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Abstract

Human Pose Estimation, the task of localizing human joints, has become a popular re-
search field in recent years because of its broad application domain. However, it still
remains a challenging task due to occlusions, low resolutions, and overall complexity. We
investigate how convolutional neural networks and deep learning techniques can enhance
the quality of automated tracking of movements, especially for medical purposes. These
techniques can further be employed to track fidgety movements, complex and circular
movements of small amplitude, whose absence is a strong indicator of cerebral palsy. An
automatization of this tracking process could be of high value, as the qualitative metric of
today’s methods suffers from the dependency of highly experienced observers and is thus
limited in clinical practice.

The vision for this project is to make valuable contributions to the InMotion project,
a collaboration between St. Olav’s University Hospital and the Norwegian University of
Science and Technology. We propose a new, two-staged network architecture in an attempt
to improve the prediction quality of extremities. The first stage of the network produces an
approximation of all body parts, while the second stage focuses solely on extremities. By
exploiting a larger quantity of data and performing high-quality predictions for extremities,
our method increases precision for predicted extremities measured at lower thresholds.



ii

Sammendrag

Human pose estimation, metoden for å lokalisere menneskelige kroppsdeler, har i de siste
årene blitt et populært forskningsfelt grunnet sitt brede applikasjonsdomene. Til tross
for denne populariteten er metoden fortsatt vanskelig å utføre grunnet skjulte kropps-
deler, lavoppløselige bilder og dens generelle kompleksitet. Vi utforsker hvordan konvo-
lusjonelle nevrale nettverk og dyplæringsteknikker kan tas i bruk for å øke kvaliteten på de-
tekteringen av kroppsbevegelser, spesielt for medisinsk bruk. Disse dyplæringsteknikkene
kan videre brukes til å detektere fidgety movements, komplekse, sirkulære bevegelser, der
fraværet av slike bevegelser er en sterk indikator for cerebral parese. En automatisering av
denne detekteringsprosedyren kan være av høy verdi ettersom dagens kvalitative metoder
er avhengig av svært erfarne observatører. Metodene har derfor sine begrensninger innen-
for medisinsk bruk.

Visjonen til dette prosjektet er å komme med verdifulle bidrag til InMotion pros-
jektet, et samarbeidsprosjekt mellom St. Olavs Universitetssykehus og Norges teknisk-
naturvitenskapelige universitet. Vi foreslår en to-stegs nettverksarkitektur i et forsøk på å
forbedre prediksjoner for ekstremiteter. Første steg av nettverket produserer en approksi-
masjon av alle kroppspunkter, mens andre steg fokuserer på nøyaktig prediksjon av ek-
stremiteter. Ved å utnytte en betydelig mengde data, og ved å utføre prediksjoner av høy
kvalitet for ekstremiteter viser vi til en økning i den totale presisjonen for prediksjon av
ekstremiteter.
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Chapter 1
Introduction

1.1 Background and Motivation
In European countries, 6% of all live births are very preterm [1]. The increasing survival
rates of children who are born very preterm raise issues about the risks of neurological
disabilities and cognitive dysfunction. Cerebral palsy (CP) is a permanent disorder in the
development of movement and posture in the developing fetal or infant brain [2] and is one
of the major disabilities that result from extremely preterm birth. A study conducted in [1]
found that 9% of children born very preterm were diagnosed with CP. Although initial
damage cannot be repaired, early identification of CP is essential for initiating treatment
while the plasticity of the nervous system is high. Accordingly, this gives a high motivation
for accurately diagnosing infants with CP.

Diagnosing CP is a difficult task. The utility is limited by expensive equipment and
highly experienced and trained personnel [3]. Based on systematic reviews, the gen-
eral movement assessment shows the best evidence and strength for accurately predicting
CP [4]. This method shows excellent results, with a precision of more than 90%. However,
the qualitative metric of this method suffers from the dependency of highly experienced
observers and is thus limited in clinical practice [5]. It is also time-consuming, and the
outcome is based on subjective opinion.

To overcome these limitations, an automated computer-based method for pattern recog-
nition, independent of experienced observers, would be of high value. With this as motiva-
tion, a larger research project was initiated at St. Olav’s University Hospital in Trondheim,
Norway. Researchers of this project have been working actively over 17 years, collecting
video recordings of infant children, exploring the opportunity for an automated system,
and assessing the quality of the outcome. One of the benefits of such a system would be
that it can be scaled up and used without supervision of trained personnel.

1



1.2 Problem Statement 2

1.2 Problem Statement
During recent years, significant progress in the field of Deep Learning has shown that
tasks such as image classification, object detection, and tracking can be done efficiently
in real-time. An automated motion analysis system requires to capture body movements
accurately, ideally without markers or attached sensors to not affect the movements of
infants [6]. Using Convolutional Neural Networks and Deep Learning techniques such as
Human Pose Estimation, systems are now able to automatically track the movement of
infants with high precision. We further explore this field of Deep Learning by proposing
a new pipeline architecture to further increase the accuracy of key point detection in order
to track and capture the body movement of infants.

Recent methods for Human Pose Estimation has used multiple datasets to improve the
overall precision accuracy of predicted body parts. In this project, we investigate how the
usage of more data affects the performance of body tracking.

1.3 Goals and Research Questions
The main goal of this thesis is to explore and implement a new network architecture within
the field of Human Pose Estimation for improving the accuracy of predicted body parts.
In this thesis, we specifically focus on accuracy on extremities because the accuracy of
central body parts is already satisfactory. As part of this, we propose a new pipeline for
producing predictions for extremities. More specifically, we can formulate the goals as the
following research questions:

RQ 1: How can the task of Human Pose Estimation be optimized to produce predictions
of higher quality for cerebral palsy?

RQ 1.1: How can we modify the network architecture to produce higher overall
accuracy for predicted body parts measured at lower thresholds?

RQ 1.2: How can we increase key point accuracy of the model merely based on
exploiting available data?

1.4 Outline
In Chapter 2, we introduce relevant background information within both the medical and
the technical field. We start by defining cerebral palsy and techniques used to diagnose
it. We further provide a brief introduction to Artificial Intelligence and Computer Vision
and subsequently give a thorough explanation of Human Pose Estimation. Chapter 3 gives
a summary of today’s state-of-the-art methods within Human Pose Estimation, as well as
other methods related to our work. Chapter 4 describes our methodology and the proposed
method for producing predictions of higher quality for extremities. Chapter 5 documents
the results produced during the research, and compares our proposed method to other
existing state-of-the-art methods. Chapter 6 evaluates both the results and the applicability
of our proposed method. Finally, Chapter 7 presents the conclusion for this thesis and
suggestions for future work.



Chapter 2
Background

This chapter contains an introduction to important medical and technical theory used as
a basis for our research. The content in this chapter is based on our work conducted in
TDT4501 - Computer Science, Specialization Project which is a preface of the master
thesis itself.

2.1 Medical Background
In the following section we take a brief look at the medical background that forms the fun-
damental motivation for our thesis. We start by defining cerebral palsy and its challenges,
before we go on to describe which methods are used to predict and diagnose cerebral palsy
in today’s society.

2.1.1 Cerebral Palsy
Cerebral palsy (CP) is a well-recognized neurodevelopment condition developed in early
childhood and persisting throughout the lifespan. Rosenbaum [2] defines CP as follows:

”Cerebral palsy (CP) describes a group of permanent disorders of the development of
movement and posture, causing activity limitation, that is attributed to nonprogressive
disturbances that occurred in the developing fetal or infant brain. The motor disorders of
cerebral palsy are often accompanied by disturbances of sensation, perception, cognition,
communication, and behavior, by epilepsy, and by secondary musculoskeletal problems.”

The human brain is complex, and each child diagnosed with CP will have a different
outcome and forecast. With this as motivation, the gross motor function [7] was developed
in 1997. This method classifies children with CP into five levels of mobility based on the
key function of severity [8, 9]:

3



2.1 Medical Background 4

• GMFCS Level I: Walks without Limitations
Children and youth perform gross motor skills such as climbing and running, but
more complex skills such as coordination and balance are limited.

• GMFCS Level 2: Walks with Limitations
Children and youth are capable of walking, but may find it difficult to walk long
distances and needs railings or other supporting devices in most settings to climb
stairs.

• GMFCS Level 3: Walks Using a Hand-Held Mobility Device
Children and youth require hand-held mobile devices such as canes or crutches in
order to walk outside, and wheeled mobility for long-distance walks.

• GMFCS Level 4: Self-Mobility with Limitations; May Use Powered Mobility
Children and youth use powered mobility such as an electric wheelchair. The person
actively controls a joystick for maneuvering.

• GMFCS Level 5: Transported in a Manual Wheelchair
Children and youth require physical assistance in all settings. Their ability is also
limited in order to maintain in trunk postures.

2.1.2 Fidgety Movements
Detection of children with a developmental disorder, specifically CP, is both a challenging
and tedious process. The diversity reflects the difficulties in techniques used in the field
of medicine to assess the brain at an early stage. These techniques range from clinical
observations, requiring no technical equipment, to more sophisticated methods such as
ultrasound and magnetic resonance imaging.

In recent years, a new method for neuromotor assessment of infants has been devel-
oped. This method is based on the assessment of general movements. General movements
are movements of the fetus and young infant in which all parts of the body participate [10].
General movements that typically occur at 3-5 months post-term are defined as fidgety
movements and are usually the predominant movement pattern for awake infants in this
time period [11]. Prechtl [12] defined the movements as circular movements of small
amplitude, moderate speed, and variable acceleration of neck, trunk, and limbs in all
directions. The movements are complex, occur frequently, and last long enough to be ob-
served correctly. Figure 2.2 shows two infants, where the leftmost panel displays an infant
born at term. This infant presents fidgety movements, as can be seen from the continuous
change in position. Respectively, the rightmost panel shows an infant born at week 28.
This infant displays abnormal general movements, which can be interpreted from the lack
of variation in movements. The absence of fidgety movements poses a strong indication
for later neurological impairments, especially for CP [13]. Figure 2.1 shows the strong
predictive value and correlation between the absence of fidgety movement and cerebral
palsy. A systematic review was also conducted on 326 children in 2013 and showed a sen-
sitivity of 98% and a specificity of 91% by utilizing the absence of fidgety movements [4].
The sensitivity measures the proportion of infants with cerebral palsy where the condition
is correctly identified and specificity measures the percentage of healthy infants correctly
identified as healthy.



2.2 Technical Background 5

Figure 2.1: A longitudinal study of 130 infants with its respective ultrasound findings. From left,
preterm, and writhing quality preceding the quality of fidgety movements, which corresponds to the
neurological outcome at three years (right column) [14].

2.1.3 Assessment Procedure
The evaluation of general movements and their complexity is demanding and requires
highly trained personnel. Gestalt perception is a well-known method for evaluating the
movements of infants [15]. The method is a powerful, yet vulnerable instrument in the
analysis of complex phenomena [16]. In order to provide a reliable assessment of recorded
general movements of infants using gestalt perception, a standardized framework has been
developed [17]. The infant is recorded in spine position, with neutral clothes and prefer-
ably with bare arms and legs. Active wakefulness is the ideal state of the infant for pre-
serving the best quality of assessment. An example of these standardized recordings can
be viewed in Figure 2.2. It is important for the observer to focus on the overall movement
and not pay attention to details. This is because environmental distractions may interfere
with the observer’s gestalt perception.

Despite gestalt perceptions robustness, the method has some limitations and can be
prone to error. An observer’s assessment of general movements is subjective, which may
lead to different outcomes based on the selected observer. The method also demands expe-
rienced observers in order to obtain a reliable diagnosis. For less-experienced personnel,
it can, for example, be difficult to distinguish between abnormal general movements and
seizures. This is because general movements with low range can show successive move-
ment components that are similar to stereotyped movements of subtle seizures [14].

2.2 Technical Background
In this section, we describe the fundamental techniques in the field of Artificial Intelli-
gence, followed by an introduction to Computer Vision theory that is both related to this
project and important to understand in order to grasp the aspects of Human Pose Esti-
mation. We further give a brief introduction to more specific techniques in the domain
of Computer Vision, which is highly relevant to this project, namely data augmentation,
evaluation metrics and backbone networks.
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Figure 2.2: Recordings of fidgety movements on infant children [10].

Figure 2.3: Artificial intelligence, machine learning and deep learning [19].

2.2.1 Artificial Intelligence
Since the break of dawn, humans have tried to understand the fundamentals of this world.
One of the most interesting questions is: how do we think? The field of Artificial Intelli-
gence was created based on this question in 1956 [18], when a group of pioneers wanted
to explore whether computers could be able to think like humans. In [19], the following
definition is stated: AI is the effort to automate intellectual tasks normally performed by
humans.

The field of AI encompasses Machine Learning and Deep Learning (see Figure 2.3),
but it also includes other areas that do not include learning. In the beginning, experts
thought that human-level Artificial Intelligence could be achieved by defining an explicit
set of rules for the computer system as a base for its knowledge manipulation. Today, this
field of AI is known as symbolic AI. The method was suitable to solve a well-defined prob-
lem, such as playing chess, but struggled with more complex problems such as translation
of natural language and image segmentation. Thus, it created the need for a new area in
AI, Machine Learning.
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Figure 2.4: Symbolic AI VS machine learning [19].

2.2.2 Machine Learning
In symbolic AI, the programmers creates a set of rules for the system as well as feeding
it with input data. Thus, the system is only capable of doing and learning what its creator
specifies. Machine Learning proposes a new way of thinking; a system should be able to
learn how to perform a specific task without human intervention. Thus, it should learn
patterns and draw conclusions on its own.

By providing a Machine Learning system with data and the expected answers, it is
capable of learning patterns and build a set of rules, all by itself. These rules can be reap-
plied to new data to retrieve the potentially unknown answers. We say that the Machine
Learning system is trained, rather than being explicitly programmed (see Figure 2.4).

Machine Learning tasks are classified into several categories, whereas the two most
commonly known are supervised and unsupervised learning. Supervised learning de-
scribes systems provided with both the input data and the corresponding answers, produc-
ing a mathematical model able to predict the answers of new data. Unsupervised learning
is building a mathematical model solely based on the input data, which is further used to
uncover patterns in data or grouping input into categories.

2.2.3 Deep Learning
Deep Learning (DL) is a subfield of Machine Learning trying to learn representations
from data through successive layers, whereas each layer focuses on a distinct set of fea-
tures based on output from the previous layer. The word deep in Deep Learning does not
describe how much information the network extracts from its data, but rather how many
hidden layers that make up the network. According to various experts, a deep neural net-
work is a neural network consisting of at least three layers, thus at least one hidden layer.
Due to the number of layers, a deep neural network is capable of learning patterns of data
with millions of properties, all without human intervention.

Artificial Neural Network

An artificial neural network (ANN) is a computing system based on the biological neural
networks found in the brain. The system consists of interconnected processors, called neu-
rons, producing a specific output based on its input. We say that the neuron is activated
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Figure 2.5: A fully connected network with two hidden layers.

when it produces an output. Synapses make up the connections between neurons, making
them able to ”communicate” with each other. A neural network consists of an input layer
and an output layer with a collection of hidden layers in between them (see Figure 2.5).
Each layer consists of several nodes or neurons, each given a specific weight. The impor-
tance of the information floating through the network is decided by reviewing the weight
of each layer.

To be able to determine how the network performs, we need to specify an evaluation
function, the loss function. The loss function takes the output, or the prediction, from
the network, compares it with the expected output and calculates a distance score. An
optimizer takes this distance score to adjust the value of the weights in such a way that
further reduces the distance score. Initially, the weights of the network are set to an arbi-
trary value, but by repeating this training loop, we can adjust the weight, little by little, to
minimize the loss function (see Figure 2.6). Eventually, the predictions of the network are
as close as they can be to the target, and we say that the network is trained.

Convolutional Neural Network

Convolutional Neural Networks, or CNNs, are networks that perform a linear mathemati-
cal operation called convolution. This particular type of network is primarily used to pro-
cess data with a known grid-like topology [20]. The most significant difference between
CNNs and other densely connected networks is that a dense layer learns global patterns
in their input data, while a convolution layer learns local patterns. Thus, a convolutional
layer can learn a pattern at a specific spot in an image and recognize the same pattern at
a different location, without having to learn it again like the dense layer. This property
makes CNNs data efficient when it comes to processing images.

Take, for example, a CNN trained to classify images. An image is often represented
as an array of pixel values, and the first layer in such a network would typically extract
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Figure 2.6: Overview of a neural network [19].

information about the presence or absence of edges in the image. The second layer typ-
ically extracts information about a specific collection of edges, regardless of position in
the image. Successive layers might look at objects made out of these groups of edges.
Thus, each successive layer extracts more and more complex features from the image by
combining the features learned in previous layers (see Figure 2.7).

A convolutional layer takes two arguments as primary input: a feature map, usually a
multidimensional array of data, and a kernel or filter. The filter can be seen as a field of
view in the layer and is often a lot smaller in spatial size than the input. During convo-
lution, the filter moves across the feature map focusing on extracting information about a
specific set of features. A layer has a set of filters that makes up the depth of the layer. Ev-
ery convolutional layer produces an output called the output feature map (see Figure 2.8),
which is used as input for the next layer.

Evaluation Metrics

In order to evaluate how well specific algorithms models the given data, several evaluation
metrics, referred to as loss functions, has been developed. These functions reveal the dif-
ference between the estimated values and ground truth values and measures the quantity of
data that will be minimized during training. As neural networks take as many shortcuts as
possible, it is crucial to select the right loss function according to the problem being solved.
Fortunately, for common problems such as regression and classification, there have been
conducted much research, creating guidelines for choosing the correct loss function. For
regression problems, where one is trying to predict continuous values, Mean square Error
(MSE) is one of the most common loss functions. This function measures the loss by cal-
culating the square sum of the difference between the predicted value and the ground truth
value, over all data points, divided by the number of data points, as shown in Equation 2.1.
As derived, the method penalizes more substantial errors more harshly than smaller errors.
The output results are always positive, regardless of the predicted value. Large positive
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Figure 2.7: The spatial hierarchy of visual modules, used by the neural network to classify the input
image as an elephant.

Figure 2.8: Illustration of a convolution layer with a depth of eight, thus the layer contains eight
filters. The green box represent the view port of a filter.
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values indicate a greater distance between the predicted value and the ground truth value.
Hence a perfect output value is 0.0.

MSE =
1

N

N∑
j=1

(yj −
∧
yj)

2 (2.1)

Another function used for real-valued regression tasks is the Euclidean Loss function.
This method takes in the back-propagated value x and calculates how far this input is from
the expected targets t using Equation 2.2. This error function is not parameterized by any
weights w. As MSE, this method also penalizes larger errors.

EuclideanLoss =
1

2

m∑
i=1

(xi − ti)2 (2.2)

Because classification problems are trying to solve a different task, where predicted
values are categorized from a set of finite pre-defined values, other measurements for loss
is required. Cross-Entropy Loss is one of the most common functions used for two-class
classification problems, where the output value increases as the predicted probability di-
verge from its ground truth label. As derived from Equation 2.3, we see that the penalty
score is logarithmic and will provide low scores for small differences between the pre-
dicted value

∧
yi and the true value yi, while substantial differences will produce higher

scores.

CrossEntropyLoss = −(yilog(
∧
yi) + (1− yi)log(1− ∧yi)) (2.3)

For many-class classification problems, Categorical Cross-Entropy Loss is most com-
monly used. This function is a combination of a Softmax Activation and a Cross-Entropy
Loss function. The main difference compared to standard cross-entropy loss, is that be-
cause only one result can be correct, the true class is represented as a one-hot encoded
vector. Hence, the loss is measured by calculating how close the predicted value

∧
yi is to

the vector, as shown in Equation 2.4.

L(y,
∧
y) = −

M∑
j=0

N∑
i=0

(yij ∗ log(
∧
yij)) (2.4)

2.2.4 Data Augmentation
In systems of deep neural networks, overfitting is a recurring problem. Overfitting happens
when the network model specializes in the training data set and does not generalize well for
new data. One way to avoid overfitting is by feeding the network with even more training
data. The problem is: in many situations, this extra set of data is not available. Data aug-
mentation is a technique for generating more data from an existing dataset, significantly
improving performance in tasks like image classification and object detection [21, 22]. By
making minor alternations to existing data, we can generate new and unique data that con-
tribute to generalize a model even further (see Figure 2.9). There exist many augmentation
techniques, and the most popular ones are the following:
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Figure 2.9: Illustration of data augmentation on an image, using rotating, flipping and scaling.

• Flip: An image can be flipped horizontally, vertically, or both. It is important to
think about whether flipping in a specific direction is useful in the task at hand. If
the task is about analyzing cars on the road, vertically flipping an image would not
make any sense. Who drives their car upside down?

• Rotation: When rotating an image, one might be changing the dimensions in the
image. Rotating a square image by 90 degrees would preserve image size while
rotating by 60 degrees would not. The issue of preserving image dimensions can be
avoided by employing other techniques like padding or cutting.

• Crop: Cropping takes a random section from the original image to create a new
one. Resizing an image back to original size after cropping is a well-known method
called random cropping

• Scale: An image can be scaled inward or outward, respectively increasing or de-
creasing the image size.

• Translation: Involves moving an image along the width, height, or both. This
method is especially useful for CNNs, because it forces the network to look for an
object or pattern in all sections of an image.

2.2.5 Backbone Networks
The research area of Machine Learning is vast, and therefore it is important to review pre-
vious and related work before starting on a new task. In cases of neural networks, new
problems can often be solved by using already known networks as a baseline to avoid
duplicate and unnecessary work. Backbone networks are the baseline networks on which
people base their research. OpenPose [23], a real-time multi-person 2D pose estimation
network, is an example of this. The network uses another network VGG [24] as a back-
bone network to initialize the analysis of an image. EfficientNet [25] is an example of a
popular backbone network in CNNs, developed as a mobile-size network. The team be-
hind EfficientNet developed a family of models, EfficientNets, optimizing both accuracy
and floating-point operations per second (FLOPS) by scaling network width, depth, and
resolution uniformly.
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A technique tightly connected to the usage of backbone networks is Transfer Learning.
A large dataset is often needed to achieve satisfying results in deep learning, but training
a model from scratch on these datasets will be both costly and time-consuming. Trans-
fer learning is the process of reusing an already trained model to a different but related
problem. We can employ the technique in three ways:

1. If a new model fully reuse a model and its weights, we call it a pre-trained model.
This might be useful in scenarios where the original problem is closely related to
the new problem, and both datasets are quite similar. An example could be reusing
a model trained on a dataset only containing adults on the problem of infant pose
estimation.

2. A new model can use part of a pre-trained model as a baseline to extract generic fea-
tures before doing further processing. In this case, the pre-trained model is known
as a feature extractor and its weights remain fixed throughout the whole learning
process.

3. As in 2, we use a pre-trained model as a baseline, but instead of fixing the weights,
we train them together with the rest of the model.

In this project, we use EfficientNet as our backbone network. We employ this backbone
with technique 3, where the network is pre-trained on ImageNet [26]. As described above,
we further train the pre-trained weights together with the rest of the model.

2.3 Human Pose Estimation
As defined by Leonid Sigal, Human Pose Estimation (HPE) is the task of estimating the
configuration of the human body from an image [27]. This also includes the search for a
specific body pose, which, in essence, is a set of connected coordinates used to describe the
pose of a person. In a simple case, as shown in Figure 2.10, a single-person algorithm can
be performed to locate the human limbs, such as the left or right shoulder, neck, and the
top of the head. Because of its diverse abundance of applications that can profit from this
technology, it is considered as one of the most important problems of Computer Vision.
Despite being assessed and researched for many years, it is still considered as a difficult
task to solve. The difficulties are many, but the most common and challenging problems
are as follows:

• Variance of human visual appearance in an image

• Different light conditions

• The complexity of the human skeletal structure

• Small and barely visible joints

As one of our main goal of this project is to increase the accuracy of detected keypoints,
the field of Human Pose Estimation is highly relevant and attractive for this thesis.
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Figure 2.10: A human skeleton consisting of 17 keypoints, representing limbs of the human body.

2.3.1 Datasets
The remarkable progress in the field of deep learning and computer vision is much due
to the leveraging of large-scale image datasets. A satisfactory amount of labeled data is
crucial for both accurate training of models for Human Pose Estimation and to prevent
over-fitting. Because of HPE’s diverse application domain, there has been developed sev-
eral open-source datasets for testing, training, and evaluation. One of the most commonly
used datasets is the MPII Human Pose dataset [28]. This is a state-of-the-art benchmark
for the evaluation of HPE. The images show single or multiple persons performing every
day human activities scraped from YouTube videos. Each image is labeled with an activ-
ity label, and the dataset contains a total of 410 different human activity labels. Another
dataset widely used in Computer Vision and HPE is the COCO dataset [29]. This dataset
consists of images of everyday scenes containing common objects in their natural con-
text. The COCO dataset displays more complex everyday scenes compared to the MPII
dataset. This is because the goal of the COCO dataset is also to question object recognition
in the context of a wider question, scene understanding. Accordingly, this dataset has a
wide range of applications and was developed to address the following three core research-
problems: detecting non-ionic views of objectives, contextual reasoning between objects,
and 2D localization of objects. An example of the extensive labeling for an image can be
viewed in Figure 2.11. One last dataset, developed in 2017, is the HSSK dataset [30]. This
dataset was developed for three specific tasks, namely human key point detection, cap-
tion detection for the Chinese language, and attribute-based zero-shot recognition, which
contains both visual and semantic attributes to the objective. Only images labeling human
key points will be relevant for this project. The dataset also contains a visibility flag for
each annotated key point. This visibility flag, vi can have three different values, where
vi = 1 means the key point is labeled, vi = 2 indicates that the key point is labeled but not
visible, and finally vi = 3 indicates that the key point is not labeled. Figure 2.12 shows
an example picture taken from the HSSK dataset, displaying bounding boxes and human
key points for two humans. As shown, the different key points are connected as segments
and not as a fully connected human skeleton as in the MPII dataset. For example, one
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Figure 2.11: The COCO dataset introduces a large, richly-annotated dataset and can be used for
image classification, object localization, and semantic segmentation [29].

Datasets Images Humans Keypoints
MSCOCO 200K 250K 17

MPII 25K 40K 16
HKD (HSSK) 270K 511K 14

Table 2.1: Comparison of human keypoint datasets.

can see that the left shoulder, left elbow, and left wrist is connected, forming an individual
segment, but the left shoulder is not connected to the neck.

For comparison purposes, Table 2.1 shows the corresponding scope of each dataset.
We observe that the HSSK and COCO datasets contain a significantly larger amount of
data compared to the MPII dataset.

2.3.2 Approaches
To solve the problem of Human Pose Estimation, various solutions have been proposed.
The utilization of Deep Learning-based methods to extract tolerable features from meta-
data has produced excellent results, outperforming non-deep state-of-the-art methods. The
problem of HPE can first be classified into two categories, namely single-person pose es-
timation and multi-person pose estimation. While single-person approaches, essentially
want to solve a regression problem where the number of keypoints is implicitly stated,
multi-person approaches need to solve an unconstrained problem. This is because of the
number of positions and humans is unknown.

Single-Person Approaches

The single-person problem in HPE is the most straightforward problem to solve as the
human keypoints are implicitly stated, given the fact that there is only one person in
the picture. There are two common approaches for the single-person pipeline: direct
regression-based framework and heatmap-based framework [31]. As the title suggests,
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Figure 2.12: An example picture taken from the HSSK dataset showing bounding boxes and anno-
tated human key points for two humans [30].

Figure 2.13: Heatmap-based framework for a single person, where (a) shows the original image, (b)
illustates the generated heatmaps, and (c) indicates the predicted result [31].

direct regression-based frameworks use regression to predict human keypoints directly.
However, studies on pose estimation have shown that his method is highly non-linear
because it is challenging to learn mapping directly from feature maps without other pro-
cedures [32]. Another drawback of this method is that it can not be applied to solve
multi-person problems. Because of this disadvantage, most solutions are developed using
a heat map-based framework. This method first regresses heatmaps in order to locate the
keypoints, as illustrated in Figure 2.13. The heatmaps are then further used to create the
predicted joints.

Multi-Person Approaches

Finding body parts for multi-person problems is a considerably more difficult task than
single-person problems. First, neither the position nor the number of people in a picture
is given for a multi-person problem. Second, the making of associations between body
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Figure 2.14: Visual comparison of top-down pipeline versus bottom-up pipeline [31].

parts is more difficult due to contact and interactions between people causing occluded
joints. Third, the runtime complexity grows with the number of people in the image.
Based on these difficulties, two pipelines have been proposed: (1) top-down pipeline and
(2) bottom-up pipeline.

• Top-down approach: The top-down approach starts with the detection of all humans
in a given picture, where each human is segmented into a bounding box. The method
then crops the picture based on the resulting bounding boxes and performs keypoint
detection for each cropped picture. The resulting picture will accordingly contain
the human skeleton with keypoints for each human in the input image. A visualiza-
tion of the top-down pipeline can be viewed in Figure 2.14, as the approach showed
at the bottom of the figure.

• Bottom-up approach: The bottom-up approach, is, in essence, a reversed process
of the top-down approach. The method first detects keypoints for each human in
the image, which is a second stage that is assembled and associated with human
instances. A visualization of the bottom-up pipeline can be viewed in Figure 2.14,
as the approach showed at the top of the figure.

Both of these pipeline frameworks have been explored using Deep Learning methods in
recent years. However, there is no correct answer to which method one should prefer.
This is because multiple aspects should be considered in real-world applications, most
importantly, speed and accuracy. Accuracy can objectively be measured by the results
on some of the keypoint challenges hosted on the most known datasets. Both winners of
the HSSK Challenge and the COCO dataset challenge in 2017 employed the top-down
pipeline. However, when it comes to speed, the top-down pipeline needs to estimate the
pose of each person one by one, which gives a linear run time and increases linearly with
the number of humans. In comparison, the images in the bottom-up approach only need to
pass through the network once.
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2.3.3 Common Evaluation Metrics
Some standardized metrics has been defined in order to objectively measure the perfor-
mance of Human Pose Estimation models.

Percentage of Correct Parts - PCP

PCP [33] is a standard evaluation metric used on many benchmarks. This metric measures
the detection rate of limbs. A limb is evaluated as correctly detected if the distance between
the two predicted joint locations and the true limb locations is less than half of the total
limb length, respectively denoted as PCP@0.5. Intuitively, a high PCP means a high
detected percentage and an accordingly accurate model. This metric has some drawbacks
as it penalizes shorter limbs more than other limbs because the shorter limbs, such as lower
arms, produce lower thresholds as it is harder to detect.

Percentage of Correct Keypoints - PCK

PCK measures the total percentage of correctly detected keypoints. A keypoint is con-
sidered correctly detected if the distance between the true joint and the predicted joint is
within a certain threshold. This threshold is commonly 0.5, denoted as PCKh@0.5, which
means it considers all predicted keypoints placed within 50% of the head bone link as
correctly detected. This method addresses the penalization problem of shorter limbs in
PCP since shorter limbs have smaller head bone links. Respectively, a higher PCKh score
means a higher percentage of correctly placed keypoints, thus a more accurate model. In
this thesis, we will try to increase the PCKh@0.1 of the developed model in the InMotion
project.

Percentage of Detected Joints - PDJ

PDJ metric measures accuracy according to the torso. A joint is correctly detected if
the distance between the predicted joint and the ground truth location is within a given
fraction of the torso, which can vary from the definition. The torso diameter is defined
as the distance between the left shoulder and right hip [34]. This means that all joint
accuracies are measured with the same error threshold.

Object Keypoint Similarity - OKS

The OKS measures the similarity between the predicted joints and the ground truth joints
in a different manner. The main idea is, in essence, to calculate the weighted euclidean
distance between the predicted keypoints and the ground truth keypoints. The OKS for a
human figure p is given by the following formula:

OKSp =

∑
i exp{ −d

2
pi

2s2pσ
2
i
}δ(vpi = 1)∑

i δ(vpi = 1)
(2.5)

where:
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• di is the Euclidean distances between each ground truth and detected keypoint.

• vi is the visibility flags of the ground truth.

• sp is the scale factor for a human figure p.

• ki is the constant for each keypoint

2.3.4 Summary
As described in the previous sections, there are many factors to consider in order to choose
an approach for solving the task of Human Pose Estimation. As the goal of this project is to
improve the accuracy of extremities for medical usage, we limit our scope to single-person
approaches. We further use a heatmap-based framework because direct regression-based
frameworks are highly non-linear. We use both the MPII dataset and the HSSK dataset
for training and testing purposes, where the MPII dataset is chosen for its extensive usage,
and the HSSK dataset is chosen because methods performing state-of-the-art results have
used a combination of MPII and HSSK. Lastly, we use PCKh as a metric throughout the
thesis to measure the performance of our model.



Chapter 3
State-of-the-art

As seen in the last chapter, there are many approaches for solving the problem of Human
Pose Estimation. In the following chapter, we describe some of the methods which have
produced state-of-the-art results. We then take a look at two methods that have similarities
to our proposed method. Parts of this chapter are based on our work conducted in TDT4501
- Computer Science, Specialization Project which is a preface of the master thesis itself.

3.1 Human Pose Estimation
Human Pose Estimation serves as a fundamental tool for solving many high-level problems
such as tracking, human-computer interaction, and human action recognition. Despite the
rapid development in HPE, it still remains a challenging problem. Low resolutions, occlu-
sions, and complex variances of body poses are some of the most common challenges in
the field. However, new methods have enabled the development of smart implementations
in order to deal with these problems. In the following section, we take a look at three
methods which have produced state-of-the-art results in the field of HPE, both regarding
accuracy and speed.

3.1.1 OpenPose
OpenPose [23] is a state-of-the-art, open-source model for multi-person 2D pose estima-
tion in real-time. While the main focus of many HPE-methods has been on finding body
parts of individuals, OpenPose presents an efficient way of finding body parts for multi-
ple persons, performing with competitive results on multiple public benchmarks. Using
Part Affinity Fields (PAFs), the method presents the first bottom-up approach for finding
a representation of the association between body parts (see Figure 3.1). PAFs are a set of
2-dimensional vectors that encodes the location and orientation of limbs over the image
domain. Another way of finding the association between body parts is by detecting an ad-
ditional midpoint between each pair of parts on a limb. This, however, has its limitations

20
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Figure 3.1: OpenPose pipeline, where the complete image is used as input for a CNN to (b) predict
confidence maps and (c) part affinity fields. (d) Bipartite matching is further used to produce body-
part candidates. (e) The figure shows the final results with fully assembled body poses [23].

Figure 3.2: OpenPose architecture showing the multi-stage CNN.

as these midpoints can produce false associations between body parts as people crowd to-
gether. These false associations are a result of the limitation in representation because the
midpoints only encode the position, not the orientation of each limb. Part Affinity Fields
solves this problem by how the 2D-vectors are represented: they encode the direction of
points from one part of the limb to the other part.

The model consists of 3 consecutive 3x3 kernels, shown in Figure 3.2, which gives a
total of only 51 computational operations. The first stage φt, predicts Part Affinity fields
for each limb while the consecutive stage pt produces confidence maps for each key point.
A loss function is applied at the end of each stage in order to iteratively guide the network
to predict more accurate PAFs and confidence maps.

Using a three scale search, OpenPose produces a state-of-the-art performance of 75.6%
mAP, which indicates the effectiveness of Part Affinity fields to associate body parts. The
most remarkable result here is OpenPose’s result of only 0.005 seconds to process an
image. This demonstrates how a greedy parsing algorithm can produce high-quality results
for body parses while preserving runtime performance.

3.1.2 Cascade Feature Aggregation
Cascade Feature Aggregation (CFA) [35] is one of the most recent methods that cascades
several hourglass networks to form a robust and efficient model for Human Pose Esti-
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Figure 3.3: Cascade Feature Aggregation architecture showing stages 1-N, where each stage pro-
duces new key point predictions based on the inputs and outputs of the previous stage [35].

mation. By aggregating features in different stages, the model obtains a large amount of
contextual information. This gives a model that produces accurate body poses while main-
taining robustness regarding partial occlusions and low resolution. The resulting work
outperforms state-of-the-art methods and achieves the best performance of 93.9% on the
MPII benchmark.

The hourglass network has produced promising results and is generally perceived as a
sound basis architecture for Human Pose Estimation. Stacked Hourglass [36] produced a
PCKh@0.5 of 90.9% on the MPII benchmark by stacking several of these hourglass net-
works to achieve a robust architecture. Furthermore, multiple attempts have been made in
order to improve the backbone network for each stage of the stacked hourglass method.
Ke et al. [37] proposed a model, improving the hourglass model with four extensions: (1)
multi scale supervision for improvement on contextual features, (2) multi scale regression
network at the end of the network to improve structural matching of multi-scale features,
(3) structure-aware loss to increase the matching of key points, and (4) a key point mask-
ing training scheme which makes the network more robust for localizing occluded key
points. The method scored a PCKh@0.5 of 92.1% on the MPII benchmark. Li et al. [38]
further improved the PCKH@0.5 by adding cross-stage feature aggregation and coarse-
to-fine supervision, obtaining a PCKh@0.5 of 92.6%. The model also produced the best
performance in the COCO keypoint challenge 2018. The main difference between the
original model proposed from Newell [36], and the CFA is that Stacked Hourglass only
take the outputs from previous stages as input for the current stage, meanwhile, CFA uses
both the inputs and the outputs from the previous stage (see Figure 3.3) as inputs for the
next stage. This improves the PCKh@0.5 to a staggering 93.9% on the MPII benchmark.

In order to perform state-of-the-art results, CFA is trained on both the MPII and the
HSSK dataset. The model performs a PCKh@0.5 of 89.95% while only being trained on
the MPII dataset and PCKh@0.5 of 92.15% with training on both datasets with quad-stage.
This demonstrates how crucial additional data is for improving performance. The model
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performs an overall best performance while also achieving the best performance on each
of the evaluated joints. Results are compared with both a triple-stage model and a five-
stage model. The model produces the highest performance with a five-stage model. This
is because the results of the first stage may fail on images where people interact, and two
bodies intersect, which leads to partially occluded body parts. The last stage (5th) adopts
global semantic features and achieves nearly perfect results for the problem of partially
occluded body parts.

3.1.3 Toward Fast and Accurate Human Pose Estimation via Soft-
gated Skip Connections

Bulat et al. [39] propose a new method that combines the Hourglass [36] and U-Net archi-
tectures [40] into a hybrid network which increases performance without increasing the
number of parameters due to a smaller number of identity connections within the network.
The main focus of this paper is to achieve high accuracy without using computationally
heavy neural networks, a research area of HPE, which has received little attention so far.

Residual connections have proven to be extremely important in deep neural networks,
and are used by all current state-of-the-art methods. Despite this, the authors of [39] argue
that these connections may hinder models from achieving the highest accuracy possible.
Hence, they introduce soft-gated residual connections defined as:

xl+1 = αxl + F (x1,Wl),

where xl ∈ IRC × w × h are the input features from the previous layer, Wl is a set of
weights associated with the lth residual block and F is a residual function implemented
using a set of convolutional layers. This soft-gate parameter is used to filter out redun-
dant information in the residual module in such a way that only the useful information is
adapted from the previous stage.

The hybrid network structure minimizes the number of identity connections within
the network, which increases the overall performance without increasing the number of
parameters. Instead of adding the features from two distinct distributions in the residual
module, the network concatenates features and combines them using a set grouped convo-
lutional layers, as shown in Figure 3.4, one group for each data source.

As a result, this model achieves state-of-the-art results, surpassing all previous results
on the MPII dataset both in terms of accuracy and run-time performance.

3.2 Related Work
In the following section, we describe two methods that are related to ours because they
implement cascaded architectural pipelines. Even though these models present results
that are far from today’s state-of-the-art performance, the methods have some of the same
baseline goals as our model.
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Figure 3.4: Overall network architecture of the proposed method in Bulat et al. [39] showing two
ways for aggregating features from the skip connections. a) shows the baseline method [36], merging
features using element-wise summation, and b) shows the proposed method in which features are
concatenated and then processed using a grouped convolutional layer with a kernel of size 3× 3.

3.2.1 Joint Training of a Convolutional Network
Thompson et al. [41] propose a new hybrid architecture consisting of a Deep Convolutional
Network and a Markow random field (MRF) [42]. The network consists of a ConvNet
Part-Detector 3.5 (state-of-the-art when the paper was published) and a part-based spatial
model, which together make up a unified learning framework. The part detector takes an
RGB image containing one or more humans as input and gives a key-point heatmap as
output. By incorporating a multi-resolution input with overlapping receptive fields, the
network is able to see a more significant portion of the input image without affecting the
number of weights to a greater extent. An advantage of the Sliding-Window model in
Figure 3.5 is the translation-invariant detector, but the cost of the model evaluation is a
significant drawback, due to the redundant convolutions in the network.

The part-detector itself predicts a heatmap containing several false-positives and poses
that are anatomically incorrect. Therefore, the paper proposes a spatial-model to constraint
the connection between joints and enforce consistency in the global pose. The model
connects every body part to itself and other body parts to create a fully connected graph.
By using convolutional priors, the pair-wise potentials are calculated and used as a basis
to remove the false-positives.

The model in this paper combines the part-detector and the spatial-model to a single
unified model. During training, they firstly train the part-detector and compute and store
the heatmaps separately. Secondly, the spatial model is trained with these heatmaps. Fi-
nally, they back-propagate through the entire network. The model is trained and tested on
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Figure 3.5: Illustration of the multi-resolution sliding-window model with overlapping receptive
fields, as proposed in [41].

the FLIC dataset, outperforming all existing architectures within the field of Human Pose
Estimation in 2014.

3.2.2 Efficient Object Localization
Thompson et al. [43] propose a method for recovering the spatial accuracy lost as a result
of pooling and sub-sampling layers. The architecture is somewhat similar to the archi-
tecture pipeline presented in this thesis, and the model is inspired by the multi-resolution
ConvNet architecture presented in Thompson et al. [41]. Efficient Object Localization
uses an additional convolutional network to utilize the localization results of coarse heat-
maps. Figure 3.6 shows the cascaded architecture consisting of a heat-map-based parts
model and an additional model used for fine-tuning. In comparison to other cascaded ar-
chitectures, CFA reuse computed convolutional features in order to reduce the number of
parameters, as well as using this as a regulator for the coarse heat-map model. The Coarse
heat-map model is, as it implies, responsible for the rough localization. This model returns
coarse (x,y) coordinates that are used to crop the convolutional features for each joint. The
additional ConvNet uses these inputs to fine-tune heat-maps, providing more accurate pre-
dictions for each joint. This is illustrated in Figure 3.3, where we see that the refinements
(∆x, ∆y) are used with the results from the coarse heat-map model to produce the final
predictions.

Compared to the proposed architecture in this thesis, the efficient object localization
only uses one additional network to fine-tune the heat-maps for each joint. This is im-
plemented as a Siamese network [44], where the number of instances corresponds to the
number of predicted joints. Figure 3.7 shows the siamese network for 14 instances, where
each instance forms a convolutional sub-network with four layers. All sub-networks are
connected to a 1x1 Convolution at the end that outputs a heat-map. Both the biases and
weights of each module are replicated across all instances and are also updated together
during backpropagation. The features do, however, not share the same spatial context since
the location of each joint is different. As a consequence, the model can perform redundant
computations if two cropped windows overlap. However, the researchers of this method
have found that this is rare in practice. Since this is a rather ”historic” paper as a result of
the rapid progress in Human Pose Estimation, the presented method scores a PCKh@0.5
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Figure 3.6: Overall pipeline showing the cascaded architecture [43].

Figure 3.7: Illustration of the fine-heat map model with the siamese network architecture [43].

of only 82.0% on the MPII benchmark. Note that this was state-of-the-art results at the
time.

3.2.3 Other Methods
In addition to Thompson et al. [41, 43] research on network models with cascaded archi-
tecture, there exist other methods that have tried exploiting the concept of decomposing the
human pose into smaller sub-problems in order to overcome the challenges of articulated
Human Pose Estimation. Felzenszwalb et al. [45] first introduced deformable part models
that benefit from spatial models for the localization of each part of the human body. Many
algorithms have later tried to improve the DPM-based architecture [46, 47, 48]. John-
son et al. [49] introduced models using a cascaded architecture for body part detection.
Although these methods showed acceptable performance at the time of their publishing,
they are, compared to today’s state-of-the-art methods, outdated and outperformed. An-
other common characteristic between these approaches is that they all use some form of
handcrafted features, which is now known for poor generalization performance.



Chapter 4
Method

In the upcoming chapter we introduce a method to improve the accuracy of predicted body
parts at a lower threshold, respectively at a PCKh measured at 10%. What makes this
method unique is not the network implementation itself, but merely the way we modify
the overall architectural structure by adding small, efficient networks for the extremities,
in an attempt to produce a more accurate final confidence map.

4.1 Background
In the upcoming section we describe the motivation behind our method, how our network
models is built, how they are unique, and lastly, how they serve as good baseline models
for our purpose.

4.1.1 Motivation
The evaluation metric that has become the standard in HPE is PCKh measured at 50%.
As described in Section 2.3.3, this means that all predicted key points placed within 50%
of the head bone link is considered as correctly detected. As this has become the stan-
dard benchmark, it seems that the goal of most models developed these days is to beat
this score. While a PCKh@0.5 is considered sufficient in more generalized systems, this
precision does not always suffice in clinical usage. Imagine an automated clinical sys-
tem that should detect fidgety movements, as defined in Section 2.1.2, by observing and
analyzing the limbs of the human body. A threshold of 50% within the head bone link
would not be considered as a sufficient accuracy for analyzing the limbs, as body parts
like elbows and wrists could be placed quite wrong (see Figure 4.1). While the best bench-
mark for PCKh@0.5 is at 94.1%, the best-published results for stricter thresholds, such as
a PCKh@0.1 is only at about 36%. Also, most articles only present PCKh results for
thresholds of 50% and higher as this seems to be the motivation for improvement. Since
the key point predictions in the InMotion project are further used to predict CP, a higher
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Figure 4.1: An example of a worst-case prediction for a wrist in a sequence of two frames captured
from a video. The transparent circles show the PCKh thresholds of 100%, 50%, 30%, 10%, respec-
tively. We can see that the prediction in both a) and b) is well within the PCKh@1 threshold. Based
on these predictions, a neural network would conclude with no movement between the two frames,
as shown in c), while the wrist actually moved significantly.

precision within a stricter threshold seems most beneficial. This forms the motivation for
our proposed method.

4.1.2 Baseline Models
In this section, we introduce the two baseline models of which our pipeline is built upon,
namely Stacked hourglass and EfficientNet. We further explain why these networks are
advantageous and why they serve as good baseline models for our purpose.

Staked Hourglass Networks

The Stacked hourglass network [36] was developed in 2016, and was built upon the general
need to capture information at every scale. At a high level, the model consists of multiple
hourglass-shaped modules, and seems very similar to fully convolutional networks. The
module differs from the design of fully convolutional networks in its symmetric distribu-
tion between pooling and upsampling, which produces an hourglass-like architecture as
shown in Figure 4.2. The main idea for the symmetric distribution is that different as-
pects of understanding the body pose, like arrangement of their limbs and the person’s
orientation, are best recognized at different scales. While the method produces results
that are somewhat lower than the state-of-the art models, it serves as a novel and intuitive
architecture that can capture all features across scales.

The method applies convolutional and max pooling layers in order to process features
down to a low resolution. This is known as bottom-up processing, where features go from
higher to lower resolutions. As seen from Figure 4.2, the network branches off at each
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Figure 4.2: Illustration of the hourglass architecture, Newell et al. [36].

max pooling layer, and applies convolutions to the the block at the top of the figure which
is the original block with the original resolution. The network proceeds by upsampling
and combining features when the lowest resolution is reached. As in Tompson et al. [41],
nearest neighbor upsamling of the lower resolution combined with addition of the two sets
of features is done in order to bring the information together. Finally, two 1x1 convolutions
are executed in order to produce the final confidence maps which has the same resolution
as the input.

The hourglass architecture serves as a cheap and novel architecture structure, while
still producing sufficient accuracy for key point prediction. This in an important feature
for the main network in our approach. The network gives the same resolution for both
input and output. This feature certainly comes in handy in our proposed method for the
smaller networks, where it is ideal to have a network that can take low input resolution
without dramatically decreasing the output resolution.

EfficientNet

The family of EfficientNets was introduced in 2019 as a new way to scale models based on
available resources [25]. By using a simple but highly efficient compound coefficient, the
team is able to propose a method to scale all the dimensions (depth, width, and resolution)
uniformly. See Figure 4.3 for a summary of model scaling. Scaling techniques have been
used widely in the area of ConvNets before [50, 51, 52], but they all focus on arbitrarily
scaling of the dimensions, a process that demands lots of manual tuning without any guar-
antee of a performance boost. The scaling dimensions are dependent in the following way:
higher resolution images should be supplemented with a deeper and wider network. Thus,
the paper proposes a compound scaling method using a compound coefficient φ to scale
the dimensions mentioned above:

depth: d = αφ

width: w = βφ

resolution: r = γφ
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Figure 4.3: Illustration of the different model scaling techniques [25], where (a) is a baseline net-
work example, (b)-(d) are conventional scaling that only increases one dimension of network width,
depth, or resolution, and (e) is the compound scaling method that uniformly scales all three dimen-
sions with a fixed ratio.

such that α · β2 · γ2 ≈ 2. Thus, a doubling of the network depth will double the FLOPS,
whereas doubling resolution or width will increase the FLOPS by a factor of four. Com-
pound scaling starts with the baseline model EfficientNet B0, the least heavy model, and
is done by firstly fixing φ = 1 and do a small grid search for α, β, γ. Secondly, fix α, β, γ
as constants and scale up the baseline network with varying values of φ. By doing this, we
can scale the baseline network EfficientNet B0 up to EfficientNet B1 to B7.

The EfficientNet architecture consists of one main building block: the mobile inverted
bottleneck MBConv with squeeze-and-excitation optimization (see Figure 4.4). MBConv
comes in two versions, one with six times upscaling and one without upscaling at all. Both
versions consist of three features [53]:

1. Depthwise separable convolution: Splits a standard convolution into two separate
layers; depthwise convolution and pointwise convolution. The block employes this
technique to reduce computational cost with a minimum loss of accuracy.

2. Linear bottlenecks: Assuming that the manifold of interest in a neural network
is set in a low-dimensional subspace, the manifold can be spotted by using linear
bottlenecks in the convolutional layers. This technique is used to avoid too much
information loss from non-linearities.

3. Inverted residuals: Appears similar to a standard residual block, but uses shortcuts
between the bottlenecks to improve the ability of a gradient to propagate across
multiple layers. This results in a considerably more memory-efficient approach.

By employing this family of networks as a baseline for our proposed method, we get a
high performing backbone network, both in regards to maximizing accuracy and minimiz-
ing FLOPS, that scales up very efficiently based on the input size to the network.
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Figure 4.4: The two different MBconv-blocks used in EfficientNet.

4.2 Architecture
The pipeline architecture of our proposed method can be divided into two parts: A, B, as
shown in Figure 4.5. Part A consists of an hourglass shaped EfficientPose B4 network with
18 M parameters. The purpose of this network is to produce coarse confidence maps for
all key points. These confidence maps are further upsampled and used as input in part B of
the architecture. This part consists of multiple EfficientPose B1 networks, which produce
new confidence maps for each extremity. Finally, these confidence maps are mapped to-
gether with the initial coarse confidence map in order to produce the final confidence map
containing all key point predictions. As seen from Figure 4.5, the pipeline takes images of
size 1024x1024 as input, and outputs images of the same size.

4.2.1 Network for Coarse Confidence Maps
For producing coarse confidence maps for each body part, we use an hourglass-shaped Ef-
ficientPose B4 network, where the EfficientNet B4 backbone is implemented as described
in Section 4.1.2. This network is built with five blocks, strided down to the lowest reso-
lution in block 5 (see Figure 4.5), where it is reduced by a factor of 32 compared to the
original input resolution. The feature maps are further upsampled to produce confidence
maps. As seen from the figure, an input image with size 384x384 will, accordingly, pro-
duce a confidence map for each body joint of size 96 x 96. Trained on the MPII dataset,
where 16 key points are labeled, the network will produce 16 different confidence maps,
one for each key point. Subsequently, for HSSK, the network will produce 14 confidence
map, one for each labeled key point. The network contains three bridges for forward-
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Figure 4.5: Pipeline architecture consisting of (A) EfficientPose B4 Hourglass Network and (B)
EfficientPose B1 Hourglass network.

ing convolutions. As shown in Figure 4.5, one can see how these bridges are used to
combine features from blocks before and after downsampling through transposed convo-
lutions. Since the confidence maps produced by the main network acts as the input for
the smaller networks, we are dependent on roughly capturing all body parts correctly. In
other words, each confidence map needs to include the whole body part. If not, the net-
work would lose crucial information, creating an impossible job for the EfficientPose B1
networks, giving the whole network a substantial drop in accuracy.

4.2.2 Network for Local Key Point Prediction
In order to produce more accurate key point predictions from the coarse confidence maps
generated from the main network, we implement small hourglass-shaped EfficientPose
B1 networks, where the EfficientNet B1 network is implemented as described in Sec-
tion 4.1.2. The goal for implementing these networks is that by running new predictions
for extremities on smaller, more efficient networks, we will be able to produce fined tuned
confidence maps of higher quality, hence improving the accuracy of predicted extremities
at a much lower threshold, respectively, at a PCKh measured at 10%. A single-stage hour-
glass network with roughly 1.4 M parameters is applied to each pair of cropped extremities
produced by the main network. One single network consists of four blocks for the down-
sampling process. From one block to another, max-pooling reduces the feature maps with
a factor of 2. Hence, with four blocks, we get the lowest resolution, reduced by a factor
of 16 compared to the original input resolution. The output size is of the same magnitude
as the input size, respectively, at 128x128 pixels, as shown in Figure 4.5. At each max
pooling step from block number two, the network branches of, forming bridges that apply
more convolutions to deeper layers. A standard hourglass-shaped network is completely
symmetric, with a corresponding upsampling layer to each downsampling layer. As seen
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from our model, this is not the case. We remove some of the layers for upsampling as
these layers do not apply much value to the prediction.

One important aspect of this approach is that it attempts to minimize the downsampling
of images. When an image is downsampled, i.e., resized to a smaller size than the original,
we lose information. This information is crucial in HPE, especially when looking at lower
thresholds of PCKh. By cropping out at region of interest in the original image based on
the confidence maps produce by the EfficientPose B4 network and process it further in a
set of EfficientPose B1 networks, we minimize downsampling while keeping a relatively
high image context.

4.3 Model Exploration
In the upcoming section, we describe three different approaches used to create extrem-
ities predictions of higher quality, whereas only the approach for single body parts and
segments of body parts are used in the pipeline.

4.3.1 Single Body Part
Previous network models for solving the task of Human Pose Estimation has shown a
gap between accuracy for central body parts and extremities. For example, both Bulat et
al. [39] and CFA [35] produces an accuracy of 98.9% and 98.7% for head predictions, but
only 89.3% and 88.4% for prediction of ankles. The huge gap in accuracy between central
body parts and extremities is mainly caused by the fact that extremities are more prone
to occlusions, awkward poses, and crossing limbs, making the prediction of extremities
a more challenging task. In other words, there is much potential for improvement in the
prediction of extremities. Therefore, in this thesis, we focus specifically on extremities
by only implementing smaller EfficientPose B1 networks for wrists, elbows, knees, and
ankles. The single body part version with EfficientPose B1 networks focus solely on one
specific body part, including both the left and right version of it.

4.3.2 Pair of Body Parts
As described in Section 2.3, humans can create a diverse set of challenging poses that
might cause problems in the case of a single body part prediction. One of those is crossing
limbs, creating a nearly impossible task for a model trained to not distinguish between
the left and right variant of a body part (see Figure 4.6). To cope with these kinds of
problems, we explore the possibility of predicting pairs of body parts. In the example of
two crossing wrists, this model would be able to separate a left wrist from a right wrist,
making the model robust against images containing both versions of a body part.

4.3.3 Segments
Prediction on pair of body parts works well when the limbs are close to each other, but that
is not always the case. As shown in Figure 4.7, pairs of wrists, ankles, and other extremities
might be positioned far from each other, resulting in unnecessary context. Hence, we
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Figure 4.6: An example of a typical problem with single body part prediction.

explore models predicting segments of body parts, such as elbow and wrist, or knee and
ankle. The idea is to provide more context to the network by including two connected body
parts instead of one in such a way that the network can understand connections between
body parts as well as the pattern of a single body part without needing too much context.

4.4 Data Processing
In order to train a neural network for the task of Human Pose Estimation, there is often
required some data processing steps before the model can be presented with the data. In
this section, we describe how we manipulated our initial data to a uniform structure, and
most importantly, how we modified the data in order to optimize the training process.

4.4.1 Main Network
Before the CNN can use a set of images for training purposes, the images have to go
through a pre-processing step. This step is necessary to ensure that all images are in the
same format. We will, in this section, describe how we pre-processed the HSSK dataset.

xx First, we iterate through the annotation file to extract the annotation coordinates for
the limbs of each human. At the same time, we create new objects for every individual in
each of the images so that one image only represents or focus on one human at a time. In
other words, if an image includes two individuals, we create two copies of the image. We
include all images in the pre-processing regardless of the number of annotated limbs to get
as much data as possible for the model training. This results in a total of 470,000 training
images. Second, we take the original input image (Figure 4.8a) and bring the human into
the center of the image using the bounding box found in the annotation file (Figure 4.8b).
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Figure 4.7: An example of a typical problem with a pair of body parts prediction. a) shows a typical
human pose where the wrists are separated by a significant distance, resulting in much context when
generating training data for a model based on a pair of body parts in b).

The human is centered by adding black padding to the sides of the original image, and the
result can be viewed in Figure 4.8c). Third, we need all the images to have precisely the
same size to ease the pre-processing part done by the model itself before training. We start
by adding more padding to make the images quadratic and then change the input size of
the images according to what the model expects as input. Fourth, all annotated key points
need to be normalized so we can easily vary the input size of the images without having to
change all annotations every time. The normalized annotations are saved in text files, one
for each individual, in the same order as the given annotations in the HSSK dataset. Body
parts missing annotations are given the coordinates (0, 0) to prevent punishing a model
who predicts body parts that are missing. The final result (see Figure 4.8d) is a dataset
consisting of quadratic images in four different sizes, containing humans with at least one
visible annotated key point. We divided this dataset into three duplicates whereas one was
unchanged, one removed all images with one or more missing body part annotations, and
the last one removed all images with missing body part annotations or annotations who
were not visible.

4.4.2 Sub Network
In this sub-section, we explain how the HSSK dataset, as described in Section 2.3.1, are
generated for each model approach and highlight issues that occurred during the data gen-
eration. A comparison of the three datasets can be viewed in the Figure 4.10.
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Figure 4.8: Illustration of the steps done during pre-processing of the HSSK dataset for the Effi-
cientPose B4 network, where (a) is the original input image, (b) illustrates the bounding box of the
human in the image, (c) shows how the human is centered in the image, and (d) shows the final result
with a quadratic image and the corresponding human skeleton.



4.4 Data Processing 37

Figure 4.9: Illustration of two ways to re-position a body part within an image. a) shows our first
proposed method resulting in an even distribution of points across the diagonals in the images. b)
shows the final and correct method resulting in a fully random distribution of points in the images.

Single Body Part

A dataset for single body part prediction should contain images with either the left or the
right version of a given body part, minimizing the number of other body parts present
without reducing the context too much. Some individuals are too small in terms of size in
pixels, resulting in less context than needed by the network for learning purposes. Thus
we use the Euclidean distance between the head point and the neck point as a threshold to
decide whether to include an image or not. As a consequence we remove all images miss-
ing annotations for the head and neck. Further, we use this scale to crop out a body part
in an image giving images with a size equal to 1.5 times the head size in both directions.
Now the body part is located in the center of the image. Usually, image augmentation
would be done by Keras [54] during training to prevent the network from learning body
part location instead of patterns, but due to unsolvable problems with Keras’ image aug-
mentation, we had to do most of it ourselves during data pre-processing. We first created
a random factor based on the head size to produce a random distribution of body parts in
the images, realizing that this is not a fully random distribution, but rather a distribution
across the diagonals of the images as seen in Figure 4.9a). Thus, the network learned that
the body part was located in those positions, and not the features of the body part itself.
As a consequence, we changed the augmentation code to create two random factors based
on the head size, one for each direction in the coordinate system, and used this to move the
body part around to produce the fully random distribution illustrated in Figure 4.9b). To
ensure that none of the points are moved out of the image or that we lose lots of context by
moving it too far out in the image, we added a small safety margin to the random factors.

As with the main network, all images are made quadratic during cropping, either by
including more or less of the image itself or by adding black padding. Finally, all images
are resized to 128x128. The final dataset includes images of the left and the right version
of the body part evenly distributed across the images in both directions and text files,
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Figure 4.10: Example of an image cropped for a) single body part (wrist), b) pair of body part
(wrist) and c) segment (wrist and elbow).

including the normalized annotations of the head, neck, and the body part. Since the MPII
dataset is the most used evaluation dataset, we want our dataset to contain the same rate of
occlusion as found in MPII. In other words, the degree of occlusion in the final dataset is
set to 20%.

Pair of Body Parts and Segments

The dataset for a pair of body parts can be thought of as a segment of two body parts,
the left, and the right version, respectively. Thus, the dataset for a pair of body parts and
segments are generated in the same way.

Most of the process is equal to the one regarding single body parts, with a couple of
exceptions. Instead of using the head size as a scaling factor in the cropping, we use the
Euclidean distance between the two body parts in the segment. The cropping is done from
the center point between the two body parts, resulting in a quadratic image. Then we set
two random factors as in Section 4.4.2, but this time the maximum value is based on the
angle between the body parts and the direction. This way, we are able to move a segment
more horizontally if the segment is positioned vertically, visa versa.

The final dataset contains images of segments, including a 20% degree of occlusion
based on MPII. All segments are evenly distributed around the images using the method
mentioned above. Additionally, all images have one corresponding text file containing the
normalized annotation for the head, neck, and the two body parts within the segment.

4.5 Training Strategy
In order to train a neural network, several aspects need to be taken into consideration, such
as determination of the optimization process and augmentation strategy. In this section,
we present how the optimization process and data preparation is done.



4.5 Training Strategy 39

Figure 4.11: Example of the generation of confidence maps with different σ values.

4.5.1 Data Preparation
Before the images are presented to the model, we use Keras’ image processing methods
to apply random transformations to the images. For training of the main network, we
apply random rotations of the image in a range between -45 and 45 degrees. We also add
zooming, which interpolates pixel values around the image. The zoom-range spans from
0 to 25% of the image size and is uniformly randomly sampled for each dimension, that
is, both width and height. In order to add even more random transformations, we apply
a horizontal flip to the images, which means that some images will have their columns of
pixel values reversed. Lastly, we add horizontal shifting to the image within a range of
40% of the image width. This last step is done in order to create a more robust network
for scenarios where the human in focus is not completely centered in the image.

As described in Section 4.4.2, we do a lot of the data processing for the sub-network
ourselves, due to unsolvable problems with Keras’ image processing. However, we add
some augmentation before the images are presented to the model. We use the same hyper-
parameters for the training of both single body parts and segments of body parts. Since
we add our own augmentation during the pre-processing of data, the images are more sen-
sitive to scenarios where body parts of interest are moved out of the image as a result of
augmentation. We therefore only add zooming that ranges from 0 to 5% of the image size,
a horizontal shift in a range between 0 and 10% of the image width, and random rotations
between -10 and 10 degrees when we train the sub-networks.

During the training itself, the generation of confidence maps should be implemented
so that the model is rewarded for how close the prediction of a body part is to the actual
ground truth value. We can modify the size of this region of the confidence maps, referred
to as σ, in order to determine how strict the threshold should be for the reward. Figure 4.11
shows how the size of confidence maps for the right shoulder is changed by modifying σ,
and how one can lower the criteria for reward by increasing σ. In the figure, pixel values
close to 0 are expressed with purple color, while values close to 1 are expressed with
yellow, indicating a strong correlation to the optimal key point location.
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4.5.2 Optimization Process
The optimization process for both the main and sub-network is performed using Adam [55],
which is a widely used optimization algorithm. We configure Adam with beta 1 and beta
2 values of 0.9 and 0.999, respectively, as suggested in Reddi et al. [55]. These values
determine the exponential decay rate for the first and second-moment estimates. As ad-
dressed by Reddi et al., there exists a counter-example for non-convergence for any chosen
beta 2. We, therefore, use the AMSGrad variation of the Adam algorithm, which allows
us to use a fixed beta 2, dealing with the problem of non-convergence. Another factor to
take into consideration is how much the weights should be updated after each epoch. As
suggested in Reddi et al., we initiate the model using a low learning rate in order to avoid
exploiting gradients. The learning rate is gradually decreased during training. As is the
size of the region of the confidence map, σ. Euclidean loss is used as loss function, as
defined in Equation 2.2, where m is the number of confidence maps, xi is the ground truth
confidence map, and ti is the corresponding predicted confidence map. As a final trick to
facilitate a stable learning process, we modify σ in different phases of the learning pro-
cess, starting with a value of 10.5 for the main network and 14.0 for the sub-networks. We
further decrease σ to a final value of 2.6 for the main network and 3.5 for the sub-network,
which is reached in epoch 92.

4.6 Pipeline Prediction
In order to make more fine-tuned predictions of extremities, several data processing steps
are required before the sub-network can produce predictions. Firstly, we need to use the
predictions of the main network to find the region of interest. Secondly, we need to crop
out the region of interest in such a way that the sub-network has enough context to make
a prediction of high quality. Lastly, the cropped out region of interest should only contain
valuable context, hence, excluding information that has no value to the prediction, or even
worse, information that could make the prediction harder for the sub-network. The sub-
sections below describe in detail how we manipulate data during the pipeline prediction
for both single body parts and segments of body parts.

4.6.1 Data Flow
As mentioned in Section 4.2, the main network is presented with resized, padded images
with size 1024x1024. An image processing step is required for both single body parts and
segments of body parts prediction. We further feed the sub-network with the manipulated
image of the region of interest. After the sub-network has made its predictions, a map-
ping process is required in order to convert the sub-networks predictions to its coherent
predictions of the main network. The overall data flow in the pipeline can be viewed in
Figure 4.12.

4.6.2 Single Body Part
Several factors are important for finding a satisfactory way to crop out the region of interest
for the prediction of single body parts. The most crucial one is finding an adequate way
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Figure 4.12: Pipeline data flow for prediction of body part segments consisting of wrists and elbows
performed on the HSSK dataset.
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of selecting the amount of context. We use the head bone link as a baseline threshold.
By calculating the Euclidean distance between the predictions from the main network for
the head top and the neck, we get the predicted size of the head bone link. We further
crop out the region of interest according to this baseline threshold, such that the relevant
limb is centered in the manipulated image. The cropped image is subsequently resized
to 128x128 in order to make it quadratic and uniform to the expected input of the sub-
network. To prevent downscaling of the input image, we set limitations to the baseline
threshold. Since the sub-network uses 128x128 as input, downscaling of the input image
happens when the threshold exceeds 64 pixels and is therefore limited to this value as a
baseline. Another problem can occur when the human of interest is small compared to
the image size. In these cases, the head bone link will be a very small value, producing a
region of interest that is impossible to comprehend for the sub-network due to the lack of
context. We, therefore, limit the baseline threshold value to a minimum of 25 pixels.

4.6.3 Segments
In order to solve the problem of context for segments of body parts, we first rotate the
input images. The rotation makes both the process of cropping the segment and limiting
the context around the segment a lot easier. For rotation, we calculate the angle in radians
between the respective body parts, forming the segment according to Equation 4.1, where
∆x represents the difference in x-direction between the first and second body part and ∆y

represents the difference in y-direction. The predicted points(x,y) produced by the main
network are rotated according to Equation 4.2 and 4.3, where ∆x represents the difference
of the given x-coordinate and the x-coordinate of the center of the input image, and ∆y

represents the difference of the given y-coordinate and the y-coordinate of the center of the
input image. Figure 4.13 shows the steps done during processing, where c) displays the
final cropped, resized, and padded segment consisting of a wrist and an elbow. In terms of
how much context the input image should contain, we first calculate the size of the head
bone link by using the Euclidean distance between the top of the head and the neck. We
further use 0.5 of the head bone link as a threshold value to crop out the region of interest
in both x- and y-direction from the elbow and wrist. This threshold is based upon the fact
that the main network should almost always make a prediction that is within 100% of the
head bone link. The threshold is also limited to only 100% of the head bone link to solve
the problem of crossing limbs and cases where more context can contain limbs belonging
to other humans in the image. This cropping technique is further referred to as narrow
cropping.

radians = arctan(∆x,∆y) (4.1)

rotatedx = ∆x cos(r)−∆y sin(r) (4.2)

rotatedy = ∆x cos(r) + ∆y sin(r) (4.3)

Since the main network is considered more robust than the sub-network, we may run
into cases where the main network makes the right prediction, but the sub-network makes
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Figure 4.13: Illustration of the steps done during the image processing step before the prediction of
segments for the sub-network. a) displays the resized, padded input image, b) is the rotated image
and c) shows the cropped, resized and padded image sent to the sub-network for prediction.

a wrong prediction. As a result, the sub-network has the opposite effect to the one in-
tended. Therefore, we use a threshold for error between the predicted limb done by the
main network and the sub-network. If the Euclidean distance between the predicted limb
produced by the sub-network and main network is greater than half the Euclidean distance
of the head bone link, the pipeline keeps the prediction produced by the main network.

Cropping Exploration

In addition to the primary cropping technique, narrow cropping, described above, we ex-
plore two slightly different techniques to ensure maximum performance in terms of accu-
racy. The first one, narrow cropping*, is based upon the same steps, but it adds a final
step at the end where it rotates the cropped image back to the original position, as seen
in Figure 4.14c). Since a human pose with legs horizontally is quite rare, the idea is that
running prediction on a segment in the original position might be better. The second ap-
proach excludes rotation in the cropping process, which gives more context to the images
in all directions (see Figure 4.14a). As a consequence, it will be more prone to images
containing crossing segments or similar segments in parallel to the segment of interest.
We refer to this as the original cropping method. We also explore independent cropping
thresholds lengthwise and across a segment, thus the images will contain more context of
the area around a segment either across the segment or lengthwise.
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Figure 4.14: Illustration of the three cropping techniques employed during segment prediction: a)
original cropping, b) narrow cropping, and c) narrow cropping*.



Chapter 5
Results

The upcoming chapter describes the results that were gathered during the testing process
based on the elaboration of the proposed method and conducted research in Chapter 4.
Sections 5.1 and 5.2 focuses on isolated testing of the main network and the sub-network.
Subsequently, in Section 5.3, we evaluate the pipeline and explore different modifications
in the prediction process for boosting the performance.

Due to the unexpected COVID-19 situation, we did not have the opportunity to test
the proposed method on infant data. The infant dataset contains sensitive data and can
not leave the St. Olav’s University Hospital premises. During the COVID-19 period, stu-
dents were not allowed to enter St. Olav’s, making the retrieval of data impossible for this
project. We, therefore, throughout this chapter, only perform testing on the HSSK and
the MPII dataset. More specifically, 4000 images from the HSSK test dataset and 2500
images from the MPII validation dataset. We evaluate the accuracy of the models using
the standardized PCKh measurement, as described in Section 2.3.3, and the models’ com-
putational complexity measured in GFLOPS. To prevent punishing a model when body
parts are missing annotations, we consider all predictions on non-annotated body parts as
correct predictions.

All models used in this project are trained on the NTNU IDUN computing cluster [56]
using two Nvidia Tesla V100 GPU’s.

5.1 Evaluation of Main Network
The size and quality of the data are important factors in order to train a robust neural
network. In addition, the size and quality are also essential in order to create tests that are
both reliable and representative to the task of Human Pose Estimation. Table 5.1 shows
testing results for the main network conducted on three different HSSK datasets consisting
of 4000 testing images. Each test is performed in batches consisting of 1000 images per
batch. (1) represents the HSSK dataset consisting of only visible, annotated body parts,
(1-2) represents the HSSK dataset consisting of visible annotated body parts and non-
visible body parts, and (1-2-3) is the full HSSK dataset consisting of images with visible

45



5.2 Evaluation of Sub-Networks 46

Model PCKh@1 PCKh@0.5 PCKh@0.3 PCKh@0.1 PCKh@0.05
EPB4 1 on (1) 97.7 91.1 75.1 19.6 5.4
EPB4 1-2 on (1) 96.4 90.5 76.7 21.2 5.9
EPB4 1-2-3 on (1) 96.1 89.6 74.6 20.2 5.6
EPB4 1 on (1-2) 92.4 82.6 72.7 37.6 14.3
EPB4 1-2 on (1-2) 95.8 88.4 80.7 47.3 19.0
EPB4 1-2-3 on (1-2) 95.9 87.8 79.1 44.9 17.7
EPB4 1 on (1-2-3) 86.6 75.4 64.2 29.8 15.9
EPB4 1-2 on (1-2-3) 90.9 81.8 72.5 36.3 18.2
EPB4 1-2-3 on (1-2-3) 92.8 83.7 73.9 35.9 17.9

Table 5.1: Testing results on different HSSK dataset with 4000 test images.

body parts, non-visible annotated body parts, and missing body parts. Hence, EPB4 1-2
on (1-2-3) indicates the results for the EfficientPose B4 network trained on visible and
non-visible annotated body parts tested on dataset (1-2-3). The reason why we conducted
tests on several datasets was to see how big of an impact training on different data has on
the test results. As we can see, EPB4 1 achieves the highest accuracy tested on (1) for both
PCKh@1 and PCKh@0.5, while EPB4 1-2-3 achieves the highest accuracy for PCKh@1
tested on both (1-2) and (1-2-3). It is no surprise that EPB4 1 achieves lower accuracy
when tested on (1-2) and (1-2-3) as this network has not been trained on occluded and
missing body parts. What is interesting about these results is how EPB4 1-2-3 achieves
the highest accuracy of the models for testing on (1-2). In this evaluation, we are mainly
interested in accuracy for PCKh@1 as this measure serves as the baseline threshold for
how we crop out body parts for further processing in the EfficientPose B1 models. Since
EPB4 1-2-3 achieves the highest testing results in terms of accuracy on both (1-2) and
(1-2-3) and based on the fact that the official MPII test set consists of both occluded and
missing boy parts, EPB4 1-2-3 seems like the obvious choice for usage in the pipeline. If
the model were to be trained on infant data, occluded and missing body parts would not
be as crucial as for testing on the MPII dataset. This is because the videos of infants have
strict rules, where videos of infants whose body parts are out of frame are considered as
corrupted data.

Table 5.2 shows the testing results from EfficientPose B4 trained on (1-2-3), that is, the
full HSSK dataset. As we can see, the model achieves much lower accuracy for extremities
such as knees, ankles, elbows, and wrists. Furthermore, we perform tests on the same
network for the MPII validation dataset in Table 5.3, both with and without re-training on
the HSSK dataset.

5.2 Evaluation of Sub-Networks
In order to evaluate the sub-networks for prediction of single body parts and segments
of body parts, we made a HSSK test dataset with cropped out extremities, as described
in Section 4.4.2. The subsequent section presents the results of the isolated testing we
conducted on the models described in Section 4.3.
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PCKh@1 PCKh@0.5 PCKh@0.3 PCKh@0.1 PCKh@0.05
Head 95.4 91.4 87.4 47.5 18.1
Neck 95.8 91.9 87.5 44.3 13.4
Left shoulder 95.6 90.3 82.0 35.6 16.6
Right shoulder 94.5 88.2 80.3 34.7 12.4
Left elbow 93.3 83.4 72.7 32.3 11.7
Right elbow 91.9 81.4 71.1 31.1 11.5
Left wrist 88.6 77.1 66.2 29.2 11.2
Right wrist 88.6 76.9 67.0 29.1 10.2
Left hip 95.3 84.9 68.3 23.7 12.5
Right hip 95.0 83.6 66.9 24.5 12.8
Left knee 92.2 81.3 70.7 38.2 25.3
Right knee 91.1 79.9 69.4 37.3 24.7
Left ankle 91.8 82.0 73.5 48.0 36.2
Right ankle 90.3 79.9 72.2 47.1 36.4

Table 5.2: EfficientPose B4 trained on full HSSK dataset (1-2-3) tested on 4000 samples from the
HSSK test dataset.

PCKh@1 PCKh@0.5 PCKh@0.1
Ours* Ours Ours* Ours Ours* Ours

Head top 97.9 97.4 96.3 95.9 25.1 37.4
Shoulder 97.4 96.8 94.3 93.6 36.7 33.4
Elbows 94.8 93.5 88.7 86.5 37.5 33.5
Wrists 92.0 90.6 83.9 82.9 35.5 31.9
Hips 97.7 96.9 87.1 86.5 16.4 16.4
Knees 93.6 93.4 87.6 86.7 39.8 36.9
Ankles 92.5 91.3 86.9 85.1 50.1 48.8
Mean 95.1 94.3 90.0 89.0 34.4 34.0

Table 5.3: Test results on the MPII validation dataset. Ours* was pre-trained on the HSSK dataset.
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Model PCKh@1 PCKh@0.5 PCKh@0.3 PCKh@0.1 PCKh@0.05
EPB1 - Elbow 92.6 83.7 78.2 54.2 24.6
EPB1 - Wrist 94.2 85.7 81.1 62.0 32.2
EPB1 - Knee 88.1 71.7 64.1 36.5 14.0
EPB1 - Ankle 95.5 84.0 77.0 50.5 23.1

Table 5.4: EfficientPose B1 trained on single body parts tested on the HSSK dataset.

Figure 5.1: Learning curves of single body part models.

5.2.1 Single Body Part
As seen in Table 5.4, the models achieve very high accuracy for all extremities for PCKh@0.1.
Compared to the main network, we see a significant increase in accuracy for elbows, an-
kles, and wrists, with the greatest improvement of 32.8% for predictions of wrists. We also
see a substantial gap between the EfficientPose B1 model tested on knees in comparison
to the EfficientPose B1 models tested on the remaining extremities.

Figure 5.1 shows the learning curves of the four single body part models for the Ef-
ficientPose B1 network. We can observe specific steps in the learning curve as a con-
sequence of decreasing the σ according to the strategy mentioned in Section 4.5.2. The
Euclidean distance between the predicted points and the ground truth of a body part during
training is shown in Figure 5.2. All models perform close to equally based on the distance,
except the knee model, which on average, has a 43% higher error rate than the rest.

Figure 5.3 shows predictions where our model predicts well within the thresholds of
PCKh measured at 10%. We can see how the model makes predictions of high quality for
both bare and clothed elbows. However, as seen in Figure 5.4, the model often struggles
when there are multiple body parts in the input image. As shown in b) and c), the model
chooses both the wrong elbow and knee for these images. We can clearly see a weakness
of the model in these scenarios, where even though the model makes a correct prediction
of an extremity, it chooses the wrong one, as the model has no prerequisite for knowing
which one to choose. We can also observe how the model struggles with occluded body
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Figure 5.2: Euclidean distance of single body part models during training.

Figure 5.3: Examples of successful predictions on single body parts.

parts as shown in scenario a) in Figure 5.4. As the model looses all context of the human
posture when we crop out extremities, the model completely fails to estimate where the
occluded knee is in the input image.

5.2.2 Segments
The overall accuracy of the two segments, elbow-wrist, and knee-ankle, can be viewed
in Table 5.5. Compared to the result of the EfficientPose B4 model on the corresponding
body parts, we can see a significant improvement for all thresholds. In wrist prediction
alone, we can see an improvement of over 50% in terms of accuracy on the PCKh@0.1
measure.

Model Body part PCKh@1 PCKh@0.5 PCKh@0.3 PCKh@0.1 PCKh@0.05

EPB1 - Elbow-wrist Elbow 98.6 96.8 94.5 74.6 40.2
Wrist 98.8 97.3 95.1 79.4 46.0

EPB1 - Knee-ankle Knee 94.1 86.3 81.4 45.8 51.8
Ankle 94.2 87.2 82.3 51.8 22.2

Table 5.5: Testing results for EfficientPose B1 trained on segments and tested on the HSSK dataset.
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Figure 5.4: Examples of failed predictions on single body parts.

Figure 5.5: Learning curves of segment models.

Figure 5.5 shows the same tendency in learning rate as for single body part where
the curves follow the decreasing σ value. Both models achieve relatively low loss values
and low error rates, as shown in Figure 5.6. Again, we observe that the knee poses as a
challenge in the segment prediction with a higher Euclidean distance than for the elbow-
knee segment, as in the single body part prediction.

As seen in Figure 5.7 the two models for segment prediction achieve high accuracy
on non-occluded body parts both on bare body parts and clothed body parts as long as the
image provides enough texture in the clothing. Thus, if a person wears a piece of clothing
that is straight and smooth and covers the body part, as in Figure 5.8b), the model struggles
to uncover the patterns of it. The same problem occurs in Figure 5.8d) where the wrist is
occluded. Some human poses, like the ones shown in Figure 5.8a) and c), turn out to be
difficult to predict correctly for the segment models due to crossing or similar body parts
within one image. This is a general problem for both the single body part and segment
sub-networks due to the limited image context.
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Figure 5.6: Euclidean distance of segment models during training.

Figure 5.7: Examples of successful predictions on segments of body parts.

Figure 5.8: Examples of failed predictions on segments of body parts.
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54 64 80 90 100
Left elbow 27.8 31.6 35.2 33.4 35.0
Right elbow 27.4 30.7 33.5 33.4 32.5
Left wrist 27.1 30.0 32.4 32.4 31.9
Right wrist 27.3 30.0 32.9 33.2 32.3
Left knee 29.5 31.0 33.0 33.2 33.4
Right knee 29.9 32.5 35.1 34.9 35.0
Left ankle 45.0 47.4 50.2 50.0 49.7
Right ankle 45.2 48.0 51.3 51.2 50.6

Table 5.6: Testing of different max-scale thresholds given in pixels for prediction of single body
parts. The results are given for PCKh@0.1.

5.3 Evaluation of Pipeline
Throughout this section we show tests carried out on the implemented pipeline. These
tests were conducted in order to optimize the performance of the pipeline. All tests are
performed on 2500 images from MPII’s validation dataset. The final testing is conducted
on MPII’s official test dataset, which contains 7400 images.

5.3.1 Single Body Parts
As mentioned in Section 4.6.2, we set a baseline threshold for cropping out single body
parts based on the predictions of the main network. Even though the maximum baseline
value for preventing downscaling is 64 pixels, we conducted tests with different thresh-
olds to see the difference in the performance of the model. Table 5.6 shows performance
of EfficientPose B1 trained on the HSSK dataset for different max-scales measured at
PCKh@0.1. As seen, surprisingly, the model performs best when we limit the cropping
threshold to 80 pixels. This shows that even though some pictures are downscaled, the
trade-off from providing the model with more context pays off.

5.3.2 Segments
We have tested several methods for prediction of segments of body parts in the pipeline.
As described in Section 4.6.3, the most important factor is finding a satisfactory way of
cropping out the segments of interest based on the main network’s predictions. This sub-
section shows the conducted testing for different ways of cropping out segments of body
parts, and how usage of multiple datasets affects the prediction accuracies.

Exploration of Cropping Context and Cropping Method

We explore different thresholds for cropping out the segment of interest. As described
in Section 4.6.3, we use half the size of the head bone link as a baseline threshold for
cropping. Table 5.7 shows the conducted experiments for different thresholds. We also
explore the usage of different cropping techniques on the images fed to the sub-networks,
all described in Section 4.6.3. We see that the original cropping method outperforms both
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Cropping method Body part 0.15 0.25 0.3 0.33 0.35 0.4 0.5 0.55 0.6

Narrow cropping

Elbow 13.0 19.6 21.0 20.5 20.2 18.0 12.0 9.1 6.9
Wrist 22.7 27.9 28.3 28.2 28.1 26.7 20.3 17.1 14.6
Knee 19.9 20.9 21.2 21.3 21.5 21.9 22.2 22.3 21.7
Ankle 36.6 38.4 39.1 39.6 39.8 39.6 39.0 38.3 37.3

Narrow cropping*

Elbow - - 25.2 25.9 25.1 23.6 17.4 15.0 12.5
Wrist - - 31.6 31.6 30.9 29.1 23.1 19.4 17.3
Knee - - 23.7 24.2 24.5 25.6 28.3 29.0 29.7
Ankle - - 43.8 43.5 44.0 44.9 45.2 44.6 43.5

Original

Elbow - - 27.6 28.6 29.1 27.5 21.6 18.4 14.8
Wrist - - 32.1 32.8 32.5 31.8 26.2 23.1 20.3
Knee - - 24.5 24.9 25.1 26.3 28.8 30.0 30.6
Ankle - - 43.9 44.8 45.1 46.0 46.9 46.8 46.1

Table 5.7: PCKh@0.1 across segment body parts for different cropping thresholds and cropping
techniques.

(0.365, 0.5) (0.5, 0.5) (0.625, 0.5) (0.75, 0,5)
Left elbow 21.64 22.36 18.96 12.64
Right elbow 16.76 18.64 16.36 10.32
Left wrist 27.40 28.00 25.52 20.32
Right wrist 27.40 28.40 27.56 21.76
Left knee 20.40 21.40 22.12 22.48
Right knee 20.24 21.20 22.60 23.44
Left ankle 38.08 39.60 38.84 38.27
Right ankle 38.84 39.60 39.92 36.28

Table 5.8: PCKh@0.1 across segment body parts for various cropping thresholds in two directions.
The thresholds are defined as (x, y) where x is the threshold lengthwise with the segment and y is
across.

methods with narrow cropping on all body parts. It can also be observed that the knee-
ankle segments need more image context than the elbow-wrist segment to maximize its
performance, regardless of the employed cropping method. Since cropping thresholds
below 0.3 resulted in poor performance, we chose not to conduct similar experiments on
the remaining methods. Further on, we explore how the accuracy responds to varying
cropping thresholds in the horizontal and vertical direction in Table 5.8, a test that only
applies to the narrow cropping method. Results show that we achieve the highest overall
accuracy using the same threshold in both directions.

Exploration of Multiple Datasets

Based on the performance boost in accuracy of exploiting both the HSSK and the MPII
dataset in training, as shown by Bulat et al. [39] and Su et al. [35], we explore this very
concept for prediction of segments in the pipeline. We, therefore, conduct tests for Ef-
ficientPose B1 models trained on HSSK and MPII separately and compare these results
to an EfficientPose B1 model trained on both datasets. Table 5.9 shows the difference in
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Model Body part PCKh@1 PCKh@0.5 PCKh@0.3 PCKh@0.1 PCKh@0.05

EPB1 - Elbow-wrist Elbow 90.8 77.5 66.0 29.0 10.3
Wrist 90.9 77.4 67.3 32.4 13.9

*EPB1 - Elbow-wrist Elbow 92.12 82.0 71.8 36.0 14.3
Wrist 90.2 79.2 70.0 37.3 16.2

**EPB1 - Elbow-wrist Elbow 90.5 76.1 65.0 28.9 10.6
Wrist 88.7 75.8 65.1 32.0 13.0

EPB1 - Ankle-knee Ankle 89.1 78.6 70.0 46.1 36.4
Knee 83.2 68.8 56.1 30.6 21.8

*EPB1 - Ankle-knee Ankle 89.0 80.9 73.9 48.3 37.4
Knee 82.5 70.9 60.7 32.4 22.3

**EPB1 - Ankle-knee Ankle 90.5 81.8 73.7 48.4 37.8
Knee 85.2 72.4 62.0 33.6 23.1

Table 5.9: EfficientPose B1 model trained on segments with different datasets and tested on the
MPII dataset. EPB1 is only trained on the HSSK dataset, *EPB1 is only trained on the MPII dataset,
and **EPB1 is trained on both HSSK and MPII.

0.1 0.15 0.2 0.3 0.5 0.55 0.6
Elbow 38.2 38.0 37.5 35.9 36.0 35.9 35.8
Wrist 37.1 37.4 37.4 36.6 36.2 36.1 36.1
Knee 39.6 39.1 38.0 37.2 35.7 35.6 48.8
Ankle 49.9 49.8 49.7 49.7 49.1 49.0 35.3

Table 5.10: Comparison of different thresholds used for deciding when to keep predictions made by
the sub-network or not. The results are given for PCKh@0.1.

performance for each model.

Exploration of Merged Predictions

As described in Section 4.6.3, we may run into cases where the main network makes the
right prediction, but the sub-network makes a wrong prediction. We, therefore, explore
different thresholds for when to keep predictions made by the sub-network or not. As seen
from Table 5.10, the pipeline perform best if we only keep predictions made by the sub-
network when the Euclidean distance between the main and sub-network prediction is less
than 10% of the size of the head bone link.

Final MPII Results

To fully optimize our method, we propose a final hybrid solution consisting of segment
prediction for elbows and wrists combined with a single body part prediction for knees
and ankles, as this combination shows the most promising results. Table 5.11 shows a
comparison of the main network and the final hybrid solution for our pipeline tested on the
MPII validation dataset. We can see an overall increase in precision of 0.9% compared to
the main network, where the final pipeline scores best for three out of four body parts.

To obtain an official evaluation for the MPII dataset, we submitted our predictions
on the MPII test dataset to Max Planck Institute for Informatics, stationed in Germany.
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Main Network Pipeline
Elbows 37.5 38.2
Wrists 35.5 37.1
Knees 39.8 39.6
Ankles 50.1 51.6
Mean 40.7 41.6

Table 5.11: Comparison between the main network and the pipeline predictions for extremities
measured at PCKh@0.1 on the MPII validation dataset.

Ours Bulat et al. Newell et al. Wei et al.
Elbows 35.8 44.2 39.3 39.0
Wrists 36.9 43.6 37.2 36.8
Knees 25.6 33.6 28.7 27.1
Ankles 29.0 34.1 29.4 29.0

Table 5.12: Comparison between our method and current state-of-the-art methods for extremities
measured at PCKh@0.1 on the MPII test dataset.

Table 5.12 shows the testing results for our method in comparison to other state-of-the-art
methods.

5.4 Runtime Performance
When it comes to measuring the efficiency of the EfficientPose models, we evaluate our
models against models achieving state-of-the-art results, both in terms of the size of the
network and the computational requirements for making predictions of high quality. Fig-
ure 5.9 shows a comparison between our models and current state-of-the-art models in
terms of GFLOPS, while Figure 5.10 compares the size of the networks. We see that the
architecture of EfficientPose B4 is both significantly lighter and quicker than the models
it has been evaluated against. In fact, compared to CFA [35] we see a computational re-
duction of 85.5% and a 69.5% reduction compared to HPE [39]. We also observe that
EfficientPose B4 is 38% lighter than CFA and 31% lighter than HPE in terms of the num-
ber of parameters used in the networks.
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Figure 5.9: Comparison of GFLOPS between our models and CFA [35] and HPE [39].

Figure 5.10: Comparison of number of parameters used between our models and CFA [35] and
HPE [39].



Chapter 6
Discussion

In the upcoming chapter, we interpret and reflect upon the results presented in Chapter 5.
We highlight challenges that occurred during this project, as well as the advantages and
disadvantages of the proposed method. We begin with a discussion of the annotation
quality of the exploited data in Section 6.1. Then Section 6.2 compares the implemented
methods used for prediction of extremities, while Section 6.3 addresses the exploration of
image context for these methods. Subsequently, Section 6.4 discuss the limitations and
weaknesses of our method, and lastly, Section 6.5 answers the research questions in light
of the work conducted in this project.

6.1 Annotation Quality of HSSK and MPII
In this project, we have exploited two large datasets for the task of HPE, namely MPII and
HSSK. The amount of training data has been crucial to achieve satisfactory results, and
we have observed that most models benefit from the increased amount of training data.
However, we have seen that the mix of two datasets has given a precision downgrade in
some cases. The model for the elbow-wrist segment gave significantly better results when
trained on the MPII alone compared to being trained on HSSK and re-trained on MPII
(Table 5.9), especially in terms of lower PCKh thresholds. We have also experienced
visible differences in the annotation strategies of several body parts in the HSSK and MPII
datasets, which strongly suggests that this has been the reason for the precision drop.

Since most state-of-the-art methods on the MPII dataset have had a goal to maximize
accuracy on the PCKh@0.5, the small differences in annotations between HSSK and MPII
have been well within the threshold, thus combining the two have given the methods a
final boost in terms of accuracy. A small error in an annotation of a body part in medical
purposes like CP prediction could be critical to the final outcome. In other words, high
precision in terms of PCKh@0.1 or lower would be of great importance, and annotation
consistency in the dataset annotations is crucial to satisfy this requirement, a necessity
neither HSSK nor MPII provide.
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6.2 Single Body Part vs Segment Prediction
In Chapter 5, we explored several solutions for making predictions of higher quality for
extremities. Section 5.2 showed isolated testing of the EfficientPose B1 models for single
body parts and segments of body parts. We found that the approach for segments of body
parts outperforms the approach for single body parts. The most significant improvement
was seen for the prediction of wrists, where segments of body parts achieve 79.4% for
PCKh@0.1 compared to 62% for prediction of single body parts. The approach for seg-
ments of body parts achieved higher accuracy for all extremities, that is, ankles, wrists,
knees, and elbows. These results confirmed our theory as stated in Section 4.3.3, that by
providing more context to the network by including two connected body parts instead of
one in such a way that the network could understand connections between body parts,
the network would perform better. However, integrated testing for both approaches in the
pipeline showed less clear results. Surprisingly, the approach for single body parts per-
formed best for ankle and knee prediction, compared to the approach for segments. There-
fore, a hybrid solution between the single body part approach and the segment approach
seemed most beneficial when integrated into the pipeline.

6.3 Exploration of Image Context

6.3.1 Single Body Part
Aiming to optimize the performance of the pipeline, Section 5.3.1 compared different
thresholds for cropping out the body part of interest. As mentioned in Section 4.6.2, our
initial thought was to limit the minimum cropping value to 25 pixels if the size of the head
bone link was smaller than this value. The rationale for this boundary was to comprehend
problems that could occur when the human of interest was small compared to the image
size. In these cases, the head bone link would be a very small value, producing a region
of interest that would be impossible to comprehend for the sub-network due to the lack
of context. Despite this, testing carried out on different minimum thresholds for cropping
out single body parts showed no difference in prediction accuracy. We, therefore, chose to
exclude further testing for minimum thresholds, as we saw that only the maximum value
for the cropping threshold made any difference to the prediction accuracy. Testing results
for maximum cropping thresholds (Table 5.6) showed that the EfficientPose B1 models
achieved the best accuracy for almost every measure when the maximum value was set to
80 pixels. This is an interesting result, as we would expect that the highest accuracy would
be achieved when we limit the maximum value to 64 pixels, as this prevents downscaling
of the image. Hence, even though some images are downscaled, providing the network
with information of lower quality, the trade-off by providing the network with more context
is more beneficial.

6.3.2 Segments
As described in Section 5.3.2, we explored three different cropping strategies as an attempt
to optimize the performance of the model. Our main theory for the primary cropping
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technique, narrow cropping, as described in Section 4.6.3, performed surprisingly poor
compared to our two exploratory cropping techniques (Table 5.7). In fact, the cropping
technique that enhanced the sub-networks performance the most was the original cropping
technique, where we completely discarded the concept of rotation. We believe that this
comes as a direct result of the way we pre-processed the data used during the training
process. Since the original cropping technique feeds the sub-network with data of the exact
format as the training data, it makes sense that this technique enhances the performance
of the sub-network the most. However, we could also have processed the training data
in a similar fashion to the narrow cropping and narrow cropping* techniques in order to
increase the results of these approaches. As training is a time-consuming task, we did
not get the chance to train the networks with that kind of data. As an attempt to further
utilize the cropping techniques, we conducted testing for different cropping thresholds
(Table 5.7), where the results were less clear. For segments consisting of ankles and knees,
it appeared that a cropping threshold between 50-60% of the size of the head bone link gave
the best results in terms of accuracy, but for segments consisting of wrists and elbows, a
cropping threshold between 30-35% of the size of the head bone link seemed like the
optimal value.

As a final attempt to optimize the quality of predictions for segments of body parts
using the narrow cropping technique, we explored how the accuracy responded to varying
cropping thresholds in the horizontal and vertical direction (Table 5.8). The results showed
that there was no performance boost in terms of accuracy for varying cropping thresholds
in the horizontal and vertical direction; on the contrary, the network performed worse. In
other words, the network performed best when the segment was cropped out with equal
values in both directions.

6.4 Limitations and Weaknesses
Throughout the testing conducted in Section 5.3, we revealed both limitations and weak-
nesses with our method. First of all, it was clear from the very beginning that the quality
of the sub-networks’ predictions was highly dependent on the performance of the main
network. As shown in Table 5.3, the overall performance of the EfficientPose B4 model
on extremities tested on MPII validation dataset was 92.9% for PCKh@1. As a conse-
quence, the sub-network will be fed with many cropped out images that do not contain
the body part of interest. As we have no ground truth values for predictions made by the
main network on real-world data, we have no basis for implementing a smarter solution
to comprehend this problem. The only way of preventing the sub-network from receiving
images without the body part of interest would be to use a network that makes no error on
real-world data. Unfortunately, this is not possible as there exists no such network.

During the testing process for the implemented pipeline, we made visual inspections
of the sub-network predictions and compared them to the coarse predictions made by the
main network. The visual inspections showed a drop in prediction performance in the
sub-network for occluded body parts. It became clear that one of the most significant
drawbacks of our method was predictions on occluded body parts, as the model loses all
context of the human posture when we crop out extremities (Figure 5.8b)). An intelligent
implementation, where the network can detect occlusions and use the predictions from the
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main network instead of the predictions made by the sub-network, is therefore needed to
solve the issue of occluded body parts.

Another limitation of the method that comes as a direct consequence of the loss of
context is the separation between crossed limbs and limbs that appears in a parallel posi-
tion, shown in Figure 5.8 and 5.4. As mentioned in Section 4.3.3, we implemented a new
way of cropping out segments to overcome this challenge. However, this narrow cropping
method achieved lower accuracy in general (Table 5.8). We, therefore, concluded that the
best solution would be to prune out wrong predictions from the sub-network by only keep-
ing predictions when the Euclidean distance between the main and sub-network prediction
was less than 10% of the size of the head bone link.

As MPII has become the standard dataset for measuring the quality of a method for
Human Pose Estimation, it was evident that we needed to use this dataset as a test set.
However, the MPII dataset consists of many low-quality images, as it is made from scraped
YouTube videos from 2014. Since our pipeline is based on images of 1024x1024 as input,
we need to upscale the images from the MPII dataset that are of a lower resolution, re-
sulting in low-quality input for the cropped out images in the sub-network. We, therefore,
argue that our model will achieve better results on infant data, as it contains images of
higher resolution and data of a more standardized format.

6.5 Answering Research Questions
As stated by the research questions, this project was carried out to evaluate whether it was
possible to produce predictions of higher quality merely by modifying the network archi-
tecture and exploiting more data. With extremities as main focus, we discuss the research
questions based on the key findings in Chapter 5.

1. How can the task of Human Pose Estimation be optimized to produce predictions of
higher quality for cerebral palsy?

This project was based upon the fact that the prediction quality of a higher precision was
hard to accomplish with a network trained to perform full-body prediction. Current state-
of-the-art methods for HPE have focused solely on PCKh@0.5, whereas within the field
of medicine, a metric of higher precision is required. Our method achieves an overall in-
crease of precision for PCKh@0.1 of 0.9% for extremities on the MPII validation set. Due
to the unexpected COVID-19 situation, we did not get the chance to verify whether the
increase in accuracy also applies to Infant Pose Estimation.

1.1. How can we modify the network architecture to produce higher overall accuracy for
predicted body parts measured at lower thresholds?

To achieve the goal of an increase in the overall accuracy measured at lower thresholds,
we proposed a two-staged network architecture combining a network performing full-body
prediction and several light-weight sub-networks specialized for increasing the prediction
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quality of one specific body part. This single body part approach gave a significant increase
in precision in isolated testing on the HSSK dataset, which strengthened the hypothesis.
However, further testing combined with the main network showed that the approach per-
formed worse than the main network alone.

To enhance the proposed method, we refined the sub-networks by introducing segment
prediction, providing more context to the sub-networks without increasing the number of
parameters. As a result, we were able to slightly increase the performance of the combined
architecture for both the elbows and the wrist, but the knees and ankles still posed as a
problem. Finally, a hybrid solution consisting of segment prediction for elbows and wrists
combined with a single body part prediction for knees and ankles gave the best results
with an overall increase in precision for PCKh@0.1 of 0.9% for extremities on the MPII
validation dataset. Based on these results, we have confirmed that a two-staged network
architecture can increase the accuracy of a Human Pose Estimation model, when focusing
on thresholds of PCKh@0.1 or lower.

The final test completed on the MPII test dataset showed that our proposed method
produced lower results than current state-of-the-art on the PCKh@0.1 (Table 5.12). Due
to a low number of parameters on our EfficientPose B4 model compared to those methods,
we argue that a larger version in terms of parameters would be able to compete with the
current state-of-the-art. Nevertheless, the performance boost of adding several smaller Ef-
ficientPose B1 models for extremity prediction has shown to be relatively low, thus adding
them to this larger model could require a high effort compared to the reward.

1.2. How can we increase key point accuracy of the model merely based on exploiting
available data?

The MPII dataset has been used as the primary source for training and benchmarking of
neural networks for Human Pose Estimation due to its large amount of annotated images
for both single- and multi-person pose estimation. Lately, methods have made use of multi-
ple datasets to increase its performance, resulting in state-of-the-art results on the MPII test
set for the PCKh@0.5 metric. In combination with the proposed two-staged network ar-
chitecture, we have explored how and whether a second dataset, namely the HSSK dataset,
could be used to increase precision for more accurate metrics like the PCKh@0.1. Start-
ing with the EfficientPose B4 network, we observed a small overall increase in PCKh@0.1
when making use of both datasets during training. However, some specific body parts got
a significant drop in accuracy, like the head top, which dropped from 37.4% to 25.1%.
We saw the same tendency when training the EfficientPose B1 models based on segment
prediction. The elbow-wrist segment dropped from 36.7% to 30.5% on PCKh@0.1 when
pre-trained on HSSK, while the knee-ankle segment improved. We argue that small dif-
ferences in body part annotations between the two datasets result in a performance drop
when combined, primarily for more accurate metrics.



Chapter 7
Conclusion & Future Work

7.1 Conclusion
Body tracking is one of many tasks necessary for a computer-based system for CP predic-
tion. However, accurate predictions of body parts are essential for producing CP predic-
tions of high quality. Current state-of-the-art methods for Human Pose Estimation have
focused on a precision threshold that does not meet the standards required for high-quality
prediction of CP. We have presented how medical experts diagnose infants with CP, and
how we can apply Computer Vision and CNN’s to support this important job. Employing
the medical and technical theory presented in this thesis, we have proposed a two-staged
modification of a convolutional neural network architecture that can be used to increase
the prediction quality of extremities, measured at lower thresholds.

As recent state-of-the-art methods within the field of Human Pose Estimation have
shown an increase in key point accuracy by exploiting more available data, we have ex-
plored the usage of multiple datasets. We have observed that exploiting more data during
training may increase the accuracy of the model for higher thresholds. However, for lower
thresholds, we have in some cases observed a drop in accuracy. We, therefore, conclude
that the performance of a model exploiting more data depends on the annotation con-
sistency, as an inconsistency in the annotations will weaken the benefits of an increased
amount of data.

We have explored how the usage of multiple light-weight sub-networks in combination
with a more extensive network for coarse body part predictions can increase the overall
accuracy for predictions of extremities. Furthermore, we have proposed several ways to
implement these light-weight sub-networks, using the sub-networks for predictions of both
single body parts and segments of body parts. The method suffers from some limitations,
in particular for the prediction of occluded body parts, as we lose context of the human
posture when performing isolated predictions for extremities. With an overall increase of
0.9% compared to the main network, we can conclude that our modification of the network
architecture can be used to increase the overall precision for predicted key points measured
at lower thresholds. However, one can argue that the high effort of adding several light-
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weight networks has shown little reward in performance.

7.2 Future Work
With the work conducted in this project and the aspects discussed in earlier chapters, we
propose four natural steps that could be further explored to optimize the method.

To fully utilize the narrow cropping techniques, it seems most beneficial that the mod-
els are trained on data that are cropped out using the same technique. Subsequently, this
means generating new datasets for training purposes where the segments of interest are
cropped out using the narrow cropping technique, and lastly, conducting training on the
sub-networks from scratch on the newly generated datasets.

As stated earlier, one of the most significant drawbacks of our method is the prediction
of occluded body parts. Based on this limitation, we suggest that one should explore a
more sophisticated solution for detecting occluded body parts. If the network could detect
occluded body parts, we could choose to keep the main network’s predictions based on
whether the body part was occluded or not. Such a solution would most likely increase the
overall quality of the predictions as it would utilize the strengths of both networks.

Due to the unexpected COVID-19 situation, we did not get the opportunity to retrieve
the infant children data stored at St. Olav’s. Since our goal was to improve the quality
of CP-predictions by providing extremity predictions of higher quality, conducting testing
for infant children’s data would be crucial for further development of our method. Hence,
both training and testing on infant children’s data are required steps for this project.

As one last exploratory step, we suggest the implementation of an object-detector for
localizing the body parts of interest in order to improve the detection rate. In that way,
the input to the specialized sub-networks would be determined either by the output of
the object-detector alone or in combination with the output of the main network. The
object-detector would then further pass on the detected segment to the sub-network for a
prediction of each body part in the segment.
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