Olav Kaada

Continuous lossless compression of
streams of high-frequency multivariate
financial market data

Master’s thesis in Computer Science
Supervisor: Svein Erik Bratsberg

June 2020

2
2
=
2

ie)
o
c
e
o
—
©
C
©
(]
[}
c
L
(%
(%]
Y
o
>
=
(%]
o
[
=
c
o
c
.0
B0
£
o
=z

< oo
S <
Q£
S
Q c
LIJ'b_O
T C
cC w
©
o
o
C
c
D
'_
C
o
8
©
£
—_
RS
c
Y—
o
=]
(@)
©
L

]
v]
c
R
[w]
(%]
—
(&)
=
>
o
£
o
(W)
(.
o
=
C
(]
S
£
©
o
()
o

@ NTNU

Norwegian University of
Science and Technology

Olav Kaada

Continuous lossless compression of
streams of high-frequency
multivariate financial market data

Master’s thesis in Computer Science
Supervisor: Svein Erik Bratsberg
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

@ NTNU

Norwegian University of
Science and Technology

Abstract

Data is being produced at increasingly high frequencies. These magnitudes
often leave current storage systems inadequate, calling for more efficient
methods for handling streams of data. High-resolution sensor data enables
monitoring and analysis of complex systems and processes. More efficient
representations of such streams enable in-memory storage of data samples,
opening a field of possibilities for real-time systems.

This thesis takes a grasp at lossless compression of streams of high-
frequency multivariate time series, financial market data in particular. Mar-
ket data is unique in its unpredictability. Compressing such data while main-
taining its information entirely yields exciting challenges.

We argue that the compression of multivariate streams is essentially the
same as compressing multiple univariate streams with a shared time dimen-
sion. By leveraging techniques from state-of-the-art compression schemes in
this domain, we perform a novel study of compression of streams of high-
frequency multivariate data.

Using techniques such as comparative encoding, we can continuously
compress multivariate samples of high randomness losslessly, increasing the
number of recent samples storable in-memory by a factor of 4.4 on average.
Compression speeds one order of magnitude higher than the frequency of the
most actively traded assets, and one-pass decompression with blocks of less
than 550 kB, indicates that such techniques may be suitable for in-memory
storage in data-intense real-time systems.

il

v

Sammendrag

Data blir produsert med stadig hgyere frekvenser. Disse datamengdene fgrer
i gkende grad til at naveerende lagrings systemer blir utilstrekkelige. Det
trengs derfor mer effektive metoder for a handtere datastremmer. Hgyop-
plaselig sensordata muliggjgr overvaking og analyse av komplekse systemer og
prosesser. Mer effektive representasjoner av slike strgmmer muliggjgr lagring
av datapunkter i minne, og apner et hav av muligheter for sanntidssystemer.

Denne oppgaven ser pa tapsfri komprimering av strgmmer av hgyfrekvente
multivariate tidsserier, spesielt finansiell markedsdata. Markedsdata er unike
i deres uforutsigharhet. Tapslgs komprimering av slik data har interessante
utfordringer.

Vi argumenterer for at komprimering av multivariate strgmmer i hov-
edsak er det samme som & komprimere flere univariate strgmmer med en
delt tidsdimensjon. Ved a utnytte teknikker fra moderne komprimerings-
metoder i dette domenet, utfgrer vi et studie om komprimering av strgmmer
av hgyfrekvente multivariate data.

Ved bruk av teknikker som komparativ koding, kan vi komprimere multi-
variate datapunkter med hgy tilfeldighet kontinuerlig og tapslgst, og dermed
pke antallet nylige datapunkter som kan lagres i minne med en faktor pa 4,4
i gjennomsnitt. Komprimeringshastigheter pa én sterrelsesorden hgyere enn
frekvensen til de mest aktivt handlede aktiva, og et-pass dekomprimering
med blokker pa mindre enn 550 kB, indikerer at slike teknikker kan vaere
egnet for lagring av datapunkter i minne i dataintensive sanntidssystemer.

vi

Preface

I want to thank Svein Erik Bratsberg for his helpful guidance and support
in supervising this work.

Huge thanks to my friends for the support during the process of writing
this thesis. Thanks to Kristian Flatheim Jensen for questioning methods and
incorrect information. Thanks to Havard Pettersson for providing tools and
assistance helpful in its writing, including thorough feedback on late drafts.

The code produced for this thesis will be made available on the author’s
GitHub (https://github.com/kaada/). Feel free to reach out.

vii

viil

Contents

|1 Introductioﬂ 1
1.1 Goals and contributioné 2

1.2 Outliné 2

Background 3
.1 High-frequency financial market datal 3

2.1.1 Timeseries 3

1.2 High-frequencv data 4

.1.3 Financial market date] 5

2 Compressioi 7
2.1 Classes e 7

.2.2 Technical propertieé 8
.3 Lossless compression of streamd 10
2.3.1 Comparative techniques 10

|3 Lossless compression of streams of high-frequency market

Eata| 19

.1 Technical requirementﬁ 19
11 Speed 20
1.2 Blocksize 20

........................ 21
I3.2 Structure and properties of market data 21
3.2.1 Timestampsi 21

X

2.2 Prices 22
2.3 SIZES . ., 24

t3.3_Im lemented algorithms 25

26

29

29

29

30

30

31

........................ 31

4.1.1 Individual fields 31

4.1.2 Multivariatedata L. 36
I&Discussion of technical properti(ﬂ 39

39

40

41

l5 Conclusion and Future WorH 43
b.1 Future Work o 44
IBibliography{ 47
IA Delta-of-delta encodiné 49

List of Tables

Example of a univariate time serieg 4
Example of Level 1 market data for Apple Inc.‘ 5
Bit packing exampleo 12

Zigzag encoding exanm 15
Initial form of samples 26
Parsed samples 27
Delta encoding of sample 27
28
28
29
Compressed sampl 29

el

xii

List of Figures

IZ. 1 Data frequencyl 6

.1 Distribution of values for timestampé 22
Distribution of values for price# 23
.3 Distribution of values for size 24

4.1 _Benchmark results, Time field, Apple Inc.‘ 32
4.2 _Benchmark results, Time field, average top 100 most activel .. 33
1.3 Benchmark results, Bid Price field, Apple Inc 34
1.4 _Benchmark results, Bid Price field, average top 100 most active 34
4.5 Benchmark results, Bid Size field, Apple In_c| 35

1.6 Benchmark results, Bid Size field, average top 100 most active 36
4.7 __Benchmark results, all fields, AppleInc. 37
4.8 Benchmark results, all fields, average top 100 most active] ... 38
1.9 Benchmark results, all fields, Apple Inc., snippets of initial ticks 40

1.10 Benchmark results. all fields, average top 100 most active
nippets of initial ticka 41

xiil

Xiv

List of Listings

2.1 Example C++ code for bit packing a 64 bit unsigned in’reger.‘ .14

2.2 Example C++ code for zigzag encoding a 64 bit integer| 15
2.3 Example C++ code for zigzag decoding a 64 bit integer, 15

XV

Chapter 1

Introduction

The rapidly increasing rate at which data is generated yields both new pos-
sibilities and challenges [1]. High-resolution sensor data, often represented
as time series, enables monitoring and analysis of complex systems and pro-
cesses. However, the increasing magnitudes of data often leave current stor-
age systems inadequate [2]—[p].

Recent work has shown that compression can increase the throughput and
efficiency of real-time systems [2]. More efficient representations of sensor
data increase the number of samples that can be stored in-memory while
reducing bandwidth requirements. Fewer cache misses and more efficient
access to main memory can dramatically increase query performance [6]. The
improvements enable higher data loads, paving the way for, e.g., previously
unheard-of real-time monitoring tools.

This thesis considers high-frequency multivariate financial market data:
high-density time series with multiple variables connected to each timestamp.
Market data is used, for instance, to model and monitor the order book
(buy/sell interest) of an asset [7]. The sheer volume of data generated from
such financial systems makes the optimization of their storage crucial [[].

High-frequency data enables accurate and precise models of complex sys-
tems; every piece of information is therefore valuable. It is essential that
each data point is available fast and with no loss of information, recent data
points in particular.

Existing schemes for lossless compression of multivariate data operate
on blocks of samples [8], [9]. By not supporting continuous compression of
streams of data, fewer recent data points can be held in memory, significantly
reducing the availability of these critical data points [2].

1

1.1 Goals and contributions

Based on previous contributions in compression of streams of data, we study,
implement, and benchmark an algorithm for lossless compression of streams
of high-frequency multivariate data. The goal of the research is to provide
an example of how existing methods for compression of univariate streams
can be combined to compress multivariate streams. The contributions are
expected to identify challenges and solutions to a problem whose results may
increase performance in a broad domain of services, particularly caching and
storage of real-time data in high-throughput services.

We focus on the compression of financial market data: sensor-like data
with significantly high frequencies and unpredictability. These properties
enable a general overview of the problem of compression of high-frequency
multivariate data.

We investigate the following research questions:

« RQ1: How can existing techniques for compression of time series be
leveraged to create a compression scheme for continuous lossless com-
pression of multivariate data?

« RQ2: What structures and properties exist in financial market data
enabling compression?

e« Main RQ: How can we losslessly compress streams of high-frequency
multivariate financial market data to enable more efficient in-memory
storage for real-time systems?

1.2 Outline

e In Chapter E, we present background material concerning financial mar-
ket data, and techniques and algorithms for compression of streams.

e In Chapter B, we take a closer look at the data, and go into detail
on the specifics of our implementation of a compression algorithm for
streams of high-frequency multivariate financial market data.

o In Chapter @, we analyze and discuss the benchmark results.

o In Chapter H, we present conclusions and finish with suggestions for
future work.

Chapter 2

Background

This chapter introduces the necessary knowledge regarding high-frequency
financial market data and compression. In Chapter R.1|, we discuss the back-
ground, structure, and properties of time series and market data in particular.

With this new-found understanding regarding time series, Chapter
takes a look at why compression is beneficial, exposing features important
for further examination of methods for continuous compression of streams
(Chapter @)

2.1 High-frequency financial market data

High-frequency financial market data is a type of time series. We first look
at how time series are generated, including their characteristics. Using this
knowledge, we study the domain of high-frequency data and how it differs
from data of lower frequencies. We then consider high-frequency market data
specifically.

2.1.1 Time series

A time series is a collection of data points sourced over a period of time. Even
though the notion of measurements associated with a specific time is com-
mon in everyday life, the granularity and preciseness have recently increased
drastically to satisfy the requirements of the information age. Weather in-
formation can be sampled almost continuously, stock prices are captured

! Adapted from the author’s specialization project from fall 2019 at NTNU.

Table 2.1: Example of a univariate time series, sampling temperature with
seconds granularity. Time in HH:MM:SS.

Time | Temp (°C)
08:00:00 20.0
08:00:01 20.1
08:00:02 20.0

in ticks—one logical unit of information [[f]—and sensors from small and
inexpensive [oT devices can sample their environments multiple times per
second.

Format and properties

A data point in a time series consists of a set of values associated with a
particular time. Each data point is called a sample, where the number of
non-time values—D-—denote the sample’s dimensionality. If D = 1, the
sample is called univariate, if D > 1 it is multivariate [9)].

A time series is a sequence of N samples, each with dimensionality D.
Each sample is atomic, and has no relationship to the other samples, except
for shared dimensionality and structure. Although the delta of two adjacent
samples normally decreases with increased granularity—particularly when
sampling natural environments—it is more of a practical property than a
feature.

Data is also assumed to be immutable; updates are rarely needed. Consid-
ering that samples often arrive in chronological order, adding new samples—
for instance, in row-major order (Chapter R.2.2)—is done in an append-only
fashion.

Even though the data is usually sampled with a fixed frequency (e.g.,
once every second, as in Table R.1)), data can also be sampled irregularly
given the occurrence of an event; a change of information (Table @% The
latter may, therefore, have an arbitrary number of different data points at a
particular timestamp (depending on the granularity of the time).

2.1.2 High-frequency data

High-frequency data consists of values sampled at high rates. The significant
granularity allows for capturing even the smallest changes in delicate and

4

Table 2.2: Example of Level 1 market data for Apple Inc., January 3rd,
2018. Only selected columns are shown. Time is on the format HH-
MMSSxxxxxxxxx, where the 9 x’s represent a nine digit nanosecond value.
Bid and offer sizes are the maximum number of shares available at the given
price [12].

Time Bid Price | Bid Size | Offer Price | Offer Size
80000189974662 172.26 2 172.55 2
80000190231252 172.26 2 172.55 1
80000190619305 172.26 2 172.63 1
80001307295190 172.52 3 172.63 1
80001388058920 172.52 3 172.62 1

sensitive systems. The higher the number of independent samples, the higher
the degree of freedom. The increased granularity allows for more precise
models; for instance, statistical models to examine the probability of extreme
events [[].

High-frequency market data is used—amongst other things—as a source
to monitor, identify, and trade on temporary market inefficiencies created by
competing interests [L0]. Being able to leverage vast amounts of data in a
flash is paramount.

In contradiction to traditional long-term buy and hold strategies, high-
frequency trading strategies require shorter evaluation periods to establish
the strategy’s credibility [10]. Increasing the amount of new data available
at short notice is expected to increase both the speed and preciseness of such
systems.

2.1.3 Financial market data

This thesis considers a stream of financial market data, more specifically,
Level 1 market data. The data reports, for instance, the current best prices
for securities in a market. Even this simple form of market data is highly com-
plex. We focus on a subset of its fields, representing the real-time highest bid
and lowest ask for an asset, including the quantities—or volumes—available
at those prices [11].

Data points [points/secon

1000 A

800 1

600 -

400

N N
ANS X@.QQ‘

Time [HH:MM:SS]

Figure 2.1: Distribution of Level 1 market data for Apple Inc., measured by
data points per second from 15:00:00 to 16:00:00 on January 3rd, 2018 from
the NYSE. The stock is the 11th most actively traded on this date according
to the sample data set provided by the exchange [13]. N = 273793.

Format and properties

Level 1 market data are time series, where price and volume changes in a
market are captured, as exemplified in Table . Whenever a new bid,
offer, or trade is made—changing the pricing or volumes—a new data point
is sampled. As a data point is stored given a change (tick) in the market,
the sampling naturally occurs irregularly in time. The samples are captured
with nanosecond precision, with a frequency depending on the asset, often
a significant number per second [1]. The sampling frequency of Apple Inc.
over one hour can be seen in Figure R.1I.

Table @ shows Level 1 market data for Apple Inc. Only the aforemen-
tioned fields are shown. These fields contain critical values used, for instance,
to calculate and monitor the bid-ask spread of an asset, or for measuring lig-
uidity and market activity.

Financial markets are unique in their unpredictability. According to the
Efficient Market Hypothesis, an asset’s price reflects all available information,
and price changes are therefore random, as stated by the Random Walk
Hypothesis [[7].

Normalizing monetary values

Prices in_the data set are represented as floating-point values (exemplified
in Table @) The data type creates significant hurdles if left unconsidered.
Although the price might seem correct for a single sample, a floating-point
value is only an approximation of the underlying value. The approximated
value can thus increasingly differ from the actual value when inaccuracies are
combined, for instance, when values are aggregated [[14].

The precision of a floating-point number generally increases with the
number of bits used for its decimal value [[15]. Higher precision, therefore,
imply a large number of bits, unfortunate for a compression scheme.

These hurdles can be mitigated by representing monetary values in their
lowest atomic form, e.g., in cents for USD. Thus, by storing these values
as fixed-points—i.e., as integers—instead of floating-points, we can obtain
accurate representations of prices, while using fewer bits.

2.2 Compression'

Compression of data is done to reduce the memory footprint in preparation
for processing, transmission, or storage. The performance benefits a system
gets from compression, comes from a variety of factors: lower miss-rate as
a larger amount of keys are stored hot, lower bandwidth requirements in
multiple transmission stages, and saved energy due to less energy-consuming
memory needed for the same amount of data [16].

This section describes the different classes of compression schemes, their
primary traits, and the importance of each in its design.

2.2.1 Classes

Compression algorithms are categorized as either lossy or lossless, with other
customizable traits to make them perform well in the specified domain.

7

Lossy

Lossy compression algorithms approximate a sequence of data. The com-
pressed representation errors in relation to the real representation, to save
space. With time series, lossy compression can be done, for instance, by
approximating the data as a sequence of polynomials [9].

Lossless

Lossless compression considers a more space-efficient representation of the
data and conserves the information entirely. Lossless algorithms are used,
e.g., in the field of audio compression [9]. Lossless compression of time series
can be done, for instance, by storing the delta of subsequent values, instead
of the actual values. This is known as delta encoding (Chapter R.3.1).

Although universal lossless compression algorithms exist—many based
on the widely used Lempel-Ziv-Welch (LZW) algorithm [8]—special-purpose
compression algorithms yield the best result given that the data distribution
and requirements of the system are known a priori [6]. General-purpose
algorithms also operate on complete data sets, making them infeasible for
processing streams of data in real-time [2].

2.2.2 Technical properties

Aside from the compression rate of a scheme, with the upper limit depending
on the compressibility of the data set, the important properties of a lossless
compression scheme are its speed, block size, and major order.

Speed

Compression is subject to the space-time complexity trade-off. While uncom-
pressed data is ready instantly, increasing the compression ratio to reduce
the storage footprint generally increases computing time needed for compres-
sion and decompression [16]. Considering this trade-off is paramount when
constructing a compression scheme for a particular domain. Some devices
might restrict computational resources in order to save battery. In other
devices, data ingestion can be slow due to a lower sample rate, allowing com-
putational resources to be focused on increasing the compression rate, and
thus reducing network costs [9].

When time series are stored—either in memory or on disk, for instance,
in a Time Series Database (TSDB)—the system is often read-heavy. Large
blocks of data could be read and fed to machine learning models or visual-
ization tools. Good decompression speed is essential. Compression simply
needs to keep up with the ingestion rate [9].

Block size

A block is the physical set of bits or bytes amassed and compressed, either
continuously or when the block is full. A block is thus the unit of data usually
considered when compressing or decompressing data.

The block size is the number of bits stored in each block. Greater block
sizes generally mean more redundancy, making higher compression rates pos-
sible [16]. However, larger blocks require more data to be decompressed to
retrieve a single entry. Some devices have limited memory resources, unable
to hold significant amounts of data before transmission or storage. In en-
vironments with lower sample rates, filling a block could take a significant
amount of time, causing lags in data sent from the sensing device [9]. The
most practical parameter is once again hugely dependent on the domain.

Major order

The major order of a storage system, such as RAM, refers to how multidi-
mensional data is stored [14]. If each sample is multidimensional, the samples
can be stored in either row- or column-major order.

Consider a time series of N samples, each having dimensionality D > 0.
A, . is the value in column c of row r. A, ; is then the timestamp of sample
r, followed by its D variables in A, o, ..., A, py1.

Multidimensional data can either be stored, linearly, in row-major order:

Al,la "'7A1,D+17 ...,ANJ, ---aAN,D—i—l

or in column-major order:

Al,la ---:AN,la ---:ALD«H: ...7AN’D+]_

Row-major order is preferred if multiple variables are considered when
a sample is fetched; in a location device, for instance, both longitude and
latitude are needed to calculate the position. It is thus beneficial that they
are stored sequentially in pairs, reducing lookup speeds.

In column-major order, the columns are laid out linearly. In a device
sampling temperature and humidity, the temperature values could be stored
sequentially, followed by the humidity values. This storage is beneficial if
queries on the data usually consider the variables in isolation.

2.3 Lossless compression of streams

This section introduces comparative techniques and general techniques pop-
ular when losslessly compressing samples from streams.

2.3.1 Comparative techniques'

For lossless compression of streams of numeric data, three main types of pre-
dictive encoding are prevalent: delta encoding, delta-of-delta encoding, and
predictive filtering [9]. These methods compress streams efficiently, as they
reduce the entropy of a newly observed sample based on previous observa-
tions.

Delta encoding

A value is encoded as the difference from the previous observed value; the
next value is predicted to be equal to the previous one.

0; =T — Ti
Where the first value is stored in full.
[371,52 =Ty — T,...,0N = TN — fol]

A value is decompressed by computing the prefix sums.

T; =21+ 25]
j=2

A value that is expected to be close to its preceding value is expected to
have a delta significantly smaller than its original value. Storing this delta is
thus expected to significantly reduce the number of bits needed to store its
information [6].

10

Delta-of-delta encoding

A value is encoded as the difference from the previous difference.

67 = 0j — 0j—1 = (sz - %—1) - (%‘—1 - xi—?)

1

Where the first value is stored as a delta from a reference value [2].
[51, 5% = 52 - 51, ceey 5]2\/ - (SN - (5]\],1]

The value is decompressed by computing (from Appendix @)

Ti = Tyep + 101+ > (i — j+1)5;
j=2

This method is particularly efficient if the values are evenly spaced; time-
stamps sampled at regular intervals will have a delta-of-delta of zero.

Predictive filtering

Instead of simply predicting that the next value will have a naive correlation
to the previous value(s), predictive filtering creates a model based on a linear
combination of a fixed number of preceding samples. When this filter is
learned from the data, it is called adaptive filtering.

T; = ar;—1 +bri_a+ ..+ €

Though computationally more expensive, calculating the linear factors
(e.g., a and b), and storing only the error, €, from the prediction yields a
higher compression rate when the samples do not follow a random walk [9].

2.3.2 General techniques

Compression algorithms use a variety of techniques and methods to optimize
for speed and size. This section introduces bit packing and zigzag encoding,
both essential in storing data compactly. Advanced hardware techniques,
such as SIMD [6], [17], are also increasingly being used in modern compression
algorithms—for significantly increased speed—but are out of scope for this
work.

11

Table 2.3: Example of variable-length bit packing of a 32 bit integer with
the value of 17226. The green bit indicates whether the value is non-zero.
, the number of bits in the value. Red, the actual non-zero value.

Value ‘ 32 bit binary ‘ Bit packed
17226 \ 00000000000000000100001101001010 \ 1 100001101001010

Bit packing

Bit packing [2], [6] is a technique for storing (”packing”) values together,
omitting unnecessary bits in each value. For instance, given values in range
[0 — 15], we can pack eight values in a single 32-bit integer—and thus in a
single 32-bit word—as each value only needs logs(16) = 4 bits of informa-
tion [9].

The technique is also suited for variable-length encoding of values. In
this case, a header can be used to specify the number of bits of entropy in
the variable. For instance, values of a maximum of 32 bits, need log,(32) = 5
bits specifying the size of the value (Table @)

Further optimization of bit packing can be done for data sets with certain
properties. For instance, data sets consisting of a large number of zeros can
be optimized by storing a flag bit, indicating whether the value is zero or
not. Thus if the value is zero, the value is stored directly using a single bit.
If the value is non-zero, a 1 is stored, followed by the header bits, followed
by the bits representing the actual value.

Using a flag bit to indicate a non-zero value, and variable-length encoding,
the number of bits for a value n > 0 can be expressed as the sum of the bits
needed:

1+ logz(E) + [loga(n)] = b,

where F is the number of bits of entropy in the variable. Bit packing is
thus of less benefit when b — FE, as the size of the encoded representation
approaches the size of the original representation of the value.

Bit packing reduces the number of bits needed to represent a value. When
combined with techniques such as delta and delta-of-delta encoding (Chap-
ter R.3.1), the algorithm has elevated efficiency, as zeros are more preva-
lent [17].

Listing shows a C++ implementation for bit packing a single integer
into a bit vector. The vector of each value can then be stitched together into
a single bit vector representing the multivariate sample.

12

Unpacking a bit packed sequence is essentially the reverse process of pack-
ing [17]. If the first bit is 0, we know that the full value is zero, and we
continue to the next bit representing the next value. If the value is 1, we
know that the next logs(F) = N header bits represent the following number
of bits used to store the actual value.

Unlike the packing algorithm, the speed of unpacking is not directly de-
pendent on the size of the value. The actual value can be accessed imme-
diately, given the header size, resulting in a constant upper bound on the
speed. The value zero, however, has a significantly lower speed constant, as
the value is stored in the first bit, omitting the need for further parsing.

13

Listing 2.1: Example C++ code for bit packing a 64 bit unsigned integer into

a bit vector using a specified number of header bits.

/ *

*
*
*
*

*

*/
std
{

Returns 0 if num == 0, else

1 X...X n...n

control bit n header bits sig bits
::vector<bool> bitPack(uint64_t num, size_t nHeaderBits)

std::vector<bool> bits;
bits.reserve (nHeaderBits + sizeof (num) * 8);

if (num == 0) {
bits.push_back(0);

} else {
bits.push_back(1);

auto nSignificantBits = sizeof (num) * 8
- __builtin_clzl (num);

std::bitset<6> sigBits = nSignificantBits;
for (int8_t i = nHeaderBits; i > 0; --1i)
bits.push_back(sigBits[i]);

std::bitset<64> bs = num;

for (int8_t i = nSignificantBits; i > 0; --1i)
bits.push_back(bs[i]);

return bits;

14

N =

N

Table 2.4: Example of zigzag encoding the value —1.

Value ‘ 8 bit binary ‘ Zigzagged value
—1 | 11111111 | 00000001

Zigzag encoding

To efficiently bit pack a value, the toggled bits (1’s) should be stored in the
least significant positions, allowing the 0’s in the most significant positions
to be packed away. Negative values have information in the most significant
bits when using two’s complement representation [L8]. These values have
all their bits flipped, and one added, compared to their inverse—positive—
counterparts. The number -1 is thus all 1’s for any arbitrary sized integer.
Zigzag encoding [9], [19] is a trivial encoding that moves that sign bit to the
least significant position, and flips the rest of the bits, as shown in Table P.4.
This transformation allows bit packing to treat the integer as a non-negative
(unsigned) value.

Listings @ and show how such encoding and decoding can be done
for a 64 bit signed integer. Decoding is the inverse process of encoding.

Listing 2.2: Example C++ code for zigzag encoding a 64 bit integer.

void zzEncode64 (int64_t *x)
{

*x = ((uint64_t) *x << 1) = -((uint64_t) *x >> 63);
}

Listing 2.3: Example C++ code for zigzag decoding a 64 bit integer.

void zzDecode64 (int64_t xy)
{

xy = (int64_t) ((xy >> 1) = -(xy & 0x1));
}

15

2.3.3 Related work!

This section takes a look at some interesting state-of-the-art systems for
lossless compression of streams of time series.

Gorilla

Gorilla is an in-memory time series database developed at Facebook [2].
It functions as a write-through cache storing the most recent sensor data
from Facebook’s systems. Their compression scheme and extensive hardware
allow for compression of 700 million univariate data points per second. The
database enables Facebook to have 26 hours of sensor data in cache, greatly
reducing the query times on the cached data.

The scheme uses comparative compression techniques to compress streams
of univariate time series. Timestamps and values are compressed separately.
Facebook found that in their system, block sizes that extended 2 hours gave
diminishing returns on the compression rate.

Timestamps are compressed using delta-of-delta encoding. A reference
timestamp, t_1, is stored in a block header. The first timestamp, ¢y, is stored
in the block as the delta from the reference timestamp. Subsequent time-
stamps, t1, ..., t,, are stored as delta-of-delta of the previous value. Facebook
found that 96% of the timestamps could be compressed to a single bit, due
to samples arriving at a fixed interval.

Gorilla is limited to compression of univariate time series; only a single,
double-precision floating-point value is allowed per sample. The first float
is stored in full. Subsequent values are stored as the XOR of the previous
value. This technique assumes that neighboring values differ only slightly,
which was observed to be the case with Facebook’s operational data.

The system makes two strong assumptions of the data set: timestamps
are mostly evenly spaced, and subsequent values have small deltas.

Sprintz

Sprintz is a time series compression algorithm aimed at IoT devices [9]. The
algorithm has low memory requirements but adds a small latency to the
system. Although designed for low-energy devices, the authors argue that
it can also be used for larger systems for serving and querying data. The
authors found the algorithm to significantly outperform delta encoding. It

16

uses a forecasting algorithm that is trained online and tuned to the data
distribution.

Sprintz’s advantage over existing solutions stems from its strong assump-
tions of the characteristics of the data. The paper argues that time series
from natural environments have four unusual characteristics:

o Lack of exact repeats: The presence of natural features such as noise
makes exact repeats of sequences of bytes less common. Typical com-
pression algorithms, such as dictionary-based methods, are thus not
suitable.

e Multiple variables: More than one variable is often needed when sam-
pling a natural state, e.g., longitude and latitude for location.

o Low bandwidth: Devices normally use limited bandwidth when sam-
pling environments. Integers of 32—or even 16—bits are sufficient.

o Temporal correlation: Successive samples tend to have similar values.
The sample rate is often higher than the natural phenomenon recorded.

The algorithm makes assumptions about strong correlations between con-
secutive values. This assumption about temporal correlation is often the case
for IoT devices; for instance, when sampling the location of a stationary de-
vice. It, therefore, performs poorly when the data distribution tends to jump
between discrete states.

Differential-finite-context-method (DFCM)

DFCM makes predictions by looking for matches in previous difference pat-
terns [20]. A table lookup is performed to retrieve the difference that followed
the last time a similar sequence was observed. The difference is an XOR-
based delta encoding on the predicted and actual value. The algorithm is
essentially the same as in Gorilla, but with predictions based on context.

17

18

Chapter 3

Lossless compression of streams
of high-frequency market data

In this chapter, we describe the development and implementation of an
algorithm for lossless compression and decompression of streams of high-
frequency market data.

In Chapter @ we discuss technical requirements of an algorithm work-
ing on high-frequency multivariate market data. We then, in Chapter B.2,
take a more in-depth look at the structure and properties of the data. This
information hints at methods and techniques appropriate for an efficient com-
pression scheme in this domain. Lastly, in Chapter B.3, we go into detail on
the implementation of this compression scheme, and benchmarks created to
confirm its viability.

3.1 Technical requirements’

A general trend in Chapter @ is that the efficiency of a compression scheme
increases the more it is fitted to the problem. Both Gorilla and Sprintz obtain
their advantage over generalized schemes by forming explicit assumptions and
requirements of the system.

We, therefore, form a set of preliminary technical requirements for com-
pressing streams of market data losslessly.

19

3.1.1 Speed

We know from Chapter @ that the speed requirements of the domain are
clear: while the compression speed must keep up with the injection rate,
decompression speed is of more benefit after that threshold is reached.

A complex stream of financial market data may consist of samples from
multiple distinct stocks or assets. Luckily, although samples from different
assets may be correlated, the samples are independent. The compression of
each asset’s samples can thus be distributed over multiple processor cores
(or nodes). The hard speed requirement of the compression algorithm is,
therefore, essentially the maximum frequency of the most actively traded
asset.

From Figure @, we see that the activity for an individual (actively
traded) asset is several orders of magnitude lower than the obtained speeds
of known efficient methods of compression of streams [6], [20]. These meth-
ods are, however, for streams of a single variable. Testing has to be done
to measure how well such techniques perform when adapted for streams of
multiple variables.

For a system handling the complete stream of samples, the compression
speed requirement is the peak frequency of the full set of samples. The
requirement is, therefore, dependent on the number of assets in question. For
all US equity markets combined, the frequency peaks at roughly 5 million
messages per second [b].

3.1.2 Block size

Pelkonen et al. [2] states that the increase in block size comes with dimin-
ishing returns. This statement is logically grounded, as the main benefit of
having larger block sizes is to reduce the relative impact of the initial uncom-
pressed values, taking up a significant number of bits. This impact decreases
as the block size increases. Hence, blocks have an optimal size where an
increase in size does not yield a noteworthy increase in the compression rate.
We want to keep the block size as small as possible, while still having the
benefits of compression. Empirical data on the compression rates of different
block sizes will show where this threshold is for a specific scheme and data set.
For Facebook’s Gorilla system, the optimal block size was two hours of data
(Chapter R.3.3). Considering that market data have variable frequencies, it
can be expected that block size is better measured in the number of ticks.

20

3.1.3 Major order

Level 1 market data is multivariate. As explained in Chapter @, we know
that row-major order is preferred if values have an essential connection to
each other, namely that they are used together. This connectivity is impor-
tant for, e.g., monitoring tools.

Column-major order could be preferred if the data is used to monitor
individual variables, for instance, the change in volume, or for analytical
purposes where the asset’s asking price is of sole importance.

3.2 Structure and properties of market data

In this section, we discuss the structure and distribution of Level 1 market
data. Financial market data consists of multiple fields, essentially represent-
ing different univariate streams with identical timestamps. We take a closer
look at each of the fields, discussing properties that may be exploited for
efficient compression.

We have a closer look at the market data for Apple Inc., specifically. The
stock is actively traded (Figure R.1)), providing a reference as to how the data
from a single asset can be compressed.

We discuss the timestamps, the bid and offer prices, and the bid and offer
sizes.

3.2.1 Timestamps

Chapter @ states that market data has tick granularity; a sample is cap-
tured whenever a change of value occurs. The Time field, therefore, repre-
sents the time at which either of the Price or Size fields are modified. As the
frequency depends on the rate of information, it reflects the asset’s trading
activity at a given point in time, visualized in Figure Ell

The unpredictability of the values in the Time field has negative con-
sequences_for its theoretical maximum compression rate. We know from
Shannon [21] that higher entropy naturally yields lower possible compression
rates. We can, however, reduce this entropy as much as possible.

Figure shows the values of timestamps stored with previously dis-
cussed encodings for streams of values (Chapter @) Both delta and delta-
of-delta encodings reduce the magnitude of the timestamp values, reducing

21

1.00

107 original
Bl delta
é 0.8 4 B delta-of-delta
kS,
A,
@
£ 0.6-
3
G
S
5041
k3!
s
e
0.2 4
0.0 0 g 0
0

0 O'Pl 0.01 ¢
[_287 28] [_2167 216] [_2327 232] [_2647 264]
Value ranges

Figure 3.1: Distribution of values for timestamps for Apple Inc. on January

3rd, 2018. Delta and
Chapter R.3.1. N =16

delta-of-delta values are computed as described in
33158.

the number of bits needed for their storage. Though each timestamp orig-

inally needed 64 bits,

these encodings enable the values to be stored using

less than half the amount of bits.

These results also indicate that delta encoding reduces the values slightly
more than delta-of-delta encoding. We know from Chapter @ that the
latter is optimal with evenly spaced timestamps. This property is, however,
unnatural for time series with tick granularity. Further testing and bench-
marking will confirm whether this is the case for Level 1 market data in

general.

3.2.2 Prices

Each sample in our market data contains two monetary values: the maximum
price someone is willing to pay for an asset, the Bid Price; and the minimum
price someone is willing to sell an asset for, the Offer Price. These values
usually vary only slightly, in the so-called the bid-ask spread.

The tick level granularity of an asset’s data stream implies that prices
will not necessarily change between consecutive samples. A new data point

22

1.00

1O original
Bl delta
% 0.8 4 W delta-of-delta
£S)
2,
@
+ 0.6
<
Gy
5]
2041
k3t
g
)
0.2

0.0 -

O [_22’ 22] [_247 24] [_287 28] [_2167 216]
Value ranges

Figure 3.2: Distribution of values for bid and offer prices for Apple Inc.
on January 3rd, 2018. Prices in cents. Delta and delta-of-delta values are
computed as described in Chapter R.3.1. N = 3266316.

could be sampled given a change in either the other Price field or one of the
Size fields. It is, therefore, logically grounded that the values in the Price
fields will often stay unchanged.

Figure @ shows an example of how consecutive price values can differ.
We see that delta and delta-of-delta encodings both produce a high num-
ber of zeros. We know from Chapter R.3.2 that zeros are beneficial, as the
compression algorithm can be configured to store the value as a single bit.

As with timestamps, delta encoding seems to yield lower entropy than
delta-of-delta encoding for monetary values. These values will logically be
close together, as the bid and offer prices are relatively constant over time.
However, delta-of-delta encoding could be preferable if there is a general
upwards or downward trend in the prices.

Even though Apple Inc’s price fields seem to be using a maximum of 16
bits, this is not the case for the data sets studied from other stocks. The
amount of information in the original price depends on the magnitude of its
value. Empirical data shows that some data sets need more than 16 bits, so
we support up to 32 bits in our implementations to support all cases.

23

0.41

0.4 1

e
w
1

BN original
Bl delta
[delta-of-delta

Fraction of data points
o
[\
1

.C’
—
1

0.0 -

0 [_217 21] [_22’ 22] [_247 24] [_28, 28]
Value ranges

Figure 3.3: Distribution of values for bid and offer sizes for Apple Inc. on
January 3rd, 2018. Delta and delta-of-delta values are computed as described
in Chapter R.3.1. N = 3266316.

3.2.3 Sizes

Bid and offer sizes quantify the volumes available at specific prices. As seen
in Table .2 and Figure B.3, these quantities are often small, which is logically
grounded, as the positions with the highest bid and lowest offer prices are
the least contested.

The insignificant magnitude of the values raises the question of whether
compression of these fields is beneficial. Figure shows that delta encoding
produces slightly lower values. We know that values of zero are beneficial
for a basic implementation of bit packing, significantly reducing the number
of bits needed for their representation. The benefit of compressing these
values is thus reduced to a trade-off between the speed overhead due to the
comparative encoding, versus a slightly higher average number of bits per
value. Benchmarking will show the actual impact of this trade-off.

As with the Price fields, bid and offer sizes need a full 32 bits representa-
tion. Some data sets have sizes of greater magnitude, with values exceeding
16 bits.

In closing, we see that the Size fields may have additional opportunities for

24

compression with increased customization. Bit packing needs a 5-bit header
to represent up to 32 bits of information, but most uncompressed Size values
can be represented with fewer than 5 bits, as seen in Figure B.3. Using a
smaller header, and storing outliers elsewhere, could benefit the compression
rate.

3.3 Implemented algorithms

We have implemented and benchmarked several compression schemes to
gather empirical data on the performance of different comparative techniques
and storage methods. First, we benchmark different techniques on single
fields, i.e., compression rates and speeds using various encodings on time-
stamps, prices, and sizes. Afterward, we combine the implementations into
compression schemes that work on multivariate financial market data.

In this section, we describe the implementation of the general compression
algorithm. A subsample of ticks from Apple Inc. is used as an example.

25

Table 3.1: Example of initial structure of market data for Apple Inc. Each
tick is first loaded into memory to closer simulate reading from a stream.

Sample
80000189974662 | 172.26 | 2 | 172.55 | 2
80000190231252 | 172.26 | 2 | 172.55 | 1
80000190619305 | 172.26 | 2 | 172.63 | 1
80001307295190 | 172.52 | 3 | 172.63 | 1
80001388058920 | 172.52 | 3 | 172.62 | 1

S N e S

3.3.1 Compression

The outline of the compression algorithm is as follows:
1. Initialize
2. Process ticks

(a) Comparative encoding (none, delta, or delta-of-delta)
(b) Zigzag encoding
(c) Bit packing

3. Finalize

Initialization

The data is initially stored on disk, where each sample from a specified asset
is on the form:

Time|Bid Price|Bid Size|Of fer Price|lOf fer Size,

as exemplified in Table @ We load each sample into memory to remove the
speed impact of reading from disk.

We then create a bit vector for storing the full compressed result and
allocate memory, assuming a compression rate of 1:1 for the block. This
preallocation is crucial as continuous reallocation of the resulting bit vector—
an operation linear on the number of elements [22]—significantly reduces
compression speed.

26

Table 3.2: Samples parsed from the data in Table Ell

Time Bid Price (c) | Bid Size | Offer Price (c) | Offer Size
1 | 80000189974662 17226 2 17255 2
2 | 80000190231252 17226 2 17255 1
3 | 80000190619305 17226 2 17263 1
4 1 80001307295190 17252 3 17263 1
5 | 80001388058920 17252 3 17262 1
Table 3.3: Delta encoding of samples in Table @
Time Bid Price (c) | Bid Size | Offer Price (c) | Offer Size
1 | 80000189974662 17226 2 17255 2
2 256590 0 0 0 -1
3 388053 0 0 8 0
4 1116675885 26 1 0 0
5 80763730 0 0 -1 0

Comparative encoding

For each sample, each field is then parsed, normalized, and stored in its
appropriate data type, as shown in Table B.2. The fields are then compressed
using the specified encoding resulting in the sample values as exemplified in
Table @ In the case of “none”, this step is skipped. For delta and delta-of-
delta encoding, the first value is stored as-is, with consecutive values following
as defined in Chapter @

Zigzag encoding

For variables that could be negative, zigzag encoding (Chapter %.3.2) is per-
formed in preparation for bit packing. Table and Table illustrates
this transformation for the Offer Size value, which results in a long head of
consecutive zeros, allowing for more efficient bit packing.

Bit packing

Each value in a sample is packed independently, as shown in Table @ Bit
packing is performed using log>(64) = 6 header bits for the Time field, as

27

Table 3.4: Binary values of a delta encoded sample. The sample is the same
as the corresponding sample in Table B.3.

Field Bits
Time 00111110101001001110
Bid Price 00000000000000000000000000000000
Bid Size 00000000000000000000000000000000
Offer Price 00000000000000000000000000000000
Offer Size 1111111111111 1a1111111111111
Table 3.5: Zigzagged binary values of the sample in Table @ Time is not
zigzagged as the delta is always positive.
Field Bits
Time 00111110101001001110
Bid Price 00000000000000000000000000000000
Bid Size 00000000000000000000000000000000
Offer Price 00000000000000000000000000000000
Offer Size 00000000000000000000000000000001

its values need the full 64 bits when no-comparative-encoding (“none”) is
performed, and in some cases even for delta and delta-of-delta encoded values.

Prices and sizes need log2(32) = 5 bits for the header. Empirical data
show that these fields use only slightly over 16 bits of storage, and never
exceeds the 32 bits a 5-bit header provides.

The bit packed values are then merged into a single vector representing
the complete sample (Table @) Finally, the sample’s bit vector is appended
to the block’s bit vector.

Finalize

When N samples are compressed, where NN is the block size, the block is full.
The compression is then restarted with a new block, with sample N + 1 as
the initial sample.

The result is that all samples are stored compressed in memory, except
for each block’s initial sample. A sample is available by decompressing its

block.

28

Table 3.6: Bit packed binary values of the sample in Table @ The green
bit indicates whether the value is non-zero. , the number of bits in the
value. Red, the actual non-zero value.

| Field Packed bits
Time 1 111110101001001110
Bid Price 0

2 | Bid Size 0
Offer Price 0
Offer Size 1 1

Table 3.7:_Complete compressed representation of the corresponding sample
in Table B.3. The green bit indicates whether the value is non-zero. ,
the number of bits in the value. Red, the actual non-zero value.

‘ Compressed sample
2 ‘ 1 1111101010010011100001 1

3.3.2 Decompression

Decompression is essentially the reverse process of compression. By using
known header sizes, values can be extracted sequentially from the bit vector
describing the 2, ..., N following samples in the block, N being the block size.

To decompress delta or delta-of-delta encoded fields, it is worth noting
that we need to keep track of the aggregated delta. To compute the value of
a sample, we need to compute the delta of each preceding value of that same
field in the block.

3.4 Benchmarking

This section introduces the techniques, and the benchmarks run to evaluate
their viability. Finally, we specify the hardware used for the benchmarking.

3.4.1 Techniques

We benchmark no-comparative-encoding, delta encoding, and delta-of-delta
encoding on different data sets. Zigzagging is performed where appropriate,
followed by bit packing.

29

For each technique, we assess the compression rate, compression speed,
and decompression speed. The compression rate is measured relative to the
number of bits used to store the original value, e.g., 64 bits for each Time
value.

3.4.2 Benchmarks

We first benchmark the individual fields to assess the performance of the
discussed techniques on each variable. Compressing the columns in order
also reveals the performance of storing the data in column-major order.

We benchmark the algorithm on the Time field, followed by price and
size. For price and size, we focus on the benchmarks for Bid Price and Bid
Size, respectively. We know, in part from Figure and Figure @, that the
values, distribution, and format for the two price and the two size fields are
close to identical. We therefore only study one of each.

We then benchmark the algorithm on the full multivariate data, storing
the compressed data in row-major order. We use the same encoding on each
field, and a hybrid scheme with different encodings on different fields, where
there is an indication of a better compression rate or speeds.

To evaluate the implementation, benchmarks are run on financial mar-
ket data from different securities traded on the New York Stock Exchange
(NYSE). We use freely available sample data from January 3rd, 2018 [13].
We look at data from the most actively traded stocks, as these have the
most benefit from compression due to the significant number of data points.
The top 100 most actively traded stocks available in the data set have, on
average, 1.1M samples of trading data on this date. We consider the five
relevant fields from each of the samples.

We first benchmark Apple Inc., following up on the analysis from Chap-
ter B.2. When considering a single stock, we run 100 benchmarks and average
the results. We then benchmark the top 100 most active stocks, including
Apple Inc., and average the results. The latter results are truncated to the
size of the smallest data set.

3.4.3 Hardware

The implementation is benchmarked on a 2018 MacBook Pro with a 2.3GHz
Quad-Core Intel Core i5 processor and 16GB of random access memory
(RAM). Input and output data is stored in RAM.

30

Chapter 4

Results and Discussion

With the knowledge of structures and properties of financial market data
that could enable compression (Chapter B.2), we can test these assumptions
using the discussed techniques on a broad range of data sets. This chapter
introduces and dwells on the results of these benchmarks.

In Chapter El], we present and analyze the results, before we—in Chap-
ter .2—discuss the speed, block size, and major order for compression of the
full multivariate data.

4.1 Benchmark results

This section presents the results of our benchmarks, as described in Chap-
ter B.4. We first look at the benchmark results from compressing individual
fields. We then consider the results from the full multivariate data.

4.1.1 Individual fields

We benchmark individual fields to assess the performance of the discussed
techniques on each column in isolation. In this section, we look at the bench-
mark results from compressing the Time field, a Price field, and a Size field.

31

Compression rate

Compression speed

Decompression speed

300 550
3 1 e o
= S 250 S 500 -
- |
21 < 200 A < 450 -
= =
14 : : : 150 . . . 400 4 . . .
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
Tick number [103] Tick number [103} Tick number [103]

no-comparative-encoding delta delta-of-delta

Figure 4.1: Benchmark results from compressing the Time field for Apple
Inc’s market data (January 3rd, 2018). Using delta encoding, values of 64
bits are reduced to 64/2.7 ~ 24 bits.

Time

The results from benchmarking the Time field using the discussed techniques
are displayed in Figure @ and Figure @

In Chapter B.2.1, we theorized that compressing randomly spaced times-
tamps yields only slightly lower entropy. Timestamps encoded with delta
or delta-of-delta_encoding are reduced to between 1/4 and 1/2 the number
of bits. Figure confirms that this is indeed the case for this data set.
The observed compression rate is on the lower end (2.7), likely due to the
additional 1 4 6 = 7 bits needed for bit packing.

The compression rate mirrors the compression and decompression speeds.
It can thus be assumed that the speed overhead of delta and delta-of-delta
encoding is significantly less than that of bit packing. We know from Chap-
ter R.3.2 that bit packing is more efficient on smaller values. This statement
supports a hypothesis that the smaller values resulting from comparative
encoding have faster bit packing (and unpacking), leaving no-comparative-
encoding with significantly lower speeds.

The results also reveal that we reach the maximum rate and speeds with
high velocity. The overhead of storing the initial value without any form of
compression—using a full 64 bits—is thus of limited impact. Using a small

32

Compression rate Compression speed Decompression speed

300 550

(2 2504 f 2 500 1 (—

wn wn

} | ?

S 200 - € 450 -

& -
| : : : 150 11 : : : 004 : : :
0 200 400 600 0 200 400 600 0 200 400 600

Tick number [103] Tick number [103] Tick number [103]

no-comparative-encoding delta delta-of-delta

Figure 4.2: Average benchmark results from compressing the Time field of
the market data from the top 100 most actively traded stocks (January 3rd,
2018). Using delta encoding, values of 64 bits are reduced to 64/3.0 ~ 21
bits.

block size is therefore possible.
Lastly, we see that these statements are also valid for the general case,
as displayed in Figure @

Price

niques are displayed in Figure and Figure #.4.

We theorized in Chapter B.2.2 that the Price fields have significant bene-
fits from comparative encoding. Consecutive values are often identical, pro-
viding a large portion of zeros. We also have a general skew towards lower
values. The results show that this is indeed the case, and we are able to
reduce the average size from 32 bits to slightly less than 5 bits for the Apple
Inc. data set.

The results from benchmarking the Bid Price field using the discussed tech-
g

Figure @ shows that the compression rate is even higher for the general
case. The magnitude of the price of a stock varies greatly. The average price
for the top 100 most actively traded stocks is lower than that of the data
in Figure 4.3. This is illustrated by the lower compression rate for Apple
Inc. using no-comparative-encoding (1.5), versus the compression rate for

33

Compression rate Compression speed Decompression speed

450
6 o __ 700 A
mS 400 mg
° =, =
Z4- a0 PNV |
2 2 2
.2 .S
&= 300 A =
24| 01|
T T T T 250 T T T T T T T T
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
Tick number [10?] Tick number [10%] Tick number [10?]
no-comparative-encoding delta delta-of-delta

Figure 4.3: Benchmark results from compressing the Bid Price field of Apple

Inc’s market data (January 3rd, 2018). Using delta encoding, values of 32
bits are reduced to just over 32/6.6 ~ 5 bits.

Compression rate Compression speed Decompression speed

450
700
10 7 o400 1 o
o = [=}
3 2350 1 | 2600
~ i 2
5 S S
&= 300 -
J 500 A
T T T T 250 T T T T T T T
0 200 400 600 0 200 400 600 0 200 400 600
Tick number [103] Tick number [103] Tick number [103]
no-comparative-encoding delta delta-of-delta

Figure 4.4: Average benchmark results from compressing the Bid Price field
of the market data from the top 100 most actively traded stocks (January

3rd, 2018). Using delta encoding, values of 32 bits are reduced to 32/11.5 =~ 3
bits.

34

Compression rate

Compression speed

Decompression speed

6 4 450 650
og 425 g
‘ =, =, 600 N
1 2400 - @
Z 2
S S 550
= 375 = -
2 -
T T T T 350 T T T T 500 \J T T T
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
Tick number [103] Tick number [103} Tick number [103]
no-comparative-encoding delta delta-of-delta

Figure 4.5: Benchmark results from compressing the Bid Size field of Apple
Inc’s market data (January 3rd, 2018). Using delta encoding, values of 32
bits converge towards 32/5.0 ~ 6 bits.

the average case using the same technique (1.7). Higher compression rates
are thus possible for the latter. These values can be compressed to about 3
bits each.

As with the Time field, a higher compression rate yields higher speeds.

Size

The results from benchmarking the Bid Size field using the discussed tech-
niques are displayed in Figure @ and Figure #.4.

In Chapter @7 we hypothesized that the size values only have a slight
benefit from comparative encoding. The results show that this is indeed
the case. Compression rates spike for low tick numbers due to low values
and entropy in early-morning trading volumes. The compression rate then
flattens around 5 for Apple Inc. and 4 in the general case, when using delta
encoding.

While delta encoding produces a slightly higher compression rate, both
delta and delta-of-delta encoding have mediocre results compared to using no-
comparative-encoding. Sizes are essentially random low-digit values, making
the zeros produced be the only noteworthy benefit from comparative encod-
ing.

35

Rate

Compression rate Compression speed Decompression speed

450 650
& 425 4 N
10 A = = 600
% 400 9 N———— %
5 < S 550 1
B 375 = r
T T T T 350 T T T T 500 T T T T
0 200 400 600 0 200 400 600 0 200 400 600
Tick number [103] Tick number [103] Tick number [103]

no-comparative-encoding delta delta-of-delta

Figure 4.6: Average benchmark results from compressing the Bid Size field
of the market data from the top 100 most actively traded stocks (January
3rd, 2018). Using delta encoding, values of 32 bits converge to 32/4.2 ~ 8
bits.

The insignificant benefit of comparative encoding naturally raises the
question of whether this type of encoding is necessary for the Size fields.
However, as previously observed, there are indications that increased com-
pression rates might be more critical for the speeds than the overhead of the
encoding.

4.1.2 Multivariate data

Figure @ and Figure @ shows the results from benchmarking the full mul-
tivariate data for Apple Inc. and the average benchmark results from the
top 100 most actively traded stocks, respectively. The data is processed and
stored in row-major order (Chapter @), where the labeled technique is
used on all fields. For the hybrid scheme, delta encoding is used on the Time
and Price fields, and no-comparative-encoding on the Size fields, as discussed
in Chapter B.4.2.

Unsurprisingly, we see that using the most efficient compression technique
for each field also yields the best results for compressing the full multivariate
data. We know that the benchmark results for the multivariate data are a
weighted average of the benchmark results for each field. For instance, the

36

Compression rate Compression speed Decompression speed

5 90 160
4—F: g%—? gwo—},r
3 - £ 80 Z 0
< 3
2 4 =75 E 130 1
1 T T T 70 T T T 120 T T T
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
Tick number [10%] Tick number [10%] Tick number [10%]
no-comparative-encoding delta delta-of-delta hybrid

Figure 4.7: Benchmark results from compressing Apple Inc’s market data
(January 3rd, 2018). The labeled technique is used on all five fields. hybrid
uses delta encoding for Time and prices, and no-comparative-encoding for
sizes. The samples are stored in row-major order. Delta encoding reduces
the size to 192/4.1 ~ 47 bits.

64 bits in an original timestamp constitute a more substantial portion of
the original sample than the other values, each represented by 32 bits. The
compression rate of the Time field is thus of higher relative impact.

Further, we see that the compression rate and speed of the algorithm
start to converge after only a few thousand ticks. The decompression speed
increases slightly even after this point.

More surprisingly, we see that the hybrid scheme—i.e., compressing Time
and Price fields with the optimal delta encoding, and Size fields with no-
comparative-encoding—have worse results for all measurements. The lower
compression rate seems to take a slightly higher toll on the compression speed
than the benefits of removing the field’s encoding. This observation is in
line with the assumption from Chapter #.1.1, confirming that the threshold
for how much a comparative encoding has to compress the variable to be
beneficial on speed is indeed small. The cost of storing the values in blocks—
i.e., zigzagging and bit packing—is much higher than that of comparative
encoding.

37

Compression rate Compression speed Decompression speed

5 90 160
F —

4 1 [— o 851 2 150 1
. | = =2 —
=31 280 1 2140 1
~ 2 2

S >
2 1 B 754 &= 130 A
1 T T T 70 T T T 120 T T T
0 200 400 600 0 200 400 600 0 200 400 600
Tick number [10%] Tick number [10%] Tick number [10%]
no-comparative-encoding delta —— delta-of-delta hybrid

Figure 4.8: Average benchmark results from compressing the market data
from the top 100 most actively traded stocks (January 3rd, 2018). The
labeled technique is used on all five fields. hybrid uses delta encoding for
Time and prices, and no-comparative-encoding for sizes. The samples are

stored in row-major order. Delta encoding reduces the size to 192/4.4 ~ 44
bits.

38

4.2 Discussion of technical properties

Having introduced the benchmark results from compressing the full multi-
variate data, we can discuss the important properties of the compression
scheme. In this section, we discuss the speed, block size, and major order
for the proposed scheme for continuous lossless compression of multivariate
financial market data.

4.2.1 Speed

The benchmark results from the full multivariate data show that our simple
implementation of the algorithm obtains compression speeds north of 85 x 103
ticks/s. We know from Chapter @ that the compression speed needs to
keep up with the injection rate of samples from each specific asset. While
market data is highly random, and future frequencies are unpredictable, ini-
tial observations show that the highest frequencies of market data are in the
thousands, exemplified for Apple Inc. in Figure El! The peak frequencies of
market data are thus expected to be one order of magnitude lower than the
obtained compression speeds of this implementation.

It is expected that further optimization of the compressor, e.g., using
SIMD techniques (Chapter R.3.2) for parallel calculation of deltas in each
row, can increase speeds significantly.

The results reveal a strong correlation between the compression rate and
speed. Due to bit packing’s speed being linear in the number of bits (Chap-
ter .3.2), the compression speed is more dependent on this value, than the
comparative encoding used. The speed of delta and delta-of-delta encoding
on a multivariate sample is primarily dependent on the number of values—
i.e., columns—in the sample, with delta-of-delta encoding having a slightly
higher constant factor due to calculating two deltas.

Unlike compression speed, decompression speed is not directly dependent
on the size of the values. We know from Chapter 2.3.2 that the speed of
unpacking a value has a constant upper bound, where the deciding factor
is whether the value is zero or not, with zero reducing the decompression
speed slightly. This lack of dependency is illustrated in Figure .6, where
the considerable reduction in bit size at early tick numbers yields a minimal
increase in decompression speed when using no-comparative-encoding, as the
values are still non-zero. Delta and delta-of-delta encoding, however, produce
a large number of zeros, increasing the decompression speed significantly.

39

Compression rate Compression speed Decompression speed

5.0 90 160
4.5 4 g 871] og 1 R I
S A)
= 4.0 1 285 - 2150
~ = 2
< <
3.5 B 82 1 = 145
3.0 T 80 T 140 T
0 50 100 0 50 100 0 50
Tick number [103} Tick number [103] Tick number [103}
delta

Figure 4.9: Snippets of the benchmark results from compressing Apple Inc/s
market data (January 3rd, 2018). Delta encoding is used on all five fields.
The samples are stored in row-major order. The dotted line indicates the
maximum values in the overarching results.

4.2.2 Block size

Figure @ and Figure show snippets of the lowest tick numbers from
the multivariate benchmark results in Chapter ¢.1.2. We see that the com-
pression rate slowly starts to converge after about 25 x 10? ticks, reaching
optimal values at around 100 x 10? ticks. Decompression speeds have a slight
benefit from even larger blocks, with speeds increasing linearly after 25 x 103
ticks.

A block size of 100 x 103 ticks, with samples stored in row-major order,
produces blocks with a memory footprint of less than 550 kB, assuming a
compression rate of 4.4, as indicated by Figure @ We know from Chap-
ter @, that small block sizes are highly beneficial, as they reduce the
number of additional samples that need to be decompressed when retrieving
a single entry.

For time series, a small block size is particularly interesting in the case
of range search. Finding the start and end value in a range would need, on
average, 275 kB + 275 kB = 550 kB additional decompression overhead; 275
kB for finding each of the values, assuming a trivial sequential scan over their
compressed block. This overhead is constant for any range with Nyoers > 1,

40

100

Compression rate Compression speed Decompression speed

5.0 90 160

a54] gsw—ﬁ £ 155
° = = r—’f
= 4.0 £ 85 1 2150
= 9 g

.= ©
3.5 B 82 1 B 145 A
3.0 T 80 T 140 T
0 50 100 0 50 100 0 50 100
Tick number [103] Tick number [103] Tick number [103]

delta

Figure 4.10: Snippets of the average benchmark results from compressing
the market data from the top 100 most actively traded stocks (January 3rd,
2018). Delta encoding is used on all five fields. The samples are stored
in row-major order. The dotted line indicates the maximum values in the
overarching results.

and is therefore of less importance when extracting a broader range of values
where a significant number of blocks have to be decompressed.

4.2.3 Major order

While the benchmark results in Chapter @ are measuring the proposed
algorithm using row-major order, column-major order is equivalent to com-
pressing each column in order; sequential compression and decompression of
each field. The results in Chapter E thus reflect the performance of a
column-major version of the same algorithm.

We know from Chapter E that time series are unique in that each
value is connected to a specific timestamp. This connectivity has an unfor-
tunate side-effect when storing data in column-major order. While we can
see from the benchmark results that storing each column separately yields
increased speeds, the values are disconnected from their timestamp. Access-
ing a specific column by time thus requires us first to decompress and search
the Time column for the indexes, and then the desired column. Though the
benchmark results confirm that this may still be beneficial with regards to

41

speed, as opposed to row-major storage, it is both a more complicated task
and less effective when the number of attributes queried for approaches the
dimension of the data set.

A different approach is to store the multivariate data as multiple univari-
ate time series. This approach has the added benefit of doing single-column
lookups efficiently, e.g., accessing Bid Prices over a specific time interval.
The obvious downside is the need to store the Time column with each of
the D variables. Though this can be beneficial when the Time column is
highly compressible, it increases the total storage footprint considerably for
financial market data, where the field is of low compressibility.

In general, we see that row-major order is the preferred storage method
for multivariate market data when the connectivity between variables is of
importance. It requires no additional storage of timestamps while still en-
abling non-complex and relatively fast lookups of values by time. Addition-
ally, row-major order has the added potential of leveraging SIMD, increasing
the speeds significantly by calculating the delta of each value in parallel.

42

Chapter 5

Conclusion and Future Work

Software systems process ever-increasing amounts of real-time data. Recent
work has shown that compression can significantly increase the performance
of such systems. We have analyzed and assessed a scheme for continuous
lossless compression of streams of high-frequency multivariate financial mar-
ket data. The properties of this type of data require combining multiple
efficient methods to obtain suitable rates and speeds.

We argue that the compression of multivariate streams is essentially the
same as compressing multiple univariate streams with a shared time dimen-
sion. By studying current state-of-the-art systems for compression of univari-
ate time series, we have implemented a novel algorithm for lossless compres-
sion of multivariate market data. The variables are processed independently,
where each sample is compressed continuously, making no assumptions on
future distributions.

Our implementation assumes the values of a sample to be interconnected.
We show that row-major order is preferred, as it obtains suitable results
without the increased overhead of storing each variable as a univariate time
series. This storage is highly unfortunate as the timestamp dominates the
information and storage footprint in high-frequency market data.

By leveraging techniques such as comparative encoding, we can continu-
ously compress multivariate samples of high randomness losslessly, increasing
the number of recent samples storable in-memory by a factor of 4.4 on aver-
age. Compression speeds one order of magnitude higher than the frequency
of the most actively traded assets, and one-pass decompression with blocks
of less than 550 kB, indicates that such techniques may be suitable for in-
memory storage in data-intense real-time systems.

43

5.1 Future Work

The primary limiting factor of any compression scheme is in its compression
rate or execution speeds. We expect a small upside on the compression rate
by using more efficient compression techniques, and a significant upside on
compression and decompression speeds, for instance, by leveraging advanced
hardware instructions.

The compression rate is limited by the requirement of compressing each
sample continuously and losslessly. The unpredictability of the streams yields
a high amount of entropy, reducing the maximum possible compression rate.
Regardless, more efficient compression techniques, such as optimized headers
for storing each value, or combining and storing headers externally, could
increase the compression rate (Chapter B.2.3).

Compression and decompression speeds are not optimized in this thesis
and have significant upsides. By leveraging techniques such as SIMD for
calculating the delta of each variable in parallel, we can significantly reduce
the number of instructions needed to process a sample (Chapter 1.2.1).

Finally, use case specific tailoring could be a fruitful avenue for future
work. For instance, performing a second stage compression of blocks in iso-
lation could further reduce the storage footprint of the data. Initial tests
show that using the proposed algorithm and then compression the result us-
ing a universal lossless compression algorithm such as LZW (Chapter @),
yields increased compression rates. This rather obvious find shows that block-
level compression could be applied for further reduction in size. Whether
higher compression and decompression speeds are preferred versus an in-
creased amount of data points stored in memory depends, as always, on the
specific use case.

44

Bibliography

1]

M. M. Dacorogna, An introduction to high-frequency finance. Academic
Press, 2001, p. 6, 1ISBN: 0122796713.

T. Pelkonen, S. Franklin, J. Teller, P. Cavallaro, Q. Huang, J. Meza,
and K. Veeraraghavan, “Gorilla: A Fast, Scalable, In-Memory Time
Series Database,” Tech. Rep., 2150.

F. Eichinger, P. Efros, S. Karnouskos, and K. Béhm, “A time-series
compression technique and its application to the smart grid,” VLDB
Journal, vol. 24, no. 2, pp. 193-218, 2015, 18SN: 0949877X. DOI: 10.
1007/s00778-014-0368-8.

N. I. Martina Rejsjo, head of Nasdaq Surveillance North America Eq-
uities, “The massive and, in many cases, exponential growth in market
data is a significant challenge for surveillance professionals”. [Online].
Available: https://www.bloomberg.com/news/articles/2019-12-
06/robots-in-finance-could-wipe-out-some-of-its-highest-
paying-jobs (visited on 12/07/2019).

Yaron Minsky, "The US equity markets alone can peak at roughly 5 mil-
lion messages per second, and volumes on the options markets are even
higher.”, 2018. [Online]. Available: https://blog. janestreet . com/
what-the-interns-have-wrought-2018/ (visited on 11/24/2019).

D. Lemire and L. Boytsov, “Decoding billions of integers per second
through vectorization,” Sep. 2012. DOI: 10 . 1002/ spe . 2203. arXiv:
1209.2137. [Online|. Available: http://arxiv.org/abs/1209.2137Y
20http://dx.doi.org/10.1002/spe.2203.

Nico van der Wijst, Finance: A Quantitative Introduction. Cambridge
University Press, 2013, p. 208, 1SBN: 1107029228.

45

https://doi.org/10.1007/s00778-014-0368-8
https://doi.org/10.1007/s00778-014-0368-8
https://www.bloomberg.com/news/articles/2019-12-06/robots-in-finance-could-wipe-out-some-of-its-highest-paying-jobs
https://www.bloomberg.com/news/articles/2019-12-06/robots-in-finance-could-wipe-out-some-of-its-highest-paying-jobs
https://www.bloomberg.com/news/articles/2019-12-06/robots-in-finance-could-wipe-out-some-of-its-highest-paying-jobs
https://blog.janestreet.com/what-the-interns-have-wrought-2018/
https://blog.janestreet.com/what-the-interns-have-wrought-2018/
https://doi.org/10.1002/spe.2203
https://arxiv.org/abs/1209.2137
http://arxiv.org/abs/1209.2137%20http://dx.doi.org/10.1002/spe.2203
http://arxiv.org/abs/1209.2137%20http://dx.doi.org/10.1002/spe.2203

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

T. A. Welch, “A Technique for High-Performance Data Compression,”
Computer, vol. 17, no. 6, pp. 819, Jun. 1984, 1ssN: 0018-9162. DOTI:
10.1109/MC. 1984 . 1659158. [Online]. Available: https://doi.org/
10.1109/MC.1984.1659158.

D. Blalock, S. Madden, and J. Guttag, “Sprintz,” Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
vol. 2, no. 3, Sep. 2018. DOI: 10.1145/3264903.

I. Aldridge, High-Frequency Trading - A Practical Guide to Algorithmic
Strategies and Trading Systems (Wiley Trading). Wiley, 2009, pp. 2,
61, ISBN: 0470563761.

London Stock Exchange, What is Real Time Data. [Online|. Avail-
able: https://www.lseg.com/markets-products-and-services/

market - information/real - time - data/what -real - time-data
(visited on 06/07,/2020).

NYSE, Daily TAQ Client Specification, 2013. [Online]. Available: https:
//www .nyse . com/publicdocs/nyse/data/Daily’%7B%5C_ %7DTAQY
7B%5C_%7DClient%7B%5C_%7DSpec’7B%5C_%7Dv3.0d.pdf (visited on
12/08/2019).

——, NYSE Daily TAQ. [Online|. Available: https://www.nyse.com/
market-data/historical/daily-taq (visited on 12/08/2019).

D. E. Knuth, The Art of Computer Programming. Addison-Wesley
Professional, 1997, vol. 1, pp. 298-305, 24, 1sBN: 9780201896831. DOTI:
9780201896831.

“IEEE Standard for Binary Floating-Point Arithmetic,” ANSI/IEEE
Std 754-1985, p. 13, Oct. 1985. DOI: 10.1109/IEEESTD. 1985.82928.

S. Mittal and J. S. Vetter, A Survey of Architectural Approaches for
Data Compression in Cache and Main Memory Systems, May 2016.
DOI: 10.1109/TPDS.2015.2435788.

D. Lemire, L. Boytsov, and N. Kurz, SIMD compression and the in-
tersection of sorted integers, 2016. DOI: 10 . 1002/ spe . 2326. arXiv:
1401.6399.

J. Von Neumann and M. D. Godfrey, “First Draft of a Report on the
EDVAC,” Tech. Rep. 4, 1993, pp. 27-75. DOI: 10.1109/85.238389.

46

https://doi.org/10.1109/MC.1984.1659158
https://doi.org/10.1109/MC.1984.1659158
https://doi.org/10.1109/MC.1984.1659158
https://doi.org/10.1145/3264903
https://www.lseg.com/markets-products-and-services/market-information/real-time-data/what-real-time-data
https://www.lseg.com/markets-products-and-services/market-information/real-time-data/what-real-time-data
https://www.nyse.com/publicdocs/nyse/data/Daily%7B%5C_%7DTAQ%7B%5C_%7DClient%7B%5C_%7DSpec%7B%5C_%7Dv3.0d.pdf
https://www.nyse.com/publicdocs/nyse/data/Daily%7B%5C_%7DTAQ%7B%5C_%7DClient%7B%5C_%7DSpec%7B%5C_%7Dv3.0d.pdf
https://www.nyse.com/publicdocs/nyse/data/Daily%7B%5C_%7DTAQ%7B%5C_%7DClient%7B%5C_%7DSpec%7B%5C_%7Dv3.0d.pdf
https://www.nyse.com/market-data/historical/daily-taq
https://www.nyse.com/market-data/historical/daily-taq
https://doi.org/9780201896831
https://doi.org/10.1109/IEEESTD.1985.82928
https://doi.org/10.1109/TPDS.2015.2435788
https://doi.org/10.1002/spe.2326
https://arxiv.org/abs/1401.6399
https://doi.org/10.1109/85.238389

[19]
[20]

[21]

[22]

Google, Protocol buffers encoding. [Online|. Available: https://developers.
google.com/protocol-buffers/docs/encoding (visited on 05/27/2020).

P. Ratanaworabhan, J. Ke, and M. Burtscher, “Fast Lossless Compres-
sion of Scientific Floating-Point Data,” Tech. Rep.

C. E. Shannon, “A Mathematical Theory of Communication,” Bell Sys-
tem Technical Journal, vol. 27, no. 3, pp. 379-423, 1948, 1SSN: 15387305.
DOI: 10.1002/7j.1538-7305.1948.tb01338.x.

Cplusplus, Std::vector::resize. [Online]. Available: http://www.cplusplus.
com/reference/vector/vector/resize/ (visited on 03/20,/2020).

47

https://developers.google.com/protocol-buffers/docs/encoding
https://developers.google.com/protocol-buffers/docs/encoding
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://www.cplusplus.com/reference/vector/vector/resize/
http://www.cplusplus.com/reference/vector/vector/resize/

48

Appendix A

Delta-of-delta encoding

We have the initial value defined as
1 = xo + 01,

where x is a reference value. The next value is equal to the previous value,
21, plus the change
To =T + (51 + (55)

As the change for each consecutive value is relative to all previous changes,
we have that the next value is

T3 = 19 + (61 + 65 +03).
That is, for each x;, we need to add 6; + 2222 6]2- to x;_;. We thus have that
z; = (x9+ 1) + (61 +05) + (61 + 05 + 03) + .. + (61 + 65 + 65 + ... +37),
which can be rewritten as
x; =10+ 0 + (i — 1)65 + (i — 2)05 + ... + 67
This can be formulated generally as

7 :x0+i51+2(i—j+ 1)53.

j=2

49

@ NTNU

Norwegian University of
Science and Technology

	List of Tables
	List of Figures
	List of Listings
	Introduction
	Goals and contributions
	Outline

	Background
	High-frequency financial market data
	Time series
	High-frequency data
	Financial market data

	Compression
	Classes
	Technical properties

	Lossless compression of streams
	Comparative techniques
	General techniques
	Related work

	Lossless compression of streams of high-frequency market data
	Technical requirements
	Speed
	Block size
	Major order

	Structure and properties of market data
	Timestamps
	Prices
	Sizes

	Implemented algorithms
	Compression
	Decompression

	Benchmarking
	Techniques
	Benchmarks
	Hardware

	Results and Discussion
	Benchmark results
	Individual fields
	Multivariate data

	Discussion of technical properties
	Speed
	Block size
	Major order

	Conclusion and Future Work
	Future Work

	Bibliography
	Delta-of-delta encoding

