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Assignment Description

Internet of Things (IoT) represents a technology paradigm shift in which computers
are embedded inside everyday machines, often times smaller in size and consuming
less energy than traditional computers, but usually unable to perform resource-
demanding tasks. Supporting this paradigm shift are Ultra-Low-Power (ULP)
devices. This thesis focuses on the subset of ULP devices that are characterized
as soft real-time systems, i.e., they must complete tasks before a given deadline.
Recently, IoT devices have started focusing on applications in the machine learning
(ML) domain which tend to push ULP devices to their performance limits. Thus,
multi-core architectures become attractive since they have the potential to increase
performance and save energy. More specifically, the improved performance of
multi-cores can be exploited with race-to-halt strategy – i.e., run at maximum
performance until the result is ready and then enter a sleep mode – or a slowdown
strategy – i.e., choose the minimal frequency/voltage operating point that meets
the deadline.

In this thesis, the student should investigate race-to-halt and slowdown strategies
in the context of ML-applications on multi-core ULP devices. The student should
first parallelize the SeeDot framework on the prototype ULP device provided by
Nordic Semiconductor to investigate the relationship between key parameters such
as the number of cores, clock frequency, and supply voltage. The student should
then use these results as a basis for performing an architectural exploration to
determine under which conditions race-to-halt and slowdown strategies are more
appropriate.
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Abstract

Internet of Things (IoT) sees billions of ultra-low-power (ULP) devices deployed
into all parts of our society. Such devices perform a variety of functions, periodically
reading in data through their sensors, possibly processing this data in some way and
transmitting them before the period is over and finally entering a sleep mode. These
devices pose an interesting intersection of conflicting objectives. They often sport
minimal resources when it comes to memory and energy budgets, while at the same
time being increasingly often times tasked with running compute-intensive machine
learning (ML) applications that must adhere to real-time performance requirements.
In recent times increasingly more ULP devices also come equipped with multiple
processing cores that increase the computing capabilities, but challenge the energy
budget. It is therefore important that these devices utilize their resources in terms of
clock frequency, supply voltage and the number of cores in such a way as to minimize
their energy consumption while still meeting the performance requirements. Allowing
ULP devices to perform processing-intensive work locally instead of communicating
with Internet servers enable a range of interesting applications that avoid the
security concerns and latencies of Internet communication.

In this work we consider slowdown through dynamic voltage-frequency scaling
(DVFS) versus race-to-halt as strategies for minimizing energy consumption under
performance requirements for a multi-core ULP device in a soft real-time context.
We implement three applications that are deployed to a prototype provided by
Nordic Semiconductor. The first makes use of the SeeDot framework for deploying
quantized neural networks (QNNs) on ULP devices and the other two are matrix
multiplication applications. All applications are implemented in a single-core and
multi-core context. We measure the performance and energy consumption in terms
of clock frequency, supply voltage and the number of cores. We also analyze the
theoretical benefit of using multiple scaled-down cores versus a single scaled-down
core.

We find that a slowdown strategy using the lowest configuration that still meets
the performance requirement minimizes energy consumption the most, and that
supporting dynamic scaling of supply voltage and clock frequency might involve
more engineering work without any real benefit to energy savings. This assumes
that the workload performed within the time period does not exhibit significant
variation. We also find that a race-to-halt strategy allows the device to finish as
early as possible by consuming the most energy without improving the performance
of the application in any meaningful way given the performance requirement. In
the analysis of using multiple scaled-down cores versus a single scaled-down core we
found that there is potential for performance improvements and significant energy
savings when using multiple scaled-down cores.
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Sammendrag

Tingenes Internett (Internet of Things (IoT)) gjør at milliarder of ultra-lav-effekt-
enheter (ultra-low-power (ULP) devices) blir deployert i alle deler av samfunnet
vårt. Slike enheter utfører en rekke funksjoner, periodisk leser inn data fra sensorene
deres, potensielt prosesserer og sender denne dataen videre før de går inn i en
sovemodus. Disse enhetene representerer en interessant krysning av motsigende mål.
De har ofte minimalt med ressurser når det kommer til minne og energibudsjett,
samtidig som de i større grad enn før får i oppgave å utføre beregningsintensive
maskinlæringsapplikasjoner (machine learning (ML) applications) som må holde
seg innenfor sanntids-ytelseskrav. I det siste har ULP-enheter også blitt utstyrt
med flere prosesseringsenheter som øker beregningsevnene, men som også utfordrer
energibudsjettet. Det er derfor viktig at disse enhetene utnytter sine ressurser med
tanke på klokkefrekvens, forsynningsspenning og antall kjerner på en slik måte
at de minimierer energiforbruket samtidig som de møter ytelseskravene. Å tillate
ULP-enheter å utføre prosesserings-intensivt arbeid lokalt i stedet for å kommunisere
med Internett-servere muliggjør en rekke interessante applikasjoner som unngår
sikkerhetshensyn og forsinkelser assosiert med Internett-kommunikasjon.

I dette arbeidet betrakter vi slowdown gjennom dynamisk spennings- og frekvensska-
lering (dynamic voltage-frequency scaling (DVFS)) kontra race-to-halt som strategier
for å minimere energiforbruket gitt ytelseskrav for en flerkjernet ULP-enhet i en
myk sanntidskontekst. Vi implementerer tre applikasjoner som blir deployert på en
prototype fra Nordic Semiconductor. Den første bruker SeeDot-rammeverket for
å deployere kvantiserte nevralnett (quantized neural networks (QNNs)) på ULP-
enheter og de to andre er matrisemultiplikasjon-applikasjoner. Alle applikasjonene
er implementert i en en- og flerkjernet kontekst. Vi måler ytelse og enerigforbruk
relatert til klokkefrekvens, forsynningsspenning og antall kjerner. Vi analyserer
også den teoretiske gevinsten av å bruke flere nedskalerte kjerner i stedet for en
enkelt nedskalert kjerne.

Vi finner at en slowdown-strategi som bruker den laveste konfigurasjonen som
fortsatt møter ytelseskravet minimerer energiforbruket mest, og at å støtte dynamisk
skalering av forsyningsspenning og klokkefrekvens kan kreve ingeniørarbeid uten å
bidra til å redusere energiforbruket i noen særlig grad. Dette antar at den utførte
arbeidslasten innenfor tidsperioden ikke endrer seg vesentlig. Vi finner også at en
race-to-halt-strategi gjøre at enheten avslutter raskest mulig ved å forbruke mest
energi uten å forbedre ytelsen på en meningsfull måte gitt ytelseskravet. I analysen
av å bruke flere nedskalerte kjerner i stedet for en enkelt nedskalert kjerne så finner
vi at det er potensial for ytelsesforbedringer og signifikante energibesparelser ved å
bruke flere nedskalerte kjerner.
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Chapter 1

Introduction

This introductory chapter frames the context of this work and lists the objectives
in the form of concrete tasks and the resulting contributions.

1.1 Internet of Things

Internet of Things (IoT) represents a technological shift in which everyday objects
are connected to networks, i.e. the Internet, and are able to perform tasks that
require computational effort and artificial intelligence. A typical life cycle can be
seen in Figure 1.1 — typically such devices would read input from its environment,
perform some action and enter a sleep mode before restarting the process (Sethi
and Sarangi, 2017). Act means to possibly process data and then transmit them.
Processing data can be done in a multitude of ways, and an emerging candidate
is machine learning (ML) (Din et al., 2019). IoT devices can be deployed into a
variety of domains, like smart houses, health care and the industry (Khan et al.,
2020). There are currently billions of IoT devices connected to the Internet, and it
is expected that this number will increase by the billions in the coming years (Din
et al., 2019; Khan et al., 2020).

The environment in which IoT devices is deployed may significantly affect the
properties of the device, like the physical size. Because of this they might be heavily
resource-constrained in terms of memory and energy budget, having as little as
a few KiB of RAM and a current consumption in the order of a few µA or mA
depending on the operating mode (Sethi and Sarangi, 2017; Atmel, 2015; Gopinath
et al., 2019). Because of this we will refer the IoT devices we consider in this work
as ultra-low-power (ULP) devices.

The development of ULP devices require a strong emphasis on energy-aware resource
consumption. A way of characterizing the resource consumption is with the concept
of energy proportionality as defined by Barroso and Hölzle (2007). The idea is
that a system uses few to none resources when the workload is little to none, and
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Chapter 1. Introduction

Sleep

Read

Process

Act

Figure 1.1: Typical life cycle of IoT devices. A sleeping device is notified at regular
intervals to read data from its sensors. These data are processed and acted upon before
the device enters a sleep mode again.

consumes proportionally more resources as the workload increases. Barroso and
Hölzle argues that servers designed with energy proportionality in mind would see
significant energy savings. Energy proportionality should therefore be a goal for
ULP devices.

1.2 Soft Real-Time ULP Devices

There is a subset of ULP devices that run real-time applications. This means the
device must adhere to certain performance requirements that depend on the type of
real-time context. For instance, the device might have an imposed deadline. This
deadline can either be a soft or hard real-time deadline. An example of the former
might be a wearable gesture-based application and the latter a flight control system.
Missing a single soft real-time deadline might not be a problem, but repeatedly
missing deadlines might degrade the performance. This is in contrast to a hard
real-time deadline, where missing a deadline might be fatal. In this work we concern
ourselves with soft real-time applications. The energy consumption of real-time
applications is of utmost importance. One must reduce the energy consumption as
much as possible to lengthen the battery life of the device, but still have enough
resources to complete the execution of tasks before the deadline.

There are traditionally two strategies for reducing the energy consumption of ULP
devices: Slowdown through dynamic voltage-frequency scaling (DVFS) or race-
to-halt. Race-to-halt simply means that the device uses all available resources to
finish program execution as quickly as possible and then entering a sleep mode
(Das et al., 2015; Imes and Hoffmann, 2015). When it comes to slowdown there are
subtle nuances. Traditionally it is defined as using a scaled-down configuration of
clock frequency and supply voltage that allows the device to meet the performance
requirements (Das et al., 2015; Imes and Hoffmann, 2015). In a soft real-time
context the device might finish before the deadline even on the lowest configuration,
and as such we also have the possibility of the device entering a sleep mode as it is
unnecessary to idle when program execution has completed. These three strategies
are seen in Figure 1.2. It is not apparent which of these strategies is the optimal

2
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t

t

t

1

2

3

P (t)

Deadline

Read Process Act

Sleep

Read Process Act

Read Process Act
Sleep

Figure 1.2: Three strategies for saving energy in computing systems. Power consumption
versus time. 1) Slowdown through DVFS and sleeping after program execution. 2)
Slowdown through DVFS without sleeping after program execution. 3) Race-to-halt.

one, as it might depend on the device architecture and executed applications (Das
et al., 2015; Imes and Hoffmann, 2015).

An added dimension of minimizing energy consumption through the use of the
slowdown or race-to-halt strategies is the use of multiple processing cores. The idea
is that instead of pushing the device to the limit on the highest configuration in
terms of clock frequency and supply voltage, you divide the work between multiple
cores that operate on a lower configuration. Given that the application is sufficiently
parallelizable, the multi-core application would then increase performance and
reduce the energy consumption compared to the single-core application.

1.3 Example Scenario
We will now exemplify the discussion above with a scenario of multiple ULP devices
equipped with sensors and varying amounts of available resources working together
to compute some task.

There are several examples of ULP devices being used in the health industry. One
example is the use of tiny monitoring patches that can be worn on the skin and
used for continuously monitoring vital aspects of the patient (Sethi and Sarangi,
2017). Even though it is only intended to be used for a few days, it will still have
to consume little energy and it will not have the ability to perform any significant

3
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computations. If we compare this device to the life cycle in Figure 1.1 we see that
the device would have to read data from its sensors regularly, say the blood pressure,
and then act upon these data by wirelessly transmitting them to the patient or
doctor before going back to sleep.

One can also imagine that multiple sensors attached to the patient can be used
for collecting multiple types of data and based on the combined data stream make
inferences about the condition of the patient. To process this data stream we also
imagine there being another ULP device that could be carried by the patient that
collects this data and makes use of a ML application that is trained to recognize
certain patterns.

1.4 Assignment Interpretation

Based on the assignment description we establish a set of tasks T for this work

(T1) We will parallelize the SeeDot example application on a single prototype with
multiple processing cores provided by Nordic Semiconductor.

(T2) We will perform experiments measuring performance and energy consumption
in terms of clock frequency, supply voltage and the number of processing
cores.

(T3) We will discuss whether a slowdown through DVFS or race-to-halt strategy is
more appropriate given an objective of minimizing the energy consumption
under a performance requirement like a soft real-time deadline in relation to
the prototype architecture.

We note that when the assignment description describes the strategies of slowdown
versus race-to-halt, it is slightly inaccurate in that it does not open for allowing the
slowdown strategy to sleep at the end of program execution before the deadline is
reached. In this work we will explicitly open for this strategy in our analysis.

1.5 Contributions

Based on the defined tasks T we list the set of contributions C from this work

(C1) We parallelized the SeeDot example application and two matrix multiplication
applications on a single prototype with multiple processing cores provided by
Nordic Semiconductor.

(C2) We performed experiments measuring performance and energy consumption
in terms of clock frequency, supply voltage and the number of processing
cores.

(C3) We discussed whether a slowdown through DVFS or race-to-halt strategy was
more appropriate given an objective of minimizing energy consumption with
a performance requirement like a soft real-time deadline in relation to the

4
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prototype architecture. We found that a slowdown strategy with the lowest
configuration that still met the deadline minimized energy consumption the
most. The race-to-halt strategy consumed the most energy. We also found
significant energy saving opportunities when using multiple scaled-down cores
compared to a single scaled-down core.

Because of the COVID-19 pandemic that broke out during the work on this masters
thesis, we lost access to the Nordic Semiconductor equipment for several weeks. See
Appendix A for more details.

1.6 Chapter Outline
Figure 1.3 outlines the chapters and the related contributions in this work. Chapter 1
introduces the problem domain, tasks and contributions. Chapter 2 introduces the
field of ML and the SeeDot framework. Chapter 3 presents the applications that
have been implemented on the Nordic Semiconductor prototype. Chapter 4 details
the prototype and the experimental setup. Chapter 5 presents the results obtained
from the experiments. Chapter 6 discusses slowdown versus race-to-halt strategies
as means for saving energy in soft real-time systems in a single-core and multi-core
context and the concept of energy proportionality. Chapter 7 presents the related
work when it comes to deploying ML applications on ULP devices, task scheduling
in real-time systems and the question of slowdown versus race-to-halt. We present
our conclusion and the proposed future work in Chapter 8.
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1 – Introduction

2 – ML on ULP Devices

3 – Applications on the Nordic
Semiconductor Prototype

4 – Experimental Setup

5 – Results

6 – Minimizing Energy
Consumption in Soft
Real-Time Systems

7 – Related Work

8 – Conclusion
and Future Work

C1

C2

C3

Figure 1.3: Outline of chapters. Blue boxes are chapters in order. Gray boxes with C1,
C2 and C3 refer to the individual contributions in Section 1.5.
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Chapter 2

ML on ULP Devices

In this chapter we summarize the relevant aspects of ML and the important matrix
multiplication operation that is central to the parallelization of our applications.
We also explain the aspects of SeeDot that enables us to run a ML application on a
ULP device like the Nordic Semiconductor prototype.

2.1 ML Basics and SeeDot

ML is the process of making a program improve its performance from experience,
i.e. it should learn from data. We refer to the application scenario and data as an
example (or data point) that consists of features, usually denoted as a vector x and
labels denoted as a vector y. The learning and evaluation steps are separated, and
we use different examples for each, i.e. we use a training set when learning and a
testing set when evaluating the performance. A data set, either testing or training,
is then a collection of many examples. The task is executed with a ML algorithm
(Goodfellow et al., 2016).

There are different types of ML algorithms, and one of these are supervised learning
algorithms. Supervised means that we instruct the ML algorithm to associate some
input x with some output y, such that yi corresponds to the correct output for
a given example or data point xi. When the ML task is about figuring out what
kind of input belongs to a specific output category, we call this a classification
task (Goodfellow et al., 2016). In the case of SeeDot, the example is a vector of
features, where each feature xi is the individual pixels that make up the image of a
handwritten digit. Then, the classification task is the process of classifying which
digit the image represents. We use SeeDot with the ProtoNN algorithm, which is
a kind of k-Nearest Neighbors (k-NN) inspired ML algorithm that is designed for
supervised classification tasks.

Since each digit is on the form y ∈ {1, 2, . . . , 9}, we call this specific classification
task for a multiclass classification. This is in contrast to a binary classification,
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where the output value can be one of two values (Goodfellow et al., 2016; Murphy,
2012). The performance of the ML algorithm on a classification task is usually
measured in terms of classification accuracy, i.e. the fraction of correct classifications
(Goodfellow et al., 2016).

The neural network in the SeeDot example application performs multiple matrix
operations, for instance matrix multiplication and matrix subtraction. We implement
an application that only performs matrix multiplication, and such an application is
referred to as a kernel in ML. Matrix multiplication is used extensively in computer
graphics, robotics, graph theory and image processing (Alqadi and Aqel, 2008;
Akpan, 2006).

2.2 Matrix Multiplication
We will now define the concept of a matrix and how matrix multiplication works
mathematically. We will then look at how matrices are stored in memory and how
we enable multiple processing cores to cooperate on a matrix multiplication task in
parallel without interfering with each other.

Equation 2.1 defines a m × n matrix A to be a (possibly) multi-dimensional list
with m rows and n columns. A one-dimensional list, also called an array, is then
defined to be a 1× n matrix, with n elements.

A =


a11 · · · a1n

...
...

am1 · · · amn

 (2.1)

We consider two matrices A and B of dimensions m × n and n × p, respectively.
Then C = A×B is the multiplication of A with B resulting in the m× p matrix
C. This operation is only valid if A has as many columns as B has rows. C is then
defined to be

cij =

n∑
k=1

aikbkj

{
1 ≤ i ≤ m
1 ≤ j ≤ p

(2.2)

We will now look at how matrices are stored in memory. We will consider two
simplified 2× 2 matrices A and B defined as

A =

[
a11 a12
a21 a22

]
B =

[
b11 b12
b21 b22

]
(2.3)

There are traditionally two ways in which matrices like A and B are stored in
memory. Row-major order involves storing the elements of each row next to each
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0 1 2 3

a11 a12 a21 a22︸ ︷︷ ︸
Row 0

︸ ︷︷ ︸
Row 1

Figure 2.1: Matrix A laid out in memory, row-major order

other in memory. This is shown in Figure 2.1. The other way of storing these
matrices in memory is called column-major order and involves storing the elements
of each column next to each other in memory. If we were to store matrix A in
Figure 2.1 in column-major order instead of row-major order, then the two elements
a12 and a21 would switch places. In this work all matrices are stored in row-major
order.

We will now show how two cores c0 and c1 can cooperate on multiplying two matrices
A and B as in Equation 2.3. The output matrix C is calculated as

cij =

[
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

]
(2.4)

Since we have two cores available, ideally we want to distribute the computations
evenly between the two. Therefore we would like to have c0 be responsible for the
first half of C, and c1 the other half. For c0 to compute the first row of C, it would
only have to read in the first row of A, the whole of B and write to the first row
of C. The same is true for c1, only it would read the second row of A and write
the second row of C. The two cores can then write to their respective rows in C
in parallel without interfering with each other. If we consider arrays then dividing
the work between the two cores simplifies to splitting the arrays evenly and tasking
each core with computing half of the arrays.

2.3 Alternative Parallel Matrix Multiplication Al-
gorithms

A naive single-core matrix multiplication algorithm has an algorithmic complexity
of O(n3) which is clearly inefficient (Akpan, 2006). Numerous sequential algorithms
have been devised that improve upon the naive solution, for instance Strassens
Algorithm that reduces the complexity to O(nlog 7) ≈ O(n2.8074) (Strassen, 1969).
Still, an enormous work has been done to develop parallel matrix multiplication
algorithms.

Cannon’s algorithm is based on matrix decomposition in which calculations are
performed on sub-matrices and shifted a number of times between processors.
Although it requires n × n cores to multiply two n × n matrices, the storage
requirement is constant and independent of the number of cores (Alqadi and
Aqel, 2008; Gupta and Sadayappan, 1994). Ho-Johnsson-Edelman’s algorithm is a
variation of Cannon’s algorithm with the same storage requirement, but adopted for
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hypercubes, otherwise called n-cubes. Ballard et al. (2012) improves upon Strassens
algorithm with the Communication-Avoiding Parallel Strassen (CAPM) algorithm
by being optimal in terms of inter-processor communication.

2.4 SeeDot

In this section we review SeeDot. First we will give a high-level overview of the
SeeDot framework and its purpose. Then we will detail the required steps from
obtaining a data set to deploying a ML application on a device and consider a day
in the life of such a device. Last we will detail the aspects of SeeDot that enables
us to deploy ML models on ULP devices.

There are two sides of SeeDot. First, SeeDot is a domain-specific language (DSL)
that can be used to succinctly write ML inference algorithms that in general-purpose
programming languages would otherwise be more complex. Such an algorithm could
be a convolutional neural network (CNN) performing some classification task.
Second, SeeDot is a compiler that compiles SeeDot programs into efficient C++
source code that can be deployed to ULP devices with as little as 2KiB of memory.
In addition there are tools implemented for generating ML models with several
different ML algorithms (Gopinath et al., 2019).

The required steps involved when uploading an application to a device is presented
in Figure 2.2. First one must obtain a data set and use one of the provided SeeDot
tools to generate a trained ML model with one of the included ML algorithms. Then
a SeeDot program must be written that achieves the objective of the application
that is to be run on the ULP device. The SeeDot compiler will then use the
generated ML model, the SeeDot program and the data set to generate source code
for different platforms like an Arduino or X86. This source code could then be
uploaded to the device.

After deployment the ULP device will have a life cycle similar to what is shown
in Figure 1.1. We assume we have deployed a ML inference application that takes
as input an image in the form of a set of pixels that is read from a camera that is
connected to the device. This is represented as the Read stage in Figure 1.1. The
Process stage will run the compiled SeeDot inference algorithm on this image in
order to classify what kind of digit the image represents. The Act stage displays
the result of the classification to the interested parties. In the end the device goes
back to sleep in anticipation of a new classification task.

We will now briefly summarize the aspects of SeeDot that enables ML models to
be deployed to ULP devices for efficient program execution. For more details, see
the specialization project Aase (2019) preceding this masters thesis. First, SeeDot
internally uses ML algorithms (like ProtoNN) that produce ML models that can
fit in as little as 2KiB of memory and hence can be deployed to ULP devices.
Second, they overcome the lack of floating-point support on many ULP devices
by converting the ML model to use fixed-point instead of floating-point numbers.
Third, they improve the efficiency of the exponential function as this traditionally
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SeeDot
compiler

Source
code

Deployment

Data set
SeeDot
program

ML model

ML algorithm

Test

Train

Figure 2.2: High-level overview of the steps involved in the SeeDot pipeline when
generating source code that can be deployed to ULP devices. Deployment leads to the
typical life cycle of ULP devices as presented in Figure 1.1. Red boxes are parameters.
Orange boxes are generated content. Blue boxes are programs that generate other content.
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incurs performance loss and high memory consumption (Gopinath et al., 2019; Aase,
2019).
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Chapter 3

Applications on the Nordic
Semiconductor Prototype

This chapter will describe the three applications that have been implemented in
this work, specifically the ported SeeDot example application and the two matrix
multiplication applications.

3.1 SeeDot

3.1.1 Single-Core

In this subsection we briefly review the steps that were taken to port the SeeDot
example application to the prototype and run it on a single processing core. For
more details, see Aase (2019).

We mention in Section 2.4 that SeeDot is both a DSL that can express ML inference
algorithms and a compiler that compiles such programs to efficient C++ code.
The compiler supports in theory generating source code for the X86 and Arduino
platforms, but was hard-coded to generate code for the latter, so we rewrote
parts of the compiler to generate X86 source code, i.e. regular C++ code, as this
was syntactically closer to the C code that was allowed to run on the prototype.
After this process we ended up with a set of files: The main entry point, main.c,
a C++ representation of the neural network, seedot_fixed.cpp and a library
for performing linear algebra operations, library.h and library.c. We then
proceeded to translate these C++ files to regular C source code. We only needed to
significantly rewrite the main.c file as it assumed data sets were read in locally on
the executing device. In our case, storing data sets of several MiB on the prototype
was impossible due to its limited memory. We therefore rewrote it to wait for
data to be transferred from a host computer to RAM. This simplified the original
main.cpp file to what can be seen in Algorithm 1.
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Algorithm 1 main function of the SeeDot single-core application

1: b← true, F ← [], L← 0
2:
3: procedure main
4: while true do
5: while b = true do
6: end while
7: r ← Classify(F )
8: b← true

9: end while
10: end procedure

The single-core application works as follows: The core waits for the features and
label to be sent from the host computer to shared RAM. When the transmission is
done, it will read this data in from RAM and execute the classification function.
The classification function is the main entry point to the SeeDot inference algorithm,
i.e. the seedot_fixed.c file. The original inference algorithm performs a set of
operations corresponding to the layers in the neural network, and this file does the
same by calling functions that hook into the linear algebra library, i.e. library.h
and library.c. In the end the classification function produces the classification
result, i.e. which digit it thinks is depicted in the image, and goes back to waiting
for the next pair of features and label.

3.1.2 Multi-Core

We made several changes to the ported SeeDot single-core application to make
it execute on and take advantage of multiple cores. The relevant algorithms and
source code are given in Algorithm 2, Algorithm 3 and Appendix C.

We first review the main.c file given in Algorithm 2, which is the main entry point
for the SeeDot multi-core application. It is similar to the main entry point of the
SeeDot single-core application as given in Algorithm 1. The main difference is that
we now read in the identification number of the core that the program is currently
executing on. We can do this because the same application is uploaded to all cores
that are intended to cooperate on the task. Based on this identification number we
define a different code path for the two cores. The core deemed as master will call
into the SeeDot neural network file as was done in the single-core application in
order to start the classification task. The other core, called the slave, calls into its
own waiting flow.

We will now look at the seedot_fixed.c file, which represents the neural network.
The source code in the multi-core case can be seen in Appendix C. Basically
the master core will perform the same operations as the core in the single-core
application. At the same time there are certain operations that the two cores are
intended to cooperate on, i.e. matrix multiplication and matrix subtraction. We
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Algorithm 2 main function of the SeeDot multi-core application

1: b← true, F ← [], L← 0
2:
3: procedure main
4: if ReadID = masterID then
5: while true do
6: while b = true do
7: end while
8: r ← Classify(F )
9: b← true

10: end while
11: else if ReadID = slaveID then
12: Slave
13: end if
14: end procedure

replace the original calls to these operations in seedot_fixed.c with calls to a
specific wrapper function that the master core executes. In this function it will make
available the input data for which both cores will use to compute the operations and
assign an even workload to each core. The way in which we make the master and
slave cooperate correctly on a task is through the use of a shared variable declared
in shared RAM that signals if the slave is ready or done computing its assigned task.
When the master has copied the relevant data, it signals through the shared variable
that both can start to compute. At this point the slave has been busy-waiting on
the shared variable since the program started executing. Both cores will at this
point call into the original linear algebra functions with their assigned workload to
compute their respective result. Upon returning from the function the master will
wait to collect the result from the slave, and the slave will resume waiting for the
next operation for which it should cooperate on with the master core.

To actually divide the work between the master and slave we make use of the fact
that even though SeeDot has been implemented by Dennis et al. (2019) to handle
matrices of a higher dimension than one, in practice we only deal with arrays in
the matrix operation functions, which we noted in Section 2.2. Therefore we give
a balanced number of iterations of the matrix multiplication and subtraction to
the master and slave. For each iteration and core we write the result to a unique
position in the output array that resides in shared memory.

The library functions for the matrix multiplication and subtraction are both functions
in the linear algebra library provided by SeeDot. The source code for these functions
can be found in the Appendix C and is based on the source code in the SeeDot
framework implemented by Dennis et al. (2019). In short we changed the two
library functions given in library.h and library.c to accept a lower and upper
bound corresponding to the set of iterations that was given to each of the cores.
The rest of the relevant library functions are identical to what was implemented in
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Algorithm 3 Excerpt from seedot_fixed.c of the SeeDot multi-core application

1: a← [], b← [], c← [], d← []
2:
3: procedure MatSubWait
4: while d = false do
5: end while
6: MatSub(a, b, c, 13, 25)
7: d = false

8: end procedure
9:

10: procedure MatMulCNWait
11: while d = false do
12: end while
13: MatMulCN(a, b, c, 5, 10)
14: d = false

15: end procedure
16:
17: procedure Slave
18: while true do
19: MatSubWait
20: MatMulCNWait
21: end while
22: end procedure
23:
24: procedure optimizeFunction(A, B, C, f)
25: Copy(a, A), Copy(b, B)
26: d = true

27: if f = 0 then
28: MatSub(a, b, c, 0, 13)
29: else if f = 1 then
30: MatMulCN(a, b, c, 0, 5)
31: end if
32: while d = true do
33: end while
34: Copy(C, c)
35: end procedure

Dennis et al. (2019).

3.2 Distributed Matrix Multiplication
We experienced and observed both application- and architecture specific challenges
when we implemented and measured the SeeDot multi-core application. We discuss
the former in Section 5.1 and the latter in Section 5.4, but we summarize them
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Algorithm 4 Matrix multiplication applications

1: a← [], b← [], c← [], d← false

2:
3: procedure compute(A, B, C, l, u)
4: for j ← l, j < u do
5: for i← 0, i < 500 do
6: C[j] = A[j] ·B[j] + i
7: end for
8: end for
9: end procedure

10:
11: procedure master(A, B, C, l, u)
12: Copy(a, A), Copy(b, B)
13: d← true
14: compute(a, b, c, l, u)
15: while d = true do
16: end while
17: Copy(C, c)
18: end procedure
19:
20: procedure slave(l, u)
21: while true do
22: while d = false do
23: end while
24: compute(a, b, c, l, u)
25: d← false
26: end while
27: end procedure
28:
29: procedure main
30: if ReadID = masterID then
31: A← [], B ← [], C ← []
32: Initialize(A, B, C)
33: master(A, B, C, 50, 100)
34: else if ReadID = slaveID then
35: Slave(0, 50)
36: end if
37: end procedure

here briefly. First, the lack of a functioning data cache in the compute domain
resulted in the cores constantly reading data from and writing data to shared RAM,
which caused memory contention. Second, the amount of computations done in the
matrix multiplication and subtraction functions in the SeeDot application was not
significant enough, such that the overhead of using multiple cores outweighed any
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benefit of dividing the work between the cores. Because of this low computational
load we decided to extract the matrix multiplication operation inside the SeeDot
neural network into its own application. We could then regulate the computational
load as needed. The pseudo code for the matrix application can be found in
Algorithm 4 and the source code can be found in Appendix C. We note that the
term distributed in this context means that it uses shared RAM. This is in contrast
to the ideal version that only performs computations locally without sharing the
result with other cores through shared RAM. Also note that the source code for the
distributed single-core and multi-core matrix multiplication versions are identical
except for two differences: First, in the multi-core version the master will start the
slave core with a special instruction (in the single-core version the code path for
the slave is never used, as the core is never started). Last, the master is assigned
either all of half of the iterations depending on the number of cores.

The distributed matrix multiplication application is implemented in a single file. We
will first detail the program flow when using a single core, and then using multiple
cores. First, when only using a single core the master will assign the entire workload
to itself. The objective is to multiply two matrices and write the result to a third
matrix. Since it is the only core in this case, it will only copy the data to and
from memory to mimic the original SeeDot application. Also, since the prototype
has limited memory, there is a limit as to how big the matrices can be declared.
We increase the computational load by performing each matrix multiplication a
fixed number of times. When using two cores, the slave will immediately call into a
busy-wait state with half of the workload assigned to itself. Here it will wait for
the master to copy the input arrays to shared memory and signal that it can start
computing the result. The master will wait for the slave to finish and then collect
the result.

3.3 Ideal Matrix Multiplication

We implement an ideal matrix multiplication application because of the significant
memory contention when using shared memory. In order to reason about the effects
of memory contention, we modify the matrix multiplication application to only use
a little piece of memory that is local and only seen by each of the cores. In this
application there is no way to make the cores cooperate, as shared RAM is not
used in any way. We therefore make both cores perform the same computations
without exchanging the result with shared RAM. We will therefore call this the
ideal version of the matrix multiplication application. The source code for this
application can be seen in Appendix C.

The ideal single-core application behaves similarly to the distributed single-core
application, so we do not provide an explanation of this application. On the other
hand, the ideal multi-core application is different from the distributed multi-core
application, which warrants some explanations.

Since each core performs computations in its own local memory, and no data is
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transferred to shared RAM, there was no way for the cores to cooperate on the
task. Therefore the two cores perform the same workload as is done in the ideal
single core application. The effect is therefore that the ideal multi-core application
performs twice the amount of work that the ideal single-core application does. We
also note that the occurrences of memcpy in the source code in Appendix C does
not mean that data is actually shared with RAM. It still copies data to and from
its own local memory. Other than this the ideal single-core and multi-core versions
are similar.
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Chapter 4

Experimental Setup

In this chapter we detail the prototype provided by Nordic Semiconductor, the way
in which we perform our experiments and the measurements we collect.

4.1 Prototype
We use a prototype provided by Nordic Semiconductor in this work. This prototype
is configured with three modules that each is equipped with one or more processing
cores, cache and RAM. One of the modules is called the compute domain, and this
is the domain we execute our applications on in this work. A high-level overview of
the compute domain can be seen in Figure 4.1 and some key numbers for it can be
seen in Table 4.1

The clock frequency of a core is determined by an oscillator that can produce
waveforms like the square signal. Such an oscillator can either be analog or digital.
The advantage of a digital oscillator (DOSC) is that it is more accurate and can
produce a larger variety of waveforms (Chamberlin, 1985). In Figure 4.1 we see
such a DOSC. In this case it is a high-speed clock that we can use to produce clock
frequencies that reach about 700MHz. We see in Figure 4.1 that it provides the
clock signal to all four cores.

All cores share the same RAM with a single data bus that can be accessed by one

Number of cores 4
RAM 64KiB

Instruction cache (per CPU) 16KiB

Data cache (per CPU) 8KiB

Table 4.1: Key numbers for the compute domain
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CPU 0 CPU 1

CPU 2 CPU 3

Cache 0 Cache 1

Cache 2 Cache 3

DOSC RAM
Data bus

Figure 4.1: Block diagram of the relevant components in the compute domain. The
DOSC clocks the four cores. Each core has a corresponding cache. A shared data bus is
used by all cores to exchange data with shared RAM.

core at a time. All cores also have a unique identification number that can be
programmatically read to check which core the application is currently executing on.
All cores also share the same supply voltage that we can scale. This is in contrast
to the cache and RAM that each have their own supply voltage that are in both
cases configured to be 0.8V and are not scaled.

The way in which we debug applications running on the prototype is unchanged
from Aase (2019) and we summarize them here briefly. One option is to print to
standard output and capture this on the host computer. Another is to assert GPIO
pins that can be observed through an oscilloscope or sampled with a Logic Pro
Logic Analyzer and inspected on the host computer.

4.2 Scenario

The scenario that we model in the experimental setup is unchanged from Aase (2019)
and shown in Figure 4.2. To summarize, we model a ULP device that operates
under a performance requirement like a soft real-time deadline. The device executes
a ML application that is tasked with classifying images captured from a connected
camera.
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Camera Device Cat

Figure 4.2: A typical system configuration. A camera captures images that are trans-
mitted to a device for classification.

4.3 Transferring Images to Prototype for Classifi-
cation

Although the way in which we transfer images from the host computer to the
prototype is similar as what was done in Aase (2019), we add additional details
below. The updated algorithm is given in Algorithm 5.

First, for this work we updated the implementation to be able to send the full
data set of 2007 samples or a randomized subset of 100 samples. Second, to find
out which destination memory addresses to send the features and label to, the
streaming program parses a map file resulting from compiling the application source
code for information about the starting memory addresses of the variables that we
intend to populate. The SeeDot single-core and multi-core applications use several
global variables that for instance represent the features and label that we use for a
particular measurement. This information in addition to hard-coded information
about the length of the features array is used to send the features and label to the
correct memory addresses so that they can be used in the classification task.

4.4 Configuring Supply Voltage and Clock Frequency

On the prototype there are two ways of controlling the clock frequency, both with
their advantages and disadvantages. We refer to these two approaches as external
and internal clocking depending on where the clock signal is provided from. The
supply voltage is configured in the same way for both approaches. We will first
review how the supply voltage is configured, then the clock frequency.

In order to configure the supply voltage on the prototype we use a device called the
N6705B DC Power Analyzer. This device has four supply voltage outputs that can
be wired onto specific pins on the prototype. There are specific pins for different
circuitry, and the power analyzer can be used to provide a supply voltage to these
pins. We use one output port on the power analyzer and wire it onto the pin that
supplies voltage to the cores, cache, data bus and RAM control signals. There is a
separate supply voltage at 0.8V provided to the cache and RAM, but we do not
scale these in our experiments.

We clock the clock frequency internally by setting the supply voltage in the range of
[0.5, 0.9]V. We then use this supply voltage as an input parameter to the DOSC to
set the clock frequency. The DOSC can be configured to run in an open or closed
loop. The main difference between these two modes is that the open loop is a free
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Algorithm 5 Transferring features and label to prototype

1: procedure main(a)
2: F ← ReadFeatures
3: L← ReadLabels
4: b← ReadBusyWaitAddress
5: if a = subset then
6: i← RandomizedSubset(100, 2007)
7: F ← F (i)
8: L← L(i)
9: end if

10: for all i ∈ S do
11: while ReadMem(b) 6= true do
12: end while
13: WriteMem(Fi)
14: WriteMem(Li)
15: WriteMem(b, false)
16: end for
17: end procedure

running clock in which the clock frequency can drift. This is in contrast to the
closed loop in which it will lock to a specific clock frequency multiplier with respect
to a reference clock (which by default is configured to be 16MHz), a period and a
supply voltage. Since we needed to know an accurate value for the clock frequency
we decided to use the closed loop mode. Since we also wanted the widest range of
clock frequencies, we chose a period of p = 2 as that would yield the highest clock
frequency possible for a given supply voltage. A larger period would yield a lower
clock frequency.

The main advantage of internal clocking is that it is accurate. After configuring the
supply voltage and the period one can be sure that the clock frequency that results
from configuring the DOSC is actually what is used on the prototype. This makes
the measurements as accurate as possible. Another advantage is that you get a
much larger range of clock frequencies to run on the prototype, above 700MHz at
the most. The main disadvantage is that it is not as easy to use, since one may
have to recompile and re-upload the application if there is a specific clock frequency
one wants configure the prototype with.

External clocking relies on an external Python application written by Nordic
Semiconductor for setting the clock frequency from the host computer instead of
through code on the prototype. This was the way we configured the clock frequency
in Aase (2019). The application allows a numerical value like 16000000 to be written
to the memory address that stores the numerical value of the reference clock.

The main advantages of external clocking are its ease of use and flexibility. We only
need to input some new numerical value and click a button to have it written to
memory instead of recompiling and uploading the application and have it changed
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Host
Computer Prototype

Logic
Analyzer

Power
Analyzer

4 Store data

3 Transfer data points

4 Store data

2 Sample GPIO pin

1 Supply voltage

2 Sample logic pin

Figure 4.3: Block diagram of the experimental setup. The flow of conducting an
experiment is as follows: Step 1 provides a supply voltage to the prototype. Step 2 starts
sampling the GPIO and logic pins for execution time and current consumption, respectively.
We start transferring data points to the prototype in step 3. When the measurement is
completed we store the data in step 4. The relevant internal components of the Prototype
box (specifically the compute domain) can be seen in Figure 4.1. We omit power supply
connections.

immediately. It is also flexible because you can set the clock frequency independent
of the supply voltage. The main disadvantage is that it limits the range of clock
frequencies you can configure the prototype with, which is in the area of up to
64MHz. Another disadvantage is that you do not know which supply voltage is
needed to configure the prototype with a given clock frequency, even though the logic
circuitry in the compute domain is supplied with a certain supply voltage level. This
discrepancy might therefore affect the energy consumption measurements.

Given the need for a wide range of clock frequencies and accurate current measure-
ments we opted to clock through internal clocking for our experiments.

4.5 Operating Points

We define an operating point as a pair of supply voltage and clock frequency,
oi = (vi, fi). We define the order of operating points based on the value of the
supply voltage since this will determine the clock frequency. When referring to
operating points, instead of writing out the supply voltage and clock frequency
values, we will simply write ox, where x is a value in the range of [0, 8]. The set of
operating points can be seen in Table 4.2.
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Name Voltage [V] Frequency [MHz]

o8 0.90 708

o7 0.85 627

o6 0.80 543

o5 0.75 457

o4 0.70 370

o3 0.65 286

o2 0.60 206

o1 0.55 136

o0 0.50 79

Table 4.2: Operating points, i.e. combinations of supply voltage and clock frequency,
used for configuring the prototype for program execution.

We selected the set of operating points based on the need to observe the behavior
of the prototype for a wide range of supply voltages and clock frequencies while
maintaining program correctness and avoiding damage to the prototype. The
clock frequency is configured with the DOSC closed-loop mode with a period of
p = 2. This means we get the highest clock frequency for a given supply voltage.
To determine the maximum supply voltage we looked at previous measurements
conducted by Nordic Semiconductor. These measurements suggested that it is
possible to configure the prototype to run at a clock frequency approaching 1GHz,
but in order to achieve this we would have to supply a voltage level above 0.9V.
Since such a supply voltage could damage the chip, we decided that this supply
voltage would be our upper limit. The generated clock frequency for this supply
voltage was 708MHz.

To determine the lower bound for the supply voltage we conducted initial experiments
where we repeatedly decreased the supply voltage and verified that our programs
were still executing correctly. In reality this is not a perfect solution, as different
applications can have different code paths that fail on different supply voltage levels.
In the end we were not able to decrease the supply voltage below 0.5V for the
SeeDot application and the distributed matrix application, and 0.55V for the ideal
matrix application. The generated clock frequencies for these supply voltages was
79MHz and 136MHz, respectively.

Given the upper and lower bound for the supply voltage we define a linear function
for the supply voltage as vi = 0.05i+ 0.5, i ∈ {0, . . . , 8}.
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4.6 Measurements

4.6.1 Execution Time
Execution time is measured with the Logic Pro Logic Analyzer device that is
connected to the host computer and prototype as we show in Figure 4.3. In our
applications we assert a high signal to the GPIO pin immediately before we start
executing the code segment for which we want to measure the execution time for
and then a low signal to the GPIO pin immediately after the code segment is done.
The data collected can be inspected and exported for further analysis. Our data
is stored as two columns where the first is a timestamp xi and the second the
state of the GPIO pin. We therefore measure execution time as the difference in
time between the time of the rising edge of a GPIO signal assertion xi and the
corresponding falling edge xi+1, i.e. the positive signal width between the GPIO
pin assertions ti = xi+1 − xi.

We also present execution time in terms of what is known as The Iron Law of
Performance as stated in Hennessy and Patterson (2017). If we define the instruction
count as i, the clock cycles per instruction as cpi and the clock cycle time as c, the
execution time of a program is calculated as

t = i× cpi× c (4.1)

Clock cycle time can be expressed as c = 1/f , where f is the clock frequency. This
gives us the following formula for the execution time of a program

t =
i× cpi

f
(4.2)

We see that doubling the clock frequency from f to 2f also doubles the performance,
i.e. halves the execution time, given that cpi is constant in this work. We will
assume that cpi = 1. Given Equation 4.2 we will expect performance to grow
linearly with the clock frequency.

4.6.2 Current Consumption
The N6705B DC Power Analyzer is used to measure the current, and is connected
to the prototype in the same way as was detailed earlier in the chapter when
describing how to control the supply voltage. This can be seen in Figure 4.3. When
connecting the power analyzer to the pin in this manner we are able to capture
the current usage for the logic part of the compute domain. The power analyzer
samples the current usage at a fixed interval and this data is then exported for
further analysis.

To measure the current in the compute domain we connect one of the supply voltage
outputs from the power analyzer to the pin on the prototype that provides the
supply voltage to the logic circuitry. The logic circuitry is comprised of the four
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cores, cache, data bus and RAM control signals. With this setup we are able to
measure the total current for the logic circuitry. This is different than what we
did in Aase (2019). In that work we also considered two other pins, namely those
that provide the supply voltage for the cache and RAM. We believed that the
pin we now know to represent the logic circuitry actually was for the cores alone,
and that the two other pins measured the current through the cache and RAM.
This is partially correct, but we are not interested in measuring on the two other
pins as these measure the current inside the memory blocks of the cache and RAM
themselves. This current is not the focus of our experiments, only the current
through the logic circuitry.

Idle current is measured through turning off all clocks in all modules so that all
cores are clock gated. Practically we do this by routing the pin signal for the clock
that controls the cores on the chip directly to ground. This is significantly different
from the way idle current was measured in Aase (2019), as only a few clocks were
clock gated resulting in the idle current measurement taking into account several
components that should not have contributed to the idle current at all.

The post-measurement analysis that handles the current for the SeeDot application
will analyze it in terms of active periods. These active periods are found by looking
for peaks in the current. A peak will correspond to the start of program execution,
i.e. classifying a sample. When we find a peak, the active period is defined as
starting from the time of the peak and lasting as long as the corresponding program
execution time. The average current usage for a measurement is then the average
current usage of all active periods.

Finding the average current for the matrix applications is a bit different. In these
applications the current consumption when performing the matrix multiplication is
actually marginally lower compared to executing the surrounding code. This might
be explained by multiplication instructions causing stalls in the pipeline. Therefore
we look for local minima in the current measurement. We also perform the same
computations a number of times so that we can average over all of them — so we
look for as many local minima as the number of times we ran the program, and
then we average these values for the final average current consumption.

4.6.3 Power Consumption
We base our definition of static power consumption on the version found in Hennessy
and Patterson (2017), which can be stated as

Pstatic = V × Istatic (4.3)

Based on Equation 4.3 we see that static power consumption grows linearly with
respect to the supply voltage. When it comes to dynamic power consumption we
base our definition on the version found in Hennessy and Patterson (2017), although
we simplify it by folding the constants 1/2 and the capacitive load into the constant
k
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Pdynamic ∝ 1/2× Capacitive load× V 2 × f
= k × V 2 × f (4.4)

Equation 4.4 tells us that dynamic power consumption is quadratic with respect to
supply voltage and linear with respect to clock frequency.

4.6.4 Energy Consumption
Energy consumption is defined by Nilsson and Riedel (2015) as

Estatic =

∫ t

0

Ps(t) dt (4.5)

Since the static power consumption is constant, Equation 4.5 simplifies to

Estatic = Pstatic × t (4.6)

When it comes to dynamic energy consumption, the definition in Hennessy and
Patterson (2017) is unsatisfactory for our case as it does not consider execution
time. We therefore define dynamic energy consumption as the product of dynamic
power consumption and time

Edynamic = Pdynamic × t
= k × V 2 × f × t (4.7)
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Chapter 5

Results

In this chapter we characterize the performance, power and energy consumption
aspects of the Nordic Semiconductor prototype based on how we model execution
time, power and energy consumption in Section 4.6 for a single and multiple cores.
We seek to establish if the prototype is behaving as we would expect from the
models in Section 4.6.

5.1 Execution Time
A bar plot of execution time versus clock frequency is shown for all operating
points, core configurations and applications in Figure 5.1. Measurements for the
SeeDot single-core and multi-core applications are represented by the top plot and
measurements for the two matrix applications in the bottom plot. The lower x axis
positions the clock frequencies of our operating points in Table 4.2 and the upper x
axis positions a set of reference clock frequencies in steps of 100MHz.

We immediately see that the execution times for the multi-core versions of the
applications are consistently and significantly higher than the associated single-core
execution times. There are both architecture and application-specific reasons for
this, of which the former is dealt with in Section 5.4, but we summarize them
here briefly. First, two cores accessing shared RAM with a data bus that does not
support parallel access to memory creates memory contention. Second, the compute
domain lacks a data cache which again leads to memory contention and degraded
performance as data must be fetched from memory. There is also a bug in the
implementation of processing core arbitration which limits the number of active
cores to two, but given the aforementioned problems it seems unlikely that using
additional cores would solve these issues. The high SeeDot multi-core execution
times might also indicate that there is not a sufficiently high workload in the SeeDot
application to benefit from parallelization. This observation is strengthened by the
fact that the arrays that are used in computations in the SeeDot application are
usually only ten or 25 elements wide.
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Figure 5.1: Execution time versus clock frequency for the single-core and multi-core
versions of the SeeDot application and the two matrix multiplication applications.

We also observe that the single-core execution times suggest that performance in
this case is not exactly linear with respect to clock frequency. Especially when the
clock frequency grows large we do not see the expected performance improvement.
One explanation for this is that we scale the supply voltage to the cores, but not
the memory system, which is fixed at 0.8V. Therefore instructions that compute
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results are executed faster, but the memory system works just as fast as before as
it is not affected by the increase in clock frequency and becomes a limiting factor in
terms of performance. These observations might also suggest that the cpi is not
one as we assumed, but higher. Multiple cores waiting for each other and stalls in
the pipeline from memory requests might contribute to this.

It is also interesting to note that the single-core version of the ideal matrix application
executes significantly faster than the distributed single-core matrix application. The
difference here is due to regularly copying data to and from shared RAM. Figure 4.1
shows that all cores share the same RAM and uses a shared data bus with only one
core allowed to use the data bus at a time, hence the degraded performance. Keeping
more of the data local to the cores instead of storing it in shared RAM suggest that
we could see improvements to performance and energy consumption.

5.2 Power Consumption
Figure 5.2 presents the total power consumption versus supply voltage for the
SeeDot single-core and multi-core applications on the left, and the single-core and
multi-core matrix applications on the right. We see that the shape of the total
power consumption for all applications resemble the shape of a quadratic function,
as we would expect from Equation 4.4.

We note that the difference between the total power consumption for the single-core
and multi-core SeeDot applications are quite small, and that this difference is
decreasing going from the highest to the lowest supply voltage. This is interesting
because it associates a small power consumption expense by adding a second core.
On the other hand, the differences between the total power consumption for the
single-core and multi-core versions of the two matrix applications are larger than
was the case for SeeDot. At the same time we still see the same trend as with
SeeDot, that enabling a second core has a higher total power consumption, which
we would expect.

Another thing we note about the right figure is that the total power consumption
of the ideal single-core matrix application is about the same compared to the
distributed single-core matrix application. This is not the case for the two multi-
core applications. We noted in Chapter 3 that the two cores in the ideal multi-core
matrix application each perform the work equivalent of the corresponding single-core
application. This explains the higher total power consumption in the case of the
ideal multi-core matrix application compared to the distributed multi-core matrix
application, even though the latter share data with RAM.

5.3 Energy Consumption
Figure 5.3 shows the total energy consumption versus supply voltage for all operating
points, core configurations and applications. Generally we see that the total energy
consumption for the multi-core version of the three applications are significantly
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Figure 5.2: Total power consumption versus supply voltage for the single-core and
multi-core versions of the SeeDot and the two matrix multiplication applications.

higher than that of the single-core versions. Due to the non-functional data caches,
the cores are forced to constantly communicate with shared RAM on a data bus
that only supports a single core at a time. Since the multi-core applications actually
execute slower than the corresponding single-core applications, and because the
total power consumption is higher for the former than the latter, the total energy
consumption is also higher for the multi-core applications.

Figure 5.3 also shows that the distributed matrix versions consume significantly
more energy than their ideal counterparts. This is expected and tells us that there
is significant latency when moving data to and from shared RAM, especially for the
multi-core applications that have to deal with significant memory contention. At the
same time, the energy consumption of the distributed single-core application is only
marginally lower than the energy consumption of the ideal multi-core application.
This tells us again that even though using two cores increase the power consumption,
the effect of sharing data with RAM is significant.

The data in Figure 5.3 also might suggest that there is an approximately linear trend
between energy consumption and supply voltage. We can see this by comparing
Figure 5.1 and Figure 5.2. At least a few of the execution time data points seem to
follow an approximately linear trend, and the power consumption values seem to
follow a quadratic trend. Since energy consumption depends on both execution time
and power consumption, Figure 5.3 might then suggest that these contributions to
a certain degree cancel for our prototype and implemented applications.
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Figure 5.3: Total energy consumption versus supply voltage for the single-core and
multi-core versions of the SeeDot and the matrix multiplication applications

5.4 Architecture-Specific Challenges

We found several architecture-specific challenges when implementing the multi-core
version of the SeeDot application that had major effects on the performance and
energy consumption of the application.

The first issue is related to a bug in the implementation of the arbitration between
the four cores in the compute domain. Obviously a single core works fine, as that core
will always be granted permission to run. We also found that two cores works fine.
When three or four cores were active at the same time, the arbitration mechanism
would favor a select few of the cores every time, starving others, making running
three or four cores in parallel impossible. We were therefore limited to running only
two cores, which in theory would limit the performance and energy benefits. Since
we use a prototype in this work, such bugs in various implementations are bound
to exist.

The second issue is due to the discovery that the prototype had only partial support
for caching in the various modules. Specifically, the data cache for the compute
domain were not implemented. A consequence of this is that the cores could
not cache the data used when executing our applications, i.e. executing a single
instruction would result in fetching the associated data from the shared RAM for
all cores. The memory hierarchy serves an important function in the performance
of computing systems, and the partial absence of the upper layers have a significant
impact on performance (Hennessy and Patterson, 2017).

The absence of a data cache in the compute domain significantly degrades the
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performance because the cores share the same RAM data bus. The two cores will
make use of a shared variable that indicate whether the slave core can start or is
done computing. This was the only reasonable implementation of parallelism on
the chip as other traditional approaches for notifying cores like interrupts was not
an option. The consequence of this is that when both cores read and write values
to the shared RAM, this will create significant memory contention that degrades
performance. To remedy this one could increase the bit width of the data bus
or implement solutions that would allow multiple cores to access memory at the
same time. To improve the scheduling solution one could also look into hardware
semaphores that would enable a single core at a time to access a particular memory
location. Ideally the other core would then enter a sleep mode to reduce the energy
consumption. This might not be the most efficient solution if the waiting period is
short, as then a simple busy-wait mechanism could be sufficient. This is because
there can be significant overhead in waking up from a sleep mode compared to
repeatedly accessing a value in a busy-wait, which might improve performance
(Wolf, 2008).

The last architecture-based challenge with achieving energy savings on the prototype
that would have helped us in the question of slowdown versus race-to-halt was the
lack of a working sleep mode. Traditionally sleep mode can be initiated through a
specific sleep assembly instruction. Although executing such an instruction would
make the prototype unresponsive, indicating that it was indeed in sleep mode, this
had no effect on the current consumption, and as such we could not use it to put
the cores to sleep.

5.5 Sensitivity Analysis
In our measurements for the SeeDot application we only perform the classification
on a randomized subset of data points taken from the full set of 2007 data points.
We do this because each of our 25 measurements for the SeeDot application with
the full set of 2007 data points would total 2.5 h× 18 = 45 h. We also had no way of
automating the data collection, hence 45 h is the absolute minimum time we would
spend. We base our decision on the sensitivity analysis performed in Aase (2019)
in which we conclude that using only a subset of 100 samples was appropriate.
The sensitivity analysis was conducted based on initial observations during the
work on Aase (2019) that execution time and current consumption seemed to be
approximately constant for each program execution.
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Chapter 6

Minimizing Energy Consumption in
Soft Real-Time Systems

This chapter deals with the objective of minimizing energy consumption under a
performance constraint like as a soft real-time deadline, and the question of slowdown
through DVFS versus race-to-halt. We will also delve into the concept of energy
proportionality and see it in relation to that of Barroso and Hölzle (2007).

6.1 Single-Core Execution

6.1.1 Rate of Change for Execution Time, Power and En-
ergy

Figure 6.1 shows the rate of change for execution time, power and energy consump-
tion between all operating points for all applications and core configurations. The
points for power and energy consumption are calculated with

poi = eoi =
xoi
xoi−1

(6.1)

and the points for the execution time is calculated with

toi =
xoi−1

xoi
(6.2)

where x can be the execution time, power consumption or energy consumption
for operating point oi and oi−1. There is no improvement for the first operating
point, hence we exclude those. Also the operating point of o0 on the ideal matrix
multiplication was not working, so those points are also excluded and the plots
start at operating point o2.
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Figure 6.1: Step-wise change in performance, power and energy consumption between
operating points for all applications.
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We see in Figure 6.1 that both execution time and power consumption has a high
step-wise increase for the lowest operating points, but that this increase is decreasing
towards the higher operating points. This is not the case for the energy consumption
— the general trend is that the step-wise increase in total energy consumption is
about the same between all neighboring operating points, but slightly decreasing
towards higher operating points. From this we can see that there is a decreasing
performance benefit of scaling up the supply voltage, and the energy consumption
can be significantly reduced by scaling down the supply voltage.

6.1.2 Simulated Sleep Energy with Soft Real-Time Dead-
line

Figure 6.2 shows the total energy consumption in the time period limited by three soft
real-time deadlines (25ms, 15ms and 5ms) for the SeeDot single-core application.
Running one of the other applications would not change the observations based on
this type of plot as the trends in execution time and power and energy consumption
are the same. In this plot the total energy consumption is the sum of the total
energy consumption during program execution and the total energy consumption
while in sleep mode that lasts for the remainder of the time window after program
execution completes. That is why the bars to the left of the soft real-time deadline
has a sleep energy component while the ones to the right have not, since they do
not finish before the deadline and we therefore do not model them as sleeping. The
energy consumption while in sleep mode is calculated as

Esleep = Psleep × tsleep
= vi × isleep × tsleep

(6.3)

where vi is the supply voltage that is used during program execution and the sleep
mode, isleep = 1mW is the simulated current consumption in sleep mode and
tsleep is the difference in time between the soft real-time deadline and the program
execution time, i.e. how long the program sleeps. The current consumption during
sleep mode is set as to make sure that the sleep mode preserves the necessary context
in memory such that subsequent program executions finish correctly. vi× isleep will
range from 0.5mW to 0.9mW, which is a reasonable assumption as several sleep
modes implemented for the ATmega328P microcontroller, which is similar to the
devices we consider in this work, operate within such a range (Atmel, 2015).

We first note that with a soft real-time deadline of 25ms all operating points
complete program execution within the deadline. If we reduce the soft real-time
deadline to 15ms then the slowest operating point, i.e. o0, no longer completes
program execution in time. Reducing the soft real-time deadline even more, to 5ms,
means that only the five fastest operating points are able to complete execution in
time.

We also see that sleep energy makes a significant contribution to the total energy
consumption with a deadline of 25ms. In this case the fastest operating points will
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Figure 6.2: Total energy consumption during varying time windows limited by a soft
real-time deadline for the SeeDot single-core application. Sleep energy is the bottom part
of bars and program execution energy is the top part of bars. Dashed lines represent
deadlines. Bars to the right are not feasible as they miss the performance requirement.

have to wait significantly longer than the operating points that finish closer to the
deadline. There is therefore a significant difference in total energy consumption
between the fastest and the slowest operating points, and this is also the case for
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6.1 Single-Core Execution

the two other deadlines of 15ms and 5ms.

6.1.3 Slowdown versus Race-to-halt

For the devices we consider in this work the primary objective should be minimizing
the total energy consumption while at the same time performing well enough to
complete execution before the soft real-time deadline. As we mentioned in Chapter 1,
there are mainly two ways to do this: Slowdown through DVFS or race-to-halt.
Slowdown means scaling down the supply voltage and clock frequency while still
performing within the deadline. Race-to-halt means using all available resources
to finish the work as fast as possible and then enter a sleep mode. One of our
objectives in this work is to decide whether a slowdown or race-to-halt strategy is
most appropriate given the applications we have implemented and the prototype
architecture. Therefore we will now consider both of these alternatives.

Race-to-halt is represented as the bars for the highest operating point in Figure 6.2.
We see that the energy consumption in sleep mode accounts for nearly 40% of the
total energy consumption with a deadline of 25ms. This operating point has the
highest total energy consumption of all operating points in Figure 6.2. This is also
the case in Figure 5.3 where we assume that the energy consumption in sleep mode
is zero. This operating point only achieves half of the objective we have defined —
it finishes before the deadline, but in doing so it consumes the most energy of all
operating points.

Slowdown through DVFS is represented by the bars for all operating points below
the fastest operating point. It is important to note that in our definition of
slowdown through DVFS we assume that also these programs, and not just the
fastest operating point, enters sleep mode if the program finishes before the deadline.
Since the program has completed its task, there is nothing else to do, i.e. it is
meaningless to stay awake and waste energy. For these operating points we scale
down the supply voltage and clock frequency. Each operating point oi spends less
time in sleep mode compared to the higher operating point oi+1 because the former
finishes later than the latter. Each time we scale down we see an improvement in
energy consumption while still performing equally good, where equally good means
completing before the deadline. Scaling down to the slowest operating point yields
the program execution that consumes the least amount of total energy, and this
is the case for all deadlines. In other words, the slowest operating point o0 is the
configuration that minimizes the energy consumption the most while still making
the deadline. Based on our objective this operating point is therefore preferred,
hence slowdown through DVFS (where we use the lowest configuration) is the
preferred strategy compared to a race-to-halt strategy given our applications and
prototype. The slowdown strategy will compared to race-to-halt prolong the battery
life of the device, hence add value for the end-user without compromising on the
performance requirement.

We have observed that slowdown through DVFS (using the lowest configuration) is
the preferred strategy compared to a race-to-halt strategy for the SeeDot single-
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Figure 6.3: Energy savings in percentage versus supply voltage for the three deadlines
we considered in Figure 6.2.

core application. We will now delve into the architecture-specific aspects of the
prototype that contribute to this observation. Figure 5.3 shows that the distributed
matrix multiplication application consumes about 1.65× as much energy as the
corresponding ideal matrix multiplication application. This suggests that there
is a significant cost of exchanging data with shared RAM given Figure 4.1 (in
which we see that all communication with shared RAM happens over the shared
data bus). Because of the lack of a working data cache in the compute domain
and the fact that all memory requests goes to shared RAM, memory requests are
expensive on this prototype. Also consider the fact that we only scale the clock
frequency of the cores and not the memory system, which has a fixed supply voltage.
This means that when scaling up the clock frequency, the cores might execute
computational instructions faster, but the memory instructions do not see any
improvement. Therefore the cores will wait increasingly longer for the memory
system to complete memory requests, and the memory system will end up as a
limiting factor in the performance of the applications, and also waste energy.

In addition, a working sleep mechanism could reduce the energy consumption, but
Figure 5.3 tells us that even with an assumed sleep energy consumption of zero the
lowest operating point still consumes the least amount of energy. Implementing
interrupts that would wake the device up could also be beneficial, but only if the
workload of the SeeDot application was higher, as the wake-up time from sleep
modes can be significant and could potentially outweigh the program execution
time.

Still, DVFS implies that the application can dynamically scale the supply voltage
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and clock frequency in order to save energy. In the sensitivity analysis in Aase (2019)
we establish that execution times can be considered constant for each program
execution in a measurement. Such low or practically nonexistent variations in
execution time suggests that supporting DVFS is not necessary as one would just
find the lowest operating point for which the program finishes before the deadline
and use this configuration instead of spending engineering hours on implementing
DVFS. On the other hand, there might be scenarios in which the full force of DVFS
can prove beneficial. If there is sufficient variation in execution time one cannot rely
on a single operating point to be sufficient for all program executions. Opting for a
high operating point, say o8 in Figure 6.2, clears short deadlines but proves wasteful
in terms of energy consumption for long deadlines. On the other hand, using a slow
configuration like o0 wastes little energy with slow deadlines, but might potentially
miss several shorter deadlines, which will degrade performance. Having the ability
to dynamically scale the voltage and frequency might then prove beneficial because
with a short deadline you can ideally switch to a faster operating point to make
the deadline, and with a long deadline you can switch to the slowest configuration
to potentially save energy. Das et al. (2015) shows that this is indeed possible,
although in the case of multi-threaded workloads.

In Figure 6.2 we use a sleep mode with a supply voltage equal to the supply voltage
during program execution. An alternative is to use a sleep mode with a different
supply voltage than during program execution. In Figure 6.3 we plot how much
energy is saved through using the lowest supply voltage when sleeping instead of the
one used during program execution versus the supply voltage for the three deadlines
in Figure 6.2. We see that the savings are larger with the longer deadlines and
towards the higher operating points. This makes sense as these operating points
finish faster, therefore sleep longer and use higher supply voltage levels during
program execution. With shorter deadlines the savings are slimmer, with just above
2.5% at the most for a deadline of 5ms and a supply voltage of 0.9V. We therefore
see that there is definitely some potential for saving energy when supporting several
supply voltage levels, but that these energy savings occur at the higher operating
points and that the required engineer work might outweigh the energy savings
benefit.

6.2 Multi-Core Execution

The results in Chapter 5 show that for our applications and prototype the multi-core
versions of the applications increase execution time, power consumption and energy
consumption. There we also discuss the reasons as to why that is. In this section
we will analyze the theoretical benefit of parallelization. We will consider the ideal
matrix multiplication as it does not exchange data with shared RAM and hence
do not include any overhead. Single-core and multi-core application in this section
will refer to the ideal matrix multiplication unless explicitly mentioned. We note
in Chapter 3 that the two cores in the multi-core application each perform the
work equivalent of the single-core application. This means that the total work
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Table 6.1: Equivalent multi-core performance for a given single-core configuration. fs
is the performance requirement, i.e. the single-core performance. The three cfs columns
states that if a multi-core has c cores where each is configured with a fs clock frequency, the
performance is given by cfs. The cfs column provides equivalent or better performance if
cfs ≥ fs. For instance, four cores configured with fs = 136MHz provides about equivalent
performance to a single core with fs = 543MHz because each only does 1/4 of the work,
hence we can compare program executions with these two configurations. If cfs < fs then
the multi-core application does not perform well enough. The o0 operating point does not
work on the ideal matrix multiplication application.

oi v fs
Multi-Core

2fs 3fs 4fs

o8 0.90 708 1416 2124 2832
o7 0.85 627 1254 1881 2508
o6 0.80 543 1086 1629 2172
o5 0.75 457 914 1371 1828
o4 0.70 370 750 1110 1480
o3 0.65 286 572 858 1144
o2 0.60 206 412 618 824
o1 0.55 136 272 408 544
o0 0.50 N/A

performed in the multi-core application is twice that of the single-core application.
Also the energy consumption in the multi-core case is approximately twice that
of the single-core case, so we assume that 98 nJ is the energy consumption for a
single matrix multiplication operation no matter how many cores are used. We will
assume that the application is fully parallelizable such that increasing the number
of cores will have a corresponding increase in performance. We will consider the
energy savings for using two, three and four cores.

The three left-most columns in Table 6.1 shows our existing operating points. The
three right-most columns under the Multi-core header shows that if c cores are
configured with the operating point in the same row (v, fs), then an equivalent
single-core execution would have to be the value under cfs. For instance, running
four cores on o1 would yield slightly better performance than a single core running
on o6. Since the energy consumption of the former is significantly lower than the
latter, we would prefer using multiple cores.

Figure 6.4 plots Em/Es versus speedup for different combinations of single-core
and multi-core operating points. Points are annotated with (c, vm) where c is the
number of cores and vm is the supply voltage that each core runs on. Points that
are lower in the plot saves more energy compared to the single-core configuration
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Figure 6.4: Energy savings for a scaled-down multi-core configuration compared to a
scaled-down single-core configuration versus multi-core speedup. Texts represent (c, vm)
where c is the number of cores and vm is the supply voltage that each of the c cores are
configured with. Example: The blue ♦ means that four cores executing in parallel each
configured with 0.55V uses 84% of the energy consumption that a single-core running on
206MHz, in addition to a performance speedup of 2.66×.

and points more to the left has a higher speedup. Each point has a symbol that
corresponds to a single-core clock frequency. For instance, the red 4 compares
the energy consumption of using four cores each on 0.55V to using a single core
running on 543MHz. In this case we see that running four cores on o1 only uses
47% of the single-core consumption and achieves a speedup of 1.04 compared to
the single-core configuration. This tells us again that a slowdown strategy where
each of the four cores is configured with the lowest configuration saves the most
energy and is therefore preferred over a race-to-halt strategy. This also increases
the performance, which will allow for even lower end-user latencies.

The reason that we only plot multi-core configurations with four cores instead of two
or three is that the total energy consumption for the ideal matrix multiplication is
98 nJ no matter how many cores are used. Four cores will perform better than two
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and three with the same energy consumption, hence the largest energy savings can
be observed when using four cores since four cores will perform better than two or
three. In this case we see that there is possible to reduce the energy consumption to
88% and all the way down to 47% depending on the supply voltage of the multiple
cores and the single-core operating we compare them to.

In order to realize this potential we assume several things. First, the work is
fully parallelizable. Second, data can be moved in the background without the
involvement of the cores. This can be achieved with direct memory access (DMA)
to the shared memory, but would require having twice the local memory so that
a single core can work uninterrupted on one part of the local memory and notify
the DMA when data should be swapped with the other part that the DMA has
already provided. This requires that the DMA can provide data faster than the
core needs it. Third, data is fully cacheable. A single core must be able to have
everything it needs for the entire work. This might either be costly or limit what
external code can be used, as calling such code might evict cache lines needed by
the core. Last, multiple parallel access to the shared memory is required to avoid
memory contention. This can be achieved through increasing the width of the bus
or using several workers that can handle memory requests simultaneously.

6.3 Energy Proportionality

We briefly summarized the idea of energy proportionality as defined by Barroso
and Hölzle (2007) in Chapter 1. We will here provide an analysis in terms of
comparing the scenario this work models versus what was modeled by Barroso and
Hölzle.

The main difference between this work and Barroso and Hölzle (2007) is that
Barroso and Hölzle focuses on server applications that experience varying loads.
This means the resources of a particular server can be lightly or heavily used. This
is not how our applications and prototype works — we only have applications for
which the prototype experiences a fixed load at each program execution. This fixed
load can be executed fast or slow depending on the operating point at which the
prototype is configured to use, but the prototype must still face the same load for
each classification.

There are also differences in the way the two classes of computing systems work.
Barroso and Hölzle note that even though a data center might experience a low
load, the individual servers might not be able to go into a sleep mode as there might
be stored important data on that particular server that must be accessed from
other servers or background tasks that make it impossible for that server to sleep
(Barroso and Hölzle, 2007). This is in contrast to ULP devices that are able and
expected to sleep when there is nothing to do. Therefore Barroso and Hölzle argue
that computing systems, especially servers, should strive to be energy proportional,
i.e. consume little power when idle and proportionally more power with increased
utilization levels. We agree with Barroso and Hölzle on this point.
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Based on these observations we find that the energy proportionality concept as
defined in Barroso and Hölzle (2007) cannot be used for ULP devices in soft real-time
contexts.
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Chapter 7

Related Work

This chapter describes the state of the art solutions found in earlier works concerning
running ML applications on ULP devices, task scheduling in soft real-time systems
and the question of slowdown versus race-to-halt.

7.1 ML Applications on ULP Devices

Garofalo et al. (2019) develops “PULP-NN, an optimized computing library for a
parallel ultra-low-power tightly coupled cluster of RISC-V processors”. They present
several contributions. First, they develop a library containing optimized kernels for
use with RISC-V-based processors. Second, they optimize this library for a cluster
of parallel ultra-low-power RISC-V cores. We see similarities between the work
done by Garofalo et al. and our work, primarily that both run ML applications that
utilizes a quantized neural network (QNN) on ULP devices with one or more cores.
We note that Garofalo et al. see almost eight times the performance improvement
when using eight cores, meaning performance increases almost linearly with the
increase in cores. When analyzing lost clock cycles, almost 20% of them are caused
by memory contention as all eight cores share a single L1 memory, which also is
the case for the Nordic Semiconductor prototype. They also use an architecture
for which memory requests to different banks can be served in parallel. We see
significantly more memory contention (and lack of performance improvement when
parallelizing the applications) compared to Garofalo et al., although this can be
attributed to a lack of a working data cache and a shared memory that can only be
accessed by a single core at a time.

Sliwa et al. (2020) has the same objective has Gopinath et al. — they develop an
open source framework called LIMITS that seeks to deploy pre-trained ML models
on ULP devices with as little as 16KiB of RAM through source code generation.
What differentiates Sliwa et al. is their work on automating the deployment of
the source code through taking the actual deployment target into consideration.
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They are then able to generate platform-specific source code and automate the
deployment of to allow rapid development and deployment.

Brunelli et al. (2019) develops a ML agriculture application that is deployed on a
Raspberry Pi3 (which is more powerful than the types of devices we consider in
our work) for detecting codling moth in apple orchards and notifying the client of
any anomalies. The system is powered by a regular battery and a solar panel, and
is designed to work unsupervised. The system uses a deployed pre-trained deep
neural network (DNN) model and a specialized visual processing unit (VPU) for
performing the ML operations, which except for the VPU is similar to us. They see
that with a 9000mAh battery and a solar panel on 0.5W of a few hundred square
centimeters the device could operate indefinitely, which they claim “represents a
breakthrough for agricultural activities (. . . )” (Brunelli et al., 2019).

Kartsch et al. (2019) develops a “smart sensor node for IoT and HMI based on a
programmable Parallel Ultra-Low-Power (PULP) platform”. They implement a
gesture-recognition based application that performs ML operations in a real-time
setting. This scenario is similar to what we model in our work. The difference is
that their hardware platform supports native floating-point operations, which we
do not need by generating a QNN that are deployed to the platform with SeeDot.
They are able to operate the application with a power envelope of 11.84mW for up
to 35 h in active mode and 1000 h in standby. When they distribute the workload
across eight different cores, they see a performance improvement of 20.4× and a
11.4× reduction in energy consumption.

7.2 Task Scheduling in Soft Real-Time Systems

Mohseni et al. (2019) develops the Hard Disk Drive and CPU Scheduling (HCS)
scheduling algorithm for devices with multiple cores and hard disks with an objective
to find a trade-off between energy consumption and execution time and still minimize
the amount of missed tasks. They consider the scheduling of multiple parallel tasks
that have their own deadlines. The algorithm consists of multiple stages that
execute sorted tasks based on their ready time, execution time and CPU finish time.
They also change execution times of tasks through DVFS in order to reduce waiting
times. They compare the performance of their algorithm to the Hard Disk Drive
and CPU Scheduling Unchanged Execution Time (HCS_UE) scheduling algorithm
that does not change execution times and see higher CPU utilization and shorter
execution times. They do not present data on energy consumption. Their scenario
is different than what we consider as we only consider ULP scenarios with a single
task and deadline. We also do not consider multiple hard disk drives (HDDs), but
rather a single shared RAM. A HDD is slower than RAM, but the idea of having
multiple cores accessing memory in parallel would be beneficial in our case.

Muhuri et al. (2020) seek to solve the energy efficient real-time scheduling multi-
objective problem by minimizing the energy consumption and maximizing the
earliness of tasks. This is similar to our objective. They consider quite similar
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ranges of clock frequencies and supply voltages as is done in our work — the
clock frequencies range from 13MHz to 624MHz and the supply voltage from 0.8V
to 1.6V. They define a penalty function for energy efficiency and an earliness
function that they try to solve simultaneously with an algorithm called the ε-
constraint coupled energy efficient genetic algorithm (ε-EEGA). They find that
the implemented solution improves energy efficiency and performance in terms of
computational time compared to other solutions.

7.3 Slowdown versus Race-to-halt

Das et al. (2015) poses the question of whether slowdown through DVFS or race-to-
halt is more appropriate for multi-threaded workloads. They find that the answer
to this question depends on three factors. The first factor is the workload of the
application that is executed, i.e. if it is mainly CPU bound or memory bound
(in which the latter means the application often communicates with the memory
system). The second factor is variations between the produced chip components, i.e.
the CPU. The last factor is whether or not the chip has support for simultaneous
multi-threading (SMT). Our definitions of slowdown and race-to-halt are similar
except they do not model that the slowdown strategy involves having the device
enter sleep mode when the program execution is completed. They implement an
algorithm that tries to discover what they call the break-even point that represents
the energy ratio. They state that having an energy ratio higher than 1 means that
the race-to-halt strategy is preferred and vice versa for the slowdown strategy. The
algorithm will then automatically switch to the other strategy when this break-even
point is met. They find that different frequencies on different applications have
different break-even points, and that their solution improves energy consumption
by 13% while maintaining the same performance. We do not consider a break-even
point because the execution times for our applications do not vary, hence there
is a single configuration that reduces the energy consumption the most while still
completing program execution within the deadline.

Imes and Hoffmann (2015) considers the same objective as we do in our work,
namely minimizing energy consumption for embedded devices that operate with
imposed performance requirements like a soft real-time deadline. They consider
the question of never-idle versus race-to-idle, where the former is defined as the
configuration that finishes a task right before the deadline, which can be considered
as the slowdown strategy, and the latter is the same as what we call race-to-halt.
The difference between our slowdown strategies is that they only consider a single
configuration, while we consider several that also sleep when they complete program
execution. They find that different embedded systems require different strategies
to achieve minimal energy consumption and that choosing the wrong strategy can
significantly impact energy consumption. We note that Imes and Hoffmann uses
devices that are more powerful than the ones we consider, namely a Sony VAIO
tablet computer with a 600MHz to 1.5GHz dual-core processor and eleven DVFS
configurations, and an ARM big.LITTLE board with two 500MHz and 800MHz to
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1.2GHz and 1.6GHz quad-core processors.
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Chapter 8

Conclusion and Future Work

In this work we implemented several applications performing machine learning (ML)
operations in a single-core and multi-core context on the Nordic Semiconductor
prototype, specifically the SeeDot application and two matrix multiplication appli-
cations. We measured their performance and energy consumption in terms of clock
frequency, supply voltage and the number of processing cores. We analyzed our data
with the focus of minimizing energy consumption under a performance constraint
like a soft real-time deadline and asked the question of whether a slowdown strategy
through dynamic voltage-frequency scaling (DVFS) or race-to-halt was preferred
given the applications and prototype architecture we concerned ourselves with in
this work.

In the single-core case we found that the lowest operating point that completed
within the deadline had the lowest energy consumption. In the multi-core case we
analyzed the theoretical potential for reducing energy consumption. We compared
scaled-down multi-core configurations with scaled-down single-core configurations
and found that the energy consumption could be reduced to between 47 and 88%
of the original single-core energy consumption over a clock frequency range of 206
to 543MHz when using multiple scaled-down cores. We found that using multiple
cores on the lowest configuration minimized the energy consumption the most.
Hence in both cases a slowdown strategy configured with the lowest configuration
that met the deadline had the minimal energy consumption.

Future work entails implementing an effective scheduling mechanism that allows for
effective communication with memory and cooperation between cores, the primary
goal being to reduce the observed memory contention. It will also be important to
perform our experiments on a prototype with an architecture that does not suffer
from the same limitations as the one we have used in order to reveal the practical
benefits of utilizing multiple cores. This might entail being able to parallelize an
application further with additional cores, enabling multiple cores to access shared
memory simultaneously and offering effective sleep modes and sufficient data cache
memory.
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Appendix A

Effect of the COVID-19 Pandemic

This work was carried out during the COVID-19 pandemic. As we spent our
time primarily in the offices of Nordic Semiconductor conducting experiments
with a physical prototype, when the Norwegian government declared nation-wide
regulations on the 12th of March, we were as a direct consequence of this no longer
able to conduct experiments.

At this point we had only collected about 15 to 20% of the data that we planned
to use in this work. Being forced to stay at home, we continued the work on other
parts of the thesis to remedy the situation as much as possible. In this time we
made progress on the chapters of this work that did not directly relate to the results
of the experiments and at the same time we prepared for the possibility that we
would be allowed back to conduct the remaining experiments.

At the start of April the Norwegian government communicated that they would
allow students at the end of their university degree access to universities such that
they could finish their work. At this point we started a discussion with Nordic
Semiconductor and on the 22nd of April we were allowed to borrow the necessary
equipment from the office for about two weeks to continue the experiments. This
enabled us to collect the remainder of the data.

At the same time, one of the major challenges when implementing the multi-core
applications was the fact that we had no built-in mechanism for scheduling memory
accesses between multiple processing cores. This contributed greatly to the memory
contention we observed. When we lost access to the equipment on the 12th of March,
we did not have any results for multi-core program executions, and since we spent
all our time conducting experiments in the two weeks we regained access to the
equipment, we had no time to implement any mechanisms that would remedy this
problem.

In the end, even though we did not implement any scheduling mechanisms that
could have remedied the memory contention problem, because we were able to work
on other parts of this thesis when we lacked access to the device, and because Nordic

59



Semiconductor allowed us to borrow the equipment for two weeks, we consider
ourselves lucky that the COVID-19 pandemic did not have a stronger impact on
our work.
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Appendix B

Multi-Core Analysis Table

Table B.1: Scaled-down multi-core energy savings versus scaled-down single-core

Single-Core Multi-Core
Em/Es

fs[MHz] vs[V] Es[nJ] cm vm[V] Em[nJ] s

136 0.55 98 N/A 100%
627 0.85 235 4 0.80 207 3.47 88.09
543 0.80 207 4 0.75 181 3.37 87.44
457 0.75 181 4 0.70 157 3.27 86.74
370 0.70 157 4 0.65 136 3.11 86.62
286 0.65 136 4 0.60 116 2.92 85.29
206 0.60 116 4 0.55 98 2.66 84.48
627 0.85 235 4 0.75 181 2.94 77.02
543 0.80 207 4 0.70 157 2.76 75.85
457 0.75 181 4 0.65 136 2.54 75.14
370 0.70 157 4 0.60 116 2.27 73.89
286 0.65 136 4 0.55 98 1.94 72.06
627 0.85 235 4 0.70 157 2.41 66.81
543 0.80 207 4 0.65 136 2.15 65.70
457 0.75 181 4 0.60 116 1.85 64.09
370 0.70 157 4 0.55 98 1.51 62.42
627 0.85 235 4 0.65 136 1.87 57.87
543 0.80 207 4 0.60 116 1.57 56.04
457 0.75 181 4 0.55 98 1.23 54.14
627 0.85 235 4 0.60 116 1.37 49.36
543 0.80 207 4 0.55 98 1.04 47.34
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Appendix C

Source Code

SeeDot

Multi-Core
main.c

1 int main(void) {
2 uint32_t cpu_id = read_csr(mhartid);
3
4 if (cpu_id == MASTER) {
5 while (1) {
6 while(busy_wait == 0xaabbccdd) {}
7
8 int res = seedotFixed(features);
9

10 // ‘res ‘ can be compared with ‘label ‘
11
12 busy_wait = 0xaabbccdd;
13 }
14 } else if (cpu_id == SLAVE) {
15 slave_cpu_wait_work_loop ();
16 }
17
18 return 0;
19 }

seedot_fixed.c

1 void wait_for_mat_sub () {
2 while (! slave_can_go) {}
3
4 MatSub(a, b, c, 13, 25);
5
6 slave_can_go = false;
7 }
8

63



9 void wait_for_mat_mul_cn () {
10 while (! slave_can_go) {}
11
12 MatMulCN(a, b, c, 5, 10);
13
14 slave_can_go = false;
15 }
16
17 void slave_cpu_wait_work_loop () {
18 while (1) {
19 wait_for_mat_sub ();
20 wait_for_mat_mul_cn ();
21 }
22 }
23
24 void OptimizeFunction(const MYINT *A, MYINT *B, MYINT *C, uint8_t f) {
25 size_t s = sizeof(MYINT) * (f == 0 ? 25 : 10);
26
27 memcpy(a, A, s);
28 memcpy(b, B, s);
29
30 slave_can_go = true;
31
32 if (f == 0) MatSub(a, b, &c[0], 0, 13);
33 if (f == 1) MatMulCN(a, b, &c[0], 0, 5);
34
35 // Slave will set slave_can_compute to false itself
36 while (slave_can_go) {}
37
38 memcpy(C, c, s);
39 }
40
41 int seedotFixed(MYINT *X) {
42 MYINT tmp4;
43 MYINT tmp5 [25];
44 MYINT i;
45 MYINT tmp6 [25];
46 MYINT tmp7;
47 MYINT tmp8 [1][25];
48 MYINT tmp10;
49 MYINT tmp9 [25];
50 MYINT tmp11;
51 MYINT tmp15;
52 MYINT tmp12;
53 MYINT tmp13;
54 MYINT tmp14;
55 MYINT tmp17 [10];
56 MYINT tmp16 [1];
57 MYINT tmp18 [10];
58 MYINT tmp19;
59
60 tmp4 = 1055531162L;
61
62
63 // W |*| X
64 memset(tmp5 , 0, sizeof(MYINT) * 25);
65 SparseMatMul (&Widx[0], &Wval[0], X, &tmp5[0], 256, 32768L, 32768L,
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256);
66
67 memset(tmp18 , 0, sizeof(MYINT) * 10);
68 i = 0;
69 for (MYINT i0 = 0; (i0 < 55); i0++) {
70
71 // WX - B
72 OptimizeFunction (&tmp5[0], &B[i][0][0] , &tmp6[0], 0);
73
74 tmp7 = (-tmp4);
75
76 // del^T
77 Transpose (&tmp6[0], &tmp8 [0][0]);
78
79
80 // tmp8 * del
81 MatMulNN (&tmp8 [0][0] , &tmp6[0], &tmp10 , &tmp9 [0]);
82
83
84 // tmp7 * tmp10
85 ScalarMul (&tmp7 , &tmp10 , &tmp11);
86
87
88 // exp(tmp11)
89 if (((- tmp11) < 30669)) {
90 tmp13 = 0;
91 tmp14 = 0;
92 } else {
93 tmp12 = (((-tmp11) - 30669) << 10);
94 tmp13 = (( tmp12 >> 26) & 63);
95 tmp14 = (( tmp12 >> 20) & 63);
96 }
97 tmp15 = (( EXP20A[tmp13] >> 15) * (EXP20B[tmp14] >> 15));
98
99 // Z * tmp15

100 OptimizeFunction (&Z[i][0][0] , &tmp15 , &tmp17[0], 1);
101
102 for (MYINT i1 = 0; (i1 < 10); i1++) {
103 for (MYINT i2 = 0; (i2 < 1); i2++) {
104 tmp18[i1] = (tmp18[i1] + (tmp17[i1] / 64));
105 }
106 }
107 i = (i + 1);
108 }
109
110 // argmax(res)
111 return ArgMax (&tmp18 [0]);
112 }
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Linear Algebra Library Functions
Matrix Multiplication (Multi-Core)

1 void MatMulCN(const MYINT *A, MYINT *B, MYINT *C, MYINT lower ,
MYINT upper) {

2 MYINT tmp [1];
3 MYINT shrA = 32768L, shrB = 32768L, I = 10, K = 1, J = 1, H1 = 0,

H2 = 0;
4
5 for (MYINT i = lower; i < upper; i++) {
6 for (MYINT j = 0; j < J; j++) {
7 for (MYINT k = 0; k < K; k++) {
8 MYINT a = A[i * K + k];
9 MYINT b = B[k * J + j];

10
11 a = a / shrA;
12 b = b / shrB;
13
14 tmp[k] = a * b;
15 }
16
17 MYINT count = K, depth = 0;
18 bool shr = true;
19
20 while (depth < (H1 + H2)) {
21 if (depth >= H1)
22 shr = false;
23
24 for (MYINT p = 0; p < (K / 2 + 1); p++) {
25 MYINT sum;
26 if (p < (count >> 1))
27 sum = tmp[2 * p] + tmp[(2 * p) + 1];
28 else if ((p == (count >> 1)) && (( count & 1) == 1)

)
29 sum = tmp[2 * p];
30 else
31 sum = 0;
32
33 if (shr)
34 tmp[p] = sum / 2;
35 else
36 tmp[p] = sum;
37 }
38 count = (count + 1) >> 1;
39
40 depth ++;
41 }
42
43 C[i * J + j] = tmp [0];
44 }
45 }
46 }

Matrix Subtraction (Multi-Core)

1 void MatSub(MYINT *A, const MYINT *B, MYINT *C, MYINT lower , MYINT
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upper) {
2 MYINT I = 25, J = 1, shrA = 1, shrB = 256, shrC = 1;
3 for (MYINT i = lower; i < upper; i++) {
4 for (MYINT j = 0; j < J; j++) {
5 MYINT a = A[i * J + j];
6 MYINT b = B[i * J + j];
7
8 a = a / shrA;
9 b = b / shrB;

10
11 MYINT c = a - b;
12 c = c / shrC;
13
14 C[i * J + j] = c;
15 }
16 }
17 return;
18 }
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Ideal Matrix Multiplication

Single-Core
1 void compute(uint32_t *A, uint32_t *B, uint32_t *C, uint32_t lower ,

uint32_t upper) {
2 for (uint32_t j = lower; j < upper; j++) {
3 for (int i = 0; i < 500; i++) {
4 C[j] = A[j] * B[j];
5 }
6 }
7 }
8
9 int main(void) {

10 uint32_t aa[100], bb[100] , cc [100];
11 for (int i = 0; i < SIZE; i++) {
12 aa[i] = i;
13 bb[i] = SIZE - i;
14 cc[i] = 0;
15 }
16
17 compute(aa , bb , cc , 0, SIZE);
18
19 return 0;
20 }

Multi-Core
1 void compute(uint32_t *A, uint32_t *B, uint32_t *C, uint32_t lower ,

uint32_t upper) {
2 for (uint32_t j = lower; j < upper; j++) {
3 for (int i = 0; i < 500; i++) {
4 C[j] = A[j] * B[j];
5 }
6 }
7 }
8
9 void perform_computation(uint32_t *A, uint32_t *B, uint32_t *C,

uint32_t lower , uint32_t upper) {
10 size_t max_s = sizeof(uint32_t) * SIZE;
11
12 memcpy(a, A, max_s);
13 memcpy(b, B, max_s);
14
15 compute(A, B, c, lower , upper);
16
17 memcpy(C, c, max_s);
18 }
19
20 uint32_t perform_all_computations(bool is_master) {
21 uint32_t aa[100], bb[100] , cc [100];
22 for (int i = 0; i < SIZE; i++) {
23 aa[i] = i;
24 bb[i] = SIZE - i;
25 cc[i] = 0;
26 }
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27
28 perform_computation(aa , bb , cc, 0, SIZE);
29
30 return 0;
31 }
32
33 int main(void) {
34 uint32_t cpu_id = read_csr(mhartid);
35
36 if (cpu_id == MASTER) {
37 return perform_all_computations(true);
38
39 } else if (cpu_id == SLAVE) {
40 return perform_all_computations(false);
41 }
42 }
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