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Abstract

Dynamic environments and multiple objectives are prominent in real-world prob-
lems. However, a combination of dynamic environments and multi-objectives is
not extensively studied. In the thesis a model is proposed that combines the
dynamic handling algorithm mQSO and the algorithm MODPSO which operates
on discrete multi-objective problems. Further, different types of discrete rep-
resentations are proposed and evaluated. The model is developed to solve the
Vehicle Routing Problem (VRP) and is tested on the Solomon data set and a
data set from the Norwegian home care. The model attempts to solve dynamic
VRPs where changes to the environment like the appearance of new customers
or demands can occur. The dynamic abilities makes the model able to transfer
knowledge from before to after a change which can reduce computational cost.
The proposed model is able to handle these changes while optimizing multiple
objectives and handling constraints such as time windows.
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Sammendrag

Dynamiske miljøer og flere objektiver er gjentagende problemer i den virkelige
verden. Det er ikke gjort grundig forskning p̊a en kombinasjon av disse prob-
lemene. I oppgaven blir det lagt frem en modell som kombinerer den dynamiske
algoritmen mQSO og algoritmen MODPSO som operer p̊a diskrete og flere objek-
tiv problemer. Det blir ogs̊a foresl̊att og evaluert ulike diskrete representasjoner.
Modellen er utviklet for å løse Vehicle Routing Problem (VRP) og er testet p̊a
Solomon datasettet og et datasett fra den norske hjemmesykepleien. Modellen
forsøker å løse dynamiske VRP’er hvor endringer slik som at nye kunder eller be-
hov kan dukke opp. De dynamiske egenskapene lar modellen overføre kunnskap
fra før en endring skjer til etter som kan være med p̊a å redusere nødvendig pros-
esseringstid. Den foresl̊atte modellen er i stand til å h̊andtere disse dynamiske
endringer og samtidig optimalisere flere objektiver og ta hensyn til begrensninger
slik som tidsvinduer.
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Chapter 1

Introduction

The chapter elaborates the background for the thesis in section 1.1, followed
by the goal and research questions in section 1.2. In section 1.3 the structured
literature review process is presented, followed by the preliminary process in
section 1.4. Finally, the structure of the thesis is presented in section 1.6.

1.1 Background

The thesis centers around solving the problem of vehicle routing with multiple
objectives in a dynamic environment. The Vehicle Routing Problem (VRP) is a
problem that aims to find optimal routes for a set of vehicles that have to serve a
set of customers. It is often seen in the context of delivering goods from a depot
to customers that have placed orders. It is required that the vehicles return to
their depot after serving the customers. The objective is often to minimize the
route lengths between all vehicles.

Finding optimal solutions to VRPs are considered to be NP-hard. The thesis
makes the addition of constraints, multiple objectives and a dynamic setting
which will further increase the complexity of the VRP. Bio-inspired algorithms
were chosen to handle this problem. These algorithms are inspired by concepts
found in nature, such as evolution or social behavior. From these concepts the
algorithms has extracted simple, yet elegant, ways of solving complex problems.
Bio-inspired algorithms are not guaranteed to find optimal solutions, but may be
tuned to find adequate solutions in a reasonable time frame.

The thesis will specifically focus on the bio-inspired algorithm Particle Swarm
Optimization (PSO). PSO is inspired by bird flocks and is classified as a swarm
intelligence algorithm, a paradigm of bio-inspired algorithms. PSO uses particles
which moves around in what is called a search space, where each position of the
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2 CHAPTER 1. INTRODUCTION

search space is related to a solution. The algorithm is therefore attempting to find
the position that is related to the optimal solution. Alone each particle exhibits
simple behavior, but as a swarm they can find optimal solutions to complex
problems.

PSO operates in a continuous search space, while a VRP is a discrete problem.
Specifically, the positions of particles in the classical PSO has their positions
defined by a set of rational values. Each position is then converted to a solution,
which means that the classical PSO allows for an infinite number of solutions.
However, discrete problems such as a VRP only allows for a finite number of
solutions, even though that number may be extraordinarily large. To solve this,
and still be able to utilize the strengths of PSO, some algorithms such as the
Set-based PSO (S-PSO) convert the search space to be discrete through a set of
integers. When constrained such a search space may allow for easy translation
between search space positions and VRP solutions.

Multiple studies have used PSO to solve the Vehicle Routing Problem (VRP).
However, few have researched the VRP in a dynamic environment or in other
words a VRP that may change over time. These changes can involve new cus-
tomers or demands that appear in real-time as the algorithm is running. It is
often the case in real-world applications that changes can occur, no matter how
well planned the original routes may have been. One algorithm designed around
dynamic environments is the multiple Quantum Swarm Optimization (mQSO).
The algorithm defines a new type of particle for the PSO algorithm to be able to
continuously search for changes in the search space caused by a dynamic change.
This algorithm is however created for a continuous environment, causing the need
for an adaptation when used to solve the VRP.

In addition, a VRP may have several factors that needs to be minimized.
Two of the most common are total driving distance and the number of vehicles
used. The complexity of multiple objectives lies in the prioritization between
objectives e.g. how does one compare time to money. The exact prioritization is
completely subjective. The Multi-objective Discrete Particle Swarm Optimiza-
tion (MODPSO) algorithm attempts to solve multiple objectives in a discrete
problem area. The algorithm handles multiple objectives by converting them to
several single objective problems. The single objective problems will then have a
known prioritization between the objectives allowing them to be easier to solve
separately. When the algorithm meets a stop criteria the results from the single
objective problems are combined back to a set of solutions.

The thesis proposes a model based on the mentioned algorithms in an effort
to solve a discrete, dynamic and multi-objective VRP.
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1.2 Goals and Research Questions

Goal Explore a combination of a Multi-objective Discrete PSO and multi Quan-
tum Swarm Optimization (mQSO) that optimizes performance and lowers
computational cost in a dynamic environment.

Description: The proposed model is from here on referred to as MOD-
QPSO.

Research question 1 How can modifications to the search space improve per-
formance while decreasing computational cost?

Research question 2 How can reference spans improve performance while main-
taining the computational cost when handling multiple swarms in multi-
objective optimization?

Description: Reference spans assign a range of possible objective prioriti-
zations for each swarm. This causes all particles within the same swarm to
have a similar prioritization of the objectives.

Research question 3 How does dynamic environments affect MODQPSO in
terms of computational cost and performance?

1.3 Structured Literature Review Protocol

This section elaborates the process of how the literature has been researched
and how the goals and research questions of the thesis were identified. It also
presents the inclusion criteria for what papers were to be included, as well as
quality criteria that further restricts what papers to include.

1.3.1 Literature sources

The findings from literature have mainly been through the use of Google Scholar.
The background theory is based on well established work, while the state of the
art is an attempt of presenting more recent publications. Work published through
the Gecco and IEEE conferences have been preferred. The citation index found
on WebOfKnowledge has also been used where one can sort to find highly cited
articles.

In an attempt to answer the research questions some keywords, quality criteria
and inclusion criteria are defined to asses the articles value for the research. These
are presented in table 1.1 and was used to select relevant and credible sources.
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Identifying Keywords used when searching

• Multi objective, PSO, discrete, VRP, dynamic, dynamic
environment, mQSO, quantum, dynamic VRP

Qualifying Inclusion Criteria

• The study’s main research topic is Swarm Intelligence.

• The study focuses on multi-objectives or dynamic envi-
ronments.

• The study appears relevant based on title and abstract.

Evaluating Quality Criteria

• The study is released by a recognized publisher.

• There is a clear statement of the aim of the research.

• The models design decisions are explained.

• The model should be compared to state-of-the-art.

Table 1.1: Paper selection criteria.

1.4 Preliminary Process

Figure 1.1 illustrates the path to finding a project. The project provided by
NTNU allowed the students to form their own project. Hence, the goal of the
preliminary process was to find and explore areas that could be evolved inside of
the paradigm of bio-inspired algorithms.

Within bio-inspired algorithms the genetic algorithm is to be considered the
most common to solve VRPs. However, the problem area is already extensively
researched. During the preliminary process swarm intelligence algorithms ap-
peared to be a trending strategy for solving VRPs. The most published swarm
intelligence algorithm is PSO. It is also a extensively studied algorithm, but there
are areas which still lack exploration e.g. constrained search spaces. The PSO
algorithm is continuous, so there are even less studies that have looked at dis-
crete adaptations. Other alternatives within swarm optimization to solve VRPs
was Ant Colony Optimization (ACO). Compared to PSO, ACO has a more nat-
ural bond to discrete problems. It was also discovered that ACO has been used
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Figure 1.1: Overview of the path to the current research goal.
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in dynamic application areas. However, during research there was discovered
promising research articles to create a hybrid using PSO. The goal was to find
an edge to the research to both contribute to solving VRPs and to evolve PSO.

After deciding to use the PSO algorithm some complexity was added by con-
sidering a constrained and multi-objective data set provided by Visma. The data
set is a VRP that assigns health care workers to the elderly.

Reading about dynamic environments solved by using ACOs sparked the idea
of solving it with PSO. Further research of dynamic environments within PSO
suggested that it was a less explored area. The research led to the discovery of
Blackwell’s work and how it has evolved over the years. Blackwell’s algorithm
multi-Quantum Swarm Optimization was particularly inspiring and is still rele-
vant as the algorithm is cited and expanded upon in recent publications.

The Visma data set allows for many-objective optimization i.e. handling more
than three objectives. Many-objective optimization often require several layers
of added complexity compared to multi-objective optimization. It was decided
that the scope of the project would be too large when also researching dynamic
environments.

The preliminary process resulted in the goal of creating a discrete, dynamic
and multi-objective PSO algorithm that would reap the benefits from each com-
ponent.

1.5 Pre-project

In the fall of 2019 a pre-masters project [Kronborg and Stensli, 2019] with the
same topic was performed. Most of the background theory is taken from the
pre-project. The state of the art is based on the pre-project, but is is rewritten
and evaluates a wider set of articles.

1.6 Thesis Structure

Consecutive chapters are presented as following: Chapter 2 contains the back-
ground theory, where fundamental concepts are explained, followed by state of
the art for dynamic and multi-objective techniques in PSO and the motivation
for the thesis. Chapter 3 uses the state of the art to create a model and presents
the proposed model. In chapter 4 the simulator for the model is displayed along
with the experimental plan, setup, results and evaluations. Chapter 5 concludes
the performed research and elaborates possibilities for future work.



Chapter 2

Background Theory and
Motivation

The chapter elaborates the thesis background theory in section 2.1, as well as
presenting the state of the art for dynamic and multi-objective techniques in
PSO in section 2.2, before the motivation in section 2.3.

2.1 Background Theory

2.1.1 Vehicle Routing Problem

The Vehicle Routing Problem (VRP) is a problem in computing where a set
of vehicles are utilized to serve a set of customers. In the standard VRP each
customer has to be visited once by any of the vehicles. The goal is to design
routes that minimizes travel distance of the vehicles.

min
∑
k∈V

∑
i∈N

∑
j∈N

di,jxi,j,k (2.1)

The standard objective of a VRP is defined by equation (2.1) where k is a
vehicle from the set of vehicles V, and both i and j are customers from the set of
all customers N. The depot is often denoted as index 0 of N. di,j is the distance
between customer i and j and xi,j,k is either 1 or 0 defined by whether or not
the solution traverses between customer i and j by vehicle k. In addition some
rules usually apply such as that all customers in N must be visited by one of
the vehicles in V and that all vehicles must start and end at a depot. Finding
optimal solutions that both follow these rules and minimize the objectives of the
VRP are considered to be a NP-hard problem.

7



8 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

VRP: Heuristics

A heuristic is a technique that seeks improved solutions at a reasonable com-
putational cost without being able to guarantee that a solution is optimal, to
state how close to optimal a particular feasible solution is or in some cases even
to guarantee feasibility [El-Sherbeny, 2010]. An important type of heuristics are
route-building heuristics that may be used to find good solutions by being pro-
vided a set of customers in a particular order. Consequently the algorithm only
has to find a fitting order for the customers to appear and then utilize a heuristic
to find the best vehicles to assign the customers to. This process may decrease
the algorithms ability to produce all possible solutions, but in turn causes an
improved fitness in the produced solutions.

A specific example of route-building heuristics is the ”parallel tour construc-
tion algorithm” from Jurgen Antes and Derigs [1995]. The heuristic connects
specific orders of customers to vehicles, where the connection between an order
of customers and vehicles are referred to as a vehicle route. In the heuristic there
is an auctioning process that generates the fittest solutions. The auctioning pro-
cess calculates the cost of inserting every available customer in to each vehicle
route. After retrieving all available costs of insertion, a single customer is in-
serted to the vehicle route connected to the lowest cost. The auctioning process
is completed when all customers are inserted in to a vehicle route. The result
is a set of vehicle routes that represents the solution to the VRP. The parallel
tour construction algorithm is deterministic and hence will generate no solution
diversity on its own.

2.1.2 Particle Swarm Optimisation

Particle swarm optimisation (PSO) was proposed in 1995 by James Kennedy
and Russell Eberhart [Kennedy and Eberhart, 1995]. The idea is inspired by
movement of large flocks of animals that as a group display complex behaviors
e.g. bird flocks and schools of fish. PSO was originally formed to simulate bird
flock behavior. The conversion to an optimization algorithm happened with the
implementation of a feature that made the bird flock locate and land at food
sources. This evolved to an algorithm where particles are placed in to a search
space where they move around searching for optimal positions. Their movement
are decided through a combination of wanting to go back to their own previous
best position and to the global best position found by the swarm.

vi(t+ 1) = ωvi(t) + c1ran1[pi(t)− xi(t)] + c2ran2[g(t)− xi(t)] (2.2)

xi(t+ 1) = xi(t) + vi(t+ 1) (2.3)
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Equation (2.2) is used for velocity updating of each dimension of the search
space. Equation (2.2) is a refined version of the 1995 algorithm as seen in [Eber-
hart et al., 2001]. This equation is more commonly referred to as the velocity
update function.

The velocity of a particle, seen in equation (2.2), is updated through three
parts. The first term represent friction for particle i where the velocity of i at
time t marked as vi(t) will be slowed down by the factor ω. The factor ω is
recommended to be in the range of 〈0, 1〉. The second and third term represents
how the particle is pulled towards its personal best pi(t) and global best gi(t)
position by subtracting the current position xi(t). The constants c1 and c2 is set
at initiation and represents what degree the particles will favor the personal best
and global best positions. It is often recommended that the sum of parameters
c1 and c2 is equal to 2 at initialization. The variables ran1 and ran2 are random
values in the range of 〈0, 1〉. After a velocity have been calculated the position
of a particle is updated as seen in equation (2.3), here the position is updated by
adding the velocity to the position.

In PSO the search space is defined as a multidimensional space for which
particles are positioned. Each position in the search space correlates with a
solution to a desired problem. To know how well each position solves the desired
problem objective functions are used to calculating fitness scores. The score
given by each objective function defines where in the objective space a solution is
positioned. If a problem only has a single objective then this position is defined
by a single number e.g. driving distance. The objective scores found at a position
in the search space is utilized when the velocity is calculated. If a found position
in the search space correlates to a good objective score it may be selected as a
personal best position for a particle or even a global best position for the swarm.
As the particles traverse the search space they explore the correlation between
the search space and objective space. If the PSO is successful the swarm will
center around areas of the search space that is linked to the optimal objective
scores for the given problem.

The search space should be manipulated or designed to work well with a given
problem. Objective functions may translate positions of the search space directly
to objective scores. However a indirect mapping trough the use of a decoding
process may improve the objective scores at each position of the search space
e.g. the decoding process may utilize heuristics. An indirect mapping of the
search space to an objective space does demand more computational power, but
is commonly used to be able to handle non-continuous problems or to manipulate
the search space to further improve the fitness of each position.
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2.1.3 Dynamic environment

Some problems have the trait of changing over time. In PSO this can be observed
if the optimums change positions in the search space. These types of problems
are often referred to as Dynamic Optimization Problems (DOP).

There are two strategies when dealing with DOPs [Mavrovouniotisa et al.,
2017]:

1. Complete restart: When a change is detected, the algorithm is restarted
with a modified environment. This strategy makes a DOP indistinguishable
from a series of static optimization problems. A disadvantage with this
approach is that no knowledge is transferred between each change.

2. Partial restart: The concept of partial restarting is to maintain knowledge
after the occurrence of a change. Several different methods can be used,
but the essence is to have sufficient diversity to produce a new solution
near the optimum with less computing power than if a complete restart
was performed. This way one can say that the algorithms are able to learn
how to produce good solutions in an environment.

In a dynamic VRP, swarms may learn beneficial routes that will still be useful
after a new event. In a VRP an event could be a new customer added to the
route. When the new routes are computed with the new customer as a factor,
the swarm will in theory be able to find an optimal solution faster than after a
complete restart. Different techniques will change how well an algorithm is able
to retain knowledge of the problem area.

There are two major factors in how a dynamic environment operates; the
severity of the spatial change and temporal severity. The former is how large
effect each change has and the latter is how often each change occurs. There is
also two key points to consider of outdated memory and loss of diversity. All
this is crucial when discussing what technique to incorporate to an algorithm.
Hence, it is important to know how often a new customer is added (temporal)
and on average how big of a change that makes in the search space positions of
the optimums (spatial).

Different dynamic environments will have different rates of spatial and tempo-
ral changes. Because of the importance of spatial and temporal values, a system
was proposed in Duhain and Engelbrecht [2012] to label environments in four
different classes. The list below explains the different classifications and in figure
2.1 one can observe the relations between the classes.

1. Quasi-static environments: both low spatial and temporal changes.

2. Progressive environments: low spatial, but frequent temporal changes. Changes
occur often, but does not have a large effect on the location of optimums.
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Figure 2.1: Types of classifications for Dynamic environment [Unger et al., 2013].

3. Abrupt environments: large spatial, but infrequent changes. The environ-
ments is perceived as static for long periods of time before large changes
occur.

4. Chaotic environments: large spatial and frequent changes. The environ-
ments will have numerous changes with large impacts.

2.1.4 Multi-objective

Multi-objective problems are optimization problems that involve more than one
objective function. The goal is to find a set of solutions with the best tradeoff
between the objectives.

An example on multi-objectives is picking the best possible flight. Making
an algorithm that achieves this for a range of customers would be impossible,
because of the ambiguities surrounding multiple objectives. It is impossible to
know if a customer wants to travel with an expensive plane and arrive early, or
a cheaper one and save money.

Figure 2.2 illustrates a Pareto Front (PF) as green points on a dotted line that
correlates with the set of Pareto optimal solutions. Solution p1 is nondominated
(Pareto Optimal), if no other solution is found so that for all objective functions
that solution is better than p1. Considering it the opposite way, p2 is dominated
by p1 since it has both a lower value for objective 1 and 2.



12 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

Objective 1

O
b

je
ct

iv
e

2

Pareto front

p1

p2

Nondominated

Dominated

Figure 2.2: Pareto Front

minimize(f1(x), ...fk(x)),

x ∈ S
(2.4)

Multi-Objective Optimization Problems (MOOP) can be mathematically de-
fined as in equation (2.4) where fk(x) represents objective functions, and S rep-
resents the feasible region [Miettinen, 1999]. The feasible region is a subset of the
search space that contains all solutions that comply with the given constraints.
A solution is ranked by all given objective functions. The objective of a MOOP
is then to find solutions that optimizes all of the objective functions, where in
the case of equation (2.4) optimization is equal to minimization.

Hypercubes

The Multi-Objective Particle Swarm Optimization (MOPSO) algorithm pro-
posed in Coello Coello and Lechuga [2002] divides the search space into multi-
dimensional cubes called hypercubes. With the use of hypercubes the authors
assume that particles converge at different positions in the search space and that
these positions are linked to different parts of the Pareto Front. This is called a
geographically-based approach of maintaining diversity.

The algorithm uses an archive containing solutions that are nondominated.
Whenever a particle finds a new solution it is compared to the archive of non-
dominated solutions and if the new solution is nondominated it is stored in the
archive. Solutions that already exist in the archive that are dominated by the
new solution are removed.

Hypercubes are represented in figure 2.3a as squares between the axis. Par-
ticles only communicate with other particles within the same hypercube. This



2.1. BACKGROUND THEORY 13

communication consists of sharing their local best and agreeing on a global best.
The global best is chosen through Pareto dominance and in the case where there
are two or more nondominated particles in a single hypercube one is chosen at
random. Circle A represents the same particles in the search space and objective
space, illustrated in figure 2.3a and figure 2.3b respectively.

x1

x2

A

(a) Search space with Hypercubes

f1(x)

f2(x)

Pareto front

A

Non-dominated

Dominated

(b) The resulting objective space

Figure 2.3: MOPSO: Hypercube representation

Hyper Volume Indicator

The Hyper Volume Indicator (HVI) is a measure of the area that a Pareto front
covers in the objective space [Beume et al., 2009]. HVI by itself is not enough
to determine if one MOOP algorithm is superior to another as a large HVI may
represent an ability to find superior solutions in a single part of the Pareto front,
while another part may not have been explored. However, when an algorithm
shows a superior HVI compared to another algorithm it reveals that the superior
algorithm is able to at least produce one solution that dominates the solutions
from the other algorithm. Hence, HVI can be an indication of how well algorithms
are doing, but does not provide a guarantee.

HVI is a calculated with the use of a reference point. When the Pareto front
is known this reference point can be set to the nadir point. The nadir point is
found by using the worst objective values in each dimension from the true Pareto
front i.e. finding the point that is dominated by all other points. If the true
Pareto front is unknown an approximation of the nadir point can be calculated
using the the worst found objective value for all solutions that are used when
calculating the HVI. For instance, if the HVI is calculated when comparing three
different Pareto fronts, all three fronts are used when finding the nadir point.
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The HVI is then calculated as the volume found between the Pareto front and
the reference point.

HVI is usually represented as a number but can also be presented as a per-
centage of the ideal volume [Zitzler et al., 2007]. The ideal volume is calculated
by the use of the ideal point which is a point that dominates all other points in
the true Pareto front i.e. the opposite of a nadir point. When the true Pareto
front is unknown an approximation of the ideal point can be calculated the same
way as for the nadir point. The ideal HVI is calculated by finding the volume
between the ideal and nadir point. When using HVI a simpler comparison can
be made by diving the HVI by the ideal value.

Decomposition and Aggregation

Decomposing multi-objective algorithms converts a MOOP to a set of single
objective sub problems. Each sub problem have a function that determines a
varying prioritization of the MOOP. The different strategies of determining pri-
oritization are called aggregation functions, where the most common ones are the
Tchebycheff approach and the weighted sum method.

Both the Tchebycheff approach and the weighted sum method relies on the
possibility of generating a system where the sub problems can individually be
assigned to solve their own single objective task. After convergence the sub
problems must also be able to be aggregated to form a Pareto front. The relation
between decomposition and aggregation can be seen in figure 2.4.

Concept

Objective Objective Objective

(a) Aggregation

Concept

Objective Objective Objective

(b) Decomposition

Figure 2.4: Difference between aggregation and decomposition.

minimize gws(x|λ) =

m∑
i=1

λifi(x)

subject to x ∈ Ω

(2.5)

The weighted sum method generates a set of random uniform weights for each
sub problem, where each weight is tied to a single objective in a MOOP. This
is seen in equation (2.5), where λ represent a set of weights and fi an objective
function. Having different sets of weights result in finding solutions to different
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parts of the pareto front. The weighted sum method does not perform well in
complex objective spaces, but it is less computational heavy than Tchebycheff
approach [Zhang and Li, 2007].

Each sub problem in the Tchebycheff approach is not only dependent on a set
of weights as in weighted sum, but also on the best found value in each objective
found by the swarm. This distinction makes the Tchebycheff approach able to
operate in both complex and non-complex search spaces.

minimize gte(x|λ, z∗) = max
1≤i≤m

{λi|fi(x)− z∗i |}

subject to x ∈ Ω

z∗ = (z∗1 , . . . , z
∗
m)T , where z∗i = max{fi(x)|x ∈ Ω}

(2.6)

The Tchebycheff approach is represented in equation (2.6). The randomly
distributed set of weights is symbolized by λ and z∗ which is a set of reference
values. The reference values are the best objective values found in each objective.

Each sub problem forms its own objective function represented as gte(x|λ, z∗),
as seen in (2.6). This function is what makes the search for solutions to each
sub problem dependent on both the reference values (generated from the whole
population) and a weight vector λ, which is the prioritization of the objectives.
The dependency of z∗ makes the swarm share information about the search space.

2.1.5 Constraints

A constraint set limits on available choices. Typical constraints in a VRP are
that the vehicles will have limitations such as driving distance and load limits.
These limitations are commonly referred to as constraints.

The list below presents some of the commonly found constraints within VRPs.

• Vehicle types: Vehicles have properties making them unique, making them
fit for different tasks.

• Time windows: A vehicle or customer is only available during specific time
intervals.

• Visit restrictions: Some vehicles can not visit certain customers.

• Synchronized tasks: Some customers must be visited by two or more vehicles
at the same time.

• Load limits: A vehicle may have a load capacity restricting the number of
customers visited.

These constraints can be of the following two types:
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1. Soft constraints are preferred to be met, but a breach of one will not inval-
idate a solution.

2. Hard constraints have to be met for a solution to be valid.

Soft constraints can be solved through the use of multiple objectives. Imple-
menting soft constraints as objectives allows the algorithm a larger set of feasible
solutions, as the algorithm is allowed to create solutions that tries to minimize the
soft constraint violations. For instance if the time window constraint is regarded
as soft the goal is to minimize the deviation from breaching the time windows.
This particular method is known as an indirect constraint handling technique
[Eiben and Smith, 2015].

2.2 State of the art

2.2.1 Dynamic PSO

The optimal method of solving problems in dynamic environments will differ
depending on the dynamic classification of the given environment. The dynamic
classifications are explained in section 2.1.3. However, methods made for one
classification may also work well in another.

A model proposed in Demirtaş et al. [2015] is designed to operate on abrupt
or quasi-static environments, due to how the algorithm converges after a static
problem is generated. Each static problem is generated after the occurrence of
a change and is a representation of the current environment. The search space
allows the insertion of customers dynamically anywhere in the position vector.
However, transfer of knowledge between the static problems is not discussed.
If the swarm converges in every static problem some method of maintaining
diversity will be required to continue the search for a better optimum. This
indicates that the model is designed around an environment of low temporal
severity where convergence is possible between each change. The model presumes
that there is no need to track multiple optimums, as each static problem should
only contain a single best optimum. This is not assumed in most other dynamic
work.

A common issue in dynamic environments are how a local optimum may
change to be the global optimum after a dynamic change. A common strategy
to handle this issue is to utilize multiple swarms. The specific implementations
of which may vary.

One such model is the Multi-Adaptive PSO (MAPSO) proposed in Khouadjia
et al. [2010]. The idea is to place a MAPSO swarm on each local optimum. Ide-
ally these swarms will maintain enough diversity to track dynamic changes even
after a convergence. The swarms evolve in a cooperative island model where the
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population is decomposed into sub-populations to be able to track different op-
timums. These sub-populations, also called islands, exchange information about
found optimums through particle exchange. An elitist replacement strategy is
used to replace the worst particles of a swarm after each exchange. Since the
algorithm is composed of several different techniques, further improvement may
prove to be difficult as it already requires tuning of a large number of parameters
for optimal results.

Another multi swarm method is the Species-PSO Parrott and Xiaodong Li
[2006], where the different swarms are referred to as species. Each species is
based on proximity so that particles may change what species it belongs to based
on its location in the search space. A maximum number of particles per species
prevents all particles from converging to a single location and simultaneously
force the particles to search different areas. Species-PSO has been used to solve
dynamic problems and presented good results. However, if the changes happen
infrequently then the different swarms will converge which causes the algorithm
to struggle finding the new optimums. This issue is addressed in Bu et al. [2017]
where memory techniques are utilized to insert diversity. Particles from before
a convergence will retain its velocity and be able to continue the search for op-
timums and even make a whole species re-initiate its search. This particular
memory technique works best in environments where changes cyclically occur,
allowing the stored particles to find old optimums that once again are superior.

The multi Quantum Swarm Optimization algorithm (mQSO) introduced in
Blackwell and Branke [2004] is designed around tracking a range of different
optimums. The algorithm is based on the ideas of quantum optimization, that is a
meta-heuristic primarily used to optimize the local search abilities of an algorithm
[Karmakar et al., 2017]. This makes the local search in mQSO preferable to the
one in standard PSO.

The meta-heuristics of quantum optimization is inspired by real world quan-
tum mechanics. In quantum mechanics one can at no point be certain of a parti-
cles position or velocity due to the uncertainty principle. Early work such as Sun
et al. [2004] introduced algorithms that where heavily inspired by this principle
and paid close attention to the actual rules of quantum mechanics. The early
quantum algorithms have more complex calculations than the standard PSO,
but in turn presents better local search abilities without a loss of global search.
These quantum algorithms were not optimized for dynamic environments, but
rather focused on optimizing the results of the standard PSO. Quantum PSO
increases the diversity which also increase the search ability of PSO [Karmakar
et al., 2017].

The mQSO algorithm was designed to utilize the quantum heuristic to help
restart the algorithm when a change occurs, with the added benefit of optimized
search abilities. The multi-swarm part of mQSO is more strict than algorithms
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Figure 2.5: QSO: Neutral and Quantum particles

like Species-PSO. No information is transferred between the swarms, besides the
competition that occurs when two swarms collide. In the competition, the winner
is chosen at random and allowed to converge, while the loser is re-initiated at a
random position. Later publications on mQSO increase the focus on finding new
optimums [Blackwell and Branke, 2006]. When all swarms have converged, the
worst performing one is re-initiated at a new location in the search space. This
will have the effect of creating continuous search for new and better optimums.

Making mQSO work with a discrete search space requires modifications as
the algorithm is designed to work in a continuous one. However, other quantum
techniques have been used to optimize the search abilities in discrete problems
with promising results seen in [Li et al., 2017]. However, these have not focused
on the promising dynamic traits of quantum.

Quantum Inspired PSO

Compared to other quantum inspired algorithms, mQSO simplifies the com-
plex calculations needed for finding a quantum particles position. The proposed
method uses two types of particles: neutral and quantum particles.

1. Neutral particles are the particles used in the standard PSO.

2. Quantum particles have no velocity function and the position is simply
updated with a function that has a radius of r and with the number of
dimensions d, equal to that in the search space.

The function will make quantum particles appear at random locations with
a distance r away from the global best position. This introduces a random
search around the convergence point of a swarm.
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The relation between neutral particles, quantum particles and the global op-
timum is illustrated in figure 2.5. The global best particle at time t+1 can be
a position found by both a neutral and a quantum particle at time t. When a
new global best position is found, the radius is moved to be centered around it
at time t+1.

The behavior of quantum particles makes their search independent of velocity,
which is utilized in mQSO to avoid the problem seen in Species-PSO. In the
particular problem all particles velocity are reduced to 0 causing them to get
stuck at a singular point. In experiments done on mQSO the quantum particles
are able to reintroduce velocity to a swarm after a dynamic change through their
behavior of continuous search around the optimum.

2.2.2 Discrete PSO

In PSO all particles have to traverse a continuous search space in the search for
an optimal solution, as discussed in section 2.1.2. However, in problems such as
the knapsack problem, traveling salesman and VRP there is no direct benefit of
using continuous values. Solutions to these problems are classified as discrete,
and the PSO algorithm require extensions or direct manipulation to be able to
efficiently find solutions to discrete problems.

An early proposed method is to round each value in a particles position to an
integer, as utilized in Improved PSO (I-PSO) [Qing Zhu et al., 2006]. I-PSO is
specifically designed around the VRP. It requires the dimension of the position
vector to be n+k-1, where n is the number of customers and k is the number of
vehicles. The position represents the sequence of customers each vehicle traverses
where a depot is positioned in the sequence to mark the use of a new vehicle.
The computational complexity of PSO decreases with the number of dimensions
in the position vectors. However, a larger vector may be efficient if it can remove
complexity related to the objective functions, in tasks such as decoding the posi-
tion or maintaining valid solutions. The position vector of I-PSO makes it able to
find all valid solutions, even the most inefficient. Since I-PSO is designed for the
VRP, some constraints are solved by the particle itself. An example is to satisfy
all customer demands, where I-PSO ensures that all particle positions visit every
customer in the VRP.

Another method is to modify the search space directly, removing the need of
converting position values from continuous value to discrete, as observed in the
Multi Objective Discret PSO algorithm (MODPSO) [Gong et al., 2013]. Both
a particles position and velocity are defined to discrete values, this is achieved
by modifying the velocity and position update function. The proposed discrete
velocity and position update is similar to the original PSO formulas, but the
modifications lessens the computational complexity of converting a continuous
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search space to a discrete one.
There are no published articles that use MODPSO to solve a VRP. Other

methods such as I-PSO have the benefit of being proven to work at solving the
VRP and to have been later expanded to increase the efficiency using techniques
such as Tabu search [Zeng, 2019]. Modifying MODPSO to be able to handle
constraints that other algorithms have solved in this search space may prove to
be both a complex task and to lessen the benefits from the discrete search space.

An algorithm that has a discrete search space, is designed for discrete prob-
lems and proven to be able to solve VRP is the Set-based PSO (S-PSO) intro-
duced in Chen et al. [2010]. The velocity of S-PSO is based on continuous values
that are all linked to discrete actions. In a VRP a natural link between these
probabilities and actions is whether or not a vehicle drives from one customer to
another. The position consist of discrete values, where S-PSO is able to use the
probabilities in the velocity when updating the position. In the position update
the probabilities of the velocity are manipulated into what is called a set, hence
set-based PSO. The concept of S-PSO is expanded in Gong et al. [2012], where
S-PSO is altered to operate on a VRP with time windows. In the paper it is
shown that the structure of S-PSO can be utilized to solve some VRP constraints
by design. In turn the results from S-PSO are compared directly with I-PSO,
showing an ability to retrieve solutions with better travel distance in S-PSO.

Set-based PSO

The position of a particle is represented by a 2d array, where the index of each
array symbolizes a customer, as seen in figure 2.6a. The first element inside
the array represents the previous customer and the second element represents
the next. By following all the connections in the representation, a sequence of
customers is found creating a Hamiltonian path. The Hamiltonian path of figure
2.6a is drawn as the path 0-4-3-1-2-0 in figure 2.6b, where index zero represents
the depot.

The position is in other words defined as an array with the dimensions 2 ∗N .
The velocity is an array of N2, containing all possible connections between all
customers and the depot. S-PSO keeps track of both the next and previous
customer as in some VRPs a route from the depot to customer A and then to B
will be equal to the route from the depot to B then to A. In this case marking
both the path from A to B and from B to A as optimal, will be favourable when
generating a new route. However, when confronted with strict time windows it
may be the case that A must be visited before B, where as this behavior is not
considered by S-PSO.

Since S-PSO for VRP has a Hamiltonian path as its position, utilizing multi-
ple vehicles in S-PSO requires the use of a decoder. The decoders primary goal
is to minimize the number of vehicles used, where travel distance is a secondary
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(a) S-Particle representation. (b) S-Particle Hamiltonian path.

Figure 2.6: S-Particle relation between representation and Hamiltonian path.

prioritization. S-PSO documents positive results in the goal of using as few vehi-
cles as possible and in comparison to I-PSO it achieves a better travel distance.
With the inclusions of the decoder S-PSO introduce a new factor to diversity, as
the decoder is responsible for being able to generate all optimal solutions, which
in algorithms such as I-PSO lays solely on the algorithm itself.

2.2.3 Multi-objective PSO

Multi-objective optimization involves optimizing more than one objective func-
tion simultaneously. To make optimal decisions one need to consider trade-offs
between two or more conflicting objectives.

One such method is the Hypervolume-based Multi-Objective Particle Swarm
Optimizer (MOPSOhv) that uses an archive to store non-dominated solutions.
MOPSOhv extends the concept of hypercubes discussed in section 2.1.4. Instead
of hypercubes which are multi-dimensional squares, MOPSOhv has hypervolumes
which in this case are multi-dimensional rectangles. From each nondominated
solution a hypervolume is formed in the objective space, where each volume
is restricted based on the closest nondominated solution in each objective. A
large volume indicates a less explored area of the Pareto front. This behavior is
utilized as MOPSOhv directs particles towards areas with large hypervolumes.
More specific the particle with the largest volume will be chosen as a leader for
other particles. In addition, MOPSOhv stores all nondominated particles in an
archive. The method does not present groundbreaking results, although it adds
another layer of complexity. The computational cost is high and increases with
the number of objectives. However, it does become viable at 6 or more objectives
where it may be regarded as the state of the art.

There are a large number of different strategies to multi-objective PSO, where
as hypercubes and decomposition are two of the most prominent. In Zapote-
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cas Mart́ınez and Coello Coello [2011] a decomposition based PSO algorithm is
introduced. The interesting aspect of this algorithm is that it requires no form
of archive. The decomposition-based Multi-Objective PSO (dMOPSO) is based
on the Tchebycheff approach, and performs a search without any mutation or
particle re-initializing. This means that the final position of all particles will be
as close to the Pareto front as the algorithm ever got. This strategy may work
well in a simple search space, but a more complex one will likely be challenging.
It does however introduce an interesting viewpoint in how decomposition guides
particles towards the Pareto front.

Multi-Objective Discrete Particle Swarm Optimization (MODPSO) was in-
troduced in Gong et al. [2013]. MODPSO uses the Tchebycheff approach of
decomposition, but does require an archive as it includes a random mutation
through what is called a turbulence factor. The turbulence is implemented to
increase the swarms diversity. It may change a particles position at random to
be more similar to one of its neighbors. Each particle has a set of neighbors that
is made up of the particles with the most similar weight vectors compared to its
own. A weight vector is a specific prioritization of the objectives. The turbulence
factor is reported to work well in the given problem, where local optimums were
prevalent. MODPSO performs decomposition as explained in section 2.1.4, with
the exception of the leader selection strategy and turbulence factor.

The neighborhoods of MODPSO allows particles to communicate with other
particles with a different prioritization of the objectives. Communication between
particles with similar weight vectors guides particles to converge at optimums.
Communication between particles with different weight vectors introduces diver-
sity that can help particles escape local optimums. Each trait is tuned by the
size of the neighborhood where a large neighborhood gives more diversity while
a small one makes for faster convergence.

Leader selection

Different leader selection strategies can be used in PSO. The leader selection is
highly relevant to the current state of the art of multi objective PSO. In PSO a
leader can take the place as the global best in the velocity update function, as
there may be several candidates for a global best in multi-objective problems. In
MODPSO the selection of a global leader was performed by randomly picking
the local best position from a set of particles with similar decomposition prior-
ities i.e. picking from a neighborhood. A more computational heavy strategy
was considered, but discarded due to high run time and nearly indistinguishable
improvements of performance.

In Nebro et al. [2013] a study was performed around the difference of picking
random leaders against picking a leader based on hypervolume. The study found
it preferable to pick based on hypervolume. However, randomly deciding a leader



2.3. MOTIVATION 23

that was in the Pareto archive performed surprisingly well. The results varied
from problem to problem, but indicated that a random selection of a leader may
be the most efficient and a valid strategy for other algorithms which can be
observed in MODPSO. More importantly the results indicates that a selection
strategy should not be taken for granted as random decisions, hypervolumes or
Pareto based strategies all have their place with a given algorithm or problem.

MODPSO retrieved efficient solutions with the use of decomposition and a
random leader selection. The authors endorse this strategy as it is less com-
putational heavy than a hypervolume strategy. With the random strategy the
algorithm manages to run more iterations in the same time frame as it would
if using the hypervolume strategy. The random strategy also produces fitter
solutions in the same time frame as the hypervolume strategy.

2.3 Motivation

Through the state of the art some similarities are discovered. The MODPSO
algorithm from section 2.2.3 includes a turbulence factor that performs a search
that will help the algorithm escape local optimums. Though not identical, the
quantum traits of mQSO does have similarities to the turbulence factor and may
work as an alternative when using decomposition in future work.

Importantly, the use of multiple swarms in mQSO is already optimized to find
and track different optimums. The proposed algorithm will attempt to utilize this
trait when faced with multiple-objectives and to optimize the solutions in the case
of dynamic changes.
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Chapter 3

The Model

The models topology is presented in section 3.1.1, followed by an explanation
of the model flow in section 3.1.2. Further in section 3.2 the design choices
made to create the model from combining and restructuring other algorithms are
presented.

3.1 Model overview

The proposed model is the Multi-Objective Discrete Quantum PSO (MOD-
QPSO). The model combines different techniques such as multiple swarms, de-
composition of multiple objectives and quantum particles in an effort to solve a
discrete and dynamic VRP.

3.1.1 Topology

MODQPSO is implemented using four different components where the relation-
ship between them can be observed in figure 3.1.

The algorithm is initiated from the MODQPSO component. The component
utilizes a set of swarms to search different regions of the Pareto front.

The MODQPSO component ensures that the entire Pareto front is searched
by decomposing the main problem through the use of reference spans. Reference
spans restricts the possible prioritizations of objectives. Each swarm has its own
reference span, so when the model is set to use three swarms it will generate three
reference spans which can be observed in figure 3.2a. The spans marked as S1, S2
and S3 are contained using vector pairs that define the edges of a span e.g. S1 has
a and b while S2 has b and c. The two outlying vectors a and d mark the edges
of all possible span values. This is because a and d represents a prioritization
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Figure 3.1: Components of the model.

of the objectives that solely focus on a single objective and ignores the other
i.e. 〈0,1〉 or 〈1,0〉. These two vectors are always represented, independent of the
amount of swarms used.

(a) The problem decomposed to three
spans.

(b) The weight vectors of particles defined
by a span.

Figure 3.2: The use of reference spans in relation to decomposition and weight
vectors.

Each swarm control both a defined number of neutral and quantum particles.
Figure 3.2b shows an initiated swarm where each point such as p0 represent a
neutral particle and the arrows represent weight vectors. Each neutral particle is
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connected to a specific weight vector. For instance the weight vector ω0 marks
the direction that the particle p0 deems as optimal towards the Pareto front. In
the figure span S2 represents the upper and lower angle for the weight vectors.
The angle each weight vector has towards the Pareto front is defined by the
reference span when the swarm is initiated.

In figure 3.2b the reference vector is marked as r 2. The reference vector is the
middle value of the prioritization as defined by the span S2. Using the reference
vector a reference point is calculated using the Tchebycheff method explained in
section 2.1.4.

Quantum particles searches randomly around the position of the reference
point. This method replaces the use of the global best that is used in the original
mQSO as explained in section 2.2.1. The use of the reference spans for neutral
particles and reference position for quantum particles makes all particles in the
swarm have a similar prioritization of the objectives. A similar prioritization of
objectives will guide particles towards the same part of the Pareto front.

As explained in section 2.1.2 the velocity of particles directly affect the particle
position in the search space. This will in theory make each particle traverse to
the desired part of objective space following the direction of the weight vector.
However, such behavior is not guaranteed.

In figure 3.2b each particle of the swarm has a weight vector aiming at the
middle of the Pareto front, but one particle p0 is exploring the top of the Pareto
front. In an unknown number of iterations p0 will likely return to the middle
of the Pareto front as the weight vector ω0 and the span prioritize the middle
position of the Pareto front.

The exploration seen from particles such as p0 introduces positions which
are outliers in terms of the span prioritization. An archive is kept inside each
swarm to store all Pareto optimal solutions found throughout all iterations which
includes the outliers. When the algorithm has completed the outliers may prove
beneficial when aggregating the archives from the separate swarms. Otherwise
the outliers are ignored as another swarm has found solutions that dominates the
outliers.

The swarms update each neutral particles velocity, position and fitness in
every iteration. The fitness function is problem specific e.g. the number of
vehicles or driving distance. The swarms also maintain particle communication,
such as creating neighborhoods. All particles are made aware of the most similar
neutral particles in terms of their weight vectors. A defined number of the most
similar neutral particles is used to form a neighborhood, further explained in
section 2.2.2. In addition the swarm maintains Tchebycheff specific variables
such as the Z∗ archive of best found values in each objective. The final role of a
swarm is to maintain the reference point.

Neutral particles need two variables from the swarm; the weight vectors and
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the neighborhood. With each velocity update the reference point is received and
the particle will perform a leader selection operation. The leader selection will
select any of the neighbors, the reference point or its personal best at random
with equal probability. In the fitness update the weight vector combined with
Z∗ will determine the particles personal best position, as seen in Tchebycheff’s
method. The fitness update creates a solution to the VRP through decoding a
particles position which is explained in section 3.1.2.

Quantum particles are affected by a single constant called radius which has
the same value for every quantum particle in all of the swarms. The role of
quantum particles is to perform random searches around a given position. This
radius constant defines how many random mutations that should be performed
around the positions. The new found position is then decoded to a solution.

In each iteration the swarms generate solutions from both neutral and quan-
tum particles. This causes the total number of solutions from each iteration to
be (number of neutral + number of quantum) * number of swarms.

3.1.2 Algorithm Flow

An illustration of the algorithm flow is shown in figure 3.3, where the following
sub sections explain the different parts of the algorithm in detail.

Initialization

The initialization starts by generating a set of reference spans. A reference span
is generated for every swarm, where the span itself is a range of possible values
for each objective. Each swarm then generates the reference vector and a weight
vector for each neutral particle. The swarm forms neighborhoods for each neutral
particle that is defined by the similarity of the weight vectors. Each neutral
particle is then placed in to a discrete search space at random positions.

Velocity and Position update

For each iteration all swarms receive a request to update the velocity of its con-
tained neutral particles. The velocity update is performed using the position
retrieved from the leader selection. When the velocity update has been per-
formed a request is sent to all swarms to update the particle positions. The new
position is found using the calculated velocity and the current position which
forms a Hamiltonian path.
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Figure 3.3: The flow of the MODQPSO algorithm.
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Quantum update

The quantum update in figure 3.3 is an element easier to understand through
a detailed figure. Figure 3.4 shows the relation between the search space and
objective space. The figure shows the particles from a single swarm, where none
of the particles are currently positioned on the reference point. The reference
point is the best found position from all the previous iterations and particles
may move away from it from one iteration to another.

The quantum update makes the quantum particles find a random position
centered around the reference point. In figure 3.4a quantum particles have been
placed randomly on a circle R that is centered on the reference point. Figure 3.4b
shows that the reference point remains the best position in relation to the refer-
ence vector, where in this scenario the reference vector prioritizes both objective 1
and 2 equally. An equal prioritization of the objectives make the position closest
to the graphs origin the superior position. Since no better position was found in
figure 3.4 the quantum update for the next iteration will center around the same
position. It is first when a superior position is found that the quantum particles
will center around a new position. In the first iteration no reference point has
been calculated making the quantum particles do a random search unconstrained
by a reference point.

x1

x2

R

(a) Search space.

f1(x)

f2(x)

Reference vector

Reference point

Neutral particle

Quantum particle

(b) Objective space.

Figure 3.4: A swarms position in both the search space and objective space.

Fitness update

A fitness update is both performed after the velocity, position and quantum
updates, but also after a dynamic change. Its purpose is to update the fitness
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(the objective values) for all particles. Figure 3.3 does not include a detailed view
of the fitness update, but the the update is a complex task. The fitness update
is performed in each swarm where all particles decode their position to generate
a solution to the VRP where all customers are linked to a vehicle in a specific
order.

As a part of the fitness update all generated solutions are kept to be processed
at a later stage, but before that the neutral particles update their decomposed
fitness. The Tchebycheff method use both Z∗ and the weight vector to calculate
the decomposed fitness of a particle. If this value is lower than the best found
decomposed fitness the current position is set as the personal best. In the case
of an equal decomposed fitness to the previous found best, the actual sum of
objective values is used to choose which position is the new personal best. The
reference point is also updated using the same logic. This is possible since the
swarm contains a reference vector which can be used as a weight vector in the
Tchebycheff method.

As a last step of the fitness update all solutions found by the different swarms
are compared. This is done using the Pareto optimal archive inside of each swarm.
The archive is updated after all particles have completed their fitness update. At
the same time the Z∗ archive is updated to store any new improved objective
values.

Return aggregated archive

When the stop criteria is reached the swarms return their archives of non-dominated
solutions. In figure 3.5a there are three fronts found by three separate swarms.
Some of the found solutions are dominated by solutions within other swarms e.g.
parts of Front 3 are dominated by solutions in Front 1. After aggregation the
resulting front can be observed in figure 3.5b where only non-dominated solutions
remain from each of the fronts. The Pareto front seen in the figure is stored in
an archive which is used as the return value of the algorithm.

Search space update

After aggregation and return of the found Pareto front, a dynamic change may
occur. A dynamic change will require the model to perform a search space update
which adds new customers to the VRP. This does not change the order of the
Hamiltonian path that is already generated. The new customers are added in a
random sequence to the end of the existing path.

As seen in figure 3.3 a fitness update is performed after a search space update
since the change may have impacted the objective values. The model will then
be able to search for new optimums presented by the dynamic change.



32 CHAPTER 3. THE MODEL

Pareto front

Front 1

Front 2

Front 3

(a) Fronts found by three swarms.

Pareto front

(b) Result from aggregating the fronts.

Figure 3.5: Aggregating fronts to a main archive.

3.2 Design decisions

3.2.1 Particles

The model uses the two particle types quantum and neutral, where the distinction
between them are derived from mQSO. The logic seen in the leader selection,
velocity update, position update and fitness update is composed of a mix of
different sources.

Each particle traverses a search space which is formed by the representation.
The model allows this representation to take different forms. However, every rep-
resentation must in some way represent a Hamiltonian path where all customers
of the VRP is included in a specific order. The method of representing the
Hamiltonian path may vary such as the method used in either S-PSO or I-PSO.
In the model both the representations of S-PSO and I-PSO are implemented,
both further discussed in section 2.2.2.

Leader selection

The leader selection is invoked from the velocity update. All particles involved in
the leader selection have an equal probability of being selected. This function is
inspired from both MODPSO, explained in section 2.2.3 and the leader selection
of S-PSO. The leader selection of S-PSO is identical to the one in MODPSO if
the neighborhood size in MODPSO is set to the number of particles - 1. The
model allows for any number of particles contained in the swarm to be a part of
the neighborhood where any neighbor, the personal best position of the particle
or the reference point can be selected as a leader.
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The addition of the reference point is included so that quantum particles are
able to affect the velocity and position of neutral particles, as quantum particle
are not a part of any neighborhoods. Quantum particles have to be able to
affect the velocity of neutral particles in the case of a dynamic change that are
discovered by the quantum particles. The neutral particles may have converged,
but quantum particles can still discover new optimums and guide neutral particles
towards new optimums introduced by the change which is further discussed in
section 2.2.1.

The model utilizes a random leader selection as it requires less computations
and adds less complexity. A random leader selection is found to have the same
performance as a selection strategy for most problem types which is further dis-
cussed in section 2.2.3.

Velocity and Position update

The velocity structure is based on S-PSO. The velocity does not represent direct
velocity in each dimension, but probabilities linked to every action. An action
is defined as a route from one specific customer to another in the VRP. Further
discussion of the functions of S-PSO is discussed in section 2.2.2.

vi(t+ 1) = ωvi(t) + c1ran1[leaderSelection(xn, pi, refPoint)− xi(t)] (3.1)

In MODQPSO the velocity update function includes the selection of the ref-
erence point as leader, seen in equation (3.1). The velocity is only affected by
the particles previous velocity and the selected leader. The leader is found using
the leader selection as explained in the previous section.

The position update is dependent on the representation. For both the S-PSO
and I-PSO representations the velocity is used to modify the current position.
In the case of S-PSO the position update is not modified from implemented as
in the original S-PSO algorithm. However, it should be noted that even though
the position update of I-PSO is not modified some modification is performed on
I-PSO. As explained in section 2.2.2 I-PSO does not represents a Hamiltonian
path, but each position of I-PSO includes stops at the depot which means the
change of a vehicle. In MODQPSO when referring to the I-PSO representation
the use of multiple vehicles are ignored and a single Hamiltonian path is what is
stored at each position for the particles. This means that both S-PSO and I-PSO
positions has to be decoded to represent a solution to the VRP.

Quantum update

The quantum particles used in the model are inspired by those in mQSO. How-
ever, the mQSO quantum particles are designed to operate in a continuous search
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Figure 3.6: Quantum update

space. The mQSO quantum particles are placed at a set distance away from the
global optimum using a continuous ball function to place them in the search
space, further discussed in 2.2.1. As the representations of both I-PSO and S-
PSO are discrete the placement of quantum particles must be calculated using a
discrete interval. The discrete interval, also called the radius, is equivalent to the
number of random mutations.

These mutations consist of switching two and two values to simulate the
random distance which quantum particles are placed away from a position in
mQSO. The process of switching a series of two and two values are denoted as
performing a quantum update. At each iteration a swarm will send the reference
point to all of its quantum particles, where the reference point serves as the center
of the quantum update.

Figure 2.5 performs a quantum update with a radius of 2 on a given posi-
tion. The details of the S-PSO representation are explained further in section
2.2.2. The Original position in figure 2.5 is first transformed to a queue be-
fore performing the mutations. In the figure Mutation 1 and Mutation 2 both
switches the position of two customers on the Hamiltonian path. The queue is
then transformed back to a S-PSO position marked as Result. If this switch was
to be performed directly on a S-PSO position rather than the proposed queue, a
domino effect would occur where the values for both the previous and next cus-
tomer had to be updated on each of the switched positions. In addition the values
of the next and previous customers after and before the switched customers on
the Hamilton path had to be updated. Hence it is less complex to transform
the position to a queue, as only the values that are switched are affected as seen
with both Mutation 1 and Mutation 2. When using the I-PSO representation the
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step of creating a queue is skipped as all positions of I-PSO represents a queue
of customers.

In MODQPSO quantum particles have two main functions. The particles
introduce diversity, where they replace the need for other techniques such as
turbulence seen in MODPSO. Where turbulence is a method which preforms
similar mutations on positions, but on random neutral particles further explained
in section 2.2.2. In addition, and as previous stated, quantum particles may guide
neutral particles towards new optimums introduced by dynamic changes.

Fitness update

The fitness update start with the initiation of the decoding process. As mentioned
the position is stored in each particle as a Hamiltonian path. However, solutions
may utilize more than one vehicle. To be able to use multiple vehicles parts of the
Hamiltonian path are separated into different routes, where each route is linked
to a specific vehicle.

As in S-PSO, all particle positions in MODQPSO are decoded. However, S-
PSO initiates a thorough use of heuristics to optimize the found solutions after the
search is completed. The MODQPSO model does not end with such heuristics,
but instead perform a heuristic as a part of the decoding process. MODQPSO
uses a slightly modified version of the heuristic ”parallel tour construction algo-
rithm” [Jurgen Antes and Derigs, 1995]. The heuristic uses an auctioning process
that calculates the increase of objective values for each customer to each vehicle,
denoted as the cost. The heuristic will then place the customer to the vehicle
route that has the smallest cost, further explained in section 2.1.1. The mod-
ification of the heuristic when implemented in MODQPSO is to constrain the
available customers used in the auctioning process. The heuristic is not able to
choose from all customers when inserting customers to vehicles, but is restricted
to place the customer consecutively from a queue of customers.

The heuristic as implemented in MODQPSO is illustrated in figure 3.7. In
the figure the heuristic has already inserted three of the six customers. Customer
c 8 and c 2 is inserted to vehicle v 1 and customer c 5 to v 2. Customer c 4
is the next in the queue and is used as input for the auctioning process. When
a new customer is evaluated all available vehicles will return the minimum cost
of inserting the customer and the index of where it should be placed within the
given vehicle. In the figure all vehicles has returned a cost where vehicle v 2 has
returned the lowest, and recommends it to be inserted at index 1. Consequently,
the next step of the heuristic will be for customer c 4 to be inserted to vehicle
v 2. As vehicle v 2 already contained another customer c 5, the updated vehicle
route will be c 5 followed by c 4.

When using a queue of customers as input, MODQPSO is able to produce
a population diversity by having different sequences of customers in the input



36 CHAPTER 3. THE MODEL

Figure 3.7: Decoding Hamiltonian path with heuristic.

queue for the heuristic as particles finds positions which correlates to different
sequences of customers. The heuristic will produce different solutions based on
the input queue, as the placement of one customer restricts the possibilities of
the next customer in the queue.

The constraint handling of MODQPSO is implemented on top of the auction-
ing process. Before calculating the cost of inserting a customer into a vehicle
route, it is first calculated if the vehicle is able to insert the customer in terms
of the problem specific constraints. Vehicles where the customer may be inserted
are referred to as an available vehicle in the auction process. Making vehicles
that are unable to satisfy constraints unavailable removes the possibility of gen-
erating infeasible solutions. In the case of infeasible solutions where all vehicles
are unavailable or one or more customers have not been inserted, the particle is
immediately reinitialized to a random position.

The cost used in the auctioning process is originally the increase of a objective
in a single objective problem. Since MODQSPO operates on multi dimensional
problems the increase of each objective are combined to a single cost value. This
process is performed in figure 3.8 where the cost of inserting vehicle v 2 from
figure 3.7 is calculated. In figure 3.8 the increase of two objectives are calculated
and combined using the reference vector from the swarm to calculate a single
value cost. The cost of insertion is calculated for all possible index positions of
insertion. Vehicle v 2 already contained a customer c 5 which means there are
two possible index positions of insertion i.e. before and after c 5.

Using the reference vector inside the heuristic lets the auctioning prioritize
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Figure 3.8: Calculating heuristic insertion cost.

the objectives like that of the swarm itself. If the reference span is set to favour
objective 2 more than objective 1 the heuristic will also do so. This is achieved
by using the reference vector to prioritize the objectives when calculating the
insertion cost, as the reference vector is the middle value of the reference span.
This decision makes the search space of each swarm correlate to different areas of
the objective space, since the decoding from search space positions to solutions
are based on variables that are dependent of the swarm. This is not an issue
as there is no communication between the swarms, and the correlation between
the search space and objective space is the same for all particles within the same
swarm.

When the heuristic is completed all customers will have been placed inside a
vehicle route, where the set of these vehicle routes are referred to as a solution.
The objective fitness of each solution have also been calculated along with the
insertion of customers.

3.2.2 Swarm structure

Multiple swarms are utilized in MODQPSO as a dynamic handling technique as
seen in mQSO. However, MODQPSO does further exploit the multiple swarms as
it decompose the multi-objective problem into different swarms. This is done by
sending a reference span to each swarm, so that each swarm can focus their search
on a specific part of the Pareto front. The reference spans make the swarms search
for solutions that are favorable of the spans prioritization of the objectives. This
may still return a front of non-dominated solutions. Decomposition is therefore
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used once more to make each particle of the swarms have a specific prioritization
of the objectives i.e. have a defined weight vector. Each particle of a swarm
will have a similar weight vector, as all particles within a swarm has their weight
vector set within the boundaries defined by the reference span. Weight vectors
allows particles to choose a single position as their personal best. Similar weight
vectors within the same swarm will guide the particles to search for solutions in
the same area of the Pareto front.

The decomposition technique of MODQPSO is inspired by other decompo-
sition based multiple objective techniques, such as MODPSO. However, MOD-
QPSO uses decomposition on two levels as both particles and swarms are affected
by it. This concept is proposed to increase the efficiency of quantum particles with
multiple objectives. The increase of efficiency is theorised based on the assump-
tions of hyper-cubes, explained in section 2.1.4. Algorithms based on hyper-cubes
such as hyper volume based approaches explained in section 2.2.3, all depends
on the concept of geographically-based diversity. This concept means that the
search space and objective space are coupled. All Pareto optimal solutions are
not centred around the same position of the search space, but instead spread out.
Still, positions that are close in the objective space are also close in the search
space. When creating the reference spans MODQPSO guides each swarm to a
specific part of the Pareto front as it also assumes geographically-based diversity.
As particles searches for a specific part of the Pareto front they will benefit from
each other in communicating their personal best position. Since all particles of
a swarm has similar weight vectors the optimal positions for the particles will be
located in a ”similar” position in the search space.

If all swarms were to search the entire Pareto front, the findings of the quan-
tum particles may only be beneficial for a small number of neutral particles con-
tained in a swarm. All particles within a swarm has similar weight vectors and
the reference vector is the middle value of those weight vectors. The reference
vector is then used to find the reference point. Quantum particles will search
randomly around the reference point which may prove to be beneficial to many
of the particles because of the concepts of geographically-based diversity, as the
reference point will be located in proximity to the optimums of all the neutral
particles of the same swarm.

Reference span size

The default configuration for the reference spans are to allocate an equal size per
span so that there are no overlap between the reference spans. It was decided
to make this the default configuration as it was desired that each swarm focused
on a completely separate part of the Pareto front to be able to generate as much
diversity as possible.

However, theory from MODPSO surrounding neighborhoods, further explained
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(a) Three swarms with default reference
span size.

(b) Three swarms with the reference span
size of 0.5.

Figure 3.9: Visualization of two reference span sizes.

in section 2.2.2 conclude that it is important for particles to communicate with
particles with similar, but different weight vectors, as this adds diversity to the
swarm. This may mean that the default setting for reference spans may make
the spans too small when the number of swarms are increased. Hence the model
allow for the reference span size to be tuned.

In figure 3.9a the reference spans at a default configuration are shown. In
figure 3.9b an example of overlapping spans are shown. These figures highlight
that an increased size from the default value will cause an overlap between the
spans.
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Chapter 4

Experiments and Results

The chapter presents the simulator used for the experiments in section 4.1, fol-
lowed by an explanation of the data sets in section 4.2. The preliminary tests and
preliminary results are presented in section 4.3. Further, the experimental plan
is presented in section 4.4, while the experimental setup is presented in section
4.5. Finally, the experimental results are presented in section 4.6.

4.1 Simulator

A simulator is implemented to run the MODQPSO model and illustrate the
produced solutions. The simulator is designed for VRP problems and is able of
handling different data sets. For the thesis the simulator is set up to handle a
home care data set provided by Visma and the Solomon VRP data set. The
visualisation of the solutions display both the path each vehicle traverses and the
time schedule each vehicle has.

In square 1 of figure 4.1 the depot is drawn as a red circle and customers as
black squares. The vehicle routes are drawn as lines with an unique color for each
vehicle. The drawing of the routes allows for a graphical view of the achieved
fitness. The simulator is designed for multiple objectives, hence a Pareto front is
displayed as a graph in square 2 of the figure. In the graph each found solution is
drawn as a point with an arch connecting it to the closest point. Also in square 2
a next and a previous button allows the user to browse through the Pareto front
and choose which solution to visualize. In the figure the solution furthest to the
right in the Pareto front is selected which can be observed by the orange circle.

From square 3 the algorithm can be initiated. The Run button initiates a
single run of the algorithm, while Calculate SD runs the algorithm a set number
of times and presents meta information such as standard deviation, run time and

41
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Figure 4.1: The graphical user interface of the simulator.

a complete log of the achieved fitness from each of the runs.

Square 4 contains the option to change the selected algorithm between S-PSO
or MODQPSO with a specific discrete representation. From the dropdown menus
in square 5 the user can choose the desired data set, amount of customers for the
problem and the specific problem.

Figure 4.2: Graphical view of the time windows of the vehicles.
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In square 6 there is button that opens a new window that shows the schedule
assigned to each employee, as seen in figure 4.2. Green squares symbolizes that
the time window of the job is not breached, while yellow and orange means that
the time windows are breached with less than 2 and 4 hours respectively. Time
windows that are breached with more than 4 hours are symbolized by red squares.
The striped lines symbolize that the employee must use time to drive from one
location to another.

4.1.1 Parameters

The parameters of the model are presented and explained in table 4.1.

Iterations The number of iterations the algorithm is run.
Swarms The number of swarms.
Quantum particles The number of quantum particles used in each

swarm.
Neutral particles The number of neutral particles used in each swarm.
Radius The size of the radius a search is done around the

best position of a swarm.
Neighborhood size A neighborhood is formed with neutral particles

based on the similarity of weight vectors. The num-
ber of particles that is included in the leader selec-
tion.

Inertia The slowdown factor from the traditional PSO.
C1 Importance of the selected leader in the velocity

update.
Reference span size The size of the reference spans used by the swarms.

Table 4.1: Parameters for the MODQPSO algorithm

4.2 Data set

4.2.1 Solomon

The Solomon data set, retrieved from Sintef [2008], contains a variation of test
problems that are widely used as a VRP benchmark. It contains 56 test problems
for 25, 50 and 100 customers. The test problems are made of six different types
(C1, C2, R1, R2, RC1, RC2). In the C sets the customers are clustered, while in
the R sets the customers are spread uniformly. The RC sets are a combination of
randomly placed and clustered customers. In the thesis time windows are defined
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as wide, narrow or a mix of the former two. The Solomon sets of type 1 (C1,
R1, RC1) contains narrow or mixed time windows and a low vehicle capacity,
only allowing a few customers per route. Sets of type 2 have wide time windows
and a high vehicle capacity allowing more customers to be serviced by the same
vehicle.

Each problem contain constraints for vehicles, customers and the depot. Re-
garding vehicles there are limitations on the maximum amount of vehicles that
can be used and the maximum load they each can carry. Customers have coor-
dinates, a demand of load capacity, a time window and a service duration they
require. The depot have coordinates and a time window that all customers have
to be serviced within. Time windows in the Solomon data set are handled as a
hard constraint. The distance between customers and depot are calculated using
the Euclidean metric, where travel time is equal to the Euclidean distances.

The Solomon data set can be both single and multi-objective, where the
number of objectives must be chosen before using the data set. Each problem is
solved and ranked based on the total driving distance and optionally the number
of vehicles used. Both available objectives are to be minimized.

Problems from the Solomon data set will be presented in a shorthand version
e.g. R111.50. The R is the problem type where the customers are spread uni-
formly, 111 is the problem identifier and 50 is the amount of customers in the
problem.

The Solomon data set is not a dynamic data set, nor does it provide a widely
known way of converting it to one. However, a method seen in Necula et al.
[2017] is used where a percentage of the customers are removed from the problem
at initialization. These customers are introduced at a later iteration to create
the effect of a dynamic change. There are no official benchmarks for a dynamic
version of Solomon.

The benchmarks of the Solomon problems are gathered from the Solomon
website [Sintef, 2008]. A series of publications contains benchmark solutions to
Solomon problems such as R111.50 and will be used throughout the experiment
chapter. The specific publications are from the following authors: Kohl et al.
[1999] denoted as KDMSS, Kallehauge et al. [2001] denoted as KLM and Nazif
and Lee [2010] denoted as OCGA.
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4.2.2 Visma

Visma has provided anonymous data from a real-world home care scheduling
problem. The data set consist of seven problems, which correlates with the con-
secutive days of a single week. In this data set vehicles are denoted as employees
and customers as patients.

Each employee have an unique identifier and a time window for there work
hours, meaning a employee can only perform tasks within its work hours. Each
patient have an unique identifier, a longitude, a latitude and the travel time to
every other patient. In home care a patient can be visited more than once per
day. Instead of connecting vehicles to customers for the Visma data set there
are used tasks instead. A task is connected to a customer, allowing a customer
to have several tasks per day. Each task have a patient id, a time window and
a service duration. It is desired that each task is to be started within the given
time window (soft constraint) and must be served for the entire service duration
(hard constraint). Lastly, the depot have a longitude, a latitude and the travel
times to each of the patients.


f1 =

∑X
e=0

∑Ye−1
c=0 D(P (c, e), P (c+ 1, e)), Travel distance

f2 =
∑X

e=0

∑Ye

c=0 T (e, t(c)), Deviation from time windows

f3 =
∑X

e=0max(W (Y ))−W (Ye), Equal work load

(4.1)

The seven problems vary in employees, patients and tasks. Following, the
different data sets have employees with varying time windows, location of patients
and tasks with varying duration and time windows. The problems are solved and
ranked based on the three separate objectives functions described in equation
(4.1). Hence, each solution is dependent on the total driving distance in objective
function f1, the total deviation time from all time windows in objective function
f2 and the rate of task distribution between the employees in objective function
f3. Objective function f1 is also used in the Solomon data set when discussing
”total driving distance”. The abbreviations and functions used in declaring the
objective functions are explained in table 4.2. In the thesis all objective functions
are to be minimized.

The Visma data set is a dynamic data set which operates similar to that of
dynamic Solomon. Around 5% of the total tasks of each problem are dynamic,
which means that they are introduced at a certain iteration where a dynamic
change occur.
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Term Description
X The number of vehicles.
e A specific vehicle.
Y A set of all routes.
Ye The set of customers for vehicle e i.e. a specific route.
c A specific customer.
pc The position of a customer c.

D(pc, pc+1) Returns the travel time between a customer c and another.
t(c) Returns the time window of customer c. The time window is de-

fined by two values, a start and end time.
T (e, tc) Returns the deviation between the arrival time of e at c and the

time window of c. Returns 0 if vehicle e is inside the time window
of c.

W (Ye) The number of tasks in a specific route.

Table 4.2: Visma abbreviations and functions.

4.3 Preliminary tests

This section establish the experiments conducted while developing the proposed
algorithm. The tests are performed to ensure that the components of the model
benefit the algorithm and finding the optimal parameters for the components.
The tests have been performed on the Solomon data set. All parameters except
the reference span size is explored in the preliminary tests. In the preliminary
tests the reference span size is set to the default configuration of 1/number of
swarms.

The preliminary test phase use the single benchmark problem R111.50. This
particular problem was chosen as a Pareto front of several solutions can be found.
The Pareto front consist of solutions with 6 and 7 vehicles, as there is no driving
distance of 6 vehicles that is found to dominate the driving distance of 7 vehicles.
The best possible front based on {link solomon?} and S-PSO [Gong et al., 2012]
is: {〈v: 6, dd: 756.3〉, 〈v: 7, dd: 707.2〉}, where v equals vehicles and dd equals
driving distance.

The preliminary testing consist of three phases that each does a parameter
sweep. In each phase a set of parameters is defined that attempts to bring the
best parameter values from the previous phase. Each parameter value is tested
through 30 runs. The results present the standard deviation, the average driving
distance and the average run time in milliseconds. When running the tests the
model returns a flag marking the number of failures where the Pareto front only
include solutions with 8 or more vehicles. In addition it has a separate flag for
the number of Pareto fronts that includes solutions with 6 vehicles.
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All tests are ran on a Macbook Pro 2018 with a i7 6-core 2.2 GHz processor
that boosts up to 4.1 GHz and has 16GB of RAM.

4.3.1 Phase one: Sweep around parameters from literature

The first phase has the parameters set to the recommended parameter values
from literature, as seen in table 4.3.

The first phase has the parameters set to the recommended parameter values
for the algorithms used as inspiration for the model, as seen in table 4.3. The
MODPQSO algorithm does both combinations and changes to those algorithms
which can impact whether these parameters are optimal. Hence, the first phase
makes a thorough search centered around the parameter values from literature
as a starting point.

Parameter Value
Iterations 50
Swarms 10
Quantum particles 5
Neutral particles 5
Radius 3
Neighborhood size 3
Inertia 0.3
C1 2

Table 4.3: Phase one algorithm parameters

After testing different values for each parameter from the literature some
trends were observed. The model benefit by an increase in the number of it-
erations as seen in figure 4.3a. The parameter value for iterations was set to
150 for phase two to give the model more time to converge, but still keep the
computational cost and run time at a reasonable level.

The number of swarms does affect both the performance and efficiency of the
algorithm. Increasing the number of swarms rapidly increases the computational
cost required, but in return increase the likelihood of finding fit solutions as seen
in figure 4.3b. The figure illustrates the improved fitness related to the number
of swarms, where the boxes tend to become smaller indicating more stable results
as the number of swarms increase. The testes revealed that when using between
1 and 3 swarms the algorithm was unable of consistently retrieving solutions that
used 7 vehicles. In the figure the parameters that failed doing so are marked
with dotted lines. The swarm behavior was improved greatly by using a higher
amount of swarms. The number of swarms was set to 15 for phase two.
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Figure 4.3: Selected results from preliminary phase one testing.

All of the remaining parameters were also tweaked from the standard value.
Parameters such as quantum had a tendency of affecting the fitness, but did not
show the same clear tendencies as observed with both iterations and swarms.

4.3.2 Phase two: Improve performance

A new set of parameters were defined for phase two based on observations made
in phase one. All parameters except C1 has been updated with new values from
the previous phase. The resulting parameters can be seen in table 4.4. The sweep
around the new parameters were narrowed down, as some values tested in phase
one were regarded as unsuitable for the model e.g. not testing less than eight
swarms. The main focus in this phase was to improve fitness, with little regard
to efficiency in terms of computational cost.

Parameter Previous value Value
Iterations 50 150
Swarms 10 15
Quantum particles 5 7
Neutral particles 5 7
Radius 3 2
Neighborhood size 3 4
Inertia 0.3 0.25
C1 2 2

Table 4.4: Phase two algorithm parameters.
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Figure 4.4: Results from testing the number of quantum particles in phase two.

In phase 2 increasing the number of quantum particles was observed to im-
prove fitness. In figure 4.4 it can be observed how the median of found driving
distance is lowered from 762.5 with 6 quantum particles per swarm to 727.99
with 30 quantum particles. In addition, 15 and 30 quantum particles was the
first preliminary tests that where able of finding Pareto fronts that contained
both 6 and 7 vehicles.

The number of swarms, which had a great impact in phase one, made less
of a difference when testing a higher amount such as 25 swarms. This may
correlate to the model structure, where a great of number of swarms will cause
each swarm to be more similar to a single weighted objective algorithm. With
many swarms the objective span will be set to an insignificant range, where
the possibilities for different objective prioritization is indistinguishable to single
objective prioritization. This could make the algorithm have problems escaping
local optimums. This seems to be related to theory from MODPSO which tries to
solve the issue by creating neighborhoods made up of particles with similar, but
not equal weight vectors. Communication between particles of different weight
vectors increases swarm diversity further discussed in section 2.2.2.

Neutral particles did not present interesting results when increased, both in
phase one and two. However using less than 5 showed a significant worsening of
fitness, indicating that both quantum particles and the model itself need some
neutral particles to guide the search.
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4.3.3 Phase three: Improve efficiency

Phase three focused on decreasing the computational cost from phase two, while
attempting to maintain the improved fitness. A new set of parameters are defined
as seen in table 4.5. The changed values are swarms, quantum and neutral par-
ticles, neighborhood size, inertia and C1. The sweep around the new parameters
were again narrowed down, where some new parameter values were also tested.

Parameter Previous value Value
Iterations 150 150
Swarms 15 10
Quantum particles 7 15
Neutral particles 7 6
Radius 2 2
Neighborhood size 4 3
Inertia 0.25 0.3
C1 2 1.5

Table 4.5: Phase three algorithm parameters

Running the algorithm with the new parameters revealed surprising results.
The goal of the phase was to lessen computational cost at the cost of fitness, but
the results showed both less computations and improved fitness. This may be
an indication of the use of too many swarms in phase two, where the reference
spans assigned to each swarm are getting too restricted as the reference spans
are not allowed to overlap in the preliminary tests. Another factor may be that
the increase of quantum particles made the swarms behave a bit different than
what was observed in phase one. In figure 4.3b it is observed that increasing the
number of swarms always improved the resulting fitness, but this is contradicted
in phase three. It may be that an increase in both the diversity and convergence
abilities of each independent swarm makes the number of swarms redundant
above a specific number.

4.3.4 Parameter selection

To conclude the preliminary tests a final phase is conducted for both evaluation
and optimization of the model. Each of the introduced phases improved the
fitness which can be observed in figure 4.5. In the figure phase one shows how
unsuitable the parameters from the literature was for the model and also that
the parameters from phase three are dominant to those found in phase two.
The figure also shows how close the model was to find the problems benchmark
solution. In separate runs of both candidate 1 and 5 from table 4.6 the algorithm
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Figure 4.5: Comparing the parameters for all phases.

was 0.1 away in driving distance from finding the benchmark driving distance of
707.2. The route of 707.3 in driving distance was found by both candidate 1 and
5 and is shown in figure 4.7b. The difference in driving distance found by both
candidate 1 and 5, and the parameters from phase one is visualized in figure 4.7.

Candidates
Parameter 1 2 3 4 5
Iterations 200 200 175 150 150
Swarms 11 11 11 11 11
Quantum particles 20 20 20 20 20
Neutral particles 7 6 6 6 7
Radius 2 2 2 2 2
Neighborhood size 3 3 3 3 3
Inertia 0.4 0.35 0.35 0.35 0.35
C1 1.75 1.5 1.5 1.5 1.5

Table 4.6: Phase three algorithm parameters

The evaluation phase is intended to learn from the tested parameter values
used in the three earlier phases to be able to select a set of final parameters to use
for the experiments. Five different combinations of parameters was chosen based
on observed behavior of each separate parameter, where these five combinations
are referred to as candidates. The selected parameter values for each candidate
are presented in table 4.6.
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The most promising candidate based solely on fitness from the results shown
in figure 4.6a is candidate 1. However, candidate 5 decreases the computational
cost by approximately 26%, with an average fitness loss going from 736.59 in
candidate 1 to 741.8 in candidate 5. Based on the average difference of 5.21
on lost driving distance compared to the 26% decrease in computational cost,
candidate 5 was chosen as the model parameters.
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(a) Comparison of candidates from phase three.

CPU time
1 3.74s
2 3.57s
3 3.18s
4 2.71s
5 2.79s

(b) Average runtime
of candidates.

Figure 4.6: The preliminary parameter candidates and their average runtimes.

(a) Best found solution with parameters
from literature, fitness: 782.7.

(b) Best found solution with parameters
from preliminary tests, fitness: 707.3.

Figure 4.7: Comparison of travel distance from before and after preliminary
testing.
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4.4 Experimental Plan

4.4.1 RQ1 - Experimental Plan

The goal of the tests are to explore the possibility of modifying the search space
to both improve performance and decreasing computational cost. As explained
in section 3.1 the MODQPSO model is implemented such that the search space
representation can be changed as long as each particle position is able to produce
a Hamiltonian path. The first representation implemented was the S-PSO, ex-
plained in section 2.2.2. This representation seemed promising when explained
by the original author as many VRP specific issues is solved in the representa-
tion itself. In the S-PSO paper Gong et al. [2012] the author referred directly to
I-PSO, explained in section 2.2.2. The author claims that I-PSO perform worse
than S-PSO due to it being based on the methodology of the original continuous
PSO, and that it is not well fit for the discrete VRPTW. This statement sparked
an interest in modifying the representation of S-PSO.

The details of how both I-PSO and S-PSO are integrated in to the model are
further explained in the model chapter 3. S-PSO and I-PSO uses the velocity
update differently, but in both cases the velocity represents probabilities of certain
actions. However, what these actions are depends on the use of either S-PSO or
I-PSO which is further explained in section 3.2.1. This leads to the possibility of
creating hybrids of S-PSO and I-PSO as both the representation of velocity and
position may interchange in the configurations of the model.

The following list presents the created representations to be able to perform
the tests in RQ1.

Representation 1 The representation as explained in S-PSO with no modifi-
cations.

Representation 2 S-PSO velocity and position, but the knowledge of the pre-
vious customer is removed.

Representation 3 The position of I-PSO combined with the S-PSO velocity.

Representation 4 I-PSO velocity and position.

To be able to evaluate the representations behavior in convergence abilities,
single objective Solomon problems are used where driving distance are to be
optimized. In turn, to be able to observe the representations abilities to both
cover and converge on a large Pareto front the Visma data set is used. Hence,
the following two tests are declared to explore RQ1:

Test 1.1 Test the different representations on the Solomon data set.

Test 1.2 Test the different representations on the Visma data set.
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Hypothesis

The hypothesis of representation 2 is that the same performance of representa-
tion 1 can be achieved while also decreasing computational cost. Both test 1.1
and test 1.2 will show this behavior. It is also expected that the behavior of
representation 1 and 2 correlates with the size of the time windows. Representa-
tion 1 will in problems with wide time windows benefit from the original S-PSO
representation and have an improved performance compared to representation
2. The opposite is expected for problems that contains smaller time windows,
where representation 2 will have an improved performance compared to repre-
sentation 1. This hypothesis is based on the behavior explained in section 2.2.2
where S-PSO is able to learn from both the next and previous customer on a
Hamiltonian path. It is expected that when the time windows are small learning
from the previous customers on a path will only cause noise as time windows may
not allow for a previous customer to be visited after what was established.

Representation 3 and 4 are expected to decrease performance, compared to
representation 1, as they are based on I-PSO. I-PSO is shown to be inferior to
S-PSO in the case of VRP, as seen in Gong et al. [2012]. However, the behavior
when used in the MODQPSO model may be different and it is expected that
representations based on I-PSO will have a decrease of computational cost. This
behavior will be seen in both test 1.1 and test 1.2.

4.4.2 RQ2 - Experimental Plan

The goal of the following tests are to explore different strategies for reference
spans in order to improve performance in multi-objective optimization.

Reference spans are proposed in chapter 3 as a method of combining mQSO
with decomposition. Each reference span allocates a specific prioritization of the
Pareto front to each swarm. The default setting for spans is a size that causes no
overlap in objective prioritization between the swarms. However, it is possible
to set a size so that an overlap between the spans occur as discussed in section
3.2.2.

From preliminary testing in section 4.3, the number of swarms is set to 11.
When using 11 swarms the reference spans may have a size of 1/11 or approxi-
mately 0.091 without causing an overlap between the spans. This is used as the
default value for reference spans. When using spans with any size between 0.091
and 1 it will cause an overlap between the spans. Using the largest reference
span size of 1 will cause the model to only use one span i.e. as if spans were not
implemented.
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The three different configurations for reference spans are listed below:

Configuration 1 Default span value.

Configuration 2 No spans.

Configuration 3 Overlapping spans.

As the behavior of overlapping spans is unknown a parameter sweep should
be performed to explore and optimize the performance of the model around this
parameter. The value found as optimal will then be used when comparing the
three different configurations of reference spans.

To be able to evaluate the spans convergence abilities, single objective Solomon
problems are used where driving distance are to be optimized. In turn, to be able
to observe the spans abilities to both cover and converge on a large Pareto front
the Visma data set is used. Hence, the following three tests are declared to
explore RQ2:

Test 2.1 Find the optimal reference span overlap on the Solomon data set.

Test 2.2 Test reference span configurations on the Solomon data set.

Test 2.3 Test reference span configurations on the Visma data set.

Hypothesis

It is expected that in test 2.1 a degree of reference span overlap will be discovered
that increases diversity and in turn optimize performance.

It is expected that when comparing the configurations of no spans, overlapping
spans and default that overlapping spans will have the optimal performance. This
is because of the diversity introduced when increasing the span sizes, further
discussed in section 3.2.2. It is expected that using no spans will be considerably
worse in terms of performance. This is especially the case for the Visma data set
since it includes three objectives and the use of reference spans will help it find
fit solutions.

4.4.3 RQ3 - Experimental Plan

The following tests explore MODQPSO in a dynamic environment. The dynamic
environment can be tuned in the simulator, as it allows for the spatial severity
of the dynamic version of the Solomon problems to be tuned between 0 and 1.
The value of the spatial severity represents the percentage of customers removed
from the Solomon problem which are to be later introduced as a dynamic change.
Spatial severity is further discussed in section 2.1.3. Figure 4.8 shows a dynamic
problem initiated with a spatial severity of 0.5 before and after the dynamic
change. Hence, in figure 4.8a 50% of the customers are removed from the Solomon
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(a) R111.50 initiated to introduce a dy-
namic change of 50% spatial severity.

(b) R111.50 after the dynamic
change.

Figure 4.8: Visualisation of 50% spatial severity on a R111.50.

problem and are later introduced back to the problem as a dynamic change, seen
in figure 4.8b.

As spatial severity is an important factor of a dynamic environment, it is
crucial to explore the behaviors of MODQPSO when faced with different degrees
of spatial severity. Exploring this will show if MODQPSO manages to show sim-
ilar behavior to other dynamic algorithms such as mQSO. MODQPSO should be
able to transfer knowledge about good routes from before to after the occurrence
of dynamic changes. As it is based on mQSO, MODQPSO should be able to
converge faster than if the algorithm was to be completely restarted after the
occurrence of a dynamic change. In order to declare a point of convergence the
algorithm is considered to have converged when the fitness remains unchanged
for 10 consecutive iterations.

It is of interest to know how a dynamic change affects the performance of
MODQPSO. It is unknown whether or not a dynamic change can affect the
performance of MODQPSO if introduced before the end condition of the search
in MODQPSO is reached.

It is unknown how the dynamic handling of MODQPSO behaves when faced
with three objectives. The theory of the use of multiple swarms in MODQPSO is
inspired by mQSO. The mQSO algorithm uses multiple swarms to track a range
of different local optimums of a single objective problem to enhance the dynamic
handling abilities, further explained in section 2.2.1. When introducing multiple
objectives there is also an increase of local optimums. For MODQPSO to handle
both multiple objectives and a dynamic environment it should be able to track
both the current positions related to the Pareto front and positions which have
the potential to become a part of a new Pareto front after a dynamic change.

To explore the dynamic abilities of MODQPSO in the topics explained above
the following tests are introduced:

Test 3.1 Test how the degree of spatial severity affect the models convergence
abilities after dynamic changes.
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Test 3.2 Test if introducing some customers while the algorithm is converging
improves the resulting fitness on the Solomon data set.

Test 3.3 Test the computational cost required to converge after dynamic changes
on the Visma data set for S-PSO and MODQPSO.

Hypothesis

It is expected that dynamic handling of MODQPSO will succeed in transferring
knowledge of good routes from before to after the occurrence of a dynamic change.
This will be observed if MODQPSO is able to converge faster than it would if it
was completely restarted. This is tested in 3.1.

The MODQPSO will be able to improve the performance when initiated on
a VRP with less customer before a dynamic change, as it will be less complex
to find optimal solutions on a smaller VRP. When the remaining customers are
introduced the algorithm will be able to place those customers at optimal posi-
tions within routes that are already generated. This will create solutions with
improved performance compared to when all customers are known from the be-
ginning. This hypothesis is tested in test 3.2.

The dynamic version of MODQPSO will be able to converge faster after a
dynamic change compared to a complete restart version of MODQPSO or plain
S-PSO. Additionally the algorithm will improve the fitness in test 3.3.

4.5 Experimental Setup

4.5.1 Parameters

The parameter values of table 4.7 is used for all runs if no other information is
declared.

Parameter Value
Iterations 150
Swarms 11
Quantum particles 20
Neutral particles 7
Radius 2
Neighborhood size 3
Inertia 0.35
C1 1.5
Reference span size 1/11

Table 4.7: Parameters used for experimental testing of the MODQPSO algorithm
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4.5.2 RQ1 - Search space representation

Four different representations are tested to measure the performance and com-
putational cost of MODQPSO. For test 1.1 the model is tested on 10 problems
from the Solomon data set. Every representation is ran 30 times on all of the
problems. The problems vary in the amount of customers and how strict the
constraints are to ensure that the model is optimized to work on a variety of
problems. The problems used in test 1.1 are shown in table 4.8

Problem name Time Window
R111.25 Mixed
R211.25 Wide
R101.50 Narrow
R106.50 Mixed
R111.50 Mixed
RC102.50 Mixed
RC207.50 Wide
R202.100 Wide
RC207.100 Wide
C106.100 Narrow

Table 4.8: The Solomon problems used in test 1.1 in RQ1.

For test 1.2 the model is tested on 3 consecutive problems from the Visma
data set. Every representation is ran 10 times on all of the problems.

4.5.3 RQ2 - Reference span strategies

For test 2.1 the model will be tested on Solomon problem R111.50. The test
consist of doing a parameter sweep to find optimal parameter values for overlaps
and will follow the same structure as in the preliminary tests. The goal is to tune
the parameter value for the reference span size. A range of 12 different spans
sizes between 0.091 and 1 will be tested on the Solomon problem, each for 30
runs of the model.

For test 2.2 the three span configurations are tested to measure the perfor-
mance and computational cost. The configurations are tested on 7 problems from
the Solomon data set. Every representation is ran 30 times on all of the problems.
The problems used in test 2.2 are shown in table 4.9

For test 2.3 the model is tested on 3 consecutive problems from the Visma
data set. Every representation is ran 10 times on all of the problems.
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Problem name Time Window
R111.25 Mixed
R211.25 Wide
R111.50 Mixed
RC102.50 Mixed
RC207.50 Wide
R202.100 Wide
RC207.100 Wide

Table 4.9: The Solomon problems used in test 2.2 in RQ2.

4.5.4 RQ3 - Dynamic optimization

Test 3.1 is conducted on Solomon problem R111.50 and R202.100. The spatial
severity values of 5%, 10%, 15%, 30%, 50% and 80% are tested on both of the
problems. Each of the spatial severity values are ran 30 times on the model.

Test 3.2 uses a total of 150 iterations per run where a dynamic change is
introduced after a set number of iterations of 0, 10, 15, 30, 40, 75, 100, 110, 120,
135 or 140. For each of these the model is ran 30 times on the Solomon problem
RC202.100. The test is run using two separate values of spatial severity at 5%
and 80%.

For test 3.3 S-PSO and four configurations of MODQPSO are tested. These
four configurations are MODQPSO using representation 1 and 4 and MODQPSO
using representation 1 and 4 where the model is completely restarted after the
occurrence of a dynamic change. Three consecutive problems from the Visma
data set are used where the model is ran 10 times on all of the problems.

4.6 Experimental Results

4.6.1 RQ1 - Results

The experimental plan for research question 1 introduced four representations
that will be used to explore how search space representations affects both the per-
formance and efficiency of the model. In both test 1.1 and test 1.2 representation
1 is utilized to be able to evaluate the performance of the other representations.

Test 1.1

Test 1.1 uses the Solomon data set. To get an overview of the average found
fitness of all representations figure 4.9 illustrates the resulting fitness compared
to the benchmark on 8 of the 10 chosen Solomon problems. Figure 4.9 uses the
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Figure 4.9: Average fitness found RQ1 representations, compared to the bench-
mark on 8 Solomon problems.

Figure 4.10: Average fitness found RQ1 representations, compared to the bench-
mark on C106.100.

benchmark solution in each Solomon problem as a comparison i.e. found fitness
divided by benchmark fitness - 1. This means that a score of 0 represents that the
benchmark is met, while a score n above 0 means that the found solution has a
driving distance n% longer then the benchmark. In the figure it can be observed
that for every problem the average fitness found by all the representations are
fairly similar. Information such as standard deviation, run time and the fitness
of each individual run made it possible to perform further analysis.

The results of Solomon problem R111.25 is not included in figure 4.9 as all four
representations found the benchmark solution. The results of Solomon problem
RC106.100 are in a separate figure 4.10. For this particular problem the average
fitness was considerable worse as the driving distance was around 55% - 58%
worse than the benchmark. Including the results of RC106.100 in figure 4.9 would
make the difference between the representations unreadable. Solomon problem
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Figure 4.11: Comparing RQ1 representations on Solomon RC207.50.

C106.100 does unveil a weakness of the model as the found fitness is considerably
worse then the benchmark. The reason of the issue does not seem to be because of
any representation, as each representation retrieve a fairly similar fitness. Hence,
the issue may be lay in another part of the model.

When analysing the standard deviation, representation 2 shows a notewor-
thy difference compared to the other representations. Solomon problem R207.50
highlights this behavior as seen in figure 4.11. The resulting standard deviation
of representation 2 on R207.50 is 2.4 in found driving distance, while representa-
tion 1, 3 and 4 is at 9.38, 11.03, 16.73 respectively. This trend is also seen when
comparing the found standard deviation from all problems in test 1.1. Overall,
representation 3 has a 27.4% higher standard deviation than representation 2,
while representation 4 is 24.1% higher and representation 1 is 17.8% higher.

X
Run time Y/X Rep. 1 Rep. 2 Rep. 3 Rep. 4
Rep. 1 1 1.038 0.855 1.012

Y Rep. 2 0.964 1 0.824 0.976
Rep. 3 1.169 1.213 1 1.184
Rep. 4 0.988 1.025 0.845 1

Table 4.10: Comparing total computational cost of RQ1 representations using
the total run time on 30 runs on 9 different Solomon problems.

Representation 3 does not manage to find the best average driving distance
on any of the Solomon problems with 50 or more customers which can be seen
seen in figure 4.9 and figure 4.10. In figure 4.10 the deviation from the benchmark
of representation 3 is 57.9% compared to representation 4 at 55.1%. Represen-
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tation 3 also deviates from the rest in terms of computational cost. Table 4.10
shows a direct comparison between the run times of the different representations.
Representation 2 and 4 decreases the run time between 1% and 4% compared to
representation 1. However, representation 3 increases the run time with between
16.6% compared to representation 1.

Table 4.11 illustrates how many problems each representation managed to
find the average best driving distance compared to the other representations.
An equally good driving distance was found by both representation 1 and 4 on
problem R101.50. In this table it can be observed that representation 4 manages
to find the average best solutions to a majority of the problems. Representation
4 does however have an issue with R207.50 seen in figure 4.11 where it performs
worse than the other representations.

Nr. of mean best
Rep. 1 1
Rep. 2 2
Rep. 3 1
Rep. 4 6

Table 4.11: The performance of RQ1 representations on 9 Solomon problems.

Test 1.2

After running test 1.2 the results from all runs on each problem are used to
calculate both the ideal point and nadir point. The nadir point is then used as
the reference point to calculate the HVI for each run and the ideal point is used to
calculate the ideal volume which can be used to help contextualize the produced
data. HVI is further discussed in section 2.1.4.

The results from two runs on Visma 1 are presented in figure 4.12 where one
can observe that a front is dominating the other. The HVI for the front closest
to the origin is 66.517% of the ideal volume, where the other front has a HVI of
55.397%. A perfect HVI has the value of 100%, as HVI scores closer to the ideal
HVI makes for a Pareto front that is closer to the origin and the true Pareto
front. This can be observed as the front closest to the origin in figure 4.12 is also
the one with the largest HVI.

A solution from the Visma 1 problem is shown in figure 4.13. This solution
has a minimized time window deviation on the Pareto front of figure 4.12. Figure
4.13 shows both how the model is able to find solutions which minimizes the
deviation of time window and how tasks are distributed amongst the employees.

Table 4.12 shows all HVI in relation to the ideal HVI of the given Visma
problem. The table shows that both representation 2 and 3 scores well on two
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(a) View 1. (b) View 2.

Figure 4.12: Visualisation of two Pareto fronts from the Visma data set.

Rep. 1 Rep. 2 Rep. 3 Rep. 4
Visma: 1 Avg. 58.897% 59.793% 59.531% 60.143%

Best 62.189% 63.080% 66.517% 63.273%
Visma: 2 Avg. 76.887% 78.806% 78.955% 77.780%

Best 83.985% 86.063% 81.660% 84.980%
Visma: 3 Avg. 52.851% 51.491% 53.284% 54.047%

Best 56.180% 53.529% 57.314% 59.978%

Table 4.12: The HVI of RQ1, found Pareto fronts of the representations in relation
to the ideal volume on the Visma data set.

out of three Visma problems where the best score for each of the problems is
highlighted in bold. Representation 4 manages to find both the best and the best
average volume on the third problem.

Hypothesis evaluation

The hypothesis for representation 2 was that it would be able to have the same
performance as representation 1 while decreasing computational cost. In addition
the time windows are a deciding factor of this behavior. Test 1.1 included a
variety of problem types where some had strict time windows, notably R101.50
and C106.100. The results revealed that there was no noticeable improvement
in fitness between the two representations in relation to strict time windows, as
both representations achieved the same fitness. Problems such as RC207.50 and
R202.100 had large time windows. For those problems the results also indicated
that there was no clear relation between how wide or strict the time windows are
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Figure 4.13: A schedule for Visma 1, from a solution which has a low deviation
of time windows.

and the fitness scores of the two representations.

However, beyond the time window hypothesis representation 2 was able to
lessen the standard deviation of the found solutions, lessen the computational
cost by 3.8% and in most cases find a better average fitness and HVI than rep-
resentation 1. In conclusion storing both the next and previous customer in the
representations seems to be redundant information. The concept of storing both
the next and previous introduce unnecessary complexity and noise that in the
end does not benefit the algorithm in terms of fitness.

The hypothesis surrounding the hybrids of S-PSO and I-PSO was based on
the literature of the S-PSO algorithm. The hypothesis was that simple repre-
sentations such as representation 3 and 4 would have a decreased performance
compared to representation 1. However, representation 3 and 4 would decrease
computational cost. Representation 3 does not align with the hypothesis as it
increased the run time, but did have a decreased performance compared to repre-
sentation 1. Representation 4 managed to decrease the computational cost with
1.3% and also improved the average fitness on most problems in test 1.1. It
seems that differences between MODQPSO and the original S-PSO and I-PSO,
such as decomposition and quantum particles, makes a more complex discrete
representation unnecessary and even counterproductive.
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MODQPSO: Rep. 4 Benchmark
DD NV DD NV Author

R101.50 Avg. 1046.2 12.3 N/A N/A
Best 1044 12 1044 12 KDMSS

R106.50 Avg. 805.5 8 N/A N/A
Best 793 8 793 5 KDMSS

R111.50 Avg. 736.6 7.1 N/A N/A
Best 710.5 7 707.2 7 KLM

C106.100 Avg. 1286 12 N/A N/A
Best 994.2 11 828.9 10 OCGA

R202.100 Avg. 1107.5 5.3 N/A N/A
Best 1075.9 5 1079.4 6 OCGA

RC207.100 Avg. 1147.4 4.9 N/A N/A
Best 1076.5 4 1053.6 6 OCGA

Table 4.13: Solomon results from MODQPSO representation 4 compared to the
best known solutions.

Table 4.13 shows a direct comparison between some benchmark solutions of
Solomon problems and the found solutions of representation 4. It can be ob-
served that in general the MODQPSO algorithm is able to compete with the
benchmarks.

Representation 4 improved the average found fitness compared to the other
representations, and is viable in terms of the resulting HVI. Hence, it is considered
the most versatile of the proposed representations. Due to this representation 4
is used in the following experiments if no other information says otherwise.

4.6.2 RQ2 - Results

The experimental plan for research question 2 introduced three different span
configurations that explores the possibilities of the proposed reference spans.

Test 2.1

After running the series of parameter values against the Solomon problem it was
discovered that a specific range of reference span sizes improved the fitness of
the produced solutions. A more specific search was performed around this area
where the findings are presented in figure 4.14. It can be observed that the size
of 0.106 was able to find the benchmark solution of R111.50.

The configurations of the MODQPSO model was previously not able to re-
trieve the benchmark solution on R111.50. Even with 3000 separate runs the
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Figure 4.14: Result from different reference span sizes, Solomon R111.50.

algorithm was unable of finding the benchmark solution when using the default
configuration for reference spans.

Being able to find the benchmark solution indicates a strong ability of local
search. It was concluded that a span value of 0.106 was optimal and is the value
used in test 2.2 and test 2.3 as the default reference span size used for the
overlapping configuration.

Test 2.2

Figure 4.15: Average fitness found by RQ2 span configurations, compared to the
benchmark on 6 Solomon problems.

Test 2.2 compares the default span representation of MODQPSO with the use
of no spans and overlapping spans. The test results of 6 out of 7 Solomon problems
are shown in figure 4.15. The figure shows the average deviation in driving



4.6. EXPERIMENTAL RESULTS 67

Default No spans Overlapping

1,050

1,100

1,150

1,200

1,250

Benchmark

D
ri

v
in

g
d

is
ta

n
ce

Figure 4.16: Comparing RQ2 span configurations on Solomon RC207.100.

distance compared to the benchmark of each problem for each configuration i.e.
the average found driving distance divided by driving distance of the benchmark.
As in RQ1 the results of Solomon problem R111.25 is not included in figure 4.15
as all runs found the benchmark solution.

The resulting fitness of Solomon problem RC207.100 is shown in figure 4.16.
This figure illustrates the trend of the difference in standard deviation. Default
spans are able to reliably find the same solutions after each run. The overall stan-
dard deviation increases by 10% between default spans and overlapping spans,
and by 20% between default and no spans. The figure marks this trend as the
sizes of the boxes for no spans and overlapping spans are larger than that of
default spans.

The results of test 2.1 indicates a strong ability of local search using overlap-
ping spans. This ability is further affirmed in figure 4.16 where overlapping spans
are able to find a better solution than the benchmark on the particular problem.
The found solution has a driving distance of 1048.7 compared to the benchmark
of 1053.58.

Test 2.3

Test 2.3 also compared the three different span configurations. Test 2.3 focuses
on the abilities for reference spans to converge and find a wide range of solutions
when faced with multiple objectives.

The HVI are presented as the percent of similarity to the ideal volumes. This
process is further explained in section 2.1.4. The resulting HVI’s of test 2.2 are
shown in table 4.14. On the problem ”Visma: 1” overlapping spans retrieves
both the best found and the best average volume. However, the average HVI is
only 0.434% larger than that of default spans and the best HVI is 0.142% larger
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No spans Default Overlapping
Visma: 1 Avg. 76.983% 80.206% 80.348%

Best 80.180% 85.138% 85.572%
Visma: 2 Avg. 75.753% 76.867% 76.428%

Best 81.808% 80.169% 81.762%
Visma: 3 Avg. 79.113% 80.180% 80.166%

Best 82.542% 88.910% 86.004%

Table 4.14: The HVI of RQ2 found Pareto front of span configurations in relation
to the ideal volume.

than the best of default. These differences are low compared to the ones found
in problem ”Visma: 3”. In the ”Visma: 3” problem the default spans manages
to retrieve a best volume 2.9% larger than that of overlapping spans while the
average remains similar to that of overlapping spans.

Hypothesis evaluation

The hypothesis around reference spans was that they should increase perfor-
mance. In other words both default and overlapping spans should have an im-
proved performance over the no spans configuration. In addition the overlapping
spans should improve performance over default configurations.

However, the tests on the Solomon data set did not align with the hypothe-
sis as strongly as expected. Removing reference spans does on average weaken
performance. However, Solomon problems RC207.50 in figure 4.15 show that
a configurations of MODQSO without reference spans may also be able to find
promising results.

The results from the Visma data set does however indicate that reference
spans are able to improve performance on multiple objectives and hence being
able to cover a wider area of the Pareto front. In summary it was found that using
no reference spans may still allow the algorithm to find good solutions on single
objective problems, but it negatively impacts the performance in multi-objective
problems.

The hypothesis of overlapping spans showed to be somewhat correct. If the fo-
cus was solely on the Solomon data set the hypothesis would align. The resulting
HVI from the Visma data set does however imply that the default configuration
is the superior configuration. Hence, it is used in further experiments as multiple
objectives are a key point of the thesis.
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Figure 4.17: Comparing the number of iterations to converge after a dynamic
change on Solomon R202.100.
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Figure 4.18: Comparing RQ3.1 on Solomon R202.100.

4.6.3 RQ3 - Results

Test 3.1

To verify how well the algorithm was able to handle dynamic changes, and in
other words able to transfer knowledge of the environment before a change to
after, a complete restart (C.R.) version was used as explained in section 2.1.3.

Figure 4.17 shows the number of iterations required for the model to converge
after a dynamic change. The figure indicate that a low spatial change will re-
quire a low number of iterations for the model to converge at a new optimum.
The larger the spatial severity, the higher the number of iterations required to
converge.

Figure 4.18 shows how the model was able to converge in terms of the resulting
fitness depending on the degrees of spatial severity. The same behavior was
observed when running the model on problem R111.50. Figure 4.19 shows the
found driving distance iteration by iteration and shows the same behavior as in
figure 4.17 where a low spatial change requires few iterations to converge. It also
shows that when the model has already converged before a dynamic change it
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is able to find solutions on par or even superior to that of the complete restart
version. This is also shown in figure 4.18 on the problem R202.100 where there
is a tendency of finding superior results on average after a change of 80% spatial
severity, which is further explored in test 3.2.

Figure 4.19: Convergence after a dynamic change with different values of spatial
severity. On Solomon problem R111.50.

Test 3.2

Test 3.2 uses a total of 150 iterations where a dynamic change is introduced after
a set number of iterations. The Solomon problem RC202.100 is used after test
3.1 showed that this particular problem had a high tendency of improvement
when faced with a low spatial dynamic change.

The results of 3.2 on a 5% spatial change, is shown in figure 4.20. The
figure shows no strong pattern in changed fitness based on when the change is
introduced. This introduces a new test to conclude why 5% spatial had a superior
performance compared to complete restart in test 3.1. The major difference
between the set up of test 3.1 and 3.2 is that test 3.2 uses a set amount of
iterations before and after the introduction of a change. In test 3.1 the dynamic
versions are able to first converge using 150 iterations on a sub-set of the problem
before another 150 iterations is ran on the full problem. The complete restart
version only uses 150 iterations in total.

The hypothesis is that the complete restart is not able to properly converge
on the tested Solomon problems in only 150 iterations and that another 150
iterations will make it converge properly. In the test two separate complete
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Figure 4.20: Comparing RQ3.2 on Solomon RC202.100 with 5% spatial severity.
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Figure 4.21: Comparing complete restart using both 150 and 300 iterations with
a dynamic run on 5% spatial severity.

restart versions were given 150 and 300 iterations to converge. Figure 4.21 show
the resulting fitness, where it is shown that 300 iterations makes for similar results
as to that of a dynamic run on 5% spatial severity. The hypothesis seems to stand
correct. The results also indicates that knowledge is transferred from before to
after a dynamic change, as 150 iterations before and after a change gives similar
results to 300 iterations on the full problem. The complete restart version with
300 iterations is however a lot slower than MODQPSO.

The results of dynamic runs with 80% spatial severity showed interesting
results. Figure 4.22 shows these results and when the model is ran for 30-40
iterations on a a sub-problem before introducing the rest of the customers it will
find superior solutions compared to a run that has knowledge about all customers
for all iterations. However, when the change is introduced after 100 iterations
the remaining iterations are not sufficient enough to converge and the fitness is
worsened.
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Figure 4.22: Comparing RQ3.2 on Solomon RC2020.100 80% spatial severity.

Test 3.3

Test 3.3 was run on three Visma problems where the simulator saved the Pareto
front for each iteration of each run. This made it possible to calculate the HVI
for each iteration and observe the change iteration by iteration. Figure 4.23
is the result of this process on the problem Visma 1. For this test the S-PSO
is as implemented in the paper Gong et al. [2012]. S-PSO is not designed for
multiple objectives, but is included as a comparison to be able to observe the
multi-objective abilities of MODQPSO. S-PSO is compared to both dynamic
runs of MODQPSO marked as D.Rep. 4 and D.rep. 1, referring to the discrete
representation 1 and 4 from research question 1, and complete restart runs of
MODQPSO marked as C.R.Rep. 1 and C.R.Rep. 1.

S-PSO D.Rep.4 D.Rep.1 C.R.Rep.4 C.R.Rep.1

Visma 1 Avg. 54.278% 81.737% 77.447% 81.955% 80.382%
Best 57.026% 90.944% 84.851% 85.968% 84.701%

Visma 2 Avg. 53.131% 78.517% 79.835% 77.592% 76.697%
Best 56.631% 84.944% 89.264% 77.592% 85.653%

Visma 3 Avg. 50.693% 72.015% 73.370% 75.114% 73.466%
Best 54.253% 78.200% 80.289% 83.149% 78.015%

Table 4.15: The hypervolume indicators of RQ3 in relation to the ideal volume.

The resulting fitness of runs against the Visma set shows a similar trend to
that of the results of test 3.1. The resulting fitness does not seem to be affected by
whether or not the model is set to dynamic or complete restart at a 5% dynamic
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Figure 4.23: Convergence after a dynamic change on the VRP Visma 1.

change independent of the data set. Table 4.15 shows this as the resulting HVI
of dynamic versions are about the same as their corresponding complete restart
version on three separate Visma problems.

Figure 4.23 also shows results similar to that of test 3.1. Dynamic runs of
representation 4 manages to start with a superior fitness to that of complete
restart versions. The dynamic run of representation 4 also converge faster than
the others. However, the expected result was that the dynamic version of rep-
resentation 1 should behave similarly to that of dynamic representation 4. This
leads to the addition of a separate test to show if representation 1 is able to show
the same dynamic abilities as representation 4 on the Solomon data set.

In this extra test representation 1 and 4 is first able to run 150 iterations on
the Solomon problem R111.50 before a dynamic change of 5% occurs. Figure
4.24 shows three separate runs of both representations where it shows a clear
trend. Representation 1 is not able to learn from the VRP before the dynamic
change as its fitness starts much worse than that of representation 4. The reason
is that representation 1 uses the velocity update function of S-PSO which seems
to not be able to handle an updated search space. This is due to the fact that a
dynamic version based on the S-PSO velocity update is almost indistinguishable
to a complete restart version.

Hypothesis evaluation

The dynamic handling of MODQPSO succeeded in transferring knowledge of ve-
hicle routes from before to after the occurrence of a dynamic change, as seen in
test 3.1. In test 3.1 on Solomon problem R111.50 the dynamic version required
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Figure 4.24: Convergence of representation 1 and 4 on Solomon R111.50.

only 8.3 iterations to converge on average, compared to 39.27 iterations for a
complete restart version. This is a 78.9% decrease in iterations required to con-
verge. On two other problems the decrease in required iterations was at 89.3%
and 71.9% on Solomon problem RC207.50 and R202.100 respectively. This can
be linked directly to a decrease of computational cost as each iteration has an
equal cost.

The hypothesis stated that the dynamic version of MODQPSO would find
fitter solutions than with a complete restart. In cases with a high spatial severity
this was shown to be true. With lower values of spatial severity the fitness did
neither improve nor decrease. Figure 4.24 shows that if the complete restart
version gets extra time to converge the same results are possible in the case
of low spatial dynamic changes. Otherwise the dynamic version finds superior
results.

Interestingly a phenomenon occurred when the spatial severity was at high
values. At a 80% spatial change the standard deviation lowered significantly
and the fitness of the solutions improved. The hypothesis stated that a dynamic
version of MODQPSO are able to improve the fitness when initiated on a sub-
problem of a VRP before introducing the full amount of customers. This is valid
when the spatial change is around 80% i.e. learning on only 20% of the VRP
before introducing the remaining 80% of customers. This is an interesting aspect
of the model and may work as an optimization technique. This trend was not
observed on lower spatial changes in the range between 5% and 50%.
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The dynamic version was able to maintain, but not increase performance,
in multiple objectives on the Visma data set. However, representation 4 has a
much faster convergence rate. This means that representation 4 has a potential
of lowering computational cost as the number of iterations required to converge
may be lowered depending on the spatial severity of the dynamic change.

MODQPSO: Rep. 4 S-PSO
DD NV DD NV

R101.50 Avg. 1070.59 11.74 1060.1 11.8
Best 1098.7 11.0 1100.7 11

R106.50 Avg. 850.88 7.26 851.2 7.5
Best 830.2 7 865.9 7

R111.50 Avg. 736.97 6.98 722.6 6.9
Best 769.6 6 756.4 6

C106.100 Avg. 1316.07 11.14 828.94 10
Best 1166.0 11 828.94 10

R202.100 Avg. 1145.95 4 1259.84 3.5
Best 1097.7 4 1247.03 3

RC207.100 Avg. 1190.06 3.96 1192.55 3.7
Best 1279.9 3.0 1130.37 3

Table 4.16: Solomon results from MODQPSO representation 4 compared to S-
PSO.

In addition, MODQPSO with representation 4 is compared directly with S-
PSO in table 4.16. The main objective of S-PSO is to lower the number of vehicles
where driving distance is considered as a secondary objective. MODQPSO always
return a front of solutions on the Solomon problems where it prioritizes both
objectives equally through decomposition. In other figures and tables throughout
this chapter the driving distance has been the priority when presenting Solomon
results. However in this table the solutions with the lowest number of vehicles
from the Pareto front are used to make a fair comparison with S-PSO. It can
be observed that MODQPSO is able to retrieve solutions with a low number of
vehicle and a lower driving distance on most problems. It does however struggle
with finding the solutions with the lowest number of vehicles on C106.100 and
R202.100.
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Chapter 5

Evaluation and Conclusion

The chapter presents an overall discussion of the model based on results from
experimental tests and goal evaluation in section 5.1, followed by the contribu-
tions made to the field in section 5.2. Finally the future work is presented by
suggesting improvements and possibilities that can be explored in section 5.3.

5.1 Discussion and Goal Evaluation

The goal was to explore a combination of a Multi-objective Discrete PSO and
multi Quantum Swarm Optimization that optimizes performance and lowers com-
putational cost in a dynamic environment. These research questions are answered
through the use of a series of tests.

Research question 1 How can modifications to the search space improve
performance while decreasing computational cost?

Exploring the search space proved to be more important for the decrease in
computational cost than for the performance. The tests related to RQ1 unveiled
a representation that both decreased computational cost and improved perfor-
mance on a non-dynamic VRP. However, if no exploration had been performed
around the search space the dynamic abilities of the proposed algorithm would
not have been able to improve computational cost.

An important additional test related to RQ3 was performed when the different
representations were used with the dynamic Visma data set. This test showed
that the S-PSO representation was not able to use the information gathered
from before a change and required as many iterations to converge as a newly
initiated algorithm. Because of RQ1, another representation based on I-PSO was
implemented and referred to as representation 4. The representation was able
to drastically reduce the required iterations to converge and even improve the

77
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found fitness after dynamic changes. This shows that such fundamental concepts
as the search space of swarm algorithms should not be overlooked, but rather
thoroughly explored. Even when larger meta-heuristics and concepts such as
multi quantum swarms and decomposition are used.

Research question 2 How can reference spans improve performance while
maintaining the computational cost when handling multiple swarms in multi-
objective optimization? Research question 2 was conducted to explore the con-
cepts believed to be fundamental for quantum particles to work with decompo-
sition. The research question uncovered some weaknesses in the model design.

A significant part of the model is the use of reference spans. Even though
RQ2 benefit from the spans in terms of optimization performance in multiple
objectives their importance may have been overvalued. The use of spans pre-
vent communication across swarms as the heuristic used to decode each particle
position is coupled with the reference span of each swarm. Cross swarm commu-
nication such as the island model has proven to work in other publications. The
consequence of utilizing reference spans is that such cross swarm communication
can not be implemented without modifications to the concept of the spans.

Research question 3 How does dynamic environments affect MODQPSO
in terms of computational cost and performance? Research question 3 unveiled
a strong ability for the model to lower computational cost when faced with low
spatial dynamic changes. In the related tests MODQPSO is able to find and
maintain the same performance using 10%-30% of the computational cost when
faced with a low spatial dynamic change. Interestingly when the dynamic change
is large at, 80% spatial, the performance of the MODQPSO algorithm improves.
This seems to indicate that an optimization technique can be based on the con-
cept of dynamic changes. The way MODQPSO is able to learn on a small set
of customers before the remaining is introduced seem similar to methods that
decomposes a VRP problem to several sub problems of customer clusters as seen
in Lian and Castelain [2010]. However, further exploration of this area is not
aligned with the research goal as such changes does not lessen computational
cost.

In general tests on both RQ1 and RQ3 revealed that the model struggled with
the Solomon problem R202.100 and C106.100. The problem lies in retrieving the
solutions with the minimum number of vehicles. Both the issue with C106.100
and R202.100 seems to be similar in nature. A theory of why this happens is due
to the chosen heuristic. The heuristic is not designed to retrieve solutions with a
substantially worse driving distance which seems to be necessary to allow the use
of the minimum number of vehicles for problem R202.100. Another reason may
be that the swarms converges around solutions that uses more than the minimum
number of vehicles and does not have enough diversity to locate solutions using
the minimum number of vehicles. However, an ability to compete with the state
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of the art in solving every Solomon problem was not the main goal of the model.
Future work could be made in relation to this issue.

In conclusion, the results from the three research question has established
a base of how the proposed model can combine multi-objective Discrete PSO
with multi Quantum Swarm Optimization. However, there are still more to be
researched related to all of the fields where a dynamic PSO remains relatively
untouched compared to the other fields. The proposed model takes a small step
in unveiling knowledge of a specific and niche part of PSO as a technique, but in
an area that represents a lot of potential.

5.2 Contributions

In the thesis a model has been proposed that is able to utilize established discrete
representations to solve discrete problems such as the VRP. More so the model is
able to find solutions to VRP’s that are on par with the state of the art. When
faced with the dynamic VRP the model improves fitness while simultaneously
reducing the required computational cost.

The model extends the I-PSO representation with heuristics as used in S-PSO
with promising results in both dynamic and non-dynamic environments. In the
thesis it was proposed to modify S-PSO to not store both the previous and next
customer in the representation. Through experimental tests it was discovered
that storing the previous customer did not notably change the performance of
the model. Storing this information seems to be redundant and could be removed
in S-PSO to lower computational cost.

The model has continued upon Blackwell’s work on mQSO, where it is ex-
tended to support both discrete environments and multiple objectives. This is
achieved using decomposition and the proposed reference spans.

5.3 Future Work

Through the exploration of the research goal interesting concepts and ideas where
uncovered. These concepts and ideas where either not strictly aligned with the
research goal or too large to be handled by the scope of the thesis. However,
these may be of interest if the work in the thesis is to be expanded upon.

• Additional MOO techniques: The focus on multi-objective optimiza-
tion can be taken further through the use of techniques such as swarm
communication.

• Many objectives: The use of four or more objectives will introduce new
challenges for the model that are not currently explored. The effect of
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handling many objectives related to dynamic changes are also not explored.
This opens a potential to see if there are computational benefits of handling
dynamic changes when faced with many objectives.

• Constraint handling: The proposed model struggles when faced with
a large set of constraints. For instance in the Visma data set there is a
”skill level” constraint that makes each employee able to perform a only a
specific set of tasks. This is a rather strict constraint that made the model
unable of creating feasible solutions for some problems. This is one of the
constraints that must be included to truly solve the Visma problem.

• User centered approach for Visma: The Visma data set is taken di-
rectly from a real ”home care” problem. In order to help solve the home
care problem a Visma representative informed that the users must be in the
focus. A set of adjustments must be designed to accommodate for the users
such as breaks or time windows that may be of more importance than the
other. For instance if a patient needs immediate attention an employees
break can be rescheduled i.e. prioritizing the most important task.

• Focus on large scale VRP: The thesis has focused on optimizing prob-
lems with customers upwards to 100. There exists a Solomon data set with
1000 customers that can be further explored and optimized towards.

• Adaptive parameters: The swarms and the particles could be able to
change their parameters while running. In the thesis a manual parameter
sweep is performed to find parameters that works well on most problems,
but there will always be exceptions. Utilizing adaptive parameters could
be beneficial when running the algorithm on a new problem.

• Dynamic as an optimization technique: During the experimental tests
it was revealed a potential for increased performance and lower standard
deviation if the model learned on a sub set of the VRP before introduc-
ing the rest of the problem. Further exploration of this behavior as an
optimization technique could be performed.

• Exploring diversity: Introducing more diversity to the model through
the use of another heuristic or swarm communication can increase perfor-
mance for model. The model solved most Solomon problems well, but some
proposed a challenge. Further methods to escape local optimums can aid
the model.
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