Overview

Many of the flaws found in the network by Wang et al. (2017) are related to elements
found in the WaveNet architecture originally defined by van den Oord et al. (2016) using
causally dilated 1D convolutions. Therefore, we designed a network we will later refer
to as ResTDCN1D, for Residual Time-Dilated Convolutional Network in 1 Dimension, an
implementation of the WaveNet architecture for the calibration task, and is shown in figure
5.2. The context and PM input are separated and are fed through one residual block each
before concatenating in the channel-dimension and fed through a stack of dilated residual
units with an exponentially increasing dilation. The final output is ignored, and the sum of
the skip-outputs are fed through a final convolutional layer before being subtracted from
the PM input. This results in a prediction of true PM values for each input timestep.

The residual blocks are stacked dilated convolutions with the same dilation factor.
Each layer consists of the convolutional operation, batch normalization, activation func-
tion, and optional dropout. The residual branch includes a convolutional operation with a
1 kernel to fix the number of filters if the number of filters in the stacked convolutions is
different than the input. The two branches are added together and fed through a final con-
volution with kernel size 1 to produce the block output. The skip connection only uses the
final output of the stacked convolutions through a separate 1 convolution. The skip con-
nections are the output used for the final output of the entire network, while the residual
output are fed to the next residual block.

The output convolution using the sum of residual skip-connections have a kernel size
that is greater than the kernels used in the residual blocks, with a daily dilation rate. One
filter is used per output TS, producing drift predictions for their respective PM size.

The hyperparameters used to tune this architecture are mainly divided into global and
local to a single residual block. The global parameters are: The depth, number of filters
between residual blocks, the dilation to start the exponential scheme, and whether to use
skip connections or the final residual output. Each residual block has parameters for: The
kernel size, activation function, number of internal filters, how many convolutional layers
to stack, how much dropout to use, and finally whether to use batch normalization and
bias. Finally, the last convolutional layer tunes for the parameters: Kernel size, dilation
rate, activation function, and bias. Keep in mind that the kernel size for the residual block
are considerably lower than for the final convolution, as the depth ensures a long temporal
receptive field.

50

5.2 Convolutional Model in One Dimension

Figure 5.2: The convolutional model using 1D convolutions, ResTDCN1D. Inputs and outputs are
denoted by subscript C for context input, and PM for PM input, input nodes without subscript are
general. Output shapes are given for layers changing them if they are not defined in the figure. All
filter dimensions, shown as f, are tuneable, and T and N are extrapolated from data.

5.2.2 Reasons for Architectural Decisions

There are some varying designs for convolutional models implemented in research, but
there seems to be a consensus on using causally dilated 1D-convolutions with residual
connections as the basic design idea, introduced by van den Oord et al. (2016). The resid-
ual connections allow for deeper networks, which has been discussed earlier to correlate
heavily with the temporal horizon of the model, especially with exponential dilation strate-
gies. Because long temporal horizon is hypothesized to be important for the calibration
tasks, we decided one such model was promising and should be tested.

By considering the model design of Wang et al. (2017), the only previous model on
this topic, two important design choices are made. Firstly, by subtracting the output of the
final conv-layer from the PM input, the model is forced to only model the drift, which is
the phenomenon we are interested in. It should limit the necessity for using computing
capacity to model the dynamics of the PM-values themselves, similar to how residual
block learns what to change with the input. The second design choice is partly made to
make it easier to compare our model with their, but also to improve the information the
model gains from each training sample. This choice it to output predictions for the entire
sequence, and not just for the final timestep. This separates this model from standard TSF
and TSC type models.

The most interesting question when designing the model is how it will deal with mul-
tiple input variables per timestep. Wan et al. (2019) approached this by using one branch
of 1D-convolutions per variable and then merge them together with an MLP for the final

51

Chapter 5. Model Architectures

prediction. Because Ismail Fawaz et al. (2019) found that this solution was outperformed
by a ”simple” deep ResNet network, it was not deemed a promising design choice for
this experiment. An intuitive explanation for why a single computing branch performs
best may be that it enables using correlations between the variables at all computing steps
in the model, which is important for the calibration task. Because of this, out model is
designed with one main computation branch.

Because we need the PM-values and the context values as separate inputs because of
the subtracting residual connection, it is natural to discuss if they should be processed in-
dividually before merging. This was done by Borovykh et al. (2017), processing the main
TS input and the conditions separately to reported success. Therefore, we process each in-
put separately with one residual block, but do not split into more branches of computation
as it is deemed futile because it limits correlation modelling. This is also the reason we
kept the separate computation to one residual block.

The output layer of several models is simple, most often a 1x1 convolution (Chen et al.
(2019), Borovykh et al. (2017), Wang et al. (2017)) or an MLP (Wan et al. (2019), Liu et al.
(2019)). Considering the prevalence of attention, this seems suboptimal. A well-designed
dilated convolution layer with a sufficient kernel size can provide a similar solution as it
can use information from several timesteps directly for the final prediction. Because some
daily periods is present in the data, designing such a convolution seems possible, and is
the chosen last layer of the model. While an MLP might serve the same purpose, it would
demand many more trainable parameters since we need output for all timesteps.

Because the temporal horizon of the convolutional network can be designed so that it
covers the entire sample-length used for training data, attention was not used for the initial
experiments.

5.2.3 Pre-experiment Analysis
It is important to note that this model fixes the key conceptual flaws of the baseline model
that were mentioned in that section, with the exponential dilation enabling datapoints to
be dependant on other points in very distant timesteps.

It is additionally a simpler architecture due to the contextual data fed into the model,
described in §4.4, which removes the necessity for a rearrangement layer. The lack of an
explicit projection layer does not inherently make the model simpler, as other layers may
learn the behaviour, but it removes the necessity for drift values as a training input for the
model.

5.3 Convolutional Model in Two Dimensions

5.3.1 Architecture Overview
In order to extend the analysis of dilated convolutions, we designed a similar model to
ResTDCN1D in 2 dimensions, named ResTDCN2D. It follows the same structure with
some modifications. The initial residual units have been replaced by a convolutional layer
spanning the entire variable space, similar to the projection convolution of the baseline
model. There are also two distinct convolutional layers to reduce the residual output, one

52

5.3 Convolutional Model in Two Dimensions

Figure 5.3: The convolutional model using 2D convolutions, ResTDCN2D. Inputs and outputs are
denoted by subscript C for context input, and PM for PM input, input nodes without subscript are
general. Output shapes are given for layers changing them if they are not defined in the figure. All
filter dimensions, shown as f, are tuneable, and T and N are extrapolated from data.

for filters and one for variables, with the variable-reducing convolution utilizing a larger
kernel with a daily dilation rate. The final architecture is shown in figure 5.3.

The residual blocks are a set of stacked 2D convolutions similar to the ResTDCN1D
model, with the only difference being that the convolution is in 2 dimensions. The tem-
poral 2D convolution is obtained by selecting the first dimension as temporal and only
dilating in that dimension. Causality is obtained by causal padding in that dimension, only
padding for past variables, while padding normally in both directions for the variable di-
mension. The padding is done explicitly, as it is not an already implemented feature. This
keeps the input shape, enabling use of residual connections.

The hyperparameters are also almost identical to the hyperparameters of ResTDCN1D.
The hyperparameters for the residual blocks, activation function, number of internal filters,
number of stacked convolutions, dropout rate, normalization, and bias are identical, but the
kernel size now governs both dimensions, time and variables. This also holds for the final
convolutions to create the drift output. We also need to decide the latent space created by
the initial convolution in addition to the temporal kernel size and activation function for
that convolution. The global hyperparameters, depth, residual output shape, dilation start,
and whether to use skip connections or residual output are all identical to ResTDCN1D

5.3.2 Reasons for Architectural Decisions
We included temporally dilated causal convolutions in 2D because such models were not
found during the literature search. Therefore, is was deemed an interesting addition both
from a methodical standpoint, but also as a way to complete the analysis of dilated convo-
lutions. 3D convolutions was not implemented as the data was represented in 2D.

Some research has been done on using normal 2D convolution, specifically for TSC,
either by mapping the TS to an image (Karimi-Bidhendi et al. (2019)), or by stacking vari-

53

Chapter 5. Model Architectures

ables (Liu et al. (2019)). While Karimi-Bidhendi et al. (2019) reported good results, using
an image mapping for this problem was not deemed promising as we loose information
regarding timesteps and temporal ordering, and as such we cannot enforce causality in the
model. The stacking strategy is therefore chosen.

When using 2D convolutions, it is important to note that the receptive field in both axes
is limited. As we have deemed it important for the model to be able to use inter-variable
correlations early in the architecture, we need to enhance the receptive field regarding
variables without resorting to depth. This was done by using the conv-block made for
the projection layer in the baseline model, albeit with another goal in mind. By using
this layer as the first, we ensure that all variables in the output are dependent on all, or
a few selected if that is the learned behaviour, input variables. This should enable the
model to learn the necessary variable correlations early in the computation process, and
allow for the design of the remaining layers be made focusing on complex temporal and
inter-variable dependencies.

The further layers are the 2D equivalent of WaveNet, that also serves as the baseline
for the other CNN model in this thesis. The reasons for this is simply that it enables a
more clear comparison between the two implemented variants to see if the 2D variant has
promise, in addition to there not being a specific reason to deviate from this design.

5.3.3 Pre-experiment Analysis

It is also very similar to the baseline model, given the two-dimensional shape of the input
data. This model can thus be viewed as a bridge between the two previously defined
models.

Using 2D convolutions trivializes the choice regarding how to handle multiple vari-
ables. By using the second dimension for variables, the channel dimension is left for
specific features of the data, enabling easier modeling of filters over individual timeseries.
The resulting architecture can also be compared to the multi-branch model of Wan et al.
(2019), while still retaining some ability to use inter-variable dependencies in the data
between ”variables” located in adjacent rows after the initial convolution.

It is interesting to note that with a kernel of spanning the entire variable dimension, we
end up with a mathematically equivalent operation to the 1D convolutions in ResTDCN1D.
This means it is possible to view ResTDCN2D as a restricted variant of ResTDCN1D
where a single output node in the convolution only has a finite amount of variables in the
receptive field.

5.4 Stacked LSTM with Attention

5.4.1 Architecture Overview

Recurrent models has also been tested thoroughly in the literature, and is another promis-
ing model archetype for this experiment. The model by Shih et al. (2019) has showed
promise in TSF, and a calibration network was designed by using that design. Changes
were made according to the good elements of the baseline, and were: adding a residual

54

5.4 Stacked LSTM with Attention

Figure 5.4: The architecture for the LSTM model, a basic stacked LSTM with the convolutional
attention mechanism from Shih et al. (2019) extended to efficiently create context vectors for all
available timesteps. Inputs and outputs are denoted by subscript C for context input, and PM for PM
input, input nodes without subscript are general. Output shapes are given for layers changing them
if they are not defined in the figure. All filter dimensions, shown as f, are tuneable, and T and N are
extrapolated from data.

subtract connection from the input to the network drift output and changing the convolu-
tional attention to output context-vectors for all input-timesteps in a causal fashion. Be-
cause the authors of the original model used a FFNN after the attention layer, we used a dis-
tributed FFNN over timesteps. The main network remains a stacked LSTM. A schematic
of the network is shown in figure 5.4.

The attention layer is a self-attention mechanism that attend convolutional filters-
values from all past timesteps. The context vectors are filter values for each input vari-
able. They are obtained by a causal convolution on all timesteps up until the next newest
one, as designed for the ResTDCN2D network, with a kernel of size Tx1, resulting in a
collection of N context vectors with length equal to the number of convolutional filter for
each timestep. The query vectors are obtained from a distributed dense layer with number
of nodes equal the number of convolutional filters. The resulting attention vectors are in
this filter space, and is fed through a distributed dense layer to be used together with the
LSTM outputs.

The hyper-parameters tuned for this model are mainly focused on the attention net-
work, as the optimization algorithm in tensorflow.keras requires certain hyperparameters
to be set to a specific value. The recurrent hyperparameters are limited to number of LSTM
layers, the number of units in each layer, output dropout, and output bias. The hyperpa-
rameters for the attention layer are the number of convolution filters, and the activation
function for attention scores and the convolutional layer. The kernel is defined by the data
shape, and the attention distance is set to the length of the sample used for training.

Because of difficulties regarding explosive gradients, we clip the gradients to a norm
of 0.9 for all experiments with this model.

55

Chapter 5. Model Architectures

5.4.2 Reasons for Architectural Decisions

Regarding recurrent networks in the literature, it does not seem to be much variation on
their core designs, the most relevant RNN is a stacked LSTM or GRU. Other designs, such
as using an encoder-decoder structure as done by Du et al. (2018), do not leverage the fact
that outputs are directly connected to a specific timestep. Using a stacked model, such as
the one used by Kong et al. (2019) seems more promising for this thesis as it can leverage
the ”mapping” from input to output timesteps.

Even if the core architecture itself has not evolved considerably lately, it has been used
in tandem with other DL models to great effect. Tian et al. (2018) and Lai et al. (2018)
used LSTM cells together with convolutional layers, reporting good results and as such
provides an interesting architecture to try on this dataset. However, Shih et al. (2019)
reported even better results with their newly designed convolutional attention, as because
of that, this paper will use their convolutional attention.

In order to utilize the extra loss information and simplify comparison between models,
we implemented an efficient variant of their convolutional attention that outputs context
vectors for every timesteps by using the causal 2D convolutions originally designed for
the 2D-conv model. Because the convolution used is causal, the attention layer does not
violate the temporal ordering.

5.4.3 Pre-experiment Analysis

While the recurrent network is basic, the attention mechanism has a very key feature. Be-
cause it attends the convolutional filters for each variable it leaves the temporal dependen-
cies for the convolutional layer in the attention mechanism. The mechanism will because
of this be able to learn individual features for each TS, and as a result attend different
timesteps in each TS. The original authors showed that this increased performance when
each TS has unique features.

5.5 Discussing Core Modules
The most important aspect when designing a DL-model fro WSN calibration is the tem-
poral horizon of the models, as Yang et al. (2018a) showed that drift is a very long-term
process, and networks able to model that performed well. While recurrent models theo-
retically has an uncapped temporal horizon, learning these dependencies are difficult with
vanishing gradients. LSTMs and GRUs unfortunately only partially solves this problem
in practice. Even if the convolutional network has a capped temporal horizon, it can be
designed with any such temporal receptive field. This means it is more important to design
the convolutional network properly so it can capture the necessary properties of the data.
Borovykh et al. (2017) has shown that a well-designed CNN can outperform RNNs on
data with long temporal dependencies.

The flexible CNN design can also be extended to inter-variable dependencies. Because
each CNN output use several timesteps directly, this network is often better at extrapolating
inter-variable dependencies, contrary to RNNs that use values from previous timesteps
indirectly through the hidden-state vector. For the calibration problem designed in the

56

5.5 Discussing Core Modules

previous chapter, with assumed correlations between the available variables, this increased
ability to model dependencies between variables might be important.

To extend this discussion to another module, attention is a way to increase the ability
to model long-term dependencies for any network that has seen much promise. This is due
to the ability to select between all timesteps in the training sample for the context vector
used by the model. This module also enables modeling dependencies between irregular
timesteps, as the attention attends based on value, or context for convolutional attention.
This leads to a natural hypothesis that such a module should increase performance on the
calibration task. We use it here together with RNNs to allow the resulting network to
model long-term dependencies easier without the struggle of vanishing gradients.

57

Chapter 5. Model Architectures

58

Chapter 6
Experiments

This chapter will describe how the main experiments in the thesis were conducted, which
is needed to address goal 3.

6.1 Overview of Experiments
There are three separate experiments conducted in this thesis to answer the research ques-
tions for goal 3.

Naturally, in order to perform tests with adequate model instances, the first thing we
did was hyperparameter tuning (HPT) for all models. The resulting hyperparameters were
used to implement instances used in further experiments.

The first experiment is a performance test with the same data used in the HPT. This
will provide a general performance metric on the synthetic data.

The second experiment is a restrained experiment, where the model only trains on a
small initial subset of the data, specifically the first three months. By testing on the entire
year, we get a metric describing the model’s ability to provide good calibration predictions
for time-periods that are far away in time from the training data, and it’s ability to learn
important features with limited data.

The final experiment is to train the model on multiple simulated drift-values, and test
on another drift-value entirely. This will provide insight into the model’s ability to gener-
alize between drifts, and thus being a more general model for this task.

All models, for all experiments, are optimized using the Adam optimizer with a learn-
ing rate of 0.001. For the experiments other than HPT, a reducing schedule is used which
reduces the current learning rate to a factor of 0.2 when two epochs are completed with no
loss decrease.

All models are trained on samples obtained through a sliding window procedure. An
overview of one batch obtained using this method is found in figure 6.1. Each batch
consists of a random selection of timeframes, of length 513 for these experiments, and the
data within those. Faulty PM measurements and the context including exogenous variables
are used as training data. The predictions of the models are compared against the true PM

59

Chapter 6. Experiments

Figure 6.1: Schematic describing the sliding window technique to obtain training data. Training
input is obtained as data from the faulty PM measurements and exogenous variables within randomly
sampled timeframes of a certain length. The training targets are the true PM measurements for within
the same timeframes.

values for the same sampled timeframes. An epoch is completed when all possible time
windows have been used for training. The complete data is split into training, validation,
and testing before generating training samples, in order to ensure no leakage between the
datasets. All new models use the context input defined in §4.4, and the baseline uses all
sensors together as different variables.

6.2 Hyperparameter Tuning
The hyperparameters are found using bayesian optimization from the keras-tuner library,
with default parameters(α = 1e−4, β = 2.6) for the algorithm. This algorithm was chosen
as it can converge to a good local minima without too many tests, which was important as
several models should be tuned equivalently. The hyperparameter-space used for testing
are shown in tables 6.2, 6.3, 6.4, and 6.1 for ResTDCN1D, ResTDCN2D, LSTMwA, and
the baseline models respectively.

The specification for the HPT is a follows. The search uses data for 1 year with 1
simulated drift, using the last 4 months for validation data, tested every epoch. The score
of a HP setting is the MSE of that validation set at training stop. Both the training and val-
idation data used the sliding window procedure with a window length of 513. A maximum
number of 40 trials were made for each model during HPT to limit time spent, of which
the five first are randomly sampled from the possible hyperparameter-space.

The remaining setup for the HPT varies somewhat between models, as their training
times are considerably different. While all models use early stopping, the patience was
decreased for model with longer epoch-times. The baseline models used a patience of
10, while the other models, TDCN1D, TDCN2D, and LSTMwA, used a patience of 5, 3,
3 respectively. The maximum number of epochs was also altered, 200 for the baseline
models, and 40 for the rest.

Because the HPT does not use an individual test-set for final scoring, it is not used in
the main comparison between models.

60

6.2 Hyperparameter Tuning

hyperparameter values
projection kernel 3,5,7,9,11,13
projection space 50:150
projection bias True, False

projection activation tanh, sigmoid, linear
number of residual blocks 2:6

*recovery bias True, False
*recovery kernel 3,5,7,9

*recovery activation ReLU, SeLU, sigmoid, tanh
*recovery filters 16:64

*batch normalization True, False
*convolutional operations 3

Table 6.1: Space of hyperparameters for tuning the baseline and extended baseline model. ’:’ all
valid values between the two extremes, inclusive. * parameter is tuned separately for each residual
block.

hyperparameter values
number of residual blocks 5:10

dilation start 0:5
dilation exponent 2

block output filters 8,16,32,64,128
*convolutional operations 1:5

*internal filters 8,16,32,64,128
*kernel 2:4
*bias True, False

*activation ReLU, SeLU, tanh
*batch normalization True, False

*dropout rate 0.0:0.4
final kernel 1:7

final dilation 1,8,24,48,72
final activation linear, tanh

final bias True, False

Table 6.2: Space of hyperparameters for tuning the ResTDCN1D model. ’:’ all valid values between
the two extremes, inclusive. * parameter is tuned separately for each residual block.

61

Chapter 6. Experiments

hyperparameter values
projection dimensions 25:50

number of residual blocks 5:8
dilation start 0:2

dilation exponent 2
block output filters 8,16,32,48

*convolutional operations 1:3
*internal filters 8,16,32,48

*temporal kernel 2:4
*variable kernel 3,5,7,9

*activation ReLU, SeLU, tanh
*bias True, False

*batch normalization True, False
*dropout rate 0.0:0.4

final temporal kernel 1:7
final dilation 1,8,24,48,72

final activation linear, tanh
final bias True, False

Table 6.3: Space of hyperparameters for tuning the ResTDCN2D model. ’:’ all valid values between
the two extremes, inclusive. * parameter is tuned separately for each residual block.

hyperparameter values
LSTM blocks 1:4

*LSTM activation tanh
*LSTM recurrent activation sigmoid

*LSTM units 16,32,48,64
*LSTM dropout 0

*LSTM bias True, False
attention filters 16,32,48,64

attention conv activation linear, sigmoid, tanh, ReLU
attention weight activation sigmoid, softmax, tanh, ReLU

attention distance training sample length
gradient clip max norm 0.9

Table 6.4: Space of hyperparameters for tuning the LSTMwA model. Note that most HPs for the
LSTM layers are fixed to use performance optimization in tensorflow. ’:’ all valid values between
the two extremes, inclusive. * parameter is tuned separately for each residual block.

62

6.3 Standard Test-Case

6.3 Standard Test-Case
After the optimal hyperparameters are obtained from the tuning process, a new model is
built using those hyperparameters and trained on the same data with increased patience
and batch size, 10 and 128 respectively. The model is trained on the first 7 months, using
the 8th month for validation and early stopping. The experimental setup is the same for all
implemented archtectures. After training is complete, the final score will be the MSE on
the final 4 months, which is left out as a test set.

6.4 Generalization To Far Future
The second experiment is conducted with models using the best hyperparameters and tests
the ability to accurately calibrate drift for values long after the training dataset, as well as
the ability to learn features with limited data.

The experiment setup is as follows, and is exactly similar for all models. The dataset
used is the same as the HPT experiment, but only the first three months are used for
training. Of these, the three last weeks are used as a validation set. The remaining 9
months are all used for testing the performance of the resulting model, scored by MSE.
The training dataset is fed similarly with 128 samples of a sliding window of size 513
for each batch. The test-set is used without splitting into samples, enabling the model to
use all available past data is is trained to. The patience used is 10 for all models, and the
maximum number of epochs is 200.

6.5 Generalization Through Drifts
The last experiment is also conducted with models with the best hyperparameters found in
the first experiment, and test the ability to generalize between instances of a drift model.
This is the experiment with the most training data.

The experiment is set up as follows, and is exactly similar for all models. For 1 sim-
ulated sensor network (locations and simulated true PM measurements), we simulate 6
different drift values, of which 5 will be used for training and the 6th used as testing data.
The training data is split by time into the first 8 months for training, and the lasty 4 months
for validation. This can be seen in figure 6.2. When feeding data to the model, we used a
batch size of 128 which enables us to ensure that for any timestep in the training batch, all
drift values for that time window is included. The rest is similar to all other experiments:
The window length is 513, the patience is 10, and the maximum number of epoch is 200.
The testing dataset is fed as one batch, similar to the previous experiment to enable max-
imum use of the long-term dependencies learned. The final MSE score will be used for
comparison

63

Chapter 6. Experiments

Figure 6.2: A visualization of the dividing of data for the experiment with multiple drift values.
Each sensor drift is simulated independently.

6.6 Hardware and Software
The HPT is conducted on a Tesla P100 GPU with 16GB of video RAM and a compute
factor of 6.0, needed for the bigger models during exploration. There were 2 Intel Xeon
E5-2650 v4 CPUs available on the machine, with a base frequency of 2.20GHz supporting
24 threads on 12 cores each. The RAM available on the machine was 126 GB.

The final experiments was conducted on a GeForce RTX 2080 with 11GB of video
RAM and a compute factor of 7.5. The CPU available on the machine was a AMD Ryzen
9 3900X with a base frequency of 3.8GHz supporting 24 threads on 12 cores each. The
RAM available on the machine was 32 GB.

We used keras (Chollet et al. (2015)) with the implementation in tensorflow (Abadi
et al. (2015)) to implement our model. The hyperparameter tuning was done using the
keras-tuner library (O’Malley et al. (2019)).

64

Chapter 7
Results

This chapter will present the results for each main experiment conducted as a part of this
thesis, which is relevant data for goal 3.

7.1 Key Results

A table showing the MSE obtained by the models on all experiments can be seen in ta-
ble 7.1. The table contains the key metric for comparison on all tests, and summarizes
the results obtained in this thesis. The specific models instances analyzed are considered
representative for the architecture they implement. From the table we can see that ResT-
DCN2D is the best performing model on all three experiments, and all new calibration
models (ResTDCN1D, ResTDCN2D, LSTMwA) have errors in the same order of magni-
tude.

During experiments, the LSTMwA network had exploding gradients when training
with the dataset containing multiple drift values. The reported MSE of that particular
model-experiment combination is the best result obtained after 3 tries. The reported trial
ended at epoch 4 when gradients exploded. Because of the repeated attempts on LSTMwA,
the other models were also tested on the drifts experiment one second time, reporting the
best score.

Architecture HPT test MSE Far Future MSE Drifts MSE
ResTDCN1D 0.0018 0.0033 0.0033
ResTDCN2D 0.0014 0.0025 0.0015

LSTMwA 0.0016 0.0037 0.0034*
Extd. Baseline 0.0152 0.0166 0.0143

Table 7.1: A table showing the MSE of the main architectures in the three main experiments. Bold
numbers show the best performance on a given test. *Best of several trials due to exploding gradi-
ents.

65

Chapter 7. Results

7.2 Hyperparameters
The HPT resulted in models that were considerably smaller than the maximum limit en-
forced by the HP boundaries, with the the new models designed in this thesis (ResT-
DCN1D, ResTDCN2D, LSTMwA) obtaining comparable performance scores on the val-
idation data. All values are compared against a naive model, returning un-calibrated PM
measurements, and all models seem to outperform this naive strategy.

The effect of the HPT is shown in two plots. A bar-chart showing the worst and best
performance scores obtained during the search is shown in figure 7.1. The same results are
shown with a box-plot in figure 7.2, showing the distribution of the values better. The max-
imum loss is clipped at 1.0 for both plots in order to ignore extremely unfortunate trials,
which only occurred on the dilated convolutional models. We see significant improve-
ments for all models except the extended baseline from their worst to their best, showing
that the HPT was both necessary and successful.

Considering the HPT was done on a per-block level is the tables showing their full
specification left for the appendix, but a quick summary is shown in tables 7.2, which
present hyperparameters relevant for the complexity of the resulting models. The depth
of all models is smaller than the maximum allowed, and the same goes for number of
convolution filters and kernels. The extreme of this is found in the LSTMwA model, with
only 1 LSTM layer. Differences of note is the projection dimension, as we don’t see a
particular value as optimal, and convolutional filters, as models have both high values
(64) and low values (16). We also see smaller temporal kernels for convolutional models
utilizing dilation, showing the effect of that strategy.

The dilated convolutional models are an interesting comparison. They have a very
different number of convolutional operations, filters, and kernel sizes. Consequently,
ResTDCN1D has around twice as many trainable parameters compared to ResTDCN2D,
2.4 · 106 parameters against 1.4 · 106 parameters. The 2D variant has on the other hand
considerably larger tensors to keep in memory due to the 2D nature of it’s convolutions,
2.9 · 106 against 5.4 · 105, and thus needing more multiplication operations per prediction
and more memory use.

The baselines share few similarities, with only the number of residual blocks and ker-
nel size being comparable. The projection dimension size for the extended model is dou-
ble the size of the basic baseline, as is expected due to the need to capture both PM10 and
PM2.5. The number of filters is however smaller for the extended variant, likely linked to
the increased complexity of the larger variable dimension.

66

7.2 Hyperparameters

Figure 7.1: The results of hyperparameter tuning for the implemented models, with blue bars show-
ing the best performance measured, and the red showing the worst measured performance. The
effect of the hyperparameter tuning can be seen as the difference between the two bars.

Figure 7.2: A boxplot showing the performances of the hyperparameter settings that were tried
for tuning. A total of 40 points were tried for each model. Note the outliers for TDCN 1D and
TDCN 2D, as they explain the large red bar for those models in figure 7.1.

67

Chapter 7. Results

hyperparameter values
Number of

Residual Blocks 7

block output filters 64
Total Convolutional

Operations 24

avg internal filters 36
avg kernel 3.1

(a) HPs affecting complexity of the ResTDCN1D
model.

hyperparameter values
Projection

dimension size 29

Number of
Residual Blocks 6

block output filters 16
Total Convolutional

Operations 9

avg internal filters 32
avg temporal kernel 2.7
avg variable kernel 4.3

(b) HPs affecting complexity of the ResTDCN2D
model.

hyperparameter values
Projection

dimension size 107

projection kernel 3
Number of

Residual Blocks 4

convolution filters 17
avg kernel 6.5

(c) HPs affecting complexity of the extended baseline
model.

hyperparameter values
Projection

dimension size 51

projection kernel 7
Number of

Residual Blocks 5

convolution filters 60
avg kernel 5

(d) HPs affecting complexity of the basic baseline
model.

hyperparameter values
LSTM blocks 1
LSTM units 64

attention filters 16

(e) HPs affecting complexity of the LSTMwA model.

Table 7.2: HPs obtained from HPT governing model size for the five implemented models. HPs
varying between residual blocks are aggregated as sum or mean, showing the overall complexity
without specifics.

68

7.3 HPT test

7.3 HPT test

Architecture All PM2.5 PM10
MSE R2 MSE R2 max ∆ MSE R2 max ∆

ResTDCN1D 0.0018 −2.40 0.0016 −2.92 0.150 0.0020 −2.51 0.217
ResTDCN2D 0.0015 −1.84 0.0011 −1.33 0.136 0.0019 −2.34 0.186

LSTMwA 0.0017 −2.09 0.0013 −1.78 0.152 0.0020 −2.41 0.169
extd. baseline 0.0152 −27.4 0.0181 −34.5 0.512 0.0122 −20.2 0.468

Table 7.3: Metrics showing performance on the HPT test experiment for all main models

The HPT test experiment, testing on the last 4 months with 1 drift, showed varying
results between PM sizes, as can be seen in table 7.3. Overall and for PM2.5 it is clear that
ResTDCN2D is the model performing best, as all metric show that very same conclusion,
but the other models perform similarly when calibrating PM10. The MSE and R2-score
show ResTDCN2D to be best still, but LSTMwA does not have as large errors as ResT-
DCN2D has. The most important data in the table is however how all newly designed
model outperform the baseline considerably, with an MSE an order of magnitude smaller
aggregated betwwen both PM sizes. The specific behaviour of the models is shown on the
plots on the following pages, compared against drift as the performance was found inde-
pendent from the target values themselves. Those plots can be viewed in the appendix.

Plots showing how the the true drift is correlated to the predicted drift and the pre-
diction error is found in 7.3 and 7.5 respectively. Figure 7.3 shows a clear diagonal for
the new models, indicating that there is a strong connection between the true drift and the
calibration, leading to lower errors. The baseline models does not show any significant
patterns, which together with the overall low calibration magnitude explains that models’
comparatively bad performance. A feature of note is found in the scatterplot for ResT-
DCN2D, which shows a small dent for drift over 0.4, showing that the model calibrates
less for those higher values. We also see a clear diagonal on the plots showing the error,
figure 7.5, indicating that higher drift values are harder to calibrate. The highest errors for
all new models happens when there is much drift.

Line-plots showing the predicted values for PM2.5 over time for two representative
sensors, a static sensor 10 and a mobile sensor 28, are found in figure 7.4 for for raw
values and figure 7.6 for the error itself. We see that sensor 10 is better calibrated than the
mobile sensor 28, showing difference between performance on a sensor-by-sensor level,
even when the drift is comparable. The error increases linearly over time for all new
models on sensor 28, but remains low for sensor 10. This closely links the performance
on sensor 28 to the drift magnitude, as that looks linearly increasing. All newly designed
models follows the true measurements closely, but the baseline follows the trend of the
drifted values for PM2.5, leading to much higher errors, almost 4 time as high.

The difference between the PM sizes is small, but the drift prediction scatter-plots for
PM10, found in figure 7.7, show a less stable performance. While the diagonal is still clear,
it is broader, showing a larger variation in predicted drift for PM10 compared to PM2.5. This
explains the worse performance obtained when calibrating that PM size. The calibration
error, seen in figure 7.9, is also more strongly dependant on the true drift compared to

69

Chapter 7. Results

PM2.5. The diagonal of the baseline in the error plots is very strong for both PM sizes,
indicating that the model can only calibrate small drift values.

The PM10 values are showed over time in figure 7.8 for raw values and figure 7.10 for
the error. They show that sensor 10 has almost no drift, and as such is calibrated well by
all models. Sensor 28 has considerably more noisy measurements, likely due to it being
mobile. It still manages to be calibrated quite well by all models, but still with a linearly
increasing error. The two plots showing errors tell us that the performance, while different
between PM sizes, has the same structure, e.g. increasing or not, for the newly designed
models.

Overall we see good performances from the newly designed models with ResTDCN2D
performing the best. All models obtain stable performance on both PM sizes with errors
increasing as the drift magnitude increases.

70

7.3 HPT test

(a) ResTDCN1D (b) ResTDCN2D (c) LSTMwA (d) baseline extd.

Figure 7.3: Scatterplots of true drift and predicted drift for PM2.5 in the HPT test experiment.

sensor:10 sensor:28

(a) ResTDCN1D

sensor:10 sensor:28

(b) ResTDCN2D

sensor:10 sensor:28

(c) LSTMwA

sensor:10 sensor:28

(d) baseline extd.

Figure 7.4: Plots showing the drifted, calibrated, and true measurements for PM2.5 in the test-set of
the HPT experiment.

71

Chapter 7. Results

(a) ResTDCN1D (b) ResTDCN2D (c) LSTMwA (d) baseline extd.

Figure 7.5: Scatterplots of prediction error compared to drift values for PM2.5 in the HPT test
experiment.

sensor:10 sensor:28

(a) ResTDCN1D

sensor:10 sensor:28

(b) ResTDCN2D

sensor:10 sensor:28

(c) LSTMwA

sensor:10 sensor:28

(d) baseline extd.

Figure 7.6: Plots showing the MSE for PM2.5 in the test-set of the HPT experiment over time.

72

7.3 HPT test

(a) ResTDCN1D (b) ResTDCN2D (c) LSTMwA (d) baseline extd.

Figure 7.7: Scatterplots of true drift and predicted drift for PM10 in the HPT test experiment.

sensor:10 sensor:28

(a) ResTDCN1D

sensor:10 sensor:28

(b) ResTDCN2D

sensor:10 sensor:28

(c) LSTMwA

sensor:10 sensor:28

(d) baseline extd.

Figure 7.8: Plots showing the drifted, calibrated, and true measurements for PM10 in the test-set of
the HPT experiment.

73

Chapter 7. Results

(a) ResTDCN1D (b) ResTDCN2D (c) LSTMwA (d) baseline extd.

Figure 7.9: Scatterplots of prediction error compared to drift values for PM10 in the HPT test exper-
iment.

sensor:10 sensor:28

(a) ResTDCN1D

sensor:10 sensor:28

(b) ResTDCN2D

sensor:10 sensor:28

(c) LSTMwA

sensor:10 sensor:28

(d) baseline extd.

Figure 7.10: Plots showing the MSE for PM10 in the test-set of the HPT experiment over time.

74

7.4 Distant Generalization

7.4 Distant Generalization

Architecture All PM2.5 PM10
MSE R2 MSE R2 max ∆ MSE R2 max ∆

ResTDCN1D 0.0033 −5.22 0.0016 −1.98 0.178 0.0050 −8.46 0.386
ResTDCN2D 0.0025 −3.64 0.0013 −1.48 0.195 0.0037 −5.80 0.345

LSTMwA 0.0038 −5.90 0.0042 −6.61 0.322 0.0034 −5.19 0.273
extd. baseline 0.0166 −29.0 0.0203 −36.8 0.612 0.0128 −21.0 0.537

Table 7.4: Metrics showing performance on the far future experiment for all main models

The performance metrics, shown in table 7.4, show that this experiment, using the en-
tire TS-length for the test data, also resulted in the two PM sizes having dissimilar perfor-
mances, but with overall worse performances compared to the HPT test experiment, where
more training data was made available which can explain this behaviour. Furthermore, the
difference between performances of the two PM sizes are larger for this experiment, es-
pecially for the ResTDCN1D model, hinting at a preference to calibrate one of the two
PM sizes well for the convolutional models. Because these models calibrated PM2.5 better
than PM10, we see that LSTMwA perform best on PM10 in spite of being the worst overall
accurate newly designed model. ResTDCN2D performs best overall and for PM2.5, with
the more comparable result with ResTDCN1D in PM2.5 calibration. The specifics of the
models’ behaviour is shown with the plots on the following pages, compared against drift
as the performance was found independent from the target values themselves. Those plots
can be viewed in the appendix.

The scatterplots showing the predicted drift and error are shown in figure 7.11 and
figure 7.13 respectively. They show a clear diagonal for all new models, but no appear-
ent pattern for the baseline model. While this shows that the new models perform best,
the diagonal of LSTMwA is more noisy, leading to worse performance compared to the
convolutional models. We especially see more drastic calibrations for low drifts than for
the convolutional models. This is mirrored in the error-plot, showing a high spike in error
for those low values. We also see that spike for ResTDCN1D, leaving ResTDCN2D as
the most stable model in this experiment. The diagonal in the error-plot for the baseline is
very clear, indicating that the model cannot calibrate for drift magnitude, even less than in
the HPT test experiment.

Line-plots showing the predicted values for PM2.5 over time is found in figure 7.12
for raw values and figure 7.14 for error, with the same sensors for visualization as the
HPT test experiment. The lines show less stable performance compared to teh HPT test
experiment for the new models as we see small differences between the lines both in the
middle of the TS, when drift values are low, and at the end, when drift values are large.
Still, the overall trend of the true values are being followed somewhat for the new models,
until the last timesteps. The predictions of the baseline models follow the drifted values
more closely here, showing no real promise. The error graph mirrors this for the baseline
model, but shows error graphs for the newer models that is less dependant on time. After
timestep 7000 we see almost all errors increasing linearly, but ResTDCN2D retains good
performance for PM2.5 on sensor 10. This shows that ResTDCN2D has the ability to

75

Chapter 7. Results

generalize into distant future, but cannot do it consistenly as that was not seen for sensor
28. Apart from that, we see error graphs with very similar shapes between the two sensors,
indicating that the models can calibrate both mobile and static sensors similarly, with the
main difference being more noisy calibration for the mobile sensor.

When comparing the scatter-plots to equivalents for PM10, figure 7.15 and figure 7.17
for predicted drift and error respectively, show a more noisy and less stable performance
for all models. The prediction plots for PM10 show an even wider diagonal than for the last
experiment, indicating that PM10 was more difficult to generalize far with little data than
PM2.5. The error plots does not show spikes for lower drift values for the convolutional
models, but all models performed worse overall. The stronger diagonal on these error-
plots further show that PM10 was harder than PM2.5 for this experiment. LSTMwA obtains
better performance for PM10 with a more noisy calibration, but with no systematic errors
as seen for PM2.5.

The line-plots for PM10, seen in figure 7.16 for raw values and figure 7.18 for errors,
shows again that sensor 10 has a lower PM10-drift, similarly to the HPT test, but here all
new models are over-calibrating the sensor at the later timesteps. This is seen in the error-
plots as increased error form timestep 6000. The baseline obtains a good calibration for
this sensor due to the low drift primarily, as it could not calibrate sensor 28 successfully.
The newer also struggle with sensor 28, but consistently over time, with the error remain-
ing fairly statonary after timestep 2000. All new models obtain comparable performance
on sensor 28, but ResTDCN2D has the least over-calibration on sensor 10.

Overall the performances for this experiment was worse than for the HPT test, but most
comparative results remain the same. ResTDCN2D obtains the best overall performance,
only beat slightly by LSTMwA on PM10. The difference between PM2.5 and PM10 was
also showcased in this experiment with greate magnitude. The baseline performed worse
compared to our new models, further strengthening their superiority.

76

7.4 Distant Generalization

(a) ResTDCN1D (b) ResTDCN2D (c) LSTMwA (d) baseline extd.

Figure 7.11: Scatterplots of true drift and predicted drift for PM2.5 in the far future experiment.

sensor:10 sensor:28

(a) ResTDCN1D

sensor:10 sensor:28

(b) ResTDCN2D

sensor:10 sensor:28

(c) LSTMwA

sensor:10 sensor:28

(d) baseline extd.

Figure 7.12: Plots showing the drifted, calibrated, and true measurements for PM2.5 in the far future
experiment.

77

Chapter 7. Results

(a) ResTDCN1D (b) ResTDCN2D (c) LSTMwA (d) baseline extd.

Figure 7.13: Scatterplots of prediction error compared to drift values for PM2.5 in the far future
experiment.

sensor:10 sensor:28

(a) ResTDCN1D

sensor:10 sensor:28

(b) ResTDCN2D

sensor:10 sensor:28

(c) LSTMwA

sensor:10 sensor:28

(d) baseline extd.

Figure 7.14: Plots showing the MSE for PM2.5 in the far future experiment over time.

78

7.4 Distant Generalization

(a) ResTDCN1D (b) ResTDCN2D (c) LSTMwA (d) baseline extd.

Figure 7.15: Scatterplots of true drift and predicted drift for PM10 in the HPT test experiment.

sensor:10 sensor:28

(a) ResTDCN1D

sensor:10 sensor:28

(b) ResTDCN2D

sensor:10 sensor:28

(c) LSTMwA

sensor:10 sensor:28

(d) baseline extd.

Figure 7.16: Plots showing the drifted, calibrated, and true measurements for PM10 in the far future
experiment.

79

Chapter 7. Results

(a) ResTDCN1D (b) ResTDCN2D (c) LSTMwA (d) baseline extd.

Figure 7.17: Scatterplots of prediction error compared to drift values for PM10 in the far future
experiment.

sensor:10 sensor:28

(a) ResTDCN1D

sensor:10 sensor:28

(b) ResTDCN2D

sensor:10 sensor:28

(c) LSTMwA

sensor:10 sensor:28

(d) baseline extd.

Figure 7.18: Plots showing the MSE for PM10 in the far future experiment over time.

80

7.5 Generalization Through Drifts

7.5 Generalization Through Drifts

Architecture All PM2.5 PM10
MSE R2 MSE R2 max ∆ MSE R2 max ∆

ResTDCN1D 0.0033 −6.06 0.0042 −9.32 0.257 0.0024 −2.81 0.239
ResTDCN2D 0.0015 −2.11 0.0017 −3.11 0.200 0.0014 −1.12 0.173

LSTMwA 0.0034 −5.08 0.0018 −3.38 0.586 0.0049 −6.79 0.772
extd. baseline 0.0143 −27.2 0.0153 −32.3 0.491 0.0133 −22.1 0.537

Table 7.5: Metrics showing performance on the drift generalization experiment for all main models

The performance metrics for the experiment using testing data with entirely unseen
drift samples, shown in table 7.5, does not show the worst performances seen, but overall
is comparable to the HPT test experiment for ResTDCN2D and the far future experiment
for the other models. In this experiment, ResTDCN2D obtains similarly good perfor-
mances on both PM sizes, while ResTDCN1D performs it’s best om PM10 and LSTMwA
performs it’s best om PM 2.5. ResTDCN2D still obtains the best results on all metric in
this experiment, but LSTMwA obtains almost the same score om PM2.5. The specifics of
the models’ behaviour is shown with the plots on the following pages, compared against
drift as the performance was found independent from the target values themselves. Those
plots can be viewed in the appendix.

The scatterplots showing the behaviour of the models for PM2.5 are shown in figure
7.19 for the predicted drift and figure 7.21 for the error. These plots show a clear and
stable correlation between true and predicted drift for ResTDCN2D, whith the errors being
heavily influenced by drift magnitude. Like all previous experiments presented, higher
drift values lead to higher errors. The other two new models, ResTDCN1D and LSTMwA,
do show a correlation between true and predicted drift, but not as stable as ResTDCN2D.
Furthermore, the predicted drifts by LSTMwA have a large spread for drift values over
0.5. We see errors for ResTDCN1D being independent of drift magnitude, but overall
fairly high 0.2, with the same for LSMTwA for drift values below 0.5 and very high errors
for values over 0.5. The baseline model does not show any discernable patterns in the
predicted drift, and has errors very dependant on the drift magnitude.

The line-plots showing the behaviour for two sensors, the static sensor 17 and the mo-
bile sensor 35, are found in figure 7.20 for raw values and figure 7.22 for the error. Those
plots shows stable performances for the new models for the most part, but poor perfor-
mance in the first 1000 timesteps for the convolutional models and increased error at the
end for ResTDCN2D and LSTMwA. However, the stable performance of ResTDCN1D is
overall worse than the other new models for PM2.5 with high errors over almost the entire
TS. The baseline still follows the trend of the drifted values closely, especially for sensor
35, but manages to calibrate well between timesteps 1000 and 6000 for sensor 17.

The scatterplots for PM10, found in figure 7.23 for predicted drift and figure 7.25 for
prediction errors, show a more narrow diagonal for ResTDCN1D, a slightly wider diago-
nal for ResTDCN2D and a different pattern altogether for LSTMwA compared to PM2.5.
The baseline model does not obtain any discernable pattern for calibration here either,
but rather a strong dependency between error and drift. The error plot does not change

81

Chapter 7. Results

for ResTDCN1D, but ResTDCN2D shows the largest errors when the drift is low and
LSTMwA shows a spike in errors for a drift of roughly 0.2 with overall high errors.

The line-plots for PM10, shown in figure 7.24 for raw values and figure 7.26 for the
error, tell another story than for PM2.5. We see a clear tendency to over-calibrate for
the lower drift-values seen between the timesteps 2000 and 6000 for ResTDCN2D and
LSTMwA for sensor 17, with the same patterns with smaller magnitude for sensors 35.
Those models obtain best performances when the drift is highest, which is opposite of their
behaviour for PM2.5. The ResTDCN1D model obtains similar performances between the
PM sizer, also here having high errors before timestep 2000 for sensor 35. The model is
showing a smaller increase in error for the timesteps between 2000 and 6000. The baseline
obtains the best performance on sensor 35 as the drifted values are close to the true values.
We see that the model still does not compensate for high drift values after timestep 6000
for sensor 35.

82

7.5 Generalization Through Drifts

(a) ResTDCN1D (b) ResTDCN2D (c) LSTMwA (d) baseline extd.

Figure 7.19: Scatterplots of true drift and predicted drift for PM2.5 in the drifts experiment.

sensor:17 sensor:35

(a) ResTDCN1D

sensor:17 sensor:35

(b) ResTDCN2D

sensor:17 sensor:35

(c) LSTMwA

sensor:17 sensor:35

(d) baseline extd.

Figure 7.20: Plots showing the drifted, calibrated, and true measurements for PM2.5 in the drifts
experiment.

83

Chapter 7. Results

(a) ResTDCN1D (b) ResTDCN2D (c) LSTMwA (d) baseline extd.

Figure 7.21: Scatterplots of prediction error compared to drift values for PM2.5 in the drifts experi-
ment.

sensor:17 sensor:35

(a) ResTDCN1D

sensor:17 sensor:35

(b) ResTDCN2D

sensor:17 sensor:35

(c) LSTMwA

sensor:17 sensor:35

(d) baseline extd.

Figure 7.22: Plots showing the MSE for PM2.5 in the drifts experiment over time.

84

7.5 Generalization Through Drifts

(a) ResTDCN1D (b) ResTDCN2D (c) LSTMwA (d) baseline extd.

Figure 7.23: Scatterplots of true drift and predicted drift for PM10 in the drifts experiment.

sensor:17 sensor:35

(a) ResTDCN1D

sensor:17 sensor:35

(b) ResTDCN2D

sensor:17 sensor:35

(c) LSTMwA

sensor:17 sensor:35

(d) baseline extd.

Figure 7.24: Plots showing the drifted, calibrated, and true measurements for PM10 in the drifts
experiment.

85

Chapter 7. Results

(a) ResTDCN1D (b) ResTDCN2D (c) LSTMwA (d) baseline extd.

Figure 7.25: Scatterplots of prediction error compared to drift values for PM10 in the drifts experi-
ment.

sensor:17 sensor:35

(a) ResTDCN1D

sensor:17 sensor:35

(b) ResTDCN2D

sensor:17 sensor:35

(c) LSTMwA

sensor:17 sensor:35

(d) baseline extd.

Figure 7.26: Plots showing the MSE for PM10 in the drifts experiment over time.

86

Chapter 8
Discussion

8.1 Interpreting Results

8.1.1 Overall Performance

While all newly designed models obtain good results within the same order of magnitude,
ResTDCN2D consistently outperformed the other models and generalized better to distant
timesteps with the same synthetic drift and through multiple drifts. It had the smallest
difference in performance between PM2.5 and PM10, showing that it is possible to calibrate
more than one measurand per network. These results may be directly linked to the dataset
used, but the big performance gap between the newly designed models and the baselines
shows that using DL to calibrate WSNs is a very promising strategy with possibilities for
improvement. As such, this work showcases that the under-researched field of DL for
blind WSN calibration should be explored further.

The two implemented baselines obtained similar results on the HPT test experiment,
but the baseline only calibrating PM2.5 outperformed the other on the two other experi-
ments. While it is natural to assume that calibrating for two TS is a more challenging
task, these results strengthen that assumption. Still, their behaviour is similar, leading to
a possible conclusion that they are inter-changeable to some degree. Plots showing this is
available in the appendix.

8.1.2 Comparing The Convolutional Models

It is interesting to note that the performance difference between the two new convolutional
models as ResTDCN1D did not obtain similar results for both PM sizes, even though
ResTDCN1D has more trainable parameters with 2.4·106 parameters compared to 1.4·106

for ResTDCN2D. This might showcase that in order to calibrate both measurands, one
needs enough memory to store enough information for both TS separately, which is present
for ResTDCN2D with 2.9 · 106 network nodes, but less so for ResTDCN1D with 5.4 · 105

network nodes. Furthermore, considering that the same smaller kernel is applied for all

87

Chapter 8. Discussion

variables we can theorize that individual convolutional kernels are not necessary for each
TS.

How generalizable those interpetations are could depend on the data used. The data
created for the experiment in this thesis used PM10 that were noisily extrapolated from
PM2.5, resulting in a strong dependency between the two TS given meteorological data.
As such the note on not needing individual kernels may not hold for datasets were such
dependencies are not present as each TS behave uniquely.

8.1.3 Exploding Gradients For LSTMwA

The LSTMwA performed well, and outperformed the best model ResTDCN2D on the far
future experiment for PM10, but did not manage to converge on the drift generalization ex-
periment due to consistently exploding gradients. This could mean that the performances
obtained by that model could have been better, perhaps outperforming ResTDCN2D if
the gradients had been controlled better than what was done in this experiment, clipping
gradients to a norm of 0.9. While the measures taken did allow the model to obtain com-
parable results, and therefore showing the promise of the model, the problem of exploding
gradient must be alleviated further for this model to obtain superior results. If gradients
are not controlled recurrent networks may be ill suited for the calibration task since the
ability to use several drift models may be important, which will be discussed in §8.4. The
training plots showing the abrupt training stop is shown in the appendix.

8.1.4 Error over Time

The plots showing error over time and in comparison with drift magnitude shown pre-
viously showcases that the error is heavily influenced by drift magnitude outside of the
range in training data. This may invalidate the arguments made earlier to not use an au-
toregressive part, e.g. in models such as the one by Lai et al. (2018). The hypothesized
boundary around the data did not seem to exist, and as such we could look at the data as
non-stationary.

This leads to needing an autoregressive part to compensate for that trend as DL models
are known to perform worse when data is non-stationary. While this could intuitively
be argued to be a part of the function of the subtracting residual connection in all tested
models, it is important to note that the residual connection only accounts for the underlying
true PM measurements. The output of the final DL layer should be the drift, which is is
the part of the data that is non-stationary.

There are other possible explanations as to why the error increases in correlation to
the drift. Most models has an early batch normalization layer, found by the HPT, which
removes the magnitude information in the input data. Because of this, it is possible the
models calibrate mainly by other information sources, and thus react less to the overall
magnitude of the input data. It is also important to note that large errors are not limited
to large drift magnitudes, so including an autoregressive component is no silver bullet.
Noting that the line plots show that the error increases when the data exceeds the input
range could indicate that using a more representative dataset for training might alleviate
the problem.

88

8.2 Adressing Research Questions

8.1.5 Ideal Model Size
The ideal model size found by the HPT was consideraly smaller than what was allowed
by the defined HP space. This could be because of the change in the data over time, and
as such makes overfitting a very important aspect of the models used for this problem.
It could also be a result of small design choices for the HPT. The most likely reasons
could be lack of testing the same HP multiple times, as larger models need better weight
initialization to function properly, and the fact that patience was low during the HPT, as
larger model need more data and time to converge. We should also consider the training
data when discussing this, as larger models needs more data, leading to the optimal model
instances being a direct result of the data and HPT design used in this specific experiment.
Still, the fact that no model parameters maxed out should not go unnoticed, especially for
ResTDCN2D, as the HP space was already limited due to memory size, and LSTMwA,
which only had 1 LSTM. The only conclusion that definitively cannot be drawn from
the results presented in this thesis is the latent dimension size, the number of filters in
the projection layer, of the ResTDCN2D model as no values greater than the number of
sensors was explored due to memory. This was seen in the extended baseline model.

8.2 Adressing Research Questions

8.2.1 Goal 1: SotA in DL relevant for WSN calibration
RQ1 is answered by looking at the SLR, noting that Wang et al. (2017) are the only
authors addressing DL for blind WSN calibration. While AQ data has been used in TSF
previously are the different tasks calling for slightly different solutions, so they cannot be
used to answer this RQ further.

RQ2 is addressing SotA in DL using time series data and demands a broad answer.
This is because the specific task was not defined in the question, which was discovered to
be a key point in determining promising architectures. For TSC, Ismail Fawaz et al. (2019)
found CNNs to be performing best, while Gasparin et al. (2019) found RNNs to perform
best on the TSF task. Neither explored ESNs fully, and Gallicchio and Micheli (2019)
showed them to perform very well on TSC, and possibly other tasks where short-term
dependencies are the most important. Attention networks were also showed promising by
papers presenting those models, without a place in the comparative literature reviews on
TSC and TSF. The answer to the RQ is unfortunately that model archetypes should be
tested for any one problem, as the specific task largely determines which model performs
best.

RQ3 asks which models are likely to calibrate sensor data for AQ well, but from
the answer on RQ2 it should be evident this is hard to answer, as many architectures
within CNNs and RNNs have proved successful in tasks on TS data. ESNs and attention-
based models do not have as many reported architectures, but could still prove successful.
The main important aspects are the ability to utilize distant timesteps in a causal fashion,
which is possible in all the mentioned archetypes, and mapping input timesteps to output
timesteps directly to utilize the mapping structure of the problem in addition to simplify
implementing causality. This leads to architectures such as the encoder-decoder to be
deemed less promising as the final hidden state passed to the encoder violates causality.

89

Chapter 8. Discussion

While all archetypes showed some promise, we can still say that CNN and RNN based
architectures could be most promising, given their prevalence in the litearature.

8.2.2 Goal 2: Synthetic data

RQ4 is answered by the data analysis conducted earlier in the thesis, but no definitive an-
swer can come from that because it is only one sensor and AQ is a very local phenomenon.
One can still see features such as spikes and a very slight periodicity, with a behaviour sim-
ilar to a random walk. Because the data is from Norway, which tends to have clean air,
we mostly see very low measurements, but that does not necessarily generalize to other
locations.

RQ5 is mostly answered by the literature, as the drift measured in the one sensor
available did not behave in such a way that it was deemed generalize-able because of
the constant impact of varying true spikes. Maag et al. (2018) shows several reasons
for erroneous measurements, dependencies on temperature and humidity, sensor drift over
time, and random noise are the most important ones, with nonlinear response and response
magnitude often calibrated for by manufacturer. While the literature does not specify how
drift works in detail, a possible assumption is that it is changes in the other measurement
errors, which was assumed in this thesis.

8.2.3 Goal 3: Choosing the most promising architecture

RQ6, RQ7, and RQ8 can be answered directly by the results presented in this thesis. The
simple answer to all of them is that ResTDCN2D is the superior model, as it consistently
outperformed the other models.

The longer answer for RQ6 is that since all models obtained comparable results on
the HPT test experiment with very similar behaviours, all model archetypes are promising
with similar faults. All models showed increasing error with time, but ResTDCN2D had
the lowest overall error and shows that convolutional models are the most promising model
archetype.

The longer answer for RQ7 compares the performance of the two PM sizes, as ResT-
DCN2D obtained the best result for PM2.5 and LSTMwA obtained the better results on
PM10. LSTMwA was still the worst model of the newly designed, and convolutional mod-
els were superior with ResTDCN2D being the best performing model.

The longer answer for RQ8 could be a comparison between ResTDCN2D and LSTMwA,
but the exploding gradients did not occur for the convolutional models, showing that
they are more stable when training with multiple drift values. While ResTDCN1D and
LSTMwA still obtained similar scores, ResTDCN2D performed conciderably better with
stable gradients and is therefore deemed the model that best generalizes between drift
values.

90

8.3 Validity

8.3 Validity

8.3.1 Simulation Gap

In this thesis we tested models on synthetic data for practical purposes as the planned real
WSN was delayed due to COVID-19, and the validity of the results is closely linked to
how realistic this dataset is since the end goal is to apply the models described on real
data. Still, when looking at the realism of the data and experiments it should be noted that
”real” data is also partly synthesized because the underlying drift is inherently unknown.
Because this is the main phenomenon learned by the models it does not change the validity
of the results drastically.

PM simulation

While the synthetic PM measurements are simulated based on analysis of data from physi-
cal sensors, no experiments were done directly on real data because such data was unavail-
able. The fact that no experiments was conducted using data from physical sensors can
be argued to harm the validity of the reported results. Nevertheless, the true PM measure-
ments themselves are not as key as the sensor drift, mainly due to the subtracting residual
connection over the model that limits the need to model the features of the true PM mea-
surements. Because of this, the general concept of synthetic true PM measurements is not
considered considerably harmful to this thesis’ validity.

Still, the spikes in the synthetic data are considerably more regular than the data ob-
served by the sensor used in this thesis. This results in a more representative data which
makes the problem easier for DL models as enough training data is available for all pos-
sible input values. As such, models would in general perform worse, and models dealing
with imbalanced datasets well would be comparably better. However, the rarity of spikes
observed is local to Trondheim, Norway, and this specific simulation gap may not be as
large for other locations.

Drift simulation

Similar to PM simulation, no experiments were conducted directly the real drift on phys-
ical sensors. This is how most research on drift calibration of big WSNs is conducted,
as each low-cost sensor must be paired with a high-quality sensor to generate a dataset
with real drift. Because the cost of high-quality makes that approach infeasible, conduct-
ing research on synthetic drift becomes the only practical solution. While this approach
harms validity as it becomes difficult to quantify the realism of the used drift model, it is
the best solution available. Deploying high-quality sensors beside a subset of the low-cost
sensors in the WSN is possible, but only provides true values for the sensors paired with,
which due to the locality of PM is of limited use. It is also not possible when the WSN is
synthetic for obvious reasons.

It is still important to know that the specifics of the drift model utilized in the simulation
procedure plays an important role. We simulated a max-drift scenario for each sensor, and
linearly interpolated from true measurements to that simulated max error. This might be a
simple drift model, but it encompasses key features of drift found in the literature such as

91

Chapter 8. Discussion

changing over time and being dependant on meteorological variables. Because of this, we
argue that the inclusion of those aspects of the models increases validity as we test for the
models’ ability to learn known phenomenons.

Experiment design

The experimental designs also play a part in the realism of the results, but mostly by testing
for model capabilities that are relevant for training on real data. The second experiment,
far future, tests the model’s ability to learn the drift model well enough from a small
subset of data to accurately calibrate sensors far into the future. This is important because
good training data for real-world data is is only available for the first few months, that
is when the sensors are accurate enough and can be used to create a satisfactory dataset.
Additionally, the third experiments tests generalizability between different drift-values,
which is important as the true drift model is unknown. A model that can perform well on
unseen drift behaviours can intuitively extrapolate from synthetic training drift to the real
drift of the real sensors. Both of these experiments thus report results more in tune with a
real-world scenario, and therefore we argue that their inclusion lessens the simulation gap,
consequently increasing validity.

8.3.2 Experiment Specifics
HPT

The results of the experiments conducted are closely linked to how optimal the DL model
instance used for comparison is. The HPT conducted in this thesis only used one model
instance per HP setting, which can lead to noisy results. Because only one instance is
tested for each setting, the final performance of an individual model instance could have
been the byproduct of the weight initialization. This would be alleviated if enough time
had been available, and each instance had been tested several times.

However, the models used are the results of testing 40 models for each architecture,
which lessens the effect of those noisy results. Considering most models obtained compa-
rable results, it is probable that most models tried obtained representative results leading
to the models selected being fairly close to optimal. Furthermore, because this thesis is
comparative regarding the models, one could see better results from a HPT as a strength
of the model, a strength represented by increased performance in the final experiments.

This defence unfortunately does not address that HPT was not done for each exper-
iment, which could have had impact on the performances obtained on the far future and
drifts experiments. The specific results obtained on those experiments were considerably
less similar than for the HPT test experiment, possibly indicating that such an ordeal might
not have changed that ResTDCN2D performed best, but rather the margin by which it out-
performed the other models.

Experimental designs

There are no obvious threats to validity from the experimental design of the three main
experiments. The first experiment follows standard ML procedure, and leaves out a con-
siderable portion as the test-set, and training with the majority of the data split into training

92

8.4 Applicability

and validation. Because this splitting is done before time-window sampling, there are no
leaks between the datasets. This logic also follows for the other experiments. While the
choice to only use one physical WSN for training might provide less general results, the
results obtained are valid for the network used to generate training data. This is an inter-
esting concept, but testing on other sensor placements is a different experiment with it’s
own goals.

8.3.3 Comparison to Related Work
The results only report model of the convolutional and recurrent family of DL models.
While these architectures are thoroughly analysed, other architectures are left out of the
comparison, i.e. ESNs and transformers as found in the SLR. Because of this, there is
a chance that the best model is from one of those model families. While this does not
invalidate the work done, it might be considered incomplete regarding the over-arching
goal of exploring the possible DL architectures for blind WSN calibration.

The final score, while better than previously obtained with DL, is not compared against
model not utilizing DL. While this does not change any conclusions for this thesis, the new
models still outperform the previous model, it removes the possibility to put the results into
further context. Considering the main goal was specifically to improve the previous DL
model, it does not harm validity, but should be considered as a part of further research
when more DL methods have been explored.

8.4 Applicability
Remote WSN calibration is a problem that will very likely remain relevant for a long
time. The report has mentioned the increasing problem of air pollution, and such the
increasing importance of the calibration task, but has only mentioned the present problem
of calibrating WSNs. While increasingly accurate low-cost sensors are manufactured,
the fact that these sensors are physical will remain, keeping calibration relevant. This
is explained by noting that physical sensors will always have some degree of noise in
the measuring mechanism, both random and dependant on meteorological variables, and
temporal drift as the sensors age.

Using DL for this task is a generally applicable approach in itself as it doesn’t lever-
age critical assumptions on the data, but is dependant on training data as it learns features
found in the data itself. This means the drift model used to generate training data becomes
a crucial choice when applying DL to some WSN. The danger of over-fitting to one par-
ticular drift model is present unless multiple drift models are used in the data, allowing
the DL model to learn a general calibration procedure to calibrate all used drift models,
which should improve capabilities to calibrate new unseen drift. While this resulted in ex-
ploding gradients for LSTMwA, both ResTDCN2D and ResTDCN1D converged properly,
showing that it is possible to apply DL models on such a dataset.

The gain from applying a DL model then lies in the need for generalizing between
multiple drift models to perform on unseen drift. Considering the various assumptions
used in the mathematical literature, there exists no perfect drift model yet. This enables,
in theory, possible improvements by generalizing between drift models by using DL. The

93

Chapter 8. Discussion

drift models used should still resemble the real drift somewhat, tying the applicability of
DL to the availability of drift models.

In order to transfer the experiment from the synthetic data to data obtained from the
real world, little needs to change. While the locations and measurements of sensors are
used from the real WSN, the drift must still be simulated to generate training data. The
rest of the data pipeline should remain the same, but the size of the context area should be
tuned for the specific dataset. A good experimental design uses only some initial time, e.g.
the first two months, and simulates drift from multiple drift models to increase the size of
the training dataset and enable generalization between them when calibrating for the real
drift. This can be seen as a combination of the two experiments far future and drifts.

94

Chapter 9
Conclusion and Future Work

9.1 Summary
While deploying WSNs helps monitor AQ locally to take educated actions against in-
creasing air pollution, sensor drift is still an important problem that limits the usability
of such sensor networks. Blind drift calibration is a method for calibrating those sensors
remotely without the underlying true values available, reducing cost and work needed for
WSN maintenance while increasing data quality. This has traditionally been done lever-
aging assumptions on the drift phenomenon, but DL has in this thesis showed promise in
calibrating WSNs remotely without the need for such assumptions.

This work presented a SLR to obtain literature that facilitated creating synthetic data
in addition to designing new DL models for blind WSN calibration. The synthetic data is
simulated by a procedure supported by an analysis of real sensor data and literature, and
generates PM measurements for both PM2.5 and PM10, sensor drift, and meteorological
variables with dependencies between PM-weather and drift-weather. Three DL models
were implemented, two time-dilated convolutional models using convolutions in 1 dimen-
sion and 2 dimensions respectively, and an LSTM network with convolutional attention.

Experiments show that all three models outperform the only previous model by Wang
et al. (2017) on the synthetic data with a MSE of an order of magnitude less. Of the tested
models were the 2D convolutional model performing best even if most results between the
three implemented models are comparable. This shows that DL for blind WSN calibration
can be improved further, and possibly catch up to the more traditional methods without
leveraging assumptions that may be inaccurate.

9.2 Contributions
The contributions of this thesis are mainly:

• An exploration of convolutional and recurrent DL models for the blind WSN calibra-
tion task, creating three models with increased performance in the blind WSN cali-

95

Chapter 9. Conclusion and Future Work

braion task compared to the previously implemented model by Wang et al. (2017).

• A convolutional model based on the WaveNet architecture in 2 dimensions, showing
the promise of causally temporally dilated convolutions in higher dimensions than
the traditional 1.

• An efficient implementation of the conv-attention by Shih et al. (2019) with se-
quence output utilizing a causal convolution in 2D.

• An open-source code-base that provides the means to create a synthetic dataset with
AQ measurements and drift, both dependant on meteorological variables, in addition
to the implemented DL models for future comparison and research. This is found
at: https://github.com/ntnu-ai-lab/dl-wsn-calibration.

9.3 Future Work

This section will present work that can be done to further the research of DL for blind
WSN calibration.

Test more models

More models should be tested to chart the field that is DL for blind WSN calibration. This
should be done to find the most promising way to move the field forward in. Of special note
is ESNs and attention networks, as they were found during the SLR, but excluded from
the experiments conducted in the thesis. It is also possible that other architectures using
convolution or recurrent connections can show promising, but that should be continued on
only when all architectural families have been tested.

Test models using autoregression

Because the error was found to increase together with increased drift, models using a
copmutation branch with autoregression should be tested. The error was discussed in
§8.1.4 to be because DL tend to perform worse on non-stationary data. Since Lai et al.
(2018) showed autoregression to combat this, it should be tested as a possible solution.

Test against non-DL calibration methods

Comparing results to non-DL methods was excluded from the work in this thesis, but it
would provide key insight into how well the model designed in this thesis and in further
research compare to the traditional methods. This would tell us if, or when, DL is compa-
rable to or better than the traditional methods, which is key to say how usable the solutions
are.

96

https://github.com/ntnu-ai-lab/dl-wsn-calibration

9.3 Future Work

Test on real data

While the drift values remain synthetic, some of the features of real data may impact
the performance of the proposed models. In order to have a better performance metric
available to compare the models, as the main goal is after all to calibrate real data, this is
a natural next step.

Confidence output

Because this model will likely output data used as another model for input, for example
a model that proposes precationary measured against future PM spikes, outputting confi-
dence in one form or another could inform those decisions further. This can for example
be done by utilizing Bayesian neural networks, as the output is formulated as a probability
density, inherently containing confidence.

97

Chapter 9. Conclusion and Future Work

98

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis,
A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M.,
Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R.,
Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I.,
Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden,
P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-scale
machine learning on heterogeneous systems. URL: https://www.tensorflow.
org/. software available from tensorflow.org.

Becnel, T., Sayahi, T., Kelly, K., Gaillardon, P.E., 2019. A recursive approach to partially
blind calibration of a pollution sensor network, in: 2019 IEEE International Conference
on Embedded Software and Systems, ICESS 2019, Institute of Electrical and Electron-
ics Engineers Inc. doi:10.1109/ICESS.2019.8782523.

Bianchi, F.M., De Santis, E., Rizzi, A., Sadeghian, A., 2015. Short-Term Electric Load
Forecasting Using Echo State Networks and PCA Decomposition. IEEE Access 3,
1931–1943. doi:10.1109/ACCESS.2015.2485943.

Bianchi, F.M., Scardapane, S., Løkse, S., Jenssen, R., 2018. Reservoir computing ap-
proaches for representation and classification of multivariate time series URL: http:
//arxiv.org/abs/1803.07870, arXiv:1803.07870.

Borovykh, A., Bohte, S., Oosterlee, C.W., 2017. Conditional time series forecasting
with convolutional neural networks, in: Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), pp. 729–730. URL: http://arxiv.org/abs/1703.04691, doi:10.
1007/978-3-319-68612-7, arXiv:1703.04691.

Boubrima, A., Bechkit, W., Rivano, H., Soulhac, L., 2018. Leveraging the potential of
WSN for an efficient correction of air pollution fine-grained simulations, in: Proceed-
ings - International Conference on Computer Communications and Networks, ICCCN,
Institute of Electrical and Electronics Engineers Inc. doi:10.1109/ICCCN.2018.
8487343.

99

https://www.tensorflow.org/
https://www.tensorflow.org/
http://dx.doi.org/10.1109/ICESS.2019.8782523
http://dx.doi.org/10.1109/ACCESS.2015.2485943
http://arxiv.org/abs/1803.07870
http://arxiv.org/abs/1803.07870
http://arxiv.org/abs/1803.07870
http://arxiv.org/abs/1703.04691
http://dx.doi.org/10.1007/978-3-319-68612-7
http://dx.doi.org/10.1007/978-3-319-68612-7
http://arxiv.org/abs/1703.04691
http://dx.doi.org/10.1109/ICCCN.2018.8487343
http://dx.doi.org/10.1109/ICCCN.2018.8487343

Chen, K., Chen, K., Wang, Q., He, Z., Hu, J., He, J., 2019. Short-Term Load Forecast-
ing with Deep Residual Networks. IEEE Transactions on Smart Grid 10, 3943–3952.
doi:10.1109/TSG.2018.2844307, arXiv:1805.11956.

Chollet, F., et al., 2015. Keras. https://keras.io.

Chouikhi, N., Ammar, B., Alimi, A.M., 2018. Genesis of Basic and Multi-Layer Echo
State Network Recurrent Autoencoders for Efficient Data Representations URL: http:
//arxiv.org/abs/1804.08996, arXiv:1804.08996.

Delaine, F., Lebental, B., Rivano, H., 2019. In Situ Calibration Algorithms
for Environmental Sensor Networks: a Review. IEEE Sensors Journal, Insti-
tute of Electrical and Electronics Engineers 19, 5968–5978. URL: https:
//hal.archives-ouvertes.fr/hal-02174938v2, doi:10.1109/JSEN.
2019.2910317.

Du, S., Li, T., Horng, S.J., 2018. Time Series Forecasting Using Sequence-to-Sequence
Deep Learning Framework, in: Proceedings - International Symposium on Parallel Ar-
chitectures, Algorithms and Programming, PAAP, IEEE Computer Society. pp. 171–
176. doi:10.1109/PAAP.2018.00037.

Esposito, E., De Vito, S., Salvato, M., Bright, V., Jones, R.L., Popoola, O., 2016. Dynamic
neural network architectures for on field stochastic calibration of indicative low cost air
quality sensing systems. Sensors and Actuators, B: Chemical 231, 701–713. doi:10.
1016/j.snb.2016.03.038.

Fang, X., Bate, I., 2017. Issues of using wireless sensor network to monitor urban air
quality, in: FAILSAFE 2017 - Proceedings of the 1st ACM International Workshop on
the Engineering of Reliable, Robust, and Secure Embedded Wireless Sensing Systems,
Part of SenSys 2017, Association for Computing Machinery, Inc. pp. 32–39. doi:10.
1145/3143337.3143339.

Gallicchio, C., Micheli, A., 2019. Deep Echo State Network (DeepESN): A Brief Survey
URL: http://arxiv.org/abs/1712.04323, arXiv:1712.04323.

Gasparin, A., Lukovic, S., Alippi, C., 2019. Deep Learning for Time Series Fore-
casting: The Electric Load Case URL: http://arxiv.org/abs/1907.09207,
arXiv:1907.09207.

Gautam, A., Singh, V., 2019. CLR-based deep convolutional spiking neural network with
validation based stopping for time series classification. Applied Intelligence doi:10.
1007/s10489-019-01552-y.

Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N., 2017. Convolutional
sequence to sequence learning, in: 34th International Conference on Machine Learn-
ing, ICML 2017, International Machine Learning Society (IMLS). pp. 2029–2042.
arXiv:1705.03122.

100

http://dx.doi.org/10.1109/TSG.2018.2844307
http://arxiv.org/abs/1805.11956
https://keras.io
http://arxiv.org/abs/1804.08996
http://arxiv.org/abs/1804.08996
http://arxiv.org/abs/1804.08996
https://hal.archives-ouvertes.fr/hal-02174938v2
https://hal.archives-ouvertes.fr/hal-02174938v2
http://dx.doi.org/10.1109/JSEN.2019.2910317\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {\OT1\i \global \mathchardef \accent@spacefactor \spacefactor }\accent 127 \OT1\i \egroup \spacefactor \accent@spacefactor
http://dx.doi.org/10.1109/JSEN.2019.2910317\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {\OT1\i \global \mathchardef \accent@spacefactor \spacefactor }\accent 127 \OT1\i \egroup \spacefactor \accent@spacefactor
http://dx.doi.org/10.1109/PAAP.2018.00037
http://dx.doi.org/10.1016/j.snb.2016.03.038
http://dx.doi.org/10.1016/j.snb.2016.03.038
http://dx.doi.org/10.1145/3143337.3143339
http://dx.doi.org/10.1145/3143337.3143339
http://arxiv.org/abs/1712.04323
http://arxiv.org/abs/1712.04323
http://arxiv.org/abs/1907.09207
http://arxiv.org/abs/1907.09207
http://dx.doi.org/10.1007/s10489-019-01552-y
http://dx.doi.org/10.1007/s10489-019-01552-y
http://arxiv.org/abs/1705.03122

Geng, Y., Luo, X., 2018. Cost-Sensitive Convolution based Neural Networks for Imbal-
anced Time-Series Classification URL: http://arxiv.org/abs/1801.04396,
arXiv:1801.04396.

Hong, J., Yoon, J., 2017. Multivariate time-series classification of sleep patterns using
a hybrid deep learning architecture, in: 2017 IEEE 19th International Conference on
e-Health Networking, Applications and Services, Healthcom 2017, Institute of Elec-
trical and Electronics Engineers Inc.. pp. 1–6. doi:10.1109/HealthCom.2017.
8210813.

Huang, S., Wang, D., Wu, X., Tang, A., 2019. DSANet: Dual Self-Attention Network for
Multivariate Time Series Forecasting, in: Proceedings of the 28th ACM International
Conference on Information and Knowledge Management - CIKM ’19, ACM Press. pp.
2129–2132. URL: http://dl.acm.org/citation.cfm?doid=3357384.
3358132, doi:10.1145/3357384.3358132.

Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.A., 2019. Deep learn-
ing for time series classification: a review. Data Mining and Knowledge Discovery 33,
917–963. doi:10.1007/s10618-019-00619-1, arXiv:1809.04356.

Karimi-Bidhendi, S., Munshi, F., Munshi, A., 2019. Scalable Classification of Univariate
and Multivariate Time Series, in: Proceedings - 2018 IEEE International Conference
on Big Data, Big Data 2018, Institute of Electrical and Electronics Engineers Inc.. pp.
1598–1605. doi:10.1109/BigData.2018.8621889.

Kong, W., Dong, Z.Y., Jia, Y., Hill, D.J., Xu, Y., Zhang, Y., 2019. Short-Term Residential
Load Forecasting Based on LSTM Recurrent Neural Network. IEEE Transactions on
Smart Grid 10, 841–851. doi:10.1109/TSG.2017.2753802.

Kumar, P., Morawska, L., Martani, C., Biskos, G., Neophytou, M., Di Sabatino, S., Bell,
M., Norford, L., Britter, R., 2015. The rise of low-cost sensing for managing air pollu-
tion in cities. doi:10.1016/j.envint.2014.11.019.

Kuo, P.H., Huang, C.J., 2018. A high precision artificial neural networks model for short-
Term energy load forecasting. Energies 11, 213. URL: http://www.mdpi.com/
1996-1073/11/1/213, doi:10.3390/en11010213.

Lai, G., Chang, W.C., Yang, Y., Liu, H., 2018. Modeling long- and short-term tempo-
ral patterns with deep neural networks, in: 41st International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, SIGIR 2018, Associa-
tion for Computing Machinery, Inc. pp. 95–104. doi:10.1145/3209978.3210006,
arXiv:1703.07015.

Li, S., Jin, X., Xuan, Y., Zhou, X., Chen, W., Wang, Y.X., Yan, X., 2019. Enhancing the
Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecast-
ing URL: http://arxiv.org/abs/1907.00235, arXiv:1907.00235.

Liu, C.L., Hsaio, W.H., Tu, Y.C., 2019. Time Series Classification with Multivariate
Convolutional Neural Network. IEEE Transactions on Industrial Electronics 66, 4788–
4797. doi:10.1109/TIE.2018.2864702.

101

http://arxiv.org/abs/1801.04396
http://arxiv.org/abs/1801.04396
http://dx.doi.org/10.1109/HealthCom.2017.8210813
http://dx.doi.org/10.1109/HealthCom.2017.8210813
http://dl.acm.org/citation.cfm?doid=3357384.3358132
http://dl.acm.org/citation.cfm?doid=3357384.3358132
http://dx.doi.org/10.1145/3357384.3358132
http://dx.doi.org/10.1007/s10618-019-00619-1
http://arxiv.org/abs/1809.04356
http://dx.doi.org/10.1109/BigData.2018.8621889
http://dx.doi.org/10.1109/TSG.2017.2753802
http://dx.doi.org/10.1016/j.envint.2014.11.019
http://www.mdpi.com/1996-1073/11/1/213
http://www.mdpi.com/1996-1073/11/1/213
http://dx.doi.org/10.3390/en11010213
http://dx.doi.org/10.1145/3209978.3210006
http://arxiv.org/abs/1703.07015
http://arxiv.org/abs/1907.00235
http://arxiv.org/abs/1907.00235
http://dx.doi.org/10.1109/TIE.2018.2864702

Ljunggren, E., 2019. Project report in TTM4502. Department of Computer Science,
NTNU – Norwegian University of Science and Technology.

Maag, B., Zhou, Z., Thiele, L., 2018. A Survey on Sensor Calibration in Air Pollution
Monitoring Deployments. IEEE Internet of Things Journal 5, 4857–4870. doi:10.
1109/JIOT.2018.2853660.

Moltchanov, S., Levy, I., Etzion, Y., Lerner, U., Broday, D.M., Fishbain, B., 2015. On the
feasibility of measuring urban air pollution by wireless distributed sensor networks. Sci-
ence of the Total Environment 502, 537–547. doi:10.1016/j.scitotenv.2014.
09.059.

O’Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., Invernizzi, L., et al., 2019. Keras
Tuner. https://github.com/keras-team/keras-tuner.

van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalch-
brenner, N., Senior, A., Kavukcuoglu, K., 2016. WaveNet: A Generative Model for Raw
Audio URL: http://arxiv.org/abs/1609.03499, arXiv:1609.03499.

Rajan, R.T., Schaijk, R.v., Das, A., Romme, J., Pasveer, F., 2018. Reference-Free Calibra-
tion in Sensor Networks. IEEE Sensors Letters 2, 1–4. doi:10.1109/lsens.2018.
2866627, arXiv:1805.11999.

Shih, S.Y., Sun, F.K., yi Lee, H., 2019. Temporal pattern attention for multivari-
ate time series forecasting. Machine Learning 108, 1421–1441. URL: http:
//arxiv.org/abs/1809.04206, doi:10.1007/s10994-019-05815-0,
arXiv:1809.04206.

Stanković, M.S., Stanković, S.S., Johansson, K.H., Beko, M., Camarinha-Matos, L.M.,
2018. On consensus-based distributed blind calibration of sensor networks. doi:10.
3390/s18114027.

Tian, C., Ma, J., Zhang, C., Zhan, P., 2018. A deep neural network model for short-
term load forecast based on long short-term memory network and convolutional neural
network. Energies 11, 3493. URL: http://www.mdpi.com/1996-1073/11/
12/3493, doi:10.3390/en11123493.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł.,
Polosukhin, I., 2017. Attention is all you need, in: Advances in Neural Information
Processing Systems, pp. 5999–6009. arXiv:1706.03762.

Wan, R., Mei, S., Wang, J., Liu, M., Yang, F., 2019. Multivariate temporal convolutional
network: A deep neural networks approach for multivariate time series forecasting.
Electronics (Switzerland) 8, 876. URL: https://www.mdpi.com/2079-9292/
8/8/876, doi:10.3390/electronics8080876.

Wang, Y., Liu, M., Bao, Z., Zhang, S., 2018. Short-term load forecasting with multi-source
data using gated recurrent unit neural networks. Energies 11, 1138. URL: http:
//www.mdpi.com/1996-1073/11/5/1138, doi:10.3390/en11051138.

102

http://dx.doi.org/10.1109/JIOT.2018.2853660
http://dx.doi.org/10.1109/JIOT.2018.2853660
http://dx.doi.org/10.1016/j.scitotenv.2014.09.059
http://dx.doi.org/10.1016/j.scitotenv.2014.09.059
https://github.com/keras-team/keras-tuner
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499
http://dx.doi.org/10.1109/lsens.2018.2866627
http://dx.doi.org/10.1109/lsens.2018.2866627
http://arxiv.org/abs/1805.11999
http://arxiv.org/abs/1809.04206
http://arxiv.org/abs/1809.04206
http://dx.doi.org/10.1007/s10994-019-05815-0
http://arxiv.org/abs/1809.04206
http://dx.doi.org/10.3390/s18114027
http://dx.doi.org/10.3390/s18114027
http://www.mdpi.com/1996-1073/11/12/3493
http://www.mdpi.com/1996-1073/11/12/3493
http://dx.doi.org/10.3390/en11123493
http://arxiv.org/abs/1706.03762
https://www.mdpi.com/2079-9292/8/8/876
https://www.mdpi.com/2079-9292/8/8/876
http://dx.doi.org/10.3390/electronics8080876
http://www.mdpi.com/1996-1073/11/5/1138
http://www.mdpi.com/1996-1073/11/5/1138
http://dx.doi.org/10.3390/en11051138

Wang, Y., Yang, A., Chen, X., Wang, P., Wang, Y., Yang, H., 2017. A Deep Learning
Approach for Blind Drift Calibration of Sensor Networks. IEEE Sensors Journal 17,
4158–4171. doi:10.1109/JSEN.2017.2703885.

Wilms, H., Cupelli, M., Monti, A., 2018. Combining auto-regression with exogenous
variables in sequence-to-sequence recurrent neural networks for short-term load fore-
casting, in: Proceedings - IEEE 16th International Conference on Industrial Informat-
ics, INDIN 2018, Institute of Electrical and Electronics Engineers Inc.. pp. 673–679.
doi:10.1109/INDIN.2018.8471953.

Yamamoto, K., Togami, T., Yamaguchi, N., Ninomiya, S., 2017. Machine learning-
based calibration of low-cost air temperature sensors using environmental data. Sen-
sors (Switzerland) 17, 1290. URL: http://www.mdpi.com/1424-8220/17/
6/1290, doi:10.3390/s17061290.

Yang, A., Wang, P., Yang, H., 2018a. Blind Drift Calibration of Sensor Networks Using
Multi-Output Gaussian Process, in: Proceedings of IEEE Sensors, Institute of Electrical
and Electronics Engineers Inc. doi:10.1109/ICSENS.2018.8589548.

Yang, J., Zhong, X., Tay, W.P., 2018b. A Dynamic Bayesian Nonparametric Model for
Blind Calibration of Sensor Networks. IEEE Internet of Things Journal 5, 3942–3953.
doi:10.1109/JIOT.2018.2847697.

Yi, X., Zhang, J., Wang, Z., Li, T., Zheng, Y., 2018. Deep distributed fusion network for air
quality prediction, in: Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, Association for Computing Machinery, New
York, NY, USA. p. 965–973. URL: https://doi.org/10.1145/3219819.
3219822, doi:10.1145/3219819.3219822.

Zimmerman, N., Presto, A.A., Kumar, S.P., Gu, J., Hauryliuk, A., Robinson, E.S., Robin-
son, A.L., Subramanian, R., 2018. A machine learning calibration model using random
forests to improve sensor performance for lower-cost air quality monitoring. Atmo-
spheric Measurement Techniques 11, 291–313. doi:10.5194/amt-11-291-2018.

103

http://dx.doi.org/10.1109/JSEN.2017.2703885
http://dx.doi.org/10.1109/INDIN.2018.8471953
http://www.mdpi.com/1424-8220/17/6/1290
http://www.mdpi.com/1424-8220/17/6/1290
http://dx.doi.org/10.3390/s17061290
http://dx.doi.org/10.1109/ICSENS.2018.8589548
http://dx.doi.org/10.1109/JIOT.2018.2847697
https://doi.org/10.1145/3219819.3219822
https://doi.org/10.1145/3219819.3219822
http://dx.doi.org/10.1145/3219819.3219822
http://dx.doi.org/10.5194/amt-11-291-2018

104

Appendix

A.1 Training curves showing convergence of models

(a) training curve, MSE, ResTDCN1D (b) training curve, MSE, ResTDCN2D

(c) training curve, MSE, LSTMwA (d) Training curve, MSE, extended baseline

Figure A.1: The training curves for the HPT test experiment.

105

(a) training curve, MSE, ResTDCN1D (b) training curve, MSE, ResTDCN2D

(c) training curve, MSE, LSTMwA (d) Training curve, MSE, extended baseline

Figure A.2: The training curves for the far future experiment.

(a) training curve, MSE, ResTDCN1D (b) training curve, MSE, ResTDCN2D

(c) training curve, MSE, LSTMwA (d) Training curve, MSE, extended baseline

Figure A.3: The training curves for the drifts experiment.

106

A.2 Locally Optimal HPs Used In Thesis

hyperparameter value
projection kernel 7
projection space 51
projection bias False

projection activation tanh
number of residual blocks 5

recovery filters 60

*recovery bias

L1 False
L2 False
L3 True
L4 False
L5 True

*recovery kernel

L1 7
L2 5
L3 3
L4 3
L5 7

*recovery activation

L1 tanh
L2 tanh
L3 SeLU
L4 tanh
L5 ReLU

*batch normalization

L1 False
L2 True
L3 True
L4 True
L5 True

Table A.1: Best performing hyperparameter combination for the basic baseline model. * parameter
is tuned separately for each residual block.

107

hyperparameter values
projection kernel 3
projection space 107
projection bias False

projection activation tanh
number of residual blocks 4

recovery filters 17

*recovery kernel

L1 9
L2 7
L3 3
L4 7

*recovery activation

L1 SeLU
L2 SeLU
L3 ReLU
L4 SeLU

*recovery bias

L1 True
L2 True
L3 True
L4 True

*recovery dropout

L1 0.0
L2 0.1
L3 0.4
L4 0.1

*batch normalization

L1 False
L2 False
L3 True
L4 False

Table A.2: Best performing hyperparameter combination for the extended baseline model. * param-
eter is tuned separately for each residual block.

108

hyperparameter values
Number of

Residual Blocks 7

dilation start 3
dilation exponent 2

block output filters 64

*Convolutional
Operations

L0 4
L1 3
L2 3
L3 4
L4 3
L5 5
L6 2
L7 5

*internal filters

L0 64
L1 64
L2 32
L3 8
L4 8
L5 64
L6 32
L7 16

*kernel

L0 2
L1 2
L2 3
L3 3
L4 2
L5 4
L6 2
L7 3

*bias

L0 False
L1 True
L2 False
L3 True
L4 False
L5 True
L6 True
L7 True

hyperparameter values

*activation

L0 ReLU
L1 SeLU
L2 ReLU
L3 ReLU
L4 tanh
L5 ReLU
L6 ReLU
L7 tanh

*Batch
Normalization

L0 False
L1 True
L2 False
L3 False
L4 False
L5 False
L6 True
L7 True

*dropout rate

L0 0.0
L1 0.3
L2 0.0
L3 0.3
L4 0.0
L5 0.2
L6 0.1
L7 0.2

final kernel 4
final dilation 24

final activation linear
final bias True

Table A.3: Best performing hyperparameter combination for the ResTDCN1D model. L0 is the
hyperaparameters for the two residual blocks used * parameter is tuned separately for each residual
block.

109

hyperparameter values
projection dimensions 29

number of
residual blocks 6

dilation start 0
dilation exponent 2

block output filters 16

*convolutional
operations

L1 1
L2 3
L3 1
L4 2
L5 1
L6 1

*internal filters

L1 16
L2 32
L3 16
L4 48
L5 32
L6 48

*temporal kernel

L1 4
L2 2
L3 2
L4 4
L5 2
L6 2

*variable kernel

L1 3
L2 5
L3 5
L4 7
L5 3
L6 3

hyperparameter values

*activation

L1 SeLU
L2 ReLU
L3 ReLU
L4 sigmoid
L5 sigmoid
L6 ReLU

*bias

L1 False
L2 True
L3 False
L4 True
L5 True
L6 True

*batch
normalization

L1 True
L2 False
L3 True
L4 True
L5 False
L6 True

*dropout rate

L1 0.1
L2 0.1
L3 0.3
L4 0.4
L5 0.4
L6 0.2

final temporal kernel 3
final dilation 24

final activation tanh
final bias False

Table A.4: Best performing hyperparameter combination for the ResTDCN2D model. * parameter
is tuned separately for each residual block.

110

hyperparameter values
LSTM blocks 1

*LSTM activation tanh
*LSTM recurrent activation sigmoid

*LSTM units 64
*LSTM recurrent dropout 0

*LSTM dropout 0
*LSTM bias True

attention filters 16
attention conv activation ReLU

attention weight activation softmax
attention distance training sample length

gradient clip max norm 0.9

Table A.5: Best performing hyperparameter combination for the LSTMwA model. HPs for the
LSTM layers are fixed to use performance optimization in tensorflow. * parameter is tuned sepa-
rately for each residual block.

111

A.3 More scatter-plots showing behaviour of models

A.3.1 HPT test

(a) ResTDCN1D (b) ResTDCN2D (c) LSTMwA (d) baseline extd.

Figure A.4: Scatterplots of true values compared to predicted values for PM2.5 in the HPT test
experiment.

(a) ResTDCN1D (b) ResTDCN2D (c) LSTMwA (d) baseline extd.

Figure A.5: Scatterplots of true values compared to predicted values for PM10 in the HPT test
experiment.

(a) ResTDCN1D (b) ResTDCN2D (c) LSTMwA (d) baseline extd.

Figure A.6: Scatterplots of prediction errors for PM2.5 compared to prediction errors for PM10 in
the HPT test experiment.

112

(a) ResTDCN1D (b) ResTDCN2D (c) LSTMwA (d) baseline extd.

Figure A.7: Scatterplots of prediction error compared to real undrifted values for PM2.5 in the HPT
test experiment.

(a) ResTDCN1D (b) ResTDCN2D (c) LSTMwA (d) baseline extd.

Figure A.8: Scatterplots of prediction error compared to real undrifted values for PM10 in the HPT
test experiment.

(a) ResTDCN1D (b) ResTDCN2D (c) LSTMwA (d) baseline extd.

Figure A.9: Scatterplots of prediction error compared to the change in real undrifted values for
PM2.5 in the HPT test experiment.

(a) ResTDCN1D (b) ResTDCN2D (c) LSTMwA (d) baseline extd.

Figure A.10: Scatterplots of prediction error compared to the change in real undrifted values for
PM10 in the HPT test experiment.

113

A.3.2 Far Future

(a) ResTDCN1D (b) ResTDCN2D (c) LSTMwA (d) baseline extd.

Figure A.11: Scatterplots of true values compared to predicted values for PM2.5 in the far future test
experiment.

(a) ResTDCN1D (b) ResTDCN2D (c) LSTMwA (d) baseline extd.

Figure A.12: Scatterplots of true values compared to predicted values for PM10 in the far future test
experiment.

(a) ResTDCN1D (b) ResTDCN2D (c) LSTMwA (d) baseline extd.

Figure A.13: Scatterplots of prediction errors for PM2.5 compared to prediction errors for PM10 in
the far future test experiment.

114

(a) ResTDCN1D (b) ResTDCN2D (c) LSTMwA (d) baseline extd.

Figure A.14: Scatterplots of prediction error compared to real undrifted values for PM2.5 in the far
future test experiment.

(a) ResTDCN1D (b) ResTDCN2D (c) LSTMwA (d) baseline extd.

Figure A.15: Scatterplots of prediction error compared to real undrifted values for PM10 in the far
future test experiment.

(a) ResTDCN1D (b) ResTDCN2D (c) LSTMwA (d) baseline extd.

Figure A.16: Scatterplots of prediction error compared to the change in real undrifted values for
PM2.5 in the far future test experiment.

(a) ResTDCN1D (b) ResTDCN2D (c) LSTMwA (d) baseline extd.

Figure A.17: Scatterplots of prediction error compared to the change in real undrifted values for
PM10 in the far future test experiment.

115

A.3.3 Drifts

(a) ResTDCN1D (b) ResTDCN2D (c) LSTMwA (d) baseline extd.

Figure A.18: Scatterplots of true values compared to predicted values for PM2.5 in the drifts experi-
ment.

(a) ResTDCN1D (b) ResTDCN2D (c) LSTMwA (d) baseline extd.

Figure A.19: Scatterplots of true values compared to predicted values for PM10 in the drifts experi-
ment.

(a) ResTDCN1D (b) ResTDCN2D (c) LSTMwA (d) baseline extd.

Figure A.20: Scatterplots of prediction errors for PM2.5 compared to prediction errors for PM10 in
the drifts experiment.

116

(a) ResTDCN1D (b) ResTDCN2D (c) LSTMwA (d) baseline extd.

Figure A.21: Scatterplots of prediction error compared to real undrifted values for PM2.5 in the
drifts experiment.

(a) ResTDCN1D (b) ResTDCN2D (c) LSTMwA (d) baseline extd.

Figure A.22: Scatterplots of prediction error compared to real undrifted values for PM10 in the drifts
experiment.

(a) ResTDCN1D (b) ResTDCN2D (c) LSTMwA (d) baseline extd.

Figure A.23: Scatterplots of prediction error compared to the change in real undrifted values for
PM2.5 in the drifts experiment.

(a) ResTDCN1D (b) ResTDCN2D (c) LSTMwA (d) baseline extd.

Figure A.24: Scatterplots of prediction error compared to the change in real undrifted values for
PM10 in the drifts experiment.

117

A.4 Comparing The Two Possible Baselines
This section will present the results for the two baselines. The results from the extended
baselines are the repeated plots from previous sections, but included for easier comparison.

The score metric from the three experiments obtained by the two baselines is shown
in table A.6. It show that the basic baseline outperforms our extended on for the two last
experiments, but not better scores than any new models designed for this thesis.

The scatteplots in figure A.25 show the true drift and the predicted drift values for
all experiments on these two models, showing that the basic baseline do obtain a better
calibration method compared to the extended baseline. The diagonals obtained for the
HPT test and far future experiments are still very noisy, so no stable calibration scheme
was obtained even if it is better than the baseline. The errors against drift shown in figure
A.26 show that both baselines do not manage to calibrate higher drift values, as the error
is heavily dependent on that value.

To finalize the comparison between baselines, we see in the plots in figure A.27 that
the basic baseline always follows the drifted values closely, but that the extended baseline
manages to calibrate the drifted values in the HPT test experiment and following drifted
values on the other two experiments. The basic baseline could then be concluded to learn
nothing of real use, while the extended model learn features with some use, as is manages
to calibrate in the HPT test experiment.

Architecture HPT test Far future Drifts
MSE R2 max ∆ MSE R2 max ∆ MSE R2 max ∆

extd. baseline 0.0181 −34.5 0.512 0.0203 −36.8 0.612 0.0153 −32.3 0.491
basic baseline 0.0189 −36.1 0.519 0.0121 −21.3 0.530 0.0119 −24.5 0.609

Table A.6: Metrics scoring the three experiments obtained by the two baseline models.

118

(a) basic baseline on HPT test (b) basic baseline on far future (c) basic baseline on drifts

(d) baseline extd. on HPT test (e) baseline extd. on far future (f) baseline extd. drifts

Figure A.25: Scatterplots of the drift and predicted drift for PM2.5 by the baseline models on all
experiments.

(a) basic baseline on HPT test (b) basic baseline on far future (c) basic baseline on drifts

(d) baseline extd. on HPT test (e) baseline extd. on far future (f) baseline extd. drifts

Figure A.26: Scatterplots of error against drift of PM2.5 values for the baseline models on all exper-
iments.

119

basic baseline extended baseline

(a) HPT test, sensor:10

basic baseline extended baseline

(b) far future, sensor:10

basic baseline extended baseline

(c) drifts, sensor:10

Figure A.27: Lineplots showing the drifted, calibrated, and true measurements for PM2.5 bu the
baseline models on all experiments.

120

Ljunggren, Erling
D

eep Learning for Blind Calibration of W
ireless Sensor N

etw
orks

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Ljunggren, Erling

Deep Learning for Blind Calibration of
Wireless Sensor Networks

A comparative study of convolutional and recurrent
neural networks

Master’s thesis in computer science

Supervisor: Kerstin Bach (IDI) and Sigmund Akselsen (Telenor

Research)

June 2020

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Notation
	Introduction
	Motivation
	Goals
	Thesis Outline
	Disclaimer Regarding Preliminary Work

	Background and Theory
	Measuring Air Quality
	Pollution in Technicality
	Sensors
	Wireless Sensor Networks
	Drift and Calibration

	Time Series Analysis
	Time Series Data
	Time Series Forecasting and Classification
	Calibration as a TS Problem

	Deep Learning
	Artificial Neural Networks
	Convolutional Neural Networks
	Recurrent Networks
	Temporal Convolution
	Attention

	Literature Review
	Background
	Search Setup
	Finding Relevant Papers
	Guidelines
	Aggregated Results

	Quality Assessment
	Criteria
	Results

	Related Work
	Calibration and WSN
	CNN
	RNN
	Other Methods

	Key Findings for WSN Calibration

	Data
	Sensor Data
	Sensors Used
	Data-Stream

	Analysis of Sensor Data
	Analysis of Statistical Variables
	Measurement Analysis
	Error Analysis
	Key Characteristics of Sensor Data

	Data Simulation
	Background
	Locations
	Source Emissions
	Meteorological Variables
	Sensor Measurements
	Sensor Drift

	Data Preparation

	Model Architectures
	Baselines
	Basic Baseline Architecture
	Extended Baseline Architecture
	Reasons for Architectural Decisions
	Pre-experiment Analysis

	Convolutional Model in One Dimension
	Architecture Overview
	Reasons for Architectural Decisions
	Pre-experiment Analysis

	Convolutional Model in Two Dimensions
	Architecture Overview
	Reasons for Architectural Decisions
	Pre-experiment Analysis

	Stacked LSTM with Attention
	Architecture Overview
	Reasons for Architectural Decisions
	Pre-experiment Analysis

	Discussing Core Modules

	Experiments
	Overview of Experiments
	Hyperparameter Tuning
	Standard Test-Case
	Generalization To Far Future
	Generalization Through Drifts
	Hardware and Software

	Results
	Key Results
	Hyperparameters
	HPT test
	Distant Generalization
	Generalization Through Drifts

	Discussion
	Interpreting Results
	Overall Performance
	Comparing The Convolutional Models
	Exploding Gradients For LSTMwA
	Error over Time
	Ideal Model Size

	Adressing Research Questions
	Goal 1: SotA in DL relevant for WSN calibration
	Goal 2: Synthetic data
	Goal 3: Choosing the most promising architecture

	Validity
	Simulation Gap
	Experiment Specifics
	Comparison to Related Work

	Applicability

	Conclusion and Future Work
	Summary
	Contributions
	Future Work

	Bibliography
	Appendix
	Training curves showing convergence of models
	Locally Optimal HPs Used In Thesis
	More scatter-plots showing behaviour of models
	HPT test
	Far Future
	Drifts

	Comparing The Two Possible Baselines

