
Exploring BM25F for Information
Retrieval over Semantic Web Data

June 2020

M
as

te
r's

 th
es

is

M
aster's thesis

Anders Grytten Standal

2020
Anders Grytten Standal

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f C

om
pu

te
r S

ci
en

ce

Exploring BM25F for Information
Retrieval over Semantic Web Data

Anders Grytten Standal

Master of Science in Computer Science
Submission date: June 2020
Supervisor: Trond Aalberg

Norwegian University of Science and Technology
Department of Computer Science

i

Abstract

An increasing amount of data is extended with semantic markup to form labelled
directed graphs, as in the Semantic Web. It provides a richer way to understand
relationships between the data points. In such linked data, query languages like
SPARQL are used. However, they are often too complicated or impractical for
most web search engine users to use in general settings. Instead, information re-
trieval using keyword search is needed. In information retrieval systems, ranking
search results is one of the most vital steps, and creating new ranking methods
that are adapted to this graph structure can lead to considerable improvements
in precision.

In this thesis we explore different algorithms for ranking search results in
information retrieval over semantic web data, and implement and test two of
them. Through a series of experiments, we find the optimal values for the tuneable
parameters, as well as the best weighting scheme. We then test them against each
other, using PageRank and TF-IDF as baselines. We find that one of the two
algorithms outperforms all other solutions for our chosen dataset, while the other
outperforms only PageRank.

ii

Sammendrag

En økende mengde data er utvidet med semantisk struktur for å forme merkede
rettede grafer, slik som i det semantiske web. Det gir en rikere måte å forstå
forhold mellom datapunkt på. I slik lenket data er spørringspråk som SPARQL
benyttet. Slike spørringspråk er derimot ofte for kompliserte eller for uprak-
tisk for de fleste brukere av websøkemotorer i generelle tilfeller. Det er istedet
behov for søk gjennom nøkkelord. I informasjonsgjenfinningssystem er det å
rangere søkeresultat en av de viktigste stegene i søkeprosessen, og å lage nye
rangeringsmetoder som er tilpasset grafstrukturen kan føre til store forbedringer
i presisjon.

I denne masteroppgaven utforsker vi forskjellige algoritmer for å rangere søk-
eresultater i informasjonsgjenfinning over semantisk web data, og implementerer
og tester to av dem. Gjennom en rekke eksperimenter finner vi de optimale
verdiene for de innstillbare parameterene, i tillegg til at vi finner den beste vekt-
ingsordningen. Vi tester de så mot hverandre, ved å bruke PageRank og TF-IDF
som basislinjer. Vi finner ut at en av de to algoritmene utkonkurrerer alle andre
løsninger for vårt valgte datasett, mens den andre bare utkonkurrerer PageRank.

iii

Preface

This paper serves as the master’s thesis in the subject TDT4900 at the Norwegian
University of Science and Technology (NTNU), and marks the end of my studies
in the master’s degree programme in Computer Science at the department of
Computer and Information Science (IDI).

Anders Grytten Standal
Trondheim, June 9, 2020

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Goals and Research Questions . 2
1.3 Thesis Structure . 3

2 Background Theory 4
2.1 The Semantic Web . 4

2.1.1 Entities and resources . 5
2.1.2 Uniform Resource Identifier 6
2.1.3 Resource Description Framework 6
2.1.4 RDFS and OWL . 8
2.1.5 Ontologies . 8

2.2 Information Retrieval . 9
2.2.1 Ranking models . 10
2.2.2 TF-IDF . 13

2.3 Evaluating performance . 15
2.3.1 TREC . 15
2.3.2 INEX . 15
2.3.3 Precision and recall . 16
2.3.4 P@n . 16
2.3.5 MAP . 16
2.3.6 R-precision . 16
2.3.7 DCG . 17

2.4 Data . 17
2.4.1 DBpedia . 18
2.4.2 Wikidata . 18
2.4.3 SciGraph . 19

3 Related Work 20
3.1 Document-ranking solutions . 20

3.1.1 Vector-space model approach 20

iv

3.1.2 Pérez-Agüera et al.’s BM25F approach 21
3.2 Entity-ranking solutions . 23

3.2.1 PageRank . 23
3.2.2 ObjectRank . 24
3.2.3 ReConRank . 25
3.2.4 Blanco et al.’s BM25F approach 26
3.2.5 Ranking based on resource importance 27
3.2.6 Noc-order approach . 28

3.3 Other notable approaches . 29
3.4 Discussion . 29

4 Model and Implementation 32
4.1 Neo4j . 32

4.1.1 Neo4j Graph API . 33
4.2 Architecture . 33
4.3 Importing . 34
4.4 Indexing . 35
4.5 Implementation of Algorithms . 35

4.5.1 Pérez-Agüera et al. 35
4.5.2 Blanco et al. 36
4.5.3 PageRank . 37

5 Experiments 38
5.1 Plan . 38
5.2 Setup . 39

5.2.1 Weights . 39
5.2.2 Parameters . 39
5.2.3 Data . 40
5.2.4 Software . 41
5.2.5 Metrics . 41

6 Results and Discussion 42
6.1 Evaluation . 42
6.2 Property weighting . 43

6.2.1 No weighting . 43
6.2.2 Name and title weighting 44
6.2.3 Blanco et al. weighting . 46

6.3 Tuning parameters . 47
6.4 Final results . 49
6.5 Analysis . 50

7 Conclusion 54

v

LIST OF FIGURES vi

List of Figures

2.1 Example of an entity presented from Google’s knowledge graph . . 5
2.2 RDF statement expressed as a graph structure 7
2.3 RDF graph based on the triples in table 2.1 7
2.4 The basic components and processes of an IR system 11

3.1 Distribution of PageRank (simplified) 23
3.2 Example authority transfer schema from a hypothetical movie graph 25

4.1 General architecture of system . 34

6.1 Results for running Pérez-Agüera et al.’s BM25F with default pa-
rameters and no term weighting . 44

6.2 Comparison of the two algorithms over the semsearch_es queries,
using no weighting and default parameter values 45

6.3 Results of adjusting weight of properties title and name for the
semsearch_es queries . 46

6.4 Results of adjusting weight of several different properties for the
semsearch_es queries . 47

6.5 Results of adjusting k for Pérez-Agüera et al.’s BM25F 49
6.6 Results of adjusting k for Blanco et al.’s BM25F 50
6.7 Results of adjusting bs for Blanco et al.’s BM25F 52

List of Tables

2.1 Set of simplified RDF triples (URIs not shown) 7
2.2 Excerpt from DBpedia: Entity data about Tim Berners-Lee 18

3.1 High-level overview of the proposed solutions 31

6.1 Example results for one algorithm for one run of the evaluation
over the DBpedia dataset (values rounded to three decimal places
for readability) . 43

6.2 Results of running both algorithms with no weighting, using de-
fault parameter values (Best values for each column highlighted in
bold) . 45

6.3 Results of different weights for name and title (left) versus weights
of properties laid out in section 6.2.3 (right) over the semsearch_es
queries for both algorithms (best values for each column empha-
sised in bold) . 48

6.4 Parameters and weighting used for final results 51
6.5 Final results of running the algorithms with the parameters and

weighting from table 6.4, compared to Lucene’s TF-IDF and PageR-
ank (Best scores for each row highlighted in bold) 51

vii

Chapter 1

Introduction

Extending the World Wide Web with semantic markup as in the Semantic Web
opens up for many possibilities. Hyperlinks between web pages are extended
with metadata that enables machines to easily process and better understand
the underlying data, while also making it possible for humans to execute more
complex queries. The data is usually represented quite differently in linked data.
Instead of unstructured, or semi-structured documents, entities are usually more
akin to collections of key-value pairs. This type of linked data is becoming more
widespread, and can be seen in a wide range of applications. Existing query
languages like SPARQL are powerful, but for normal end-users of an information
retrieval system, it can be too complicated to use. Other traditional information
retrieval methods may not be suitable either, because entity representation of
data is generally more strictly structured than web documents.

Since the underlying structure of the data is fundamentally different in linked
data, information retrieval over semantic web data has garnered substantial at-
tention over the years. Because of the rich semantic relationship between web
pages and entities, there are now many more ways to improve search on the web.
The relationships and markup can be exploited to find and return more relevant
results, enhance indexing, and perform smarter relevance ranking.

1.1 Background and Motivation

Ranking the retrieved results is one of the most critical steps in an information
retrieval system. In search engines that operate on large datasets, such as the
world wide web, the set of retrieved results can contain several hundred thousand
documents. It is therefore important to present the most relevant results first, as
the user is unlikely to even look beyond the first ten results. However, deciding

1

CHAPTER 1. INTRODUCTION 2

what are the most relevant results is a complex task. Even in established search
engines, it is possible that very relevant results are not even present in the first
pages of results.

As the research and development on the Semantic Web has matured and
linked data has become more popular, many different technologies for Information
Retrieval on semantic datasets have been developed. Many of these techniques
exploit the semantic relationships between entities to improve computational cost,
recall, and precision. Because of the inherently different structure of entities, in
contrast to traditional web pages, using standard ranking methods as they are is
not always appropriate or optimal. However, many proposed solutions use tried-
and-tested methods such as BM25 as a basis when developing new algorithms
for ranking entities. The aim of this thesis is to explore whether entity-ranking
methods based on BM25 can help improve performance in keyword search.

1.2 Goals and Research Questions

Goal Implement and test different ranking algorithms designed to be used over
semantic web data, and see which performs better for our test data, and
additionally see if they outperform other standard ranking methods.

The main goal of this thesis is to find better ways of ranking search results
in information retrieval over semantic web data. We hope this will be used to
improve performance in search applications, where the underlying data is seman-
tically linked.

Specifically, we want to answer the following research questions.

Research question 1 Can algorithms based on BM25, and adapted for search
in semantic web data, outperform standard ranking methods such as TF-
IDF and PageRank?

BM25 is by many considered to be state of the art, so we want to know
whether algorithms based on this method will perform significantly better than
other tried and tested methods, by comparing their scores in a range of metrics.
PageRank is a classic graph algorithm used for ranking, making it interesting to
use as a baseline when we are testing over a linked dataset.

Research question 2 Which of the proposed solutions perform best overall?

Of the proposed algorithms, we want to know if there are any considerable
differences in performance between them. Answering this research question can
tell us if any of the proposed algorithms are worth pursuing for further research
and development.

CHAPTER 1. INTRODUCTION 3

Research question 3 How can we tune the weighting and the parameters to
attain the optimal performance for the DBpedia dataset?

All proposed algorithms have one or more tuneable parameters, in addition
to requiring manual weighting of property fields. The authors of the algorithms
did not test them on the same data, so we need to find a way to optimize the
weighting for our dataset.

To achieve our goals and answer our research questions, the following steps
will be taken:

• Implement the algorithms as plugins to the Neo4j graph database platform

• Load and index the dataset into Neo4j

• Create a framework for testing the algorithms using different parameters
and weights

• Analyze the results

1.3 Thesis Structure

In chapter 2 we introduce the necessary background theory relevant to this the-
sis, including a brief overview of the semantic web and information retrieval. In
chapter 3 we present related work, which includes several different proposed so-
lutions to the ranking problem. chapter 4 contains the implementation details of
the algorithms and our system. In chapter 5 we present the experimental plan
and setup, with all the data needed to replicate the experiments. Results of the
experiments are presented in chapter 6, along with an analysis of the results. We
conclude the thesis in chapter 7.

Chapters 2 and 3 are partly based on the project work [1] done in preparation
for this master’s thesis.

Chapter 2

Background Theory

In this chapter, we introduce the necessary background theory. We begin with
a brief introduction to the semantic web and some of its technologies in section
2.1. In section 2.2 we give a general overview of the field of information retrieval,
followed by some more relevant specific concepts in the subsections. Section 2.3
describes how we can evaluate the performance of an information retrieval system,
by introducing six different metrics. In section 2.4 we introduce three different
open semantic datasets.

2.1 The Semantic Web

Conceived by Tim Berners-Lee, the father of the World Wide Web, at the begin-
ning of the century, the semantic web sought to drastically expand the capabilities
of the existing web. The idea behind the semantic web is that it seeks to add
meaningful metadata to web pages about the information on them and their
relationships with each other. The goal of doing so is to make the data machine-
readable. The existing world wide web is designed to be readable for humans, and
not to be meaningfully interpreted by machines. Crawlers reading a web page
only see what words exist on the page, and what outgoing links are pointing to.
In the semantic web, crawlers can understand the relationships between pages
and objects.

Although relatively few web pages contain semantic markup, it still enjoys
widespread use. Google1 uses the technology in its knowledge graph to deliver
knowledge cards you see when you search for public people, locations, films, etc,
when using their search engine [2]. An example of this can be seen on the right-

1https://www.google.com/

4

CHAPTER 2. BACKGROUND THEORY 5

hand side in figure 2.1. There also exists several large open datasets with semantic
data, such as DBpedia2, Wikidata3, and SciGraph4.

Figure 2.1: Example of an entity presented from Google’s knowledge graph

To realize the semantic web, there are a number of standards and technolo-
gies that are central, like URI, RDF, RDFS, and OWL. The following subsections
briefly explains those standards, as well as providing a description of concepts
such as entities and ontologies to provide a basic understanding of how the se-
mantic web works.

2.1.1 Entities and resources
Throughout this paper, we use the term entity to describe objects or nodes in
the semantic web. Balog [3] defines an entity as something that is uniquely
identifiable, and is characterized by its name, type, attributes, and relationships.
In other words, an entity can be anything that can be referred to and distinctly
identified, such as a product, school, location, person, etc. They can also be more

2https://wiki.dbpedia.org/
3https://www.wikidata.org/wiki/Wikidata:Main_Page
4https://www.springernature.com/gp/researchers/scigraph

CHAPTER 2. BACKGROUND THEORY 6

abstract concepts, such as distance, emotions, and force. They are often pieces
of structured data, in contrast to web pages (referred to as documents hereafter)
which contain semi-structured or unstructured data.

The distinction between an entity and a resource is not always clear, as the
definition depends heavily on the domain you are working in. A resource is
defined by Yu [4] to be the thing denoted in the subject or object part of an RDF
statement. In other words, anything that is described with RDF statements.

In this thesis, we interpret these two definitions to mean that entities are
the thing or concepts themselves, while resources are the concrete definitions or
implementations.

2.1.2 Uniform Resource Identifier
Resources on the semantic web are identified by Uniform Resource Identifiers
(URI), which consists of a sequence of characters. A URI can look different
depending on the context, as there are several schemes available for expressing it.
A URI is a way to globally identify a resource, and can look like a web address,
like http://www.ietf.org/rfc/rfc2396.txt, while a URI for a person might
be their phone number or some other piece of uniquely identifiable information.

URIs are an important building block in the semantic web because they give
us a way identify unique objects and concepts. We can for example more easily
aggregate information on a person if different sources include a URI for that
person. If they just use their name, software agents cannot easily differentiate
between people that share the same name.

Uniform Resource Locators (URL) are a subset of URIs that also provides
a way to access the identifiable resource, by expressing where it can be located,
and how [5].

2.1.3 Resource Description Framework
To describe a resource and its relationships in a machine-readable way, a frame-
work called Resource Description Framework (RDF) [6] is used to structure in-
formation in expressive statements.

Meaning is encoded in sets of triples, which are written in the following form:
(subject, predicate, object). This can be visualised as a graph structure, as
shown in figure 2.2. The subject is the resource you want to say something about.
The predicate, or property, says something about the relationship between the
subject and the object, which can be another resource or a literal value. A triple
expresses a single fact about a resource, whether it be the name of a book, or the
relationship between two people. For example, if you are defining the birthdate of
a person, it could look like this: (Herman Melville, born, 1 August 1819).

CHAPTER 2. BACKGROUND THEORY 7

Table 2.1: Set of simplified RDF triples (URIs not shown)

Subject Predicate Object
Moby Dick Author Herman Melville
Herman Melville Date of birth 1 August 1819
Herman Melville Spouse Elizabeth Knapp Melville

The subject and predicate in a triple are expressed as URIs, while the object
can be expressed as a URI, a string literal, or a number. A set of RDF statements
denote a labelled, directed graph. For example, based on the set of simplified
triples shown in table 2.1, we can build the graph shown in figure 2.3. This figure
includes URIs taken from Wikidata, to better illustrate how the real data looks.
The blue annotations show the cleartext names, for simplicity.

Figure 2.2: RDF statement expressed as a graph structure

Figure 2.3: RDF graph based on the triples in table 2.1

CHAPTER 2. BACKGROUND THEORY 8

2.1.4 RDFS and OWL
With RDF, we have a standard way to state facts about real-world objects, which
makes information more machine-readable. If we examine the example from figure
2.3, we can imagine many different sources have something to say about the book
Moby Dick. If everyone is saying something about it using their own definitions,
it is suddenly not as easily machine-readable. A shared vocabulary, or a common
language, is necessary. RDF Schema (RDFS) is a language we can use to define
such a vocabulary.

RDFS consists of a set of terms with we can use to create new classes and
properties for a specific domain. Furthermore, all terms are identified by URIs.
RDFS contains terms like rdfs:class for defining a class, rdfs:domain for de-
scribing which classes a property can be used with, rdfs:subClassOf to define
a class to be a subclass on another (student can be a subclass of person), and
so on [4].

Web Ontology Language (OWL) is, like RDFS, a language for creating vo-
cabularies. They have the exact same purpose, and they both provide a set of
terms one can use for defining classes and properties. However, OWL can be
seen as a natural extension of RDFS, since it provides the means to create a lot
more complex connections and vocabularies. For example, with OWL you can
put constraints on properties, like how many values a property can take. You
can also define two classes to be equal. If you are integrating data from several
sources that have used two different classes to describe the same thing, you can
define these to be equivalent with the owl:equivalentClass property. It also
allows you to define two classes to be completely disjoint, so that an entity can
never be an instance of both classes. These are just some examples, as OWL
contains many more ways to define complex relationships [4].

The vocabularies we create are domain-specific, so in our book example we
might for example have standard classes to describe books. In such a vocabulary,
we can define classes such as comic book and e-book that are both subclasses
of another class book, that can have properties such as author and title. By
having people agree to use this shared language to describe books, it is much easier
to create software agents that can process all this information automatically, from
different sources.

2.1.5 Ontologies
The book vocabulary we created in the previous section is an example of a very
small ontology. An ontology in the context of the semantic web is a collection
of information that formally define classes of objects and their relationships in
a domain, and represents some area of knowledge [4]. RDFS and OWL are
languages used to create these ontologies. The scope of an ontology is tied to

CHAPTER 2. BACKGROUND THEORY 9

a specific domain, like education, literature, film, or photography. Our book
example could be part of a library ontology, providing people with a shared way
of describing books and their relationships in a machine-readable way.

In addition to making it easier for software agents to process the data, ontolo-
gies have several other benefits. They provide a common understanding about
the domain for everyone working on the data, as well as providing a way to reuse
the knowledge. Additionally, it makes all assumptions about the domain explicit,
and makes the rules about how objects relate to each other clear.

For a more concrete example, say you want to integrate film data from differ-
ent sources into an RDF model. One of the sources uses the term star to describe
an actor having a role in a film, while another source uses the more general term
actor, which can be problematic for automated software agents crawling the data.
In this case, an ontology can have a piece of information that says actor and star
means the same thing. You can also extend the ontology to specify that most
actors are a subclass of person. You can also specify how actors are to be formally
identified. This can for example be with the help of a social security number, or
other similar pieces of unique identification [7].

2.2 Information Retrieval

Before we introduce solutions to ranking semantic web data, we need to provide a
brief overview over the field of information retrieval. Most of the original concepts
are important no matter what data representation you are working with.

Information Retrieval (IR) [6] is the field of science focused on the activity
of obtaining information, documents, or resources from a structured or semi-
structured collection of data. It encompasses building indexes, processing queries,
ranking search results, as well as storing, organizing, and representing information
items.

IR is a field that has been in continuous development since the 1950’s. How-
ever, it has historically been a narrow area of interest, primarily gaining atten-
tion from experts and librarians. That rapidly changed with the popularity of
the world wide web. With billions of documents on the web, the activity of
information search has since been at the forefront.

Typically, the way an IR system works on the web, is that you enter one or
more keywords into a search engine. This query is then parsed and expanded by
the system. The next step involves retrieving all documents that satisfy the query.
Typically, this means fetching all the documents that contain some or all of the
keywords. The system does this by referring to some index that has been built
by crawling all the documents on the web. This index is a structure that might
contain the essence of the documents in a way that allows for much faster search.
The result might be a list of potentially hundreds of thousands of documents that

CHAPTER 2. BACKGROUND THEORY 10

match the query. Undoubtedly, the user is not interested in all of them. He or
she might have had a specific website in mind when executing the search. These
documents therefore then need to be ranked and presented in descending order
of relevance. The ranking process tries to identify the documents that have the
highest probability of being relevant to the user based on the given query. In
the end, the user is presented with a sorted list of documents. The process is
illustrated in figure 2.4.

2.2.1 Ranking models
There are many different approaches to ranking. Which one you choose often
depends on your use-case, yet some consistently perform better than others in
the same domains. A ranking model, or information retrieval model, is like a
framework used to produce a ranking function. The choice of model affects how
documents and queries are represented, and how documents are ranked. For text-
based retrieval, there are three classic models; the boolean model, the vector space
model, and the probabilistic model. In this section we will also briefly explain
the link analysis ranking model, which is central in the context of linked data.

Boolean model

The boolean model [6] is the simplest retrieval model, and as its name implies,
it is based on boolean algebra. Its simplicity is what made it popular, but is also
the reason why it is generally outperformed by the other models.

They way it works is that we can pose a query in the form of a boolean
expression, using operators like AND, OR, and NOT. The system then retrieves all
documents that matches this query. The model only recognizes that terms are
present or not in a document. In other words, terms are given a value of 0 or 1
in the index. The simplicity means that a document either matches the query, or
it does not. We cannot record how many times a term matches in a document,
only that it does. This means we cannot know if a document is more relevant
than others, and as a result, we cannot rank these documents. Another downside
is that formulating queries using boolean expressions is an arduous task for most
users, and most would presumably prefer to express their information needs in
keyword queries without boolean operators.

For some domains, the boolean model can still be useful. For expert users, the
ability to formulate increasingly complex queries and knowing that the documents
returned matches that query exactly, can be very valuable. For lawyers searching
in a knowledge base of legal documents, the boolean model might often provide
the recall needed.

CHAPTER 2. BACKGROUND THEORY 11

Figure 2.4: The basic components and processes of an IR system

Vector-space model

Since the boolean model is often too limiting for practical use in most domains,
some other model is needed. The vector-space model [6] proposes an alternative

CHAPTER 2. BACKGROUND THEORY 12

solution for producing a ranking function in unstructured text. With this model,
partial matching is possible, meaning we can actually rank the returned docu-
ments. The vector-space model has proven itself to be simple and fast, yet it still
produces good results.

In the vector-space model, the documents and the queries are represented by
vectors, where each dimension correspond to a separate term in the corpus. If an
index term5 exists in the document or query, it is given a positive non-zero weight
in the vector. These weights are then used to compute the degree of similarity
between the documents and the queries.

The weights are usually calculated using TF-IDF (see section 2.2.2), which
give higher weights to terms that occur often in a document, but infrequently in
the knowledge base as a whole. After calculating the similarity for all documents
in a search, this information can then be used to rank the documents in descending
order, where the documents that are the closest matches appear at the top.

To calculate the similarity between a document with respect to a given query,
we typically calculate the cosine of the angle between the two vectors representing
each of them. The function is given in equation (2.1).

sim(d, q) =
~d • ~q
|~d | × |~q |

(2.1)

d represents a document, while q represents the query. The numerator part is
the internal product of the document and query vector. The similarity function
outputs a value between 0 and 1 (inclusive). If the result is 1, then the document
and query are exactly alike, and a value of 0 tells us they have nothing in common.

Probabilistic model

The last of the classic ranking models, the probabilistic ranking model [6], uses
a probabilistic framework as its basis. Whereas the vector-space model ranks
documents based on similarity to the query, the basic method of the probabilistic
model is to rank documents based on the probability of being relevant, based on
the user query. There is an underlying assumption in this model that there exists
a portion R of the documents that is preferred by the user for a given query.
The similarity between a query q and a document dj is given by the ratio of the
probability of the document with representation ~dj is relevant to the query over
the probability that the document is non-relevant to the query, as formulated in

5Generally, an index term is any word or keyword that appears in the text of a document
[6]

CHAPTER 2. BACKGROUND THEORY 13

equation 2.2.

sim(dj , q) =
P (R|~dj , q)

P (R̄|~dj , q)
(2.2)

Link analysis model

With the rise of the world wide web, it began to become clear that just using
standard text retrieval models would not be sufficient. The primary reason for
this was that the document collections were much larger on the web, and as a
result, too many documents were retrieved compared to other systems. There
was also a fundamental difference in how the documents were structured. Web
pages utilize a link structure; documents contain references to each other. This
is something many web search engines were able to take advantage of to modify
or improve ranking [6].

The common trait in these approaches that operate on the world wide web,
is the usage of link analysis to score and rank documents. Link analysis can
simply be thought of as the process of evaluating relationships between nodes in
a network. It has many uses, even outside of information retrieval, like community
detection and market research. However, in the context of information retrieval,
it is used to construct ranking measures using link data. Famous approaches in
this category include PageRank, which ranks documents based on their number
of incoming links and whether those links are from other important documents,
and HITS, which ranks documents based on whether they are authoritative on
the information they contain, or if they act as hubs for authoritative nodes.

2.2.2 TF-IDF
We have briefly mentioned that terms are often weighted so that we can perform
better ranking. It is central in many solutions, especially when many documents
are retrieved. Weighting assists us by giving us more precise metrics to help
separate relevant documents from less relevant documents. TF-IDF is one of the
most popular weighting schemes in IR. It is a combination of term frequency
(TF) weighting and inverse document frequency (IDF) weighting.

TF weights

The idea behind term frequency weights is that terms that occur often in a
document are likely to be more important than terms that occur less frequently.
The simplest way to assign a TF weight to a word in a document is to just set it
to the number of occurrences of that word. However, this is not always optimal
if documents can be of variable size, since longer documents will then be ranked

CHAPTER 2. BACKGROUND THEORY 14

higher, even though they are not necessarily more relevant. A way to combat
this is to divide the number of term occurrences by the total number of words
in the document. You can also compute it logarithmically, with the function
1 + log f , where f is the simple term frequency, i.e. number of occurrences [6].
This damping factor helps if the term frequency is very high. For example, if
one document has 1000 occurrences of a term, and another document has 2000
occurrences, the difference in relevance is probably negligible.

IDF weights

Some terms occur often in many documents in a collection. If you search a
collection with the query "the netherlands", documents containing the term "the"
would probably appear at the top of the search results, since many documents
include that term more often than the term "netherlands". Intuitively, we do not
view "the" as the most important keyword in the query, we probably want to
see documents containing "netherlands" near the top instead6. That is the idea
behind IDF weighting.

Put simply, IDF works by assigning a higher weight to terms that occur rarely
across the document set, and lower weights to terms occurring often. IDF for a
keyword ki can be computed with the function IDFi = log N

ni
, where N is the

total number of documents in the set and ni is the number of documents that
contain the keyword ki [6].

Combining TF and IDF

Combining the two weighting schemes allows for a way to weigh documents that
contain a certain term several times higher, but also balance it out if many other
documents also mention that term. The final equation can be seen in (2.3).

wi,j = (1 + log fi,j)× log
N

ni
(2.3)

Here, wi,j refers to the weight associated with a term ki in a document dj ,
and fi,j is the frequency of the term in the specified document.

There are several other ways to compute TF-IDF weights, but the principle
remains the same: normalize terms based on document length, and accentuate
terms that occur in few documents.

6Normally, the term "the" would be removed for being a stop-word. This simple example is
purely for demonstrative purposes.

CHAPTER 2. BACKGROUND THEORY 15

2.3 Evaluating performance

Given that information retrieval is a field that is in continuous development where
new techniques and methods are created every year to improve search in all sorts
of text and media, having standard approaches to evaluating their performance
is important. This way, we can more easily compare all the different solutions
since we have standard metrics and datasets with an understanding of which
documents are relevant given a set of pre-defined queries. In this section we first
present TREC and INEX, which are two associations that provide infrastructures
to evaluate information retrieval systems. Afterwards, we present a handful of
popular metrics to evaluate the performance of information retrieval systems.

2.3.1 TREC
The Text Retrieval Conference (TREC) [8] is an annual series of workshops where
the main purpose is to provide the necessary infrastructure for performing eval-
uation of text retrieval techniques and methods. For each conference, a set of
documents and questions are provided by the National Institute of Standards
and Technology7 that the participants run their retrieval systems on, and submit
the list of top-ranked results for evaluation. TREC also distributes a piece of
software called trec-eval, which is used to evaluate information retrieval systems.
Given a set of correct answers and the results generated from the information re-
trieval system you are testing, the system outputs the results of several different
evaluation measures, including MAP, R-precision, P@n, and more [9].

2.3.2 INEX
The INitiative for the Evaluation of XML retrieval (INEX) [10], like TREC,
was a forum that held yearly workshops where they provided frameworks for
evaluating information retrieval systems. However, unlike TREC, INEX focused
on structured documents like the ones written with XML, making it a better
fit for evaluating semantic web retrieval systems. INEX provided a collection
of documents, a set of queries, and the answers (relevant documents) to the
information needs associated with the queries. The documents provided varied
slightly, but documents from IEEE, Wikipedia, and collections of scanned books
have been provided in the past.

7https://www.nist.gov/

CHAPTER 2. BACKGROUND THEORY 16

2.3.3 Precision and recall
Precision describes the fraction of the retrieved results that are relevant. If all
the retrieved results are relevant, then precision is at 100 percent, even if not all
the total relevant objects are retrieved. This is shown in equation (2.4).

precision =
|relevant documents ∩ retrieved documents|

|retrieved documents|
(2.4)

Recall describes the fraction of relevant results that have been retrieved over
the total number of relevant objects. If all the relevant objects are retrieved,
then recall is at 100 percent, but precision is low if many irrelevant objects are
retrieved. This is shown in equation (2.5) [6].

recall =
|relevant documents ∩ retrieved documents|

|relevant documents|
(2.5)

2.3.4 P@n
Precision at n (P@n) [6] is a metric used to calculate the average precision at
the top n ranked documents. n is usually set to values like 5 and 10. Calcu-
lating the precision for all retrieved documents is usually not interesting from
a user-perspective, since most users only look at the first few retrieved results.
Therefore, P@n provides a good metric for standard search engines.

2.3.5 MAP
Given a query and its results, the Average Precision (AP) is the average of the
precision values for the retrieved relevant documents. Mean Average Precision
(MAP) [6] is the mean of all these average precision values for a set of queries
and their results. It is a widely used approach for evaluating performance that
produces a single number. The function is shown in Equation (2.6).

MAP =
1

Nq

Nq∑
i=1

APi (2.6)

Here, Nq is the total number of queries, and APi is the average precision for
a query i.

2.3.6 R-precision
R-precision [6] is similar to P@n, in that it calculates the precision at a set
position. That position is R in the set of retrieved documents, where R is the

CHAPTER 2. BACKGROUND THEORY 17

total number of relevant documents for a given query. For example, if in a
collection there are 5 relevant documents for a query, and in the first 5 results, 2
are relevant, the R-precision would be 2

5 .

2.3.7 DCG
Discounted Cumulated Gain (DCG) [6] is a metric that uses a graded scale of
relevance, instead of a binary one. The main idea behind it is that results can
have varying degrees of relevance. You can have several relevant results for a
given query, but some may be more relevant than others. If mildly relevant
results are ranked higher than highly relevant results, then it carries a penalty.
The function for calculating the DCG at a position n, where reli is the relevance
of the result at the position i is given in equation 2.7.

DCGn =

n∑
i=1

reli
log2(i + 1)

(2.7)

2.4 Data

When talking about data representation, we often group them into three cate-
gories: unstructured data, semi-structured data, and structured data [3]. Un-
structured data is often free-form text, written with full sentences and organized
into paragraphs. It is hard to automatically process this data. The content
may contain ambiguities, and natural language processing is required. Examples
includes emails, blogs, and the majority of web pages. Data starts to become
semi-structured by introducing document fields. This often includes fields like
title that refers to specific parts of the document. Wikipedia pages often contain
infoboxes, where key data is listed in a more structured manner. However, not all
infoboxes contain the same fields, and not all Wikipedia pages contain infoboxes.
This is mostly why we consider them semi-structured. Structured data follows a
fixed schema, like in a relational database. Semantic web data is strictly struc-
tured, and they are accompanied by ontologies which provide even more structure
by defining the relationships and concepts in the data. In the following subsec-
tions we present three different semantic datasets, which are defined through sets
of triples to form labelled directed graphs.

CHAPTER 2. BACKGROUND THEORY 18

2.4.1 DBpedia
DBpedia [11] is an open large-scale knowledge base, created by extracting in-
formation from Wikipedia8 and serving it as linked data. The knowledge base
contains data in over a hundred languages, and the English version describes
over four and a half million entities. Together in all languages, there are over 38
million descriptions of entities [12]. Mappings are created from Wikipedia data
to DBpedia’s own ontology that consists of over 300 classes. The DBpedia data
consists of several billion pieces of information stored as RDF triples. An example
of how an entity is described can be seen in table 2.2. Information surrounded
by quotation marks are string literals, while the information preceded by a pre-
fix and enclosed with less than and greater than signs are other resources. The
DBpedia dataset is often used for testing in the research community, since it is
a huge collection of data on many different topics. The dataset is freely avail-
able for download as N-triples, or it can be queried online through a SPARQL
interface.

Table 2.2: Excerpt from DBpedia: Entity data about Tim Berners-Lee

<dbo:birthDate> "155-6-8"
<dbo:birthName> "Timothy John Berners-Lee"
<dbo:birthPlace> <dbr:England>

<dbr:London>
<dbp:occupation> <dbr:Computer_scientist>

2.4.2 Wikidata
Wikidata [13] is a more recent linked data project that also builds uponWikipedia.
It is a large open knowledge base of semantically linked data entities, that anyone
can edit and contribute to. It contains descriptions of over 65 million entities,
and can be exported in several formats such as RDF and JSON [14]. While DB-
pedia extracts and adds structure to existing Wikipedia pages, Wikidata focuses
on building its knowledge base from the ground-up, and being supplemental to
Wikipedia. Wikidata entities are even more strictly structured than entities from
DBpedia. The object part of the triples that make up DBpedia entities can con-
tain blocks of text, using predicates such as abstract and comment. The objects of
the Wikidata triples are more often other resources or short and specific literals.

8https://www.wikipedia.org/

CHAPTER 2. BACKGROUND THEORY 19

2.4.3 SciGraph
SciGraph [15] is different kind of dataset. Instead of creating a graph of general
Wikipedia data, Springer Nature have created a labelled directed graph connect-
ing entities from the scholarly domain. The entire dataset consists of over 1.5
billion triples, including data about publications, authors, conferences, patents,
citations, etc. The data is free to download in several formats, and can also be
explored online.

Chapter 3

Related Work

Several ranking systems have been proposed to be used in accordance with se-
mantic web data. They can be broken into several categories, but in this thesis
we separate them into two different classes; those that rank documents and those
that rank entities. Those that rank documents cannot always be adapted to rank
entities, and vice versa. An exception is PageRank, which is an algorithm that
exploits the link structure of web pages. Many of the other solutions extend it
to also take into account the labeled edges in the graph structure to produce
more accurate ranking. We begin this section with an explanation of a couple
of algorithm made for ranking web documents. We then go on to explain the
solutions constructed to work specifically with entities, until we finally close the
section with a longer discussion and comparison of the solutions.

3.1 Document-ranking solutions

Document-ranking solutions are algorithms that are created to rank web docu-
ments. Web documents are usually unstructured or semi-structured and often
contain both outgoing and incoming links from other web documents.

3.1.1 Vector-space model approach
Vallet et al. [16] suggest a method for ranking results in semantic search that is
based on the vector-space model. This model does not rank entities themselves,
but rather documents that are annotated with entities, i.e. documents where the
entities are mentioned.

The approach is based on the usage of ontologies. The system they propose
can work with virtually any domain ontology, but they provide two ontologies

20

CHAPTER 3. RELATED WORK 21

with some superclasses that must be used. The knowledge base you are working
with must be composed from a set of main classes; DomainConcept for domain-
specific entities such as Author, Book, and Library, Document for documents,
and Taxonomy for class hierarchies that are used for classifying documents and
concept classes, and not for instantiating. The second ontology they provide is
an annotation ontology, which contains a class Annotation. This class has two
relational properties; Instance and Document for relating documents and entities
together.

Annotations are automatically assigned a weight using an adaptation of TF-
IDF, that reflects how relevant the entity is for the document meaning, based
on how frequently the entity occurs in the document. To compute the final
similarity between a document and the query, a version of the cosine similarity
function is used, altered to compensate for potential shortcomings. This consists
of including a normalization factor to compensate for one of the values almost
always being too high, and combining the score with the score of a keyword-
based algorithm to cope with a potentially incomplete knowledge base, which in
the case of the semantic search system employed in the paper, would otherwise
result in documents getting a much lower similarity score than they should.

The method was evaluated over a dataset taken from an online newspaper
archive, consisting of over 2000 articles, that the authors annotated with almost
3500 annotations. Three reduced ontologies were created, consisting of 143 do-
main classes. Comparing it to a keyword only search using Lucene1, it showed
significant improvement in precision and recall for some queries. Recall was
especially higher when querying for class instances, combined with using class
hierarchies and rules.

3.1.2 Pérez-Agüera et al.’s BM25F approach
BM25F [18] is an adaptation of the probabilistic BM25 ranking function, devel-
oped to perform better with structured documents. BM25 itself can be seen as an
extension of the ranking in the vector-space model, as it still relies on term fre-
quency and inverse document frequency, but also incorporating document length
normalization [6].

BM25F differs from BM25 by taking into account the structure of the docu-
ment. This means it uses the different annotated pieces of the document, known
as document fields, such as body, title, and anchor text to provide more accurate
ranking. For instance, terms in the title of a document usually receive a higher
weight than terms in the body.

Pérez-Agüera et al. [17] has adapted BM25F to be used in the semantic web by
first indexing RDF information along with other field information. As previously

1http://lucene.apache.org

CHAPTER 3. RELATED WORK 22

mentioned, triples consists of a subject, predicate, and object. The object is
often another resource identified by a URI. For example, an entry for the book
Moby Dick is connected to an entry for its author, Herman Melville, most likely
using the word author as the predicate. Therefore author is a descriptive term
that can be used to label and index Herman Melville, in a field which they have
named inlinks. They have also created a field called obj, where they include
information about resources that the current resource is pointing to. Herman
Melville would then be used to index Moby Dick, and vice versa. Other fields
they add in the index includes type, which are the rdf:type properties that says
which classes the resource is an instance of, and title, which contain keywords
taken from the resource’s URI.

Using this information about the resources, we can score them using the
adapted BM25F seen in equation 3.1. It shows how to obtain the relevance score
for a document d with regard to a query q.

BM25Fd =
∑

t∈q∩d

tf(t, d)

k1 + tf(t, d)
∗ idf(t) (3.1)

As shown, the equation uses both term frequency and inverse document fre-
quency to obtain the final score. k1 is just a tunable parameter used to control
the non-linear growth of the term frequency. The main difference lies in how the
term frequency is calculated, which can be seen in equation 3.2.

tf(t, d) =
∑
c∈d

wc ∗ tfc(t, d) (3.2)

Here, c is each field in the document, wc represents the weight of each type of
field, and tfc(t, d) is field term frequency of term t in field c. tfc(t, d) is normalized
using, among other things, the average field length for that particular field.

The authors evaluated BM25F by using the INEX evaluation framework with
the DBpedia dataset, where they have mapped the Wikipedia documents in INEX
to their respective DBpedia entities. The test set contained over 2.2 million
document-entities. They used TREC-eval to assess the precision and recall, as
well as the quality of the ranking, using measures such as MAP, GMAP, Precision
after n documents (P@n), and R-precision, comparing it to BM25 and Lucene.
The BM25-based approaches outclasses Lucene, and BM25F was slightly better
than BM25 in most cases. However, BM25F did not seem to profit from the
semantic data in the fields that did not have as much text.

CHAPTER 3. RELATED WORK 23

3.2 Entity-ranking solutions

Entities are often structured differently from normal web documents. They are
more strictly structured, consisting often of a collection of triples, whereas web
documents often consists of blocks of text. Links are usually labelled, so the
entity collection forms a labelled directed graph.

3.2.1 PageRank
PageRank [19][20] is a graph algorithm employed by Google, which is used to rank
web pages according to their global importance. Generally speaking, a web page
is seen as important if many other pages link to it, or even if just one important
page link to it.

The algorithm works by first assigning an initial PageRank value to each
node. Every node distributes its PageRank evenly to every node it points to.
For example, If a node has an initial value of 0.4 and two outgoing links, it will
distribute 0.2 to each of the nodes it is pointing to, as shown in figure 3.1. It also
includes a damping factor, usually set to 0.85, to prevent pages with no outgoing
links from assimilating the PageRank from nodes around them. If damping was
excluded, a random surfer would eventually end up on those pages every time.
The equation is formally described in (3.3).

Figure 3.1: Distribution of PageRank (simplified)

CHAPTER 3. RELATED WORK 24

PR(A) =
1− d

N
+ d

(
PR(T1)

C(T1)
+ ... +

PR(Tn)

C(Tn)

)
(3.3)

PR(A) Is the PageRank of a node A, while T1...Tn are nodes pointing to A.
C(T) is the T’s number of outgoing links, and d is the damping factor.

PageRank has a basis in a random walk model. One can intuitively imagine a
web surfer randomly clicking on successive links. The probability that the surfer
visits a page is the same as its PageRank. The damping factor corresponds to
the probability that the surfer will stop clicking links and request a completely
random page.

The algorithm is recursive, and is run until the values converge. This means
that the initial values do not matter for the final values, but a smart choice of
initial values may reduce the number of iterations needed until convergence.

Although designed to be used for the web, PageRank is suitable for any struc-
ture with links. However, it does not take into account the semantic relationships
between data if there is any.

3.2.2 ObjectRank
ObjectRank [21] is a ranking algorithm that extends PageRank to perform search
in databases modeled as labeled, directed graphs, where there is a natural author-
ity between entities. As opposed to PageRank, ObjectRank performs keyword-
specific ranking instead of maintaining a global rank. It also employs a similar
random-walk model, with the difference being that random walks start from the
entities that contains the keywords. Every object is ranked according to the given
keywords, based on the probability that random walkers are found at the entity
at that time.

Another way ObjectRank differs from PageRank is that each dataset requires
some fine-tuning as to how weights are distributed in the graph. These rules
can be easily visualised in an authority transfer schema graph, which shows how
much weight an entity type has in regards to other entity types, as shown in
Figure 3.2.

One way to think of ObjectRank is to imagine entities distributing authority
to other entities. Initially, authority is found at the entities which contain the
user-specified keywords. Authority is then distributed from these entities based
on the rules in the authority transfer schema graph. The paper illustrates the
effects of this approach by using a computer science bibliography as an example.
This database contains many scientific papers, authors, conferences, and more as
entities, with links between them describing their relationships. The top ranked
result for the keyword "OLAP" does not contain the keyword itself, but has been

CHAPTER 3. RELATED WORK 25

Figure 3.2: Example authority transfer schema from a hypothetical movie graph

cited by many papers that does, or may have been written by authors that have
written other important OLAP papers.

ObjectRank was evaluated using two user surveys over two different datasets
and by performing experiments to test its computational feasibility. First they
used DBLP2, a large computer science bibliography which contains data on al-
most five million publications [22], including authors, conferences, and journals.
The second survey made use of the IEEE Communications Society3 publications
database, which contain a number of academic papers. In the user surveys, Ob-
jectRank was only evaluated alongside different variations of itself, but in most
cases the default algorithm scored best. In the experiments, they conclude that
the algorithm is feasible, and demonstrate a number of ways to optimize compu-
tation and storage depending on the data and use case.

3.2.3 ReConRank
ReConRank [23] is another extension of PageRank that has been adapted for
usage in semantic web data. Its name is a composition of ResourceRank and
ContextRank, which are the two methods used to perform the ranking. Put
simply, ReConRank works by not only applying a PageRank-like algorithm to
resources, but it also applies a similar algorithm to rank their contexts4. Not

2https://dblp.uni-trier.de/
3https://www.comsoc.org/
4The paper defines context to be the source or origin of the data.

CHAPTER 3. RELATED WORK 26

all data sources are trustworthy or good, so the authors suggest that this can be
used as a weight for the ranked resources.

Similar to ObjectRank, ReConRank also only does ranking based on the re-
sultset, instead of maintaining a global rank. This is for efficiency reasons, and to
preserve relevancy in the ranking. However, a problem with this approach is that
the resulting graph can be quite small with few links. ReConRank solves this
by expanding the graph with implied links. For example, contexts are implicitly
linked through shared resources, and there are implicit links between resources
and their contexts. With this information, resources that occur in more than one
context should be ranked higher than those who are just in one. Additionally, if
a context is ranked highly, its resources should be ranked higher as well.

It is worth noting that the system that employs ReConRank retrieves not
only resources that matches the keyword query, but also adjacent nodes, up
to a certain amount of hops, specified by a variable n. When performing the
ranking, it removes all resources that do not appear as subjects in the RDF
graph. Therefore, the success of the algorithm may not be completely attributed
to the ranking itself.

ReConRank was evaluated on a dataset obtained by a crawler on the web
following href and rdfs:seeAlso links, resulting in a dataset of about 15 million
triples, with 2.6 million resources and contexts. ReConRank seemed to perform
reasonably well on this relatively large dataset, showing a linear increase in com-
putation time. A comprehensive evaluation of ranking quality was not conducted.

3.2.4 Blanco et al.’s BM25F approach
An alternative method for scoring RDF resources by adapting BM25F has been
conceived by Blanco et al. [24]. It is similar to the work of Pérez-Agüera et al. in
some respects, but they also make a number of different assumptions that dictate
how results are calculated, resulting in different rankings.

From a high level, the general approach is the same as in equation 3.1. Calcu-
lating the BM25F score for a query Q and document D involves, for each query
term, taking the term frequency and dividing it by a tunable parameter k1 plus
an aggregated normalized weighted term frequency tfi, and then multiplying it
by the term’s inverted document frequency.

The normalized weighted term frequency is calculated as seen in equation 3.4.

tfi =

S∑
s=1

vs
tfsi
Bs

(3.4)

S is all the fields in the document, vs represent the field weights, while tfsi
represents the field term frequencies, which is the number of times the term i

CHAPTER 3. RELATED WORK 27

appears in the field s. Finally, Bs is the normalization factor, which is calculated
by the formula seen in equation 3.5.

Bs =

(
(1− bs) + bs ∗

ls
avls

)
(3.5)

bs is a tunable parameter between 0 and 1 (inclusive) that is supposed to
help control the amount of normalization. ls is the length of the field s, but the
authors argue that indexing the field lengths for all fields is impractical, so they
opted to use the size of the document D as the length of all its fields instead.
Lastly, avls represents the average field length of the given field type.

Finally, once the adapted BM25F score for a query Q and document D has
been calculated, it is multiplied by a query-independent factor, such as the doc-
ument’s PageRank score, or the number of links pointing to the document.

The authors evaluated their approach on the Billion Triples Challenge 2009
dataset [25], which contains over 1.14 billion quads, along with a set of queries
and relevance assessments. For setting field weights, they manually classified
all the property types into three distinct classes: important, unimportant, and
neutral. They then assigned the same weight to each property that belonged to
the same class. They used MAP as their evaluation metric. They found that their
solution improved 50 percent over the BM25 baseline, and tuning parameters and
weights resulted in large improvements. Just adjusting BM25’s b parameter alone
resulted in a 35 percent better MAP score.

3.2.5 Ranking based on resource importance
Bamba et al. [26] proposes a solution for ranking resources on the semantic web,
inspired by the famous HITS [27] algorithm. On the web, HITS works by assign-
ing two separate scores for each document; an authority score and a hub score.
The intuition behind the algorithm is that, broadly, there are two kinds of pages
on the web; one kind that is authoritative on the information it contains, and
another kind that serves as directories for authoritative pages. Pages of the first
kind are known as authorities, and the second kind are known as hubs. Author-
ities have many incoming links from hubs, and few outgoing links of their own.
A page has a high authority score if many pages with high hub scores are point-
ing to it, and a page has a high hub score if it points to many pages with high
authority scores.

Similarly, the algorithm by Bamba et al. assigns subjectivity and objectivity
scores to each resource, that correspond to the authority and hub scores ex-
plained above. A resource with a high subjectivity score is the subject of many
RDF triples, while a resource with a high objectivity score is the object of many
RDF triples. However, one modification is that when the scores of a vertex are

CHAPTER 3. RELATED WORK 28

calculated, the scores of the adjacent vertex is multiplied by the scores of the
corresponding link, to ensure unimportant properties do not influence the scores
of the resources.

Class weights are also influenced by the weights of its ancestors. If a class c1
is a subclass of c2, then its importance is dependent of c2. If c2 is a subclass
of c3, then c1 is also influenced by c3, but to a much lesser extent, since c3’s
distance to c1 is greater.

There are several other factors which determine the relevance to the user
query. The solution uses something called inverse property frequency, which is
similar to inverse document frequency in traditional information retrieval. If a
property is very common in the dataset, then its corresponding edge is given less
weight.

The authors state that a formal evaluation of the method is difficult, and was
not performed at the time. However, they note that the time complexity was
O(n + e)R, where R is the number of results, and that the overall running time
is not too significant.

3.2.6 Noc-order approach
Graves, Adali, and Hendler [28] proposes a query-independent solution different
from all the aforementioned ones. While the other algorithms are based on the
PageRank centrality, the noc-order (NOde Centrality Ordering) approach is based
on closeness centrality, which measure the importance of nodes based on their
number of shortest paths to all other nodes. The node with the highest score
has the shortest distances from all other nodes. The data graph is treated as
undirected, since the direction of the semantics is irrelevant for the algorithm to
work.

Closeness centrality is usually calculated with the formula seen in equation
3.6, where u is a node, n is the total number of nodes in the graph, and d(u, v)
is the distance of the shortest path between nodes u and v.

C(u) =
n− 1∑n=−1

v=1 d(u, v)
(3.6)

Finding the shortest path between two nodes is done by using Dijkstra’s
algorithm [29], which is a popular path-finding algorithm. The distance may be
simply measured in the number of edges between the two nodes, or it may be
based on some weights on the edges. In this approach it is based on weights,
where the weights represent the frequency of occurrence of each predicate: the
more common a predicate is, the lower the relevance for the ranking.

In most cases, the noc-order approach will rank general and central concepts
higher than the ones that are more specific. For example, while evaluating the

CHAPTER 3. RELATED WORK 29

solution on a dataset of facts and information about the different countries in the
world, large concepts and organisations such as climate change and WHO were
among the top ten, while concepts such as animal husbandry and subsistence
farming were amongst the bottom ten.

3.3 Other notable approaches

In addition to all the aforementioned approaches, there are other solutions that
perform entity ranking in novel ways, but that are just out of scope for this thesis.
We briefly mention some of them here.

Swoogle [30] is yet another system that adopts PageRank’s way of ranking
documents. While PageRank uses a random surfer model, the creators of Swoogle
argues that this is not a an appropriate model for the semantic web. Instead they
use a rational random surfing model, that considers the fact that links can be
of different types. Swoogle only considers inter-ontology relations, for example
imports and extensions, meaning it is not adequate for single-ontology datasets.

DBpediaRanker [31] is a system for performing RDF ranking in DBpedia. It
computes the similarity between the query and the entities by querying external
sources of information, like search engines such as Google and Bing.

Vercoustre et al. [32] have created an approach for ranking entities in Wikipedia,
where one of the functions for calculating the score is based on the notions of
ancestors, common ancestors, and shorter paths between Wikipedia categories.
This is used to define a distance between a set of categories associated with a
target entity page, and a set of categories associated with a set of example en-
tities. The system maintains a global score by combining this scoring with a
PageRank-like function, along with the score obtained by the Zettair5 system.

Harth et al. [33] use what they call naming authority to help with entity
ranking. A naming authority is the data source that has the power to define
identifiers (URIs) of a particular structure. If a source a owns an identifier used
by another source b, then it benefits the ranking of a. A naming authority graph
is created from the dataset, which PageRank scores are then derived from.

3.4 Discussion

Almost all of the algorithms presented in this chapter are primarily based on
some link analysis ranking model. This is of course expected, since they operate
over linked data. Many of them have combined the link analysis approach with
other classic information retrieval models in the pursuit of better ranking, such

5http://www.seg.rmit.edu.au/zettair/

CHAPTER 3. RELATED WORK 30

as the probabilistic ranking model. A high-level overview of the algorithms is
shown in table 3.1.

Another thing almost all of the algorithms have in common is that they are
based on the same type of centrality algorithm. Centrality algorithms are used to
measure the importance of a node in a network. They can for example determine
their importance by their degree, which is the number of connections a node
has; their closeness, which determines the importance by the number of nodes
they can easily reach; betweenness, which measures the number of shortest paths
that passes through a node; and finally PageRank, which estimates a node’s
importance based on the other nodes linking to it [34]. The algorithms presented
in this paper, except for Noc-order, are all based on the PageRank approach.
Intuitively, this makes sense for most applications, especially on the web, as we
think of a web page to be popular if many other web pages are linking to it. On
the other hand, we can imagine applications where some of the other approaches
may be better suited. For example, degree centrality might be better suited for
search in a social network.

All the algorithms are query-dependent, except for PageRank and Noc-order.
Being query-dependent means the scores calculated for each document is reliant
on the given query. Query-independent algorithms maintain a global rank, and
the query merely acts as a filter.

Many of the algorithms can be used as-is, but some of them require some
manual tweaking and tuning to be able to perform ranking efficiently. Objec-
tRank, for example, requires that the user or some domain-expert decides the
amount of authority that is going to flow between nodes linked by some prop-
erty. The vector-space model approach requires the classes in the ontology to be
subclasses of a set of specific top-level classes. The annotation should also be
done manually to get the best results, but the authors also provide a method for
automatic annotation. The BM25F approach requires specific field data to be
indexed, but not much more than that. Parameter-tuning is of course possible
in algorithms like PageRank, where the damping factor can be adjusted if you
desire more randomness in the random walk. A more educated guess of initial
PageRank values can also help speed up convergence.

Although not critical when looking at the ranking algorithms in isolation, it
is worth noting that some of them are presented as parts of a bigger system. As
such, they might be optimized for different contexts. The system that implements
the vector-space model approach, for example, retrieves documents by RDQL
queries, which can fundamentally determine the type of documents retrieved. The
ranking is then tested using these documents, which might have been different
when used in a system that uses keyword-based queries. PageRank, ObjectRank,
and ReConRank are all developed for keyword queries.

Lastly, one of the more important differences is what kind of unit the algo-

CHAPTER 3. RELATED WORK 31

Table 3.1: High-level overview of the proposed solutions
Solution Model Query-

dependence
Query Tuning Unit of

retrieval
PageRank Link analysis,

probabilistic
Independent Keyword Optional Entities

Vector-space
approach

Vector-space Dependent RDQL Required Documents

Pérez-Agüera et
al.

Probabilistic Dependent Keyword Minimal
indexing
configura-
tion
required

Documents

Blanco et al. Probabilistic Dependent Keyword Optional Entities
ObjectRank Link analysis,

probabilistic
Dependent Keyword Required Entities

ReConRank Link analysis,
probabilistic

Dependent Keyword Optional Entities

Resource
importance

Link analysis Dependent RDQL Optional Entities

Noc-order Link-analysis Independent Not
specified

Optional Entities

rithms work with. The vector-space approach, and the BM25F approach are all
created to work with documents. PageRank was originally created to work with
documents as well, but since it does not rely on the contents of the documents to
perform the ranking, it can easily be adapted to work with any linked structure.
BM25F and the vector-space approach rely on the textual content and structure
of the document to work properly. The other proposed solutions are created
specifically for ranking entities, often in the form of RDF resources.

Chapter 4

Model and Implementation

This chapter describes the architectural model and how the system is concep-
tualized and implemented. We implement and test the BM25F algorithms by
Pérez-Agüera et al. and Blanco et al., which are detailed in sections 3.1.2 and
3.2.4. We begin by describing Neo4j more closely in section 4.1, including details
about the graph API that is heavily used in the implementation. In section 4.2
we describe the main components and architecture of the system, while section
4.3 and 4.4 describe how the data was imported and indexed. Finally, section 4.5
describes how the algorithms themselves are implemented.

The aim of this chapter is to show how our environment used for testing was
set up. Information regarding the setup for the experiments is detailed in chapter
5.

4.1 Neo4j

Neo4j is an ACID-compliant database management system for storing, querying,
and processing graph data. It comes packaged with its own querying language,
called Cypher, which is created to be more efficient and intuitive when writing
queries for graph data [35]. Our rationalization for using Neo4j as our base for
writing and testing the ranking algorithms, is that it provides a lot of the func-
tionality we need out of the box. As of version 3.5, Neo4j supports both full-text
indexing of nodes and relationships, as well as full-text search [36]. Additionally,
through the graph algorithms plugin, you can instantly run PageRank and other
centrality algorithms on your data [34]. Neo4j also makes it simple to extend the
query language by providing an API for writing custom plugins.

32

CHAPTER 4. MODEL AND IMPLEMENTATION 33

4.1.1 Neo4j Graph API
The Java graph API provided by Neo4j contains a collection of classes and meth-
ods that greatly simplifies the process of writing custom plugins for the database
engine. For example, it contains methods for manipulating nodes, relationships,
and paths, while still allowing for executing Cypher queries and handling the
results [37].

4.2 Architecture

The architecture of the system is shown in figure 4.1. All the main components
are contained within Neo4j, which provides a user interface where we can write
and execute queries. From here we can call our custom procedures, which is in
fact the ranking algorithms we have written using the graph API and loaded
into the database engine as plugins. When these custom procedures are called,
they consult the full-text index we created for our data, in order to find the
nodes to return as our result, through the Graph API. These are then fetched
from the underlying database, and our procedures rank them according to our
specifications. These are then presented to the user through the graphical user
interface.

The plugin containing the implemented algorithms are written so that you
can call them from the Neo4j user interface, with the search terms as arguments.
The classes that holds the algorithms are wrapped in a search class that calls
the full text search Cypher query, and uses the results as input to the ranking
methods. The main steps of each algorithm class in the plugin is the following.

1. Trim and escape query

2. Execute query against database

3. Return results of query to ranking function

4. Rank each entity according to specification

5. Return a ranked list of entities to user

The graph data is indexed using Neo4j’s full-text indexer, which is powered
by Lucene. The indexer indexes nodes and relationships by string properties.
The strings are tokenized and split into terms, and stop words are removed [38].

Default full-text search over the indexes in Neo4J returns a ranked and sorted
list of results. The rank, or score, is calculated using an implementation of TF-
IDF. Search returns approximate results, as one would expect from an informa-
tion retrieval system. For example, if you provide several keywords to the search

CHAPTER 4. MODEL AND IMPLEMENTATION 34

Figure 4.1: General architecture of system

function, it will also return nodes where only one or more keywords match. Since
search is also powered by Lucene, you can construct more complex queries by for
example defining which properties you want to search in, or by using AND and
OR operators [38].

4.3 Importing

Importing the DBpedia dataset into Neo4j was accomplished using Neosemantics
[39][40], which is a plugin that lets you easily use RDF in Neo4j. For importing
RDF data, it first requires that an index be created on property uri. Then you
can import individual files in a variety of formats, including Turtle, N-triples,

CHAPTER 4. MODEL AND IMPLEMENTATION 35

JSON, and XML. The DBpedia data was downloaded in the N-triples format, so
we used the semantics.importRDF command specifying that format, as well as
file location. Neosemantics then builds the Neo4j graph out of the triples in the
file, converting datatype properties into node properties, and object properties
into relationships. Neosemantics also shortens namespaces to make relationships
more human-readable, while still having them be unique, ending up with prefixes
such as ns0 and ns1.

4.4 Indexing

The indexing of the DBpedia dataset is done according to the experimental setup
of [41]. The set contains over 40,000 different property keys, and we identified
and indexed the 1000 most common properties. These properties include popular
fields like "title", "name", and "label". The indexing was carried out with the
help of the built-in procedure db.index.fulltext.createNodeIndex [42]. The
full-text indexes are powered by Lucene, and allows for partial matching, in
contrast to regular Neo4j indexes. The procedure also allows you to choose what
kind of analyzer you wish to use. We use the standard English analyzer, for
stemming and tokenizing English words, because we are working with the English
version of DBpedia.

4.5 Implementation of Algorithms

This section provides details about the implementation of the ranking algorithms.
All algorithms were implemented as plugins, written in Java, using the Neo4j
graph API. The algorithms were primarily chosen for being interesting approaches
to entity-ranking, and by building upon the same base method which is known for
generally performing well in normal data. The algorithms expand upon BM25F
in different ways, which makes for interesting grounds for comparison.

4.5.1 Pérez-Agüera et al.

Although the BM25F approach is originally meant to rank documents, we have
successfully adapted it for use in our graph system. In the paper, the authors
mention that as part of their system, they indexed the underlying data differently
in order to better accommodate the solution. However, we feel that changing
the indexing for this algorithm means that it is not evenly compared to the
others, since the retrieved nodes it ranks may be different. For the sake of a fair
comparison, we decided to not implement this indexing, and instead let all the
algorithms work on the same set of retrieved nodes.

CHAPTER 4. MODEL AND IMPLEMENTATION 36

Our implementation starts off by calculating the average lengths of each prop-
erty type. The graph API does not contain any methods for getting all properties
in the graph, so we wrote a Cypher query that fetches all property keys, that is ex-
ecuted as a transaction from the code. However, calculating the average property
length for all forty thousand property types proved to be too time-consuming.
We chose to instead calculate an approximation for each type by fetching the first
100 nodes that contain the given type and using those values to get an average.
This reduced the runtime significantly, but it still took over 33 hours to calculate
for all fields on consumer-grade hardware. Fortunately, we only had to run this
calculation once, since they did not change between queries. The average field
lengths are later used to calculate the normalized term frequencies for each field.

The BM25F score for each node is calculated according to equations 3.1 and
3.2. The weighting is done in the term frequency method, where the term fre-
quency is implemented as the sum of the normalized term frequency of each field
of a node, multiplied by the given weight of the field type.

4.5.2 Blanco et al.

The implementation of this algorithm was done according to the approach and
formulas outlined in section 3.2.4. The inverse document frequency was calculated
differently than from the approach of Pérez-Agüera et al., using a probabilistic
approach. We could reuse the average field lengths we calculated for Pérez-Agüera
et al., reducing run-time.

In calculating Bs, we used the size of the given node as the length of the field
we calculated the normalization factor for, as the authors did. We defined the
size of a node as the sum of the length of all its fields (ie. its literals).

The final step of the algorithm involves multiplying the BM25F score with
a query-independent feature. We decided to use PageRank for several reasons.
First of all, it is a heavily-researched and popular feature, that has proven to be
effective in commercial search engines. Second of all, it is intuitive, especially for
a linked dataset such as DBpedia. Lastly, it is easily available in Neo4J, simply
by installing the Graph Algorithms plugin. We ran the PageRank algorithm over
the data and wrote the results to the database, inserting it as a field in each node.
This way we could easily use it for the final step of the BM25F algorithm.

We decided not to do any special indexing for this algorithm either. We
mainly wanted to focus on the strengths of the actual algorithms, and since they
are both based on BM25, we decided it was optimal that the indexing remained
unchanged.

CHAPTER 4. MODEL AND IMPLEMENTATION 37

4.5.3 PageRank
PageRank is already adapted and implemented for Neo4J through the existing
graph algorithms plugin. In this implementation of PageRank, it runs a set
number of iterations, instead of stopping when values converge, using a damping
factor of 0.85 [43].

Chapter 5

Experiments

In this chapter, we present the experimental plan, detailing the setup and software
used to conduct the experiments.

The goal of the experiments is primarily to be able to answer our research
questions, regarding how our chosen ranking algorithms stack up against standard
ranking methods, and how we can fine-tune them to perform better with our
chosen dataset.

5.1 Plan

To test the algorithms with regard to our research questions, several sets of exper-
iments were needed. Both BM25F methods required manual property weighting
and parameter tuning. For property weighting, the following three approaches
were planned.

1. No weighting

We wanted to establish a baseline, to see how the algorithms performed with
no weighting and default parameter values.

2. Name and title weighting

The most simple kind of weighting, where we only considered two property
types. These are very common, appearing in most entities. We tested different
weights for these two properties, starting at 2, which essentially means it was
twice as important as all other properties.

3. Blanco et al. weighting

38

CHAPTER 5. EXPERIMENTS 39

A weighting scheme inspired by the weighting done in Blanco et al. It involves
weighting many more properties, that the authors have considered important.
These include more properties similar to name, as well as other popular proper-
ties such as label. Here we also tested different weights, starting at 2.

Regarding parameter tuning, we tested several values for both k and bs. Be-
cause of the considerable time needed to run a single experiment, we were not
able to test every combination of the parameters with the different values for
each weighting scheme. Instead, we tested each part separately, and combined
the best approaches. Our approach was optimize for the SemSearch ES queries,
since they are shorter keyword queries that one would expect to see in a general
web search engine.

5.2 Setup

This section details all the weights, parameters, software, data, and metrics
needed to replicate the experiments. The focus of the experiments is not on
the computational performance, but rather the end results. In other words, we
want to optimize the performance for the metrics used.

5.2.1 Weights
For the experiments testing the different weights, we tested for nine values each (2
to 9). We believe this is more than sufficient, as the weighting acts as a multiplier.
In other words, a weight of 3 for a property indicates that it is three times as
important as the other properties. A weight of 1 is the same as no weighting.

For the name and title weighting, we simply weighted the following two prop-
erties.

• title, name

For the weighting scheme inspired by Blanco et al., we weighted the following
set of properties.

• label, title, name, nickname, fullname, othername, birthname, surname,
lastname, firstname, description

5.2.2 Parameters
For the parameters k and bs, the default values are at 0.5. Our plan was to test
all values between 0.1 and 0.9, with increments of 0.1. These tests were done
separately, which means we tested the range of different values for one parameter

CHAPTER 5. EXPERIMENTS 40

while the other was at its default. The reason for this, as stated earlier, is that it
is computationally infeasible to test all combinations of weights and parameters.

5.2.3 Data
Our test data is the DBpedia dataset, version 3.7 (described in section 2.4.1).
It is a very practical choice for testing for several reasons. It contains informa-
tion about many different entities across many different topics. People, places,
things, and events are among the entities described in the data. Secondly, it is
large enough to be statistically useful, with over four and a half million entities.
Thirdly, the data is very popular, so finding ways to generally improve ranking
on it can be beneficial to many different applications and researchers. Finally,
we have a set of queries and query relevances created by Balog and Neumayer
[41], which means we can conveniently test our algorithms using a ground truth,
without needing to conduct more time-consuming user studies.

The entity search test collection by Balog and Neumayer provides a set of
queries and corresponding relevance rankings, which can be used to test new
information retrieval methods. The queries range from simple keyword queries,
to whole questions. The set contains 485 queries, taken from several different
sources. These include:

• INEX-LD: The INEX 2012 Linked Data Track

Queries from this source are mostly keyword queries, ranging from very gen-
eral ("indian food") to longer, more specific answer-seeking queries ("John Tur-
turro 1991 Coen Brothers film").

• INEX-XER: The INEX 2009 Entity Ranking Track

Queries from this source are seeking sets of entities. Examples include "films
shot in Venice" and "Nobel Prize in Literature winners who were also poets".

• QALD-2: The Question Answering over Linked Data Challenge

Contains natural language queries posed as questions, or sentences starting
with "give me all...". For example "What is the second highest mountain on
Earth?" and "Give me all people that were born in Vienna and died in Berlin".

• SemSearch ES: The entity search task of the 2010 and 2011 Semantic Search
Challenge

The queries here are mostly short keyword queries, usually just a couple of
terms. Examples include "austin powers" and "sedona hiking trails". Queries
like these are somewhat general and can have many relevant results.

CHAPTER 5. EXPERIMENTS 41

• SemSearch LS: The list search task of the 2011 Semantic Search Challenge

Similar to INEX-XER, the queries from SemSearch LS targets sets of entities.
A few of them are stated as questions ("what books did paul of tarsus write?"),
but most of them are keyword-style queries ("Apollo astronauts who walked on
the Moon").

• TREC Entity: The TREC 2009 Entity Track

The smallest set of queries, with only 20 entries. The queries here mostly
focuses on relationships between entities, like "Carriers that Blackberry makes
phones for". All queries here also seek out sets of results, instead of single an-
swers.

The relevance rankings for most of the sources are binary, either a resource
is relevant to a given query, or it is not. The data from the Semantic Search
Challenges are the exceptions, as they include one additional level of relevance:
1 for ’fair’, and 2 for ’excellent’.

5.2.4 Software
The following is the list of software used to implement the algorithms and run
the experiments.

• Neo4j Desktop 1.2.4

• Neo4j 3.5.15

• Neosemantics 3.5.0.4

• Graph Algorithms 3.5.4

• Java 8

• Graph API 3.5

5.2.5 Metrics
The metrics we are using to compare the different algorithms are MAP, P@n,
R-precision, and DCG, as described in section 2.3. These metrics were chosen for
being highly popular, and being generally simple to reason about. DCG is only
really applicable when you have a graded scale of relevance. In other words, when
the relevance is non-binary. Such is the case with the queries from SemSearch
ES and SemSearch LS, where queries are either not relevant (0), relevant (1), or
very relevant (2).

Chapter 6

Results and Discussion

In this chapter, we present the results of the experiments. We begin with an
introduction to how the algorithms are evaluated in section 6.1. In section 6.2 we
present the results of trying different weighting schemes, and different values for
the weights. In section 6.3 we present the results of tuning the parameters k and
bs. In section 6.4 we present our final results. Finally, in section 6.5, we provide
an analysis of our findings, in addition to the short analyses in the preceding
sections.

6.1 Evaluation

The algorithms were evaluated over the data, using the set of queries and query
relevances detailed in section 2.4.1. We used four different metrics for measuring
the performance of the algorithms: MAP, P@N, R-precision, and DCG where
applicable. We used 40 as a cut-off point for MAP. For each query in the text file
supplied by Balog and Neumayer [41], we executed the query against the Neo4j
database, and ran each of the ranking algorithms over the results. We then
calculated the metrics based on the ranked results and the contents of the query
relevances file. We did two levels of P@N: P@5 and P@10. This was because real
users are unlikely to look past the first page of results in a standard information
retrieval system, and therefore we feel that these levels are most relevant. We
calculated the average for all these metrics for each source of queries (INEX,
semsearch, TREC, etc). The results of one run, for one algorithm, could then
look like what is shown in table 6.1.

Plotting the results of one run of Pérez-Agüera et al.’s BM25F yields the
results shown in figure 6.1. Similar results are obtained by running Blanco et
al.’s algorithm. The graph shows that semsearch_es has the best results for

42

CHAPTER 6. RESULTS AND DISCUSSION 43

Table 6.1: Example results for one algorithm for one run of the evaluation over
the DBpedia dataset (values rounded to three decimal places for readability)

Source MAP P@5 P@10 R-precision DCG
inex_ld 0.217 0.134 0.089 0.054
inex_xer 0.129 0.084 0.060 0.033
qald2 0.048 0.030 0.024 0.015

semsearch_es 0.382 0.267 0.176 0.202 2.232
semsearch_ls 0.109 0.051 0.044 0.030 0.369
trec_entity 0.021 0.012 0.006 0.008

each metric. We believe the main reason for this is because the queries from that
source are all simple keyword queries, consisting of about two or three terms per
query. This is in contrast to the other sources, where many of the queries consists
of eight or more terms. Additionally, many of those other queries are framed as
questions or commands, which the query relevance file takes into consideration.
Since the algorithms we are testing are only trying to answer simple keyword
queries, we lean towards optimizing them more for sources like semsearch_es
and inex_ld.

6.2 Property weighting

Deciding how to weight the properties is a considerable task. It has to be done
manually for each dataset, and this particular dataset contains over 40,000 unique
property types. We experimented with a few different weighting schemes, also
including no weighting.

6.2.1 No weighting
In table 6.2 we show the results of running both algorithms with no weight-
ing, and using default values for parameters. The best values for each columns
has been highlighted. Unsurprisingly, all the best results are achieved with the
semsearch_es queries, since they consist of short keyword queries. The algo-
rithm by Pérez-Agüera et al. outperforms Blanco et al. on almost all points,
except for P@5 for inex_ld, where Blanco et al. performs 109 percent better.
On the semsearch_es dataset, Pérez-Agüera et al. outperforms Blanco et al. by
an average of 375 percent. A side-by-side comparison of the just these results can
be seen in figure 6.2.

CHAPTER 6. RESULTS AND DISCUSSION 44

Figure 6.1: Results for running Pérez-Agüera et al.’s BM25F with default pa-
rameters and no term weighting

The results of running the algorithms with no weighting and various values
for k and bs can be seen in section 6.3.

6.2.2 Name and title weighting
A simple approach to property weighting in traditional web documents would
be to weigh the title higher than other fields, since it often carries more precise
information about the content than other fields. An entity often has a title field if
it describes a thing, or a name field if it describes a living being. Our assumption
is then that just weighting these two fields higher than everything else should
cause the algorithms to perform better. Figure 6.3 shows the results of adjusting
the weights for these two fields, for the semsearch_es queries (weight of 1 is
equivalent to no weighting). Disappointingly, the impact is minimal. For Pérez-
Agüera et al.’s algorithm, a weight of 2 slightly increases performance, but the
effect is too insignificant to be of much real practical value. Increasing the weight
shows no real improvement either, for MAP, P@10, and R-precision it flattens
out, while slightly decreasing again for P@5. Blanco et al.’s shows no significant

CHAPTER 6. RESULTS AND DISCUSSION 45

Table 6.2: Results of running both algorithms with no weighting, using default
parameter values (Best values for each column highlighted in bold)

Source Pérez-Agüera et al. Blanco et al.
MAP P@5 P@10 R-precision DCG MAP P@5 P@10 R-precision DCG

inex_ld 0.217 0.134 0.089 0.053 0.039 0.280 0.021 0.007
inex_xer 0.129 0.084 0.060 0.033 0.039 0.033 0.029 0.022
qald2 0.048 0.030 0.024 0.015 0.026 0.007 0.006 0.013

semsearch_es 0.382 0.267 0.176 0.203 2.233 0.105 0.057 0.040 0.040 0.376
semsearch_ls 0.109 0.051 0.044 0.030 0.369 0.057 0.014 0.014 0.015 0.109
trec_entity 0.021 0.012 0.006 0.008 0.010 0.012 0.006 0.006

Figure 6.2: Comparison of the two algorithms over the semsearch_es queries,
using no weighting and default parameter values

results either, the difference in performance between the different weights is so
small. A reason for these results might simply be that the query terms seldom
match the contents of the title and name fields, since they are two fields out of
40,000. If the query terms match other fields like description or labels instead, it
would explain why the results seem generally unaffected.

CHAPTER 6. RESULTS AND DISCUSSION 46

Figure 6.3: Results of adjusting weight of properties title and name for the
semsearch_es queries

6.2.3 Blanco et al. weighting
Blanco et al. [24] identify properties they deem important. These include prop-
erties like label, title, family-name, and description. For one run we used
the DBpedia equivalents of these, in addition to closely related properties like
nickname and officialname.The intuition is that these fields carry more mean-
ing than fields like language, imagesize, birthdate, etc. They also cover a
broader spectrum of identifiers, so that query terms are more likely to appear in
our weighted fields. The semsearch_es results are shown in figure 6.4.

From the figure, we see that very little has changed from figure 6.3, where
we only weighted the fields title and name. We have placed the same values in a
table to make it easier to see the differences, shown in table 6.3. The best values
of each column is highlighted. In the top subtable, we show the results for Pérez-
Agüera et al.’s algorithm. We see that for name and title weighting, it peaks at
around a weight of 3, while it peaks at around 2 for the other weighting scheme.
Comparing the best values for each side, we see that title and name weighting
actually performs slightly better. For Blanco et al.’s algorithm, we see that there

CHAPTER 6. RESULTS AND DISCUSSION 47

Figure 6.4: Results of adjusting weight of several different properties for the
semsearch_es queries

is virtually no difference. For both weighting schemes, it actually performs best
with no weighting at all. It is possible that the PageRank part of the algorithm
almost overrides any weighting we try to incorporate. As for Pérez-Agüera et al.,
it is possible that assigning the same weight to many fields makes it less accurate.
Just weighting two fields may not cover a lot of bases, but is more precise when
a query term matches.

6.3 Tuning parameters

The next step was to tune the parameters to our data. We first tried to find
the optimal values for k, which is present in both algorithms. The default value
suggested by both papers was 0.5. We tested values between 0.1 and 0.9, with
increment 0.1. Figures 6.5 and 6.6 shows the results on the semsearch_es queries
for Pérez-Agüera et al.’s BM25F algorithm and Blanco et al.’s BM25F algorithm,
respectively. We see from the figures that both approaches prefer higher values for
these particular keyword queries. Blanco et al.’s approach in particular perform

CHAPTER 6. RESULTS AND DISCUSSION 48

Table 6.3: Results of different weights for name and title (left) versus weights
of properties laid out in section 6.2.3 (right) over the semsearch_es queries for
both algorithms (best values for each column emphasised in bold)

Pérez-Agüera et al.
Weight Title and name weighting Blanco et al. weighting

MAP P@5 P@10 R-precision DCG MAP P@5 P@10 R-precision DCG
1 0.382 0.267 0.176 0.203 2.233 0.382 0.267 0.186 0.203 2.233
2 0.398 0.278 0.183 0.207 2.377 0.395 0.268 0.184 0.207 2.353
3 0.398 0.278 0.184 0.207 2.406 0.394 0.265 0.182 0.203 2.342
4 0.398 0.262 0.184 0.212 2.376 0.390 0.250 0.179 0.207 2.284
5 0.395 0.265 0.183 0.208 2.349 0.385 0.256 0.178 0.203 2.257
6 0.397 0.264 0.181 0.210 2.324 0.383 0.254 0.176 0.203 2.223
7 0.395 0.264 0.182 0.207 2.322 0.385 0.256 0.174 0.203 2.242
8 0.395 0.265 0.182 0.206 2.305 0.384 0.257 0.175 0.202 2.227
9 0.398 0.262 0.181 0.204 2.303 0.384 0.257 0.172 0.201 2.213

Blanco et al.
Weight Title and name weighting Blanco et al. weighting

MAP P@5 P@10 R-precision DCG MAP P@5 P@10 R-precision DCG
1 0.105 0.057 0.040 0.040 0.040 0.105 0.057 0.040 0.040 0.040
2 0.103 0.057 0.038 0.037 0.037 0.102 0.057 0.038 0.037 0.037
3 0.102 0.056 0.038 0.037 0.037 0.101 0.056 0.038 0.037 0.037
4 0.103 0.056 0.036 0.037 0.037 0.102 0.056 0.036 0.037 0.037
5 0.106 0.056 0.036 0.037 0.037 0.101 0.056 0.036 0.037 0.037
6 0.104 0.054 0.036 0.036 0.036 0.101 0.054 0.036 0.036 0.036
7 0.105 0.054 0.035 0.036 0.036 0.101 0.054 0.035 0.036 0.036
8 0.103 0.054 0.035 0.036 0.036 0.100 0.054 0.035 0.035 0.035
9 0.103 0.051 0.035 0.034 0.034 0.100 0.051 0.035 0.034 0.034

CHAPTER 6. RESULTS AND DISCUSSION 49

best at the highest k value 0.9. However, the effects are minimal. The difference
between the highest and lowest MAP score is only about 0.020.

Figure 6.5: Results of adjusting k for Pérez-Agüera et al.’s BM25F

In addition to k, Blanco et al.’s approach also has a tunable parameter bs,
which controls the amount of normalization. Here we also experimented with the
same range of values as we did with k, and again we focus on the semsearch_es
dataset. The results are shown in figure 6.7. Here we also see that higher values
are preferred, and the same trend can be seen for most of the other query sources.

6.4 Final results

With the optimal weighting and parameters discovered in previous sections, we
obtain our final results by combining them. The values are shown in table 6.4.
Both algorithms achieved their best results with a high k and bs. The optimal
weighting for Pérez-Agüera et al. was a title and name weight of 3, while Blanco
et al. performed best with no weighting at all. The results of these runs, for all
query sets, are shown in table 6.5. We also included Lucene and PageRank scores,
as a baseline. The Lucene scores are an adaptation of the standard TF-IDF, as

CHAPTER 6. RESULTS AND DISCUSSION 50

Figure 6.6: Results of adjusting k for Blanco et al.’s BM25F

described in section 4.2. The PageRank scores are provided by Neo4j, which ran
with default parameters.

From the table, we see that Pérez-Agüera et al. surpasses all other ranking
algorithms on almost every metric for every query set. The exception is for the
trec_entity dataset. This set consists of long (6-10 terms) queries that focuses
more on specific relationships between entities, like ’Carriers that Blackberry
makes phones for’. This set is also the smallest, at 20 queries.

An interesting find is the general poor performance of PageRank. It has been
used with great success in commercial web search engines, but is struggling to
keep up with the other algorithms for this particular dataset.

6.5 Analysis

The query set that consistently achieves the best scores are the semsearch_es
queries. These are short keyword queries that refer to a particular entity. Ex-
amples of queries in this set include "american embassy nairobi" and "martin
luther king". Examples of relevant results for the latter include resources Mar-

CHAPTER 6. RESULTS AND DISCUSSION 51

Table 6.4: Parameters and weighting used for final results
Pérez-Agüera et al. Blanco et al.
k: 0.9 k: 0.9
Title/name weight: 3 No weighting

bs: 0.9

Table 6.5: Final results of running the algorithms with the parameters and
weighting from table 6.4, compared to Lucene’s TF-IDF and PageRank (Best
scores for each row highlighted in bold)

Source metric Pérez-Agüera et al. Blanco et al. Lucene PageRank

inex_ld

MAP 0.223 0.044 0.145 0.030
P@5 0.130 0.032 0.074 0.020
P@10 0.092 0.022 0.049 0.014
R-p 0.060 0.010 0.025 0.004

inex_xer

MAP 0.115 0.040 0.053 0.042
P@5 0.076 0.033 0.036 0.033
P@10 0.055 0.300 0.049 0.029
R-p 0.025 0.022 0.030 0.020

qald2

MAP 0.045 0.030 0.052 0.021
P@5 0.031 0.009 0.026 0.006
P@10 0.024 0.006 0.020 0.006
R-p 0.013 0.013 0.013 0.005

semsearch_es

MAP 0.402 0.119 0.305 0.073
P@5 0.278 0.056 0.163 0.037
P@10 0.184 0.041 0.111 0.028
R-p 0.213 0.048 0.146 0.030
DCG 2.395 0.427 1.385 0.223

semsearch_ls

MAP 0.127 0.070 0.076 0.048
P@5 0.060 0.014 0.060 0.009
P@10 0.051 0.019 0.037 0.012
R-p 0.035 0.017 0.034 0.008
DCG 0.396 0.110 0.345 0.095

trec_entity

MAP 0.018 0.008 0.021 0.007
P@5 0.000 0.012 0.012 0.000
P@10 0.012 0.006 0.012 0.006
R-p 0.000 0.006 0.009 0.006

CHAPTER 6. RESULTS AND DISCUSSION 52

Figure 6.7: Results of adjusting bs for Blanco et al.’s BM25F

tin_Luther_King_III,Martin_Luther_King,_Sr,Martin_Luther_King_High_School,
as well as other institutions and landmarks named after Martin Luther King. Ex-
amining the results of PageRank for this query, reveals why it performs poorly.
The top results include the city of Seattle at first place with the highest PageR-
ank score, followed by George VI of the UK. In fact, there is not a single relevant
entity in the top 50 results. The reason is that Seattle and the other entries are
highly connected entities, with lots of other entities referencing them. Very few
of them contain the keyword "luther", but many have both "martin" and "king"
since they are very common keywords.

Lucene performs much better, where the first four results are deemed relevant.
They include all of the keywords in the query, and they are repeated many times
in the resource pages. It also seems that the keyword "luther" carries more
weight, since it occurs in less entities than the two other keywords, which helps
lift the relevant results to the top.

Blanco et al. performs a bit worse. Examining the results, we see the influence
from the PageRank scores, which is included in the calculation. It has entities
like Seattle and George VI at the top as well, but it also has Martin Luther King
Jr. in the top 10. This may be a result of also incorporating term frequency and

CHAPTER 6. RESULTS AND DISCUSSION 53

inverse document frequency in the algorithm. It brings up more entities with the
less common keyword, "luther", which exists primarily in relevant results.

Pérez-Agüera et al. averages the best results overall. The question is, even
without weighting, why does this method outperform the others? If Blanco et al.’s
detriment is the incorporated PageRank score, it still also outperforms Lucene.
One reason may be that it includes field length normalization in addition to term
frequency and inverse document frequency. BM25 is also widely accepted as
state-of-the-art in ranking methods, and is known for producing good results for
general collections [6].

As we have briefly mentioned earlier, the semsearch_es queries consistently
achieve higher scores, followed by inex_ld. We believe the main reason for this is
because the queries are short, often general, keyword queries. This is in contrast
to some of the other query sets where the queries are posed as questions, or seeking
specific connections between entities. None of the tested solutions incorporate
any natural language processing, they are simply looking at the individual query
terms that make up the query. It is still interesting to compare results from these
queries, since we can see how the algorithms compare in other settings. A user of
a web search engine might form their queries like questions or commands anyway,
so we want to achieve better results for all queries.

Chapter 7

Conclusion

In this thesis, we have explored different solutions to the problem of ranking
entities in an information retrieval system. We have implemented two of them,
both based on the highly popular BM25F method, which is widely considered
state of the art. We implemented them as plugins in the graph database Neo4j,
making use of their graph API. We tested the algorithms on the DBpedia dataset,
which is a semantically connected linked open dataset, using data fromWikipedia.
We compared them to two other popular ranking methods, Lucene’s TF-IDF
and PageRank. We found that the BM25F approach of Pérez-Agüera et al.
generally outperformed all the other methods. PageRank generally scored the
lowest. It promotes the most "important" entities, which in this case are not
always the most relevant. Lucene’s performance was adequate, but on the average
performed slightly worse than Pérez-Agüera et al. However, it is conceptually
simple while still being effective. Blanco et al. generally performed poorly. One
of the differences from Pérez-Agüera et al. is that they incorporate the PageRank
scores of the entities when calculating the rank. Since PageRank performed
poorly in this dataset, it may be that it had a significant negative impact on the
final scores.

Our first research question in section 1.2 was if algorithms based on BM25F,
made for use in linked data, could outperform standard ranking solutions like TF-
IDF and PageRank. Our findings show that Blanco et al. outperformed PageR-
ank, and Pérez-Agüera et al. outperformed both of them, as well as Lucene’s
TF-IDF. It also answers the second research question, which was which of the
two BM25F solutions was performed better for this type of data.

Our final research question was how we could tune the parameters of the
two BM25F algorithms to obtain the optimal performance. We found that, in
general, the higher the value of k and bs, the better the algorithms performed.

54

CHAPTER 7. CONCLUSION 55

The final results were obtained by using the value 0.9 for both k and bs. However,
while these choices of parameters increased performance, the improvement was
not drastic. For example, the difference in average MAP score for Blanco et
al. was about 0.02 between the best and the worst results. We also found that
Pérez-Agüera et al. performed best with weighting just the properties title and
name 3, while Blanco et al. performed best with no weighting at all.

Bibliography

[1] A. G. Standal, “Ranking technology in information retrieval over semantic
web data”, 2019.

[2] A. Singhal. (May 16, 2012). Introducing the knowledge graph: Things, not
strings, [Online]. Available: https://googleblog.blogspot.com/2012/
05/introducing-knowledge-graph-things-not.html.

[3] K. Balog, Entity-Oriented Search, 1st. Springer Publishing Company, In-
corporated, 2018, isbn: 3319939335, 9783319939339.

[4] L. Yu, A developer’s guide to the semantic Web, 2nd. Springer Science &
Business Media, 2014, isbn: 3662437953.

[5] T. Berners-Lee, R. Fielding, and L. Masinter. (2005). Uniform resource
identifier (uri): Generic syntax, [Online]. Available: https://tools.ietf.
org/html/rfc3986 (visited on 04/10/2019).

[6] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval: The
Concepts and Technology Behind Search, 2nd. USA: Addison-Wesley Pub-
lishing Company, 2008, isbn: 9780321416919.

[7] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web”, May 17,
2001.

[8] TREC. (Apr. 9, 2019). Overview, [Online]. Available: https://trec.nist.
gov/overview.html.

[9] C. Macdonald, I. Soboroff, and B. Gamari, Trec-eval, https://github.
com/usnistgov/trec_eval, 2019. (visited on 10/29/2019).

[10] G. Kazai, “Initiative for the evaluation of xml retrieval”, in Encyclopedia
of Database Systems, L. LIU and M. T. ÖZSU, Eds. Boston, MA: Springer
US, 2009, pp. 1531–1537, isbn: 978-0-387-39940-9.

[11] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes,
S. Hellmann, M. Morsey, P. Van Kleef, S. Auer, et al., “Dbpedia - a large-
scale, multilingual knowledge base extracted from wikipedia”, Semantic
Web, vol. 6, no. 2, 2015.

56

https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://trec.nist.gov/overview.html
https://trec.nist.gov/overview.html
https://github.com/usnistgov/trec_eval
https://github.com/usnistgov/trec_eval

BIBLIOGRAPHY 57

[12] DBpedia. (2019). About dbpedia, [Online]. Available: https : / / wiki .
dbpedia.org/about.

[13] D. Vrandečić and M. Krötzsch, “Wikidata: A free collaborative knowl-
edge base”, Communications of the ACM, vol. 57, pp. 78–85, 2014. [On-
line]. Available: http://cacm.acm.org/magazines/2014/10/178785-
wikidata/fulltext.

[14] Wikidata. (). Statistics, [Online]. Available: https://www.wikidata.org/
wiki/Special:Statistics.

[15] C. Shepherd. (2017). Springer nature scigraph: Pioneering semantic plat-
form with linked open data, [Online]. Available: https://www.digital-
science.com/blog/news/springer- nature- scigraph- pioneering-
semantic-platform-linked-open-data/ (visited on 03/06/2020).

[16] D. Vallet, M. Fernández, and P. Castells, “An ontology-based information
retrieval model”, in European Semantic Web Conference, Springer, 2005.

[17] J. R. Pérez-Agüera, J. Arroyo, J. Greenberg, J. P. Iglesias, and V. Fresno,
“Using bm25f for semantic search”, in Proceedings of the 3rd international
semantic search workshop, ACM, 2010.

[18] H. Zaragoza, N. Craswell, M. J. Taylor, S. Saria, and S. E. Robertson,
“Microsoft cambridge at trec-13: Web and hard tracks”, in TREC, vol. 4,
2004.

[19] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web”, Jan. 29, 1998.

[20] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search
engine”, Computer networks and ISDN systems, vol. 30, no. 1-7, pp. 107–
117, 1998.

[21] A. Balmin, V. Hristidis, and Y. Papakonstantinou, “Objectrank: Authority-
based keyword search in databases”,

[22] DBLP. (Oct. 24, 2019). Record in dblp, [Online]. Available: https://dblp.
uni-trier.de/statistics/recordsindblp.

[23] A. Hogan, S. Decker, and A. Harth, “Reconrank: A scalable ranking method
for semantic web data with context”, 2006.

[24] R. Blanco, P. Mika, and S. Vigna, “Effective and efficient entity search in rdf
data”, in International Semantic Web Conference, Springer, 2011, pp. 83–
97.

[25] T. L. (2016). Billion triples challenge, [Online]. Available: https://github.
com/timrdf/DataFAQs/wiki/Billion-Triples-Challenge.

https://wiki.dbpedia.org/about
https://wiki.dbpedia.org/about
http://cacm.acm.org/magazines/2014/10/178785-wikidata/fulltext
http://cacm.acm.org/magazines/2014/10/178785-wikidata/fulltext
https://www.wikidata.org/wiki/Special:Statistics
https://www.wikidata.org/wiki/Special:Statistics
https://www.digital-science.com/blog/news/springer-nature-scigraph-pioneering-semantic-platform-linked-open-data/
https://www.digital-science.com/blog/news/springer-nature-scigraph-pioneering-semantic-platform-linked-open-data/
https://www.digital-science.com/blog/news/springer-nature-scigraph-pioneering-semantic-platform-linked-open-data/
https://dblp.uni-trier.de/statistics/recordsindblp
https://dblp.uni-trier.de/statistics/recordsindblp
https://github.com/timrdf/DataFAQs/wiki/Billion-Triples-Challenge
https://github.com/timrdf/DataFAQs/wiki/Billion-Triples-Challenge

BIBLIOGRAPHY 58

[26] B. Bamba and S. Mukherjea, “Utilizing resource importance for ranking
semantic web query results”, 2004.

[27] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment”,
1999.

[28] A. Graves, S. Adali, and J. Hendler, “A method to rank nodes in an rdf
graph”, in Proceedings of the 2007 International Conference on Posters and
Demonstrations-Volume 401, CEUR-WS. org, 2008, pp. 84–85.

[29] E. W. Dijkstra, “A note on two problems in connexion with graphs”, Numer.
Math., pp. 269–271, 1959. doi: 10.1007/BF01386390. [Online]. Available:
http://dx.doi.org/10.1007/BF01386390.

[30] L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng, P. Reddivari,
V. Doshi, and J. Sachs, “Swoogle: A search and metadata engine for the
semantic web”, in Proceedings of the Thirteenth ACM International Confer-
ence on Information and Knowledge Management, ser. CIKM ’04, Wash-
ington, D.C., USA: ACM, 2004, pp. 652–659, isbn: 1-58113-874-1. doi:
10.1145/1031171.1031289. [Online]. Available: http://doi.acm.org/
10.1145/1031171.1031289.

[31] R. Mirizzi, A. Ragone, T. Di Noia, and E. Di Sciascio, “Ranking the linked
data: The case of dbpedia”, in International Conference on Web Engineer-
ing, Springer, 2010, pp. 337–354.

[32] A.-M. Vercoustre, J. A. Thom, and J. Pehcevski, “Entity ranking in wikipedia”,
in Proceedings of the 2008 ACM Symposium on Applied Computing, ser. SAC
’08, Fortaleza, Ceara, Brazil: ACM, 2008, pp. 1101–1106, isbn: 978-1-59593-
753-7. doi: 10.1145/1363686.1363943. [Online]. Available: http://doi.
acm.org/10.1145/1363686.1363943.

[33] A. Harth, S. Kinsella, and S. Decker, “Using naming authority to rank data
and ontologies for web search”, in International Semantic Web Conference,
Springer, 2009, pp. 277–292.

[34] M. Needham and A. E. Hodler, Graph Algorithms: Practical Examples in
Apache Spark and Neo4j. O’Reilly Media, 2019, isbn: 9781492047650.

[35] Neo4J. (). Neo4j product, [Online]. Available: https://neo4j.com/product/.

[36] ——, (). Release notes: Neo4j 3.5.0, [Online]. Available: https://neo4j.
com/release-notes/neo4j-3-5-0/.

[37] ——, (). Neo4j 4.0.1 api, [Online]. Available: https://neo4j.com/docs/
java-reference/4.0/javadocs/index.html.

[38] ——, (). Indexes, [Online]. Available: https://neo4j.com/docs/cypher-
manual/3.5/schema/index/.

https://doi.org/10.1007/BF01386390
http://dx.doi.org/10.1007/BF01386390
https://doi.org/10.1145/1031171.1031289
http://doi.acm.org/10.1145/1031171.1031289
http://doi.acm.org/10.1145/1031171.1031289
https://doi.org/10.1145/1363686.1363943
http://doi.acm.org/10.1145/1363686.1363943
http://doi.acm.org/10.1145/1363686.1363943
https://neo4j.com/product/
https://neo4j.com/release-notes/neo4j-3-5-0/
https://neo4j.com/release-notes/neo4j-3-5-0/
https://neo4j.com/docs/java-reference/4.0/javadocs/index.html
https://neo4j.com/docs/java-reference/4.0/javadocs/index.html
https://neo4j.com/docs/cypher-manual/3.5/schema/index/
https://neo4j.com/docs/cypher-manual/3.5/schema/index/

BIBLIOGRAPHY 59

[39] J. Barrasa, E. Arkan, R. Piris, A. Santurbano, M. Needham, M. Hunger,
K. Yankov, S. Araujo, J. Calder, and C. Willemsen, Neosemantics, https:
//github.com/neo4j-labs/neosemantics, 2020.

[40] Neo4J. (). Importing rdf data, [Online]. Available: https://neo4j.com/
docs/labs/nsmntx/current/import/.

[41] K. Balog and R. Neumayer, “A test collection for entity search in dbpe-
dia”, in Proceedings of the 36th international ACM SIGIR conference on
Research and development in information retrieval, 2013, pp. 737–740.

[42] Neo4J. (). Indexes for full-text search, [Online]. Available: https://neo4j.
com/docs/cypher- manual/current/administration/indexes- for-
full-text-search/.

[43] M. Needham and A. Hodler. (2019). Graph algorithms in neo4j: Pager-
ank, [Online]. Available: https://neo4j.com/blog/graph-algorithms-
neo4j-pagerank/ (visited on 08/05/2020).

https://github.com/neo4j-labs/neosemantics
https://github.com/neo4j-labs/neosemantics
https://neo4j.com/docs/labs/nsmntx/current/import/
https://neo4j.com/docs/labs/nsmntx/current/import/
https://neo4j.com/docs/cypher-manual/current/administration/indexes-for-full-text-search/
https://neo4j.com/docs/cypher-manual/current/administration/indexes-for-full-text-search/
https://neo4j.com/docs/cypher-manual/current/administration/indexes-for-full-text-search/
https://neo4j.com/blog/graph-algorithms-neo4j-pagerank/
https://neo4j.com/blog/graph-algorithms-neo4j-pagerank/

