
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Erlend Åmdal

Top-k Spatial Join on GPU

Master’s thesis in Computer Science

Supervisor: Kjetil Nørvåg

June 2020

Erlend Åmdal

Top-k Spatial Join on GPU

Master’s thesis in Computer Science
Supervisor: Kjetil Nørvåg
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Problem description

In this project, the aim is to study top-k spatial join and how to execute
this query efficiently on GPUs.

Supervisor: Kjetil Nørvåg

Abstract

Given two sets of spatial objects where each object is assigned a score, a spatial
join predicate (such as a point distance threshold), and an aggregate function that
combines scores for pairs of objects (such as a weighted sum), the top-k spatial join
query joins the sets by the spatial join predicate and returns the k pairs with the
best scores. Spatial data sets can be complex and large, requiring the use of spatial
indexing data structures such as the R-tree to accelerate spatial queries and spatial
joins. A number of top-k spatial join algorithms based on R-trees exist, but they
are sequential algorithms whose performance is limited by the use of a single thread.
To accelerate top-k spatial joins further, parallel algorithms could be applied, but
research on this particular subject is limited.

Graphics processors are becoming commodity hardware, and their massively par-
allel processing capabilities can be used to achieve high performance. APIs such as
CUDA have enabled the trend of general-purpose computing on graphics processors
(GPGPU), which has become a popular way to accelerate applications in certain do-
mains. Special application design is required to efficiently utilize graphics hardware,
which requires new research to adapt to this new computing paradigm. Research
shows that parallel spatial queries and spatial joins on R-trees can be sped up sig-
nificantly with GPGPU, but little research has been made into processing top-k
spatial joins and top-k queries in general with GPGPU.

In this thesis, the primary goal has been to determine how to perform top-
k spatial joins using GPGPU and determine if or how it can be used to achieve
speedups. A secondary goal applies similarly to parallel top-k spatial joins using
multi-threading. To achieve this, we researched GPGPU, the R-tree and related
algorithms, ranked joins, sorting algorithms and heaps and developed a single-
threaded, a multi-threaded and a CUDA implementation of the Block-based Al-
gorithm, and finally performed an experimental evaluation. The experimental eval-
uation shows that top-k spatial joins can be performed efficiently using GPGPU, but
the implementation only achieves significant speedups for particularly large inputs
and small outputs. Multi-threaded top-k spatial joins is a more viable alternative in
general, where the multi-threaded implementation outperforms the single-threaded
implementation in all experiments except for the ones with the smallest inputs.

Sammendrag

Gitt to sett med romlige objekter der hvert objekt har en rangering, et romlig
sammenslåingspredikat (f.eks. en punktdistanse-begrensning), og en summerings-
funksjon som sammenslår rangeringen til et par av objekter (f.eks. en vektet sum),
slår top-k spatial join-operasjonen sammen settene med det romlige sammenslåings-
predikatet og returnerer de k parene som har best sammenslått rangering. Romlige
datasett kan være komplekse og store, som gjør det nødvendig å benytte datastruk-
turer for romlig indeksering slik som R-treet for å øke ytelsen på spatial join og
romlige spørringer. Det finnes algoritmer for top-k spatial join basert på R-trær,
men de er sekvensielle algoritmer med begrenset ytelse grunnet bruk av kun én tråd.
For å øke ytelsen på top-k spatial join videre kan parallelle algoritmer anvendes, men
forskning på dette området er begrenset.

Grafikkprosessorer er i ferd med å bli prisgunstig og utbredt maskinvare, og deres
evne for massivt parallell prosessering kan benyttes for å oppnå høy ytelse. APIer
som CUDA har muliggjort trenden “general-purpose computing on graphics pro-
cessors” (GPGPU), som har blitt en populær måte å øke ytelsen til applikasjoner
i visse felt. Det kreves spesiell design for å effektivt anvende grafikkprosessorer,
derfor kreves det ny forskning for å tilpassse metoder til det nye databehandlings-
paradigmet. Forskning viser at ytelsen for parallelle romlige spørringer på R-trær
kan økes med GPGPU, men det finnes lite forskning på prosessering av spatial joins
og top-k-spørringer generelt med GPGPU.

I denne oppgaven har hovedmålet vært å fastslå hvordan GPGPU kan anvendes
for top-k spatial join-spørringer og hvorvidt/hvordan dette kan oppnå økt ytelse.
Et sekundærmål angår det samme men ved bruk av flere tråder. For å fastsette
dette har vi undersøkt GPGPU, R-treet og relaterte algoritmer, ranked joins, sor-
teringsalgoritmer og heaps og utviklet en enkelttråds-versjon, en flertråds-versjon og
en CUDA-versjon av den Blokkbaserte Algoritmen, og konkludert med en eksperi-
mentell evaluering. Evalueringen viser at GPGPU kan effektivt anvendes for top-k
spatial joins, men vår implementasjon oppnår kun betydelig økt ytelse for særlig
store inndata med få returverdier. Generelt er bruk av flere tråder et mer effektivt
alternativ, da flertråds-versjonen har bedre ytelse enn enkelttråds-versjonen i alle
eksperimenter utenom de med de minste inndataene.

Acknowledgements

I wish to thank my supervisor Kjetil Nørvåg for this project proposition and for
invaluable assistance in the writing of this thesis and the preceding project.

Contents

1 Introduction 1
1.1 Related Work . 3

2 GPGPU 5
2.1 GPU architecture . 5

2.1.1 SIMT architecture . 6
2.1.2 Memory . 7

2.2 CUDA . 8
2.2.1 Execution model . 8
2.2.2 Memory hierarchy . 9
2.2.3 Performance optimization . 10

3 Spatial indexing 12
3.1 Concepts . 12
3.2 Spatial join queries . 13
3.3 R-trees . 13

3.3.1 Range search using R-trees . 15
3.3.2 Spatial join using R-trees . 15
3.3.3 R-tree search methods . 18
3.3.4 Memory layout . 20
3.3.5 Bulk loading . 21

4 Ranked queries 22
4.1 Concepts . 22
4.2 Top-k joins . 23

4.2.1 Pull/Bound Rank Join . 24
4.2.2 Parallelizing top-k joins . 25

4.3 Ranked spatial queries . 27
4.3.1 aR-trees . 27
4.3.2 Ranked range queries on aR-trees 28

4.4 Top-k spatial joins . 28
4.4.1 Score-First Algorithm . 29
4.4.2 Ranked spatial join on MAX aR-trees 30
4.4.3 Distance-First Algorithm . 30
4.4.4 Block-based Algorithm . 31
4.4.5 Parallelizing top-k spatial joins 31

i

5 Sorting on CPU/GPU 33
5.1 Sorting algorithms . 33

5.1.1 Quicksort . 33
5.1.2 Radix sort . 34
5.1.3 Bitonic merge sort . 35
5.1.4 Potential optimizations . 35

5.2 Heaps . 37
5.2.1 Parallel heap . 37
5.2.2 Top-k accumulator min-heaps 39

6 Implementation 40
6.1 Linearized aR-tree . 41

6.1.1 Computing R-tree layouts . 42
6.2 Block sorting . 44
6.3 aR-tree bulk loading . 45

6.3.1 Spatial partitioning . 45
6.3.2 Parent creation . 47
6.3.3 Sort-Tile-Recursive . 48

6.4 Ranked aR-tree join . 50
6.4.1 Single-threaded implementation 51
6.4.2 Multi-threaded implementation 51
6.4.3 CUDA implementation . 51

6.5 Block-based Algorithm . 54
6.5.1 Single-threaded implementation 56
6.5.2 Multi-threaded implementation 56
6.5.3 CUDA implementation . 58

7 Experimental evaluation 61
7.1 Setup . 61
7.2 Methodology . 61
7.3 Results . 63

7.3.1 Effect of input size skew . 64
7.3.2 Effect of thread count . 65
7.3.3 Effect of block parallelism . 66

8 Conclusions and future work 68
8.1 Conclusions . 68
8.2 Future work . 69

ii

List of Figures

2.1 Simplified overview of GPU architecture 6

3.1 R-tree . 14

4.1 MAX aR-tree . 28

6.1 R-tree memory layout with r = 3 . 41
6.2 Tile partitioning . 46
6.3 Block-based Algorithm block selection 56
6.4 Block-based Algorithm multiple block selection 59

7.1 Run times of BA for large inputs . 63
7.2 Run times of BA for small inputs . 64
7.3 Run times of multi-threaded implementation for L1xR1, Q1 by thread

count . 66
7.4 Run times of CUDA implementation for L1xR1, Q1 by block parallelism 67

iii

List of Algorithms

3.1 R-tree Range Search . 16
3.2 R-tree Spatial Intersection Join . 17
3.3 DFS Tree Search Iterator . 18
6.1 Layout Algorithm . 43
6.2 Tile Partition Algorithm . 46
6.3 Create Parents Algorithm . 47
6.4 Sort-Tile-Recursive . 49
6.5 Ranked aR-tree Join . 52
6.6 Block-based Algorithm . 55

iv

Chapter 1

Introduction

In many applications with spatial objects, objects have both spatial attributes and
non-spatial attributes. As an example, an application such as Google Maps provides
points of interest and businesses, primarily with their geographic location, but also
with reviews, user ratings and various other metadata. Spatial objects are also
recorded in scientific fields such as atmospheric, oceanographic and environmental
sciences with measurements of several attributes such as temperature, pressure and
seismic activity.

A spatial join retrieves pairs of spatial objects from two different data sets sat-
isfying a spatial predicate, such as a spatial query to retrieve all intersecting pairs
of objects or all pairs of objects within a certain distance from each other. As an
example, for an overnight visit in Oslo with dinner, we are given a set of all res-
taurants and a set of all hotels in Oslo, and would like to find pairs of highly rated
restaurants and hotels that are within 1000 meters from each other. The amount
of restaurants and hotels in close proximity to each other will result in too many
pairs to reasonably assess, so a reasonable solution is to limit our search to find only
the most highly rated pairs. We can express this as a top-k query, where we would
like to find the 10 pairs of restaurants and hotels with the best sum of ratings.
Highly rated locations can easily be found by sorting, as can highly rated pairs,
but the most highly rated locations are not necessarily found in close proximity to
each other. We can also find many pairs of locations that are close to each other
using spatial indexing methods, but we may not find the pairs with the best ratings
quickly. An efficient solution must be able to use both their locations and their
ratings to answer the query.

A spatial join can be an expensive operation because spatial datasets can be
complex and large. To increase the performance of spatial queries, spatial indexing
data structures such as R-trees are therefore used, which can be used to perform
efficient spatial joins. R-tree spatial joins can even be augmented with general
methods from ranked joins to efficiently answer top-k queries with only partially
evaluated spatial joins, which reduces the amount of processing required to compute
the answer.

With hardware trends such as reduced I/O costs, increasing memory sizes and
multicore processors and graphics processors becoming commodity hardware, innov-
ation is required to properly utilize the hardware that has become available. One
way to increase performance is with parallel algorithms, which is enabled by mul-
ticore processors, distributed computing and graphics processors. However, existing

1

CHAPTER 1. INTRODUCTION

sequential algorithms often require careful redesign to exploit parallelism, or entirely
new parallel algorithms must be created. A number of new design considerations
appear when adapting methods for multiple threads, and especially for graphics
processors.

The trend of General Purpose computing on Graphics processors (GPGPU) is en-
abled by programmable graphics processors using APIs such as CUDA and OpenCL.
GPGPU presents an opportunity to achieve massively parallel computation, but not
without its limitations. Not all applications can truly be adapted for GPGPU. The
architecture of GPUs and CPUs are dissimilar in ways that requires applications
to be specially designed to be able to fully utilize the resources of a GPU. The use
of GPGPU in certain database operators has been studied and have in some cases
been shown to have speedups compared to CPU for operations such as relational
joins [9] and spatial joins [20].

Top-k queries, top-k joins and spatial joins have been extensively studied, but
joins considering both spatial and score attributes at the same time have received
limited attention [17]. There are proven methods for processing top-k spatial joins,
but it is believed that they can be made more efficient. One direction for research is
evaluating the existing methods for parallel processing using multi-core processors
or GPGPU.

In this thesis, the primary goal is to determine how to perform top-k spatial
joins using GPGPU and determine if or how it can be used to achieve speedups. A
secondary goal applies similarly to parallel top-k spatial joins using multi-threading.
This thesis is a continuation of a project that researched and laid the groundwork
for a CUDA implementation of the Block-based Algorithm for top-k spatial joins
[1]. To continue the work, we have developed a limited but working CUDA imple-
mentation of the Block-based Algorithm. Going beyond the scope of the previous
project, further research has been done to develop a multi-threaded implementation
and a single-threaded implementation of the Block-based Algorithm using many of
the same concepts and methods. This allows us to compare both the CUDA im-
plementation and the multi-threaded implementation with their alternatives in an
experimental evaluation.

The second chapter covers General-purpose computing on graphics processors
(GPGPU). This includes important aspects of GPU architecture that affect the
design of GPGPU applications as well as the CUDA programming model. The third
chapter covers spatial indexing concepts and methods, which relates to queries about
the location, size and shape of objects in space. The R-tree is the main data structure
used in this thesis, thus a number of techniques for performing spatial queries and
joins using R-trees are described. The fourth chapter covers ranked query concepts
and methods. Methods for top-k queries, top-k joins as well as top-k spatial queries
are described. The fifth chapter describes algorithms and data structures for sorting
data that are useful for top-k queries, and highlights the different methods used on
CPU and GPU. Some potential optimizations are also identified in this chapter. The
sixth chapter describes single-threaded, multi-threaded and CUDA implementations
of the Block-based Algorithm for top-k spatial joins. The seventh chapter contains
an experimental evaluation and comparison of all the implementations. Finally, a
conclusion and further work is outlined in the final chapter.

2

CHAPTER 1. INTRODUCTION 1.1. RELATED WORK

1.1 Related Work

Brinkhoff et al. [5] described a method to to perform spatial intersection joins by
performing a concurrent descent down two R-trees. The basic principle is that if
two entries of different R-trees intersect, the nodes containing each entry must also
intersect. Therefore, the algorithm recursively descends down each intersecting pair
of nodes, starting at the roots until it reaches the leaves.

The work of Qi et al. [17] forms the algorithmic basis of this work. Their contribu-
tions are three algorithms for top-k spatial joins called the Distance-First Algorithm
(DFA), the Score-First Algorithm (SFA) and the Block-based Algorithm (BA). Each
algorithm focuses differently on the score attributes and spatial attributes of the in-
put objects. The DFA and BA use a ranked version of the R-tree spatial intersection
join. SFA and BA borrow aspects of previous implementations of top-k queries and
top-k joins by reading input items in descending order of rank. BA is found perform
best in general. The algorithms are not explicitly designed to be multithreaded, nor
is the use of GPUs to implement the algorithms considered.

You et al. [21] and Luo et al. [14] achieved significant speedups for parallel
evaluation of multiple spatial queries on R-trees on GPUs. Their works describe
two alternative solutions for memory representation of R-trees and bulk loading of
R-trees on the GPU. [21] describes the linearized R-tree layout, which represents the
R-tree as a single compact array of nodes that can easily be streamed between CPU
and GPU, and uses an algorithm called Sort-Tile-Recursive to bulk load R-trees
by using parallel sorting and reduction primitives implemented on the GPU. [14]
describes a similar layout based on two arrays, one containing the MBBs and the
other containing node references as well as data entries, which is bulk loaded using a
much cheaper algorithm. The experiments performed by You et al. suggest that their
more expensive bulk loading algorithms produces R-trees with better parallel query
performance. In their experiments, they perform spatial queries in parallel using
basic graph traversal methods and find that their implementation of breadth-first
search generally outperforms depth-first search on a GPU. They suggest a number
of strategies for dealing with the limited capacity of shared memory for queues in
breadth-first search.

Yampaka & Chongstitvatana [20] describe methods to perform spatial join op-
erations on R-trees on a GPU. While their methods are somewhat unclear, they
demonstrate a clear possibility of parallelization of the R-tree join using concurrent
tree traversal as described by Brinkhoff el al. Given two R-tree nodes to be joined,
the GPU can efficiently assign one lightweight thread to each pair of R-tree node
records to parallelize the evaluation of the spatial predicate for each pair of R-tree
node records.

Bouros et al. [4] review research and recent trends in the evaluation of spatial
intersection joins and suggest future directions for research. Many techniques were
designed for disk resident data, but the recent trend of memories becoming much lar-
ger allows more of the data to reside in memory, which calls for techniques designed
for in-memory processing. Another trend is the use of distributed and parallel pro-
cessing, where methods to process spatial joins using the MapReduce paradigm are
reviewed. They suggest that one direction for future research should be “scaling up”
into shared-memory multi-core systems or using GPUs instead of “scaling out” into
distributed systems because common datasets can fit in the memory of commodity

3

1.1. RELATED WORK CHAPTER 1. INTRODUCTION

machines. They also suggest that extended join operations require more research,
which are spatial join operations which deal with more than spatial attributes. One
such extended join operation would be the top-k spatial join.

4

Chapter 2

GPGPU

General-purpose computing on graphics processors (GPGPU) describes the use of a
graphics processing unit (GPU) to perform computation that would traditionally be
performed on the central processing unit (CPU). The majority of GPUs today are
programmable using APIs such as OpenCL and CUDA. Using these APIs, applica-
tions today can utilize GPUs as coprocessors to execute some parts of an application
that are especially suited for GPUs. GPGPU is a much larger topic than what this
chapter can cover, therefore the chapter focuses on the GPGPU topics that are
relevant for the implementation of top-k spatial joins on GPU.

GPUs are particularly well-suited for problems that can be expressed as data-
parallel computations, which is executing the same program on many data items
in parallel, ideally with high arithmetic intensity. Arithmetic intensity is the ratio
of arithmetic operations to memory operations. Graphics processing is the original
application, but GPUs have found widespread application in other areas such as
machine learning, where popular tools achieve significant speedups by moving most
of the computation to the GPU.

This chapter focuses on the architecture of NVIDIA GPUs and the CUDA API
[6]. The alternative would be OpenCL, which is an open API available on hardware
from other vendors, which can also run on other types of hardware. CUDA was
chosen for this thesis due to its widespread use and the quality of its documentation
and tooling. Additionally, the relation between the design of the CUDA API and
the graphics hardware yields additional insight. OpenCL is designed for portability,
so that it can be executed on GPUs from the vendors who support (even CPUs),
but the portability is not a major concern for this thesis.

An overview of relevant aspects of GPGPU and CUDA was created in the project
preceding this thesis [1]. This chapter is a revised version of that overview, with
some clarification, corrections and amendments of additional topics that became
relevant for the actual implementation of top-k spatial joins on GPU.

2.1 GPU architecture

GPUs have some significant architectural differences to CPUs, something program-
mers must be aware of to fully utilize the capabilities of GPUs. The architecture of
CPUs is designed to perform well for a variety of applications, while the architecture
of GPUs is designed primarily for graphics applications. The main differences are
in the execution of threads and their memory models. A CPU typically operates

5

2.1. GPU ARCHITECTURE CHAPTER 2. GPGPU

on one large random access memory, while GPU memory is divided into multiple
regions with different capacities, bandwidths, latencies and access methods. CPUs
often have a small amount of cores for parallel execution of threads that can com-
municate via memory or interrupts, while threads on GPUs are created in bulk and
can communicate in a number of specialized ways.

GPU architectures have evolved over time due to technological advancements
and evolving needs of graphics applications, which exposes new features to programs
and influences the way programs must be designed to optimally utilize the available
resources. Which features of an NVIDIA GPU device are identified as the compute
capability, which is a string consisting of a major and minor version number, which
at the time of writing ranges from 1.x to 7.x. This chapter describes devices with
compute capability 6.x and 7.x, which is available in the most recent generations of
hardware at the time of writing.

SM 1

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

L1 cache / shared
memory

SM 2

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

L1 cache / shared
memory

SM N

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

CUDA
Core

L1 cache / shared
memory

...

L2 cache

Global memory

Figure 2.1: Simplified overview of GPU architecture

Unlike the CPU, the GPU dedicates most of its resources to data processing
instead of caches and control flow mechanisms. Therefore, the cost of memory
accesses and branching is high compared to the cost of data processing such as
arithmetic operations. This means that programs with high arithmetic intensity are
favored. The individual performance of each thread on a GPU is much lower than
the performance of a thread on a CPU, but the GPU makes up for it with the sheer
amount of threads that it can execute in parallel.

A GPU contains an array of Streaming Multiprocessors (SMs) and a large shared
global memory. The multiprocessors can access the global memory and have a
shared L2 cache. Each multiprocessor has its own L1 cache and its own on-chip
memory as well as a large amount of registers. The GPU and CPU are connected
through an interface such as PCI-e. The bandwidth of the global memory from the
multiprocessors is much higher than the bandwidth between the GPU and CPU.
The bandwidth of a multiprocessor’s on-chip memory is also much higher than the
bandwidth to the global memory.

2.1.1 SIMT architecture

Work is carried out by creating groups of threads to run a program, and distribut-
ing threads among the multiprocessors in groups of 32 parallel threads called warps.
A group of warps may have interdependent threads and must be scheduled onto

6

CHAPTER 2. GPGPU 2.1. GPU ARCHITECTURE

the same multiprocessor. Each multiprocessor creates, manages, schedules and ex-
ecutes threads in warps. A warp is the smallest unit of execution, meaning that
instantiating a number of threads that is not divisible into warps requires leaving a
remainder of unutilized threads. All threads in a warp share a single program but
have their own program counters and registers. Warps execute independently, but
may share a program and shared memory with other warps residing on the same
multiprocessor, and may also share a program and global memory with warps on
other multiprocessors.

Within the multiprocessors, warps are executed with a Single Instruction, Mul-
tiple Thread (SIMT) architecture, meaning a warp executes one common instruction
at a time on all 32 threads in parallel. Full efficiency is realized when all 32 threads
have non-divergent execution paths. All participating threads will typically run in
sync, but execution paths may diverge when there are data-dependent jump in-
structions that cause threads to jump to different parts of the program. When the
execution paths diverge, the warp can execute only the common instruction of one
subgroup of threads at a time by temporarily disabling threads that are not part of
the subgroup.

The execution of warp instructions within a multiprocessor is interleaved and
there is no context switching cost when executing instructions from different warps.
Interleaved execution means that instructions that the warp scheduler deem inde-
pendent may be executed concurrently, so that a new instruction can be executed
while the results of other independent instructions are still pending. This interleav-
ing allows both concurrent execution of instructions from the same program within
the same warp, as well as concurrent execution of instructions across multiple warps.
Unlike a CPU core switching between threads, a context switch from one warp to
another in a multiprocessor has no cost, which is a major part of the extremely light-
weight nature of the threads. This is made possible by maintaining the program
counters, registers and shared memory used by a warp on-chip during the entire
lifetime of the warp, even while other warps are executing. Each multiprocessor
has a fixed amount of registers that is allocated between the warps and a limited
shared memory. The amount of warps that can be executed concurrently by one
multiprocessor is therefore limited by the amount of registers required by each warp
and how much shared memory they require.

2.1.2 Memory

Each multiprocessor has on-chip memory with higher bandwidth and much lower
latency compared to that of device memory. The local memory is a sequence of 32-
bit words distributed into 32 equally sized memory banks. Each memory bank has
a bandwidth of 32 bits per clock cycle. A shared memory request for a warp allows
each thread to access its own 32-bit word in a single clock cycle provided there is no
bank conflict. A bank conflict occurs when multiple different words residing in the
same memory bank are being accessed concurrently. A memory bank can broadcast
only a single 32-bit word at a time, so concurrent access to multiple words within
the same bank cannot be serviced in a single clock cycle. If a bank conflict occurs,
the request is split into as many separate conflict-free requests as necessary.

Device memory is accessed via naturally aligned 32-, 64- or 128-byte memory
transactions with an important feature called coalescence. When a warp accesses

7

2.2. CUDA CHAPTER 2. GPGPU

device memory, each thread will typically try to access its own address in device
memory. Instead of servicing each request individually, the warp will attempt to co-
alesce concurrent device memory access into as few memory transactions as possible.
Optimal throughput is generally achieved with the smallest amount of transactions
with the least amount of unused words. Therefore, an efficient program must ex-
hibit dense device memory access patterns so that warps access the same regions
of memory. This often means that all the threads in a warp will access consecutive
words from device memory. Additionally, the access patterns should be aligned with
the memory transactions.

2.2 CUDA
CUDA distinguishes two entities, the host and the device. The host has the main
memory and the CPU that runs the host program, while the device is a GPU serving
as a coprocessor with its own memory that can run its own programs. The host can
allocate memory on the device, initiate memory transfers between host memory and
device memory, and can schedule programs to run on the device.

The most popular way to use CUDA is by extensions to C or C++ allowing to
write programs with parts that run on the host and parts that run on the device, even
with parts that can run on both the host and the device. The parts of the program
that can run on the device are written using the same programming language syntax
but use special annotations to utilize parts of the CUDA API, creating a low barrier
of entry for C/C++ developers. Feature parity with C and C++ for code that
runs on the device is mostly preserved, but there are some notable documented
exceptions.

2.2.1 Execution model

The unit of execution in CUDA is a kernel invocation, which consists of a number
of extremely lightweight threads divided into thread groups. A kernel is a program
written as a function that can be executed N times in parallel by N different CUDA
threads. When a kernel is invoked, the caller must specify the number of thread
groups and the number of threads per group that will be used to carry out the
execution. The division into thread groups forms boundaries for thread cooperation.
Each thread group is a mostly independent part of the execution of the kernel, while
the threads within each thread group can cooperate tightly.

CUDA provides a number of thread cooperation mechanisms both for thread
groups and warps. A thread group has a shared memory that all participating
threads may cooperatively operate on. Barriers may also be used to synchronize
the execution of all threads in a warp. The grouping of threads into warps is also
exposed to the programmer with special warp-level cooperation mechanisms.

Threads and thread groups are composed into grids. A kernel invocation has a
grid of thread groups, and each thread group has a grid of threads. Grids are three-
dimensional, but not all dimensions of the grid have to be used, so each item in a
grid can be identified using a one-dimensional, two-dimensional or three-dimensional
index. Each thread knows its own thread index and group index. The thread index
and group index can be used to assign each thread or group to an individual item
in a domain such as a vector, matrix, or volume.

8

CHAPTER 2. GPGPU 2.2. CUDA

Thread groups must be able to execute independently, because the order in
which thread groups are executed and their degree of concurrency is unspecified.
This means that cooperation between thread groups is limited. This programming
limitation is key to allow flexibility for the device to find the optimal execution
plan to schedule thread groups across multiprocessors based on its architecture and
available resources.

All threads in a thread group are required to be scheduled onto the same mul-
tiprocessor. The threads are divided into d T

Wsize
e warps where T is the number of

threads per group andWsize is the warp size, equal to 32. All warps in a thread group
are scheduled onto the same multiprocessor. The execution of each warp is independ-
ent and may be interleaved. Because all threads in a warp execute synchronously,
the threads in a warp can depend on each others’ writes to shared memory, using
synchronization and memory fences to ensure they observe each others’ writes. If
the execution of a warp does not depend on the execution of other warps, it does
not have to explicitly synchronize with other warps from the same thread group at
all. Otherwise, barriers can be used for inter-warp synchronization.

CUDA supports useful special functions such as warp votes and warp shuffles.
The SIMT architecture allows these functions to synchronize and exchange inform-
ation between all the threads in the warp participating in the same function call.
Shuffles allow threads to exchange variables with each other. A shuffle up, for in-
stance, has each thread submitting a variable and reading the variable from another
thread before it. Similarly, a shuffle down has each thread submitting a variable and
reading a variable from another thread after it. Warp votes allow each thread to
submit a predicate, returning a reduction of each predicate of participating threads,
such as any which returns true if any predicate of each participating threads is true.
A ballot vote returns a 32-bit integer whose N th bit is set if the predicate of the N th

thread is true. Coupled with bitwise operators, ballots can be especially effective
for certain kinds of warp communication.

In addition to the host launching kernels on the device, a kernel can also launch
other kernels with a feature called dynamic parallelism. This is a particularly useful
feature that allows applications with varying levels of parallelism to control more
of the execution on the device. A kernel that uses dynamic parallelism can control
the execution of other kernels with direct access to device memory, unlike the host
which requires memory transfers and synchronization that can negatively affect the
performance of the application.

2.2.2 Memory hierarchy

Memory in CUDA is divided into a hierarchy. Each CUDA thread has its own
private memory, each thread group has its own shared memory, and all threads have
access to a shared global memory. The hierarchy is not only a logical separation of
memories that defines which threads have access to what — variables in different
parts of the memory hierarchy are assigned to different physical memories on the
GPU with different access characteristics.

Global memory is device memory that can be accessed by kernels. It is the
memory with the greatest capacity, typically measured in gigabytes, but is also
the memory with the greatest access cost. Both the host program and kernels can
dynamically allocate global memory, and the host can initiate memory transfers

9

2.2. CUDA CHAPTER 2. GPGPU

between host memory and global device memory. Global memory is stored in device
memory (VRAM) and is cached by L1 and L2 caches.

Shared memory is local to each thread group. It has much lower access cost than
global memory, but its capacity is limited by the capacity of the on-chip memory,
which requires using less than around 48 KB or 92 KB depending on the hardware.
Shared memory is allocated semi-statically — it is allocated only once a thread
group is assigned to a multiprocessor, where the amount of memory allocated to
each thread group is specified or determined statically when invoking a kernel. Un-
like global memory, additional shared memory cannot be allocated during kernel
execution. Shared memory is stored in the on-chip memory banks, and should be
accessed in ways that avoid bank conflicts.

Private memory is memory that belongs to each thread, which has the lowest
potential access cost. It contains the local variables used by a kernel function. Vari-
ables in private memory are primarily stored in statically allocated multiprocessor
registers. In some cases, private memory may have to be stored in what is (confus-
ingly) called local memory, which is thread-local device memory. Register spilling
may happen if each thread uses too much private memory to fit into the multi-
processor registers, causing CUDA to place some private memory in local memory.
Because registers are not addressable like global or shared memory, CUDA may
sometimes also choose to use local memory to make private memory addressable.
Because local memory resides in device memory, it should generally be avoided to
avoid the same latencies associated with accessing global memory. However, local
memory is organized so that consecutive 32-bit words are accessed by consecutive
threads. Thus, the cost of accessing local memory can be reduced if each thread in
a warp accesses the same variable in local memory, causing the access to be fully
coalesced.

Both global and shared memory support atomic operations. Atomic operations
are another way for threads to safely cooperate by doing read and write operations
without interference from concurrent execution. Global memory atomic operations
are particularly useful for intra-thread group communication. For instance, if each
thread group will write one item at a time to a shared buffer in global memory, a
counter in global memory can be used with atomic addition operations to ensure
the writes to the buffer are consistent.

2.2.3 Performance optimization

The performance of a CUDA application can scale with hardware advancements
in multiple ways. The addition of more multiprocessors and increased parallelism
within each multiprocessor can increase performance, provided the application can
efficiently utilize all multiprocessors, usually by scheduling a sufficient amount of
thread groups. New features added with increased compute capability can be util-
ized. The clock speed, instruction speed and memory sizes and bandwidths can
all be increased. CUDA kernels are usually compiled into a portable intermedi-
ary instruction format called PTX which allows the driver for a particular piece of
hardware to compile it further to optimize for architectural features.

A program should create as many work efficient independent parts of parallel
execution as reasonably possible while respecting the warp size. A program that
parallelizes over a set of threads with little cooperation between threads should

10

CHAPTER 2. GPGPU 2.2. CUDA

generally prefer dividing the set of threads into as many independent thread groups
as possible with a minimum size of 32 threads each. This gives the GPU freedom in
how to schedule the thread groups across multiprocessors, and also allows interleaved
execution within each multiprocessor. The amount of thread groups that can be
assigned to each multiprocessor depends on the shared memory requirements of each
thread group as well as the amount of registers utilized by each thread. Therefore,
programs should also strive to minimize their memory requirements.

Programs should optimize for efficient memory access. Because shared memory
is faster than global memory, programs should utilize registers and shared memory
to cache frequently accessed global memory data that may be shared by threads
in thread groups. Naturally, applications should also strive to avoid bank conflicts
in shared memory with special care for shared memory access patterns. Requests
to device memory should optimize for coalescence. This is achieved by making
requests to dense areas of memory and accessing memory with naturally aligned 32-,
64- and 128-byte transactions. Otherwise, some memory bandwidth will be wasted
on reading and writing extra bytes, caching becomes less effective, and excessive
memory transactions will have to be performed. A common method to achieve good
memory access patterns is by adding padding to data structures that are stored in
arrays. For instance, a structure consisting of three single-precision floating point
numbers (4 bytes each) should often be padded with 4 bytes so that the full data
structure is aligned with 16 bytes.

11

Chapter 3

Spatial indexing

The goal of indexing is to improve the efficiency of searches. For spatial indexing
specifically, the goal is to improve the efficiency of processing spatial queries. Spatial
queries relate to the attributes of spatial objects such as their positions and sizes
and whether or not they intersect with each other. The R-tree is a commonly used
data structure for spatial indexing that can be used to accelerate spatial queries.

Research into spatial indexing was carried out in the project preceding this thesis
[1]. This chapter is a revised edition of the spatial indexing chapter from that project.

3.1 Concepts
A spatial object can be a point, a line, a polygon, or any other shape in the real
coordinate space of d dimensions Rd. Using set theory, a spatial object in Rd can
be considered as a potentially infinite set of points X such that X ⊆ Rd.

Set operations have geometric interpretations. As an example, given two spatial
objects X and Y , X ∩ Y is a spatial object consisting of the space covered by both
objects, which is the intersection of the two objects.

A spatial predicate is a relation between spatial objects. For instance, given
spatial objects U and V , U and V are said to intersect if U ∩ V 6= ∅, and U is said
to contain V if U ⊇ V . Spatial predicates may have properties that are useful for
processing spatial queries. For instance, any object that contains an object U that
intersects with an object V must also intersect with V .

A point p in d-dimensional space can be represented as a d-dimensional vector
(p[1], p[2], . . . , p[d]) where p[i] denotes the ith coordinate of p. A point can be considered
as a spatial object in the form of a set with exactly one item, the point itself.

An axis aligned box is a spatial object in the form of a box where the edges
of the box are parallel to the coordinate axes of the space. An axis aligned box is
defined by two points B = (b, t) where

∀i ∈ {1, . . . , d} : b[i] ≤ t[i]

where p[i] denotes the ith coordinate of the point p. b can be considered the bottom
point and t can be considered the top point. The axis aligned box contains points
so that for each dimension i, b[i] is the minimum (bottom) coordinate and t[i] is the
maximum (top) coordinate. Thus, the set of points in the axis aligned box, defining
it as a spatial object, can be expressed as the following:

B = {q ∈ Rd | ∀i ∈ {1, . . . , d} : b[i] ≤ q[i] ≤ t[i]}

12

CHAPTER 3. SPATIAL INDEXING 3.2. SPATIAL JOIN QUERIES

Axis aligned Minimum Bounding Boxes (MBB) are often used to approximate
the shape and location of more complex spatial objects. The axis aligned MBB of
a spatial object X is the axis aligned box with the smallest measure that covers X.
Depending on the dimensionality of the space, the measure of a spatial object can
be the length, area, volume or hypervolume of the object. In other words, an axis
aligned MBB is the smallest possible axis aligned box that contains X.

An important corollary is that if the MBB of X covers X, it follows that any
spatial object that intersects with X must also intersect with the MBB of X. Be-
cause testing spatial predicates on axis boxes is computationally cheap, MBBs are
often used to speed up the evaluation of spatial predicates for more complex spatial
objects.

The axis aligned MBB of a spatial object X can be represented as B = (b, t)
where

∀i ∈ {1, . . . , d} :
[
b[i] = min

(
q[i] | q ∈ X

)
, t[i] = max

(
q[i] | q ∈ X

)]
.

3.2 Spatial join queries

The spatial distance join requests pairs of objects that are within a certain distance
from each other. More formally, given two sets of spatial objects R and S, a distance
metric dist and a distance threshold ε, the spatial distance join returns

{(r, s) ∈ R× S | dist(r, s) ≤ ε}.

dist is defined to return the distance between the points of the two spatial objects
that are closest to each other according to a point distance function p.

dist(r, s) = min (p(t, u) | t, u ∈ r × s)

For instance, p could be the Euclidean distance, which is the straight-line distance
between two vectors. We can also use the Chebyshev distance, where the distance
is the greatest of the differences along any coordinate dimension.

dist(r, s) ≤ ε is a type of spatial predicate. For ε = 0 it is equivalent to inter-
section. Using the Chebyshev distance measure between two bounding boxes r and
s, we can think of it as expanding either r or s by ε and testing for intersection.

For the purposes of spatial indexing, the distance metric will primarily operate
on pairs of points and pairs of axis aligned boxes. This simplifies computing the
pairs of points that are closest to each other according to the distance function. For
pairs of spatial objects that are points, the distance function is simply computed
directly on the points. For pairs of spatial objects that are axis aligned boxes, the
closest points can be found on the box boundaries, unless the boxes intersect, in
which case the distance is zero.

3.3 R-trees

The R-tree [8] can be considered a multidimensional version of the B-tree, which is
a balanced search tree. Instead of using ordinal key ranges for searching like the
B-tree, the R-tree uses axis aligned bounding boxes which can be spatially queried.

13

3.3. R-TREES CHAPTER 3. SPATIAL INDEXING

The R-tree supports inserting and deleting objects as well as searching for objects
by their spatial properties. Its properties makes it a highly useful indexing data
structure for spatial queries.

Conceptually, the R-tree partitions the space into a hierarchy of MBBs where
the MBBs of the objects in the R-tree are placed at the bottom. Each MBB in
the hierarchy consists of the MBB of its children. MBBs at the same level in the
hierarchy are allowed to overlap with each other, but should overlap as little as
possible.

The R-tree is a balanced tree structure consisting of nodes divided into levels.
Nodes in all levels but the lowest level are called inner nodes, while nodes at the
lowest level are called leaf nodes. Objects in the R-tree are placed as entries in the
leaf nodes, each containing a link to a data object along with the MBB of the object.
Inner nodes contain similar entries, except they link to lower level nodes instead of
data objects along with the MBB of the lower level node. A leaf node is said to
contain a data object if any of its entries point to the data object. Similarly, an
inner node is said to contain a data object if any of its ancestor leaf nodes contain
the data object. In figure 3.1, A is the root node, which is an inner node. B, C and
D are leaf nodes which are entries of the root node. E, F, G, H, I and J are leaf
node entries.

E F G H I J

B C D

A

A
B

C

D

E

F

G

H

I

J

Figure 3.1: R-tree

To ensure that the R-tree remains balanced, there are restrictions for the min-
imum and maximum amount of entries that a node may contain. All nodes but the
root node must have between m and r entries where m ≤ r

2
. r is the maximum

amount of entries in an R-tree node, and is called the fanout. The root node can
have anywhere from 0 to r entries. A node that has r entries is considered fully
packed.

To insert an object into the R-tree, it must be inserted into an appropriate leaf
node. If inserting an entry into the leaf node would result in more than r entries, the
node has to be split into two leaf nodes by creating a new leaf node and partitioning
the entries between them. The newly created leaf node has to be inserted into the
parent node, which may result in the parent node requiring a similar split. The split

14

CHAPTER 3. SPATIAL INDEXING 3.3. R-TREES

can propagate up to the root, in which case the root also must be split, and another
level has to be added to the tree.

The query performance of an R-tree is a measure of the average amount of
nodes that have to be visited to perform a search. When searching it is desirable
to visit as few nodes as possible, as each branch of each node has to be evaluated,
and accessing a node may have a cost (depending on the memory layout). For good
query performance, R-tree nodes should be packed as fully as possible, and branches
should have minimal overlap. Packed nodes decrease the height of the tree, which
reduces the amount of nodes that have to be accessed to reach the leaves. When
the cost of accessing a node outweighs the cost of evaluating branches, packed nodes
reduce the total amount of nodes which results in fewer nodes that have to be
accessed to perform a search. Minimal overlap between branches allows the search
to more easily narrow down to fewer subtrees.

The R-tree has been extensively researched and used, and has inspired the cre-
ation of variants such as the R*-tree [3], the R+-tree and the revised R-tree. Most
of the variants preserve the data structure and principles while redefining the insert
and remove operations. Operations that modify the tree can be designed for vary-
ing degrees of query performance at the cost of the performance and complexity of
operations to insert and delete values.

3.3.1 Range search using R-trees

A range search on an R-tree returns the leaf entries whose MBBs intersect with
the query box. Algorithm 3.1 can be described as an iterative operation on a LIFO
(Last-In-First-Out) queue. The queue is initialized with the entries of the root node.
Entries are dequeued until the queue is empty. If the dequeued entry is a leaf node
entry, it is made part of the result. If the entry is an inner node entry, all its children
are enqueued. A query box that does not intersect with the MBB of a node N cannot
intersect with any objects contained by N . Therefore, a non-intersecting node and
all its ancestors can be pruned from the search because they will not output any
results.

While range search concerns spatial intersection with a query box, it is possible
to generalize for other predicates provided they have a similar property. The specific
property required of a predicate φ is as follows,

∀A,A′ ∈ P(Rd) : (A ⊆ A′) ∧ φ(A)⇒ φ(A′)

where P(Rd) is the set of all spatial objects in the d-dimensional space Rd. An
interpretation is that a if the predicate is true for a spatial object A, it must also
be true for any larger object that contains A. In the case of an R-tree range query,
the spatial predicate φ tests for intersection with a query box, where A is a box of
a leaf node entry and A′ is the MBB of any node that contains it. If an entry in
an R-tree intersects with the query box, any node that contains the entry must also
intersect with the query box, otherwise it would be pruned during the range search.

3.3.2 Spatial join using R-trees

R-trees can naturally be used to enhance the performance of spatial joins. As
opposed to performing a nested loop join on lists of spatial objects to test the spatial

15

3.3. R-TREES CHAPTER 3. SPATIAL INDEXING

Algorithm 3.1 R-tree Range Search. N is any R-tree node, but usually the root
node of the R-tree. Q is the query box.
1: function RangeSearch(N,Q)
2: O ← ∅
3: Initialize Queue as a queue with entries of N .
4: while Queue is not empty do
5: E ← Dequeue(Queue)
6: if Intersects(E.mbb,Q) then
7: if E is a leaf entry then
8: O ← O + E
9: else

10: for all C ∈ E.ref do
11: Enqueue(Queue, C)
12: end for
13: end if
14: end if
15: end while
16: return O
17: end function

predicate for all pairs, R-trees can utilize the spatial characteristics of the inputs
to efficiently navigate the search space and reduce the amount of work required to
produce the output. R-trees can be built dynamically, similarly to how hash tables
are used for relational joins, or they can be joined directly.

Brinkhoff et al. [5] described a method to concurrently descend down two R-trees
to perform a spatial intersection join as described in algorithm 3.2. The algorithm
is quite similar to the range search algorithm, except it operates on pairs of node
entries and searches for leaf entry pairs instead of individual leaf entries. Similar to
the pruning in the range search algorithm, the spatial intersection join is based on
the idea that if the MBBs of nodes NR and NS do not intersect, the objects they
contain cannot be joined into any pair of intersecting objects. Given well constructed
R-trees, this allows pruning many pairs of objects at directory levels in the R-tree
hierarchy, saving a lot of work.

Like the R-tree range search algorithm, the spatial intersection join algorithm
can be described as an iterative operation on a LIFO (Last-In-First-Out) queue.
The queue is initialized with all root node entry combinations. Tuples of entries are
dequeued until the queue is empty. If the dequeued entries are leaf node entries, they
are made part of the result. If the entries are inner node entries, all combinations of
children entries are enqueued. A pair of nodes that do not intersect cannot contain
intersecting entries. Therefore, tuples of non-intersecting nodes and all their ancestor
tuples can be pruned from the search because they will not output any results.

For R-trees with different heights, a more complete solution is required. The
algorithm can only descend as deep as the least tall R-tree until it reaches leaf node
entries. In the case where S is taller than R, the spatial intersection join algorithm
will output entries (ER, ES) where ER is a leaf node entry in R while ES is an inner
node entry in S instead. One method to produce the expected spatial join outputs
here would be to carry out a range search for each output of the spatial intersection
join algorithm. For a pair of entries (ER, ES), the node referenced by ES is searched

16

CHAPTER 3. SPATIAL INDEXING 3.3. R-TREES

Algorithm 3.2 R-tree Spatial Intersection Join. NR and NS are R-tree nodes from
R-trees R and S, usually the root nodes of their respective R-trees.
1: function SpatialJoin(NR, NS) . NR and Ns must be at the same level
2: O ← ∅
3: Initialize Queue as a queue with entry pairs of NR ×NS.
4: while Queue is not empty do
5: (ER, ES)← Dequeue(Queue)
6: if Intersects(ER.mbb, ES.mbb) then
7: if ER and ES are leaf entries then
8: O ← O + (ER, ES)
9: else

10: for all CR ∈ ER.ref do
11: for all CS ∈ ES.ref do
12: Enqueue(Queue, (CR, CS))
13: end for
14: end for
15: end if
16: end if
17: end while
18: return O
19: end function

using ER.mbb as the query box. The output of each range search on ES can then
be output as pairs with ER.

While Brinkhoff et al. only considered spatial intersection, it is possible to gen-
eralize for other spatial predicates provided they have a property similar to the
property that generalizes the range search. The specific property required of a spa-
tial predicate φ used to join the objects is as follows,

∀A,A′, B,B′ ∈ P(Rd) : (A ⊆ A′) ∧ (B ⊆ B′) ∧ φ(A,B)⇒ φ(A′, B′)

where P(Rd) is the set of all spatial objects in the d-dimensional space Rd. An
interpretation is that if the predicate is true for a pair of spatial objects A and B, it
must also be true for any pair of larger objects that contain A and B. In the case of
an R-tree join, A and B can be considered as entries from their respective R-trees,
and A′ and B′ are the MBBs of nodes containing them. If entries of two R-trees
intersect with each other, any node that contains the entries from each tree must
also intersect with each other, otherwise they would be pruned during the range
search.

The generalization of spatial predicates for range search and spatial joins is a
necessary insight to apply the algorithms for other predicates than intersection.
The property is intuitively true for the intersection predicate. The spatial distance
threshold predicate can be considered equivalent to intersection where either object
is expanded by ε, therefore the property intuitively holds true for the spatial distance
predicate.

Queues can be implemented in various ways for range searches with R-trees
and R-tree joins to perform the search or join in different orders. By replacing
the Last-In-First-Out (LIFO) queue with a First-In-First-Out (FIFO) queue, the
search becomes a breadth-first search (BFS) instead of a depth-first search (DFS).

17

3.3. R-TREES CHAPTER 3. SPATIAL INDEXING

Another alternative is using a priority queue to perform a best-first search, which
has applications for ranked queries.

3.3.3 R-tree search methods

A depth-first-search can be performed using a compact tree search iterator such as
the one described in algorithm 3.3 instead of using an explicit queue. The iterator
operates on a stack of node entry iterators. The stack will contain at most an iterator
per level of the R-tree, and therefore has a fixed capacity equal to the height of the
R-tree. The node entry iterator may simply be based on a pointer to an R-tree node
and a number that counts the number of entries of the node that have been visited.
The tree search iterator can also be applied to spatial joins by replacing the node
entry iterator with an iterator that joins the entries of two nodes.

Algorithm 3.3 DFS Tree Search Iterator. S is a stack of node entry iterators,
initialized with a node entry iterator of the root node. φ is the search predicate
used to prune R-tree entries.
1: function Next(S, φ)
2: while S is not empty do
3: I ← Peek(S)
4: E ← Next(I, φ)
5: if E is Nil then
6: Pop(S)
7: else
8: if E is inner node entry then
9: IC ← NodeEntryIterator(E)

10: Push(S, IC)
11: else
12: return E
13: end if
14: end if
15: end while
16: return Nil
17: end function

An explicit queue based search opens the possibility for parallelism by having
multiple threads dequeuing, processing and enqueuing items in the same queue.
This method can achieve data parallelism by both evaluating spatial predicates
and traversing subtrees in parallel. The efficiency of this method depends on the
amount of items that can be processed in parallel, which may be limited by the
amount of queue items produced at each level in the search, as well as the overhead
of synchronizing the queue. For a narrow range search in a well constructed R-tree,
the number of subtrees that must be visited should be low, which results in an
overall small queue until the last few levels. Therefore, the size of the queue may
limit the parallelism of the algorithm. However, for an R-tree spatial join, the queue
is expected to grow exponentially, which suggests that the parallelism of spatial joins
may be limited by the amount threads available rather than the size of the queue.

One way to utilize parallel processing of queue items in range search is processing
multiple range queries in parallel using the same queue. You et al. [21] proposed and

18

CHAPTER 3. SPATIAL INDEXING 3.3. R-TREES

evaluated multiple methods to perform parallel range queries using GPUs. Given an
R-tree and a set of range queries to be performed on the R-tree, the algorithms
efficiently computes the result of all range queries in parallel. It can be done by
implementing existing methods for depth-first and breadth-first search for R-tree
range queries on the GPU.

In the DFS method, each thread processes one query in depth-first order using
a DFS tree search iterator. The main advantage of DFS is its predictable memory
usage and simplicity. Each query requires only a stack with capacity equal to the
height of the tree to perform the traversal, which can be stored in shared memory.
The implementation is based on a count-and-write strategy that spaces out the
memory prior to writing the query results. An issue with the DFS method is that
it provides poor workload balance when queries require different amounts of work,
leaving some threads idle and waiting for others to finish. The count-and-write
strategy effectively requires evaluating all queries twice, which is speculated to harm
performance. For particularly large queries, the writing of results to global memory
may also be too sparse to coalesce.

The BFS method distributes the queries across multiple thread groups where
each thread group has a queue in shared memory and all its threads working on the
queue in parallel. Each queue entry is a (N,Q) tuple where N is a pointer to an R-
tree node and Q identifies a query. A queue entry (N,Q) is expanded by dequeuing
then enqueueing the children of N as (NC , Q) tuples, but only if the MBB of N and
the query box of Q intersect. When a queue contains only leaf nodes, it is copied to
global GPU memory to be made part of the result. Compared to the DFS method,
the BFS method solves the workload balance problem within each thread group and
has superior performance overall, but is more complex due to the limited capacity
of the queue.

As previously stated, each queue in the BFS method has a fixed capacity imposed
by the limited amount of shared memory that is available to each thread group. In a
breadth-first search, the queue is expected to grow larger as the search goes deeper
and may cause the queue to overflow. Calculating a distribution of queries that
avoids overflow is infeasible, therefore the algorithm is designed to work correctly
even when the queue in shared memory overflows. There are multiple alternatives
for overflow handling strategies, and the most promising alternative dynamically
allocates chunks of global memory for excess queue entries.

There is an equivalency between performing a set of range queries on an R-
tree and performing an R-tree spatial intersection join. By creating another R-tree
from the set of range queries and performing a spatial intersection join, the same
result should be produced. By decomposing an R-tree into its objects, a spatial
intersection join can be evaluated by performing a range query for each object.
Therefore, spatial join methods could be applied to perform range queries in bulk.
Conversely, the methods for performing parallel range queries could be applied to
perform parallel spatial joins. Spatial join methods are better suited to exploit the
spatial properties of the set of range queries, but may fall short when the amount
of queries is low.

Given the similar queue-based search nature of DFS, BFS and the R-tree spatial
join algorithm, it may be possible to adapt the aforementioned DFS and BFS meth-
ods to perform parallel spatial joins instead of parallel range queries, but there are
some challenges. A key observation is that the parallelism is limited by the amount

19

3.3. R-TREES CHAPTER 3. SPATIAL INDEXING

of entries in the queue. Execution of parallel range queries like in DFS and BFS
starts with a large queue containing each initial query, and therefore exhibits a high
degree of initial parallelism. A spatial join, however, starts with a single queue entry
and therefore exhibits no initial parallelism and would have a slower start.

3.3.4 Memory layout

Being originally designed for disk storage, the original R-tree uses a page-based
layout. Nodes correspond to disk pages if the structure is disk resident, and memory
pages otherwise. An R-tree node with this layout can contain as many entries as
the page can fit as records. A notable feature is that the MBB of an R-tree node
is stored along with the pointer to the node’s page in an inner node record instead
of being stored within the node’s own page. This allows pruning the node without
having to load the page. Loading a disk resident page has a significant I/O cost, but
a memory resident page may also have an access cost because the page may have to
be loaded from memory into a cache. The main advantage of the page-based layout
is that modifying the structure of the R-tree only requires allocating and freeing
pages and updating pointers to pages.

A page based layout would be inefficient on GPU. One difficulty with using
the page-based layout on GPUs is transferring R-trees between main memory and
device memory. Every source page would have to be replicated in the other memory
by allocating a destination page and performing a memory transfer between the
source and the destination per page. Unless a unified virtual address space is used,
destination pages may receive different memory addresses in the destination memory,
requiring pointers to be updated as well. Additionally, R-trees with read-only usage
rarely benefit from the advantages of the page-based layout, which is its performance
for operations that modify the structure of the R-tree.

Instead of a page-based layout, Luo et al. [14] used two arrays to store the R-tree
structure on a GPU. The first is an array of integers representing the tree structure
which is called Index, and the second is an array of boxes called Rect. For an R-tree
with N nodes and a fanout of r, both arrays consist of N blocks of r values. The
root node is stored in the first block of both arrays. For inner nodes, each integer
in a block of Index is the array index of a child node, and each box in a block of
Rect is the MBB of the child node. For leaf nodes, each integer in a block of Index
is an identifier of an entry in the R-tree, and each box in a block of Rect is the box
of the entry. Non-full nodes are padded by zeroes in Index.

The linearized R-tree memory layout used by You et al. [21] stores the entire
R-tree in an array of all nodes in breadth-first order. Inner nodes are represented by
{MBB, pos, len} tuples, where MBB is the minimum bounding box of the node,
pos is the position of the first child node in the array, and len is the amount of
children. Because sibling nodes are stored sequentially in BFS order, their positions
can be calculated by offsetting from the position of the first child. The specific
layout of leaf nodes was left unspecified. The linearized R-tree memory layout is
more compact than the layout used by Luo et al. because inner nodes do not store a
position per child. It does not pad nodes that are not filled to capacity, which may
negatively affect memory reading patterns, but saves some memory.

The linearized R-tree memory layout is optimized for read operations and memory
transfers without serialization. It is designed to be cache friendly with its compact

20

CHAPTER 3. SPATIAL INDEXING 3.3. R-TREES

layout and sequential sibling node storage. The entire R-tree can easily be streamed
between host memory and device memory by only streaming the the array. It should
only be used for read-only R-trees. Write operations would require shifting nodes
around in the array and recalculating pointers to child nodes to preserve DFS order
and thus would perform poorly. Linearized R-trees can really only be constructed
when the node layout is known in advance. Bulk loading methods may be adapted to
construct linearized R-trees, or alternatively, a linearized R-tree may be constructed
as a copy of another R-tree.

3.3.5 Bulk loading

R-tree bulk loading is the process of constructing an R-tree from an unindexed
set of object. When querying a set of unindexed objects, it may be beneficial to
bulk load an R-tree prior to performing the queries, but bulk loading can be a
costly operation. Prior bulk loading may enhance the performance of queries on
unindexed sets, but only if the cost of performing unindexed queries outweighs the
cost of bulk loading the R-tree and performing indexed queries. The choice of bulk
loading strategy strongly affects the query performance. Bulk loading strategies
often produce packed R-trees, which generally increases the query performance and
reduces the memory usage of the R-tree.

Dynamic bulk loading is the most basic form of bulk loading where the R-tree is
constructed by inserting one entry at a time. It is inherently sequential and relies
on the efficiency of the insertion algorithm. A slow insertion algorithm may produce
an R-tree with good query performance, but makes for a slow bulk loading strategy.
A cheap insertion algorithm may make a faster bulk loading strategy, but the query
performance of the resulting R-tree will suffer. Dynamic insertion also relies on
dynamic allocation of nodes, which may be costly. Most insertion algorithms used
for dynamic bulk loading will not produce packed R-trees, which limits the query
performance.

Sort-Tile-Recursive (STR) is a bulk loading algorithm described by Leutenegger
et al. [12] that recursively partitions the dataset into tiles with equal amounts of
entries. Each recursion step relies on a series of passes to sort and split the data.
When the layout of a linearized R-tree is known in advance, STR can be used for
bulk loading linearized R-trees. In each iteration, STR splits a set of entries once
per dimension — first all entries are divided into vertical slices by sorting by their
x coordinate then dividing the series evenly, then each slice is split into tiles by
sorting their entries by their y coordinate then once again dividing the series evenly.
Each tile has at least r entries so that it can become an R-tree node. Then an inner
node entry is produced for each tile to be processed in the next iteration. In each
iteration, the amount of entries is roughly divided by r. When the amount of entries
to be packed is lower than r, the root node is produced.

21

Chapter 4

Ranked queries

Ranked queries are queries concerned with the ranking of objects. With ranked
queries, inputs and outputs may be objects that are ordered by a scoring function.
A special case is the ranked join, which is a ranked query operating on the results
of a join. In the case of the ranked join, we may use an aggregation of scores as the
score of a pair of joined objects.

Research into ranked queries was carried out in the project preceding this thesis
[1]. This chapter is a revised edition of the ranked queries chapter from that project.

4.1 Concepts
Given a set of objects R, a top-k query returns an ordered set of up to k objects
of R with the greatest ranking. The ranking is defined by a scoring function q that
assigns a score to each object in R. All items in the result set T must have a score
greater than or equal to the score of the items that are not in the result set. More
formally,

∀r∈T∀s∈R−T : (q(r) ≥ q(s)) .

Given two sets of objects R and S, a top-k join returns an ordered set of up to
k join results with the greatest ranking. It is a special case of the top-k query that
operates on the results of a join. Join results are (r, s) tuples of R×S that satisfy a
join predicate φ. The ranking is similarly defined by a score function q that assigns
a score to each tuple of the join result. All items in the result must have a score
greater than or equal to the score of the items that are not in the result set.

A score function assigns a score to each object in a set to define a ranking. The
score may be an aggregation of multiple object score attributes a1, a2, a3, . . . by an
aggregate function γ. For instance, if γ is SUM, the score of an object is the sum of
the score attributes of the object. γ is considered a monotone aggregate function if
it is nondecreasing with respect to any parameter. More formally, γ is considered a
monotone aggregate function if

∀(x,y)∀(x′,y′) : (x ≤ x′ ∧ y ≤ y′)⇒ (γ(x, y) ≤ γ(x′, y′)) .

SUM, MAX and MIN are all examples of monotone aggregate functions.
Using monotone aggregate functions for scores, some useful assertions can be

made about the scores of sets. A key insight that is that if a set is scored by a

22

CHAPTER 4. RANKED QUERIES 4.2. TOP-K JOINS

monotone aggregation of attributes a1 and a2, the aggregation of the maximum
value of a1 and the maximum value of a2 for all items forms an upper bound for the
score of all items in the set. More formally, given a set R of items with attributes
a1 and a2,

∀r ∈ R : γ(r.a1, r.a2) ≤ γ(max(s.a1 | s ∈ R),max(r.a2 | r ∈ R))

where max(s.a1 | s ∈ R) and max(s.a2 |∈ R) are the maximum values of a1 and
a2 for R. If it can be asserted that all items in a result must have a score greater
than smin, then knowing the maximum value of each attribute for a set is enough to
determine if any item in the set can be part of the result by comparing the upper
bound with smin. If all items in the set cannot be part of the result, there is no
need to evaluate each item for inclusion in the result by computing the score and
comparing it with smin.

For top-k joins, the join inputs R and S may be individually ranked by score
functions qR and qS respectively. If the scores assigned by qR and qS are considered as
attributes of each joined tuple, then the score of a joined tuple can be an aggregation
of the attributes assigned by qR and qS. In this case, the score of a joined tuple
would be q(r, s) = γ(qR(r), qS(s)) where γ is an aggregate function.

For top-k joins where the score is a monotone aggregation of scores, the aggrega-
tion of the score of each highest ranked item in ranked sets R and S forms an upper
bound for the score of all pairs in R×S. More formally, given ranked sets R and S,

∀(r, s) ∈ R× S : γ(qR(r), qS(s)) ≤ γ(qR(Rmax), qS(Smax))

where Rmax and Smax are the highest ranked items of their respective sets. If it can
be asserted that all items in a join result must have a score greater than smin, then
knowing the maximum scores of R and S is enough to determine if any joined items
of R and S can be part of the join result. If the results of the join cannot be part
of the result, there would be no need to evaluate pairs of items for inclusion in the
result by computing the score and comparing it with smin. More importantly, there
would be no need to compute the join of R and S in the first place, which may be
computationally expensive.

4.2 Top-k joins
A basic method to perform a ranked join is performing a join then sorting the results.
The issue with this method is that it requires the join to be completely evaluated
before any part of the output can be produced. Joins can be computationally
expensive and can produce result sets that are unnecessarily large for a top-k join.
A method that can produce the same ranked join outputs using only a partially
evaluated join can be more efficient by avoiding the cost of the full join. Such a
method requires efficient navigation of the join space and must also guarantee that
the join results that have not been evaluated are not part of the ranked join results.

A common type of relational join is the equijoin. Given two relations R and S
and key functions kR and kS, we would like to find pairs of items whose keys under
keyR and keyS respectively are equal. More formally,

{(r, s) ∈ R× S | kR(r) = kS(s)} .

23

4.2. TOP-K JOINS CHAPTER 4. RANKED QUERIES

Traditional methods of processing such joins are nested loops, hash tables and sort-
ing, all depending on the size of the inputs and what sort of indexes are available.
However, these methods are most suited for producing full join results instead of
partial results, usually in orders that are not particularly useful for ranked joins.
Thus, by performing a ranked join on top of a regular join, a lot of work would be
wasted evaluating parts of the join that do not affect the result of the ranked join.

4.2.1 Pull/Bound Rank Join

Research into ranked joins focuses on efficiently navigating the join space to avoid
doing unnecessary work to process the join. The Pull/Bound Rank Join frame-
work [18] captures an important aspect of the partial evaluation of joins for ranked
joins. A join can be evaluated incrementally in a desired order by incrementally
reading inputs (pulling) and joining newly pulled items with previously pulled items.
At each step, one item from one input must be chosen and joined with previously
pulled items from other other input. A specific order for the join can be achieved
by carefully selecting which item in which input to pull next.

For a rank join with a monotone aggregate function, reading each input in des-
cending order of rank allows establishing an upper bound for the score of any join
results that have not yet been found. The upper bound T , also called the threshold,
is defined as

T = max{γ(Rmin, Smax), γ(Rmax, Smin)}

where Rmin, Rmax, Smin and Smax are the minimum and maximum scores of items
that have been pulled from R and S so far.

The intuitive explanation is that the next item of R must have at most the same
score as the previous item, and may join with the item of S with the highest score,
creating an aggregate score of at most γ(Rmin, Smax) and vice versa for the next item
of S. At any point during processing, all known join results with a score above this
threshold are guaranteed to be the first results of the join in order of descending
rank, because any unknown join result must have a score below the threshold. The
join terminates when all join results have been produced by exhausting the inputs,
but being an incremental join, it may be terminated earlier when enough results
have been produced for a top-k join.

Hash-based rank-join

Ilyas et al. [11] proposed hash-based rank-join (HRJN), which uses two ranked rela-
tional inputs to perform a ranked equijoin with a monotone aggregate function. Its
key feature is that it incrementally produces outputs by evaluating the join in an
order that optimizes for producing join results with high aggregate scores first. The
algorithm reads input items in order of descending rank to incrementally evaluate
the join and places join results in a heap ordered by aggregate score. It keeps track
of the upper bound for the score of any joined tuple that has not yet been found.
Pulling input items causes the upper bound to decrease. When the item on top of
the heap has a score greater than the upper bound, it can be removed and output
as the next item in order of descending rank. A top-k query can be performed by
using the k first outputs, which may not require evaluating the full join.

24

CHAPTER 4. RANKED QUERIES 4.2. TOP-K JOINS

HRJN performs an equijoin, meaning it joins entries by equality of a key, so that
the join condition is φ(r, s) : keyR(r) = keyS(s) where keyR and keyS get the keys of
each input item. The join is performed using a hash table per input to index pulled
items by their keys. Newly pulled items are placed into their respective hash tables
and joined with indexed items from the other input by probing the other hash table.
The algorithm can be made more generic with the realization that the use of hash
tables as indexes is only a particular choice for the key equality join predicate. The
hash tables can be replaced by other indexes such as spatial indexes for other kinds
of join predicates. HRJN is considered an instantiation of the Pull/Bound Rank Join
framework and can be further generalized as part of the Score-First Paradigm [16].

4.2.2 Parallelizing top-k joins

Pull/Bound Rank Joins such as HRJN are inherently sequential, and thus may
not parallelize well. Parallelism could theoretically be achieved by having multiple
threads pulling and processing input items in parallel. In order for a parallel join op-
eration to be correct, adding an item to a set of previously pulled items and probing
the other set of previously pulled items must be an atomic operation. Otherwise,
some join results may be lost or duplicated. If an item is inserted into the set of
previously pulled items before probing the other set, the following sequence of events
may happen, causing an expected result (r, s) to be duplicated:

1. Thread T1 pulls an item r from input R and inserts r into the set of previously
pulled items of R.

2. Thread T2 pulls an item s from input S and inserts s into the set of previously
pulled items of S.

3. Thread T1 probes the set of previously ready items of S and produces the tuple
(r, s).

4. Thread T2 probes the set of previously ready items of R and also produces the
tuple (r, s).

Alternatively, if the other set is probed before the item is inserted, the following
sequence of events may happen, causing an expected result (r, s) to be lost:

1. Thread T1 pulls an item r from input R then probes the set of previously ready
items of S, producing nothing.

2. Thread T2 pulls an item s from input S then probes the set of previously ready
items of R, producing nothing.

3. Thread T1 inserts r into the set of previously pulled items of R.

4. Thread T2 inserts s into the set of previously pulled items of S.

Because most of the work of the join is captured in this atomic operation, it
may seem that the operation can barely be parallelized at all, but it is possible to
move the probing out of the atomic operation. By redefining the atomic operation
as one that inserts an item into a set of pulled items of one input and returns the
set items to probe, the probing can be carried out separately. By capturing the set

25

4.2. TOP-K JOINS CHAPTER 4. RANKED QUERIES

of pulled items from the input to be probed, the probing operation can ignore any
items that are pulled concurrently during probing. By doing more work outside the
atomic operation, it would be possible to achieve some degree of parallelism. This
make a parallel implementation more suited for more expensive probing operations,
but this is counter to the design of most applications of Pull/Bound Rank Joins
which attempt to minify the cost of probing. Capturing the set of pulled items to
probe in the atomic operation could also be computationally expensive. Instead of
capturing a full set, the atomic operation could instead return a more lightweight
handle on the current state of the set that can be used to ignore any items that are
added concurrently.

Probing outside the critical section may require concurrent reads and writes to
data structures, which may require synchronization mechanisms. In HRJN, the hash
tables would require synchronization mechanisms for concurrent reads and writes,
which would result in additional overhead. The collection of results will also require
synchronization because multiple threads will be producing their own outputs. Using
a more primitive indexing data structure for items that have been pulled (or no
indexing data structure at all) could reduce the synchronization overhead, but the
advantages of data structures such as hash tables would be lost.

Parallelism may alternatively be achieved by having multiple threads cooperat-
ively pulling a bulk of item from an input, indexing them and cooperatively probing
it against previously pulled items from the other input. Bulk operations are more
likely to parallelize well than operations for individual items, but may require tight
cooperation.

Divide-and-conquer

It is possible to perform top-k queries and top-k joins by using a divide-and-conquer
strategy. The problem can be broken into subproblems by splitting the input into
partitions and finding the top-k items of each partition. The top-k items of a set R
can be found by dividing R into n non-overlapping partitions R1, R2, . . . , Rn, finding
the top-k items of each Ri, concatenating the top-k items of each partition, then
finding the final top-k items among the concatenated results. By representing a top-
k query as a function topk that returns the top-k items of a set, it can be expressed
as

topk(R) = topk(topk(R1) ∪ topk(R2) ∪ · · · ∪ topk(Rn)).

A top-k join on R and S can be similarly processed using a divide-and-conquer
strategy by considering it as a top-k query on R × S. The total amount of items
in R × S can be very large, so it is preferable avoid explicitly materializing R × S
to partition it. One solution is to partition R into n partitions R1, R2, . . . , Rn and
S into m partitions S1, S2, . . . , Sm. Each pair of partitions Ri and Sj creates a
subproblem Ri × Sj. This creates nm total non-overlapping subproblems covering
the entirety of R× S.

Dividing the problem into subproblems and processing them in parallel is an
opportunity to perform parallel top-k queries, but work efficiency may become an
issue. If each subproblem can be processed in parallel in less time than the whole
problem, it should produce a result in less time, but may result in wasted work.
Divide-and-conquer leads to overall wasted work for top-k joins [22]. If the work
required to process a two-way join without breaking into subproblems is w, then

26

CHAPTER 4. RANKED QUERIES 4.3. RANKED SPATIAL QUERIES

breaking it into n subproblems requires 1√
n
w work per subproblem, for a total of√

nw work. In other words, the total amount of work increases by a factor of the
square root of the amount of subproblems. Thus, the problem cannot be divided
too much without risking a general loss in performance.

4.3 Ranked spatial queries

Spatial queries may be augmented to require rank-based filtering or sorting of results.
A naïve method to achieve this would be a two-step process of performing the spatial
query first, then filtering or sorting the spatial query results second. However, the
R-tree range search algorithm can be modified to efficiently achieve both rank-based
filtering and sorting in a single step. The modified algorithm operates on a MAX aR-
tree, an augmented version of the R-tree, where each node contains the maximum
score value of any object contained by the node. The MAX aggregate function
has properties that allows both for filtering and sorting of query outputs using a
modified range search algorithm.

4.3.1 aR-trees

The aR-tree is an R-tree that has been augmented with aggregate values assigned
to each node. Similar to how the MBB of a node is an aggregation of the boxes
of all objects placed under it, other types of object attributes can be aggregated to
enhance the search capabilities of the tree for non-spatial attributes. An example
aR-tree is the IR-tree [13] which is augmented for spatio-textual searches by storing
aggregated inverted files in each node. A simpler example is an aR-tree that stores
the maximum and minimum value of an attribute for all objects under the node,
which may have practical applications in databases. For ranked spatial queries, we
are mostly interested in aggregate values that can be used to determine bounds for
score values.

The aggregated attribute of an aR-tree node N.agg is determined by a decom-
posable aggregate function γ. For leaf nodes, the aggregate value is computed as
the γ-aggregation of an attribute of each contained object. For inner nodes, the ag-
gregate value is computed as the γ-aggregation of the N.agg values of its children.
Because γ is decomposable, it follows that the aggregate value of an inner node is
the aggregation of all objects contained by the node, thus the aggregated attribute
of any node is aggregation of all objects contained by the node.

The aggregate values stored in the aR-tree augment the search capabilities of the
R-tree because each node carries information that can be used to make assertions
about the properties of contained objects. By using γ = MAX on an attribute a
of each object, when searching for objects with the condition O.a ≥ vmin it can
be asserted that only nodes with N.agg ≥ vmin can contain objects satisfying the
condition. The MAX aggregate function also guarantees that the entry with the
greatest attribute value can be found by descending the tree and always searching
the node with the greatest aggregate value.

27

4.4. TOP-K SPATIAL JOINS CHAPTER 4. RANKED QUERIES

8 9 2

8 0

E F

9 5

G H

1 2

I J

B C D

A

A: 9
B: 8

C: 9

D: 2

E: 8

F: 0

G: 9

H: 5

I: 1

J: 2

Figure 4.1: MAX aR-tree

4.3.2 Ranked range queries on aR-trees

The R-tree range search algorithm can be modified to only output objects with a
score greater than a value smin by using a MAX aR-tree and adding an additional
condition for pruning subtrees. The modification is based on the principle that
any aR-tree node with MAX score lower than smin can be pruned from the search
because the subtree cannot contain any objects satisfying the rank condition. This
is based on the same principle that allows pruning subtrees from the search for not
intersecting with the query box because the subtree cannot contain any object that
intersect with the query box.

The R-tree range search algorithm can also be modified to output results in
order of descending rank by dequeuing queue items in order of descending score.
The score of an inner node entry is the MAX score of the node, while the score of a
leaf node entry is the true score of the object. The principle is that in the queue of
a range search, the highest ranked object that has not yet been found may either be
contained by the inner node entry with the greatest MAX score, or is the leaf node
entry with the greatest score. By always dequeuing the highest ranked queue entry,
queue entries are processed in best-first order which guarantees that leaf entries will
be visited in descending rank order.

The option of incrementally retrieving spatial query results in order of score with
a score threshold using an aR-tree is invaluable for top-k spatial query processing. A
top-k query on a single aR-tree can be processed by retrieving only the k first objects
of a ranked range search without processing the whole queue. In more advanced
cases, a score threshold smin may be used to incrementally retrieve objects over the
score threshold, where it is possible to incrementally raise the score threshold while
processing the query.

4.4 Top-k spatial joins

A top-k spatial join combines the aspects of a spatial join and a top-k join. Given two
sets of spatial objects, a spatial predicate is used to join the sets, and the k highest
ranked joined tuples form the result. Top-k spatial join methods can be driven by
the score and the space of the inputs. Score-driven methods for top-k joins may

28

CHAPTER 4. RANKED QUERIES 4.4. TOP-K SPATIAL JOINS

not be able to properly utilize the spatial properties of the inputs to perform the
join. Similarly, space-driven methods for spatial joins may not be able to properly
utilize the ranked properties of the inputs to rank the output. This difference calls
for specialized methods that can utilize both.

A basic approach is to use a spatial join as a basis to join the inputs, then ranking
the join result to produce the top-k results. This approach can fully utilize the
spatial properties of the inputs, but suffers from the issues with doing unnecessary
work to evaluate parts of the join that will not be part of the result. Methods such
as the basic R-tree join and plane sweep-based joins [2] do not evaluate joins in
useful orders for ranked joins. Therefore, the full spatial join has to be computed,
which may use more memory and processing time than necessary to produce the
top-k result. By applying the principles of Pull/Bound Rank Join by incrementally
evaluating the join until it can be determined that any joined tuple that has not yet
been produced cannot be part of the top-k result, it would be possible to avoid the
wasted work. This requires an efficient method to evaluate partial spatial joins.

Qi et al. [17] proposed and evaluated several algorithms to perform top-k spa-
tial distance joins on ranked inputs with monotone aggregate score functions. All
algorithms are based on aR-trees using MAX as the aggregate function. The Score-
First Algorithm (SFA) is an instantiation of the Pull/Bound Rank Join framework
that utilizes aR-trees for indexing pulled input values. The Distance-First Algorithm
(DFA) requires both inputs to be fully indexed by aR-trees and performs a ranked
R-tree join. The Block-based Algorithm (BA) works similarly to the SFA by prior-
itizing objects with high scores first, but pulls inputs in blocks to bulk load aR-trees
and probes in a series of aR-tree joins.

4.4.1 Score-First Algorithm

The Score-First Algorithm (SFA) is an instantiation of the Pull/Bound Rank Join
framework by pulling input items in descending order of score and establishing a
score bound. Being a spatial join algorithm, it uses dynamically constructed aR-
trees to index pulled items via R-tree insertion, and probes pulled items with ranked
range search. When the algorithm has found at least k candidate results, the score
of the kth candidate result is a threshold for the score of any results that have not
yet been found that may replace the top-k candidates. SFA can use the threshold to
prune subtrees when probing the aR-tree to only find join results that will become
top-k candidates.

With SFA, pairs of objects with high scores are found fast, and the results are
expected to be found fast if the objects with the highest scores are close to each
other, but it is generally not as efficient as other alternatives. With little correlation
between scores and locations, many entries have to be dynamically inserted and
many range queries have to be performed if the objects of the highest ranked pairs
reside deep in the inputs. Compared to bulk loading methods, the dynamic insertion
used in SFA may be expensive or produce R-trees with bad query performance. The
overhead of maintaining and probing the R-trees also increases with each pulled item
as the cost of each insertion and range query increases as the R-trees grow larger.

29

4.4. TOP-K SPATIAL JOINS CHAPTER 4. RANKED QUERIES

4.4.2 Ranked spatial join on MAX aR-trees

As part of DFA, Qi et al. [17] described an algorithm can be used to perform a
ranked spatial join on ranked inputs indexed by MAX aR-trees. It uses aggregate
scores on each aR-tree node to determine upper bounds for the scores of pairs of
objects. If the score of a pair of objects (r, s) is defined as q(r, s) = γ(qR(r), qS(s))
where γ is a monotone aggregate function and qR(r) and qS(s) are the scores of the
objects r and s, then an upper bound for the score of all pairs of objects that can
be produced by joining two nodes can be determined. By considering the objects
contained by each node as sets, an upper bound for the score of all pairs of objects
that can be produced by joining nodes R and S is

γ(max (qR(r) | r ∈ R) ,max (qS(s) | s ∈ S)))

The MAX score values for the set of objects contained by a node is included as an
attribute on each aR-tree node, thus it is trivial to compute the upper bound for
any pair of nodes.

The ranked spatial join is a variant of the R-tree join algorithm. Due to the
similarities between the range search algorithm and the R-tree join algorithm, both
algorithms can be similarly augmented to include a score threshold and can also
order its output by score. Recalling that the R-tree spatial join algorithm operates
on a queue containing pairs of node entries, the ranked variant assigns a score to
each pair of node entries. The score of a pair of inner node entries is the γ-aggregate
of the MAX score of each node, while the score of a pair of leaf node entries is the
true score of the pair of objects under γ. This score can be used to prune or sort
pairs of node entries.

The R-tree spatial join algorithm can be augmented with a score threshold smin

so that it only outputs pairs of objects with a score greater than smin. It follows
the principle that any pair of node entries whose score is below smin is either a pair
of inner node entries that cannot produce pairs of objects with scores above the
score threshold, or is a pair of leaf node entries whose objects cannot be a pair with
score above the score threshold. Thus, any pair of node entries with score below
smin can be pruned from the join. This additional condition is similar to how pairs
of node entries can be pruned from the search for not intersecting with each other.
This method efficiently avoids doing unnecessary work to join objects based on both
their scores and spatial attributes.

The R-tree spatial join algorithm can be modified to output pairs of objects in
descending order of score by always dequeuing the pair of node entries greatest score.
It follows the principle that in the queue of a spatial join, the pair of objects with
the greatest score that has not yet been found may either be produced by the pair
of inner node entries with the greatest score, or is the pair of leaf node entries with
the greatest score. By always dequeuing the pair of node entries with the highest
score, queue entries are processed in best-first order which guarantees that pairs of
leaf node entries will be visited in descending order of score.

4.4.3 Distance-First Algorithm

The Distance-First Algorithm (DFA) is performed as a ranked spatial join on MAX
aR-trees that terminates when the first k results are found. Each input must be

30

CHAPTER 4. RANKED QUERIES 4.4. TOP-K SPATIAL JOINS

fully indexed by a MAX aR-tree, either using a previously constructed index or
by bulk loading an aR-tree prior to the join. When evaluating DFA against other
algorithms, the cost of constructing the aR-trees should be accounted for, as bulk
loading aR-trees prior to the join may be an expensive operation.

DFA works well if there is a correlation between the scores of the objects and their
locations. Because the aR-tree entries are clustered by their locations and not their
scores, pairs are pruned primarily by the spatial predicate, and not their ranking.
The objects with the highest scores that are close to each other are identified fast,
while the rest of the results may require expanding many pairs of nodes before
termination.

4.4.4 Block-based Algorithm

The Block-based Algorithm (BA) is similar to SFA by prioritizing objects with high
scores, but instead of pulling one object at a time, it pulls inputs in blocks. Each
pulled block is bulk loaded into an aR-tree then joined with all the blocks that have
been pulled so far from the other input using a series of ranked aR-tree joins. BA
keeps track of candidate top-k results, and can also use the score of the kth candidate
result to prune subtrees when performing each spatial join.

BA is an attempt to overcome SFA’s failure to quickly find spatial join results,
and DFA’s failure to quickly find pairs with high scores. Like the SFA, the cost of
probing in the Block-based Algorithm increases with each pulled item, although it
increases linearly with each block instead of logarithmically with each item. Still,
the BA generally exhibits better performance than the SFA due to a more efficient
joining method designed to terminate before the cost increases too much. When
considering the computational cost per item in the inputs, performing joins at block
level is more efficient than performing joins one item at a time because the spatial
characteristics of both inputs can be used more efficiently. Indexing blocks with bulk
loading is more efficient than dynamic insertion of each item, and joining aR-trees
is more efficient than probing once per pulled item. The number of aR-tree joins
that have to be performed per loaded block can be limited by observing the upper
bound for the score of any results that can be produced by joining a pair of aR-trees
to avoid any unnecessary joins.

4.4.5 Parallelizing top-k spatial joins

The Score-First Algorithm is not a target for parallelization due to its sequential
nature, its use of mutable R-trees and the complexity and inefficiency of supporting
concurrent aR-tree insertions and range searches. The performance of concurrent R-
trees falls quickly with the amount of insertions per range search [10]. Most GPGPU
research on R-trees is based on read-only R-trees, which makes the development of
mutable R-trees a challenge.

Ranked aR-tree joins may be parallelized like other branch-and-bound algorithms.
It is based on fine-grained priority queue operations, potentially with a significant
amount of enqueued items per dequeued item depending on the fanout and the
spatial predicate. A number of concurrent priority queues have been devised for
branch-and-bound algorithms that could be applied to the aR-tree ranked join to
allow multiple threads to enqueue and dequeue items from a shared priority queue.

31

4.4. TOP-K SPATIAL JOINS CHAPTER 4. RANKED QUERIES

Priority queues for GPGPU are much more constrained, however, and have received
limited research.

The Distance-First Algorithm is a more likely candidate for parallelization. The
initial bulk loading phase can be parallelized by bulk loading both inputs in parallel,
also using parallel bulk loading algorithms. Bulk loading algorithms such as STR
are based on sorting, for which a number of parallel algorithms exist, both for CPU
and GPGPU. The aR-tree join can be parallelized as described earlier.

The Block-based Algorithm is uniquely parallelizable by consisting of a series
of smaller, mostly independent tasks. First of all, the initial sorting of the inputs
can be parallelized. The rest of the algorithm can be parallelized using multiple
methods. One method involves following the sequential steps, but parallelizing each
step with parallel bulk loading and parallel ranked aR-tree joins. Another method
involves bulk loading and joining multiple aR-trees in parallel, only synchronizing
to pull blocks and to gather results.

32

Chapter 5

Sorting on CPU/GPU

Sorting is a vital part of the implementation of top-k spatial joins, both for sorting
items in order of score and for the sorting used to bulk load R-trees in the Sort-Tile-
Recursive algorithm. This chapter covers some sorting algorithms for CPU and GPU
and the family of heap data structures used to keep items in order. Bulk loading
based on the Sort-Tile-Recursive algorithm requires a series of sorting passes. The
Block-based Algorithm relies on a sorting algorithm for prior sorting of inputs. A
priority queue used for ranked spatial joins may be based on heaps, and top-k results
may also be accumulated in min-heaps.

Which sorting algorithm should be used depends on the desired parallelism, the
input size and whether the sorting will be carried out on GPU or on CPU. Quicksort
and its sibling introsort are particularly popular in CPU environments, and its design
allows for some optimizations that could be relevant to the Block-based Algorithm.
Radix sort is popular in GPU environments and is easily programmable and available
in CUB, a template library for CUDA. A particularly interesting option on GPUs
is the use of sorting networks.

5.1 Sorting algorithms

Sorting is an essential part of many algorithms, and thus is the subject of a large
volume of research. This section covers some prominent sorting algorithms for single-
threaded and multi-threaded systems as well as sorting algorithms for GPU. Indeed,
a number of sorting algorithms have been adapted for GPU and can outperform sort-
ing on the CPU. The ranking and applicability of various GPU sorting algorithms
can depend on a number of things [19]. Which sorting algorithm is optimal de-
pends the amount of arrays to sort, their sizes, and which resources that can be
allocated to sort them. For instance, small arrays that can fit in shared memory
in a CUDA thread group may be optimally sorted using a different algorithm than
arrays residing in global memory.

5.1.1 Quicksort

Quicksort is a divide-and-conquer sorting algorithm. Given an array of unsorted
items, the main procedure consists of selecting an item called the pivot then parti-
tioning the array into one sub-array of items ranking below the pivot and another

33

5.1. SORTING ALGORITHMS CHAPTER 5. SORTING ON CPU/GPU

sub-array of items ranking above the pivot. These sub-arrays are then sorted recurs-
ively using the same procedure. Some variants of quicksort may also select multiple
pivots instead of just one to divide the array into more, smaller sub-arrays. Quick-
sort is often used indirectly via introsort, which is a popular variant of quicksort
that delegates to alternative sorting algorithms for sub-arrays when the recursion
goes beyond a certain threshold or when the amount of items below a threshold to
improve general performance and the worst-case performance.

The choice of pivot is important for the performance of quicksort, because it
operates optimally when the pivot is exactly the median of the sub-array. The
median of medians is often used as an approximation, which is a method that samples
groups of items from the array, calculates medians for each group, then calculates
the median of the medians of each group.

Quicksort can be implemented both with and without parallelism. Task par-
allelism can be achieved by considering each operation to partition an array into
sub-arrays as a task that produces two more tasks to sort each sub-array. Each task
is associated with an independent part of the array, thus each task can be processed
in parallel without conflicting reads and writes to the same positions in the array.
Data parallelism can also be achieved for each task by comparing data items with the
pivot in parallel. The placement of items in the resulting partitioned sub-arrays is
dependent on the value of all items in the sub-array, thus some communication may
be necessary to compute the placement of each item in the resulting sub-arrays. The
placement can for instance be computed with a parallel prefix sum with an external
array.

In a parallel CPU environment, the potential for task parallelism is generally
dominant for quicksort except for in the earliest phases when the amount of tasks
is lower than the amount of threads. Assuming pivots are selected fairly, each task
produces two subtasks so that the amount of available tasks grows exponentially,
quickly producing enough tasks for each thread to have its own task to work on
in parallel. Compared to the synchronization required by data parallelism, the
overhead of managing and distributing tasks is low, especially when each thread has
its own task and can produce more tasks to process on its own.

5.1.2 Radix sort

Radix sort is a sorting algorithm that is particularly well suited for medium-to-large
sized arrays in global memory on GPUs. What distinguishes radix sort from many
other sorting algorithms is that it operates in O(nw) time where n is the amount
of items to sort and w is the amount of digits in each key. To apply this sorting
algorithm, it must be possible to sort it by some key that can be divided into digits.

CUB supports sorting values by key in radix sort, with arbitrary value types and
support for most primitive data types for keys via templating, and is therefore a
useful library for applications. For integral key data types, cheap bitwise operations
are used to group bits into digits for a configurable base which must be a power
of two. The dth digit in base b2 can be found by right shifting the integer by db
and using the first b2 bits as the digit. Interestingly, CUB even supports floating
point data types for keys, which would normally result in far too many digits for
an efficient radix sort, but by exploiting the IEEE 754 binary representations with
some bitwise transformations, floating point keys can be sorted like integral data

34

CHAPTER 5. SORTING ON CPU/GPU 5.1. SORTING ALGORITHMS

types.

5.1.3 Bitonic merge sort

Bitonic merge sort is a parallel sorting algorithm that has O(n log2(n)) comparators
but a delay of O(log2(n)) when comparators are applied in parallel. A comparator
is a directed connection between two array positions l and r. When applied, the
comparator ensures that the item in position l is smaller than the item in position
r by swapping the items if it has to. A sorting network is applied by applying a
series of fixed comparators, many of which can be applied in parallel. Due to the
massively parallel nature of GPUs, it is a popular method for sorting small arrays.
It is particularly applicable in shared memory.

5.1.4 Potential optimizations

To optimize the execution the Block-based Algorithm in general, some potential
optimizations to the application of sorting have been identified. Some of these
optimization options are used in the implementations.

Segmented sorting

A segmented sort operates on a single array divided into segments, and sorts each
segment. Segmented sorting occurs naturally in the Sort-Tile-Recursive algorithm.
In each sorting pass, STR partitions a number of large slabs into smaller slabs by
sorting each large slab. Instead of considering this as one sorting operation per slab,
it can be considered as one segmented sorting operation. The distinction between
multiple sorts and a segmented sort can be applied for some optimizations. Segmen-
ted sorting may avoid the overhead of allocating and freeing resources for multiple
invocations of a sort. It also implicitly enables task parallelism by considering the
sorting of each segment as a set of tasks.

Block sorting

It is possible to optimize Sort-Tile-Recursive and the Block-based Algorithm using
a relaxed sorting algorithm that arranges items into blocks. Most of the work
performed by the Sort-Tile-Recursive algorithm lies in sorting sequences of R-tree
records to partition them into fixed-size, spatially separated blocks. By fully sorting
the sequence, the records in each block also become internally sorted. However, Sort-
Tile-Recursive does not demand that the records inside each block are internally
sorted. The records of each block will subsequently either be assembled into nodes
or be sorted again by a different key, where the prior order of the records does
not matter. The Block-based Algorithm similarly pulls blocks from sorted inputs,
where the internal order of items in each block does not matter, because they will
immediately be bulk loaded into aR-trees.

We define the block sorting problem. Given a sequence S and a block size r, we
would like to partition S into a sequence of n = |S|

r
r-sized blocks B1, B2, . . . , Bn,

where each block Bi contains the ((i − 1)r + 1)th to (ir)th ranked items of S. An
item is the tth ranked item if it is the tth item of the sequence produced by fully
sorting S.

35

5.1. SORTING ALGORITHMS CHAPTER 5. SORTING ON CPU/GPU

A trivial but work-inefficient method to perform block sorting is by performing
a regular sort then dividing the array into blocks of size r. This naturally arranges
the items into their exact positions by rank, but the work spent on internally sort-
ing the items in each block is wasted and could be avoided with a relaxed sorting
algorithm. The amount of work that can potentially be saved per input item should
be proportional to the block size.

A related class of algorithms are partition-based selection algorithms, which are
algorithms for finding the kth ranked item in an array by partitioning the array
around the kth ranked item. The kth ranked item is placed as the kth entry in
the array, dividing the array into two sub-arrays, one on each side of the item.
Items placed in the sub-array before the kth item are items ranking before the item,
and items placed in the sub-array after the kth item are items ranking after the
item. Partition-based selection algorithms and block sorting algorithms are similarly
related to sorting algorithms with the goal of avoiding work by relaxing the internal
order of each partition. Divide-and-conquer partition-based selection algorithms like
quickselect and introselect work similarly to their sorting algorithm counterparts,
quicksort and introsort, but will only process a subtask if its range of items contains
the kth item. The order of items in partitions not containing the item is unrestricted
and can thus be ignored.

A particularly relevant variant of the partition-based selection problem is the
partition-based multi-selection problem, where multiple items are being selected
simultaneously. A block sorting problem can be modeled as a partition-based multi-
selection problem of selecting every rth item where r is the block size. A divide-
and-conquer partition-based selection algorithm can be modified to only process a
subtask if its range of items contains any of the items being selected.

Incremental sorting

Normally, the inputs of the Block-based Algorithm would be fully sorted prior to
prior to running the algorithm, which constitutes a fixed up front processing cost
which minimizes the processing cost of pulling a block. Knowing that the algorithm
strives to terminate as early as possible by pulling as few blocks as possible, it could
be more efficient to offset the processing cost to the operation of pulling a blocks.

An alternative method to retrieve items in descending order of score is by iter-
atively retrieving items from a max-heap. The heap is constructed prior in O(n)
time, then each item can be retrieved in O(log n) time. This offsets some of the
cost of sorting from prior processing to the process of retrieving each item. The
total amount of work used to retrieve items in descending order of score is then
proportional to the amount of items that are retrieved. Retrieving every item would
have a similar cost to a heapsort.

The incremental sorting problem is a variant of the partial sorting problem.
Partial sorting retrieves the k smallest or largest items of an array in order, which
can for instance be used for top-k queries. For an incremental sort, we are interested
in incrementally increasing the amount of items that are retrieved by a partial sort.

Quicksort can be modified to become an efficient incremental sorting algorithm
by storing information about the partitioning of items and incrementally working
on the first partition of unsorted items until the desired amount of items have been
sorted [15]. A naïve implementation of incremental sorting based on quicksort would
be to perform a partial quicksort for the next m items each time k is increased by

36

CHAPTER 5. SORTING ON CPU/GPU 5.2. HEAPS

m. It will be observed that each time a partial quicksort is performed, a number
of items beyond the ones returned from the partial sort will be moved around and
placed into partitions. The information about these partitions would be lost each
time the partial sort is complete, therefore work is wasted on re-partitioning already
partitioned items each time another partial sort is performed. By storing information
about the partitioning, each partial sort can pick up where the last one left off.

It might be possible to parallelize incremental quicksort similarly to how a regular
quicksort is parallelized, but not without tradeoffs. The amount of parallelism for
the minimal amount of work required to sort another m items from an array of n
items is mostly limited by m, not n. Task parallelism would be achieved only for
sub-arrays smaller than m, and as the sub-array size trends towards m, the level of
data parallelism decreases quickly. Another alternative would be an asynchronous
incremental sort where one thread incrementally sorts the array and reports its
progress to consumer threads.

5.2 Heaps
A heap is a balanced tree structure that satisfies the heap property : The value of
a parent node is smaller than or equal to the value of its children. More generally,
a heap satisfies the heap property with respect to a desired order. The min-heap
follows an ascending order, matching the previous description of the heap. The max-
heap follows a descending order, so that the value of a parent node is larger than
or equal to the value of its children. The heap property ensures that the smallest
or largest value in the heap always resides in the root node. Thus, using a heap to
contain a set of ranked values makes it trivial to find the smallest or largest value by
looking at the root node. The operations that modify the heap must only maintain
the heap property, which is generally cheaper than maintaining a fully sorted list.

The basic operations that a heap is designed for is pop and insert, which removes
and inserts values in the heap respectively. Depending on what type of heap it is, pop
retrieves and removes either the smallest or the largest value in the heap. Insert
places a new value into the heap. We can also consider the peek and pop-insert
operations. Peek simply returns the smallest or largest value in the heap without
removing it. Pop-insert has the same effect as a pop followed by an insert, which
effectively replaces the smallest or largest value in a single operation. It differs from
performing a pop and an insert in sequence by allowing optimized implementations.

Heaps are the basis for creating priority queues, which are essential for branch-
and-bound algorithms. If a heap contains a set of tasks with priorities, a max-heap
can order these tasks by descending priority, so that the task with the greatest
priority in an ever changing set of tasks can always be retrieved. If processing a task
produces additional tasks, they can be inserted back into the heap.

5.2.1 Parallel heap

The parallel heap [7] is a heap variant where each node contains multiple values
and where each node can have many children. Instead of satisfying the usual heap
property, it satisfies a heap-like property : The smallest value of a parent node is
smaller than or equal to the smallest value of its children. The parallel heap supports
the same operations that a regular heap does, but is designed specifically for CUDA.

37

5.2. HEAPS CHAPTER 5. SORTING ON CPU/GPU

Even though it is based on device memory, it creates efficient device memory access
patterns and uses the parallel execution and efficient cooperation within warps to
its advantage.

The parallel heap is designed so that a warp of threads cooperatively owns the
heap, where all owning threads must cooperatively participate in each insert and
pop operation. This distributes the work of each operation between the threads,
but also means that operations are not concurrent.

The implementation of the parallel heap revolves around an efficient method of
inserting an item into a sorted array of 32 values using warp ballots and warp shuffles.
Each thread in the warp uses private memory to hold its own value from the array, so
that the first thread holds the first value and the last thread holds the last value. The
method places the value into the correct position in the array by shifting the following
values along and popping the last value as an excess value. First, each thread
compares the item to be inserted with its own value in parallel. The comparisons
are used as predicates for a ballot, resulting in a 32-bit integer whose N th bit is set if
the N th value in the array is smaller than the value to be inserted. This results in an
integer whose binary representation may be 00000001111111111111111111111111,
which indicates that the value is greater than the first 25 values in the array, and
smaller than the remaining values. The value therefore should be placed in the 25th

position, after all smaller values and before all larger values. Generally, the value
will be inserted into the position following the most significant 1. The bfind PTX
instruction can be used to retrieve the position of the most significant 1 to determine
where the value should be inserted. A shuffle up is then used to shift the following
values between threads, and a shuffle may also be used to broadcast the excess value
to all threads if it should be used in later processing.

A particularly efficient choice for the implementation of multiple values per node
is therefore using an arrays where each thread stores a value from each node. Each
node in the parallel heap has a sorted array of 32 values, where the first value
(belonging to thread 0) is the smallest value. Thus, to satisfy the heap-like property,
the first value in the array of a parent node must be smaller than or equal to the
first value of the arrays of its children. For a parallel heap with capacity for n nodes,
the values are laid out in memory so that each thread has its own local array of n
values to store a value from each node.

Each thread uses local memory to store its own value from each node array, while
a copy of the smallest value of each node is stored in shared memory to accelerate
heap operations. Since local memory is stored in device memory, the capacity of the
heap is not limited by the availability of registers or shared memory in each SM, but
it suffers from the latency of accessing device memory. Given that the values are
stored in local memory, threads can only access their own values, and must otherwise
use shuffles to access values from other threads. By storing the first value in each
array, thread 0 is given the special responsibility of storing the smallest value in each
node, which is often used for heap operations. Thread 0 must therefore maintain
the smallest values in shared memory, so that all threads may cooperate for heap
operations involving the smallest value of each node without requiring shuffles and
device memory accesses for each value.

The parallel heap has an unusually large arity of 32, meaning that each parent
node has 32 children. This significantly decreases the height of the heap but increases
the work required to determine which child of a parent node has the smallest value.

38

CHAPTER 5. SORTING ON CPU/GPU 5.2. HEAPS

Decreasing the height of the heap results in fewer hops between the bottom and the
top of the heap during heap operations, which decreases the cost of accessing the
local memory when hopping between nodes. When the heap has 1056 items or less,
only one hop is required between the root node and each leaf node. The child with
the smallest value can be found using parallel warp-level reduction on the smallest
values, all of which can be retrieved from shared memory. This makes retrieving the
child with the smallest value comparatively efficient.

5.2.2 Top-k accumulator min-heaps

Heaps can be used to accumulate the top-k items for a sequence of items. Given
a sequence of ranked items and a heap with capacity for at most k items, the set
of top-k items for items pulled from the sequence is recorded incrementally in the
heap with each pulled item. The first k pulled items are inserted into the heap
unconditionally until the heap is at capacity. When a new item is pulled when the
heap is at capacity, it must replace the minimum item in the in the current set of
top-k items with a pop-insert, but only if it is greater than the current minimum
item in the heap. Using a min-heap, the minimum item always resides at the top,
therefore any new item has to be compared with an item that is found in constant
time. If the new item is greater than the minimum item in the heap, the former
minimum item in the top-k result is replaced in O(log k) time.

The cost of accumulating the top-k result depends on how often items have to
be replaced. In the worst case, the sequence contains items in increasing order,
which requires replacing the minimum item each time a new item is pulled. In the
best case, the sequence contains items in descending order, which never requires
replacing the minimum item. Generally, the more the sequence trends towards a
descending order, the better the accumulation performs as fewer swaps have to be
made to maintain the heap property.

A top-k accumulator min-heap not only incrementally determines the top-k
items, it also incrementally determines an increasing lower bound for the full top-k
results. When at least k items have been pulled, the minimum item in the heap is a
lower bound for any items not pulled so far that may become part of the top-k result.
When the items of the sequence are produced incrementally, knowledge about the
lower bound can be used to prune sets of items that cannot be part of top-k result.
If it can be determined that there are no more items to pull above the lower bound,
the heap contains the full top-k result and the accumulation may terminate.

The current top-k items can be retrieved in O(k log k) time by iteratively popping
each item from the heap, similar to the second phase of heapsort. For an array-based
heap, the top-k items can be retrieved in-place in descending order by repeatedly
swapping the last item in the heap array with the first, shrinking the heap by one
then propagating down until the heap is empty.

39

Chapter 6

Implementation

This chapter describes a single-threaded, a multi-threaded and a CUDA implement-
ation of the Block-based Algorithm for top-k spatial joins based on the concepts and
methods described in previous chapters.

The CUDA implementation of the Block-based Algorithm is based on the work
in the project preceding this thesis [1]. The project laid the groundwork for a CUDA
implementation of the Block-based Algorithm, with some parts that were implemen-
ted and some parts that were planned, but did not deliver anything measurable. This
chapter describes a complete CUDA implementation of the Block-based Algorithm
in more detail.

The single-threaded and multi-threaded implementations were developed to com-
pare with the CUDA implementation. The single-threaded implementation is mostly
faithful to the original description of the Block-based Algorithm by Qi et al. with
some implementation details that are shared between all implementations. The
multi-threaded implementation is an adaptation of the Block-based Algorithm that
parallelizes both the prior sorting and the joining of blocks. The multi-threaded
implementation and the CUDA implementations parallelize in similar ways, but the
CUDA implementation does it to a much higher degree.

We consider each input as an array of items, each with an MBB, a score value
and a data value, and the output as an ordered array of up to k items, each with a
score and a pair of data values. An item in the output array is created by joining
a pair of input items, computing and storing their aggregate score according to the
score aggregate function γ and storing the data value of both input items. Only
pairs of input items whose MBBs satisfy the spatial join predicate φ may be joined
to produce an output item.

The implementation is written in C++ with the extensions to the language
provided by CUDA. Single-threaded and multi-threaded implementations are writ-
ten following the C++ 17 standard, using a few modern features that cannot be used
with CUDA. The CUDA implementation is written following the C++ 14 stand-
ard, which is the most modern version of C++ supported by CUDA at the time of
development.

Templating is used to support various dimensionalities and various combinations
of data types for input and output data. The element type is a numeric data type
used to represent the bounds of MBBs such as single-precision floating point numbers
or integers. The key type is used both for the score values of input items and the
score values of output items, which is restricted to a set of integer and floating

40

CHAPTER 6. IMPLEMENTATION 6.1. LINEARIZED AR-TREE

point data types. The data type is arbitrary, but should generally be a small data
type to minimize the memory requirements. Therefore, if our top-k spatial join
implementation should be used in an application that has a significant amount of
data for each input item, the application should minimize the amount of data used
in the top-k spatial join by using a simple data type such as integer keys to retrieve
additional data from a database based on the data returned from the top-k spatial
join.

For the sake of simplicity, this chapter describes an implementation of top-k
spatial joins where higher scores are always better for both input items and output
items for simple aggregate functions such as SUM, MAX or weighted sums. Using
additional templating, the implementation actually supports different orders, both
for each input and the output to support more complex score aggregate functions.

6.1 Linearized aR-tree
The aR-tree implementation is designed for device memory on the GPU, but is just
as suitable for CPU usage. For top-k spatial joins, we will be executing ranked spa-
tial joins on aR-trees. aR-trees will be traversed in order of score, causing scattered
random reads to access the nodes in memory, which means operations on aR-trees
on the GPU are expected to be memory bound. Therefore, special care is required
to achieve good random read performance when reading aR-tree data from memory.
Specifically, the reads should be aligned with the cache lines and memory transac-
tions of the GPU.

Each item of a node in the linearized aR-tree, whether it is an inner node or a leaf
node, is represented as a record in an array that contains all records of an aR-tree.
The array is divided into h segments, each larger than the former, corresponding
to the h levels of the R-tree. The segments can be laid out in any order. In the
CPU implementation, segments are laid out in descending order of level so that the
first segment of the array contains records belonging to the root node, and the last
segment contains all the leaf node records of the R-tree. In the GPU implementation,
the segments are laid out in ascending order of level. Each segment is divided into
r-sized blocks, each block corresponding to one node at the segment’s level in the
aR-tree. The order of the blocks within each segment is unrestricted. By storing
the entire R-tree in a single array, blocks can be addressed by their position in the
array, which uses less memory than 64-bit pointers. It also simplifies the allocation
of memory for the R-tree.

Figure 6.1: R-tree memory layout with r = 3

Each record in the array is either an inner node struct {mbb, score, idx} or a
leaf node struct {mbb, score, data}. Thus, all records have {mbb, score} in common,

41

6.1. LINEARIZED AR-TREE CHAPTER 6. IMPLEMENTATION

while a union is used to store either the data or idx field. For leaf node records, the
mbb and score fields contain the direct MBB and score of an entry in the R-tree,
while the remaining data field is used to produce query results. The data field can,
for instance, be an identifier for an item in a database that can be used to retrieve
more data for query results. For inner node records, the mbb field contains the MBB
of the node that it points to, and the score field contains an aggregation of the score
of its children. The idx field of an inner node record identifies the block in the R-tree
array that contains all the records of the node.

Each block has a fixed size of r records but is not necessary fully packed. A fully
packed node has a block full of records, while a non-full node leaves its rightmost
records uninitialized as padding. The bulk loading method may ensure that all
blocks but the final block of each segment are fully packed, or that all blocks are
fully packed. This ensures that the number of records in each node does not have
to be stored. Instead, the total amount of records in a segment fully describes the
distribution of records in blocks. The amount of blocks in a segment of size |S| is⌈
|S|
r

⌉
, where the amount of records in the final block is ((|S| − 1) mod r) + 1. To

access the MBBs and score (and child node references) of all the records of a node,
all that has to be accessed is one fixed size block. By padding the nodes to a fixed
block size, accessing all records of a node can also be done safely by accessing a
whole block, which will never be out of bounds for non-full nodes. For a sufficiently
large input, the size of the padding should be negligible.

The R-tree memory layout is designed for storage in device memory on the GPU
by special alignment. The R-trees are in generally expected to be too large to
reasonably fit in the limited space of shared memory and registers, especially when
competing with other data structures for space. Therefore, special attention is given
to the alignment and size of the blocks of the record array to optimize accessing the
R-tree in device memory. If full blocks are accessed in bulk, the blocks should be laid
out so that they are naturally aligned with the memory transactions between the L1
cache, L2 cache and device memory. This ensures that the access latency remains
low. Therefore, a strategic value for the fanout r has to be chosen so that the size
of each record multiplied by r is a multiple of the transaction size. Depending on
the size of each record, this may also involve adding padding to each record.

The CPU application of linearized aR-trees is quite flexible due to the versatility
of the CPU and its memory, unlike the CUDA application of them which significantly
restricts the fanout and the amount of objects in an R-tree, and also requires both
the fanout and the amount of objects in an R-tree to powers of two. The limitations
on the CUDA application are imposed by the limited availability of shared memory
and functions that operate most efficiently on inputs whose sizes are powers of two.
More complex and potentially less efficient methods would have to be used to relax
these restrictions, which could become future work.

6.1.1 Computing R-tree layouts

Prior to building an R-tree, a segment layout may be computed as a function of
the size of the input n and the fanout of the R-tree r. Given an input size n and a
fanout of r, the Layout Algorithm produces a segmentation of an R-tree array that
fits n objects, expressed as a list of segment sizes and offsets. The layout is only
a function of the size of the input and the fanout of an R-tree that is to be bulk

42

CHAPTER 6. IMPLEMENTATION 6.1. LINEARIZED AR-TREE

loaded. The layout is not dependent on the actual data in the R-tree. Therefore, for
repeated use of the same R-tree configuration on different R-trees, the segmentation
can be precomputed and re-used.

Algorithm 6.1 Layout Algorithm. n is the amount of entries in the R-tree, and r
is the fanout of the R-tree.
1: function Layout(n, r)
2: Initialize L as list of dlogr(n)e items
3: i← 0
4: repeat
5: n← dn

r
e

6: Li.size← n× r
7: i← i+ 1
8: until n ≤ 1
9: o← 0

10: repeat
11: i← i− 1
12: Li.offset← o
13: o← o+ Si.size
14: until i = 1
15: return L
16: end function

The intuitive explanation for the Layout Algorithm is that n R-tree node records
must be distributed into at least

⌈
n
r

⌉
nodes if the fanout of the R-tree is r. For an

R-tree with n objects, n leaf node records exist on the bottom level. The leaf node
records are distributed into

⌈
n
r

⌉
leaf nodes, meaning there must be

⌈
n
r

⌉
inner node

records on the second level. The inner node records on the second level must be
similarly distributed into

⌈
dnr e
r

⌉
inner nodes. If the amount of records in a level is

below r, it must contain the records of the root node. Thus, the amount of records
is divided by the fanout until the records form the records of the root node. In the
basic case of n ≤ r, the R-tree will only be a root, and the algorithm returns the
layout of a single segment for the root with a size of r and an offset of zero. When
n > r, the algorithm returns a layout of multiple segments. The algorithm computes
the offset of each segment as the cumulative size of previous segments. Because L1

is the last segment of the array, the total size of the array can be computed as
L1.offset + L1.size.

The order of segments in the R-tree record array is of little technical importance,
but the Layout Algorithm lays them out so that we intuitively “descend” into the
array when descending down the R-tree. The first segment of the array contains the
root node records and the last segment of the array contains the leaf node records.

The Layout Algorithm is inherently sequential and is also not a target for par-
allelization. The computed layout is a small list that only has to be computed
once for each R-tree configuration, thus the performance of the algorithm is largely
unimportant.

43

6.2. BLOCK SORTING CHAPTER 6. IMPLEMENTATION

6.2 Block sorting

Block sorting is an optimization for the sorting used in Sort-Tile-Recursive and the
prior sorting in the Block-based Algorithm. The Sort-Tile-Recursive implementation
uses segmented block sorting, while the Block-based Algorithm implementation does
not. We describe a segmented implementation of block sorting, considering a non-
segmented sort to operate on a single segment.

The CPU implementations of segmented block sort algorithms are based on the
MSVC implementation of introsort. The algorithm uses the term work item for an
object that identifies a segment of the array to partition which may, when processed,
produce additional work items. When processing a work item, a pivot is selected
using the median of medians approach and the segment is partitioned around the
pivot. A work item may be created for each partition, but only if the partition
overlaps multiple blocks. If the size of a work item is below a threshold it is simply
sorted using insertion sort.

Single-threaded implementation

The single-threaded variant of the segmented block sort algorithm iterates over each
segment and uses recursion to process work items produced by other work items.
This keeps the collection of work items on the stack, which may overflow. The risk
of stack overflow is low because the height of the stack is generally O(log n), but it
may overflow in a worst-case scenario causing the recursion to go too deep. This is
not accounted for in the implementation like it would be for introsort, but it should
be viable to fall back to heapsort if there is a risk of encountering a worst-case input.

Multi-threaded implementation

The multi-threaded variant of the segmented block sort algorithm uses the same
concept of work items from the single-threaded implementation, but is parallelized
using a work stealing scheduling strategy. It starts with one shared work queue
containing a work item for each segment and a (mostly) lock-free single-producer,
multiple consumer work queue per thread. Each thread owns its own work queue
and is the only thread that can produce items for that queue, but any thread may
retrieve work items from the queue of any thread. A thread will primarily append
and retrieve work items from its own work queue, but may also attempt to steal
work items from any other work queue. Whenever a thread’s work queue is empty,
the thread will attempt to take a work item from the shared work queue to start
processing the next segment, and if there is no work item to be taken, the thread
will attempt to steal work from other threads. Work stealing is therefore only done
when a thread cannot produce more work on its own. This offloads the work from
congested threads, ensuring steady progress on the sort.

CUDA implementation

We have not implemented a CUDA version of block sorting. The algorithms relying
on block sorts are instead based on normal sorting algorithms in CUDA. For small
arrays such as the ones used in tile sorting, bitonic merge sort is used, operating

44

CHAPTER 6. IMPLEMENTATION 6.3. AR-TREE BULK LOADING

entirely within shared memory. For large arrays such as the ones used to sort the
inputs of the Block-based Algorithm, the radix sort from CUB is used.

6.3 aR-tree bulk loading

A major part of the computation in the Block-based Algorithm is a number of small
bulk loads of aR-trees. Bulk loading can be performed both on the GPU and on the
CPU with slightly different implementations of Sort-Tile-Recursive. Only the CPU
implementation uses the layouts from the aforementioned layout algorithm for bulk
loading, while the CUDA implementation only supports fanouts and aR-tree sizes
that are powers of two with a specific layout.

The multi-threaded implementation of Sort-Tile-Recursive is not used by the
multi-threaded implementation of the Block-based Algorithm, but we describe it
anyway due to its relevance to the Distance-First Algorithm. Assuming aR-trees
have not been constructed prior to the join, the Distance-First Algorithm must
perform two large bulk loads which can be parallelized.

6.3.1 Spatial partitioning

The spatial partitioning problem is the following: Given a set of spatial objects,
we would like to partitions the objects into spatially separated groups of objects.
Each object must be spatially close to objects in the same group, but spatially
distant from objects in other groups. This problem must be solved as part of the
Sort-Tile-Recursive algorithm to partition sets of R-tree objects into leaf nodes and
to partition sets of leaf nodes into inner nodes. We are particularly interested in a
solution that can distribute MBBs into fixed-size groups of r according to the fanout
of the R-tree to match the linearized layout.

The Tile Partition Algorithm takes an array of d-dimensional points and parti-
tions all the points into partitions of size r by partitioning the space into tiles where
each tile contains a group of r distinct points. It is an important building block for
the Sort-Tile-Recursive implementation. By representing an array of node records
as an array of simple d-dimensional points, the algorithm can be used to arrange the
records into r-sized spatially separated groups of records which can be turned into
spatially separated nodes. In our implementation, the bottom point of the MBB
of each record is used to represent each record as a point for the Tile Partition
Algorithm.

The algorithm works by iteratively dividing the input and space into smaller
segments, considering one spatial dimension at a time. In the two-dimensional case,
the algorithm creates two-dimensional tiles by first dividing the input into slice
segments, then dividing each slice segment into tiles. In the three-dimensional case,
the algorithm creates three-dimensional blocks by first dividing the input into slab
segments, then dividing each slab segment into pillar segments, then dividing each
pillar segment into block segments.

s is the divisor, which is the amount of spatially separated sub-segments that
the algorithm will divide each segment into for each dimension. It is the smallest
integer s satisfying rsd ≥ |S|. In each iteration, the algorithm will attempt to divide
each segment into s spatially separated segments by sorting by the next dimension.

45

6.3. AR-TREE BULK LOADING CHAPTER 6. IMPLEMENTATION

Algorithm 6.2 Tile Partition Algorithm. S is a list of d-dimensional points, r is
the block size, and d is the number of dimensions.
1: function TilePartition(S, r, d)
2: Initialize K as temporary list of |S| items

3: s←
⌈

d

√
|S|
r

⌉
4: l← rsd

5: for i← 0, d− 1 do
6: S ← SegmentedBlockSortByDim(S, l, d)
7: l← l

s

8: end for
9: return S

10: end function

The last or only segment may be smaller than the current segment size l, which is
initialized as rsd.

1

2

3

4

5

6

7

8

Figure 6.2: Tile partitioning

Figure 6.2 demonstrates an application of tile partitioning for 25 two-dimensional
points partitioned into groups of r = 3. It uses a divisor of 3. The points are first
partitioned into slabs of 32 = 9 points each by x coordinate (vertical lines left to
right), then each slab is further partitioned into tiles of 3 by y coordinate (horizontal
lines top to bottom). All but the final slab and the final tile are fully packed with
points.

Single-threaded implementation

The single-threaded implementation of the Tile Partition Algorithm simply re-
peatedly calls the single-threaded segmented implementation of the block sorting
algorithm with decreasing block sizes and segment sizes. Each time the sorting im-
plementation is called, it is given a comparator that compares records by the bottom
coordinate in the current dimension.

46

CHAPTER 6. IMPLEMENTATION 6.3. AR-TREE BULK LOADING

Multi-threaded implementation

The tile partitioning implementation is expected to be called multiple times, and
the segmented block sorting algorithm it relies will also be invoked multiple times
per call. To avoid the overhead of creating and freeing threads for each call to
the parallel segmented block sorting algorithm, both the segmented block sorting
algorithm and the tile partitioning algorithm are designed to work with a thread
pool to keep a fixed amount of threads alive. The thread pool is a fork-join pool,
meaning that multiple threads are utilized by submitting tasks to the fork-join pool
that each thread will execute in parallel.

CUDA implementation

Unlike the CPU implementation which uses a specialized block sorting algorithm,
the CUDA implementation uses a regular segmented sorting algorithm. The CUDA
implementation of tile sorting is based on a parallel segmented bitonic merge sort
designed to operate in shared memory with one thread per input. This limits the
size of the input, but ensures that items can move efficiently in the sorting network
without accessing device memory.

6.3.2 Parent creation

The R-tree is built from the bottom up. Once the R-tree node records on level
i have been partitioned into tiles of size r, they are ready to be assembled into
inner node records for level i+ 1. Parent creation takes an input segment of R-tree
node records and produces an output segment of inner node records. It does not
sort the input records, but rather reduces each block of records from a sorted array
into one parent record per block. It calculates and stores the aggregate scores and
the aggregate MBBs as an inner node record in the output segment. The score
aggregation function is used to calculate an aggregate score for each node.

Algorithm 6.3 Create Parents Algorithm. S is a segment of the R-tree record
array, r is the block size and γ is the score aggregation function.
1: function CreateParents(S, r, γ)
2: Initialize O as list of d|S|/re items
3: for all i ∈ 0, 1, . . . , d|S|/re − 1 do
4: j ← ir
5: k ← Min(j + r, |S|)
6: Oi.mbb← Reduce(Mbb, {Sj.mbb, Sj+1.mbb, . . . , Sk−1.mbb})
7: Oi.score← Reduce(γ, {Sj.score, Sj+1.score, . . . , Sk−1.score})
8: Oi.idx← j
9: end for

10: return O
11: end function

The algorithm is based on the reduce primitive, represented here as a higher-
order function.

The parent creation problem is embarrassingly parallel. There is no dependency
between each block of r input items and each output item. Not only can the al-

47

6.3. AR-TREE BULK LOADING CHAPTER 6. IMPLEMENTATION

gorithm be parallelized per output item, it can also be parallelized for each input
item with parallel reductions.

CPU implementation

The CPU implementation operates generically using an input iterator for S and
output iterator for O. Using memory pointers as iterators, the algorithm can directly
read and write segments in the R-tree record array. S points to the first record of
the input segment, and O points to the first record of the output segment.

To parallelize the algorithm, output items are computed and written in parallel.
Generally, there will be many more output items than there are threads, and the
fanout will be too low to benefit from parallel reductions on the CPU. Therefore, the
parallel CPU implementation will only parallelize the for loop and not the reduction.
Given p threads, the output is divided into p evenly sized partitions that each thread
can compute in parallel.

CUDA implementation

The CUDA implementation can exploit the high parallelism, not only by assigning
a thread to each output item, but rather by assigning a thread to each input item.
The CUDA implementation restricts the fanout r to a power of two no larger than
32. This enables the use of warp-level parallel reduction, which is used with one
item per thread to compute the MBBs and aggregate scores without any thread
block synchronization.

6.3.3 Sort-Tile-Recursive

Finally, the Sort-Tile-Recursive algorithm can be fully described. Given a list of
objects I, each with an MBB, a score and some data value, the algorithm produces
an array of aR-tree records according to the layout L containing all the input objects
as leaf node records. First, the STR algorithm copies each input object as a leaf node
record in the bottom segment of the aR-tree record array. For all but the last segment
(the root level), the algorithm partitions the node records in the current segment
into tiles using tile partitioning, then builds the next segment of node records for
the next iteration. The last level is the root level and, therefore requires no tile
partitioning, nor has any level above it to be built, so the algorithm terminates once
the root level is built.

Single-threaded implementation

The single-threaded implementation of Sort-Tile-Recursive is quite close to the de-
scribed algorithms. Given a pre-allocated array of aR-tree records, it starts by copy-
ing all the input item as aR-tree leaf records and inserting them into the bottom
segment. It operates in-place in the aR-tree record array by carrying out tile par-
titioning on each segment in-place in the aR-tree record array. Parents are created
using a simple nested loop.

48

CHAPTER 6. IMPLEMENTATION 6.3. AR-TREE BULK LOADING

Algorithm 6.4 Sort-Tile-Recursive. L is the layout of the R-tree, I is the list of
objects in the R-tree, r is the block size, d is the number of dimensions and γ is the
score aggregate function.
1: function SortTileRecursive(L, I, r, d, γ)
2: Initialize R as list of L0.offset + L0.size items
3: for all i ∈ 0, 1, . . . , |I| − 1 do
4: RL0.offset+i.mbb = Ii.mbb
5: RL0.offset+i.score = Ii.score
6: RL0.offset+i.data = Ii.data
7: end for
8: for i← 0, |L| − 1 do
9: j0 ← Li.offset

10: k0 ← j0 + Li.size− 1
11: j1 ← Li+1.offset
12: k1 ← j1 + Li+1.size− 1
13: Rj0,j0+1,...,k0 ← TilePartition(Rj0,j0+1,...,k0 , r, d)
14: Rj1,j1+1,...,k1 ← CreateParents(Rj0,j0+1,...,k0 , r, γ)
15: end for
16: return R
17: end function

Multi-threaded implementation

Each step in Sort-Tile-Recursive is inherently sequential, as each step depends on
the results of the previous step, but each step can be parallelized. A fork-join
pool is employed to utilize a fixed amount of threads when calling the parallel
implementations of TilePartition and CreateParents. The parallelism of

The multi-threaded implementation of Sort-Tile-Recursive, however, is not used
by the multi-threaded implementation of the Block-based Algorithm. The Block-
based Algorithm will instead attempt to perform multiple bulk loads in parallel
using the single-threaded implementation. The usefulness of the multi-threaded
implementation is instead that it may be used by the Distance-First Algorithm to
speed up bulk loading the two aR-trees prior to the join.

CUDA implementation

The CUDA implementation of Sort-Tile-Recursive is based on a workspace, which
is a large array of aR-tree records contained in shared memory. The workspace will
be used to carry out sorting in shared memory and has to be large enough to fit at
least the bottom segment (the largest segment) of the aR-tree record array that it
creates. To start, the input items are read from global memory into the workspace
as aR-tree leaf node records. The items in the workspace are then sorted using tile
partitioning, then written out to global memory as the bottom segment. The records
in the workspace are then assembled into nodes by creating an inner node record for
each block of r records in the workspace. The inner node records are written back
into the workspace, overwriting the previous segment of records, creating a smaller
array that is ready to be sorted like the previous one. This is repeated until the
array of records in the workspace is small enough to be the root segment.

49

6.4. RANKED AR-TREE JOIN CHAPTER 6. IMPLEMENTATION

The segments of the aR-tree are written to a pre-allocated array of aR-tree
records in the order they are produced. The bottom segment is sorted and written
first, and the root segment is written last without any sorting. Instead of using a pre-
calculated layout, each segment is written contiguously into the array, calculating
the offsets and sizes of the segments on the fly.

The design of the CUDA implementation restricts both the size of the input and
the fanout. Both the size of the input and the fanout must be powers of two. To
create the inner node records using warp-level reductions, the fanout can also be no
larger than 32. The maximum size of the input is determined by the availability
of shared memory and the size of each record in memory. The size of a record
depends on the dimensionality and the data types used, while the availability of
shared memory depends on a number of parameters. The workspace can generally
be expected to fit at most 1024 records, creating aR-trees containing up to 1024
objects.

6.4 Ranked aR-tree join
Given two aR-trees L and R, the Ranked aR-tree Join Algorithm joins the aR-trees
and outputs at most k score-data tuples with the best scores according to the spatial
join predicate φ and the aggregate score function γ. For the purposes of using ranked
aR-tree joins as part of the Block-based Algorithm, instead of defining the algorithm
as returning an ordered list of top-k items, we define the algorithm to output its
results into the min-heap O with a fixed capacity for at most k results, with a given
score threshold θ. For a normal top-k join on two aR-trees, the algorithm is given an
empty min-heap for results and a score threshold initialized to the smallest possible
value of the score data type such as −∞. By using a min-heap to store the results,
they can be retrieved in order after a ranked aR-tree join by popping each item in
the output heap in sequence.

In situations where a ranked aR-tree join is only part of a larger top-k spatial
join such as in the Block-based Algorithm, the input to the Ranked aR-tree join
Algorithm may differ. The algorithm may be given a heap that contains prior results
from other joins, and the score threshold may be initialized to some other value as
a result. The caller of the Ranked aR-tree join Algorithm may also know a score
threshold greater than the kth greatest score in the output heap. Prior candidate
results and greater initial score thresholds cause the the algorithm to prune pairs
of objects in the search space more aggressively, reducing the time it takes for the
algorithm to terminate.

The algorithm operates on a priority queue. Each item in the queue refers to
two intersecting nodes, one from L and the other from R. The priority queue is
initialized with references to the root nodes of L and R. In each iteration, the
top item of the queue is dequeued, then all records of the node of A and B are
combined. If the pair of nodes are inner nodes, the pairs of children of NL and NR

whose MBBs satisfy the spatial join predicate and whose aggregate scores are above
the score threshold are placed into the priority queue. If the pair of nodes are leaf
nodes, valid pairs of input items are instead inserted into the output min-heap.

The algorithm eagerly places results into the output heap and continuously up-
dates the score threshold θ until the algorithm may terminate. Before the algorithm
terminates, all results in the output are called candidate results, because they may

50

CHAPTER 6. IMPLEMENTATION 6.4. RANKED AR-TREE JOIN

be replaced later by the pop-insert operation that is used when the output heap is
at capacity. Until the output heap contains k candidate results, θ remains at its
initial value. The score threshold θ then is continuously updated to represent the
kth greatest score seen so far when new candidate results are found. When there are
no items in the priority queue with a score above θ, the join can no longer produce
any candidate results with a score above the score threshold, so the algorithm ter-
minates. The candidate results in the output heap then become the true results of
the ranked aR-tree join.

6.4.1 Single-threaded implementation

The single-threaded implementation is based on the priority queue in the C++
standard template library and a binary heap for its outputs. Unlike the algorithm
that was described, the implementation actually supports joining aR-trees of dif-
ferent heights. Items in the priority queue use a {score, levelL, idxL, levelR, idxR}
struct, where each pair of level and idx fields identifies an aR-tree node record by
its level and its position in the linearized aR-tree node record array. Items in the
priority queue may therefore refer to both nodes and input items.

When an item is retrieved from the priority queue, its score is compared with the
score threshold to determine if the function should terminate. The implementation
will first fetch both records from the aR-tree record arrays, then determine two
arrays of records to join based on the records that were fetched. If a node retrieved
from the queue is an inner node record (as determined by the level field), its block
of child records is used as an array for the join. If a node retrieved from the queue
is otherwise a leaf node record, the record itself is used as the only entry of an array
for the join. When the two arrays have been determined, a nested loop is used to
join pairs of records satisfying the spatial join predicate with a score above the score
threshold. If either or both records in a joined pair are inner node records, a pair of
references to records is inserted into the priority queue. Only if both records are leaf
node records will items be inserted into the output heap. The items in the output
heap use a {score, dataL, dataR} struct. The output heap item struct is essentially
the same struct that is used for the top-k spatial join output.

6.4.2 Multi-threaded implementation

The Ranked aR-tree Join Algorithm is not very parallelizable on the CPU, and is
therefore not a target for parallelization. The issue is that the algorithm is based
entirely on many fine-grained tasks that have to be inserted into and popped from the
priority queue, which is difficult to do concurrently. Concurrent priority queue and
heap data structures exist, but they are complex and would likely incur a significant
synchronization overhead due to the sheer volume of operations.

Parallelization can instead be achieved by performing multiple aR-tree joins using
the single-threaded implementation in parallel. This is a viable option for the Block-
based Algorithm, which consists of a series of aR-tree joins.

6.4.3 CUDA implementation

The CUDA implementation uses only 32 threads, which is the exact amount of
threads required to operate the heap implementation that it is based on for its

51

6.4. RANKED AR-TREE JOIN CHAPTER 6. IMPLEMENTATION

Algorithm 6.5 Ranked aR-tree Join Algorithm. O is the output min-heap for
candidate results, k is the desired amount of results, RL is the root node record of
the first aR-tree, RR is the root node record of the second aR-tree, θ is the score
threshold, φ is the spatial join predicate used to join the R-tree nodes and γ is the
score aggregate function.
1: function RankedRTreeJoin(O, k,RL, RR, θ, γ, φ)
2: Initialize Q as a priority queue of node record pairs ordered by γ
3: if φ(RL.mbb, RR.mbb) then
4: Enqueue(Q, (RL, RR))
5: end if
6: while Q is not empty do
7: (NL, NR)← Dequeue(Q)
8: if γ(NL.score, NR.score) ≤ θ then
9: return . No more candidate results with sufficient score

10: end if
11: if NL and NR are inner nodes then
12: for all (CL, CR) ∈ NL ×NR do
13: if φ(CL.mbb, CR.mbb) and γ(CL.score, CR.score) > θ then
14: Enqueue(Q, (CL, CR))
15: end if
16: end for
17: else
18: for all (CL, CR) ∈ NL ×NR do
19: s← γ(CL.score, CR.score)
20: if φ(CL.mbb, CR.mbb) and s > θ then
21: if |O| < k then
22: Insert(O, s, (CL.data, CR.data))
23: else
24: PopInsert(O, s, (CL.data, CR.data))
25: end if
26: if |O| = k then
27: θ ← Peek(O).score
28: end if
29: end if
30: end for
31: end if
32: end while
33: end function

52

CHAPTER 6. IMPLEMENTATION 6.4. RANKED AR-TREE JOIN

priority queue and output heap. The heap implementation is based on the parallel
heap implementation by Crosetto [7]. It has been enhanced to support generic keys,
values and comparators with a few optimizations. Additionally, our implementation
resolves a critical issue with the implementation of the heap insert procedure that
had gone unnoticed in the original implementation.

The size of the aR-tree inputs is restricted so that both aR-trees must be con-
structed with the same amount of objects and the same fanout, and both the amount
of objects in each aR-tree and the fanout must be a power of two. Among other
things, the limitations guarantee that the aR-trees are equally tall and equally wide
on each level, and that all blocks in the aR-tree record array except the root node
block are fully packed. Aside from this, given sufficient space for the priority queue,
the implementation can support arbitrarily large aR-trees.

The priority queue has a fixed but adjustable capacity. An aR-tree join may fail if
the priority queue overflows, in which case the execution is terminated and the error
is reported to the caller. The caller must therefore estimate how much capacity is
required to process the join, which increases with the height of the aR-trees and the
amount of pairs of objects that satisfy the spatial join predicate, and also depends
on the spatial distribution of scores. Using a capacity that is unnecessarily large
results in allocation of unused device memory.

The items in the priority queue use a {level, idxL, idxR} struct to refer to a pair
of aR-tree nodes. The score of each pair of nodes is stored separately as the key in
the heap data structure. Each idx field points to a fully packed block of records,
each in its respective aR-tree record array. Because the aR-trees are equally tall,
the level field stores the shared level of both nodes. Unlike all other nodes, the root
nodes may have non-packed blocks in the aR-tree record array, and can therefore not
be validly represented as a pair in the priority queue. The first iteration is therefore
handled as a special case with non-full nodes.

After dequeuing a pair of nodes to join, the CUDA implementation first reads the
full blocks of records of NL and NR from global memory into shared memory using
the idxL and idxR values. Pre-fetching these records into shared memory ensures
that device memory does not have to be repeatedly accessed to retrieve the same
records from the two blocks when joining them. The shared memory requirements
are proportional to the size of each block, which is the size of a record multiplied by
the fanout, which is generally expected to be small.

To use the warp-level parallelism to its advantage, the CUDA implementation
divides the input of the inner for-all loops into warp-sized blocks and uses each thread
to evaluate aggregate scores and spatial join predicates in parallel. Anything that
should be inserted into either the priority queue or the output heap is first written
and compacted into an array in shared memory. Then all 32 threads cooperate to
sequentially insert each item from the shared array into the priority queue or output
heap.

The CUDA implementation of the Ranked aR-tree Join Algorithm is not ex-
pected to achieve speedups over the CPU implementations, but speedups may be
achieved for massively parallel execution on multiple inputs. The somewhat ran-
dom device memory access patterns to heap nodes and aR-tree nodes is expected
to limit the performance of the implementation. Most importantly, the execution
on the GPU should at least exhibit comparable performance to the CPU so that
executing the Ranked aR-tree Join Algorithm on the GPU is a viable choice. If the

53

6.5. BLOCK-BASED ALGORITHM CHAPTER 6. IMPLEMENTATION

implementation can execute on the GPU, it may run in parallel on multiple inputs
to parallelize the execution to a much greater degree than what can be achieved on
multi-core CPUs.

6.5 Block-based Algorithm

The implementation of the Block-based Algorithm resembles a Pull/Bound Rank
Join, except that input items are pulled and joined with items pulled from the other
input in units of fixed-size blocks. The inputs are two lists of input items L and R,
a score aggregate function γ, two input-specific score aggregate functions γL and γR,
and the spatial join predicate φ. The input-specific score aggregate functions are
generally both MAX, but may be different for different orders and more complex
score variations of γ. Similarly to the Ranked aR-tree Join Algorithm, we define the
Block-based Algorithm as outputting its results into the min-heap O with a fixed
capacity for at most k results, with a given score threshold θ.

In each iteration, the block-based algorithm determines which input to pull a
block from and which input to probe in order to terminate as soon as possible.
When there are multiple options of blocks to pull, our chosen strategy is to greedily
maximize the upper score bound of the output items that can be produced from the
block. The upper score bound of is the best score that can be achieved by joining
all items in a block with all items in the entire other input. According to the theory
of ranked joins using monotone aggregate score functions, it can be computed by
applying the aggregate score function γ to the best score in the block and the best
score in the entire other input. Prioritizing blocks by the upper score bound should
generally result in the best items being found as quickly as possible and with as
little work as possible.

A newly pulled block must be joined with each previously pulled block of the
probed input, which is carried out using aR-tree joins. When a block of input items
is pulled, an aR-tree is bulk loaded from the full block of items. A series of aR-tree
joins is then carried out to join the blocks, placing candidate results into the output
heap O. An important observation is that the upper score bound for the results of
joining two blocks can be calculated, and that the upper score bound decreases with
each block that is accessed from the probed input. Therefore, if blocks are accessed
in the order they were pulled, the series of ranked aR-tree joins may terminate when
the first block that gives an upper score bound below θ is encountered.

The Block-based Algorithm gathers candidate top-k results in the output heap O
and continuously updates the score threshold θ just like the Block-based Algorithm.
When enough candidate results have been gathered, the upper score bound is given
the worst score value of the candidate result. When there are no more blocks to pull
that give an upper score bound above θ, the algorithm may terminate.

Prior to joining the blocks in the Block-based Algorithm, each input is sorted
so that blocks can be pulled in descending order of score. This can be carried out
using block sorts with a slight adjustment: Because the algorithm needs to know
the best score of a block, the item with the best score of each block must be placed
as the first item in its block. This property is already satisfied by a full sort, but
not for block sorts.

54

CHAPTER 6. IMPLEMENTATION 6.5. BLOCK-BASED ALGORITHM

Algorithm 6.6 Block-based Algorithm. O is the output min-heap for candidate
results, k is the amount of items to return, |B| is the block size, r is the fanout, L
and R are the spatial join inputs, θ is the score threshold, γ is the score aggregate
function, γL and γR are score aggregate functions for their respective inputs and φ
is the spatial join predicate.
1: function BlockBasedRankedJoin(O, k, |B|, r, L,R, θ, γ, γL, γR, φ)
2: BlockSort(L, |B|)
3: BlockSort(R, |B|)
4: while more blocks of objects exist in L and R do
5: i← next input to pull a block from (L or R)
6: j ← the input to probe (L or R)
7: Bi ← PullBlock(i, |B|)
8: Ti ← SortTileRecursive(Bi, r, γr, k)
9: Initialize V as list

10: for all Tj ∈ j do
11: RankedRTreeJoin(O, k, TL, TR, θ, γ, φ)
12: end for
13: if |O| = k then
14: θ ← Peek(O).score
15: end if
16: scoremax ← max(γ(Lfirst.score, Rlast.score), γ(Llast.score, Rfirst.score))
17: if scoremax ≤ θ then
18: return . No more items with sufficient score
19: end if
20: end while
21: end function

55

6.5. BLOCK-BASED ALGORITHM CHAPTER 6. IMPLEMENTATION

35, 34, ...

24, 23, ...

22, 21, ...

20, 18, ...

14, 13, ...

8, 7, 6, ...

4, 3, 2, ...

...

37, 36, ...

25, 23, ...

22, 21, ...

19, 18, ...

7, 6, 5, ...

3, 2, 1, ...

...

Input L Input R

8 + 37 > 35 + 7

Read and joined

Read and join next

Figure 6.3: Block-based Algorithm block selection

6.5.1 Single-threaded implementation

To start, the single-threaded implementation sorts each input by score using the
single-threaded block sorting algorithm. In addition, for each block in each input,
the item with the best score in the block is placed as the first item of the block.
This ensures that the upper score bound of any pair of blocks can be determined
by checking the first item of each block. The output is accumulated in a binary
min-heap with capacity for k items, which is passed by reference to each ranked
aR-tree join. aR-tree record arrays are allocated dynamically each time an aR-tree
is bulk loaded.

6.5.2 Multi-threaded implementation

The multi-threaded implementation of the Block-based Algorithm starts with a
multi-threaded block sort for each input. The inputs are sorted in sequence, but
each sort is carried out using the same multi-threaded block sort.

Due to its asynchronous nature, the multi-threaded implementation of the Block-
based Algorithm distinguishes the allocation and the initialization of input blocks.
When a block is allocated, the items in the block either have been bulk loaded
into an aR-tree or are currently being bulk loaded by a thread. When a block is
initialized, the items in the block have been bulk loaded into an aR-tree that is
ready to be joined with other aR-trees. Blocks are allocated in the same order that
they would be pulled in the single-threaded implementation, but they are initialized

56

CHAPTER 6. IMPLEMENTATION 6.5. BLOCK-BASED ALGORITHM

asynchronously.
For each input, pointers to bulk loaded R-trees are located in a pre-allocated

array, but the aR-trees are allocated dynamically as they are bulk loaded. The
state to keep track of which blocks are allocated and which blocks are initialized is
represented as a simple integer counter for the number of blocks that are allocated
and a set of uninitialized allocated blocks. Blocks are always allocated in order,
therefore allocating a block is as simple as finding the next unallocated block and
incrementing the allocated block counter. Additionally, since a newly allocated
block is not immediately initialized, the block is immediately added to the set of
uninitialized allocated blocks. When a block is initialized, it is removed from the
set of uninitialized allocated blocks. This state representation is designed to be
lightweight and to be easy to copy. Generally, the total amount of uninitialized
blocks will be much lower than the amount of initialized blocks, and at most will be
equal to the amount of threads, therefore the size of the set of uninitialized blocks
is very limited.

Each thread repeatedly queries a shared data structure to issue asynchronous
tasks to process until the result of the top-k spatial join is fully determined. A
thread may allocate a block, which issues a block initialization task which must
be processed by bulk loading the items of the newly allocated block into an aR-
tree. When the block initialization task is complete, the thread must submit its
results, which issues a block join task, which must be processed by joining the newly
initialized block with all currently initialized blocks from the other input. Every
time a task is produced and the results of a task are submitted, the implementation
enters a critical section that manages the state of the blocks of both inputs.

Because a block join task may be processed asynchronously with other block
initialization tasks, additional blocks may be initialized by other threads while the
block join task is being processed. To avoid duplicated results, the block join task is
restricted to only join with the blocks that were initialized when the task was issued,
and not with any blocks that become initialized during processing. If a thread T1

is issued a block join task for an initialized block B1 that should at some point
be be joined with a block B2, and a thread T2 initializes B2 while T1 is working
on its block join task, T1 should not join B1 and B2 because T2 will be given the
responsibility of joining B1 and B2 when a block join task for B2 is issued to T2. To
this end, a snapshot of the set of initialized blocks is captured each time a block join
task is issued, and the block join task is processed by joining with the collection of
blocks in this snapshot. Capturing the snapshot is cheap due to the ease of copying
the lightweight state representation. Only the counter for the amount of allocated
blocks and the set of uninitialized blocks has to be copied each time a snapshot is
captured.

The result is accumulated using one shared output min-heap and score threshold,
and a number of local output min-heaps and score thresholds. When a thread is
issued a block join task, the thread copies the shared score threshold and initializes
its own empty local output heap for the sequence of joins it has been tasked to do.
When the task is complete, candidate results from the local output heap are moved
in bulk to the shared output heap. The shared heap is not concurrent, it can only
be modified in a critical section.

The shared score threshold value at the time a block join task is issued is copied
can be used to restrict the search space for the task, but not completely. We know

57

6.5. BLOCK-BASED ALGORITHM CHAPTER 6. IMPLEMENTATION

that the score threshold can only increase as the algorithm progresses, and it may
do so while a block join task is being processed. We know that any candidate result
that cannot be placed into the local heap due to the local score threshold cannot
be placed into the shared heap either. Conversely, we do not know if a candidate
result placed in the local heap should be placed into the shared heap until the shared
threshold value can be read again. The local score threshold only helps restrict the
search space, while it cannot determine an exact threshold. The local score threshold
is used as an input to the ranked aR-tree joins.

Inserting items into the shared heap in bulk causes the increase of the shared
threshold value to be more staggered than in the single-threaded implementation,
which may decrease work efficiency, but keeps the communication cost low. When
the threshold does not increase as fast as theoretically possible, more work may have
to be carried out to determine the results because the search space cannot be pruned
as efficiently. However, a heap that supports concurrent fine-grained operations
would likely have a similar cost. Using a critical section keeps the communication
cost quite low assuming the heaps are small enough.

To avoid the overhead of creating and freeing threads for each call to the parallel
block sorting algorithm and to carry out the rest of the algorithm, the implement-
ation is designed to work with a thread pool to keep a fixed amount of threads
alive.

6.5.3 CUDA implementation

The CUDA implementation of the Block-based Algorithm is based on three kernels:
The control kernel, the block initialization kernel and the block join kernel. The
control kernel handles only the core logic of the Block-based Algorithm, invoking
the other kernels to do the heavy work. It uses CUDA dynamic parallelism to invoke
the block initialization kernel and the block join kernel. The block initialization
kernel handles the bulk loading of input blocks into aR-trees. The block join kernel
handles joining pairs of aR-trees into candidate results.

Some preparations have to be made prior to executing the CUDA implementation
of the Block-based Algorithm. Each input first has to be sorted by score. Instead
of using a specialized block sorting algorithm, the sorting is done on the GPU using
a full radix sort that operates in global memory. The radix sort implementation is
provided by CUB, a utility library for CUDA. The sorts are carried out in parallel
using CUDA streams. A few chunks of global memory must also be allocated prior
to the join to be used for aR-trees and temporary storage during the execution. A
buffer must also be allocated in global memory prior for the implementation to write
out the results.

The control kernel is executed as a single warp of 32 threads. It uses an output
heap to gather candidate results until it terminates, when it writes each result to
the buffer in global memory.

To parallelize the Block-based Algorithm, the control kernel will invoke other
kernels to perform bulk loading in parallel and join pairs of blocks in parallel. The
parallelism of the CUDA implementation is determined by the block parallelism
parameter, which determines both how many blocks can be bulk loaded into aR-trees
concurrently and how many sequences of aR-tree joins can be executed concurrently.
In the while loop of the Block-Based Ranked Join Algorithm, instead of choosing a

58

CHAPTER 6. IMPLEMENTATION 6.5. BLOCK-BASED ALGORITHM

single block to pull, the implementation choses how many blocks to pull from each
input. It uses the same principle of greedily maximizing the upper score bound when
choosing. The control kernel can allocate as many blocks as the block parallelism
allows in total in each iteration. When the allocation of blocks is determined, the
control kernel allocates global memory space for aR-trees then launches the block
initialization kernel.

35, 34, ...

24, 23, ...

22, 21, ...

20, 18, ...

14, 13, ...

8, 7, 6, ...

4, 3, 2, ...

...

37, 36, ...

25, 23, ...

22, 21, ...

19, 18, ...

7, 6, 5, ...

3, 2, 1, ...

...

Input L Input R

Read and joined

Read and join next

Uncontested join

Contested join

TB0

TB1

TB2

TB3

Figure 6.4: Block-based Algorithm multiple block selection

The block initialization kernel is launched so that there is one thread group per
input block, where each thread block has as many threads as there are items in a
block. Each thread block determines which block from which input to initialize,
then calls the CUDA implementation of Sort-Tile-Recursive to write the aR-tree
records into the array that was allocated by the control kernel.

When the block initialization kernel is complete, the control kernel launches the
block join kernel to join each newly initialized block with all initialized blocks. The
block join kernel is launched so that there is one thread group per newly initialized
block with 32 threads per block, where each thread group is responsible for joining
one newly initialized input block with each initialized block of the other input.
Each thread block determines which initialized block is its own, then iterates over
the initialized blocks of the other input performing a series of ranked aR-tree joins
like the inner for loop of the algorithm. The block join kernel copies θ from the
control algorithm as a local score threshold so that the series of aR-tree joins can
start with more aggressive pruning. Using the same logic as the single-threaded and
multi-threaded implementations, a thread group may stop processing aR-tree joins
if it can determine that it cannot produce any more candidate results above its local

59

6.5. BLOCK-BASED ALGORITHM CHAPTER 6. IMPLEMENTATION

score threshold. When the aR-tree joins of a thread block are complete, the thread
block pops each item from its output heap and writes it to its own buffer in global
memory. A thread block in the block join kernel may fail if it fails to process a join
due to a priority queue overflow. Success/failure is reported to the control kernel by
each thread group writing a status code to global memory on termination.

Each thread block in the block join kernel is tasked with joining one newly
initialized input block with all initialized input blocks of the other input, which
may include other newly initialized input blocks that other thread blocks are tasked
with. This creates contested joins, which are joins between two newly initialized
input blocks where two thread groups are tasked to perform the same join. To avoid
performing a contested join twice, only the first thread that attempts it may perform
the join. To determine a thread block should perform a contested join, atomic
flags are allocated in global memory for each contested join. When encountering a
contested join, the thread block performs an atomic Compare-And-Swap operation
on the flag to simultaneously determine if the contested join should be performed
and, if it should be performed, to signal that it cannot be performed by other threads
following the operation.

When the block join kernel is complete, the control kernel starts reading the
outputs of the block join kernel. Each thread block has written a sorted array
of results into its own buffer in global memory. The result items from the block
join kernel have to be evaluated for insertion into the output heap of the control
kernel. The control kernel iterates over the results in descending order of score by
concurrently iterating over each result array. When retrieving the next result, warp-
level parallel reduction is used to find the best iterator, which is the iterator pointing
to the item with the best score. The value pointed to by the best iterator is placed
into the output heap, and the best iterator is then moved to the next position in
its array. Because the results are iterated in descending order of score, the control
kernel can stop reading the block join kernel results when it encounters the first item
with a score below θ.

The BA may fail in one of three ways. It may fail if there is an error with the
dynamic parallelism that causes any kernel to fail to launch, which can happen for
various reasons. It may also fail if the block join kernel fails to process an aR-tree
join due to priority queue overflow. The last failure condition is if it runs out of
memory to allocate for bulk loading of aR trees. Success/failure of the control kernel
is reported by writing a status code to global memory on termination.

The most important reason for using a control kernel instead of controlling the
program from the host is that it can operate entirely within device memory. The
control kernel performs many reads in global memory during the execution. Con-
trolling the algorithm from the host would involve a number of transfers between
host memory and device memory that would cause the execution to be slower.

60

Chapter 7

Experimental evaluation

7.1 Setup

All experiments were carried out on the same system. The CPU is 4-core Intel Core
i5 6600K running at 3.50GHz with one thread per core. The GPU is an NVIDIA
GeForce GTX 1080. The system has 16GB of RAM. The operating system is a
64-bit version of Microsoft Windows 10.

All implementations are written in C++. Single-threaded and multi-threaded
implementations are compiled using Visual Studio, while CUDA implementations
are compiled with NVCC using Visual Studio as the host compiler. Everything
is compiled with the -O2 flag to optimize for speed, and CUDA code is compiled
without the -G debug information flag to optimize the performance of kernel code.

7.2 Methodology

To measure the performance of the implementations, we measure the run time of
experiments using the C++ high resolution clock API. The Visual Studio imple-
mentation of the high resolution clock measures time in units nanoseconds with a
resolution below one nanosecond. Each experiment is a function that is given two
input buffers, one output buffer and the parameters for a top-k spatial query on
the inputs. The input buffers contain the input data in memory, while the output
buffer is where the experiment is expected to write its results to. Prior to running
an experiment, the current time is recorded as tstart. The experiment is then run
immediately. When the experiment is complete, the current time is recorded again
as tstop. The run time of an experiment is measured as tstop−tstart. Each experiment
is repeated five times, and the average run time is recorded as a result.

We perform both CPU and CUDA experiments using the same experimental
method. All input and output buffers reside in host memory prior to the experi-
ment, so that each CUDA experiment must copy the inputs from host memory to
device memory and the outputs back from device memory to host memory. We also
use the same method to measure the run time of CUDA implementation. Because
CUDA is largely an asynchronous API, CUDA has a system for timing events that
is commonly used to measure the performance of CUDA applications. However, we
intend to measure the performance of the CUDA implementation from the perspect-
ive of an application that keeps most of its logic and data on the host. To the host,

61

7.2. METHODOLOGY CHAPTER 7. EXPERIMENTAL EVALUATION

the only time that matters is the time it takes for the implementation to place the
output into the buffer so that it may be used in further processing.

To avoid processor cache behavior causing interference in the run time between
experiments, the experimental evaluation makes an effort to flush processor caches
between each experiment on the CPU. This is carried out by filling a 80MB buffer in
memory with random values before each experiment. The same flushing is not used
before CUDA experiments due to the processing taking place on the device and not
on the host. All buffers in global memory used by a CUDA experiment are allocated
each time the experiment is run, but it is uncertain whether or not different regions
of device memory are allocated in each experiment. However, the majority of buffers
in global memory are filled with data before any processing happens on the GPU,
which should invalidate any caches. This means GPU cache behavior is unlikely to
affect the run time of CUDA experiments.

The input data consists of two randomly generated data sets to join called L
and R. When using the data sets for queries, the first 1048576 items, 32768 or 1024
items are used. The data items are uniformly distributed two-dimensional points
with single-precision floating point coordinates between 0 and 1000. Each item has
a 32-bit integer score between 0 and 100 and a 32-bit integer data value equal to its
position in the dataset. With eight bytes of padding, each record has a size of 32
bytes.

Each combination of input sizes was used to create six possible pairs of inputs:
L1 ×R1, L1 ×R2, L1 ×R3, L2 ×R2, L2 ×R3 and L3 ×R3. 3 queries were performed
on each pair of inputs. Each query requests the pairs of points with the best score
sums with a distance threshold of exactly one. The first query Q1 requests the first
10000 items with the best scores, the second query Q2 requests 1000, and the final
query Q3 requests 100.

For each query applied to each pair of inputs, we measure the run time of the
single-threaded implementation, the multi-threaded implementation and the CUDA
implementation of the Block-based Algorithm. To compare the different implement-
ations, the fanout and block sizes of each experiment is manually tuned to optimize
each run time.

For CUDA experiments, a trial run of each experiment must be performed before
any measurements can be made. Otherwise, a significant run time penalty may be
measured the first time an experiment is run. This is caused by CUDA performing
just-in-time compilation of kernels to match the hardware architecture, which will
affect run times the first time a kernel is launched.

For multi-threaded experiments, the same thread pool of 4 initialized (but sleep-
ing prior to the experiment) threads is used for all experiments. This matches the
amount of cores in the system, and is the amount of threads that performs best on
this system.

To compare the different implementations in the different experiments, it is as-
sumed that the parameters for the implementations can be automatically tuned
based on the spatial distribution of the input data, the distribution of input data
scores and the size of the inputs and outputs. Because the automatic tuning of
the parameters has not yet been implemented, the parameters have been manually
tuned to maximize the run time of each experiment. The results therefore do not
represent the true performance of an application of the implementations, but serves
as a way to compare the implementations and how they respond to different in-

62

CHAPTER 7. EXPERIMENTAL EVALUATION 7.3. RESULTS

put sizes and output sizes. The parameters may be subject to overfitting for the
particular dataset used in the experiments.

7.3 Results

Because the run times of experiments on L1 and the rest are on different orders of
magnitude, the run times are displayed in two figures. Figure 7.1 shows the run
times of all experiments including input L1, one of the two largest inputs, while
figure 7.2 shows the run time of the remaining experiments.

Input L x Input R, Query

R
un

 ti
m

e
(m

s)

0

500

1000

1500

L1xR1,
Q1

L1xR1,
Q2

L1xR1,
Q3

L1xR2,
Q1

L1xR2,
Q2

L1xR2,
Q3

L1xR3,
Q1

L1xR3,
Q2

L1xR3,
Q3

Single-threaded Multi-threaded CUDA

Figure 7.1: Run times of BA for large inputs

The run time of the single threaded implementation can be improved upon in all
situations except for queries on L3xR3. The multi-threaded implementation has con-
sistently better run time than the single-threaded implementation in all situations
except for the smallest inputs, L3xR3. This is to be expected from the utilization of
multiple processor cores. At a certain point, the cost of communication between the
threads outweighs the gains of parallel processing, as can be seen for L3xR3. The
CUDA implementation is most efficient in situations with large inputs and small
outputs. This is likely due to the fact that the radix sort used on the inputs prior
to the sort on the GPU is more efficient than the custom sorting implementation
on the CPU above a certain size threshold. The process of initializing and joining

63

7.3. RESULTS CHAPTER 7. EXPERIMENTAL EVALUATION

Input L x Input R, Query

R
un

 ti
m

e
(m

s)

0

10

20

30

40

50

L2xR2,
Q1

L2xR2,
Q2

L2xR2,
Q3

L2xR3,
Q1

L2xR3,
Q2

L2xR3,
Q3

L3xR3,
Q1

L3xR3,
Q2

L3xR3,
Q3

Single-threaded Multi-threaded CUDA

Figure 7.2: Run times of BA for small inputs

blocks in the CUDA implementation is likely also slower than on the multi-threaded
implementation.

The output size is generally expected to affect the run time of all implementations
in most situations, which is seen in varying patterns. For L2xR3 and L3xR3, the
total amount of pairs of points satisfying the distance threshold is likely smaller
than the output size, causing little to no pruning of the search space based on score,
so that all pairs of blocks have to be joined regardless of output size.

7.3.1 Effect of input size skew

All implementations have noticeable issues with input size skew. The single-threaded
implementation and CUDA implementation seem to have increased run times for
pairs of inputs with skewed sizes. The join space of L1xR2, Q1 is much smaller than
the join space of L1xR1, Q1, which should reduce the run time, but the run time
is instead much larger. The multi-threaded implementation exhibits the expected
effect on run time of reducing the size of the join space.

Input size skew coupled with large output sizes likely causes increasingly un-
balanced workloads in the CUDA implementation. When one input is larger than
the other, the Block-based Algorithm is much more likely to select a block from
the largest input. In the likely event that it selects a block from the largest input,

64

CHAPTER 7. EXPERIMENTAL EVALUATION 7.3. RESULTS

the sequence of joins to process following the initialization is small because there
are fewer blocks to join with in the smallest input. In the less likely event that it
selects a block from the smallest input, the sequence of joins to process following the
initialization is large because there are more blocks to join with in the largest input.
If the output size is large, the imbalance will grow over time and the processing of a
sequence of joins is less likely to terminate early due to the threshold climbing more
slowly.

Each kernel launch in the control kernel of the CUDA implementation must wait
for all thread groups to terminate. If the workload is not balanced across the thread
groups, the control kernel must wait for the slowest thread group to terminate. This
is likely happening, not with the block initialization kernel, but with the block join
kernel due to the aforementioned imbalance. Unlike the CUDA implementation,
the multi-threaded implementation processes each block join task independently, so
that no thread has to wait for another thread to complete a block initialization task,
and therefore does not suffer from the same issue.

The effect of the input size skew of L1xR2 is extreme for the CUDA implement-
ation, but the even greater skew of L1xR3 has no noticeable effect on the CUDA
implementation. This is because the block size used for this experiment is equal to
the size of R3, causing the Block-based Algorithm to select the only block of the
smallest input immediately.

It is unknown why the input size skew affects the single-threaded implementation
as much as it does, because it cannot suffer from the workload imbalance problem
that likely affects the CUDA implementation due to the sequential nature of the
single-threaded implementation. It could be a general issue with the Block-based
Algorithm. It might be caused by the heuristic chosen for choosing blocks, which
would affect all implementations. The current heuristic attempts to maximize the
upper score bound of candidate results that can be produced by selecting the block.
The algorithm might not have to find the candidate results with the best scores
first, and should perhaps focus on producing as many candidate results as possible
to increase the score threshold more rapidly. This would put more pressure on the
result heap, but might prune the search space more efficiently.

7.3.2 Effect of thread count

To determine the effect of thread count on the multi-threaded implementation, ex-
periments were performed with varying thread counts on L1xR1, Q1. The thread
count determines the amount of threads used both for the sort prior to the join, and
the join itself. More threads means more segments of the arrays can be sorted in
parallel, and more blocks can be initialized and joined in parallel, but also means
more communication between threads. Results are shown in figure 7.3. The thread
count shows a noticeable but limited effect on the run time. Speedups are achieved
between 2 and 5 threads, with the lowest run time at 4 threads. Each thread added
before 4 decreases the run time, while each thread added past 4 mostly increases
the run time.

The thread count has an expected effect on the run time. Adding more threads
adds more contention to the critical sections, causing diminishing returns with each
thread. The processor used to run the experiments has 4 cores, which likely explains
the run time increasing when adding more threads than four. Adding more threads

65

7.3. RESULTS CHAPTER 7. EXPERIMENTAL EVALUATION

Threads

R
un

 ti
m

e
(m

s)

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 7.3: Run times of multi-threaded implementation for L1xR1, Q1 by thread
count

than cores may help in situations where threads have more complex cooperation or
stalls due to I/O or page faults, but the experiment shows that having as many
threads as there are cores is most efficient.

7.3.3 Effect of block parallelism

To determine the effect of block parallelism on the CUDA implementation, exper-
iments were performed with varying block parallelism on L1xR1, Q1. The block
parallelism parameter does not affect the sorting prior to joining, but determines
how many blocks can be initialized in parallel and how many series of aR-tree joins
can be performed in parallel. Results are shown in figure 7.4. The block parallelism
shows a noticeable effect on the run time. It trends towards lower run times with in-
creasing block parallelism. A block parallelism greater than 32 could unfortunately
not be achieved due to limitations with the current implementation.

The block parallelism has an expected effect on the run time. Increasing the block
parallelism increases the amount of work required to produce and reduce block join
kernel outputs, and also slightly reduces the efficiency of pruning the search space
with the score threshold, causing diminishing returns, but not nearly as dramatic-
ally as for the thread count of the multi-threaded implementation. Increasing the
block parallelism enables better distribution of the work, allowing the work to be
distributed to all SMs, and allowing each SM to interleave the execution of thread
blocks. The block parallelism cannot be increased indefinitely, but the trend in the
data suggests that block parallelisms beyond 32 may give even lower run times in
this particular experiment.

66

CHAPTER 7. EXPERIMENTAL EVALUATION 7.3. RESULTS

Block parallelism

R
un

 ti
m

e
(m

s)

0

1000

2000

3000

5 10 15 20 25 30

Figure 7.4: Run times of CUDA implementation for L1xR1, Q1 by block parallelism

67

Chapter 8

Conclusions and future work

8.1 Conclusions

Speedups can be achieved for top-k spatial joins by parallelizing the Block-based
algorithm using both multiple threads and GPGPU. Experimentation on the im-
plementations that were developed shows that for inputs that are large enough,
multi-threaded execution achieves significant speedups. Using GPGPU can be even
more efficient for large inputs and smaller values of k, likely due to the more efficient
GPGPU sorting of large arrays but slower execution of the rest of the Block-based
Algorithm.

The Block-based Algorithm is proven to be effective for top-k spatial joins, and it
can be parallelized by using a divide-and-conquer strategy for aR-tree joins. Instead
of joining every pair of blocks in sequence, the joins can be processed in parallel
and the results of each parallel join can be joined into a single heap. Increasing the
parallelism reduces the work efficiency but increases the potential speedup. This
methodology can be used to achieve speedups for both multi-threaded and GPGPU
implementations of the Block-based Algorithm.

The Sort-Tile-Recursive R-tree bulk loading method can be performed on the
GPU. Despite the steps of STR being inherently sequential, it parallelizes via parallel
sorting algorithms and parallel reduction. By carrying out the sorting of Sort-Tile-
Recursive in shared memory, we avoid the cost of accessing device memory.

A new relaxed variant of the sorting problem was identified and solved for the
Block-based Algorithm and Sort-Tile-Recursive, which was used as an optimization
for the single-threaded and multi-threaded implementations. We call this relaxed
variant of the sorting problem “block sorting”, which involves sorting the input into
fixed-size blocks where the internal order of each block is relaxed. The sequential
and parallel implementations of a specialized block sorting algorithm based on quick
sort was shown to be more efficient for the block sorting problem than the sequential
and parallel sorting functions in the C++ standard library. An optimized GPGPU
solution to the block sorting problem was not implemented.

The use of a specially designed aR-tree memory layout and parallel heaps al-
lows the execution of aR-tree joins on the GPU, which allows the full execution
of the Block-based Algorithm on the GPU with comparable performance to the
CPU. Executing the algorithm entirely on the GPU reduces the amount of transfers
between device memory and host memory, whose bandwidth is often a bottleneck
for GPGPU applications. The CUDA implementation appears to be largely memory

68

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 8.2. FUTURE WORK

bound. While the alignment of blocks of aR-tree records allows efficient use of device
memory when performing aR-tree joins, the sheer amount of random accesses to the
aligned blocks likely makes a significant negative performance impact. The parallel
heap also uses device memory for its local memory, which likely makes a similar
impact due to the frequency of heap operations to gather candidate results and to
operate the priority queue, despite the efficient alignment of local memory. Still, the
execution is reasonably efficient when parallelizing across multiple aR-tree joins.

The implementations have significant issues with skewed input sizes, likely due
to issues with balancing the workload and the heuristic that was chosen for choosing
blocks in the Block-based Algorithm. There is no reason for skewed input sizes to
cause the top-k spatial join problem to become more difficult, because the amount
of work should be proportional to the size of the join space, which is proportional to
the size of both inputs multiplied. Additional experimentation would likely identify
the cause of the issues.

The performance of the CUDA implementation is likely affected by its limita-
tions. The greatest block size that could be achieved in the CUDA implementation
is limited by the amount of records that can fit in shared memory, and the block
parallelism is limited by the size of a warp. The block size limit is only imposed by
the block initialization kernel which performs Sort-Tile-Recursive in shared memory,
and not the block join kernel which can support much larger aR-trees by reading
aR-tree nodes straight from global memory. Supporting larger aR-trees would re-
quire performing parts of Sort-Tile-Recursive in global memory instead of shared
memory, which would reduce the efficiency of the block initialization kernel may
require a different sorting algorithm, but still might improve the overall efficiency
of the Block-based Algorithm. A block parallelism greater than 32 might further
decrease the run time, and only requires slight adjustments to the control kernel.

8.2 Future work
The implementations that were created are not truly complete, and can likely be
optimized and tweaked further with more experimentation and profiling to create
more accurate data to compare the different methods. The current experimental
data suggests that there are issues with the current implementations, especially for
skewed input sizes. Given more development time, some of the limitations of the
CUDA implementation can be relaxed by adding new and more complex features.
The implementation of the control kernel has significant potential for optimization
by improving global memory access patterns. There are a number of tools that
can be used to analyze the performance of the code, particularly to analyze the
performance of kernels.

This thesis has focused solely on the R-tree data structure for spatial indexing,
while another avenue of research for top-k spatial joins is using other data structures
such as the family of quadtree data structures. The R-tree is considered a data-
driven spatial data structure because the way it partitions the space is dependent
on the data. Unlike the R-tree, the quadtree is considered a space-driven spatial
data structure because it uses a fixed division of the space. Because the division of
the space is not dependent on the data, the process of indexing a block of spatial
objects in a quadtree might behave differently in a way that is differently suited for
GPGPU. However, for data whose indexed spatial attributes cannot be represented

69

8.2. FUTURE WORK CHAPTER 8. CONCLUSIONS AND FUTURE WORK

as a single point, the use of quadtrees would be more challenging. Input objects
may have to be placed into multiple octree nodes, which introduces the problem of
eliminating duplicates during spatial joins.

Another surprisingly simple way to achieve parallel top-k spatial joins might
be using a parallel plane-sweep based join. While the plane sweep join algorithm
cannot produce outputs in ranked order, a number of top-k joins could be performed
in parallel by sorting the input data by one coordinate, then dividing the input space
into segments and performing a top-k join on each segment. The top-k results could
then be joined into a single top-k result. Alternatively, borrowing from the Block-
based Algorithm, the input could be divided into blocks based on their individual
scores, then pairs of blocks can be joined via plane-sweep joins.

70

Bibliography

[1] Erlend Åmdal. Top-k Spatial Join on GPU. Project report in TTM4502. De-
partment of Information Security, Communication Technology, NTNU – Nor-
wegian University of Science and Technology, Dec. 2019.

[2] Lars Arge et al. ‘Scalable sweeping-based spatial join’. In: VLDB. Vol. 98.
Citeseer. 1998, pp. 570–581.

[3] Norbert Beckmann et al. ‘The R*-tree: an efficient and robust access method
for points and rectangles’. In: Acm Sigmod Record. Vol. 19. 2. Acm. 1990,
pp. 322–331.

[4] Panagiotis Bouros and Nikos Mamoulis. ‘Spatial joins: what’s next?’ In: SIG-
SPATIAL Special 11.1 (2019), pp. 13–21.

[5] Thomas Brinkhoff, Hans-Peter Kriegel and Bernhard Seeger. Efficient pro-
cessing of spatial joins using R-trees. Vol. 22. 2. ACM, 1993.

[6] NVIDIA Corporation. CUDA C++ programming guide. 2019. url: https:
//docs.nvidia.com/pdf/CUDA_C_Programming_Guide.pdf (visited on
01/12/2019).

[7] Paolo G. Crosetto. CUPQ: a CUDA implementation of a Priority Queue ap-
plied to the many-to-many shortest path problem. Version 0.1. Dec. 2019. doi:
10.5281/zenodo.3595244. url: https://github.com/crosetto/cupq.

[8] Antonin Guttman. R-trees: A dynamic index structure for spatial searching.
Vol. 14. 2. ACM, 1984.

[9] Bingsheng He et al. ‘Relational joins on graphics processors’. In: Proceedings
of the 2008 ACM SIGMOD international conference on Management of data.
ACM. 2008, pp. 511–524.

[10] Sangyong Hwang et al. ‘Performance evaluation of main-memory R-tree vari-
ants’. In: International Symposium on Spatial and Temporal Databases. Springer.
2003, pp. 10–27.

[11] Ihab F Ilyas, Walid G Aref and Ahmed K Elmagarmid. ‘Supporting top-k join
queries in relational databases’. In: The VLDB Journal—The International
Journal on Very Large Data Bases 13.3 (2004), pp. 207–221.

[12] Scott T Leutenegger, Mario A Lopez and Jeffrey Edgington. ‘STR: A simple
and efficient algorithm for R-tree packing’. In: Proceedings 13th International
Conference on Data Engineering. IEEE. 1997, pp. 497–506.

[13] Zhisheng Li et al. ‘Ir-tree: An efficient index for geographic document search’.
In: IEEE Transactions on Knowledge and Data Engineering 23.4 (2010), pp. 585–
599.

71

https://docs.nvidia.com/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/pdf/CUDA_C_Programming_Guide.pdf
https://doi.org/10.5281/zenodo.3595244
https://github.com/crosetto/cupq

BIBLIOGRAPHY BIBLIOGRAPHY

[14] Lijuan Luo, Martin DF Wong and Lance Leong. ‘Parallel implementation of
R-trees on the GPU’. In: 17th Asia and South Pacific Design Automation
Conference. IEEE. 2012, pp. 353–358.

[15] Rodrigo Paredes and Gonzalo Navarro. ‘Optimal incremental sorting’. In: 2006
Proceedings of the Eighth Workshop on Algorithm Engineering and Experi-
ments (ALENEX). SIAM. 2006, pp. 171–182.

[16] Shuyao Qi, Panagiotis Bouros and Nikos Mamoulis. ‘Efficient Top-k Joins on
Complex Data Types’. In: (2015).

[17] Shuyao Qi, Panagiotis Bouros and Nikos Mamoulis. ‘Efficient top-k spatial dis-
tance joins’. In: International Symposium on Spatial and Temporal Databases.
Springer. 2013, pp. 1–18.

[18] Karl Schnaitter and Neoklis Polyzotis. ‘Optimal algorithms for evaluating
rank joins in database systems’. In: ACM Transactions on Database Systems
(TODS) 35.1 (2010), p. 6.

[19] Dhirendra Pratap Singh, Ishan Joshi and Jaytrilok Choudhary. ‘Survey of
GPU based sorting algorithms’. In: International Journal of Parallel Program-
ming 46.6 (2018), pp. 1017–1034.

[20] Tongjai Yampaka and Prabhas Chongstitvatana. ‘Spatial join with r-tree on
graphics processing units’. In: King Mongkut’s University of Technology North
Bangkok International Journal of Applied Science and Technology 5.3 (2012),
pp. 1–7.

[21] Simin You, Jianting Zhang and Le Gruenwald. ‘Parallel spatial query pro-
cessing on gpus using r-trees’. In: Proceedings of the 2nd ACM SIGSPATIAL
International Workshop on Analytics for Big Geospatial Data. ACM. 2013,
pp. 23–31.

[22] Renwei Yu et al. ‘Workload-balanced processing of top-K join queries on
cluster architectures’. In: tech. report ASUCIDSE-CSE-2010–001 (2010).

72

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Erlend Åmdal

Top-k Spatial Join on GPU

Master’s thesis in Computer Science

Supervisor: Kjetil Nørvåg

June 2020

	Introduction
	Related Work

	GPGPU
	GPU architecture
	SIMT architecture
	Memory

	CUDA
	Execution model
	Memory hierarchy
	Performance optimization

	Spatial indexing
	Concepts
	Spatial join queries
	R-trees
	Range search using R-trees
	Spatial join using R-trees
	R-tree search methods
	Memory layout
	Bulk loading

	Ranked queries
	Concepts
	Top-k joins
	Pull/Bound Rank Join
	Parallelizing top-k joins

	Ranked spatial queries
	aR-trees
	Ranked range queries on aR-trees

	Top-k spatial joins
	Score-First Algorithm
	Ranked spatial join on MAX aR-trees
	Distance-First Algorithm
	Block-based Algorithm
	Parallelizing top-k spatial joins

	Sorting on CPU/GPU
	Sorting algorithms
	Quicksort
	Radix sort
	Bitonic merge sort
	Potential optimizations

	Heaps
	Parallel heap
	Top-k accumulator min-heaps

	Implementation
	Linearized aR-tree
	Computing R-tree layouts

	Block sorting
	aR-tree bulk loading
	Spatial partitioning
	Parent creation
	Sort-Tile-Recursive

	Ranked aR-tree join
	Single-threaded implementation
	Multi-threaded implementation
	CUDA implementation

	Block-based Algorithm
	Single-threaded implementation
	Multi-threaded implementation
	CUDA implementation

	Experimental evaluation
	Setup
	Methodology
	Results
	Effect of input size skew
	Effect of thread count
	Effect of block parallelism

	Conclusions and future work
	Conclusions
	Future work

