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Abstract

Inspired by natural evolution and the dynamics between species and environ-
ments, open-ended coevolutionary algorithms are able to generate increasingly
complex problems while simultaneously having a solution for each. By focusing
on fulfilling simple criteria instead of objectives and fitness values commonly used
in traditional evolutionary computation, the search process continues to invent
without boundaries and maintains diversity. Continual innovation as in natural
evolution is not easy to simulate, however, the rewards and implications of a gen-
eral open-ended algorithm would be extraordinary as it could endlessly generate
increasingly complex solutions and designs to any problem.

A base for open-ended coevolution was recently proposed by Brant and Stan-
ley [2017], where a method called Minimal Criterion Coevolution (MCC) was used
to coevolve a set of mazes and navigator agents that were able to solve them.
Mazes and agents were able to increase in complexity in parallel. A method called
speciation was used to split the maze- and agent populations to evolve multiple
lineages in the same run. In this thesis, the speciation method in MCC is further
extended with ranking and prioritization of the most performant species. Species
are ranked based on their average growth in size and complexity.

Two different methods are investigated. First, the speciation is extended to
support a dynamic number of maximum individuals in each species, where the
capacity is transferred periodically from the least to most performant species.
The other method investigates the effects of replacing the worst species with
new ones periodically throughout evolution. How the mazes and agents evolve in
MCC with these extensions are compared against MCC with the base speciation,
where the size of all species is static and never replaced.
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Sammendrag

Åpne koevolusjonære algoritmer er inspirert av naturlig evolusjon og samhandlin-
gen mellom arter og miljøer. De kan genere problemer med økende kompleksitet
samtidig som de har en løsning for hver. Ved å fokusere p̊a simple kriterier fremfor
fitness-verdier vanligvis brukt i tradisjonelle evolusjonære algoritmer, fortsetter
søkeprosessen å innovere uten grenser i forskjellige retninger. Prosesser som fort-
setter å innovere slik som i naturlig evolusjon er ikke enkelt å simulere, men har
et stort potensial da en generell slik algoritme kan generere løsninger og design
med økende kompleksitet til hvilket som helst problem.

Et utgangspunkt for åpen koevolusjon var nylig introdusert i Brant and
Stanley [2017], hvor Minimal Criterion Coevolution (MCC) ble brukt for å par-
allelt utvikle labyrinter og løsningsagenter p̊a en evoluasjonær m̊ate. Labyrinter
og agenter var i stand til å øke i kompleksitet i parallell. En metode som deler
labyrint- og agent-populasjonene i forskjellige arter ble brukt for å kunne utvikle
de i flere retninger samtidig. Denne oppgaven utvider denne funksjonalitet i MCC
til å rangere og prioritere de beste artene, basert p̊a hvor mye den gjennomsnittlig
øker i størrelse og kompleksitet.

To forskjellige metoder er undersøkt. Den første utvider metoden til å støtte
et varierende antall individer i hver art, hvor kapasitet i de d̊arligste artene blir
periodisk overført til de beste. Den andre utvidelsen undersøker effekten av å
periodisk bytte ut de verste artene med nye gjennom hele utviklingen. Hvordan
labyrinter og agenter i MCC utvikler seg med disse utvidelsene vil bli sammen-
lignet mot MCC uten noen utvidelser, der arter alltid har like mye kapasitet og
blir aldri byttet ut.
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Chapter 1

Introduction

This chapter presents the main background for this thesis, followed by the overall
goal and research questions, the research method, the structured literature review
protocol, the preliminary process, and finally, an overview of the coming chapters.

1.1 Background

Inspired by natural evolution and the dynamics between species and environ-
ments, open-ended coevolutionary algorithms are able to generate increasingly
complex problems while simultaneously having a solution for each. By focusing
on fulfilling simple criteria instead of objectives and fitness values commonly used
in traditional evolutionary computation, the search process continues to invent
without boundaries and maintains diversity. Continual innovation as in natural
evolution is not easy to simulate, however, the rewards and implications of a gen-
eral open-ended algorithm would be extraordinary as it could endlessly generate
increasingly complex solutions and designs to any problem.

An initial base for Open-Ended Coevolution was recently proposed by Brant
and Stanley [2017], where a method called Minimal Criterion Coevolution (MCC)
was used to evolve a set of mazes with accompanying solutions. Mazes were used
as the problem domain due to being computationally lightweight, while maze
navigator agents using neural networks were used to represent the solution paths.
The mazes and solutions are stored in separate populations but are constrained
in a coevolutionary manner by using criteria that forces them to evolve in size
and complexity in parallel.

The study was further investigated in Brant and Stanley [2019], where the
maze representation was overhauled to support more ways to increase in difficulty.
In the earlier study, the maze could only increase in difficulty by adding more
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walls within. With the new representation the mazes can also increase their
overall size. However, some weaknesses were also unveiled, as the study points
out that the populations can find a ”path of least resistance” while evolving
that might be exploited. Specifically, the mazes and maze navigators in some
cases are able to find evolutionary paths that make it easy for them to adapt
to changes, resulting in individuals that evolve minimally. This trait might not
be preferable as it can lead the populations in directions that are suboptimal
for further innovation, by avoiding problems that go in new directions and aim
for changes in the population. Furthermore, this can lead to a bias towards
trivial problems and slow further progress in innovation. Being as efficient as
possible and utilizing shortcuts is important in open-ended methods to minimize
the computational resources needed and time spent to evolve the solutions, which
would only increase as the domain changes from two-dimensional mazes to more
challenging real-life environments.

1.2 Goals and Research Questions

Goal Find ways to increase the efficiency in generating complex mazes and so-
lutions in Minimal Criterion Coevolution

This thesis will investigate different speciation extensions in open-ended co-
evolution and analyze their impacts on the overall efficiency and behaviour. The
model from Brant and Stanley [2019] is used as a base, and will be extended with
different speciation methods to split the populations into different lineages.

To reach the goal, the research questions below provide a base and will lead
the research.

Research question 1 How can ranking and prioritizing species be used to in-
crease the overall performance in Minimal Criterion Coevolution?

Ranking and prioritizing species in MCC is inspired by the concept of ’sur-
vival of the fittest’ in nature, where new species emerges while others go extinct
continually. For example, changes to environments and increased competition
between species can determine if they are able to survive or not. These fac-
tors can be converted to the maze domain in MCC by treating the mazes as the
environments and ranking the species based on their recent performance in devel-
oping complexity. Sudden changes to an environment can for example be made
by removing certain mazes from the population. As most people know, sudden
changes to an environment have caused mass extinctions before [Archibald and
Fastovsky, 2004].

Research question 2 How is the diversity in the resulting solutions affected
when ranking the species based on performance?
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Diversity is an important factor in open-ended processes, as the overall goal
of these methods is to produce a broad range of high-quality solutions in a single
run. Prioritizing the most performant species might lead the process away from
this goal by focusing too much on certain species. How diversity is affected might
indicate how the extensions alter the focus in MCC and if they are useful or not.

1.3 Research Method

The research process in this thesis was mainly an analytical process, where results
from MCC with and without extensions were reviewed and compared. Many ideas
on how to further extend the base model emerged while reading relevant stud-
ies in the open-ended evolution field. During the implementation of the model
used in this thesis, these ideas were refined and adjusted as a more in-depth un-
derstanding of the process were gained from the new technical perspective. In
addition, preliminary tests on the base model without any extensions aided in
fine-tuning the ideas, as some issues were revealed. The research questions in sec-
tion 1.2 reflects the final outcome of the ideas, and were the focus in experiments
conducted.

1.4 Structured Literature Review Protocol

Several strategies were used to find relevant research articles. Since the base
for this thesis comes from authors with central roles in the OEE area, relevant
previous work from them served as a great entrance to understand the current
status and future directions. Their work also introduces many other relevant
research projects to explore.

To guide a more in-depth search, a review protocol was created, described in
table 1.1. Throughout the search process two central questions were kept in mind
when reviewing articles. These questions were used to estimate the relevance of
other research articles and if they could bring any value to this project.

◦ How does the article relate to open-ended processes?

◦ Can the method presented in the article aid open-ended processes in some way?
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Keywords evolutionary computation, open-ended, coevolution,
minimal criterion, problem generation, curriculum
generation, diversity, artificial intelligence, specia-
tion, evolutionary innovation

Selection Criteria The article must appear relevant after reading the
abstract and conclusion.

Inclusion Criteria The study is focused on open-ended evolution, co-
evolution or speciation.

Qualifying Criteria The authors are critical to their own results.

All major claims in the article should be sup-
ported by sources or results.

Search Engines Google Scholar, Web of Knowledge

Table 1.1: The Structured Literature Review Protocol

1.5 Preliminary Process Overview

The work in the preliminary process leading to this master project can be divided
into three phases. The chart in Figure 1.1 visualizes the main topics visited
leading to open-ended coevolution and MCC.

Initial search

Coevolution
Open-ended coevolution

POET
MCC

Phase 1

Phase 2

Phase 3

Figure 1.1: Overview of the main theme in each phase.

Phase 1: Finding an interesting area

The research process initially started with a literature search to find an interest-
ing theme in Bio-Inspired AI, where Multi-Objective Optimization and Swarm
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Intelligence (SI) were used as anchors. The latest publications from conferences
such as GECCO were explored, which resulted in several branches to investigate
further. Some of these areas were coevolution, quantum genetic algorithms, Hy-
perNEAT and many different SI algorithms. Coevolution was quickly chosen as
the leading and most interesting branch after reading surveys and articles in the
different fields. This led to a more in-depth exploration of coevolution.

Phase 2: Coevolution

In this phase the goal was to find something to research in coevolution that could
push the field further. A coevolutionary SI algorithm was found in the early
stages in a research article by Sun et al. [2012], which seemed like an interesting
approach to coevolution. However, after some considerations the algorithm was
discarded after some weaknesses in the algorithm were revealed, in addition to
some degree of vagueness in the article. At the same time, another interesting
article regarding MCC was found, which sparked a new search for material in the
direction of Open-Ended Coevolution.

As this field is very recent and has not been approached by many researchers,
there were few articles to read for further investigation, other than a handful of
studies from the authors in the original MCC paper. On a positive side, this
meant that there might be many new directions that had not been explored yet
in the area. After looking at studies citing the original MCC paper, an algorithm
called Paired Open-Ended Trailblazer (POET) was found. As the main idea in
the algorithm is to combine open-ended coevolution with reinforcement learning,
it appeared very interesting and was chosen as the next direction to focus on.

Phase 3: POET and MCC

The article on POET was studied in-depth and ways to extend it was investigated.
However, some flaws regarding efficiency were uncovered as the computational
resources needed to run the experiments are very high. The experiments in the
article used 256 CPUs for 10 days, which would be difficult to acquire for this
thesis. Consequently, the focus shifted away from POET and back to MCC.

In Brant and Stanley [2019], the ”path of least resistance” problem is dis-
cussed, and had not been taken into consideration in prior phases. Subsequently,
it was decided that investigating methods to overcome this flaw could turn into
something useful. After more in-depth studies on MCC and relevant articles,
ideas on how to adjust the process were reviewed. A central focus was how the
speciation method could be altered to increase the overall efficiency, and was used
as a base to create a draft of the research goal and research questions. These
were tweaked in many rounds and improved gradually.
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1.6 Thesis Structure

The remainder of this thesis is structured in 5 chapters. Chapter 2 presents
the background theory, where fundamental concepts and established methods
are explained, while chapter 3 elaborates on the state of the art in open-ended
evolution. Chapter 4 presents the model used in this thesis, followed by the
experiments conducted and results obtained in chapter 5. Finally, chapter 6
discuss the results, concludes, and presents a future work section.



Chapter 2

Background Theory

This chapter presents the required background theory for this thesis, beginning
with an introduction to evolutionary computation, genetic algorithms and speci-
ation in section 2.1. Open-ended evolution and Novelty Search are elaborated in
section 2.3 and 2.3.1, while section 2.2 presents theory on coevolution. Section
2.4 and 2.5 elaborates on artificial neural networks and an evolutionary method
to evolve them called NeuroEvolution of Augmenting Topologies.

2.1 Evolutionary Computation

Evolutionary Computation (EC) is a sub-field in Artificial Intelligence (AI) deal-
ing with algorithms inspired by natural processes, such as biological evolution
in nature. Evolution is the process that has produced all life on Earth and is
adapted by Evolutionary Algorithms (EA) to optimize designs and solutions for
complex problems. Processes from biology, such as survival of the fittest and
heredity are central in these algorithms. In most cases they simulate populations
of solutions and rank them by how fit they are. In addition, solutions are evolved
further and improved on by combining other solutions and slightly adjusting their
offspring. [Floreano and Mattiussi, 2008]

There are many directions and types of algorithms in EC, and the essence is
most is to maintain a set of possible solutions by iteratively selecting those fittest
to an objective and using them as a base to generate new ones. Approaching
complex optimization problems with EAs are often more effective than a brute-
force search through all solution possibilities. Typical problems often have very
large search spaces and tend to be NP-hard. Consequently brute-force methods
would quickly have very long run times for such problems as they increase in
complexity. In some cases EAs might get stuck in local optima and fail in finding

7
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the global best solution. However, since a population of solutions is maintained,
many good approximations for the global best can be found in a single run.
Having multiple good options to choose from can in some cases be preferable to
only having one, for example in design or multi-objective problems where the
weighting of different objectives might be ambiguous.

2.1.1 Genetic Algorithms

A common EA is the Genetic Algorithm (GA), and have commonly been used to
solve optimization problems in various fields. GAs are very flexible and can be
customized to fit many domains. For instance, how the solutions are represented,
how their fitness is measured, and how they evolve further are all components
that can be customised to suit a specific problem.

As stated, EAs solves or approximates optimization problems by evolving a
set of solutions. This set of solutions is called a population, and each solution
is referred to as an individual. Each round in the evolutionary cycle is called a
generation.

In GAs, all individuals in a population share a common representational
pattern called the genotype, which can be decoded into a phenotype that describes
the physical characteristics of an individual. Each individual consists of data
following this pattern, similar to a set of genes in biological organisms. How the
individuals are represented is important to consider, as the chosen genotype is
the base for how they can be used and modified. Some representations can be
better than others since they might organize the genes in a way that is more
effective in calculations [Floreano and Mattiussi, 2008].

Figure 2.1: The GA main cycle [Eiben and Smith, 2015].
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Evolving the population is a cyclic process consisting of several steps. Figure
2.1 illustrates the steps and general flow. The first step in a GA is to initialize the
population, where the individuals are commonly generated with random values
for their genes. Optimally, the initial individuals should cover a large portion of
the search space to be able to explore as much as possible before converging to an
optimum. As the search space might be very rugged, there are many local optima
that solutions can get stuck in and would have a better base with a diverse set
of initial solutions.

The evolutionary cycle begins by selecting pairs of parents that the offspring
in the next generation will be based on. Commonly in GAs, a bias towards
selecting the fittest individuals is used. This means that individuals with better
fitness-value have a higher chance to be selected. After the parents are selected,
they are recombined and mutated to form the offspring population. Recombining
two parents genotypes is also called crossover. A uniform crossover where each
gene is chosen randomly from either of the parents is commonly used. As seen
in figure 2.1, another operator called mutation can also be used in generating
the offspring, either in combination with crossover or alone. In the mutation
operator there is a chance that an offspring genotype is slightly modified, by for
example inverting a gene. Mutation increases the explorative capabilities in the
population and leads to genetic diversity from one generation to the next.

Selecting which offspring to survive to the next generation is the last step in
the cycle. Generally, survivors are selected until a new population with the same
size is filled, to keep the population size constant. Selecting offspring based on
their fitness value is common to do if an objective is in focus. A method called
elitism can also be used, where the upper top of the fittest parents are always
selected into the next generation. This is useful to avoid throwing away the
best solutions found. Replacing part of the offspring population with randomly
generated solutions is also useful to explore new areas and ensure new genetic
diversity. Besides, this functions as a restart mechanism that can be used to
avoid stagnation [Floreano and Mattiussi, 2008].

Deciding how much the solutions should converge to a location and how much
they should diverge in the solution space are important properties to consider.
These properties are dependent on the problem to optimize, and it is hard to bal-
ance them optimally. Converging too fast can result in a premature convergence,
which means that the solutions have converged to a local optimum. Focusing
more on diversity and exploration can prevent the population from getting stuck
in local optima. However, this might also lead to longer run times and spending
more resources on evaluating poor solutions.
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2.1.2 Speciation

The search process in GAs can be extended and tweaked in many ways, for exam-
ple by dividing the population into different niches, also called subpopulations.
Each subpopulation might operate independently from others, like species do in
nature. This can aid in exploration and to maintain diversity in the population as
a whole. Dividing the population into different species is often based on finding
similarities in their genotype- or phenotype-representation. Each of these species
can for example represent an area in the search space near a local optima. By
maintaining multiple such species, the search process is forced to explore multi-
ple local optima simultaneously. This can aid in finding multiple good solutions
in the same run. Further, speciation can be extended further with interaction
between the species. For example, migration methods that transfers individuals
between species can explore new perspectives and create solutions with strengths
from multiple sides.

2.2 Coevolution

Coevolution is a process in nature where two or more species or individuals influ-
ence each other and their path in evolution. Coevolution is commonly split into
competitive coevolution and cooperative coevolution. In competitive coevolution,
the two parts compete against each other in a predator-prey pattern, where the
prey will always seek new solutions to escape the predator, while the predator
must adapt to how the prey evolves to keep feeding on it. On the other hand,
in cooperative coevolution the two parts work together in a way that both parts
benefit from. These concepts has been transferred to EC and optimization meth-
ods by using multiple populations that interact with each other in many different
ways. [Floreano and Mattiussi, 2008].

2.3 Open-Ended Evolution

Open-Ended Evolution (OEE) is a branch in EC dealing with algorithms and
methods inspired by the endless inventiveness and creativity found in natural
evolution. These methods continue to invent and evolve new individuals without
boundaries, in addition to often not being guided by objectives. Instead of rank-
ing and selecting individuals based on fitness-values, individuals are rewarded for
exploring new directions and bringing new diversity into the population. Such
methods do not converge to certain areas but gradually floats through the search
space by continuing to invent in the same way as evolution in nature.

An important point about search processes in OEE is that they in general
focus on finding valuable stepping stones for further evolution. Valuable stepping
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stones lead the search in new meaningful directions and can avoid stagnation
in the population. Another way to look at stepping stones can be found in
the creativity humans have displayed in designing and creating new technology.
On many occasions, humans have used older technologies to invent something
completely different from what the original purpose of them was. For example,
the computer would never be invented without electricity and vacuum tubes.
When electricity and vacuum tubes were invented, no one thought of using them
to create the first computers. In the same way, OEE tries to solve problems by
finding solutions that ultimately might lead to the top [Stanley and Lehman,
2015].

2.3.1 Novelty Search

Novelty Search (NS) is a search method in EC where in contrast to traditional
GAs, individuals are rewarded for being new in some way instead of how well they
perform with regards to an objective. NS commonly looks at how the individuals
behave in a domain instead of measuring their fitness. By using an archive that
keeps track of all behaviors encountered, the novelty of new individuals and their
behaviors can be measured. This metric is used likewise as a fitness metric, the
individuals with a higher novelty have a higher chance to reproduce. A strength
with NS is that it does not fall into local optima as traditional GAs might. NS
can avoid deceptive traps that some domains have towards fitness-based methods,
meaning that there are large gaps between local optima and the global optima.
For example, in mazes there can be certain paths that lead close to the exit but
ends up being a dead-end, and possibly fooling an objective-based method. In
such domains fitness-based methods would have to walk far out of local optima
to get to the global optima [Lehman and Stanley, 2008].

A typical domain that NS is well-suited for is mazes and finding navigation
strategies. Mazes are useful since they are performant in addition to being decep-
tive in a natural way, as there are many local optima that objective-based method
can get stuck in. If for example, the goal is to navigate to a target location in
a maze within a time interval, individuals could be ranked by how close to the
target they end up. As mentioned, certain paths can lead the navigator towards
the target point but end up being the wrong path. Further, since objective-based
methods reward solutions that are closest to the target point, the search might
not be able to get out of this path.NS could overcome such barriers by always
looking for new solutions with new end positions, effectively abandoning visited
paths that did not lead to the target. By discarding solutions with already found
end locations, the search process would in most cases find a path through all
mazes.

Since NS does not use any objectives related to a goal to guide the indi-
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viduals, a general notion in the search process is to try to reach a goal by not
searching for it. NS drifts through the search space by always looking for new
behaviors until it eventually reaches a goal behavior. By discarding behaviors
already found, NS forces the search to not revisit areas already covered [Lehman
and Stanley, 2008].

2.4 Artificial Neural Networks

An Artificial Neural Network (ANN) is a computational model used in AI and
is typically used to approximate a function by connecting perceptrons together
[Rumelhart et al., 1986]. Perceptrons are simple processing units that map a set
of input values to a single output value. A single perceptron is a linear classifier,
meaning that it can divide a set of input data into two classes with a linear
function. When multiple perceptrons are connected, they can correctly classify
data that is not linearly separable.

Activation
function

∑
w2x2

...
...

wnxn

w1x1

w01

Inputs Weights

Figure 2.2: The perceptron. There are three steps in a perceptron. First, each
input value is multiplied by a weight. Second, the weighted input values are
summarized. Finally, the sum is run through an activation function to normalize
the output value. [m0nhawk, 2013]

Perceptrons are typically arranged in layers, connected by links with weights.
Generally, an ANN has an input layer, an output layer, and hidden layers in
between, visualized in figure Figure 2.3. Input data are sent to the input layer
and are processed through the weights and hidden layers to the output layer.
The weights are commonly tuned by a training process, where a dataset with
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example inputs and their correct classification output is used to train them. After
sufficiently training samples have been used, the weights are tuned to map any
set of input values to an approximated classification. This process can also be
seen as a process where the regions in the input space are tweaked and adjusted
to fall into different categories.

Input 1

Input 2

Input 3

Input 4

Output

Hidden
layer

Input
layer

Output
layer

Figure 2.3: An ANN with four perceptrons in the input layer, 5 in the hidden
layer and a single in the output layer (adapted from Fauske [2006]).

ANNs are commonly manually constructed and trained with large datasets
and backpropagation. However, there are also methods that find suitable neural
networks for classification problems by keeping a population of different neural
networks and evolve their weights, connections, and neurons in an evolutionary
manner. One such method is presented in the following section.

2.5 NeuroEvolution of Augmenting Topologies

NeuroEvolution of Augmenting Topologies (NEAT) is an algorithm used to con-
struct ANNs proposed by Stanley and Miikkulainen [2002], and is inspired by
how brains evolve over time. NEAT treats ANNs as individuals in a genetic
algorithm and uses genetic operators such as crossover and mutation to modify
them. They initially start with a minimal structure and are incrementally opti-
mized and extended into models with appropriate weights and topologies. The
genotype of individuals in NEAT consists of node genes and connection genes, as
shown in figure 2.4.
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Figure 2.4: The genotype and phenotype used in NEAT. Each node gene in the
genotype represents a node in the phenotype. The node type (sensor, hidden,
output) is also described by the genotype. The connection genes represents all
connections between nodes in the phenotype. Each connection gene contains
which genes it goes from and to, a weight, a status of whether it is enabled or
not, and an innovation number. [Stanley and Miikkulainen, 2002]

A problem with ANNs and evolution is that a random combination of two
networks through crossover can result in non-functional solutions, as they might
have different sizes and not be aligned optimally. NEAT overcomes this by adding
a historical marking to all new genes so that the crossover process can tell which
genes match up between any individuals. Two genes that have the same historical
marking represents the same structure and can be used to guide the crossover
process.

NEAT also uses speciation to split the population in niches based on the
structure of nodes. By doing this, the individuals primarily compete with other
individuals in the same species. As a result, all species optimize their structure
before competing with others.



Chapter 3

State of the Art

This section presents the state of the art in Open-Ended Evolution and relevant
methods used within the field. The first section presents important background
roots, in addition to central techniques and algorithms. The subsequent sections
go deeper on methods such as minimal criteria, open-ended coevolution, and
adversarial learning.

3.1 Open-Ended Evolution

Open-Ended Evolution (OEE) has been researched for decades with a focus on
how natural evolution works and how it can be used to solve problems. Progress
has been quite slow and a general theory for open-ended processes such as natu-
ral evolution has not been unveiled yet. However, researchers have been able to
solve many complex problems by using methods with open-ended features that
move away from the objective-based approach, in contrast to most evolution-
ary algorithms. For example, Novelty Search (NS) was used to find navigators
powered by neural networks to solve mazes, and were able in many cases able
to find solutions where an objective-based approach failed [Lehman and Stanley,
2008]. In Wang et al. [2019] they used a method called open-ended coevolution
to evolve walking agents that could get through a set of diverse obstacle courses.
The evolved walking agents from this method was able to complete more difficult
courses than agents trained with Reinforcement Learning (RL), which has been
the most popular method to use in such domains. Being able to beat methods like
reinforcement learning is promising and there is an indication that open-ended
processes might be able to find solutions that gradient-based methods cannot
find as easily.

The base roots for open-ended processes come from research projects in the
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50s and 60s, beginning with the cellular automata [Von Neumann et al., 1951].
This lead to the creation of the field known as Artificial Life (Alife) in the 80s.
Projects in Alife tries to simulate natural evolution in artificial worlds, where
new entities are invented in a continual procedure. These worlds are commonly
digital, for example in Tierra [Ray, 1993], where computer programs compete for
resources while evolving and self-replicating. A more recent example from Soros
and Stanley [2014], Chromaria, has been used to investigate how simple condi-
tions can induce open-ended behavior. However, with a goal to better understand
life through artificial worlds, many questions in Alife remains to be answered as
the state of current knowledge is limited [Aguilar et al., 2014].

3.1.1 Open-Ended Search

Solving and optimizing problems by using open-ended processes focus on drifting
through a solution space without convergence. For instance, in NS [Lehman and
Stanley, 2008], the evolutionary process continues to innovate and explore new
directions until halted. NS was one of the first of its kind and has been used in
many research projects, in addition to sparking new directions for further research
in OEE. Finding navigation strategies in mazes with NS has been a repeating
success and researched by many [Urbano et al., 2014; Velez and Clune, 2014].
Methenitis et al. [2015] used NS to evolve soft-robot walking strategies, and in
some cases outperformed objective-based methods. A study combining coopera-
tive coevolution and NS obtained better results than a fitness-based cooperative
coevolutionary method in various multi-robot tasks [Gomes et al., 2017]. Even
though NS has had a lot of success, it requires an archive of past solutions or
behaviors to find out if new individuals are novel or not. Maintaining this archive
adds a layer of complexity on the whole process and steps away from the open-
ended processes in nature.

Quality Diversity (QD) [Pugh et al., 2016] algorithms extends NS by in ad-
dition to searching for novelty, also focus on finding quality in individuals. A
Behaviour Characterization (BC) function is used to define a set of interesting
behavioral features to search for in individuals phenotype behaviour. For exam-
ple, NS has been extended to focus on individuals with high performance in a
method called Novelty Search with Local Competition (NSLC) in Lehman and
Stanley [2011a]. NSLC enforces a local competition in new areas of the search
space, turning NS into a multi-objective algorithm balancing novelty and perfor-
mance.

Another QD-method called MAP-Elites, short for Multi-dimensional Archive
of Phenotypic Elites, is similar to NSLC but does not require the same type of
archive of past solutions. Instead, the behavior space in MAP-Elites is discretized
by a grid, where the most performant (or elite) individual found in each cell



3.2. OPEN-ENDED COEVOLUTION 17

based on a BC is remembered. Both NSLC and MAP-Elites have been extended
further in many practical ways, explored in [Pugh et al., 2016]. For example,
Chatzilygeroudis et al. [2018] used MAP-Elites to find walking strategies for
multi-legged robots. In addition, MAP-Elites were extended in Colas et al. [2020]
to use deep neural networks to control parameters. This approach was able to find
robot walking strategies that could function even when the robots were damaged.

However, methods discussed in this section steps away from the open-ended
processes in nature, as they require archives of past solutions and BCs that de-
scribe what a good behaviour is. Nature does not aim for certain behaviors,
individuals just need to survive long enough to reproduce to continue their lin-
eages.

3.1.2 Minimal Criteria

Constraining populations in an evolutionary algorithm with Minimal Criteria
(MC) is a method used to eliminate unviable individuals and maintain quality in
a population. MCs can for example be used to only let individuals that fulfill a
specific criteria to reproduce, like being able to complete a task or expressing a
behaviour. In the Alife world of Chromaria, MCs were also proved to be a vital
requirement for OEE [Soros and Stanley, 2014].

For example, Lehman and Stanley [2010] extended NS by constraining in-
dividuals evolved with an MC that eliminates unviable behaviors. Compared to
regular NS, this extension was able to evolve solutions in a maze domain more
consistently. In addition, a higher efficiency in finding solutions to the mazes was
achieved compared to regular NS.

An early version this concept were introduced in Mattiussi and Floreano
[2003], where a method called Viability Elimination used viability boundaries to
constrain solutions to be within an area in the solution space to survive.Initially,
the boundaries allow all solutions but gradually becomes more strict and narrow
down the viable solution space, resulting in the solutions converging to an area.
Viability boundaries are different from MCs in that they are based on objectives
and do not measure the behaviour of individuals. They do not possess the same
open-ended traits as found in MCs.

3.2 Open-Ended Coevolution

Open-Ended Coevolution (OEC) is a recently formed branch in OEE consisting
of algorithms that combines coevolutionary and open-ended methods. Using this
as an open-ended search method was first presented in Brant and Stanley [2017],
where a method called Minimal Criterion Coevolution (MCC) was introduced.
MCC further builds on OEE and QD methods by showing that two interlocked
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populations of problems and solutions can display a continual inventiveness of
complexity under certain circumstances. More specifically, a population of mazes
and a population of maze navigators were used similar to the maze domain prob-
lem described in 2.3.1 to induce a never-ending increase in complexity through
evolution by constraining each population with a simple MC: A maze must be
solved by at least one maze navigator and each maze navigator must be able to
solve at least one maze to be deemed viable. Both the mazes and maze navigators
mutates between generations to increase in size and complexity. This lead to a
process where the MCs gradually becomes more challenging on their own, as the
populations ultimately control the difficulty of the mazes.

Similar to QD-methods, MCC displays creativity and finds complex behavior
without any being guided by objectives. However, MCC does not use any novelty
archive or behavior characterization and serves as an alternative way to open-
ended search by only relying on the MC. In Soros [2018], tests from the Chromaria
world indicated that a non-trivial MC is required to induce open-endedness, such
as the MCs used in MCC by . A part of MCC is also based on some of the func-
tionality in Chromaria, where a queue system that ensured all viable individuals
to get at least one chance to reproduce was used. With this queue, MCC can
continually explore multiple lineages of problems and solutions in a single run,
initially started by a set of seed individuals. These seed individuals are randomly
generated and lay the foundation for all further evolution.

MCC was extended further in Brant and Stanley [2019], where an updated
maze domain that supported increase in size as well as complexity without bound-
aries was presented. However, as mentioned in 1.1 a characteristic known as ”path
of least resistance” was unveiled. This trait might not be desirable, as it hints
that the mazes and navigators find paths in evolution that creates an illusion of
increasing complexity when they just follow the paths that are easiest to adapt
to.

POET

A very recent approach OEC called Paired Open-Ended Trailblazer (POET)
[Wang et al., 2019] combines MCC with Evolution Strategies (ES) [Rechenberg,
1973] to evolve a population of walking agents that can solve a diverse set of coe-
volving obstacle courses. MCs were used to maintain quality in individuals in the
same way as in the original study. Further, POET uses a pairing strategy that
locks walking agents with specific obstacle courses for some generations. During
this pairing duration, the agents are fine-tuned for their paired domain by rein-
forcing the strategies used to get through it. Agents are then transferred to other
obstacle courses to use experience gained to solve other courses. As a result,
the process were able to evolve agents that could complete obstacle courses that
agents trained with RL were not able to complete. While this proves that com-
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bining open-ended processes with coevolutionary methods has a great potential,
POET required a cluster of CPUs for ten days to train the agents. Further, this
computational requirement would only increase as the complexity in the domain
increases.

3.3 Adversarial Learning

A branch in RL called Adversarial Learning (AL) resembles competitive coevo-
lution in that two opposing sides are trained simultaneously and try to overcome
each other. Methods such as self-play, where a single agent plays against itself,
have displayed impressive results in learning game strategies and have achieved
superhuman performance in a game called Go [Silver et al., 2016]. Simultaneous
training of environments and agents has also been explored, for example in Ga-
bor et al. [2019] that uses RL to evolve agents in a factory environment. The
factory environments were generated by a Markov decision process that tries to
find those that maximize the learning rate in the agents. Generative Adversarial
networks (GAN) is another approach that uses two neural networks in a com-
petitive setup, and has had much success in generating realistic images of human
faces [Goodfellow et al., 2014; Karras et al., 2019].

While many of these and similar methods have received much attention, they
are mainly based on extensive training with gradients and in some cases need a
large amount of training data. These methods do not approach a search space in
the same way as open-ended methods do, as gradients are based on objectives.
Open-ended methods do not require training data and explore search spaces in all
kinds of directions. In Wang et al. [2019], POET was able to complete problems
that objective-based RL could not. Perhaps open-ended evolutionary methods
are able to reach levels of complexity that gradient-based methods simply cannot
reach.

3.4 Summary

An important goal in open-ended processes is to produce both diverse and func-
tional solutions in a single run. Methods in QD and OEC have explored many
different approaches to open-endedness, but have also unveiled issues to over-
come. These methods typically use natural evolution as inspiration for how to
simulate such behaviour. However, this has proven to be very challenging to ac-
complish as the complexity and resources needed rapidly rises when the domain
increases in difficulty.

Speciation was used in OEC to increase the diversity discovered [Brant and
Stanley, 2017]. Multiple lineages of solutions could be evolved simultaneously by
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dividing the populations into many smaller subpopulations. While the effectivity
of speciation was considerable, further extensions that utilize the dynamics be-
tween species as in nature has not been explored in many ways yet. This thesis
will investigate the effects of extending speciation with prioritization and re-
placement strategies, that rewards the most performant species. Focusing more
resources on high functioning solutions and discarding stagnant species might
speed up the overall process. By replacing species in MCC the seeds evolved in
the initial phase won’t have as much control of the process, and scenarios where
they stagnate can be avoided.



Chapter 4

Model

This chapter describes the model proposed in this thesis. An overview of the
base model and extensions made is presented in 4.1. Section 4.2 describes the
representation used for the mazes and agents, while section 4.3 describes all the
steps in the model algorithm in detail. The main contributions in this thesis are
described as part of the model algorithm in section 4.3.2. Finally, section 4.4
presents the parameters used in the model.

4.1 Overview

The base model is adapted from Brant and Stanley [2019] and uses the same main
components as well as agent and maze representation. The main differences in the
original model compared to the model proposed in this thesis lies in the speciation
functionality and the maze genotype-to-phenotype converter. Extensions were
made to the original MCC algorithm to support a more dynamic and flexible
queue system used in speciation and selection.

4.1.1 Base Model

The base model without speciation consists of four main steps: seeding, selec-
tion, reproduction and evaluation. Figure 4.1 gives an overview of how these
are connected. A seeding phase bootstraps the process by randomly generat-
ing mazes and finding viable agents with the NEAT algorithm combined with
Novelty Search (NEATNS), as described in 2.3.1. These agents and mazes rep-
resent the first generation of the maze and agent populations. A queue system is
used in each population, where a pointer points to the next individual scheduled
for selection. In each generation agents and mazes are selected and reproduced
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Figure 4.1: Overview of the original MCC model from Brant and Stanley [2017].

through mutation, before being sent to evaluation. The mutations are biased to-
wards increasing the overall complexity of the individuals resulting in an increase
in average maze size and the amount of turning points in the solution paths. All
mutations are described in section 4.3.3. All agent children are evaluated in all
maze children (see section 4.3.4). An agent is considered viable if it can reach
the target position in at least one maze, while a maze is considered viable if at
least one agent can reach its target position. All new viable agents and mazes
are inserted at the top of their respective population queues. If a queue reaches
its maximum capacity, the oldest individuals are removed from the queue. This
process results in a continual evolutionary drift where the populations contain
gradually more complex individuals.
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4.1.2 Speciation and Extensions

The queue system used in each population in the original model can be extended
to support different species, where the population is split into different species
based on genetic similarity. Each of these species has a queue with a pointer and
maximum capacity. In the model from Brant and Stanley [2019], each species
queue has the same maximum capacity and remains static throughout the whole
process.

agents mazes

species
queues

selection selection

Figure 4.2: A snippet of the original model with speciation activated presenting
multiple queues in the agent and maze populations.

The main contributions in this thesis further extend the original model with
different speciation methods. There are two variants investigated in this thesis,
described in detail in 4.3.2. In the first variant, the maximum capacity for species
is adjusted periodically to prioritize those with highest performance, measured in
how much they increase in complexity. The most performant species are rewarded
with more capacity, while the capacity in the least performant is decreased with
the same amount. The second variant extends the speciation with a restart-
mechanism, where the worst species are replaced with new ones. How these
extensions work is described in detail in 4.3.2.

4.2 Representations

4.2.1 Maze

A maze is built as a two-dimensional grid of square cells, where walls are placed
between the cells. This grid uses a conventional coordinate system to place the
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cells, where the bottom left cell has position 0 in both x- and y-direction. The x-
and y- values for each cell increases by moving in the right and north direction.
At all times the mazes are formed as squares, with the same amount of cells in
width and height. However, this amount can vary from maze to maze. All mazes
only have one solution path and do not contain any loop paths, meaning that a
path never leads back to its entrance point. A path either lead to a dead-end or
to the target point. The solution path is represented by a list of coordinates in
the maze genotype, and always begins in the upper left corner cell and ends in
the lower right corner cell.

Figure 4.3: Example of a maze. The ”S” and ”E” marks the start and end
positions.

Genotype

The maze genotype contains four components as listed in the overview in table
4.1. Table 4.2 presents an overview of the wall gene contents.
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Maze Genotype
Width and height Numerical value, width and height al-

ways has the same value.
Initial orientation Can either be horizontal or vertical.

This value decides if each pathgene
should begin with a path in the hori-
zontal or vertical direction.

Path genes List of path genes containing an x- and
y-coordinate used to map the solution
path.

Wall genes List of wall genes used to construct the
areas surrounding the solution path.

Table 4.1: Overview of the maze genotype.

Wall gene values
Wall position Position of wall within a subdivision.
Passage position Position of passage on walls within a

subdivision
Orientation Can be horizontal or vertical.
Opening location Defines which side the opening loca-

tion to the solution path the subdivi-
sion should prioritize.

Table 4.2: Overview of the wall gene.

Genotype to Phenotype

When decoding a maze genotype to the maze phenotype the maze initially con-
tains no walls or paths. All cells contain four boolean values that describe which
directions the surrounding walls are located, which are all set to false initially.
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(a) The solution path consist of walls and
turns described by the path genes. The
black circles indicate where path genes
place the turning points.

(b) Subdivisions are the rectangular
shapes surrounding the solution path.

(c) The walls within the subdivisions are
determined by values in the wall genes.

Figure 4.4: There are three main steps in this process. (a) add solution path,
(b) add subdivisions, (c) add subdivision walls and create passages to the solution
path from the subdivisions.

The path genes in the genotype are used to map the solution path from the
starting point to the target point. Each path gene adds a turning point and a
horizontal or vertical set of walls on each side of the cells leading to the turning
point. The initial orientation value in the genotype decides if the solution path
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should begin in a horizontal or vertical direction. All maze cells in the solution
path are marked with a direction describing the way to the target location.

The next step is to find subdivisions in the areas surrounding the solution
path. Subdivisions are found by a search through all maze cells for those unused
by the solution path. This search goes through all cells in all rows from left to
right beginning with the top row. It continues downwards until all cells in all
rows have been checked. When a cell not used by the solution path or any other
subdivision is found, a subdivision start point is set and the search begins a sub-
search to add cells to the new subdivision. The sub-search continues to add cells
to the subdivision in the same row until the right edge of the maze is reached
or a cell in the solution path is found. Further, the search continues to add cells
to the subdivision in the rows below until the bottom is reached or a cell that
breaks the rectangular shape is found. Only cells that are in the same columns
as the cells in the initial subdivision row are added. A subdivision endpoint is
marked in the last row where the rectangular shape is still kept.

The final step is to open a passage from the subdivisions to the solution path
and add walls within them. All subdivisions border the solution path in at least
one cell, and the passage position value from a random wall gene is chosen to
select which side to place the passage opening. If the chosen side does not share
borders with the solution path in any location, the other sides are attempted,
beginning with the opposite side. To add walls within a subdivision, a recursive
process that splits a subdivision into two smaller ones is used. Wall genes are
iteratively to decide how a subdivision should be split. Their wall value is used
to place a wall that divides a subdivision into two, while the passage value opens
a location in the created wall. This process is repeated in the child subdivisions
until their width or height is one cell.

4.2.2 Agent

The agents are maze navigators consisting of sensors and a neural network. In
total, an agent has ten sensors, six of which are rangefinder sensors while the
other four are radar sensors. These sensors are placed at certain locations on
an agent body, visualized by figure 4.5. Each rangefinder measures a distance to
the surrounding walls. How these values are calculated are described in section
4.3.4. The radar sensors together act as a compass towards the target location,
by changing which is active when the agent is rotating. A radar sensor has an
area of sight of 90 degrees and activates when a straight line from the target
location to the agent is within this area. Only one radar sensor is active at any
time.

Agents have a positional velocity and an angular velocity that controls their
movement in a maze. A neural network is used to find new values for these
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Figure 4.5: Image of agent sensor positions. The arrow in the center points in
the forward direction for the agent, while the surrounding arrows indicates the
directions the rangefinder sensors are measuring in. The dashed areas around the
agent represents the radar sensor angles. This is the same agent body as used in
Lehman and Stanley [2011b].

velocities in each simulator time step, by using the sensor values as input. The
neural network is encoded in the agent genotype, in the same way as in the
NEAT-algorithm (see section 2.5). All of the agent genotypes contain ten input
nodes and two output nodes, one input for each sensor and one output for each
value to update.

4.3 Algorithm

An overview of the model algorithm is presented in figure 4.6. The main key
events in the algorithm is found in the figure, while more details are presented in
the following subsections.

4.3.1 Seeding

The first step in the model algorithm is to find viable mazes and agents to use
as seeds in the MCC process. All mazes are generated randomly with the same
size and contains up to a number of path genes, specified by model parameters.

Agent seeds are found by searching for solutions in the maze with the NEAT
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algorithm combined with Novelty Search, in the same way as described in section
2.3.1. The navigation agents in this search have the same representation as used
in the MCC model, described in 4.2.2. Each maze seed requires a separate seed
search process to find an agent that can complete it.
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Figure 4.6: Overview of the model algorithm flow. The upper large container
box contains the main functionality in the MCC cycle, where agents and mazes
are selected, reproduced and evaluated. The flow in the base speciation without
extensions is also included. The lower container box contains the flow in the
extended speciation methods, and is the main contribution in this thesis. They
are elaborated in more detail in section 4.3.2
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4.3.2 Queue System and Speciation

A queue system is used to store all mazes and agents in the evolutionary cycle
in MCC (the queue system is not visualised by the algorithm figure, 4.6). In the
initial round, all agent- and maze seeds are placed in two queues, one for agents
and one for mazes. Both queues have the same functionality and represent the
populations in MCC. A pointer points to the next individual for selection. When
the last individual in the queue is reached, the pointer goes back to the first
index. If the queue reaches a maximum capacity set by model parameters, the
oldest individual is removed.

Speciation functionality can be added to the queue system to split the two
population queues into many smaller ones, each representing a species in the
population. When speciation is active, all seed agents and mazes are placed in
separate queues in the first cycle. This means that the number of queues is the
same as number of seeds. Each seed is regarded as the centroid for a species
and is used to determine how similar new individuals are to the species. The
maximum capacity for the whole population, determined by a model parameter,
is spread uniformly to all species queues. This speciation method will be referred
to as the base speciation and is the same as used in Brant and Stanley [2019].

Agent Speciation

An adaption of the speciation method in NEAT is used as speciation method
for the agents in the MCC model [Stanley and Miikkulainen, 2002]. Individuals
in NEAT use the same genotype as the agents in the MCC model in this thesis
(see section 2.5). New individuals are added to the species that they are most
similar to, by calculating the genotypic distance between the new individual and
all species centroids. A smaller genotypic distance means that they are more
similar. Links between nodes in the neural network described by agent genotypes
are used when comparing two agents. Table 4.3 gives an overview of the variables
used in the comparison.

Description Abbreviation
Links present in only one agent
genotype

LP

Total sum of difference between
links present in both genotypes

DL

Total number of unique links in
both genotypes

TU

Table 4.3: Overview of variables used to calculate similarity in agents.
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The difference between links present in both genotypes is calculated with
their weight values. Equation 4.1 is used to calculate the difference between a
link in the same position in genotype A and B. If the link is active in one and
not the other, an additional value of 0.5 is added to the difference value.

Difference(A,B) = 0.5 ∗ |tanh(A.weight−B.weight)| (4.1)

If no links are present in any of the agent genotypes, a value of zero is set as
the similarity. Equation 4.2 is used otherwise.

Similarity = (LP +DL)/TU (4.2)

Maze Speciation

Mazes are also speciated based on genotype, where path genes and wall genes
in two mazes are compared to find a similarity metric. This metric is used to
determine which species queues new mazes should be added to by finding the
most similar one.

The difference between a maze A and a maze B consists of two steps. First,
all path genes in A and B with the same indexes in the mazes path gene lists
are compared by calculating the euclidean distance between their coordinates,
described by equation 4.3. If a path gene at a certain index is only present in
one of the mazes due to different amounts of path genes, a substitute point with
coordinates (0, 0) is used for the missing path gene. The differences between the
path genes are then summed to obtain a total difference.√

(x2 − x1)2 + (y2 − y1)2 (4.3)

The second step compares all wall genes in two mazes. A scalar is constructed
for both mazes by using the values within the wall genes. Equation 4.4 describes
how each value in the scalars are calculated. To find the distance between the
scalars, the euclidean distance function is used, specified in equation 4.6.

Scalar(w, p) = 0.5 ∗ (w + p) ∗ (w + p+ 1) + p (4.4)

w and p are the wall and passage values in a wall gene.

distance (p, q) =

√√√√ n∑
i=1

(qi − pi)2 (4.5)

p and q are the wall genes scalar for two mazes.
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Finally, the total difference is calculated by summing the total path gene
difference and the wall gene distance.

(w, p) = 0.5 ∗ (w + p) ∗ (w + p+ 1) + p (4.6)

Speciation Extensions

Two extensions have been made to the original MCC model in this thesis. Both
utilize a prioritization strategy, where both maze- and agent species are ranked
by how performant they are. The performance of all species, both agent and
mazes, is saved in every iteration in the evolutionary cycle.

Agent species are ranked based on their average increase in genotype size
across all individuals, where a high increase is positive to avoid stagnant species.
The maze species are ranked based on their average increase in size and complex-
ity, where complexity is regarded as the number of turning points in the solution
path in a maze.

Another problem occurring in species, both agents and mazes, is that some
species are not able to evolve from their initial seed, which leads to very low
performances. Since they are never able to evolve and reproduce into new viable
individuals, their queue capacity is never filled. This means that the global
population will not reach the maximum limit and not utilize all agent- and maze
slots..

Dynamic Size in Species

The first extension is to use a dynamic maximum size in species. Base on the
ranking strategy explained above, the top-ranking species are rewarded with an
increase in queue capacity, while the capacities of the bottom-ranking species are
reduced by the same amount. The total capacity in the maze and agent popu-
lations are static. Initially, all species are equally prioritized and have the same
capacity in their queues. Changes to the capacities happen every 100 generations,
to give species sufficient time to evolve after changes have been applied. Further,
adjusting queue capacities to favor the performant species gradually overcomes
the issue of empty slots in the species queues.

Species Replacement

The other speciation extension to the model in this thesis is to replace the least
performant species with new ones during evolution. This effectively removes all
stagnant species and those that are not able to evolve from their initial seed. Like
the other experiment, the replacement process is run every 100 generations.
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Three rules determine which species are replaced and how. First, if both
stagnant maze- and agent-species are found, they are both replaced with a maze
and agent pair as in the seeding with NEATNS. This means that the seed in the
new agent species can solve the seed in the new maze species.

The second rule replaces stagnant agent species that are not able to evolve
from their initial seed with species containing a seed that can solve a random
maze in the maze population. To find the seed in the new species, NEATNS is
used as in the seeding phase.

The third rule replaces the least performing maze species every time the
replacement scheme is run. A random maze is generated and used as the seed in
the new species. There are no guarantees that this new species will be able to
evolve from its initial seed, as there are no agent individuals paired up with it
when added.

However, adding new maze species increases the diversity in the maze pop-
ulation and encourages new agent lineages to emerge. This is also useful to see
if agents can adapt to new environments.

4.3.3 Selection and Reproduction

The queues pointers are used to select parents to reproduce from. How many
agents and mazes selected for each generation are set by parameters. Without
speciation, all agents are selected from a single agent queue and all mazes are
selected from a single maze queue. With speciation, individuals are selected
uniformly from all agent- and maze-species. For example, if there are ten maze
species and the amount of mazes to select is twenty, two mazes from each species
are selected. All parents are copied and mutated to create the produce the
children, and placed in at the last position of their queues by moving the queue
pointers to the next index. Both agent- and maze children can be mutated in
several different ways and are controlled by mutation chance model parameters,
described in table 4.5.

Agent Mutations

Table 4.4 gives an overview of the possible agent mutations.

Add neuron Adds a single hidden neuron.
Delete neuron Marks a single hidden neuron as inactive.
Add connection Adds a connection between two neurons.
Update connection Updates the weight of a connection.

Table 4.4: Overview of possible agent mutations.
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Maze Mutations

There are three main branches in the maze mutations. Mutations can increase
the dimensionality of a maze, update the path genes, and update the wall genes.
The following sections present all possible maze mutation variants.

Some mutations might lead to invalid maze phenotypes. For example, certain
updates to the path genes might result in a solution path that crosses itself and
could end up having multiple paths to the target location. A maze validation is
therefore used to ensure that the mutation on a maze genome leads to a valid
phenotype. If the resulting mutated maze is invalid, the mutation is discarded.

Mutate Structure

A maze before and after increasing the dimensions is seen in figure 4.7. Mutating
the structure of a maze increases the width and height of the maze by one cell
in the south-east direction. To accommodate, the last juncture in the solution
path is moved to the right to follow the expanding right edge. This way it is still
aligned with the target location.

(a) Before.
(b) After.

Figure 4.7: A maze before and after the mutate structure mutation

Add Path Gene

Adding a path gene inserts a new path gene with random values at the end of the
path gene list, visualized by figure 4.8. This means that this path gene represents
the last turning point in the maze.
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(a) Before. (b) After.

Figure 4.8: A maze before and after the ’add path gene’ mutation.

Update Path Gene

Updating a path gene moves the turning point specified in the path gene one cell
in a random direction, visualized by figure 4.9. Path genes cannot be updated to
go outside of the maze boundaries.

(a) Before. (b) After.

Figure 4.9: A maze before and after the ’update path gene’ mutation.
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Wall Gene Mutations

Wall genes can be added, updated and deleted. Adding a wall gene inserts a new
wall gene at the end of the wall gene list in the maze genotype. There are two
update-variants used, one that updates the wall value and one that updates the
passage value in a single wall gene. When a value in the wall genes are updated
it is assigned a new random value between 0 and 1. Deleting a wall gene removes
a random wall gene from the wall gene list.

All wall gene mutations might change the structure of the walls in the sub-
division quite drastically. However, they do not update the solution path in any
way.

4.3.4 Evaluation

To determine whether the agent and maze children are viable or not, a maze
navigation simulator is used to simulate and evaluate all agent children in all
maze children.

Simulator Overview

The simulator begins by generating the maze and agent phenotype and places the
agent body in the upper left corner, with its front pointing towards the bottom
right corner. An agent uses its neural network to map sensor values to velocity
updates. This process has multiple steps and is repeated until the agent has
reached the target position or the maximum number of timesteps is used. Figure
4.10 presents the general flow in this process.
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Figure 4.10: The simulator loop for an agent in a maze.

The maximum number of timesteps is determined by the length of the so-
lution path in the maze. This assures that agents must find the correct path in
a reasonable time and discards agents that go amiss for too long. The agent is
successful when it has reached the boundaries of the maze cell in the rightmost
lower corner.

A unit system is used to keep track of an agent’s position and how fast it
is currently moving. Each maze cell is measured as 32 units, and an agent can
have a maximum speed of 3 units per timestep, both in positional and angular
velocity. Further, an agent has a physical radius of 3 units and is used to detect
wall collisions, explained in more detail in 4.3.4.

Sensor Values

The first step in the simulator cycle is to calculate the sensor values. These
are calculated with trigonometric functions and positional values, where the
Pythagorean theorem is a central component. Figure 4.11 gives an overview
of how the rangefinder sensors are used in a maze to find distances to the sur-
rounding walls. The distances are measured from the center of the agent body.



4.3. ALGORITHM 39

Figure 4.11: Overview of an agent and its rangefinder sensors in a maze.

In figure 4.11 there are three maze cells. The solid lines indicate where
walls are placed, while the dashed lines represent the boundaries of the maze
cells without walls. When a rangefinder sensor value is calculated, the distance
traveled in each maze cell is found in a recursive process and summed. For each
maze cell in the rangefinder line of sight, the process checks if the line has hit an
actual wall in the collision point at the cell boundaries. If a wall is found, the
total distance is returned. Otherwise, the search continues into the cell on the
other side of the boundary. The black dots in the image represents the collision
points between the rangefinder sensors and cell boundaries.

Rangefinder Calculation

There is a general pattern in calculating the rangefinder sensor values. The
position of an agent and the angle between the rangefinders direction and the
x-axis is used to determine the length of two catheti in a perpendicular triangle,
illustrated in figure 4.12 and 4.13. The Pythagorean theorem is then used to
calculate the length of the hypotenuse.

The following figures only cover rangefinder sensors that are pointing towards
the north east. Sensors that points in other directions follow the same general
pattern but use different angles to calculate the sensor value.
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Figure 4.12: Catheti setup.

In figure 4.12, the c1 and c2 catheti can be found by using the position of the
agent and the location of the maze cell in the maze, described by equation 4.7.
The angle α can be found by using the heading of the agent and the direction of
the rangefinder sensor.

c2 = (xc − xa) ∗ tan(α) = c1 ∗ tan(α) (4.7)

where xc is the x-coordinate at the right edge of the cell and xa is the agents current
x-coordinate.

h =
√

c21 + c22 (4.8)
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(a) (b)

Figure 4.13: Catheti setup with extra calculations.

Figure 4.13 visualizes a case where the rangefinder line points towards the
upper border of the maze cell. Some extra calculations are required in such
situations. First, the catheti c1∗ and c2∗ are calculated in the same way as in
figure 4.12. Second, if c2∗ extends beyond the upper border in the maze cell, the
hypotenuse has to be shortened down. Another set of catheti is therefore found
by using the vertical position of the agent and y-coordinate of the upper maze
cell border. Equation 4.9 describes how to find these. Finally, the hypotenuse is
calculated in the same way with the Pythagorean theorem with equation 4.8.

c1 = (yc − ya) ∗ tan(90− α) = c2 ∗ tan(90− α) (4.9)

where yc is the y-coordinate at the upper edge of the cell and ya is the agents current
y-coordinate.
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Figure 4.14: Rangefinder continuing to other maze cells.

If the rangefinder line does not meet a wall in a maze cell, it continues into
the cell on the other side of the cell border, visualized in figure 4.14. The same
process is repeated here where with the border collision point as the base point,
and continues recursively until a wall is met. The sum of all hypotenuses found
is the final value of the rangefinder sensor.
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Radar Sensors

To find which radar sensor is active, a line from the target location is drawn to
the agent’s current position. The radar sensor with this line within its area of
sight is the active one, visualized by 4.15.

Figure 4.15: The agent has four radar sensors, where the grey one is currently
active.

Updating Position and Rotation

Values from sensors are sent to the neural network of an agent, which returns
two values used to update the positional and angular velocities. If an updated
velocity reaches higher than the limit, it is decreased down to the limit.

A new position for the agent is calculated based on the current position,
rotation, and new velocities. Equation 4.10 and 4.11 describes the equation used
to find new x- and y-coordinates.

x = x0 + cos(
d

180 ∗ π
) ∗ v (4.10)
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y = y0 + sin(
d

180 ∗ π
) ∗ v (4.11)

where x0 and y0 are the current coordinate values, d is the current direction angle, v is
the updated positional velocity.

In many cases, the new position would lead the agent to collide with a wall.
To detect collisions, the simulator checks if the new position is closer to a wall
than the radius of the agent body. If this is true, the position update is skipped.
Otherwise, the agent is moved to the new position and begins a new loop of the
simulator cycle.

4.4 Parameters

4.4.1 MCC

Table 4.5 presents the parameters used in the MCC cycle of the model.
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MCC parameters
Generations The number of generations to evolve the

populations.
Maze seed amount Amount of viable mazes to find in initial

seeding phase.
Maze queue capacity Capacity of the queue storing all viable

mazes found.
Maze selection limit Maximum amount of mazes to select

in a round. This is the amount of
maze children generated and evaluated
in each round.

Initial maze size The initial size of a maze in cells when
randomly generated .

Initial maze waypoint amount The maximal amount of waypoints a
maze can have when randomly gener-
ated .

Agent seed amount Amount of viable agents to find in ini-
tial seeding phase.

Agent queue capacity Capacity of the queue storing all viable
agents found.

Agent selection limit Maximum amount of agents to select
in a round. This is the amount of
agent children generated and evaluated
in each round.

Maze Mutation Parameters
Increase size Chance of expanding the maze by one

cell in width and height.
Add wall Chance of adding a wall gene.
Update passage value Chance of updating the passage posi-

tion value in a wall gene.
Update wall value Chance of updating the wall position

value in a wall gene.
Delete wall Chance of deleting a wall gene.
Add waypoint Chance of adding a waypoint gene.
Update waypoint Chance of updating a waypoint gene.

Agent Mutation Parameters
Update connection weight Chance of updating a random weight

value.
Add connection Chance of adding a connection between

two neurons.
Disable connection Chance of disabling a connection.
Add neuron Chance of adding a neuron.

Table 4.5: Overview of parameters.
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4.4.2 Seeding Phase: NEATNS

The seeding use a set of parameters separate from the parameters used in the
MCC cycle, and is presented in table 4.6.

NEAT Parameters

Population size Amount of agent individuals.

Speciation threshold Threshold for adding a new individual to
an existing species.

Interspecies reproduction chance Chance to reproduce new individuals with
parents from different species.

Interspecies tournament size Size of selection tournament with multiple
species.

Dropoff age Amount of generations before an individ-
ual is marked as stagnant.

Young species fitness multiplier A constant used to adjust the fitness of
young individuals.

Young age limit Amount of generations where the individ-
ual is marked as young.

Stagnant species fitness multiplier A number used to adjust the fitness of stag-
nant individuals.

Survival ratio Ratio between surviving and dying individ-
uals used when truncating the population.

Elitism amount The number of individuals to keep from the
last generation.

Activation variants Specifies which activation functions that
can be used.

NEAT Mutation Parameters

Add node Chance of adding a node.

Add connection Chance of adding a connection.

Disable connection Chance of disabling a connection.

Update connection weight Chance of updating a connection weight.

Hidden bias Chance of updating a hidden node bias.

Hidden activation Chance of updating a hidden node activa-
tion.

Output bias Chance of updating a hidden node bias.

Output activation Chance of updating a output node activa-
tion.

NS Parameters

Neighbors amount How many of the closest neighbors to use
when calculating the novelty of a new end
position .

Table 4.6: Overview of parameters used in NEATNS.
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Chapter 5

Experiments and Results

This chapter presents the experimental plan and results in this thesis. First,
the preliminary tests during implementation will be discussed, followed by an
overview of the main experiments is presented in section 5.2. The experimental
parameters used are described in section 5.3, while results from the experiments
are presented and elaborated in 5.4. A comparison to the results in Brant and
Stanley [2019] is presented in 5.5. Finally, a summary of the results is presented
in section 5.6.

5.1 Preliminary Tests During Implementation

During implementation, the model was gradually tested as more base function-
ality was added. The main focuses were to achieve similar results as Brant and
Stanley [2019] with and without speciation. Note that this was before the ex-
tended speciation methods were implemented. The base speciation method de-
scribed in 4.3.2 was tested in this phase.

5.1.1 MCC Without Speciation

The implementation was tested as a whole to validate the base functionality and
expected behavior before any speciation functionality were made, by verifying
that the initial seeds were able to increase in size and complexity. Also, the
performance of the implementation was tested to find possible bottlenecks and
errors.

49



50 CHAPTER 5. EXPERIMENTS AND RESULTS

5.1.2 MCC With Speciation

Testing the model with the base speciation was conducted many times to find
and explore patterns in how the species evolved. Results from these test-runs
indicated that in many cases species were not able to evolve out from their initial
seed. Since each species have the same amount of slots in the population reserved,
this meant that many slots were never utilized. This issue guided the development
of the extended speciation methods, by aiming for functionality that minimizes
the number of unused slots and prioritizing the species with the highest increase
in complexity.

These results were also compared to the results in Brant and Stanley [2019]
to see if the implementation could reach the same maze sizes and complexity in
the same number of generations. Surprisingly, the mazes grew much faster than
expected and surpassed the sizes reached in Brant and Stanley [2019]. However,
after further inspection, the rapid expansion did not balance well with how the
complexity in the solution paths through the mazes grew, which resulted in many
uninteresting mazes. The solution paths were fairly simple in the majority of the
mazes, with few turning points and almost no passage openings to subdivisions
that could set the agents off course. This led to an analysis of how the mazes
were mutated, which revealed that the mazes were in few cases able to add more
junctures to the solution path. On the other hand, the size expansion mutation
was always successful. A rebalance of this was therefore implemented, where the
”add path gene” mutation tries to add a juncture for up to ten times.

5.2 Overview of Experiments

This thesis investigated two experiments, where the MCC algorithm with different
speciation extensions is tested. Also, the same MCC implementation was run
without any speciation extensions to have comparable results. Table 5.1 gives an
overview of the experiments naming and abbreviations. Each experiment is run
twenty times in separate batches.

Dynamic Size in Species Experiment DSE
Species Replacement Experiment SRE
Base Speciation Experiment BSE

Table 5.1: Overview of experiments and abbreviations.
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5.2.1 Dynamic Size in Species Experiment

This experiment runs MCC with the dynamic size speciation described in section
4.3.2 turned on.

Hypothesis

In this experiment, the number of queue slots in the most performant species
increases, while the queue sizes of the least performant decreases. The most
performant species are given more room to explore their local optima in additional
directions. It is expected that the overall complexity in mazes and agents will
increase with a faster rate than BSE. Further, the average population size is
expected to be higher as stagnant species give queue capacity to species that can
evolve further.

The diversity in the resulting solutions is expected to be quite similar to
BSE, as the base in the process is still the initial seeds. However, the diversity
might be lower due to disregarding the potential lineages in the least performant
species, resulting in fewer being found and evolved.

5.2.2 Species Replacement Experiment

This experiment runs MCC with the species replacement functionality described
in section 4.3.2 turned on.

Hypothesis

Some of the behavior from the BSE is also expected to occur in this experiment.
By ranking species and replacing the worst, a faster growth rate in size and
complexity is expected, as well as higher utilization of empty population slots.
The diversity in the resulting solutions is expected to increase as new species
are gradually introduced to the population, resulting in new lineages discovered
continually.
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5.3 Experimental Setup

This section describes the setup and configurations used for each run. All experi-
ments use the same values in the general MCC cycle but with different speciation
variations. All parameters are presented in table 5.2.

General parameters
Batches 20

MCC parameters
Generations 2000
Maze seed amount 10
Maze queue capacity 250
Maze selection limit 10
Initial maze size 10
Agent seed amount 20
Agent queue capacity 250
Agent selection limit 40

Maze Mutation Parameters
Increase size 0.1
Add wall 0.1
Update passage value 0.05
Update wall value 0.05
Delete wall 0.005
Add waypoint 0.1
Update waypoint 0.05

Agent Mutation Parameters
Update connection weight 0.6
Add connection 0.1
Disable connection 0.005
Add neuron 0.01

Table 5.2: Overview of parameters.

5.3.1 NEATNS Parameter Values

The values used for the parameters used in NEATNS in the seeding phase is
presented in 5.3. These values were used in all experiments.
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NEAT Parameters

Population size 100

Speciation threshold 0.85

Interspecies reproduction chance 0.15

Interspecies tournament size 2

Dropoff age 30

Young species fitness multiplier 1.05

Young age limit 20

Stagnant species fitness multiplier 0.2

Survival ratio 0.4

Elitism amount 1

Activation variants None, ReLU, Sigmoid, Linear, Sine,
Square, Exponential

NEAT Mutation Parameters

Add node 0.05

Add connection 0.08

Disable connection 0.05

Update connection weight 0.8

Hidden bias 0.8

Hidden activation 0.1

Output bias 0.8

Output activation 0.05

NS Parameters

Neighbors amount 15

Table 5.3: Overview of parameter values used in NEATNS.
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5.4 Experimental Results

This section presents and evaluates the results from the experiments. First, figure
5.1 and figure 5.2 presents mazes that were generated from a single experiment
run.

There are five different metrical types of results presented. The first three
concerns how the agents and mazes evolve throughout the run, where maze di-
mensionalities, maze complexities, and the size of agent genotypes are measured
and analyzed from the beginning to end in each run. Results from all runs in
an experiment are averaged in terms of these metrics and are presented in the
following sections. The standard deviation for all values is also presented in the
graphs, indicated by the faded color surrounding the lines. Additionally, how
much these values increase on average is presented at the end of each section.
Further, the average number of individuals in the maze- and agent populations
throughout the experiment runs are presented in section 5.4.4. Finally, the di-
versity metric in all experiment runs as well as the average diversity metric in
each experiment is presented 5.4.5.

(a)

(b)

(c)

Figure 5.1: All trajectories are generated from a single SRE run, and displays
that diverse maze and large mazes can be found. The red dots inside the mazes
indicates the paths the agents found to get through the mazes. (a) has a size of
11x11 cells, (b) has a size of 12x12 cells and (c) has a size of 16x16 cells.
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Figure 5.2: Successful agent trajectory in a 25x25 maze. Note that the solution
path is fairly simple, consisting of mostly straight lines. This is an example of
a maze that most likely has followed the ”path of least resistance” mentioned in
3.2.

5.4.1 Dimensionality in Mazes

The following graphs present how the size of all mazes evolves in each experiment.
Results from all runs in an experiment are averaged to the maximum, average,
and minimum size in mazes.
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Figure 5.3: Maze sizes in BSE

Figure 5.4: Maze sizes in SRE
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Figure 5.5: Maze sizes in DSE

All three experiments are quite similar when compared in terms of maze di-
mensions throughout the runs. There are some small differences. Runs from DSE,
seen in figure 5.5, were able to achieve the highest average maze dimensions, while
runs in BSE were never able to increase the dimensions of the smallest mazes,
visualized by figure 5.3. However, BSE achieved the highest maximum dimen-
sions. In the SRE graph (figure 5.4) there are spikes located periodically, which
most likely are due to the points in time where species are replaced. Another
trait in the DSE graph is that the standard deviation is higher and grows faster,
indicating that the gap between the lowest and highest average maze dimensions
in these runs is high.
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Average Increase

Figure 5.6: Average increase in maze dimensions in each generation.

Figure 5.6 visualises that the average increase in BSE and DSE are very similar
and converges quite fast. In the graph, the BSE line is hidden by the DSE line.
The SRE line has a very different behavior than the other two, as the value
is always higher and seems to restart every 100 generations when species are
replaced.

5.4.2 Complexity in Mazes

The following graphs present how the complexity of all mazes evolves in each
experiment. Results from all runs in an experiment are averaged to the maxi-
mum, average, and minimum complexities in mazes. The complexity of a maze
is measured by counting the number of junctures in the solution path where the
agent must make a turn.
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Figure 5.7: Maze complexities in BSE
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Figure 5.8: Maze complexities in SRE

Figure 5.9: Maze complexities in DSE
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The complexities in mazes are able to increase throughout the runs in all
experiments. The lines representing the maximum complexities in mazes are a lot
more turbulent than the lines representing average and minimum complexities, as
they have a lot of ups and downs. Some lines also have long periods with almost
only decrease, for example in figure 5.8, where the maximum complexity right
after generation 500 decreases for about 100 generations. This indicates that
some maze individuals might have increased too rapidly in complexity without
being able to reproduce into viable children, resulting in being discarded from
their queue.

Both SRE and DSE were able to achieve a higher average complexity than
BSE. However, the average complexity in SRE seems to have stagnated from
around generation 1000 and is decreasing towards the end. Similar to the maze
size graphs, the SRE has spikes in the average line, while lines in DSE have higher
standard deviations. This further indicates the replacement functionality in SRE
and high variations in DSE.

Figure 5.10: Average increase in maze complexities in all experiments.

How the mazes increase in complexity in figure 5.10 have very similar traits to
how they increase in size, seen in figure 5.6. Both BSE and DSE are overlapping
and converges to the same value. The green line representing SRE have spikes
like all prior SRE graphs. A periodically high increase in complexity for short
periods matches the line representing the average maze complexities in figure
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5.8. However, even though SRE always has a higher average increase in maze
complexities, it has similar performance as the other experiments with regards
to average and highest maze complexities achieved. A possible reason for this is
that SRE continually adds new species that might not have high complexity. The
line representing minimum complexity in figure 5.8 further indicates that SRE
replaces maze species with a worse maze complexity. Subsequently, the increase
in maze complexity in SRE spikes as the ’add path gene’ mutation has a higher
chance of being successful for mazes with few path genes.

5.4.3 Size of Agent Genome

The following graphs present how the size in all agent genotypes evolves in each
experiment. Results from all runs in an experiment are averaged to the maximum,
average, and minimum agent size in mazes. The size of an agent genotype is
measured by counting the number of links between nodes in the neural network.

Figure 5.11: BSE
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Figure 5.12: SRE

Figure 5.13: DSE
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The most significant difference between the experiments in terms of agent
genotype sizes is the minimum size obtained by SRE, as seen in figure 5.12. Both
DSE and BSE are never able to evolve all agent individuals, resulting in the
minimum agent size being stagnant.

Figure 5.14: Average increase in agent genotype size in all experiments.

From figure 5.14, the agent genotypes increases similarly in DSE and BSE, while
SRE behaves similar to figure 5.10 and 5.6 with spikes every time species are
replaced. All graphs seem to increase steadily for a while before converging. A
difference between DSE and the others is the standard deviation which also has
spikes every 100 generations.

5.4.4 Population Capacity Used

The following graphs present the total number of individuals in the maze- and
agent populations in all experiments.
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Figure 5.15: Average amount of mazes.

Figure 5.16: Average amount of agents.

As seen in figure 5.15 and 5.16, SRE and DSE are not surprisingly able to
utilize more slots in the population than BSE, by giving more capacity to the most
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performant species and replacing the worst species. The functionality in the two
speciation extensions is also visible in the graphs representing their population
sizes. DSE follows a staircase pattern indicating that the capacity is gradually
transferred from stagnant species to the most performant species. Further, the
replacement functionality in SRE can be seen in both graphs. In figure 5.15 the
SRE graph has these periodically small gaps representing where the worst maze
species are replaced. On the other hand, in figure 5.16 the agent population in
SRE continues to grow until maximum capacity is reached, as the worst species
are replaced until only non-stagnant are found.

5.4.5 Diversity in Solutions

Diversity is measured by comparing trajectories of successful agents in the end
populations, in the same way as in Brant and Stanley [2017]. Each point in a
trajectory is compared with the euclidean distance function to the point at the
same time step in all other trajectories. These distances are then averaged to
find the diversity metric.

RS SRE VSE
16.294 9.846 8.250
15.359 6.079 13.464
5.341 16.422 5.778
22.049 9.049 6.623
15.439 8.938 11.202
11.832 10.244 15.196
14.823 10.965 14.327
12.459 11.519 24.279
15.227 6.572 10.791
15.124 16.067 12.319
7.746 12.147 17.893
16.290 9.904 14.165
7.046 9.945 10.418
11.207 8.097 5.137
7.766 17.198 11.278
11.478 12.461 12.805
14.785 7.346 9.906
5.492 8.717 16.241
18.910 6.654 17.515
14.785 6.082 4.472

Table 5.4: Overview of diversities in all runs.
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Figure 5.17: The average diversity of all runs in all experiments.

Figure 5.17 visualizes the diversity metric for all experiments, where the
metric for BSE and DSE are quite similar, while the metric in SRE is surprisingly
the lowest one. This opposes the SRE hypothesis, which stated that the overall
diversity would increase and achieve a higher diversity than BSE. A possible
reason might be that species are replaced before lineages are able to emerge from
them, which forces the diversity to be based on fewer lineages. Another factor
might be that the replacement process targets mazes each time it is run, while the
agents are only replaced if they are completely stagnant. Perhaps the agents are
not able to adapt to new mazes that easily, resulting in multiple agent lineages
focusing on the same maze lineages. Based on the way diversity is calculated this
would lower the overall metric as the same mazes and same solution paths are
used over again.

5.5 Versus Initial Research

The work in this thesis is based on Brant and Stanley [2019] where MCC is used to
generate mazes and navigator agents that can solve them. The speciation method
they used is the same as used in the BSE experiment. In general, the results in
this article follow the same pattern as the BSE experiment. However, as the maze
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representations used are not completely identical, there are some differences in
how quickly the mazes are able to increase in size and complexity. The maze
representation used in this thesis leads to slightly ”easier” mazes, containing fewer
crossroads where the agents can make the wrong turn. Consequently, experiments
in this thesis were able to increase the size of mazes faster.

5.6 Summary

Overall, the SRE and DSE are not that different from BSE. Some differences
are noticeable in the evolutionary process but the end populations are still quite
similar in complexity, size, and diversity. While the speciation extensions are
better at utilizing all slots in the population, this does not seem to have that
much impact in general and is in some metrics beaten by the BSE.
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Conclusions and Future
Work

This section discusses the results with regards to the research goal and research
questions, followed by the contributions in this thesis and an overview of future
work in section 6.2 and 6.3.

6.1 Discussion

In this thesis, the overall goal was to find ways to increase the efficiency in MCC
with regards to the maze domain. The research questions highlighted in this
section led the overall direction in this project and are discussed below.

Research question 1 How can ranking and prioritizing species be used to in-
crease the overall performance in Minimal Criterion Coevolution

This thesis has investigated two different ways to extend the speciation
method in MCC. Each of them investigates how small tweaks in the specia-
tion method can lead to considerable changes in how the population evolves from
start to end.

The first method investigated how prioritizing the most performant species
with additional queue capacity affects the process, while the second investigated
the effects of replacing the least performant species during evolution. These
methods were chosen based on initial testing without any speciation extensions.
The overall performance of these extensions is quite similar to runs with regular
speciation. In some metrics they perform better, in others, they perform worse.
As MCC is an open-ended process that can explore in all possible directions

69
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without boundaries, it would be interesting to see if the same results could be
obtained by running the experiments again.

Ranking and prioritizing species force them to compete against each other
indirectly, as they do not aim for an objective or high performance in any way.
Instead, they evolve and drift in an open-ended way, where the overlying process
dictates how they are prioritized and if they should survive. Species are not even
aware of their performance, and individuals are only constrained by fulfilling the
minimum criteria.

The maze domain implemented has some issues regarding the maze repre-
sentation. In some cases, the process found mazes that were able to increase in
size much faster than complexity. This resulted in mazes that were huge but
easy to solve, as their solution path was mostly straight lines with few obsta-
cles. This can give a false image of how complex the mazes and accompanying
solution agents are, and indicates that the ”path of least resistance” discussed in
Brant and Stanley [2019] is present here as well. A balance between the size and
complexity in mazes is important to keep the results interesting.

Research question 2 How is the diversity in the resulting solutions affected
when ranking the species based on performance?

Maintaining diversity in the population throughout the process in MCC is
important to keep multiple lineages alive and be able to obtain many different
problems and solutions in the end population. The speciation extensions seem to
have a negative impact on the overall diversity, as they both have a lower average
diversity metric in their runs. While some of their runs were able to reach high
diversities, they were on average beaten by the base speciation. Replacing species
achieved notably worse scores than the other two, and turned out to remove more
diversity than it added.

6.2 Contributions

This thesis conducted experiments on how the general process in MCC is affected
when the speciation method is extended to rank and prioritize based on perfor-
mance. Results reveal that a higher average maze size and complexity could
be achieved by using such methods. However, the overall diversity in the end
populations decreased.

An important aim in open-ended processes is to produce multiple complex
solutions with high diversity in the same run. The experiments in this thesis
were able to achieve complexity at the cost of decreased diversity. Fewer lineages
in species were maintained, as the extended speciation methods prioritized the
most performant ones.
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The experiments in this thesis do not reveal a way to achieve general open-
endedness but show that tweaks to the speciation method in MCC can potentially
increase performance.

6.3 Future Work

Analysis of Process

A more advanced analysis method is required to better understand what the
results of different MCC variations mean. Based on the results from this thesis,
it is still unclear how the extended speciation methods affect species on a deeper
level. More insight into how all the different species lineages interact, evolve,
and reacts to different speciation variants could be interesting and might reveal
patterns in a species’ behavior in MCC.

Further Speciation Tweaks

Extending the speciation method is not limited to the variants investigated in
this thesis. There are many other directions to further investigate, for example
by combining the two methods use this thesis. In this thesis the number of
generations between each time the species were ranked, prioritized and replaced
was static. Finding a more optimal number of generations or using a dynamic
amount of generations could potentially increase performance.

Other speciation extensions, such as not being limited by maximum popula-
tion size and varying the number of children generated from each species are also
interesting further studies. In addition, investigation of other extensions could
lead to a better understanding of how speciation affects MCC. Other perspectives
might be needed to better compare speciation methods and understand how they
contribute. Exploring different methods is also useful to find ways that target an
increase in diversity rather than complexity growth.

Other Domains

The maze domain is great as a baseline and benchmark domain since it is per-
formant and fast computationally. However, the domain is limited in terms of
how helpful it really is to the world. An important future research is to find
ways to transfer successful open-ended methods to other domains that humans
can benefit from. Finding general rules for how tweaks and extensions, such as
the main contributions in this thesis, affect open-ended processes is important to
understand how they can be used in other domains.
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