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Abstract

This paper represents a master thesis at NTNU in Trondheim. The overall goal
is to prove the concept of using consumer-available technology to automatically
cover an area for finding animals grazing in outfield pastures. With an iterative
approach, a complete system for automatic flights covering a user-defined search
area is implemented using a drone.

The user defines a search area using a mobile application. From this search
area, the system produces a covering flight path. This flight path considers changes
in the terrain and allows the drone to fly at a consistent altitude. The height adjust-
ments are made by using official height data from Norway. The proposed solution
utilizes polygonal shapes. It is verified that path planning in a convex environment
is easier than in a concave; hence, convex decomposition is performed on concave
polygons.

The feasibility of the system was verified by conducting multiple tests, both
for components in isolation and for the overall system. Test results show that
the system works as intended, but that more work is needed to make the system
production-ready and safe in different environments. The conclusion is that such
a system is feasible.
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Sammendrag

Dette dokumentet representerer en masteravhandling ved NTNU i Trondheim.
Det overordnede målet er å verifisere brukbarheten til et system som dekker over
et område for å overvåke dyr som beiter på utmarksbeite. Dette skal gjøres ved
hjelp av forbrukerteknologi. Gjennom en iterativ prosess er det implementert et
komplett system for å dekke over et område ved hjelp av en autonom drone.

Brukeren definerer et søkeområde i en mobilapplikasjon. Fra dette området
produserer systemet en flyrute. Denne flyruten tar hensyn til høydeforskjeller i
terrenget og dronen flyr med en konstant høyde over bakken. Høydejusteringene
gjøres ved hjelp av offisiell høydedata fra Norge. Den foreslåtte løsningen benyt-
ter seg av polygoner. Det er verifisert at stiplanlegging av konvekse polygoner
er lettere enn konkave. Løsningen deler derfor opp konkave polygoner i mindre,
konvekse polygoner ved hjelp av konveks dekomponering.

Det har blitt utført en rekke tester, både for hver komponent og for den over-
ordnede løsningen. Testene har verifisert brukbarheten av systemet og viser at
det fungerer som tilsiktet. Det stilles derimot krav til ytterligere arbeid før løsnin-
gen kan benyttes i ulike andre miljøer. Det konkluderes med at et slikt system er
brukbart.
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This paper represents a master’s thesis conducted at the Norwegian University of
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Chapter 1

Introduction

Unmanned aerial vehicles (UAVs), commonly referred to as drones, have become
more prevalent in the last couple of years. It started as a military invention, but
has later been taken into use both in the industry and for other special operations.
Examples of applications are search and rescue operations [1], wildlife monitoring
[2], and medicine and equipment delivery services [3]. As drone technology has
evolved through the years, they have become smaller, easier to produce, and,
hence, cheaper.

Throughout the last decades, agriculture has become more industrialized and
centralized. It has gone from many small to few, but large, farms that are capable
of producing a more considerable amount of food and crops. To be able to monitor,
manage, and run large areas of crop more efficiently, farmers apply innovative and
technological tools – among them, drones. The use of drones makes the job easier,
safer, and time-saving.

The ability to monitor farms from a bird’s-eye view is beneficial to farmers,
especially in rough terrains. Drones can access vast areas of ground efficiently
with a low amount of risk. Human pilots can control the aircraft along its path,
but may have difficulties observing the drone’s complete environment. When the
drone is out of sight, it is reasonable to assume that the drone itself is better suited
to sense the surrounding environment and act accordingly to preserve a safe and
efficient flight. To do so, the drone will have to be equipped with the necessary
tools to allow for automatic flights.

From Linnestad and Ødegaard [4], we have that sheep farmers are struggling
to fulfill the authorities’ requirements on the amount of animal supervision. At the
same time, many animals are injured or killed by predators. This paper describes a
proof of concept where the overall goal is to verify if drones safely can be utilized
to cover an area for monitoring animals in outfield pastures. Since a majority
of animals in the outfields of Norway are sheep, the focus lies on, but are not
restricted to, sheep herding.

1



2 Linnestad, Ødegaard: Drones Covering Outfield Pastures

To isolate underlying concerns, the paper focus on answering the following
research questions:

1. How can a consumer drone be programmed to safely follow a predefined pat-
tern automatically?

2. How can a path be defined so that it efficiently covers a large range of polygons?
3. Is a system for automatically covering a user-defined search area efficiently

feasible, using consumer available technology?

Each research question is in fact dependant on the previous one. Number three
represents the final goal. If any of the former research questions fails, the system
is unlikely feasible. In other words, the drone has to be able to fly automatically
and a path covering an area must be derived from a predefined polygon.

The project is done iterative, and the paper is written chronologically. Chapter
2 introduces how sheep herding are done today and common challenges. It also
introduces different drone designs and what environmental challenges one have
to consider when flying a drone. Chapter 3 gives an introduction to the drone
used in this paper, Chapter 4 implements automatic flights into a drone, Chapter 5
describes how a user can interact with a map in a mobile application, and Chapter
6 and 7 find a suiting path to cover a predefined search area. Chapter 8 proposes
the final solution and puts components from the previous chapters together. Each
component is tested independently, and three full-scale tests are conducted and
described in chapter 8. Chapter 9 discuss results and the proposed solution, and
a final conclusion is given in Chapter 10.



Chapter 2

Background

Many Norwegian farmers place their livestock in forests or on mountains during
the summer. The animals feed on natural grass fields and nearby water resources
while farm pastures are left to grow. This makes animal farming less expensive
and time-consuming.

On the other hand, as animals are left in the wilderness, chances of accidents
and predator attacks increase. Rough terrain and harsh weather conditions can
endanger the animals’ physical and mental health, especially for young animals.
To cope with these challenges, farmers, individually or through cooperation, take
walks in grazing areas, making sure the animals are healthy and unharmed. Such
operations often involve long walks over hills and valleys and might be dangerous
for the farmer. Farmers need a better way to watch over their stock in outfield
pastures.

A possible solution is to take advantage of a drone’s elevated view and use this
to monitor the livestock in the terrain. Drones can cover large areas of ground in a
short time without endangering farmers or animals. At the same time, the aircraft
can be equipped with tools, such as radio receivers and thermal cameras, to aid
animal surveillance.

2.1 Sheep Herding on Outfield Pastures

Animals’ health is protected by Norwegian laws and regulations, for instance,
through the Animal Welfare Act [5] and Regulations of Welfare for Sheep and
Goats [6]. All animal farmers are obligated to treat their livestock well and pro-
tect them from dangers and unnecessary stress. This also applies for animals on
outfield pastures.

2.1.1 Statistics

According to statistics from 2019, more than 2,2 million of the Norwegian live-
stock graze on outfield pastures during the summer season [7]. A majority of these
animals are sheep. At the same time, there are several predatory animals residing

3
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in the same areas. From the year 2000 to 2019, statistics show a yearly average of
291 animal injuries caused by bears, 248 by wolfs, 187 by lynx, and 91 by wolver-
ines [8]. It is estimated that a total of more than 100 000 sheep died on outfield
pastures during the 2016 season [9]. More than 65% was assumed deceased from
other reasons than predators, such as illness, accidents, or not found during sheep
gathering. From these statistics, it is clear that a large number of animal deaths
and injuries can be avoided. By introducing new tools and technology for better
and more efficient animal monitoring, we hopefully can see a decrease in animal
injuries on outfield pastures.

2.1.2 Today’s Situation

To investigate how sheep herding can be improved, we need to understand today’s
situation, hence procedures and tools in use. According to Linnestad and Øde-
gaard [4], shepherds do walks on outfield pastures multiple times a week. Trips
are usually planned and carried out as a cooperative arrangement between mul-
tiple farms. Farmers with animals grazing in the same areas often have some kind
of partnership to increase the efficiency of the shepherding. Such methods im-
prove the quality of shepherding. Still, as animals usually are widely spread over
large areas of woods and hills, it can go several days before injured animals are
discovered and brought back for treatment. Sheep also tend to hide whenever
injured or frightened. Because of this, they are often hard to find – especially in
areas with rough terrain and thick forest.

Linnestad and Ødegaard states that most of the farmers use binoculars when
they are watching over their sheep. With binoculars, sheep can be seen from a
longer distance, which makes it more efficient and less exhausting for the farm-
ers. At the same time, it seems that many are struggling to fulfil the authority’s
recommendations on how often one should watch the animals. Can drones be
used to accomplish this goal?

2.2 Drones

As mentioned, drones are unmanned aerial vehicles. This section will investigate
common types of drones, compare them, and go into greater details about the
most common consumer drone, namely the quadcopter.

2.2.1 Different Drone Designs

There are several types of drones. The definition of a drone may include several
things, from weather-balloons to drones used in military operations, such as the
MQ–9 Reaper with a wingspan of 66 meters [10]. As this paper focuses on covering
an area, specifically in the wilderness, where farm animals graze, it makes sense
to look at common types of drones used in the consumer market. The following
are some common drone types [11]:



Chapter 2: Background 5

• Multi Rotor Drones: These drones have multiple rotors. The most common
is the quadcopter having four rotors. Quadcopters are relatively cheap to
make; they can take off from a standstill, and hover. It has a relatively high
energy consumption as it has to use energy constantly to stay elevated.

• Fixed-Wing Drones: These look like ordinary aeroplanes with a wing and a
propulsion system. They need a runway or a launcher to take off and are not
able to hover. Since fixed-wing drones use air to generate lift, they are more
energy-efficient than drones. They use energy to move forwards, rather than
upwards.

• Single Rotor Drones: These are more akin to helicopters with a single rotor
blade on the top, and usually, one at the tail, spinning vertically to keep it
in balance. They are harder to manufacture and, hence, more expensive
compared to other types.

• Hybrid Vertical Take-Off and Landing (VTOL) Drones: These are hybrids
of fixed-wing and rotor based designs and inherit the advantages of taking
off and landing anywhere while being energy efficient in the air.

They all have different capabilities and are used for various purposes. Due to
the drone used in this paper being a quadcopter, this is the drone design that will
be highlighted.

2.2.2 Quadcopters

Quadcopters have four propellers. In helicopters, there is a single rotor with mul-
tiple blades. Each blade can tilt around itself and helps stabilize and move the
aircraft. In quadcopters, however, the blades are rigid, meaning movement and
control come from the difference in uplift, between the four propellers. The air-
craft will move based on the velocity of each propeller. Propellers move in different
directions to keep the quadcopter stable. This is illustrated in figure 2.1. If all pro-
pellers were spinning in the same direction, the drone itself would spin in that
direction as well. On single-rotor helicopters, this effect is handled by a tail ro-
tor. On quadcopters, the rotors are moving in opposite directions, and the turning
forces on the drone nullifies.

A quadcopter moves by changing its pitch, roll, and yaw as well as throttle.
The throttle is simply how fast the propellers spin. Decreasing the throttle on a
hovering aircraft will cause it to descend. If the throttle increases, the quadcopter
ascends. The following list shows how the aircraft acts to changes in pitch, roll,
and yaw:

• Pitch makes the drone move forward and backwards. The aircraft will tilt
either forward or backwards and move in the direction it tilts. To pitch the
drone in one direction, propellers on the opposite side of the aircraft will
have to increase their thrust.

• Roll is a rotation around the drone itself. The aircraft will roll either to the
right or to the left and will move in the rolled direction. When the thrust on
the left propellers increases, the aircraft rolls to the right.
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• Yaw is a rotation around the vertical axis. A change in yaw makes the air-
craft’s direction (or heading) change. An example: the aircraft is hovering
and face north. It yaws clockwise and stops when it has turned 90 degrees.
It is now facing east. Yaw changes by increasing the throttle on propellers
spinning in the same direction as the yaw.

Figure 2.1: Alternating directions of propellers on quad copters. Green is
clockwise, red is counter-clockwise.

2.3 Environmental Considerations

To evaluate the use of drones for animal surveillance, we need to consider different
environments in which the drone may operate. Such environments may change
based on weather conditions, time of the year, time of the day, locality, or other
factors. For the drone to be able to fly safely and perform its objective, we present
important considerations and evaluate them with respect to the present problem.
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2.3.1 Changes in Wind and Weather Conditions

In this paper, we only consider the use of drones in outdoor environments. In
an outdoor environment, changes in weather and wind conditions can happen
quickly. For small and light drones, heavy wind can potentially cause the drone to
lose control and make it crash, hit an object, or damage the aircraft’s components.
It is primarily the responsibility of the operator on the ground to make sure the
weather conditions are ideal for flying the drone. Strong wind or heavy rain might
suddenly appear and damage the drone, so the pilot must take the necessary pre-
cautions before taking off.

Studies [12] have shown that when the wind is heading in the opposite direc-
tion as the flight direction, the drone will use less power. The battery consumption
will be lower when flying against the wind because of the increased lift the drone
gets when it is moving horizontally. When the drone hovers in the same position,
it does not gain any lift from the wind – the propellers have to do all the work.
As more air flows against the flight direction, less power is required to keep it
elevated.

2.3.2 Stationary Objects

There are many kinds of stationary objects one has to consider when flying a drone
outside. Some examples are houses, buildings, poles, antennas, towers, and power
lines. The drone should keep a safe distance away from such objects to avoid a
crash.

Many drones use a built-in compass to pinpoint the location and movement
of the aircraft. High voltage power lines produce electromagnetic fields. If mag-
netic fields interfere with the drone’s magnetic compass, it can affect the drone’s
manoeuvrability [13]. Depending on the distance to the power line, the results
can be catastrophic. Radiofrequency towers and other steel and electronic objects
can also produce the same kind of interference.

Outdoor environments often have vast vegetation. Trees and bushes in all
kinds of shapes might appear in the drone’s flight path. If this is the case, the
drone needs to take action to avoid crashing into the trees. If a rotor from the
drone hits a branch, this can be catastrophic for the aircraft. It will not just dam-
age the rotor, but a free fall from a considerable height down to the ground can
also damage other components of the drone. Personnel and animals on the ground
can also be hurt if they are hit by the drone.

Many drones have onboard obstacle avoidance systems. Such systems use
sensors to measure the distance between the aircraft and the surrounding obstacles.
If the distance gets too small, the aircraft’s flight controller will take necessary ac-
tions to avoid a crash. How well these systems work and how accurate they are
might vary based on the drone and the object.
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2.3.3 Moving Objects

Drones should fly at a safe distance from other flying objects, like birds, other
drones, and crewed helicopters and aircraft. Hitting other flying objects can cause
a hazard both to the objects themselves, and any personnel, both on the ground
and in the air.

There have been multiple incidents [14, 15]where birds, and especially eagles,
have attacked flying drones. One can assume that bird attacks are more likely to
happen if the drone is flying close to a bird’s nest. To avoid such incidents, one
should avoid flying near nesting areas.

2.3.4 Regulations

Regulations on the use of drones vary depending on the country. Since this is a
Norwegian study, we focus on laws and regulations conducted by the Norwegian
government and aviation authorities in Norway.

The Norwegian Civil Aviation Authority (CAA)[16] distinguishes between com-
mercial use of drones and drones for leisure. A commercial user is a person or or-
ganization making money from flying drones. If the drone is used as a hobby or
a sport, we define it as leisure. Different rules and regulations may apply to the
user depending on several parameters, like the drone type, the size of the drone,
the weight of the drone, and the purpose of flying the drone.

Commercial drone operators are required to apply for a flight certificate. The
CAA operates with three different certificates. Each of them has different restric-
tions and requires different applications (see Table 2.1).

Top Five Rules

The CAA has a list on their web page containing the top 5 most important rules
for flying a drone as a hobbyist. These rules are developed based on Regulations
Concerning Unmanned Aircraft etc. [17] and are considered as good guidance on
how to operate a drone. The top five rules are as follows:

1. The drone should always be kept within your sight and operated in a careful
and considerate manner. Never fly near accident sites.

2. Never fly closer than 5 km from airports unless you have explicit clearance
to do so.

3. Never fly higher than 120 meters off the ground.
4. Never fly over festivals, military facilities or sporting events. Keep a distance

of 150 meters.
5. Be considerate of others privacy. Take note of the rules concerning photos

and films of other people.

The drone is kept within sight during all tests described in this paper, as stated
by rule number 1. Rules 2, 3, and 4 are fulfilled by performing tests on extens-
ive grasslands, football fields, or in the woods. Any photos or videos containing
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Type of
certific-
ate

Restrictions Application

RO1 • Max weight: 2.5 kg
• Max speed: 60 knots
• Requires a visual line of
sight to the drone
• Restricted to flight in day-
light

Letter to the CAA with inform-
ation about the organization
and drone type

RO2 • Max weight: 25 kg
• Max speed: 80 knots
• Requires a visual or exten-
ded visual line of sight to the
drone

• Pass online exam
• Receive approval on an ap-
plication containing a risk ana-
lysis and an operation manual
for the use of the drone

RO3 • Pass online exam
• Receive approval on an ap-
plication containing a risk ana-
lysis and an operation manual
for the use of the drone

Table 2.1: Comparison of three different operator classifications. RO = RPAS
(Remotely Piloted Aircraft Systems) Operator.

personal information captured by the drone during any of the tests are handled
confidential and deleted after each test. No photographic material containing per-
sonal information is stored or shared on public channels.

Privacy

Many drones have a camera device in addition to other sensor components. If any
of these components capture or record information, e.g., images, sound record-
ings, or videos, about a person, privacy regulations apply. The Norwegian Data
Protection Authority (DPA) has developed five recommendations [18] regarding
data privacy and drones:

• Minimize the amount of recorded information about humans and other
identifiable objects.

• Make yourself visible when operating the drone.
• Do not use pictures or information captured by the drone for other purposes

than originally intended.
• Make sure all information captured by the drone is safely stored. Evaluate

the security mechanisms in the software on the drone and any device storing
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the information.
• In commercial operations, make sure to have a valid agreement with clients

regarding the ownership of the captured information.



Chapter 3

The Drone

The work described in this paper utilizes a DJI Mavic 2 Enterprise Dual to test auto-
matic flights. The Mavic 2 Enterprise Dual is an all-purpose foldable drone, with
both a regular camera and thermal vision. It has four electric motors, a lithium
rechargeable battery, as well as obstacle detection in all directions. This chapter
highlights features of the drone used in this thesis, both in terms of hardware and
software. All specifications are taken from the official user manual [19]. Table 3.1
highlights key specifications that are relevant to this project.

Specification Value

Takeoff weight 899 grams
Max takeoff weight 1100 grams
Dimensions(Length/Width/Height in cm 32.2/24.2/8.4

Max accent speed
5 m/s in S-mode
4 m/s in P-mode

Max descent speed 3 m/s

Max speed
70km/h in S-mode
52km/h in P-mode

Max flight time 31 minutes at a consistent 25km/h
Operating temperature -10°C to 40°C

Table 3.1: Relevant specifications of the DJI Mavic 2 Enterprise Dual.

3.1 Introduction

Given the difference in drones, both in capabilities, customizability and availabil-
ity, it is important to look at the drone used for the tests and in the overall system.
Although the system is built to be general, some parts depend on the drone itself.
This chapter gives an overview of the drone used in this paper. Specifications of
the drone are investigated and we discuss how these affect the proposed system.

11
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3.2 DJI Drones

Dà-Jiāng Innovations (DJI) is the largest consumer-based drone manufacturer in
the world. The Shenzen based company grossed over $2.7 billion in 2017 [20].
Drones produced by DJI are used in everything from photography and film-making
to surveillance and agriculture. They offer a large variety of drones for different
purposes, both for general consumers, as well as enterprise drones with special-
ized purposes. The different drone series they offer are as follows:

• Mavic – Foldable all-purpose drones
• Spark – Small relatively cheap drones
• Phantom – Drones with advanced aerial mapping capabilities
• Matrice – Highly durable and configurable, increased load capability

There are also several variations within each series. An example would be the
Mavic series where the smallest drone – Mavic Mini – has a takeoff weight of
249 grams compared to the Mavic 2 Enterprise with a max takeoff weight of 899
grams.

3.3 Modes of Flying

The DJI Mavic 2 Enterprise Dual offers three different modes of flying. The modes
affect how the aircraft responds, both in terms of speed and other features such
as obstacle avoidance. The different modes are as follows:

• P-mode – Positioning mode (default). This mode limits the maximum flight
speed, enables obstacle avoidance, and good GPS reception is key. This
mode must be enabled to program the drone.

• S-mode – Sport mode. This mode disables obstacle avoidance and has a
much higher maximum flight speed. It gives more direct control of the
drone, compared to the other modes.

• T-mode – Tripod mode. Similar to P-mode, but with much slower maximum
speeds. Used for stable shooting of images and precision flights.

As this paper aims at automatic flights, P-mode is the obvious choice.

3.4 Electric Motors and Propellers

The combined maximum takeoff weight of all four motors is 1100 grams. As the
drone itself weigh 899 grams, this allows for up to 201 grams of additional equip-
ment. The ascent speed has a maximum of 5 m/s and the descent speed a max-
imum of 3 m/s. This means that from hovering at ground-level to a maximum
height of 120 meters, the drone would use 24 seconds, and 40 seconds back down.
This is actually a significant time when the maximum flight time with one battery
is roughly 31 minutes. Takeoff and landing will, in other words, steal ~3% of
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the total time of one flight with a fully charged battery, given an altitude of 120
meters.

The propellers featured on the Mavic 2 Enterprise are detachable. Each one
connects to a specific motor, given by a colour-coding. This is important because
the motors, and, hence propellers, rotate in different directions.

3.5 Battery

The battery can be detached from the aircraft. This means one can have multiple
batteries and easily replace it if one battery runs out. As stated in the previous
section, the battery pack lasts for approximately 31 minutes in ideal conditions.
This is at a moderate speed of 24 km/h. With these metrics, the drone should
be able to fly around 12 km, flying in a straight line, at the same altitude, under
optimal weather conditions.

3.6 Remote Controller

The DJI aircraft is manually controlled by a remote controller. The controller has
two sticks for controlling the aircraft, buttons to issue commands such as to start
filming or take a picture, as well as a screen used to show the state of the aircraft,
such as possible errors, collision detection, and altitude. There are two antennas
attached to the controller. The transmission distance is 5000 meters unobstructed.

The controller can be connected to a smartphone to issue commands from
the phone, change settings and see a video feed from the drone’s camera. The
connected phone can communicate with the drone through either the official DJI
application or a custom-made application. Figure 3.1 shows an overview of how
the different hardware components communicate.

3.7 Object Detection and Avoidance

The DJI Mavic 2 Enterprise Dual also has a vision system consisting of sensors
around the drone. With the vision system, the aircraft can detect obstacles in its
path. Depending on the mode of the aircraft, it will try to avoid the obstacle. This
is done either by stopping, flying over, or around the obstacle. An operator can
change the settings for which action to take. This is a built-in feature, and will not
have to be implemented.

3.8 Software Development Kits

DJI offers Software Development Kits (SDK) to create custom functionality and
applications. The SDKs provide functions that access the built-in features of the
drone. The different official SDKs provided by DJI are as follows:
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• Mobile SDK – Includes SDKs for both iOS and Android.
• UX SDK – Includes UX drop-in components to integrate functionality swiftly.
• Onboard SDK – Used to add functionality directly to the aircraft.
• Payload SDK – Allows for third-party hardware to communicate with the

aircraft.
• Windows SDK – Allows Microsoft Windows applications to access the air-

craft.

The SDKs have access to several parts of the drone. An example is the iOS SDK
having access to the following:

• High and low-level flight control.
• Aircraft state through telemetry and sensor data.
• Obstacle avoidance.
• Camera and gimbal control.
• Live video feed.
• Access to drone media files.
• Route planning for automatic flight.
• State information from the battery and remote controller.

Figure 3.1: Overview of the communication between the mobile application
using the iOS SDK, the remote controller, and the drone.
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Route planning, flight control, obstacle avoidance, and state information is
of high relevance to this project. Figure 3.1 shows how the SDK is used in an
application to communicate with the aircraft through the remote controller. The
use of the SDK in this project is described in greater detail in Chapter 4.





Chapter 4

Automatic Flight

4.1 Introduction

This chapter describes the choices and implementation of automatic flights with
the DJI Mavic 2 Enterprise Dual. It is divided into sections from initial research
to implementation details, automatic flight testing, results, discussion, and a con-
clusion. The goal behind the test in this chapter is to verify the possibility of auto-
mated flights along a defined path, as well as gather metrics, such as completion
time, for different tasks. The results provide a foundation for the other parts of
the system, such as path planning and user-defined search areas.

4.2 DJI SDKs

As the drone used in this thesis is a DJI Mavic 2 Enterprise Dual, some considera-
tions are made due to custom functionality limitations. As described in chapter 3,
DJI offers SDKs to control the drone programmatically and receive feedback from
sensors. This section looks at the different SDKs provided by DJI and highlights
the pros and cons in regards to this project. Features supported by the SDKs are
shown in table 4.1.

4.2.1 Mobile SDK

The mobile SDK communicates with the aircraft through a mobile application
connected to the remote controller. There exist versions both for iOS and An-
droid. Combined, iOS and Android hold 100% of the market share in the world,
with Android at ~87% and iOS at ~13% [21]. In Norway, the two operating sys-
tems are more evenly shared, with ~55% for iOS and ~45% for Android [22]. In
other words, building a system for both Android and iOS will, in practice, cover
the whole smartphone market. The iOS SDK is available in the programming lan-
guages Objective-C and Swift, while the Android SDK is available in Java.

17
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Pros

A mobile application gives the apparent advantage of having a touch screen to
display information on and to register input from the user. Medienorge says that
95% of all Norwegians have access to a smartphone [23]. This means that a sys-
tem built for smartphones is highly available to the public. In addition to the high
availability, a smartphone is usually compact in size and easy to transport. Other
hardware, such as laptops, are more cumbersome to use in remote areas, due to
their size and low battery capacity. The Mobile SDK also includes a lot of func-
tionality relevant to this project, such as defining automatic flights.

Cons

As can be seen in Table 4.1, the Mobile SDK lacks a lot of the features of the On-
board SDK. Another limitation is the need for a smartphone to use the system. The
Mobile SDK will require the use of three hardware parts: the phone, the controller,
and the drone itself. This means the total cost of the system increases. However,
as most people have a smartphone, this is not a practical limitation.

4.2.2 UX SDK

The UX SDK is a collection of premade UI elements using the Mobile SDK. As
such, the UX SDK has a subset of the features of the Mobile SDK. These features
are linked to UI elements, and the UX SDK aims to make application development
easier.

Pros

The UX SDK allows for rapid development of standard functionality. The compon-
ents in the UX SDK do not require a lot of programming, and you gain access
to many common UI elements, such as maps, buttons, and video feed. The com-
ponents use the underlying Mobile SDK and, as such, work on a higher level of
abstraction.

Cons

As the components in the UX SDK are already built, they lack customizability.
Adding additional functionality to a component is therefore limited. As the UX
SDK builds upon the Mobile SDK, all the cons of the Mobile SDK also apply to the
UX SDK.

4.2.3 Onboard SDK

The Onboard SDK is a set of different libraries to be used onboard the DJI drone,
and this means the code runs directly on the drone (or controller). In other words,
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a mobile phone is not needed – only the drone and the controller – when using
the Onboard SDK.

Pros

Table 4.1 shows that the Onboard SDK is the most feature-rich SDK. It shares the
same features as both the Mobile SDK and the Windows SDK but has also access
to more advanced features.

Cons

Due to being able to communicate with the Mobile SDK, there are almost no ob-
vious disadvantages to the Onboard SDK. However, when looking at the ease of
development, the Onboard SDK uses low-level languages and requires more in
terms of setup and development expertise. The documentation is also poor in
terms of examples.

Feature Windows SDK Mobile SDK Onboard SDK

High and low level flight
control

Ø Ø Ø

Aircraft state data Ø Ø Ø
Obstacle avoidance Ø Ø Ø
Camera and gimbal con-
trol

Ø Ø Ø

Live video feed Ø Ø Ø
Pre-defined missions Ø Ø Ø
State and control of bat-
tery and remote control-
ler

Ø Ø Ø

Access to media stored
on camera

Ø Ø

Stereo vision video feed Ø
Real-time disparity map Ø
Custom local-frame nav-
igation

Ø

Mobile SDK communica-
tion

Ø

Multi-function I/O ports Ø
Synchronization with
flight controller

Ø

Table 4.1: Features of the different software development kits (SDKs) from DJI.
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Payload SDK

The payload SDK is used to program communication between third-party hard-
ware and the drone.

Windows SDK

The Windows SDK offers almost all the features of the Mobile SDK but runs ex-
clusively on a Windows Operating System. As such, it has a clear disadvantage, as
the most common Windows systems being laptops and, thus, being less portable
than a smartphone.

4.2.4 Conclusion

The Mobile SDK, specifically the iOS SDK, is found to be the best option for this
project. There are several reasons for this choice. Firstly, as this system includes
both a user interface and automatic flight, the choice of using the Mobile SDK
means everything can be packaged into one application. If additional features
provided by the Onboard SDK is needed, this can be added by using the Onboard
SDK-to-Mobile SDK communication feature. Secondly, both authors are in posses-
sion of iOS devices, and for convenience, iOS is chosen over Android.

4.3 Implementation

This section discusses the initial setup of the mobile application, what features are
required from the Mobile SDK and how the SDK is implemented.

4.3.1 Mobile SDK Details

Flight Control

Flight Control holds a set of functions that controls the aircraft and reads aircraft
statuses. The Mobile SDK does not support all functionality in flight control. Most
of them are documented, but during implementation, many of them return the
following error message: This feature is not supported by the SDK. Therefore, such
features can not be utilized.

Missions

Missions are used to automate flights. Missions are either managed by the ap-
plication or uploaded and managed by the aircraft. Different types of predefined
missions are offered by the SDK. The following are predefined mission types:

• Waypoint Missions use a series of coordinates (waypoints), automatically
fly between each waypoint, and may execute an action at each. Waypoint
Missions are uploaded and executed by the aircraft.
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• Hotpoint Missions are fixed points that the aircraft will fly around at a con-
stant radius. Adjustable parameters include speed, altitude, and direction.

• FollowMe Missions instruct the aircraft to follow a GPS-positioned object
(e.g. mobile phone) at a fixed distance. This can be used when the object
(e.g. a person with a phone) is moving, and the aircraft can not be remote-
controlled by an operator.

• ActiveTrack Missions uses the aircraft’s vision system to track a subject. The
user defines the subject with a rectangle and confirms the subject to be
followed.

• TapFly Missions allows the aircraft to move to an object marked by the user
on the screen. It uses the visual system to determine the location and flies
towards it.

• Panorama Mission turns the camera around while taking pictures: The pic-
tures are then combined to create a panorama picture. This feature is not
supported by the Mavic 2 Enterprise.

All these mission types inherit from the MissionControl class. The MissionControl
class can be used to create custom missions. Missions are created by adding Ac-
tions to a Timeline. An Action is an operation for the aircraft to perform. A Timeline
is a series of Actions to be executed sequentially. The timeline is uploaded to the
aircraft, and the aircraft performs the first action when the timeline is started.
Upon completion of an action, the aircraft performs the next. There are several
types of actions. The most relevant ones are listed here:

• GoToAction – defines a location and altitude for the aircraft to move to. It
also allows the flight speed to be set.

• TakeOffAction – makes the aircraft start its propellers and take off from the
ground.

• Landaction: Makes the aircraft land and turn off its propellers.
• GoHomeAction: The aircraft will fly to its home location. The default home

location is the point of takeoff.
• ShootPhotoAction: The camera will take a photo.
• GimbalAttitudeAction: the gimbal will change direction. This is used to move

the camera.
• AircraftYawAction: Changes the direction of the aircraft.

Together these actions can be used to automate a flight, from takeoff to land-
ing. While in the air, the ShootPhotoAction makes it possible to take a picture
automatically. This, combined with GoToAction, can be used to survey an area.

4.3.2 Implementation of iOS Application

As the goal behind the first iteration is to get the drone to fly automatically in
predefined patterns, as well as to know the capabilities of the drone, the first
implementation focuses on a small part of the system, namely automatic flight in
predefined paths. Thus two features are implemented: connecting to the drone
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and creating custom missions.

Connecting to the Drone

To use any of the features of the Mobile SDK, one first has to connect to the
drone. This requires the phone to be connected to the remote controller. When the
phone is physically connected to the remote controller, the application has to be
registered using the DJISDKManager. Listing 4.1 shows how the mobile application
is registered with the DJI Mobile SDK. A SDK key, provided by DJI, is stored in a
configuration file and automatically read by the DJISDKManager upon registration.

1 //Example of registration app with the SDK
2

3 import DJISDK
4

5 class DJI: NSObject, DJISDKManagerDelegate {
6 override init() {
7 super.init()
8 self.registerWithSDK()
9 }

10

11 func registerWithSDK() {
12 DJISDKManager.registerApp(with: self)
13 }
14

15 // MARK: DJISDKManager Delegates
16

17 func productConnected(_ product: DJIBaseProduct?) {
18 NSLog("Product connected")
19 }
20 }

Code listing 4.1: Swift implementation on how to register the application
with the DJI Mobile SDK.

Listing 4.1 does not consider errors, such as not being connected to the drone
and other failures. This is an example of how to register the application. The SDK
manages most of the registration, leaving error handling and overhead control
to the developer. Error handling is included in the final implementation [24].
In this case the application invokes registerApp which upon completion calls
productConnected. When productConnected has been called, features of the Mo-
bile SDK are available.

Mission

Once the application has been registered with the SDK and the product is connec-
ted, missions are available. Missions are explained in section 4.3.1. In the initial
implementation, custom missions are used. Listing 4.2 shows a very simple use of
custom missions.
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1 func addTimelineElements() {
2 let missionControl = DJISDKManager.missionControl()
3 missionControl?.scheduleElement(DJITakeOffAction())
4 missionControl?.scheduleElement(DJIGoToAction(coordinate:

CLLocationCoordinate2D(latitude: 63.418337, longitude:
10.402769), altitude: 5)!)

5 missionControl?.scheduleElement(DJILandAction())
6 }
7

8 func startTimeline() {
9 DJISDKManager.missionControl()?.startTimeline()

10 }

Code listing 4.2: Swift implementation of a custom mission.

The addTimeLineElements function adds actions to the timeline. The following
actions are scheduled between line 3 and line 5:

• DJITakeOffAction – returns an action for the aircraft to take off
• DJIGoToAction – returns an action for moving to a certain GPS-coordinate

with a defined altitude
• DJILandAction – returns an action for landing the aircraft

When addTimeLineElements is called all these actions are uploaded to the air-
craft. The aircraft then awaits the timeline to start. This is done by calling the
startTimeLine function. Calling the function starts the execution of the timeline
on the aircraft. By using custom missions, and these actions, all tests defined in
4.4 may be performed.

4.4 Test Plan

4.4.1 Introduction

This section describes a test plan for the first iteration. The goal of the test is for the
drone to fly in predefined patterns and land automatically upon completion. Sev-
eral tests are performed to verify the implementation of the iOS application. They
also confirm that the current implementation works and satisfy all the require-
ments, and give metrics on the speed at which the drone can complete different
actions. The test is mainly to get an idea of the capabilities of the drone, which are
used as a base for further development. For every test, the time to complete each
action and the time between each action are measured. This is used to determine
the cost of different types of actions, as well as the cost of having multiple actions.

4.4.2 Automatic Flight Tests

This section describes and justifies each test. Figure 4.7 shows the tests #3-5 with
a birds-eye view. Test #1 and #2 are excluded due to not changing coordinates,
only altitude.
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Test #1

Test #1 is simply a takeoff and a landing. The aircraft should take off and fly
to approximately 70 cm, followed by landing safely in the same spot. This test
shows whether the aircraft can land and take off automatically. These actions are
essential for the rest of the system. Figure 4.1 shows each step and what will be
measured for test #1.

Figure 4.1: Steps in automatic flight test #1.

Test #2

Test #2 consists of taking off, increasing altitude to 2 meters, and landing. This test
shows if the land action can be performed from a higher altitude than a finished
takeoff altitude. Figure 4.2 shows each step and what will be measured for test
#2.

Figure 4.2: Steps in automatic flight test #2.

Test #3

Test #3 includes the following actions: takeoff, increase altitude to 5 meters, move
to a defined location approximately 40 meters from the starting point, return to
the takeoff location and land. This test shows if the drone can move to a defined
location and how fast it moves. It also shows how fast the drone can do a 180°
turn. Figure 4.3 shows each step and what will be measured for test #3.

Test #4

Test #4 is as follows: take off, move to a location while increasing altitude to 20
meters, return to the takeoff location while decreasing altitude to 1 meter, and
land. This test is performed to check how the drone moves between two points
with different altitudes. Figure 4.4 shows each step and what will be measured in
test #4.
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Figure 4.3: Steps in automatic flight test #3.

Figure 4.4: Steps in automatic flight test #4.

Test #5

Test #5 is as follows: take off, move to an altitude of 10 meters, move 20 meters,
move another 20 meters in the same direction, return to start point, and land. This
test is performed to see how much delay there are between consecutive actions.
Figure 4.5 shows each step and what will be measured in test #5.
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Figure 4.5: Steps in automatic flight test #5.

Test #6

Test #6 includes the following actions: take off, move in a square roughly ten by
ten meters at an altitude of 5 meters, return to takeoff location, and land. This
test verifies if the drone can move between several defined locations and return
to the starting point. Figure 4.6 shows each step and what will be measured in
test #6.

4.5 Results

The test was performed on the 10th of March at Dødens Dal in Trondheim, Nor-
way. The time of the test was between roughly 14:30-14:40, and the wind in
Trondheim at that time was between 4.3 m/s and 7.6 m/s [25]. This section
presents results from the tests. Table 4.2 shows the total time for each test.

Test # Time (s)

1 15.93
2 26.67
3 60.75
4 55.20
5 74.42
6 95.29

Table 4.2: Time from starting takeoff to finished landing for each of the 6
automatic flight tests.



Chapter 4: Automatic Flight 27

Figure 4.6: Steps in automatic flight test #6.

4.5.1 Takeoff

As every test includes a takeoff step, we can find out the average time used on a
takeoff action. The tests indicate that the drone hovers at an altitude of 1 meter
at the completion of the takeoff step. The average time is 4̃.93 seconds to take off.

4.5.2 Intermediate Steps

Between two actions is an intermediate step where the drone hovers. This step
averages to 5.39 seconds. Results show that the time used on the intermediate
step depends on the preceding action. Table 4.3 shows different averages of time
in intermediate steps.

4.5.3 Relevant Results of Each Test

Test #1

The total time of the test was 15.93 seconds. 7.06 seconds were used on the in-
termediate step between takeoff and landing.
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Figure 4.7: Illustration of steps in tests #3-6. Does not include steps for landing
and takeoff. Green is test #3, blue is test #4, yellow is test #5, and red is test

#6.

Intermediate step Average time (s)

All intermediate steps 5.40
Intermediate step after takeoff 8.08

Intermediate step excluding takeoff 4.37

Table 4.3: Averages of intermediate steps through all automatic flight tests.

Test #2

The aircraft moved to a height of 1-meter altitude and hovered. This was followed
by increasing the altitude to 2 meters and from there, directly landing. The total
time used on test #2 was 26.67 seconds.

Test #3

Results from test #3 show that the aircraft used 10.24 seconds to the first point
and 8.46 to move back. That is, two equal actions were performed, but the results
show a different time usage. The total time used on test #3 was 60.75 seconds.

Test #4

The aircraft flew 20 meters away while increasing altitude. It flew in an inclined
line to the designated point. It also flew inclined back to the takeoff location. Test
#4 used a total time of 55.20 seconds.
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Test #5

The aircraft used 4.94 seconds at step 5, hence, with no change in direction or
altitude. Total time used was 74.42 seconds.

Test #6

The average time to turn 90° and fly 20 meters was 7.61 seconds, not including
intermediate steps. Total time used was 95.29 seconds.

4.6 Discussion

There are several things to discuss, both in regard to the choices of implement-
ation, the tests, and the results of the tests. This section discusses each, in turn,
starting with the choices of implementation, followed by the test as a whole, fin-
ishing with the results of the tests.

In regards to the implementation, the choice fell on using MissionControl from
the iOS SDK. This choice is the one with the most freedom, considering that most
of the FlightControl features are not supported. This implementation does not
utilize other actions than GoTo, TakeOff, and Landing. As such, it might have
been easier, development-wise, to use Waypoint Missions instead. This will be a
consideration when implementing further features of the system. Another point
is that a custom mission uses a long time on each intermediate step. Other types
of missions, e.g. Waypoint Missions, may be optimized internally to limit this.

The goal of the tests is, as stated, to see the capabilities of the aircraft and how
it behaves in the air. As such, the tests were performed to find these capabilities.
This means that although the tests were timed, the focus does not lie on the accur-
acy of these timings, nor the travelled distances. The results of the tests may have
varied if performed under different conditions. And although time was measured
under each test, the strength of these measures may be considered weak. They
do however give several indications on how the aircraft performs and gives an
estimate on the expected maximum flight distance.

Results from each test show that the aircraft performs as expected – all tests
completed from start to finish. The aircraft travels to designated points and does
so in an inclined line when altitudes differ. It also lands from any height given a
land action. The most interesting results from the tests are the intermediate steps,
averaging around 5.40 seconds between each action. This is a long time where the
aircraft is not moving. The aircraft uses more time in intermediate steps directly
following takeoff than in other intermediate steps. Intermediate steps still average
out to 4.37 seconds, disregarding the intermediate step after takeoff. This means
that for each additional action performed, another 4.37 seconds of flight time can
be added. For an entire flight covering an area, this is a considerable amount of
time. If the mission consists of 50 locations, that is an additional 3 minutes and
38.5 seconds where the aircraft is doing nothing. Long intermediate steps is also
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a consideration for actions that do not change direction or altitude, as shown by
test #5.

As all tests were done under heavy wind, there is reason to believe that the
times would improve under better conditions. The aircraft was visibly fighting the
wind to get to the right position, and this could be one of the reasons for the long
intermediate steps.

4.7 Conclusion

The overall purpose of this chapter is to verify that the drone can fly automatic-
ally to predefined locations, how to implement this on a DJI Mavic 2 Enterprise,
and test the capabilities of the drone when flying automatically. DJI offers several
SDKs, and the choice falls on the iOS SDK, due to the system requiring a user
interface. The features of the Onboard SDK is also available by communication
through the Mobile SDK. Using features from the Onboard SDK falls outside the
scope of this thesis, but might come in handy in future work.

The implementation uses missions. This allows the developer to define actions
for the drone to perform, such as taking off, flying to a location, and landing. Using
these actions, one can define flight paths for the aircraft, and the aircraft will fly
to them automatically.

The implementation was tested to chart the capabilities of the aircraft when
flying automatically. The tests focus on basic flying, such as taking off, landing,
moving to locations, and changing altitude. The results of the tests show that a
big factor for the time the aircraft uses is the intermediate steps between actions.
Limiting the number of actions will reduce the overall completion time signific-
antly. Due to the high cost of each GoTo Action, Waypoint Missions are assumed
to be better suited. Further development will discuss and investigate the use of
Waypoint Missions.
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The Application

5.1 Introduction

This chapter describes the implementation of a mobile application for user inter-
action. The goal is for the user to be able to define an area on a map. This area
represents the search area in the field where the drone should perform its search.
The search area will then be sent to a dedicated server, which calculates a suited
path for the drone. The application will compose a mission based on the path in
the response and transfer this to the drone, which will then execute the mission.

The first sections of this chapter will give a quick introduction on how users
can interact with a map and how a map can and should be implemented into
an iOS application. Based on the current problem description, we compare map
frameworks and find the one that is best suited. Next, we describe the implement-
ation of the map in the application before we verify our design through usability
tests.

5.2 Design Considerations

A map can be used in many ways. The map’s design must respect and satisfy how
a user is supposed to use it. A map can show roads and railroad tracks, or it can
show contours and hiking tracks. Which map representation to choose depends
on the user’s goal. If the map is interactive, possible controls should be visible for
the user as well. This section describes design considerations when implementing
a map view into an application.

5.2.1 Guidelines from Apple

Apple has implemented a number of Human Interface Guidelines [26] for Apple
developers. These guidelines are specially designed for the development of iOS
applications and ensure a more persistent user experience across different applic-
ations. The guidelines include a section [27] about how maps should be used in
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an application and how users should be able to interact with maps. The most
important pinpoints are described below.

Keep the Map Interactive

Most maps found in mobile applications and websites are interactive. A map is
interactive if a user can interact with the map, e.g., move the map, zoom in and
out, or get directions. In a mobile application, one usually takes advantage of what
is called gestures. Gestures are actions a user can perform on the screen using its
fingers. Modern devices often support both multi-finger touch and force-touch.
This means that the number of fingers and the force of the touch respectively can
be used to perform different actions. In other words, a soft press can trigger a
different reaction than a hard press.

Consistency With the Rest of the Application

Map service providers, like Google Maps and Apple Maps, have their own layouts
and themes. The respective provider sets colours, buttons, and typography, and
the map layout may not be consistent with the rest of the application. Apple states
in their guidelines that developers should implement the application’s theme into
the map’s layout. This ensures consistency and enjoyable user experience. One
example is the colour of annotations pins placed on the map by the user. If the
pins represent some data displayed to the user outside the map view, the pin’s
icon and colour should be equally styled.

Keep Map Controls Visible

It is common to add custom controls to a map. Custom controls are used to in-
teract with the map or other services in the application. To avoid custom controls
to blend in with the map, one should choose colours wisely. Controls that look
similar to objects on the map tend to be harder to see by the user. This can cause
frustration and poor user experience.

5.2.2 Axis Maps’ Cartography Guide

Axis Maps is a company formed in 2006 in the USA. Their goal is to provide custom
maps that conform to the user’s requirements. They focus on design and intuitive
user interfaces, rather than algorithms. On their homepage, we find a cartography
guide [28] that is further described below.

Medium

When deciding on map design, the medium on which the map will be displayed
matters. On a higher level, a decision has to be made whether the map will be
displayed on paper or on a screen. A map on a paper is not interactive and can not
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be customized by the user in the field. All the information needs to be displayed
on the paper, or it will lose its usability for the user. A screen can be either an
ordinary display screen or a touch screen. Touch screens are usually smaller, but
can often support a more significant number of gestures, compared to a display
screen. If the map should support several different media, maybe multiple designs
have to be made.

Audience and Purpose

What the users are using the map for, and who the users are, play an important
role when it comes to map design. Professional or enterprise users usually require
a more complex map design than ordinary users. For an ordinary user, a plain map
with little interaction might be sufficient. Professional users, on the other hand,
might have different requirements, based on their work and goals. The design can
vary, based on profession and field of work.

Map-worthiness

Axismaps states that just because data can be mapped, doesn’t mean it should be
mapped. Maybe there are more suited ways of representing the data than on a
map, e.g. in a table. You do not need a map if you know the area and have an
address.

Interactivity

Static maps represent a cartography state at a given point in time, for example, a
printed map on a sheet of paper. Static maps can also be digital, often displayed
as an image, but the level of interaction is still minimal, compared to what we call
interactive maps. Interactive maps are usually web-based and can be displayed on
different digital media. They can hold more information than a static map, and
give more control to the user. Careful consideration has to be given to the design,
the flow of user experience, and the overall user interface.

5.2.3 A Map to Fulfil the User’s Needs

Most people with a smartphone have used a map application to find a place, give
road directions, or locate oneself or others. A user always has objectives or goals
he or she wants to achieve when using an application. If the application does not
fulfil the user’s needs, a more suited application will often replace it.

Just like an application is designed for some purpose, a map has to be designed
to fulfil the user’s needs. For example, if a person wants to use a map for road
directions, it would not make sense to show railroads and hiking trails. A map
with too much information, or wrong information, will be frustrating for anyone
using the map.
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5.3 Framework

Digital maps have been on the market for a while now. Since this project concen-
trates on developing a mobile application for iOS devices, a requirement is that
the map service can be implemented directly into an iOS application.

Two popular map services that fulfil this requirement are Google Maps [29]
by Google and Apple Maps [30] by Apple. As seen in Figure 5.1, Apple Maps and
Google maps look similar when it comes to the theme and the look of the map
layer. On the other hand, we note that Google Maps offer a more rich layout, with
more annotations, buttons, and controls. Other map service providers exist, like
MapQuest [31], Open Street Map [32], and Maps.me [33], but to keep the imple-
mentation effort to a minimum, we focus on Google Maps and Apple Maps. Both
of these services provide support for iOS and documentation on how to implement
them.

Figure 5.1: Graphical comparison between Google Maps (left) and Apple Maps
(right).

5.3.1 Comparison

To make a decision on what map provider is best suited for the application, we
need some evaluation criteria.

First, we require the service to be implementable into the iOS environment,
either through a framework or a software development kit (SDK). The former is
often easier to implement since it does not rely on third-party libraries. The latter
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Criteria Google Maps Apple Maps

Can be implemented
into iOS application

Ø(Google Maps SDK for
iOS)

Ø(Apple MapKit Frame-
work)

Map objects Ø Ø
Gestures Ø Ø
Ease of implementa-
tion

Moderate Easy

Quality of document-
ation

Good Good/moderate

Free? Ø1 Ø
Storage/processing
overhead

None/small Moderate

Integration into iOS
environment

Good/Moderate (separate
SDK)

Good (Apple framework)

Table 5.1: Comparison between features of Google Maps and Apple Maps.

requires the developer to install a library into the application environment but
results in more options.

Secondly, the map should support annotations (pins, markers), to be used
as demarcations around the search area. It is a plus if the map can visualize the
search area for the user in a good way. Either as a coloured overlay, a polygon with
corners at the annotations, or both. Other criteria are ease of implementation, rich
set of gestures, intuitive action handling, the ability to customize the user interface
and add custom controls. The full comparison is summarized in Table 5.1.

Both of them have pretty much the same set of features and functionality.
Some of Apple’s documentation is outdated, but forums and development com-
munities provide answers to common questions. Google Maps has a starter plan,
which is free. Expenses will grow if you plan to use more advanced features and
not be restricted by a request rate limit. Apple is free forever and has no rate limit.
Since the application is implemented in an iOS environment, the implementation
effort is smaller for Apple Maps than Google Maps.

Since Apple’s MapKit is easier to implement and integrates better with the rest
of the app, it is probably the most suited framework when it comes to implementa-
tion effort. On the other hand, after pilot testing the two frameworks, we find that
many of the required features are easier to implement with Google Maps. MapKit
is also more restricted when it comes to gestures, especially drag-and-drop versus
tapping. Based on this, we found that Google Maps are more suited for the task
and is more likely to fulfil the requirements of the mobile application.

1Up to $200 worth of usage. See https://cloud.google.com/maps-platform/pricing

https://cloud.google.com/maps-platform/pricing
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5.4 Implementation

In this section, we will walk through the implementation of the map view step-
by-step. To install Google Maps into our application sandbox, we use cocoapods.
Cocoapods [34] is a dependency or package manager for Swift and Objective-C
projects, much similar to pip for Python and npm for Node JS. A package manager
is useful when working with open-source code and third party libraries because
the install process is a lot easier than doing it manually.

5.4.1 Privacy

To use the GPS location of the device, the user has to allow this in the application.
This is handled by iOS under the hood. We need to provide a text that describes
what the location is used for. We can choose to ask for location All the time or When
in use. For simplicity, we provide a description for both of them. Global settings
like this are configured in a special file, called info.plist (information property
list), which also holds other important information about the application and the
overall environment.

5.4.2 Architecture

Swift uses a model–view–controller (MVC) architecture. The model represents the
data that is stored in the application. This can be a database, a simple object, or
a file. In great extent, we do not consider the model yet. The Google Maps SDK
handles all data displayed on the map. Later on, a backend server will act as our
model to the application (see Chapter 6).

A Swift controller is responsible for displaying a view on the mobile screen.
In the proposed solution, the view is the actual map. The controller acts as a con-
sumer of gestures and actions performed on the view, by the user. The controller
will also be responsible for performing requests to the backend server and accept
responses with data to be displayed.

5.4.3 Application Flow

To make changes to the map, we define a Swift class called MapController in which
holds a reference to the map view. The map controller handles gestures, adds
objects to the map, or changes the layout. When the user taps at a location on the
screen, the controller finds the corresponding coordinate location on the map,
create a marker and add the marker to the map view.

The markers make up the search area polygon. Every element in the polygon
is connected consecutively to each other, and the last element is connected to the
first to form a closed graph. In Figure 5.2, we see an example of a polygon, created
by doing six press-and-holds on the screen. This polygon will later be used on the
backend server to calculate the path.
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Figure 5.2: Making a polygon shape on the map. Red pins represents the outer
bounds of the polygon. Blue marker represents the user’s location.

5.5 Test

We implement a test to verify that the user interface works as intended. The overall
goal for a person using the application is to draw a polygon defining the search
area. And this is exactly what we want to test. Even though the map is just a
small part of the application, we perform an isolated usability test to validate
and detect possible faults with the design. By isolation the functionality in this
manner, the user is not biased by other features. This gives a better foundation
for taking further actions on the design of this particular feature. Usability tests
are performed by non-biased users, who have never seen the application before.
This simulates how the application would work in real life – when a user installs
it and use it for the first time.

5.5.1 Preparations

It is essential to be well known with both the product itself and the test [35]. We
execute pilot tests in advance to discover major errors in the application and the
test itself. This ensures that the application does not crash during the test, and the
user is able to complete the tasks – i.e. reach its goal.

We define test objectives based on the overall goal of the application. These
objectives make up the tasks the test subject will try to perform during the actual
test. For each objective, we define parameters – both qualitative and quantitative
– from which we evaluate the final test result. We define a numeric score for
each parameter whenever this is possible, which will give a good measure for
comparison. When using quantitative metrics, comparing the tests becomes easier,
since we can derive values like average, mean and standard deviation if necessary.
The polygon accuracy is given by Equation 5.1. The denominator – 7 –comes from
the number of points in the reference figure.
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Deviation from number of points
7

·
Angles matching reference figure

7
(5.1)

5.5.2 Objectives

Table 5.2 lists the test objectives. Each objective has one or more parameters as a
measure on the success of the objective.

Test objective Objective parameters

O1: The user should be able to define
a polygon on the map, based on a pre-
defined area given to the user.

• Time to complete task
• Mistakes
• Polygon shape accuracy

O2: The user should be able to change
the polygon, according to a new pre-
defined area given to the user.

• Time to complete task
• Mistakes
• Polygon shape accuracy (similarity
to predefined area)

O3: The user should be able to de-
lete vertices/markers from the poly-
gon. Remove all markers

• Time to complete task
• Mistakes

Table 5.2: Test objectives for the usability test.

5.5.3 Test Implementation

To simulate a farmer who is familiar with the area and know exactly where the
search area should be defined, we draw a map in advance (see Figure 5.3a). The
test subject’s objective is then to replicate this drawing as good as possible. For
Q2, the aim is to change the shape accordingly to fit the shape in Figure 5.3b. For
the last objective, the test subject is asked to remove one of the vertices from the
polygon, i.e. delete a marker.

The application does not give any textual description on how to act, so the user
will have to figure this out by himself. The critical thing to investigate is if the test
subjects are able to use prior knowledge about maps in mobile applications to
figure out how to complete the task. If the application design is consistent with
the user’s intuition, he or she should be able to complete the tasks.

5.5.4 Test Results

The result of the test is shown in table 5.3. Raw test results can be found in Ap-
pendix A. All tasks where completed by all participants. There were a total of
five participants. Ranging between the ages of 23-56 with various degrees of tech
skills.
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(a) Shape to be drawn by test
subject in O1.

(b) Shape to be drawn by test
subject in O2 after editing.

Figure 5.3: Maps the test subject are to draw in objectives 1 and 2 in the
usability test.

Test objective Averaged results of all tests

O1: The user should be able to define
a polygon on the map, based on a pre-
defined area given to the user.

• Time to complete task: 83.05
seconds
• Mistakes: 3.4
• Polygon shape accuracy: 0.83
• Completed: 5/5

O2: The user should be able to change
the polygon, according to a new pre-
defined area given to the user.

• Time to complete task: 82.18
seconds
• Mistakes: 2.6
• Polygon shape accuracy (similarity
to predefined area): 0.73
• Completed: 5/5

O3: The user should be able to de-
lete vertices/markers from the poly-
gon. Remove all markers

• Time to complete task: 72.34
seconds
• Mistakes: 1.6
• Completed: 5/5

Table 5.3: Averaged results from all usability tests.
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5.6 Discussion

Without any knowledge about either of the two types of map – Apple Maps and
Google Maps – the solution was to implement both of them. This did take some
time, but afterwards, it was clear which one was best suited to fulfil the application
requirements.

The test conducted had five participants. According to Nielsen [36], one does
not need to perform more than five usability tests. The reason is that one gains
minimal amounts of new information when extending to six or more test subjects.

The main takeaways from the test are two things. One, the application works
and all participants were able to complete all tasks. Two, some of the actions are
not as intuitive as assumed. All participants said that they would be able to do
the tasks without mistakes if they did them again, this means that while some
struggled with the task the first time, they learned what was needed to complete
the task. As such, while not everything is intuitive, it still provides value after it
has been learned. Multiple participants commented on a few specific things in the
application. Two participants said that press and hold to place points were not in-
tuitive and should have been a simple press. Another issue commented on by all
participants was that there was no indication if a marker was selected when delet-
ing. Although all participants were able to complete Q3, this should be improved.
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Altitude

The altitude changes a lot in many parts of Norway. About two-thirds of the land
area of Norway is mountainous. A lot of the animals grazing in Norway graze
in uneven and drastically changing terrain. This project aims at creating a fully
automatic coverage of an area using a drone. This means that along a path, the
altitude will most likely differ significantly. Therefore, two problems need to be
addressed in regards to the terrain of an area.

1. Obstacles in the flight path due to differences in altitude between points.
See figure 6.1b for an illustration highlighting this problem.

2. Field of view of the camera due to the difference in altitude between points.
See figure 6.1c for an illustration highlighting this problem. Point A shows
the ideal height. In point B, details are lost in the picture due to the height,
while point C inefficiently covers a relatively small area.

With regards to obstacles, this mostly involves an increase in the terrain lead-
ing to a hill or mountain getting in the way of the drone’s flight path. When it
comes to the field of view of the camera, pictures should be taken at an optimal
altitude to ensure a balance between the size of the covered area and the images’
resolution. These two problems mean that the final path needs to consider the
altitude of each point in the path, as well as points between.

As a path is defined as a series of points, the terrain may differ significantly
along a line between two points. A significant increase in altitude between two
far points can easily cause the drone to crash to the ground. We add intermediate
points at a defined interval along a path to ensure a relatively constant altitude
above ground. Figure 6.1a shows possible scenarios when the path passes a hill.
The green line disregards altitude completely. The blue line goes directly from
point A to point B with the proper altitude increase over point B. The red line uses
an intermediate point to keep a fairly constant altitude above the terrain.
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(a) Shows different paths from a point A to point B. a, b, and
c are different paths the drone may take.

(b) Shows the issue of
disregarding terrain in regards

to hitting objects.

(c) Shows the issue in
differing altitudes with regards

to the area covered by the
camera.

Figure 6.1: Illustrations regarding difference in altitude of the terrain.

6.1 Height Data in Norway

As altitude needs to be considered when calculating the final path, the system
should have access to height data of the area, and use the data to add altitude
parameters to the path. This section evaluates different height data available in
Norway and how they are added to the system. There are several height maps
available in Norway. These depict the terrain in meters above sea level. They dif-
fer in accuracy and method of collecting, as well as some being a collection of
multiple other data. All data is publicly available at hoydedata.no [37]. The data
can be categorized into two: Digital Terrain Model (DTM and Digital Surface Model
(DOM).

6.1.1 DTM

DTM is collected height data that depicts the natural surface of Norway, and,
hence, it does not consider obstacles such as trees or human-made structures [38].
NN2000 is the current standard for altitude measurements in Norway [39]. It
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started in 2011 and was finished in 2018. It replaced NN1954, due to changes in
the height of Norway as a whole. Norway rises slightly. NN2000, although started
in 2011, uses heights data from the year 2000. Later, rising land is modelled and
applied to these data. This means NN2000 should be accurate for the foreseeable
future. DTM currently covers the entirety of mainland Norway.

6.1.2 DOM

DOM is a height model that also considers obstacles in the terrain. It includes
trees and human-made structures and is usually made from Local Point Clouds.
Local point clouds are part of the Nation Detailed Height Model (NDH) [40]. Point
clouds are models of points in a 3D-space. When used as height models point
clouds are detailed height measurements of the terrain in an area. NDH, as a
project, aims to create a highly detailed model of Norway covering 253 000 km2.
It uses measurements from planes or helicopters with mounted laser scanners.
The goal is an accuracy of 1m2. Local point clouds are available, but due to the
size of the data, it has to be downloaded as separate files for each local region. It
is possible to get the height measurement of a single point, given that there exists
a measurement of that point. DOM does not cover the entirety of Norway.

6.1.3 Conclusion

While the system could use both data sets, DTM was chosen due to currently being
complete for the entirety of Norway. The system in this project should be usable in
most of Norway, especially in areas where animals graze. DOM coverage in these
areas is still lacking. As the focus in this project lies on grazing animals, that most
of the time is at the terrain level and not on top of human-made structures or
trees, there is none camera consideration that justifies using DOM. However, it
may be used to check that the path of the drone does not cross any obstacles.

6.2 Coordinates

An important aspect to consider is the coordinates of where the aircraft is, and
where it should go. The points at which the aircraft should fly needs some consid-
erations, specifically how they relate to each other. Earth is a globe, and thus there
are some challenges in regards to the final path. The drone uses longitude and lat-
itude, but this does not translate well over large distances. The size of the areas
where animals usually graze is not large enough to make a significant difference.
On the other hand, if the proposed solution is to be adapted for other purposes,
such as mapping large areas of ground, longitude and latitude problems arise.
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6.2.1 Longitude and Latitude

Longitude and latitude together define coordinates on a globe [41]. Longitude is
the west-east position, while latitude defines the north-south position. Longitude
is given as degrees between 0°and 180°in either west or east. Latitude is also
given as degrees, but between 0°and 90°north or south. The latitude is 0°at the
equator, 90°North at the north pole, and 90°South at the south pole. An example
coordinate is Trondheim lying at 3°25’ 49.8" North, 10°23’ 42.2" East. When doing
calculations, it is common to use decimal numbers, where south of 0°longitude
gives a negative number and north gives a positive number. Similarly, for latitude,
where east is positive, and west is negative. As such, any position on earth can be
defined with two numbers.

6.2.2 UTM

UTM is a projection of the earth surface [42]. It translates the curved earth into
a flat two-dimensional surface using Gauss-Krügers projection. By sectioning the
earth surface into smaller areas and making a Gauss-Krügers projection on each
assures an accuracy of less than 40 cm per 1 km. There are 60 zones divided
based on the latitude. These 60 zones are further divided into bands parallel to
the equator. Figure 6.2 shows the different zones covering Europe. Note that zone
32V extends to the west to cover the whole of southern Norway. The algorithm de-
scribed in Chapter 7 uses a two-dimensional coordinate system. Converting longit-
ude/latitude coordinates to UTM allows the algorithm to do calculations without
the need to regard the curvature of the earth.

6.2.3 Great Circle

Great Circle in regards to navigation is the practice of using the shortest line
between two given points [43]. The line follows the globe around its curvature
and ends up at the same point. Any two points on the earth’s surface have a unique
great circle except points being directly on opposite sides of the globe; they will
have an infinite amount of great circles. Using Great Circle navigation, the system
ensures that intermediate points are along the shortest path possible between
points, while still following the curvature of the earth. Figure 6.3 illustrates a
great circle derived from two points P and Q.

6.2.4 Conclusion

The final system requires the use of both UTM and longitude/latitude. The drone
and the application use longitude and latitude coordinates to defined the search
area. UTM is used to convert this area into a two-dimensional shape. This shape
is later accepted by the path planning algorithm, and the final path is computed.
The last step is to convert it back to longitude and latitude before the final path
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Figure 6.2: Illustration of UTM zones. "LA2-Europe-UTM-zones.png". Image is
public domain. No changes made. https://upload.wikimedia.org/wikipedia/

commons/9/9e/LA2-Europe-UTM-zones.png.

is sent to the drone. Great Circle is used to find intermediate points in the path,
ensuring that they are on a straight line between two points.

6.3 Camera

A drone’s altitude relative to the terrain of which the aircraft should fly depends
on the purpose of the flight. If the purpose is spraying pesticides on a field, the
height of the aircraft will be lower than if the purpose is to create a birds-eye
view map of the area. As this project aims to create a solution for finding grazing
animals, the height at which the aircraft should fly above the terrain also depends
on the camera mounted on the drone. Aspects of the camera need to be taken into
consideration, such as field of view (FOV), sensor, aperture, and focal length. The
goal of this section is to find the properties of a camera and use this to find how
large area a picture taken at a specific height will cover.

https://upload.wikimedia.org/wikipedia/commons/9/9e/LA2-Europe-UTM-zones.png
https://upload.wikimedia.org/wikipedia/commons/9/9e/LA2-Europe-UTM-zones.png


46 Linnestad, Ødegaard: Drones Covering Outfield Pastures

Figure 6.3: Illustration of a great circle line between points P and Q.
"Illustration of great-circle distance" by CheCheDaWaff. Licence: CC BY-SA [44]. No

changes made. https://upload.wikimedia.org/wikipedia/commons/c/cb/
Illustration_of_great-circle_distance.svg.

6.3.1 Aspects of Cameras

As previously stated, several aspects of cameras need to be taken into considera-
tion when determining the altitude of the aircraft. These aspects determine how
well the focus is, the details of the image, how large area on the ground is present
in the image, and more. Each relevant aspect is explained in this section, as well
as how it affects the altitude the aircraft should travel.

Focus

Focus is directly correlated to the depth of the field. At the plane of focus an object
is sharp and detailed [45]. The plane of focus is the plane perpendicular to the
camera lens where the objects are at optimal sharpness. This plane is at a specific
distance from the camera. Objects closer to and further away from the plane of
focus get exponentially more blurry. Most lenses can adjust the focus so that the
desired object is in the range where the image is still sharp. Modern cameras have

https://upload.wikimedia.org/wikipedia/commons/c/cb/Illustration_of_great-circle_distance.svg
https://upload.wikimedia.org/wikipedia/commons/c/cb/Illustration_of_great-circle_distance.svg
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auto-focus capabilities.
The drone has auto-focus, and as such, this does not need to be considered.

Sensor

The sensor of a digital camera is what actually captures the image [46]. It is a chip
consisting of millions of light-sensitive elements called pixels. The light-sensitive
elements translate the incoming light into digital values. Sensors differ in several
aspects, but the two most relevant to this project, are sensor size and amount of
pixels.

The sensor size determines the actual size of the sensor. The standard size
is 36x24mm. With the same lens, a smaller sensor will capture a smaller subset
of the image compared to a larger sensor. This is because the lens will focus the
light around the smaller sensor, where a larger sensor will cover more of the light.
Therefore the lens used on a camera will have different properties depending on
the sensor size. A smaller sensor will have a smaller field of view with the same
lens than a larger sensor.

The amount of pixels determines the resolution of the resulting image. As each
pixel is converted to a digital value, more pixels results in images with a higher
level of detail. The number of pixels is usually denoted as megapixels, meaning
current cameras has a magnitude of millions of pixels.

The sensor is relevant to this project because it determines how much inform-
ation the image holds, as well as the field of view.

Field and Angle of View

The field of view (FOV) is the section of the world observed from the camera [47].
Angle of view(AOV) is the angle determining the size of the field of view. A small
angle of view, creates a narrow "cone" of what will be seen, while a large angle
of view means more of the scene is covered in the image. Figure 6.4 shows how
the angle and distance determine the size of what is covered in the scene and the
difference in size depending on the distance. The angle of view depends on the
sensor size and the focal length of the lens on the camera.

In photography, angle of view (AOV) and field of view (FOV) are often inter-
changeable. In this paper, for the sake of clarity, AOV is the angle, and FOV is the
resulting coverage of the scene.

As images are mostly rectangular, the angle of view is different horizontally
and vertically. As such, it is common to describe the different values of the angle
of view as horizontal angle of view (HAOV), vertical angle of view (VAOV), and
diagonal angle of view. The same applies for the different values of the field of
view, respectively: horizontal field of view (HFOV) and vertical field of view (VFOV),
and diagonal angle of view (DFOV).

To calculate the angle of view, the focal length of the lens and the sensor size
is needed. Equation 6.1 calculates the angle of view where s is the sensor size, f
is the focal length, and θAOV is the angle of view.
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Figure 6.4: How the angle of view and distance determine the area covered by
an image. ΘV and ΘH denotes the angle of view in vertical and horizontal

direction respectively.

θAOV = 2arctan(
s

2 f
) (6.1)

Given the angle of view and distance, the coverage of the resulting image can
be calculated. The formula for finding the field of view given the angle of view
is shown in Equation 6.2, where d is the distance to the scene, and FOV is the
resulting field of view.

FOV = 2 tan
θAOV

2
· d (6.2)

It is also relevant to calculate the angle of view of one direction, given the
angle of view of the other direction and the ratio of the sensor. Equation 6.3 and
6.4 show how to convert between HAOV and VAOV, where θHAOV is the horizontal
angle of view, θVAOV is the vertical angle of view, and R is the ratio ( H

V ) of the
sensor.

θVAOV = 2arctan
tan θHAOV

2

R
(6.3)

θHAOV = 2arctan(tan
θVAOV

2
· R) (6.4)

To find the diagonal angle of view, we first need to find the length of the
diagonal on the sensor. The relationship between the diagonal and the length of
each side is given by Pythagorean Theorem and shown in Equation 6.5.

h2 + v2 = d2 (6.5)
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6.3.2 Specifications

The camera specifications of the DJI Mavic 2 Enterprise Dual is shown in table
6.1 and are taken from the official manual [19]. The specifications are both for
the thermal and the visual camera. Some things to consider when looking at the
specifications for the thermal camera are:

• The sensor size and lens are not given. However, the sensor resolution is
given.

• Only the HAOV is given, regarding the angle of view.

We can use the sensor resolution and the horizontal angle of view to find out the
ratio. From this, we can also calculate the vertical angle of view of the thermal
camera.

We have more information on the visual camera. Some things to consider
when looking at the specifications for the visual camera are:

• 1/2.3" CMOS has a ratio of 4:3 [48].
• The effective pixels of 12 megapixels means there are 4000×3000 pixels.
• The direction of the AOV is not given.
• "35 mm format equivalent: 24 mm" means that the lens has the same focal

length as a 24 mm lens on a 36x24 mm sensor.

Since the angle of view does not have a direction, it will need to be calculated using
the focal length and sensor size. The lens is not able to zoom. The specifications
are sufficient to calculate the area covered, given a specified height.

Thermal camera
Sensor Uncooled Vox Microbolometer

Lens
HAOV: 57°
Aperture: f/1.1

Sensor resolution 160x120
Visual camera

Sensor
1/2.3" CMOS
Effective pixels: 12M

Lens

AOV: approx. 85°
35 mm format equivalent:24 mm
Aperture: f/2.8
Focus: 0.5 m to∞

Table 6.1: DJI Mavic 2 Enterprise Dual camera specifications.

6.3.3 Calculations

For this project, the coverage of an image from a given height is needed. The
angle of view in both the horizontal and vertical directions can be used, with the
height, to calculate the coverage. Using the specifications given in 6.1 we can
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use the formulas from 6.1-6.5 to find all relevant values. We need the AOV both
horizontally and vertically for both the thermal and visual cameras.

Starting with the thermal camera, we already know the horizontal angle of
view from table 6.1 as 57°. The sensor resolution of 160x120 indicates that the
ratio is 4/3. Using formula 6.2, we get a vertical angle of view of 4̃4.31°.

Finding the horizontal and vertical angle of view of the visual camera is more
difficult, and some assumptions have to be made. The FOV from the manual does
not give a direction. Using formula 6.1 and a sensor of 36mmx24mm, results in a
diagonal of 84.11°. This is close to the approximation of 85°given in the manual,
and it can be assumed that this is the diagonal angle of view.

The problem with this value is that it is a result of having a sensor with an
aspect ratio of 3:2. The actual sensor has a ratio of 4:3. The most likely reason
for this discrepancy is that all the information on the lens follows the 35 mm
equivalent, and this has a sensor ratio of 3:2.

To convert the angle of view given a 3:2 ratio to the horizontal and vertical
angle of view given a 4:3 format, we can change the sensor size of the 35mm
equivalent to 36mmx27mm, which has a ratio of 4:3, and use this with formula
6.1. Using a f of 24mm and s as the sensor size for a given direction we have the
following:

• Finding the vertical field of view:
2arctan 27mm

2∗24mm = 51.72◦

• Finding the horizontal field of view:
2arctan 36mm

2∗24mm = 73.74◦

As we now have the angle of views of both the thermal and visual camera, we
can calculate the field of view in both directions given a height.

6.3.4 Implementation

As the different angle of views of both the thermal and visual camera is known,
they can be used to find the field of view. Code listing 6.1 shows the implement-
ation for finding the field of view. Equation 6.2 was translated to Javascript code
and can be found on line 6 in code listing 6.1. Using function getFov, an object
with all field of views is returned for a provided height. Table 6.2 shows the dif-
ferent field of views for heights 10, 50, and 100 meters.

Camera
Height

10 m 50 m 100 m

Thermal 10.86x8.14 m 54.30x40.72 m 108.6x81.4 m
Visual 15.27x9.69 m 76.37x48.47 m 152.7x96.9 m

Table 6.2: Field of views for the thermal and visual camera at 10, 50, and 100
meters altitude.
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1 const degreesToRadians = (degrees) = {
2 return degrees * (Math.PI/180);
3 };
4

5 const fov = (angleOfView, height) => {
6 return 2 * Math.tan(degreesToRadians(angleOfView) / 2) * height;
7 };
8

9 const aov = {
10 // Thermal
11 thermal: {
12 horizontal: '57',
13 vertical: '44.31'
14 },
15 // Visual
16 visual: {
17 horizontal: '74.74',
18 vertical: '51.72'
19 }
20 };
21

22 const getFov = (height) => {
23 return {
24 thermal: {
25 horizontal: fov(aov.thermal.horizontal, height),
26 vertical: fov(aov.thermal.vertical, height)
27 },
28 visual: {
29 horizontal: fov(aov.visual.horizontal, height),
30 vertical: fov(aov.visual.vertical, height)
31 }
32 };
33 }

Code listing 6.1: JavaScript implementation for finding the field of view of
the drone, given a height.

6.3.5 Conclusion

By looking at the components of a camera, like the sensor and the lens, the prop-
erties of the camera can be found. Formulas for finding the angle and field of view
were used with the camera specifications from the DJI Mavic 2 Enterprise. After
finding the angle of view of both the thermal and visual camera, a simple Javas-
cript program was implemented that can be used to find the field of view of the
camera on the drone, given a particular height. Due to the depth of view causing
objects on the outer part of the image to be blurry, there should be an overlap
between the images taken to ensure that all objects on the ground are captured.





Chapter 7

Path Planning

In this chapter, we investigate how to find a flight path covering a specified search
area. The goal is to produce a flight path that covers the area efficiently with high
accuracy. The problem can be divided into two sub-problems. First, a flight path
has to be defined in the x/y-plane. The path makes up the point-to-point coordin-
ates for which the drone should fly during its search. How to find these coordinates
is described in detail in this chapter. Second, we need to take into consideration
the height of the drone relative to the ground. This issue was discussed in detail
in Chapter 6.

7.1 Introduction

We find drones as a suited tool in missions within inhospitable environment.
They can perform automatic, semi-automatic or remote-controlled flights in places
in which can be dangerous for humans to operate. For the drone to be able to
autonomously find its way in such places, path planning has to be implemented
into the aircraft’s flight controller. Path planning is the process of finding a valid
sequence of actions to get from point A to point B in a given environment. The en-
vironment can be observable, partially observable or not observable. If the drone
behaviour is affected by outer factors, such as wind and temperature, the drone’s
actions might also be stochastic. This means that the outcome of an action is not
fully deterministic, but influenced by some kind of randomness.

A commercial drone usually has a sensor or camera. The area on the ground
captured by any such device is called a footprint. The footprint corresponds to
the field of view, as described in Chapter 6. If we stack footprints side by side, as
shown in Figure 7.1, we eventually cover the complete search area. If the aircraft
is equipped with a camera, a footprint corresponds to an image, taken from a
birds-eye point of view. The ground area captured by the camera is equivalent to
the footprint and is dependent on the drone’s altitude, as described in Chapter 6.

53
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Figure 7.1: Footprints covering a search area. Black lines represents the search
area. A light blue square represents a footprint.

7.2 Coverage Path Planning

Path planning can be sufficient in many cases. But when the targets are not defined
as discrete locations, path planning algorithms come to short. This applies, for
instance, if we want to investigate an area of ground instead of a single point. The
coverage path planning (CPP) problem is defined as finding a path that completely
covers an area of interest (AOI), based on some restrictions and a description of
the environment. In the following, we will investigate how the area of interest is
defined and what its restrictions are. Next, we will define an algorithm for finding
a path that completely covers an area, solving the CCP problem.

7.2.1 Area of Interest

The AOI is the area where the drone performs its search, i.e. the search area. As
defined in Equation 7.1 the AOI is represented by a sequence S of vertices, where
each vertex vi is defined as a pair of coordinates (v x

i , v y
i ).

S = {vi = (v
x
i , v y

i )}
N−1
i=0 , (7.1)

where N = |S| is the number of vertices. An edge ei is the line between vertices vi
and vi+1, where 0 ≤ i ≤ N − 2. Given vertex vi and its neighbouring vertices vi−1
and vi+1, we have that vi ’s internal angle θi is given by Equation 7.2.

θi = arccos
~a · ~b
|~a| · |~b|

, (7.2)

where ~a and ~b are vectors [v x
i−1− v x

i , v y
i−1− v y

i ] and [v x
i+1− v x

i , v y
i+1− v y

i ] respect-
ively. Note the importance of calculating the vectors from the same point vi .



Chapter 7: Path Planning 55

To simplify our notation, given a vertex vi , we denote the next vertex in the
sequence as vnex t(i). If the sequence represents a closed polygon, we have that
nex t(i) = (i + 1)(modN). It follows that ei = vnex t(i) − vi . Similarly we have that
prev(i) = (i−1+N)(modN) for the previous vertex in the sequence, compensated
for i = 0. Figure 7.2 shows an example of an AOI with vertices, edges and internal
angles labeled accordingly.

Figure 7.2: Example of AOI polygon with labels.

It is important to define how the AOI will look like. Different methods and con-
cerns will apply, depending on the shape of the AOI. Andersen [49] has reviewed
different flight paths for rectangular AOI, Coombes et al. [50] investigate different
sweeping angles relative to the wind and extends the shape to convex polygons.
More complex methods will apply when also considering concave methods. In the
following, we will address different properties the AOI can have, by focusing on
polygonal shapes.

Convex vs Concave

A polygon is either convex or concave. In practice, if a polygon is convex, any
straight line drawn through the polygon will only intersect two edges. It also
means that one can move in a straight line between any two points inside the
convex polygon, without crossing any edges. Theoretic definitions are given be-
low.

Definition 1: Convex Polygon
A polygon is convex iff all its interior angels are less than or equal to 180◦. See Figure
7.4a.

Definition 2: Concave Polygon
A polygon is concave iff one or more interior angels are greater than 180◦. See Figure
7.4b.
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Figure 7.3: A concave polygon with a path planning problem.

As seen in Figure 7.3, a concave search area brings more complexity to the
path planning problem. At point P, the planner has to make a decision on whether
to choose path A or path B. Regardless of which is chosen, the aircraft will have
to follow a path back to P to cover the other area. Hence, the drone will fly over
an already covered area, which is undesirable.

(a) Convex polygon. (b) Concave polygon.

Figure 7.4: Comparison of convex and concave polygon.

Simple vs Complex

We classify polygons as simple or complex, based on the vertices’ relative position.
If vertices in a polygon are aligned so that edges intersect, we say that it is a
complex polygon. Otherwise, it is simple.
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(a) Complex polygon. (b) Simple polygon.

Figure 7.5: Comparison of complex and simple polygon.

Definition 3:
A polygon is complex iff two or more of its edges intersect. Otherwise the polygon is
simple. See Figure 7.5.

Complex polygons add further complexity to the path planning problem. To
simplify, we require the search area polygon to be non-complex. Hence the applic-
ation will have to make sure the user only submits simple polygons.

Regular vs Irregular

A polygon is equiangular if all its angles are equal in measure. A polygon is equi-
lateral if all its sides are having the same length. A polygons regularity depends
on these two properties and is defined below.

Definition 4: Regular Polygon
A polygon is regular iff it is both equiangular and equilateral; hence all angles and
sides are equal respectively. If one or more of these conditions fail to hold, the polygon
is irregular.

7.3 Evaluation Criteria

We define evaluation criteria to better target the desired outcome of the path
planning algorithm. The criteria quantify the effectiveness and efficiency of the
algorithm and the system as a whole. Furthermore, the system will be comparable
to future work and similar systems.

The first thing we need to consider is the area coverage, that is, how much of
the search area that is actually covered by the path. This value depends on prop-
erties like the drone’s altitude, the pitch of the camera gimbal, and the camera’s
focal length. For comparison purposes, we express the area coverage as a percent-
age of the total AOI. High area coverage is desirable. On the other hand, we do
not want to cover areas more than once. For very large AOIs, the drone might be
forced to go home and recharge/replace its battery, but this is beyond the scope
of this paper.
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Another metric is the number of operations. The literature [51, 52] agrees
that it is desirable to minimize the number of turns. This is because the flight time
increases as the drone has to make more stops and accelerations during its flight.

Another useful metric is the average ground speed. This is calculated by di-
viding the total distance travelled by the total time spent executing the mission.

For the rest of this section, we will focus on finding a solution to the CPP
problem that completely covers the AOI and minimized the number of turns. At
the same time, we aim to minimize overlapping paths, i.e. not cover areas more
than once.

7.4 Background

As shown above, a concave polygon introduces more complexity to the CPP prob-
lem. We find it feasible to perform a convex decomposition to minimize the num-
ber of overlapping paths during a search. This is further described in section 7.5.
In this section, we define terms that form a ground for the rest of this chapter.

7.4.1 Width

As done by Jiao et al. [52], in the following, we define the width of a polygon:

Definition 5: Width of polygon
The width (W) of a polygon (P) is the minimum span (D) between two parallel lines
of support (l1, l2).

l1 and l2 are parallel lines that intersects a polygon P at opposite sides, so
that P lies to the left (or right) of l1 and to the right (or left) of l2. It is given
by intuition and mathematically proven by [52], that at least one of the support
lines of a minimum span lies on top of an edge of P. That means that the support
lines can be expressed by three vertices in the polygon. The first support line – l1
– passes through the first two vertices. The second – l2 – passes through the third
vertex and lies parallel to l1. To find the minimum span, we find the three vertices
with the minimum width.

7.4.2 Sweeping Direction

Di Franco and Buttazzo proposes a solution using back-and-forth (BF) motions.
The authors claim that high energy efficiency is achieved by setting the scanning
direction to be parallel to the longest edge in the polygon. Jiao et al., on the other
hand, fly along the vertical direction of the width, that is, parallel to the lines of
support.

Figure 7.6 demonstrates these two flight directions on a convex polygon. For
simplicity, paths from one sweep to another are not included. Furthermore, if we
count P sweeps across a polygon, we will have a minimum of P · 2 − 2 turns to
cover the entire area.
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(a) Flight direction parallel to the
longest edge.

(b) Flight direction parallel to the
lines of support.

Figure 7.6: Comparison of the number of sweeps in different flight directions.

A flight direction parallel to the longest edge (see Figure 7.6a) results in more
sweeps across the polygon than using the direction of the support lines (see Figure
7.6b). We count 9 sweeps and 16 turns for 7.6a, and 5 sweeps and 8 turns for
7.6b. Hence, when it comes to the number of turns, a flight direction parallel to
the support lines is preferred over a direction parallel to the longest edge.

A flight direction parallel to the support lines is generally the best solution
to minimize the number of turns. To prove this, we assume that the number of
turns is proportional to the number of sweeps. In fact, it is also proportional to
the width of the polygon. With this, we define the number of sweeps in Equation
7.3.

P = dW/Lxe, (7.3)

where P is the number of sweeps, W is the width of the polygon and Lx is the
width of the footprint. dxe denotes the ceiling function, which maps a number x
to the smallest integer greater than or equal to x . Since Lx is a constant and W is
at its minimum, we have that P also has reached its minimum.

7.4.3 Convex Hull

To find convex properties of a concave polygon, it comes in handy to investigate
the polygon’s convex hull. In the following, we define the convex hull of a polygon.

Definition 6: Convex Hull
A convex hull is defined as the minimum convex polygon that completely circum-
scribes an object, as shown in Figure 7.7.

7.4.4 Greedy Approach

The basic idea behind a greedy approach is to always choose the solution that
seems best at the moment [53]. To choose an optimal solution to a given prob-
lem, we need a comparison function. A comparison function takes two proposed
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Figure 7.7: A convex hull (dashed line), circumscribing a concave polygon
(gray).

solutions as input, compare them to each other, and greedy chooses and outputs
the best solution.

7.5 Solution to CPP Problem

Convex decomposition is a popular method to reduce the CPP problem into smal-
ler individual parts. It takes a (possibly concave) polygon as input, performs a
convex decomposition (if necessary) on the polygon and outputs one or more
convex polygons. The motivation for a convex decomposition is the assumption
that it is easier to find a covering path for each of these convex polygons than for
a concave polygon.

Algorithms for convex decomposition are proposed in several papers [54–56].
This section will focus on putting together a solution based on previous work. The
goal is to develop an algorithm that fits the requirements and problem description
in this project. At the same time, we aim to minimize the number of sweeps, and,
hence, minimize the number of turns.

7.5.1 Related Work

Tor and Middleditch [54] defines an algorithm that traverses the edges of a poly-
gon A. Each edge ei is successively appended to either the current convex hull
or one of the inner regions of the hull. The current hull H eventually grows into
the final hull, where H = Hull(A). An edge is categorized based on its position
relative to the current hull, and the appropriate action is taken. The algorithm
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performs quadratic in the worst case and linear in the best case. It is expected
that polygons, in this case, lie closer to the best case than the worst-case regions
discussed by Tor and Middleditch.

Jiao et al. [52] presents a greedy algorithm that divides a concave polygon
into convex sub-regions. The algorithm chooses the solution that minimizes the
sum of sub-regions’ widths. Some of these sub-regions are combined to produce a
more efficiently flight path. As shown in Figure 7.8, on the left-hand side, the path
consists of one more edge than the combined version on the right. For performance
purposes, combinations like this might be beneficial to minimize the number of
sweeps, and hence, the number of turns.

Figure 7.8: Fewer sub-regions are often better. Combining sub-regions can
reduce redundant sweeps.

7.5.2 Approach

The cover path planning algorithm described in this chapter follows a greedy ap-
proach, inspired by Jiao et al.’s work [52].

We proved in Section 7.4 that setting the sweeping direction parallel to the
support lines minimized the number of turns. Figure 7.9 demonstrates how plain
path planning on a concave polygon would produce a sub-optimal solution. To
deal with this, we propose a solution based on convex decomposition.

Convex Decomposition

Jiao et al. propose a simple yet effective algorithm for convex decomposition. The
authors use a greedy recursive method that divides concave polygons into two
sub-polygons by minimizing the sum of their widths. The first step is to split a
concave polygon into smaller sub-polygons. For a starter, we know the following:

1. A concave polygon is defined as a polygon containing at least one concave
vertex.
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(a) Sub-optimal path. (b) Optimal path.

Figure 7.9: Sub-optimal coverage path with sweep direction based on support
lines (left) compared with an optimal coverage path (right). ©2010 IEEE [52].

2. By splitting the polygon into two sub-polygons at a concave vertex, we may
reduce the concavity.

We define a line splitting a polygon into two sub-polygons during convex de-
composition as a decomposition line. We need to determine in what direction the
decomposition line are to be drawn from a concave vertex. Jiao et al. shows that
a decomposition line producing sub-polygons with minimum width sum is always
parallel to one of the polygon’s edges. For each concave vertex, the algorithm will
have to consider all edges on that polygon and calculate the sum of widths. The
decomposition line producing the minimum width sum is considered an optimal
solution for a polygon. A split is not guaranteed to produce two convex polygons. If
this is the case, the procedure is recursively repeated for all concave sub-polygons.

Path Planning

The proposed decomposing algorithm outputs one or more convex polygons. Since
they are all convex, it is now possible to run a path planning algorithm and find
a path on each of them. In the following, we define a path planning algorithm
inspired by Jiao et al.’s work.

There are multiple dependencies when calculating the path of a convex poly-
gon. A path within each sub-polygon is dependent on the drone’s entry point to
that particular polygon. An entry point is dependent on the sub-polygons’ arrange-
ment in relation to each other since an exit from one polygon leads to an entry
to another. The order of the polygon is also dependent on the drone’s start and
finish position, which we can assume is at the same location for simplicity.

Inputs to the path planning algorithm are the location of the drone (start pos-
ition), a list of all sub-polygons, and the width of the footprint. The first task is to
find in what order the sub-polygons should be visited, i.e. searched. This problem
is a version of the traveling salesman problem, which tries to find the shortest route
through a list of locations, given the distance between each pair of locations. This
problem is NP-hard and trying to solve this in polynomial time lies outside the
scope of this project. We define an algorithm that starts at the vertex closest to the
starting point and then visits that vertex’s children. This is recursively repeated
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until a tree, with root at the drone’s starting point, is found containing all sub-
polygons. It is a fairly expensive algorithm, but solves the problem, and is feasible
for a small number of polygons.

With the order of the sub-polygons, a path inside each of them can easier be
determined. As described in section 7.4.1 the width of a polygon is determined
by three vertices. In fact, either of these three vertices can be the starting point of
a path inside the polygon. Figure 7.10 shows three possible starting points a path
covering a polygon can have – 1a, 1b or 2.

Figure 7.10: 1a, 1b and 2 are three possible starting points of a path inside a
polygon. We use θ and Lx to determine the next point in the path.

Note that a line passing through points 1a and 1b is a support line of the
polygon. The second support line passes through point 2 and is parallel to the
first.

The point closest to the exit point of the previous polygon will be the first
point in the current polygon’s cover path. The exit point will be located along
the opposite support line. This project’s proposed path planning algorithm starts
at point 1a and 1b. The path grows up towards point 2 by alternating between
left and right side. We determine the next point in the path by using the angle
θ between the current edge and a vector perpendicular to the support edges. The
distance to travel along the current edge is determined by Equation 7.4 and the
direction is the same as for the current edge. At the left side of Figure 7.10, we
add an intermediate point that passes through the vertex, and, hence, change the
current edge. The next edge towards point 2 in the polygon will then become the
current edge.

D =
Lx

cosθ
(7.4)

When the path has reached all the way to the other side (point 2 in Figure
7.10), the algorithm finishes and returns the path. The path is represented as a
list of points, going from one support edge to another using a back and forth
motion.
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7.5.3 Implementation

The CPP algorithm is implemented as a Python script, using scientific libraries, like
matplot l i b, nump y and scip y . For simplicity, we define a dedicated Pol y gon
class. This makes it easier to compute and store properties for each polygon along-
side the polygon’s sequence of points. A library called shapel y is used to find
relations, intersections and topological operations.

All vertices are stored as numpy arrays. This makes it easier to perform matrix
operations, lite dot product, addition, and subtraction. For instance we use the
nump y.dot (dot product) method to find the angle between two vectors A =
[ax , ay] and B = [bx , by], as given by Equation 7.5.

θ = cos−1 A · B
|A||B|

(7.5)

7.6 Results

The CCP algorithm is split into three steps:

1. Decompose the concave search area into smaller convex polygons.
2. Find a path inside each convex polygon.
3. Pick start and end points for each convex polygon, order the convex poly-

gons and put their paths side-by-side.

Each step happens consecutively. The output from one step is input for the
next. In this section, we examine the implementation of decomposition and path
planning in addition to how to communicate with the CPP component.

7.6.1 Convex Decomposition

In Listing 7.1, we see the implementation of the decomposition algorithm. Since
we only decompose concave polygons, we stop execution in line 4 if the number
of concave vertices is zero. The algorithm then enters a double loop. We have that
i is an index for a concave vertex and j is an index for a vertex in the polygon. To
draw a line from vertex i that is parallel to an edge, we use the edge’s gradient.
split_line on line 13 holds this line. Since the split line could be headed outside
the polygon, we need to check if a successful split was found. The result will then
be stored as a property on the decomposed polygon, and the sub polygons will
recursively be decomposed.
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1 def decompose(polygon: Polygon, root_poly=None):
2 number_of_vertices = len(polygon)
3 if polygon.number_of_concave_vertices == 0:
4 return
5

6 sub_polygon_pairs = []
7 for i in polygon.get_concave_vertex_indices():
8 for j in range(number_of_vertices):
9 vertex_i = polygon[i]

10 if i == j:
11 continue
12 gradient = to_gradient([polygon[j], polygon[j + 1]])
13 split_line = np.array([vertex_i, np.add(vertex_i,

gradient * 1000)])
14 split_result = polygon.split(split_line, i)
15 if split_result is not None:
16 sub_polygon_pairs.append(split_result)
17

18 min_sum_of_widths_pair =
find_min_sum_of_widths_pair(sub_polygon_pairs)

19 polygon.sub_polygons = min_sum_of_widths_pair
20

21 for poly in min_sum_of_widths_pair:
22 decompose(poly, root_poly)

Code listing 7.1: Python implementation of the decomposition algorithm.

Figure 7.11 is an example of a successful decomposition of a concave search
area. The decomposition outputs three convex sub polygons, as seen as red lines
in Figure 7.11b. The red dot in Figure 7.11a represents the starting point of the
search or the current location of the drone.

(a) (b)

Figure 7.11: Search area to be decomposed (a) and the decomposition result
(b).
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7.6.2 Path Planning

The next step is to calculate a back-and-forth path inside each sub polygon from
the last step. The algorithm is shown in Listing 7.2. Line 7 alternates between left
and right side so that the algorithm builds its path step-wise on each side.

1 def find_path(self):
2

3 done = False
4 current_side = "left" if self.start_side == "right" else "right"
5 self.generate_side_edge(current_side, True)
6 while not done:
7 current_side = "left" if current_side == "right" else "right"
8 for forward_edge in [0, 1]:
9 done = self.generate_side_edge(current_side,

bool(forward_edge))
10 if done:
11 break
12

13 current_side = "left" if current_side == "right" else "right"
14 self.generate_side_edge(current_side, True)
15

16 return self.path[::-1] if self.point_first else self.path

Code listing 7.2: Python implementation of the path planning algorithm.

The generate_side_edge method adds points alongside the polygon’s left or
right edge to the path. A variable (forward_edge) determines whether these points
should be connected or not, as shown in Figure 7.12.

Figure 7.12: Variable forward_edge set to False on left and True on right.

The algorithm stops when the path has reached all the way to the other side
of the polygon. The actual start and end points of the path through the polygon
are given by the other sub polygons’ paths in the final path planning result. This
is determined by the point_first variable on line 16 in Listing 7.2. Figure 7.13
shows the result of a successful path planning. The result shows that the search
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area is completely covered, due to the fact that the distance from any given point
in the area to a point on the path is less than or equal to the footprint width.

Figure 7.13: Resulting path (blue) from running the path planning algorithm
on a concave search area (orange).

7.6.3 Interface

To be able to use the path CCP component, we need a way of communicating with
the service. An application programming interface (API) is suited for this. An API
is a web interface that accepts requests from a web client and responds with some
data. The CPP service is set up to accept requests containing a search area and
respond with a search path. This path is sent to the mobile application for mission
execution.

To implement an API, we use a Python library called F lask. Flask runs as
an ordinary Python script and listens to requests on one of the server’s ports. A
request to this port will run the CPP algorithm and return the path as a JSON
response.





Chapter 8

Complete System

8.1 Introduction

A complete system utilizing the work done in the previous chapters was developed.
The system allows for automatic flights along a path covering a user-defined
search area. This chapter gives an overview of the system, describes each com-
ponent, and how they interact. The features of the final system and how they
interact is described in detail. Several tests are conducted to verify the feasibility
of the final product – both under controlled conditions and in more realistic en-
vironments. Test results are set up against test goals and discussed in regards to
the current problem description.

8.2 System Overview

8.2.1 Features

The complete system offers several features. The features can be categorized into
features concerning user interaction, features concerning the flight path, and fea-
tures concerning automatic drone flights.

Features Concerning User Interaction

From a user standpoint, the features are implemented as part of the mobile ap-
plication. The features are as follows:

1. Interactive digital map, where the user can define an area.
2. Custom height at which the drone should fly. This allows for flights closer

to the ground, resulting in more detailed pictures, or higher flights to cover
larger areas.

3. Whether to fly at a specific altitude the entire path or follow the terrain.
4. Set the speed at which the drone should fly.

69
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These features give the appropriate output for the subsequent parts of the system.
In regards to the digital map, Chapter 5 describes the assumptions made and
details the solution of the interactive map. All features listed above are present in
the final map view of the application and assign more control to the user.

Features Concerning the Flight Path

A large part of the project is efficient coverage of an area. In the following, under-
lying features regarding the flight path are listed.

1. It creates a path given a polygon supporting different shapes, angles and
amount of edges.

2. The flight path is calculated to cover the polygon efficiently, taking a min-
imal amount of turns.

3. Altitude parameters are added to each point, and the path is adjusted to
account for changes in the terrain.

Features Concerning the Automatic Drone Flights

After a flight path is calculated and sent to the mobile application, the user is able
to upload the path to the drone. When a path is executed, the following features
are present during the flight:

1. The drone follows a path given by the uploaded mission.
2. Images are taken at intervals, covering the entire path.
3. The drone returns to the home location.

8.2.2 Architecture

This section gives a more detailed view of the different components of the system
and how they interact. Much of the final system is based on the work done in pre-
vious chapters. Figure 8.1 shows all the components of the system. The software
that was built in this project consists of an altitude service, a path planning service
and a frontend application.

Frontend Application

The frontend application runs on an iPhone. It has three main purposes: providing
a graphic user interface to the user of the system, sensing and receiving inform-
ation from the remote controller, and communicate with the backend services.
The frontend application is written in Swift and runs in an iOS environment. The
map part of the application is described in detail in Chapter 5, while the com-
munication with the drone is based on Chapter 4. Figure 8.2 shows the mobile
application’s default view. It shows a map and a number of actions the user may
execute. The following are the different actions and what each does. Using these
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Figure 8.1: Overview of the complete system.

actions a user can perform a full scan of an area. The full code implementation
can be found at https://github.com/ohodegaa/SheepFinderApp [24].

• CHECK STATUS: Checks the state of the drone. It shows as either Discon-
nected, Ready to Upload, Uploading or Ready to Execute.

• Height: Allows the user to define the height at which the drone should fly
above the ground.

• Use server height: Enables or disables the use of height given by the altitude
service. When enabled, the drone will follow the terrain. When disabled, the
drone will fly at the same altitude disregarding the changes in the terrain.

• Speed: The speed at which the drone should fly.
• Press and hold on the map: When the user presses and holds on the map,

a point is shown. Three or more points make a polygon.
• Upload: Uploads the polygon to the server.
• Download: Downloads the finished path from the server.
• Prepare: Prepares the mission and creates each point the drone should pass

through.
• Upload: Uploads the mission to the drone.
• Go: Executes the mission. The drone will take off and fly automatically.
• Stop: Stops the mission. The drone will hover in place.

https://github.com/ohodegaa/SheepFinderApp
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Figure 8.2: Default view of the front-end application.

Path Planning Service

The path planning service implements the algorithm described in Chapter 7. It
receives a polygon and a footprint width from the altitude service and returns a
path covering the polygon. The path planning service is written in Python and
runs on an Ubuntu 18.04 Virtual Machine. The full code implementation can be
found at https://github.com/ohodegaa/Speepio [57].

Altitude Service

The altitude service is written in JavaScript and runs on the same virtual machine
as the path planning service. It has three main properties: it is the main entry point
for the backend, it creates intermediate points, and supplies a path with altitude
values.

At the endpoint of the backend, the Javascript program receives an array of
points depicting a polygon as an HTTPS request. The points are given as objects
containing latitude and longitude properties. These points are then converted into
UTM, as the path planning algorithm assumes a flat two-dimensional surface.
After converting the polygon to UTM, it is sent to the path planning service.

The path planning service responds with a covering flight path. Then, the alti-
tude service creates intermediate points along the path at a fixed interval. The
default is 20 meters. These points are used to make sure the drone follows the
terrain at the same height through the entire path.

After creating intermediate points, the altitude service requests the altitude of
each of these points from hoydedata.no. A point is not considered until the altitude
differs with more than 10 meters. This is to minimize the number of intermedi-
ate points. The Altitude service is heavily based on the work done in Chapter 6.
The full code implementation can be found at https://github.com/jowies/
SheepFinder-backend[58].

https://github.com/ohodegaa/Speepio
https://github.com/jowies/SheepFinder-backend
https://github.com/jowies/SheepFinder-backend
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Communication Between Components

As explained, there are multiple components that make the system. These com-
municate to create the final solution. Data is sent between the components using
different protocols. In total, there are five links of communication.

1. Drone↔ Remote Controller: The communication between the drone and
remote controller uses Wifi at either 2 GHz or 5Ghz frequency depending
on the distance. Status messages are passed to the remote controller from
the drone, and commands are sent the other way.

2. Remote Controller↔ Application: The remote controller and application
are physically connected using USB.

3. Application↔ Altitude Service: The application and altitude service com-
municates over HTTPS – an encrypted, secure connection.

4. Altitude Service↔ Path Planning Service: The services communicate via
HTTP. This is not a secure connection; however, as both services run on the
same virtual machine, this is not an issue.

5. Altitude Service↔ hoydedata.no: hoydedata.no is a third party service.
The height measurements of a point are requested from hoydedata.no over
HTTPS.

Missions

In Chapter 4, missions were implemented to complete a test of automatic flight.
It used MissionControl and specific actions such as GoToAction and TakeOffAction.
The main takeaway from the test was that each addition action came at a high
cost, as the drone would wait on average above 4 seconds in between each action.
As this is highly inefficient, other solutions were looked at. There are more mission
types available in the DJI SDK, as shown in 4.3.1. Waypoint missions fill all the
requirements needed and was implemented instead of the custom mission used
in Chapter 4. The main reason for this change is that Waypoint Missions allow
the drone to take pictures between two points. Each waypoint is defined with a
latitude/longitude coordinates as well as the altitude at which it should fly. The
drone will take pictures at an interval of X meters, where the X is dynamically
defined based on the height of flight as defined by the user. These pictures do not
utilize the full potential of the camera, taking pictures and storing them as JPEG
files. The reason for this is that JPEG is available at 2-second intervals. RAW files,
which would be much more detailed, are only available every 10 seconds.

8.2.3 Process Model

The process of the system is shown in figure 8.3. It is divided into four: the drone,
the user, the application/smart controller, and the server. The process model does
not show the technical implementation but focuses on what happens, and in what
order.
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Figure 8.3: Overview of the process of the system.

8.3 Pilot Test

We perform a pilot test to verify that the complete system works as intended and
does not contain errors. Figure 8.3 represents the intermediate steps for the test –
from a user drawing the search area to successfully landing the drone. The overall
goal is to verify the system components and the communication between them.

8.3.1 Test Setup

A pilot test is carried out in an environment with controlled parameters and with
only the tools that are part of the complete setup. It, however, does not use the
height parameters and stays at a fixed 2 meters altitude relative to the take-off
point.

• Height: 2 meters
• Speed: 1 m/s
• Follow terrain: no

Test Equipment

The drone in use is a DJI Mavic 2 Enterprise Dual. This is controlled by a DJI
Standard Remote Controller which has an iPhone 6S connected to it. The iPhone
has a storage capacity of 32 gigabytes and is equipped with the latest software
version (iOS 13.5).
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Figure 8.4: Overview of the safe test area in Dødens Dal.

Test Environment

The test is performed on a football field in Dødens Dal in Trondheim (see Figure
8.4). A group of people we’re close to the test area during the execution of the
test. They were notified about the situation and given a warning about possible
risks. Also, there was a number of light poles around the football field. These
could cause a potential hazard to the drone and involved personnel. The search
area was drawn with a safe distance of approximately 20 meters away from any
obstacle to prevent a crash.

8.3.2 Objectives

We define test objectives for the system to perform. The objectives represent the
flow of the whole system and are to be executed in a given order. Each objective
below is described as a requirement for a component of the system.

Open and Initialize the Application: A user should be able to open the mobile
application without it crashing and see a front-page describing the state of the
connected aircraft.

Navigate to the Map View: A user should be able to navigate to a screen con-
taining a map view. In the map view, the user should find a number of possible
actions to perform, in addition to its current location on the map.
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Check Mission Status: The user should, at all times be able to check the status
of the mission.

Draw a Search Area: The user should be able to draw a search area on the
map. This includes being able to insert, remove, and move markers on the map
as desired.

Submit the Search Area to the system: The user should be able to submit the
drawn search area to the system (i.e. backend server).

Process the Search Area and Calculate the Path: The backend server should
be able to accept incoming requests, containing a search area, process this and
calculate a path. The path should include coordinates and an altitude for each
intermediate step.

Download the Search Path: The user should be able to download the path from
the system. When downloaded, the path should be visible as a pattern on the map,
encapsulated by the drawn search area.

Prepare for Flight: The user should be able to prepare the drone for a flight.
This involves setting up the mission and uploading the mission to the aircraft.

Execute the Mission: The user should be able to execute a mission, i.e. instruct
the aircraft to start the mission and perform the search.

Search: The drone should perform its search when instructed by the user (ap-
plication). This involves taking off, moving according to the search path and land-
ing safely at the home location. During the search, the drone should take photos
at a specific rate and save these in the aircraft’s internal storage.

Stop the Search: The user should be able to stop the execution of a search at
any time. The user should then be able to manually control the aircraft as desired,
using the remote controller.

8.3.3 Results

The user successfully turned the aircraft and remote controller on and connected
the phone to the remote controller. An indication that a connection between the
aircraft and the remote was established was given by the controller. The user was
then able to open the application and initialize the connection to the DJI SDK
and the aircraft. This was done pressing a refresh button that updates the aircraft
connection’s state in the view.
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Figure 8.5: Path downloaded from server describing the search path.

By pressing START, the user entered the main view of the application and
navigated to the screen containing the map. A search area was drawn on the
screen and the upload button was pressed. Outputs from the backend server’s log
confirmed that the search area was received, but for a number of times, it ran in
an infinite loop. The user made some adjustments to the search area on the map
and resubmitted it to the server. The server ran successfully after three trials, and
the user was able to download a correct path, as seen in Figure 8.5. The blue dot
marks the user’s position and is also the start and end location of the path.

The user successfully uploaded the mission to the drone and was able to ex-
ecute the search mission without trouble. This led to the drone taking off and
following the path from start to end. Instead of landing at the end, the drone did
hover 3 meters above ground, so the user had to land manually using the remote
controller.

Another test was executed with the intention of specifically testing the stop
procedure. The system was not able to use the same mission as was already
defined. The solution was to restart the application and perform the procedure
again. After that, the user pressed STOP, and the aircraft stopped and hovered
above the ground, as intended.

Switching from GoToActions to Waypoints led to a remarkable decrease in time
used on intermediate steps. The test revealed that the time between waypoints
was negligible, i.e. there was no clear distinction between one waypoint and the
next.
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8.4 Full-Scale Test

Two tests were performed under more realistic conditions. The tests followed the
same pattern as the Pilot Test, but both the height and speed are more akin to
what would be used in a practical setting. The tests were done in the same area,
with a difference in altitude, namely 40 meters and 20 meters.

8.4.1 Test Setup

The tests require minimal additional setup from the pilot test. It uses the same
application but with different parameters.

40 Meters Altitude

The 40-meter altitude test has the following flight parameters:

• Height: 40 meters
• Speed: 10 m/s
• Follow terrain: yes

20 Meters Altitude

The 40-meter altitude test has the following flight parameters:

• Height: 20 meters
• Speed: 10 m/s
• Follow terrain: yes

8.4.2 Test Environment

Both tests were done in an area with slight changes in altitude consisting of mostly
of farm- and woodland. The starting point for both tests where 62°24’15.6"N
10°59’23.8"E. This is in Tolga, a county in Norway.

8.4.3 Objectives

The objectives are the same as in the pilot test.

8.4.4 Results

40-Meter Altitude

The 40-meter altitude test went without problems. The path of the flight can be
seen in figure 8.6. While the changes in altitude are visualized in figure 8.7. The
highest point relative to the starting point is at 82 meters, while the lowest is
at 36 meters. In other words, the difference in altitude in the path is 46 meters.
Figure 8.8 shows an image taken by the drone during the test. In the upper right
quadrant, one can clearly see one sheep with two lambs.
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Figure 8.6: Area and path covered in test at 40 meters altitude.

Figure 8.7: Height relative to takeoff altitude for each waypoint in test at 40 meters
altitude.

20-Meter Altitude

The 20-meter altitude test resulted in a crash. The intended path of the flight can
be seen in figure 8.9, while the changes in altitude are visualized in figure 8.10.
The highest point relative to the starting point is at 30 meters, while the lowest is
at 13 meters. In other words, the difference in altitude in the path is 17 meters.
Figure 8.11 shows an image taken by the drone during the test. One can clearly
see a small herd of sheep consisting of three sheep and 6 lambs.

The drone crashed between waypoint 8 and 9, in a thickly wooded area. The



80 Linnestad, Ødegaard: Drones Covering Outfield Pastures

Figure 8.8: Image taken by drone during test at 40 meters altitude.

remote controller flashed "obstacle", and the drone operator tried to increase the
height of the drone. No error message was shown, and the drone showed an alti-
tude of 0 still connected to the remote controller. The recovered drone was partly
buried in the ground, with one antenna loose, but no propellers were broken.

Figure 8.9: Area and path covered in test at 20 meters altitude.

8.5 Discussion

Multiple tests were performed, and each is discussed in this section, first the pilot
test followed by the two realistic tests.
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Figure 8.10: Height positions of each waypoint in test at 20 meters altitude.

Figure 8.11: Image taken by drone during test at 20 meters altitude.

8.5.1 Pilot Test

The first problem occurred when the search area was uploaded to the server. The
path planning algorithm was not able to exit from an infinite loop. It is not clear
what causes this error, but development has revealed that floating-point errors
can lead to unwanted results. This can happen when you store a floating-point
number (decimal number representation) in Python. Because of limitations on the
number of decimal places that can be stored in memory, round-offs are performed
on number representations. This can, for instance, lead to the conclusion that a
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point is not located on a line segment when, in reality, it is.
When it comes to the user interface in the application, more feedback should

be given to the user. The user does not know whether an action has been properly
executed or not, and errors are not communicated to the user. The only way of
telling the current state is to use the CHECK STATUS button and watch out for
changes on the map. A suited solution would have been to notify the user with an
alert telling if an action was successful or not.

As for the current system architecture, the user has to first upload the search
area to the server and then request a result. If the processing task is not yet fin-
ished, the server will respond with an empty result when the user requests it. This
leads to several requests to the server without any useful results being returned. It
is designed in this manner to avoid connection time-outs with the server. A better
solution is to make the server notify the application when processing is completed.

The server sometimes responded with strange paths. Some of them had paths
going outside the search area, and some lacked paths in some parts of the search
area. It is unknown what caused this issue, but it is assumed that it is one of
several edge cases that has not yet been tested properly. Further testing on the
path planning algorithm has to be done to prevent such errors.

Time used on intermediate steps was negligible, and the test therefore success-
fully score WaypointMissions higher than GoToActions when it comes to search
time. The former also supports features where the camera can be set to take pho-
tos every x meters. For this to be possible in the later, an Action must have been
added for each photo capture point – increasing the time used in intermediate
steps.

8.5.2 Full-scale Tests

40 meters

The 40-meter altitude test can be considered successful, the test went as expected,
covering the entire area, and taking images at even intervals throughout the test.
By looking at Figure 8.8, the sheep can be seen clearly. However, there is reason
to believe that a further height increase might make the sheep hard to see. Some-
thing to note is that the test takes pictures and stores them as JPEG and using
RAW format would result in much more detailed pictures, at the cost of memory
space and intervals at which pictures may be taken. The altitude difference in the
waypoints was confirmed to work well, and the drone flew evenly over the terrain.

20 meters

The 20-meter test was a success until the drone crash. It took clear pictures and
followed the terrain. Figure 8.11 clearly shows a herd of sheep. It followed the
terrain up until the crash.

As to why it crashed, there are some possibilities. Figure 8.12 shows the alti-
tude of every meter between waypoint 8 and 9. The blue line is the terrain, while
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the red line includes trees. The current version of the system does no use the sur-
face model, but the terrain model, and as the figure shows, the flight path (yellow
line), goes straight through the red line. This means the tree was in the way of
the drone. This is not good enough, and the system should consider the surface
of the area to make sure there is adequate clearance.

Figure 8.12: Height measurements between point 8 and 9 in test at 20 meters
altitude. The blue line is the ground terrain, the red line includes trees, and the

yellow line is the flight path.

It also has to be pointed out that the system only checks the altitude at every
20 meters, and if the height difference is not more than ten meters, it removes
that point from the path. This would also cause inaccuracies and while deemed
sufficient for flights at 40 meters above ground, should have been adjusted for the
20 meters test.

Another issue is the height measurements themselves. The height measure-
ments are from 2018 and should be fairly accurate, while we can assume the
terrain to be largely unchanged there might have been changes in vegetation,
although it was not the key factor for the crash in this test.

Lastly is the strange case concerning the crash. No propellers were destroyed.
This means that the drone did NOT hit anything in the air as this would break
one or more propellers. As the remote controller flashed "obstacle", it is clear that
something was near the drone at the time of the crash. No propellers broken points
to the electrical engines simply stopping their rotation and the drone free-falling
into the ground.

Regardless of what caused the crash, the work in preparation of the test should
have been more thorough to prevent a crash from happening. A risk analysis of
the test might have prevented the errors in the 20 meters altitude test.





Chapter 9

Discussion

9.1 Tests

Chapter 4 explore the DJI drone’s capabilities of performing automatic flights.
Some difficulties arose due to inadequate documentation for the DJI Mobile SDK.
Many features responded with a "This feature is not supported by the SDK" mes-
sage while the documentation stated that it was implemented. An initial test leads
to the drone crashing into a branch and falling five meters to the ground. Luckily
the aircraft survived, but this incident proves how bad things can happen. One
can only imagine what would have happened if the same thing had happened
from 30 meters altitude. It is clear that pilot tests should be conducted in areas
without vegetation and other obstacles. A similar crash happened in the 20 meters
altitude test. It was however different in circumstances as none of the propellers
broke. From the experience of the first failed test, one would expect the propellers
to break upon impact with an object. This makes the last crash especially inter-
esting as all propellers were whole, indicating the crash was not coming from an
impact with an object but from something else. What this could be is hard to say.
But a theory is either that the drone automatically detected it was about to crash,
and instead of hitting the tree head-on, turned off its engines and crash-landed.
This, however, does not seem to be a common behaviour, and at this time, it is not
possible to conclude what actually happened.

Section 8.3.3 describes a more or less successful pilot test. The system eventu-
ally worked as intended, and the drone searched through the whole search area.
As small errors occurred, it was hard to locate the actual bug. It could be in several
of the system components. Things get even harder with the altitude service as it
relies on a third-party web service to fetch the altitude map. A better approach
would have been to test smaller groups of components before the final test. In
this way, it would have been easier to locate weak spots in the system and debug
components and interfaces separately.

Several trials were made in the test before a path was returned. The error was
the path planning component that ran in an infinite loop. More test with real data
should have been conducted before the pilot test to ensure that it worked prop-
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erly. Data that was used when implementing and testing locally was significantly
different from the real data. One can assume that more errors could have been
discovered with real data in the test set.

The accuracy of the real data was greater than for the test data, i.e. they in-
clude more decimal digits. Since the floating-point error (FPE) mechanism in the
path planning algorithm was developed for less accurate numbers, it is assumed
that it overcompensated with real-life data. As the algorithm is both highly iter-
ative and recursive, the error possibly increased during execution. A solution to
this could have been to analyze the accuracy of the incoming data and adjust the
FPE mechanism accordingly.

The 40 meters altitude test in Section 8.3.3 was by and large successful. No
problems occurred, and images were taken of the whole area. The test shows the
potential of the system. It efficiently covered the area flying at a speed of 10 meters
per second. It followed the terrain consistently and landed at the starting point.
The images in the test clearly show grazing sheep.

While the 40-meter altitude test highlighted the potential of the system, the
20-meter altitude test highlighted the shortcomings. As already mentioned the
cause of the crash is unknown, but from the results of the test show that the
drone flew close to the top of the tree line, and the remote controller flashed
"obstacle". The 20-meter altitude test suffered from decisions made early in the
project when the intended height of the drone was above 40 meters. Forty meters
gives a significant clearance of obstacles and trees. The 20-meter interval altitude
adjustment between two points is not sufficient at lower altitudes and should have
been much smaller.

As a result of the crash in the 20-meter altitude test, the altitude service was
modified to accommodate these scenarios. Instead of checking every 20 meters,
it now uses a different method of getting the altitude data from hoydedata.no. It
now checks both the terrain and surface on the path every meter. It defaults to
using the terrain, and if the clearance to an obstacle such as a tree or building
is less than 5 meters, it uses the surface model and adjusts and flies higher in
those areas. This implementation was tested in isolation using the same data as
the 20 meters test, and the difference between the two implementations and how
they relate to the terrain and surface of the area can be seen in Figure 9.1. It also
adjusts itself so that the threshold for lowering its height is greater than that for
increasing its height. The graph is the altitudes between waypoint 8 and 9, where
the crash originally happened.

As a result, the system is now much more robust in relation to obstacles in the
terrain. Instead of every 20 meters, every single meter is checked. The change also
has a side effect of being much faster, as the data from hoydedata.no are received
in batches.
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Figure 9.1: Results after modifying the altitude service and how it solves the
crash problem. Blue is the terrain model, red is the surface model, green is the

old flight path, and yellow is the new flight path.

9.2 The Complete System

The complete system is in a lot of ways a minimum viable product. It offers auto-
matic flight, and interface for user-defined areas and settings, and takes consid-
eration in elevation and terrain. Each part can be improved on for a more robust
and secure system.

9.2.1 The Application

The application has evolved throughout this project. Design and layouts have
changed since the first usability test, as more features have been applied. In other
words, the system should have been tested with non-biased users to verify the final
design. Due to the COVID-19 situation, this has not been possible. One can argue
that this falls outside of the scope of this project since the main focus has been
verification and feasibility testing. It is, however, still important to consider the
users’ needs and requirements when designing an application for practical use.

The test was performed on five participants. It can be argued that the more
the merrier, but because of the COVID-19 situation, the number of tests is kept to
a minimum. A possible approach could have been to do tests more iterative and
test larger parts of the mobile application later in the project. From the test, it is
clear that the map portion of the application works as intended, but with room
for improvement.
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9.2.2 Altitude

The altitude service is one area where improvement would directly lead to an
increase in security and stability, as shown by the 20-meter altitude realistic test.
The altitude service was improved after the 20-meter altitude test, and conditions
leading to the crash has been solved. However, it still needs work. Although it
now should be safe to fly in most areas, it is not recommended to fly at a high
altitude. The new implementation uses both the surface and terrain models, but
the security from the surface models is not available in the entirety of Norway.
Therefore, the user should verify that the are they intend to fly at is covered by
the surface model. This can be done at hoydedata.no. The new altitude service
should be tested further, for a range of altitudes and areas to ensure that it is safe
to use in a full-scale test.

9.2.3 Path Planning

Although many solutions to the CPP problem exist, every case has its pros and
cons. Since the proposed solution does not have strict performance requirements,
some shortcuts were made to decrease implementation time. The implementation
did at first take advantage of the Shapely library to store shapes. The library came
short later on as the system required calculations that were not supported by
Shapely. Although third-party libraries can be handy to do quick implementations,
one often realizes that some requirements are not met. Many Python libraries are
large and come with an overhead. One should, therefore, weigh the benefits of
using third-party libraries. In this case, implementing the functionality needed
from the bottom was the right choice in the end.

Jiao et al. [52] implement an intermediate step in their algorithm where two
sub polygons are combined based on some conditions. This is beneficial to min-
imize the number of turns but is not implemented in the proposed solution. Since
the number of sub polygons is reasonably small, a decision has been made to skip
this part. It should be a requirement in a production solution, but since the current
solution focus on feasibility and testing, it is given less priority.

9.3 Future Work

Flying a drone outside can lead to hazardous situations, both for the drone op-
erator, animals, buildings, and other people. This project focuses on testing and
validating a system as a whole. Many security requirements have, therefore, been
neglected. As a result, the proposed solution is not yet ready for production use
and all use of the system and accompanying code without support from the au-
thors’ is therefore not recommended.

More work has to be done in able to use it in real-life situations. First of all,
security has to be dealt with to a greater extent, as mentioned in section 2.3. This
involves investigating mechanisms to handle power lines, urban areas, buildings,
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and other aircraft. Many DJI drones do have object avoiding features; however,
as there has occurred two crashes, it can be concluded that the object avoidance
is not sufficient for practical use. Any future implementation should not rely on
object avoidance as the only measure to avoid colliding with objects.

9.4 Market and User Needs

It is up to debate whether or not this system can be used to benefit farmers. As
the prices on sheep meat [59] is relatively low, it can get too expensive for a
farmer to invest in such a system. If it is less expensive to loose sheep than to buy
the proposed system, it would not be beneficial. Market analyzes, in addition to
further development, have to be conducted in order to tell if the market is ready
for the proposed solution.

It can be hard to introduce such a technological solution into a less digitized
profession like farming. Many farmers might fear that robots will run them out of
business and, hence, are sceptical to the proposed solution. This project is about
proving a concept, and the motivation is the health of the animals. The hope is
that it brings more innovation into farming and that farmers find it useful.





Chapter 10

Conclusion

The goal of this thesis was to prove a concept and investigate the feasibility of
an animal monitoring system using drones. By conducting tests for each compon-
ent, the system has iteratively evolved into a functioning solution. Answers to the
underlying research questions are given in this chapter.

First, it is possible to program a consumer drone to fly automatically in user-
defined patterns. This question was answered in Chapter 4, and shows how a
DJI Mavic 2 Enterprise Dual using the official DJI SDK can be programmed for
automatic flight. DJI is the largest manufacturer in the world of consumer drones.
Moreover, although the code would not work out of the box on other drones, it
should work on most DJI consumer drones.

The second research question relates to finding an efficient path covering an
area. As described in Chapter 7, a path is found by first applying a convex decom-
position to concave polygons, and then building back-and-forth paths perpendic-
ular to the direction of the width. Despite some troubles during the pilot test (see
Section 8.3), the algorithm, in general, produce successful paths, capable of cov-
ering a wide range of polygons. Further work has to be done to support edge cases
fully.

The final research question is answered mostly in Chapter 8. The chapter
shows the complete system made in this thesis. The success of the pilot test and
the 40-meter altitude test shows that the system works as intended and fulfils its
purpose under ideal conditions. The crash in the 20-meter test shows that more
work is needed for the product to be used in real situations and provide value
to the user. The root cause of the problem in the crash was fixed, and using the
surface model of the area means it should be safe to use in areas with trees.

Further development and testing are needed. A survey should be conducted
on the need for such a system, targeting sheep farmers. The focus of this thesis was
feasibility testing and creating a proof of concept. It provides a base for further
work in the digitization of animal husbandry and agriculture.
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Usability test 
 

Test 1: 

Google Maps: 
Q1:  

- Mistakes: 0 
- Accuracy:7/7 points *7/7 shape 
- time : 31.55 
- Comments: No problem 

 
Q2: 

- Mistakes: 1 
- Fatal:  
- time : 47.31 
- Accuracy: 7/7 points * 7/7 shape 
- Comments: No problem, however added more points than need by mistake, quickly 

removed the points intuitively 
 
Q3: 

- Mistakes: 0 
- Fatal: 0 
- Time: 16.67 
- Comments: No problems but commented that there was no indication of whether a point 

was clicked or not. . 
 
Would you be able to do the tests again without error?: Yes 
 
 

Test 2: 

Google Maps: 
Q1:  

- Mistakes: 3 
- Accuracy: 6/7 points * 6/7 shape = 0.73 
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- time : 1:00.60 
- Comments: No problem 

 
Q2: 

- Mistakes: 6 
- Fatal: 1 
- time : 2:13.16 
- Accuracy: 6/7 points * 4/7 shape = 0.47 
- Comments: Did not understand that you need to hold and drag to move points. Started 

making several points. 
 
Q3: 

- Mistakes: 3 
- Fatal: 0 
- Time: 1:45.13 
- Comments: Did not understand that you need to click and then click delete button. Said 

that there was no indication that a point was clicked. 
 
Would you be able to do the tests again without error?: Yes 
 

Test 3: 

Google Maps: 
Q1:  

- Mistakes: 4 
- Accuracy: 6/7 points * 6/7 shape= 0.73 
- time : 1:55.37 
- Comments: Lots of problems when trying to place points, dragging and and tapping.  

 
Q2: 

- Mistakes: 3 
- Fatal: 1 
- Time: 1:59.06  
- Accuracy: 7/7 points * 6/7 shape= 0.86 
- Comments:Understood that there missed a point and added this, added ekstra point by 

mistake and created a broken polygon. Understood that you need to hold and drag after 
a while without help.  

Q3: 
- Mistakes: 3 
- Fatal: 0 
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- Time: 1:12.4 
- Comments: Did not understand that you need to tap to delete. After being told how, no 

problems arose 
 
Would you be able to do the tests again without error?: Yes 
 

Test 4: 

Google Maps: 
Q1:  

- Mistakes:7 
- Accuracy: 6/7 points * 6/7 shape= 0.73 
- time : 2:37.04 
- Comments: Repeatedly tapped to place points. After boeing explained that you needed 

to hold no further problems  
 
Q2: 

- Mistakes: 2 
- Fatal: 1 
- Time: 59.85  
- Accuracy: 6/7 points * 5/7 shape= 0.61224489795 
- Comments: Understood that you needed to hold to drag, however broke the polygon by 

adding another point 
Q3: 

- Mistakes: 1 
- Fatal: 0 
- Time: 30.83 
- Comments: Understood deleting intuitively, commented that the selected point where not 

indicated anywhere 
 
Would you be able to do the tests again without error?: Yes 
 

Test 5: 

Google Maps: 
Q1:  
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- Mistakes: 3 
- Accuracy: 7/7 points * 7/7 shape = 1 
- time : 1:00.72 
- Comments: Used some time to drag the map around, byt quickly understood that you 

needed to hold to place points 
 
Q2: 

- Mistakes: 1 
- Fatal: 1 
- Time: 58.72 
- Accuracy: 7/7 points * 5/7 shape= 0.71 
- Comments: Understood that you need to hold to move, however accidentally created 

another point 
Q3: 

- Mistakes: 0 
- Fatal: 0 
- Time: 16:69 
- Comments: no problems 

 
Would you be able to do the tests again without error?: Yes 
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Appendix B

Full-Scale Flight Tests

1 {"path":[{"altitude":40,"longitude":10.989615900418302,"latitude":62.40432879916252},
2 {"altitude":51,"latitude":62.403463620703405,"longitude":10.987133887660283},
3 {"altitude":58,"latitude":62.40274595652359,"longitude":10.98507526683359},
4 {"altitude":58,"latitude":62.40274595652359,"longitude":10.98507526683359},
5 {"altitude":68,"latitude":62.404526715424154,"longitude":10.984529087203653},
6 {"altitude":79,"latitude":62.406307472187045,"longitude":10.983982842615804},
7 {"altitude":82,"latitude":62.40735961669884,"longitude":10.983660067951503},
8 {"altitude":82,"latitude":62.40735961669884,"longitude":10.983660067951503},
9 {"altitude":82,"latitude":62.40736288303237,"longitude":10.983767513731216},

10 {"altitude":71,"latitude":62.40504799648664,"longitude":10.98447912636995},
11 {"altitude":60,"latitude":62.40308924349902,"longitude":10.985081174218383},
12 {"altitude":58,"latitude":62.40274527791174,"longitude":10.985186888241467},
13 {"altitude":55,"latitude":62.40273872830346,"longitude":10.98626344468892},
14 {"altitude":66,"latitude":62.40469748638678,"longitude":10.9856614811505},
15 {"altitude":77,"latitude":62.40594396745148,"longitude":10.985278372443457},
16 {"altitude":78,"latitude":62.40739524716124,"longitude":10.984832277827469},
17 {"altitude":66,"latitude":62.40741879800219,"longitude":10.985607258960915},
18 {"altitude":64,"latitude":62.40742760314449,"longitude":10.985897044075784},
19 {"altitude":53,"latitude":62.40440042890305,"longitude":10.986827379270458},
20 {"altitude":46,"latitude":62.40273217037833,"longitude":10.987340000515186},
21 {"altitude":44,"latitude":62.4027256041364,"longitude":10.988416555719589},
22 {"altitude":50,"latitude":62.4074599509821,"longitude":10.986961812475517},
23 {"altitude":40,"latitude":62.40748348997224,"longitude":10.987736796961642},
24 {"altitude":36,"latitude":62.407492290674014,"longitude":10.988026583026013},
25 {"altitude":36,"latitude":62.4027190295776,"longitude":10.989493110301447},
26 {"altitude":40,"longitude":10.989615900418302,"latitude":62.40432879916252}],
27 "length":34.89922541016825}

Code listing B.1: The path in raw JSON-format of the 40 meter altitude test.
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Figure B.1: The path in raw JSON-format of the 20 meter altitude test
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