
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Orhan Henrik Hirsch

Scalability of NewSQL Databases in a
Cloud Environment

Master’s thesis in Computer Science

Supervisor: Svein Erik Bratsberg

June 2020

Orhan Henrik Hirsch

Scalability of NewSQL Databases in a
Cloud Environment

Master’s thesis in Computer Science
Supervisor: Svein Erik Bratsberg
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

In recent years, there has been an increased demand for NewSQL databases,
which are systems that both scale horizontally and can guarantee transac-
tion isolation and consistency. NewSQL systems are quite new, and little
research exists about the difference between their architecture and perfor-
mance. In this thesis, we investigate the open source NewSQL systems
CockroachDB, TiDB and YugabyteDB in depth, and perform several eval-
uations of their performance characteristics.

To evaluate these databases, we have built a novel automated testing ap-
proach, which can create and evaluate clusters without any manual inter-
vention. During our research, we used this system to automatically test
over 200 separate clusters using more than 1,500 virtual machines in a
cloud, which speaks to the success of this approach.

During our evaluation, we found that the performance of the databases
is comparable, but that they have different trade-offs. CockroachDB and
serializable YugabyteDB provide higher levels of transaction isolation than
TiDB and snapshot YugabyteDB, but for write operations, they have lower
throughput and higher latency. However, CockroachDB outperforms the
other systems in reads, which means that the transaction isolation trade-off
only affects write operations.

Sammendrag

De siste årene har det vært en økt etterspørsel etter NewSQL databaser,
som er systemer som b̊ade skalerer godt horisontalt, men ogs̊a kan garantere
isolasjon og konsistens mellom transaksjoner. NewSQL er et ganske nytt
omr̊ade, og det finnes lite forskning om forskjellene i databasenes ytelse
og arkitektur. Denne oppgaven undersøker tre NewSQL systemer i dyb-
den og evaluerer deres ytelse. Disse systemene er CockroachDB, TiDB og
YugabyteDB, og har alle åpen kildekode.

For å evaluere disse databasene har vi bygget en ny automatisk testmetode
som kan opprette og evaluere databaseclustere uten manuelle handlinger.
Gjennom v̊art forskningsarbeid har vi brukt denne metoden til å automa-
tisk evaluere over 200 clustere ved bruk av over 1,500 virtuelle maskiner
i en sky. Størrelsen p̊a disse tallene viser at denne testmetoden har vært
vellykket.

Gjennom evalueringen av ovennevnte databasesystemer fant vi at ytelsen
deres er sammenlignbar, men at systemene har ulike kompromisser. Cock-
roachDB og serialiserbar YugabyteDB har sterkere transaksjonsgarantier
enn TiDB og øyeblikksbilde YugabyteDB, men for skriveoperasjoner har de
lavere datagjennomstrømming og høyere forsinkelse. For leseoperasjoner
oppn̊ar derimot CockroachDB bedre resultater enn de andre systemene,
hvilket betyr at kompromisset kun p̊avirker ytelsen til skriveoperasjoner.

Preface

This thesis is written during the spring of 2020 for the Department of
Computer Science at Norwegian University of Science and Technology, and
is the final work for a Master of Science degree. The research was con-
ducted by Orhan Henrik Hirsch, and was supervised by Professor Svein
Erik Bratsberg.

I am very thankful to Svein Erik Bratsberg for his valuable input during
this work, and that he has given me the opportunity to shape my own
project.

Finally, I would like to thank Hetzner Cloud for a generous research grant
that allowed me to perform this research on their cloud platform.

I

Contents

Preface I

List of Figures V

1 Introduction 1
1.1 Background . 1
1.2 Research Goals . 2
1.3 Thesis Structure . 2

2 Theoretical Background 3
2.1 CAP Theorem . 3
2.2 ACID . 4
2.3 Isolation levels . 5
2.4 Distributed concurrency control 6
2.5 Distributed transactions and consensus 8
2.6 Two-Phase Commit . 8
2.7 Raft . 9
2.8 NewSQL . 10
2.9 Percolator . 11
2.10 Spanner . 11
2.11 Calvin . 12
2.12 CockroachDB . 12

2.12.1 Architecture . 13
2.12.2 Storage engine . 14
2.12.3 Transaction handling 14
2.12.4 Geo-replication . 16

2.13 TiDB . 17
2.13.1 Architecture . 18
2.13.2 Storage engine . 19
2.13.3 Transaction handling 20
2.13.4 Geo-replication . 21

2.14 YugabyteDB . 22
2.14.1 Architecture . 22

II

2.14.2 Storage engine . 22
2.14.3 Transaction handling 24
2.14.4 Geo-replication . 25

3 Implementation 27
3.1 Benchmarking system . 27

3.1.1 Benchmarking software 27
3.1.2 Database clusters . 28
3.1.3 Control script . 30
3.1.4 System overview . 30

3.2 Benchmarks . 32
3.2.1 YCSB . 32
3.2.2 TPC-C . 32

3.3 Choice of cloud provider . 33
3.3.1 Variable server performance 33

3.4 Database specifics . 34
3.4.1 CockroachDB . 34
3.4.2 TiDB . 34
3.4.3 YugabyteDB . 35

3.5 Final test configuration . 35

4 Results and Discussion 37
4.1 CockroachDB . 37
4.2 TiDB . 41
4.3 YugabyteDB . 46

4.3.1 Snapshot isolation 46
4.3.2 Serializable isolation 49

4.4 Comparison . 52
4.5 Discussion . 56

5 Conclusion and Future Work 58
5.1 Conclusion . 58
5.2 Future Work . 59

References 61

III

List of Figures

2.1 TiDB’s architecture . 18
2.2 TiKV sharding and replication. 20
2.3 Sharding and replication in Yugabyte Tablet Server 23
2.4 Write Path in a YugabyteDB transaction 26

3.1 An overview of the different parts of a benchmark that is
being executed with our system. 31

4.1 YCSB performance for three-node CockroachDB clusters
with different instance sizes. 38

4.2 YCSB performance per CPU and 4GB RAM for three-node
CockroachDB clusters with different instance sizes. 38

4.3 YCSB performance for CockroachDB clusters with different
numbers of nodes, using 4 CPU 16GB RAM nodes. 39

4.4 YCSB performance per node for CockroachDB clusters with
different numbers of nodes, using 4 CPU 16GB RAM nodes. 40

4.5 TiDB clusters with different configurations for PD and
TiDB. Each cluster has three TiKV nodes and uses 4 CPU
16GB RAM nodes. 42

4.6 YCSB performance for four-node TiDB clusters with differ-
ent instance sizes. The cluster consists of three TiKV nodes
and one shared TiDB and PD node. 43

4.7 YCSB performance per CPU and 4GB RAM for four-node
TiDB clusters with different instance sizes. The cluster con-
sists of three TiKV nodes and one shared TiDB and PD
node. 43

4.8 YCSB performance for TiDB clusters with different numbers
of TiDB and TiKV nodes, using 4 CPU 16GB RAM nodes.
All clusters use one PD running on a TiDB node. 44

4.9 YCSB performance per node for TiDB clusters with different
numbers of TiDB and TiKV nodes, using 4 CPU 16GB RAM
nodes. All clusters use one PD running on a TiDB node. . . 45

4.10 YCSB performance for three-node YugabyteDB clusters
with snapshot isolation on different instance sizes. 46

IV

4.11 YCSB performance per CPU and 4GB RAM for three-node
YugabyteDB clusters with snapshot isolation on different in-
stance sizes. 47

4.12 YCSB performance for YugabyteDB clusters with snapshot
isolation using different numbers of 4 CPU 16GB RAM nodes. 48

4.13 YCSB performance per node for YugabyteDB clusters with
snapshot isolation using different numbers of 4 CPU 16GB
RAM nodes. 48

4.14 YCSB performance for three-node YugabyteDB clusters
with serializable isolation on different instance sizes. 50

4.15 YCSB performance per CPU and 4GB RAM for three-node
YugabyteDB clusters with serializable isolation on different
instance sizes. 51

4.16 YCSB performance for YugabyteDB clusters with serializ-
able isolation using different numbers of 4 CPU 16GB RAM
nodes. 51

4.17 YCSB performance per node for YugabyteDB clusters with
serializable isolation using different numbers of 4 CPU 16GB
RAM nodes. 52

4.18 YCSB performance per node for minimal CockroachDB,
TiDB and YugabyteDB clusters using 4 CPU 16GB RAM
nodes. 53

4.19 YCSB latencies for minimal CockroachDB, TiDB and Yu-
gabyteDB clusters using 4 CPU 16GB RAM nodes. The
y-axis is cropped because YugabyteDB with snapshot isola-
tion on workload E has a latency of over 30 seconds. 54

4.20 TPC-C performance per node for minimal CockroachDB and
TiDB clusters using both 4 CPU 16GB RAM and 16 CPU
64GB RAM nodes. YugabyteDB is excluded because it was
not able to run the TPC-C workload. 55

4.21 Comparison of performance per node for CockroachDB,
TiDB and YugabyteDB when scaling horizontally. Per-
formances are normalized to illustrate the cost of scaling
by defining that minimal cluster of each database has a
performance per node of 1. 56

V

Chapter 1

Introduction

1.1 Background

With the increasing volume of data that is being generated and processed in
the last 20 years, new database systems that scale better than traditional
systems have emerged [17]. Many of these systems sacrifice consistency
and isolation guarantees to be able to scale well, and such systems are
often categorized as NoSQL databases. Although these systems provide
much better scalability than traditional database systems, their reduced
guarantees mean that it’s the application’s responsibility to handle incon-
sistencies. For some applications, like financial systems, this requirement
makes these databases infeasible to use [17].

As a response to these challenges, much research has been done into a
new class of database systems that can scale well while also guaranteeing
isolation and consistency for transactions. These databases are usually
referred to as NewSQL, and offer an SQL interface with traditional ACID
guarantees, while also being failure tolerant and scalable. Many of these
systems are inspired by the architecture of Google’s Percolator [18] and
Spanner [7], while another novel architecture was introduced by Calvin
[22].

Three popular open source NewSQL databases are CockroachDB [6], TiDB
[23] and YugabyteDB [26]. These are inspired by Google Spanner and
Google Percolator, and take different approaches to scalability and trans-
action handling. The three databases are all built to work well in a cloud
environment, and are highly focused on providing horizontal scalability,
which means that applications using these databases are no longer limited
by the performance of a single machine. However, there exists no research
that compares the three systems in depth, and it is unclear what the perfor-

1

mance trade-offs of each system are. In this thesis, we want to address this
issue by investigating these databases further to uncover their differences
in architecture and performance.

To compare these database systems in a fair way, we need to run differ-
ent evaluations on several cluster configurations. This is a time consuming
and error prone task, as each evaluation requires a cluster to be configured
across multiple machines. To efficiently do this for the aforementioned
systems in a cloud environment, we need to automate the processes for
starting clusters and running evaluations. Another advantage of automat-
ing the evaluations is that it enables easier reproduction of test results.

1.2 Research Goals

1. Compare the performance of CockroachDB, YugabyteDB and TiDB
in a cloud environment.

2. Investigate how well each database scales vertically and horizontally.

3. Create an automated system for running database benchmarks in a
cloud environment.

1.3 Thesis Structure

• Chapter 1 – Introduction describes the background for this thesis
and outlines our research goals.

• Chapter 2 – Theoretical Background presents the background
knowledge that we find relevant for this thesis. We also describe in
depth the database systems we plan to evaluate.

• Chapter 3 – Implementation thoroughly describes our automated
benchmarking system, and outlines which workloads we are evaluat-
ing the database systems with.

• Chapter 4 – Results and Discussion presents and discusses the
results of our benchmarks, and compares the performances of the
aforementioned database systems.

• Chapter 5 – Conclusion and Future Work concludes our work,
and presents our thoughts on possible improvements to our bench-
marking system and database comparisons.

2

Chapter 2

Theoretical Background

This chapter describes the theoretical background that supports this the-
sis. First, we describe some useful concepts for understanding distributed
databases, and next describe the relevant databases for this thesis in depth.
As mentioned in Section 1.1, the NewSQL databases we cover are Cock-
roachDB, TiDB and YugabyteDB. For each database, we describe how their
architecture and storage engines are designed, as well as how they handle
transactions and geo-replication. This chapter is based on work from our
specialization project [13].

2.1 CAP Theorem

The CAP Theorem [9], created by Eric Brewer, states that a distributed
system can not provide both consistency, availability and partition toler-
ance at the same time. The implication of this is that any distributed
system must choose at most two of these properties. Since networks are
unreliable, any distributed system must support partition tolerance, and
thus, distributed systems on a network can choose to be either consistent
(CP) or available (AP). A CP system is a system that stays fully consis-
tent during a network partition, but will not be fully available. Usually,
this means that the smaller partition or sometimes the whole database be-
comes unavailable during a partition. An AP system chooses to always stay
available at the cost of consistency. During a network partition, different
partitions may not be in states that are compatible, and in this case, one
of the states needs to be chosen while the other is discarded.

The CAP Theorem states a very simple fact about the trade-offs in dis-
tributed systems during partitions, but does not describe trade-offs that
can be made while the network is healthy. To address this, Daniel J. Abadi
created a new theorem called PACELC [1]. The theorem states that dur-

3

ing a partition, a system must choose either availability or consistency, but
otherwise, it must prioritize either low latency or consistency. This implies
that in order to achieve the lowest latency while the network operates nor-
mally, a distributed database must sacrifice some consistency guarantees.

2.2 ACID

ACID are four common properties of transaction that many relational
databases guarantee, and can make it easier for developers to reason about
how transactions affect the system’s state. We have described each prop-
erty below [16, 4].

Atomicity

A transaction being atomic means that either the whole transaction is
executed or it is not executed at all, i.e. no transaction can be only partially
complete.

Consistency

Consistency means that transactions starting at the same time see the
same state. If different transactions see different states at the same time,
the states are said to be inconsistent. For example, if a database does not
provide consistency and reads are initiated in two different regions, they
may see two different versions of the same data keys. In addition to this
definition of consistency, transactions must be visible in the order that they
were executed. For example, if transaction B reads data that transaction
A wrote, and transaction C sees the writes that B performed, C must also
see the writes that A performed.

Isolation

Isolation between transactions means that transactions do not see effects
from other transactions that are in progress. Perfect isolation essentially
means that it appears to transactions as if they are running sequentially
rather than concurrently. Isolation is very helpful to developers as they
do not need to consider every way a set of transactions may interact if
running concurrently. There are many different levels of isolation that are
used in databases, and in general, the more strict isolation levels come at
a significant reduction in performance [2]. We have covered some different
isolation levels in Section 2.3.

4

Durability

Durability is the property that, when a transaction is acknowledged as
committed, it will stay that way forever. No transaction can be rolled back
after it is committed, which means that a user can trust the system to store
their data. In order to achieve durability, databases need to store a record
of each transaction to a non-volatile storage medium like a hard disk before
acknowledging it.

2.3 Isolation levels

Because perfect isolation, also known as strict serializability, has a signif-
icant performance impact [2], many lower levels of isolation are used in
common databases. In order to understand the differences between iso-
lation levels, a set of common anomalies have been defined and are listed
below [2]. Anomalies are events that occur where a transaction can observe
that it is not the only one running, i.e. not running sequentially. Strict
serializability does not allow any of these anomalies to occur.

• Lost update: A lost update occurs if two different transactions read
the same key at the same time followed by a write. If both trans-
actions e.g. decrement a field at the same time, they may overwrite
each other without realizing, resulting in both transaction commit-
ting but the value only being decremented once. This is is an isolation
anomaly, as a sequential execution would result in a different state
than this concurrent execution.

• Dirty write: Dirty writes occur when a transaction reads a value
that another transaction has written but not yet committed. If the
second transaction then performs some action based on the first, and
the first aborts while the second commits, the state of the database
can become inconsistent. Taking the same example as above, if trans-
action A decrements a value, and B decrements it afterwards, but
then transaction A aborts and B commits, you now have one com-
mitted transaction but the value is decremented by two. A sequential
execution of transactions in this case would also result in a different
state, as the second transaction would never see the aborted first
transaction.

• Dirty read: Two transactions, A and B, are being executed con-
currently, and A has written to key K1 and K2. If B now reads key
K1 and sees the write that A performed, but then reads key K2 and
does not see the write that A performed, the anomaly is considered a
dirty read. Since B only sees a part of the operations that A has per-

5

formed, and thus can neither be considered to be executed before nor
after A. The result is different from a sequential execution, as either
A or B would need to be performed first in a sequential execution.

• Non-repeatable read: If a transaction reads the same record twice,
but the value differs from the first read to the second, then the trans-
action has observed the result of another transaction while running.
This is different from a sequential execution, as there should not be
anything else than the running transaction that changes data.

• Phantom read: Phantom reads are similar to non-repeatable reads,
where reads return different values. However, for phantom reads,
every key returns the same value, but a scan returns a different set
of values. This can happen if another transaction inserts a row that
matches a scan performed by the transaction.

• Write skew: Write skew occurs when two transactions read the
same keys, but then write different keys based on this data. For
example, if two transactions both read the keys K1=5 and K2=4, and
the first transaction sets key K1 equal to key K2, i.e. 4, while the
second transaction sets key K2 equal to key K1, i.e. 5. The intention
of both transactions is for both keys to have an equal value, but a
write skew means that these two values are now swapped, while any
sequential execution would mean that the two values were equal.

These are six of the most commonly discussed anomalies when talking
about isolation levels. The SQL standard, however, only mentions the
dirty read, non-repeatable read and phantom read anomalies when defin-
ing isolation levels. This means that the SQL isolation level of a database
does not define whether or not the database prevents the three other
anomalies described above [3]. The isolation levels defined by the SQL
standard are READ UNCOMMITTED, READ COMMITTED, REPEATABLE READ and
SERIALIZABLE. Another common isolation level that is not defined in the
SQL standard is Snapshot Isolation, which provides a snapshot of the
database that the transaction can read from, and only allows the write
skew anomaly. In this thesis, the most relevant isolation levels are Snap-
shot Isolation and serializability. There are different levels of serializability
as well, allowing for different types of smaller anomalies, but those are out
of the scope of this thesis.

2.4 Distributed concurrency control

Concurrency control is required to allow multiple transactions to run at
the same time while keeping the system state consistent [16]. Concurrency

6

control is a well researched area and is needed in any data store that al-
lows concurrent transactions to occur. However, in a distributed system,
the choice of concurrency control becomes even more important, as each
thread no longer runs on the same machine, but rather on a network with
significant network latencies. Each strategy has its benefits, and depend-
ing on how the workload looks, different strategies are best. The most
important factor for which concurrency control method should be used is
how often there are conflicts between transactions, as some methods are
good at handling conflicts, but at the cost of every transaction’s perfor-
mance [10]. Below, we have described four common concurrency control
algorithms [10].

Two-Phase Locking

Two-Phase Locking (2PL) was the first method that was proven to be se-
rializable. Two-Phase Locking introduces two stages of locking in a trans-
action’s lifecycle: lock acquisition and lock releasing. A transaction can
request new locks as they are needed during its execution, and when locks
are no longer needed they can be released. One caveat, however, is that
after any lock is released, no more locks are allowed to be acquired, which
is why the algorithm is said to have two phases.

There are two types of locks in 2PL, one for reads and one for writes. Read
locks can be shared with other read locks, while write locks can not be
shared with other read or write locks, i.e. a write lock needs exclusive
access to a data item. If a write lock is requested for a data item that
has other locks, the transaction needs to wait. This waiting can cause
deadlocks, since transactions may have a cyclic waiting dependency. This
needs to be handled by killing one of the transactions. Another approach
to the deadlock problem is to kill any transaction if it needs to wait for a
lock, and instead retry the whole transaction later. This might be more
costly if complete retries are expensive, but it solves the deadlock problem
without a complex algorithm.

Optimistic

Optimistic concurrency control systems perform transactions without any
locks. However, right before a transaction commits, it performs a check to
see if any of the data it has read has been modified by another transaction.
If this is the case, the transaction needs to be retried. Optimistic concur-
rency control can perform well if most operations do not conflict, but if
many conflicts happen, the performance suffers greatly as retries become
common.

7

Multi-version concurrency control

Multi-version concurrency control (MVCC) stores multiple versions of each
key. A transaction gets assigned a version or timestamp when it starts,
and only read keys that have a lower or equal version number to this. This
makes it relatively easy to implement snapshot isolation, but there are
still some challenges. For one, old keys need to be cleaned periodically so
that the database does not fill up with stale data, and second, assigning
monotonically increasing versions or timestamps becomes complicated if
the system is distributed.

Deterministic

In a deterministic concurrency control system, transactions need to be sent
in full to the database before execution, i.e. no interactive transactions are
allowed. All transactions are then analyzed and assigned to batches by a
scheduler. This scheduler guarantees that there will be no conflicts between
transactions within a batch, and the actual execution of transactions can
therefore be done with little overhead. One disadvantage of this method
is that the scheduler can become a bottleneck in the system, and that a
latency is introduced, as each transaction needs to be batched before it is
executed.

2.5 Distributed transactions and consensus

In a distributed system, distributed consensus must be implemented to
maintain consistency. This means that nodes must agree on an ordering
of transactions. However, all transactions must not necessarily be ordered,
but the transactions that are in conflict must have the same order on all
nodes [16].

Distributed consensus can be implemented in many different ways, but
two common algorithms are Two-Phase Commit and Raft. These two
algorithms are described further in Section 2.6 and Section 2.7.

2.6 Two-Phase Commit

Two-Phase commit (2PC), not to be confused with Two-Phase locking
(2PL), is used in replicated databases to ensure that the different replicas
agree on whether a transaction should be committed or aborted [16]. This
synchronization is important, as otherwise the states on replicas will diverge
and become inconsistent.

8

The Two-Phase commit protocol is divided into the prepare phase and
the commit phase. In the prepare phase, a coordinator will gather votes
from all replicas on whether they want to commit or abort. After all
votes are collected the commit phase starts, and the coordinator inspects
the votes. If any replica voted to abort, the transaction will be aborted,
and otherwise, the transaction is committed. The final step is that the
coordinator broadcasts its decision to all replicas so that they know whether
the transaction was aborted or committed. This protocol ensures that
all replicas agree about the state of all transactions and ensures that no
inconsistencies arise.

2.7 Raft

Raft [15] is a distributed consensus algorithm that was developed to be
a simpler and more understandable alternative to Paxos. The algorithm
allows an odd set of nodes to agree on the content and order of a log, called
the Raft log. This log can contain anything, but in the case of a database
it will usually contain records similar to a traditional write-ahead log used
by non-distributed databases.

Raft works by periodically electing a leader for a Raft group. Each group
should also have an odd number of nodes, so that a majority vote is always
guaranteed. Leaders are elected for a configurable interval, and are usually
reelected after each interval unless they become unavailable. If a leader
becomes unavailable, other nodes will announce an election and try to take
the leader role after a random delay. For a new node to become the leader,
it needs to receive a majority vote from the group.

New log entries can only be added by the Raft group leader. The leader
then needs to initiate a vote and get a majority of votes before the write is
considered as committed. Since only a majority of votes is required, some
nodes may fall behind the leader on logs. In case a leader fails and a new
leader must be elected, nodes need to announce what their latest log entry
number is. A node will never vote for another node that has an older log
than itself, but should always vote for a node that has a newer log. This
mechanism combined with that the majority of nodes have the newest log
ensures that a leader can never be elected with an out of date log.

When implementing an SQL database on top of Raft, both reads and writes
should add a log entry to Raft. If no log entry is added, reads can become
inconsistent if reading from followers or reading from a leader during a
leadership change. However, as this adds a significant overhead to reads,
many databases use a mechanism called leadership lease to avoid adding
logs for reads [21, 19, 6]. A leadership lease is held by the group leader

9

for a given period of time, and within this time period, no other node can
be elected as the leader. This guarantees that a read served by the leader
will always have the latest data, as long as the leader still has its lease.
Followers can still not serve reads with this mechanism, however, as they
may still have stale data. Leadership leases solve a bottleneck for reading
data, but can also introduce some period of unavailability if a leader crashes
and its lease is too long. For this reason, lease durations are usually quite
short.

2.8 NewSQL

NewSQL databases are a relatively new class of databases that com-
bine horizontal scalability with the guarantees that traditional relational
databases provide. Our description of NewSQL databases is based on a
survey by Andrew Pavlo and Matthew Aslett of NewSQL systems [17].
NewSQL databases were inspired by the growth in the popularity of NoSQL
databases because of their scalability. A problem with NoSQL databases,
however, is that they usually provide much weaker consistency and isola-
tion, and often have no transaction support. This makes it much more
difficult for application developers to reason about database states, and
it also means that additional logic needs to be created in applications to
handle inconsistencies. There are also many domains for which weaker
guarantees are not feasible to use, e.g. financial applications.

There are two main differences between a NewSQL system and a traditional
SQL database. First, a NewSQL system scales horizontally, meaning that
it can handle increased load by adding nodes to a cluster. Non-distributed
systems can only scale vertically, meaning increasing hardware resources of
a node, and this means that there are hard limits on how much a system
can scale. Second, NewSQL systems usually support replication, meaning
that all state is stored on more than one node. This means that the crash
of any single node does not imply downtime for the system, which makes
NewSQL systems more resilient to failure than traditional systems.

NewSQL systems often have some commonalities in how they are archi-
tected. For one, databases are usually sharded, so that different nodes can
be responsible for different sets of data. Sharding is what enables hori-
zontal scalability, as without sharding, every node would need to store all
data, and one would quickly be limited by the least powerful node. The
sharding strategy is also very important for performance, as operations
that touch multiple shards are much more expensive than single-shard op-
erations. Another similarity of NewSQL databases is mentioned in the
previous paragraph: most systems replicate each shard to multiple nodes

10

for failure tolerance and sometimes for increased read performance. Repli-
cation strategies are usually either synchronous or asynchronous, where the
difference lies in whether or not replicas need to acknowledge writes before
the leader commits. Synchronous replication is required for strong consis-
tency guarantees, while asynchronous replication is more performant. This
is an instance of the PACELC theorem described in Section 2.1, as either
latency or consistency must be chosen by a system during normal network
conditions.

2.9 Percolator

In 2010, Google published a distributed transaction system called Per-
colator [18]. It supports concurrent transactions and implements multi-
version concurrency control. Each transaction sees a consistent state of the
database with MVCC, and it provides snapshot isolation between trans-
actions. Percolator is not a NewSQL system, as it only supports simple
key-value operations, but its design has been used in TiDB to implement
a distributed SQL database. TiDB is discussed further in Section 2.13.

Percolator uses a timestamp “oracle” in order to get a unique and mono-
tonically increasing version number for each transaction. The oracle is
essentially is a centralized system that all transactions must go through
in order to get a version number for their reads and writes. This means
that there is no dependence on clocks being synchronized, but it can also
be a performance bottleneck if the cluster outgrows the central timestamp
oracle.

2.10 Spanner

Spanner [7] is a NewSQL system that was published by Google in 2013.
Spanner enables concurrent distributed transactions by using MVCC, and
it uses timestamps to assign unique version numbers to transactions. How-
ever, to overcome the issue of unsynchronized clocks, Spanner introduces
the “TrueTime API”, which is an accurate clock that can return the cur-
rent time along with an uncertainty. Spanner uses this timestamp as the
transaction’s version number, but also adds additional logic to handle the
uncertainty of the timestamp. For example, if reading a key that may have
been written either before or after the transaction, the transaction needs
to be retried with a new timestamp. With this system, Spanner is able
to provide a high level of consistency called external consistency, which is
stricter than serializability, but not the strictest form.

The TrueTime API is based on atomic clocks and GPS clocks to get accu-

11

rate results, and it can usually keep the uncertainty below 10ms. A lower
uncertainty is always beneficial for performance, as the probability of a
transaction needing to retry is lower.

Spanner uses a key-value interface for the underlying data store, and han-
dles replication with the Paxos algorithm. As mentioned, concurrency con-
trol is handled with MVCC, and transactions use a two-phase commit pro-
tocol to ensure consensus.

2.11 Calvin

Calvin [22] is a database that utilizes a deterministic form of concurrency
control. This means that all transactions are placed into batches where
they won’t have conflicts, which can speed up transaction processing sig-
nificantly. Calvin does this by having one centralized scheduler that accepts
all transactions and batches them.

Even though this approach can lead to a significant speed increase, it also
has some disadvantages. For one, the scheduler may become a bottleneck
at a certain scale. Second, so-called dependent transactions are challenging
to execute. Since the scheduler needs to know all keys that are accessed
by the transaction, operations that e.g. fetch results based on a query
like a foreign key lookup, are challenging to execute. Calvin suggests that
in this case, a read-only query should first be executed to figure out the
actual keys, and the keys should then be used in the actual transaction.
In order to avoid inconsistencies, the real transaction must then check that
the values that were prefetched did not change in the meantime. In case
the values have changed, the transaction needs to be retried. However, the
authors argue that this is not a significant issue in most systems, as data
like foreign keys rarely changes in most applications.

2.12 CockroachDB

CockroachDB is a NewSQL database developed by Cockroach Labs, and
was first released in 2017. CockroachDB’s design was inspired by Google
Spanner, but one significant difference compared to Spanner is that it does
not use any specialized hardware clocks. Instead, Hybrid Logical Clocks
are used, which can emulate the features of the TrueTime API. However,
this means that the uncertainty in CockroachDB is much larger than in
Spanner, and in case of clock anomalies, there is a chance of introduc-
ing inconsistencies into the database. To mitigate damage, CockroachDB
has mechanisms in place to stop the system in case of unsynchronized
clocks. CockroachDB supports serializable transaction isolation, but not

12

the strongest form of it.

Cockroach Labs also sells Cockroach Cloud, where they sell a managed
offering of CockroachDB clusters. CockroachDB is licensed so that it can
be used for any purpose other than selling “CockroachDB as a service”. All
source code is also released freely three years after release, meaning that
three year old code can be hosted and sold as a service [14]. In addition to
this, there is an enterprise version of CockroachDB that adds some extra
features.

Our description of CockroachDB is based on their official online documen-
tation [6]. In the sections below, we will describe the architecture and
storage engine of CockroachDB, as well as how it handles transactions and
geo-replication.

2.12.1 Architecture

CockroachDB is a homogenous cluster of nodes, meaning that all nodes run
the same software and there is no special master role in the cluster. Thus,
all nodes receive requests from a client and handle transactions without
requiring the client to have knowledge of data placement.

The CockroachDB software is split into five layers that build on top of
each other. All layers run in the same program, but the layers are useful
for reasoning about the system. The five layers are listed below:

1. SQL layer: The SQL layer is the layer that clients communicate
with. It receives SQL queries and translates these into key-value
operations that are sent to the next layer. Thus, no other layers are
aware of SQL, and instead operate with key-value data.

2. Transactional layer: This layer coordinates transactions and pro-
vides ACID support to the database. Concurrency control is handled
at this layer.

3. Distribution layer: The distribution layer abstracts the distributed
nature of the key-value space to higher layers. Higher layers do not
need to be aware of the placement of data. Instead, requests are
routed to the correct peers in this layer.

4. Replication layer: The replication layer replicates data for each
shard, making sure that each shard is consistent and that peers are
in sync. This is accomplished by using the Raft algorithm.

5. Storage layer: The storage layer is the layer that reads and writes
from disk. As will be discussed later, each node may be a member of

13

many Raft groups, i.e. shards, but all data on one node is handled
by a single storage layer.

2.12.2 Storage engine

In order to better compare the different NewSQL databases, we have de-
fined the storage engine as everything below the SQL layer. Thus, for
CockroachDB, what we call the storage engine consists of the transactional,
distribution, replication and storage layers.

CockroachDB shards data into “ranges” that are each about 64MB large.
Since shards are quite small, any node will usually host many different
shards. All shards are replicated to a configurable number of nodes, but the
default is three. Replication is handled synchronously to enable consistency,
and is performed with the Raft algorithm. CockroachDB also implements
leader leases with Raft, as described in Section 2.7, for increased read
performance on each shard.

CockroachDB’s storage layer is built on top of RocksDB, a key-value stor-
age system that persistently stores data on disks and has high performance.
RocksDB supports standard key-value operations, and is also highly config-
urable for special needs. CockroachDB uses RocksDB as an MVCC store,
where each key can have multiple timestamped versions. In order to get
the latest version of a key, a scan in reverse order can be performed with
a prefix, where the first result is the latest version. RocksDB is highly
dependent on bloom filters to figure out quickly in which blocks it should
search for a certain key, but this does not work out of the box with prefix
searches as bloom filters are built with full keys. However, RocksDB also
supports prefix bloom filters, where a user-defined prefix of keys can be
used when generating bloom filters. This enables the use of MVCC with
RocksDB without any significant performance loss.

Another special feature in RocksDB that is utilized by CockroachDB is
snapshots. RocksDB can generate consistent snapshots of the database
state without blocking other operations. When a new replica joins a Raft
group, a RocksDB snapshot can be generated and transmitted to the new
node so that it can catch up with the state quickly. Additionally, some
optimizations for data ingestion are used so that multiple compactions do
not need to be performed on the new node.

2.12.3 Transaction handling

As mentioned earlier, CockroachDB uses timestamps to order transactions,
based on Hybrid Logical Clocks (HLCs). Any communications between

14

nodes also include their current HLC timestamp, in order to quickly iden-
tify any anomalies in clock values. If clock offsets are larger than the maxi-
mum offset, 500ms by default, inconsistencies may occur, so CockroachDB
instantly shuts down the node if this is detected.

Transactions in CockroachDB are tracked by having a record for each trans-
action stored in the database. This record is used as a source of truth for
the transaction’s state, and can be queried by other transactions to see
whether or not the data it wrote is committed. The node that initiates a
transaction is called the transaction coordinator, and it must periodically
update the transaction record while running in order to signal that it has
not crashed. If a transaction is marked as in progress but has not been up-
dated after some time threshold, it is considered by all other transactions
as aborted and can be deleted.

In order to have a distinction between committed values and uncommit-
ted values, CockroachDB uses something called write intents, which are
essentially temporary writes. Any data written by a transaction is initially
created as a write intent. A write intent looks similar to normal data values,
but it also contains a pointer to the transaction’s transaction record. Once
a transaction commits, the transaction record is marked as committed,
and all write intents are turned into normal MVCC values asynchronously.
However, since this happens asynchronously, other transactions may en-
counter a write intent that belongs to a committed transaction, and the
value should therefore be considered as a normal value. Any reads that en-
counter a write intent must look up the status of the transaction through
the transaction record pointer in the intent. If a transaction is aborted,
the intent can be deleted, and if the transaction is committed, the intent
can be converted into a normal value. However, if the transaction is still
in progress, the transaction that tried to read the value must wait and is
added to a wait queue. This system of write intents and transaction records
enables atomic commits, as the transaction record is always the source of
truth for a transaction’s status. Changing the record changes the status of
the whole transaction, and is a single-shard operation since it is a single
data item, and can thus be performed atomically.

The wait queue that transactions are added to is stored in a single Cock-
roachDB shard. This makes it easier to detect deadlocks, as all of this data
is stored locally on the same hardware. Each transaction in the wait queue
registers with the ID of the transaction it is waiting for, and whenever a
transaction is completed, the queue is notified and can resume any trans-
actions that were blocked by the now completed transaction. Deadlocks in
the waiting queue are handled by randomly killing one of the transactions
that are in the deadlock loop.

15

Before creating a write intent, a transaction must check the existing ver-
sions of the key. If a write intent for the key already exists, the transaction
must check whether it is still in progress, and if so, the transaction must
wait. Next, the transaction must check if the existing MVCC value has a
higher timestamp version than the current transaction’s timestamp, and if
so, the transaction must be retried with a new timestamp. The last thing
that must be checked to ensure isolation and consistency is that the most
recent read must have occurred with a lower timestamp than the current
transaction. Every time a key is read, the timestamp of the reading trans-
action is stored in order to guarantee that the result of the read at that
timestamp can not change later on. In case a write transaction wants to
write to a key that has a more recent read, CockroachDB tries to auto-
matically push the timestamp of the writing transaction to a higher value.
However, as the transaction’s timestamp has changed, the transaction must
check that none of its previous reads have become stale as a result of the
new timestamp, and this process is called a read refresh.

As CockroachDB’s transaction ordering depends on synchronized clocks,
and because timestamps come with some uncertainty, each timestamp has
some overlap with other timestamps where it is impossible to determine
which one came first. This results in some issues when dealing with MVCC,
as an absolute ordering is required for consistency. To work around this,
CockroachDB uses a predefined maximum clock uncertainty, and tries to
push timestamps beyond this uncertainty if there is a conflict, or retry the
transaction altogether. For example, if a read is performed and the MVCC
timestamp is very close to the transaction’s timestamp, the transaction’s
timestamp needs to be pushed to a later point where it is no longer uncer-
tain what happened first. When pushing timestamps like this, as mentioned
earlier, a read refresh needs to occur to ensure that no previous reads are
now stale. In case some keys are both written and read very frequently,
this feature can slow down operations, but it also prevents anomalies from
occurring.

2.12.4 Geo-replication

CockroachDB supports geo-replicating workloads, and allows configuration
of data placement so that data availability and latency can be optimized
for the requirements of the database users. However, the geo-replication
features are only available under the enterprise license, meaning that they
cost money and are not part of the open source offering.

The main way that users can control geo-replication in CockroachDB is to
set a partitioning key on each table, which will determine where a table
row is placed. Additionally, partition keys can be assigned to regions so

16

that data is faster to access in a certain region. There are many different
strategies for data placement, and one of these is to place all replicas for a
set of partition keys in one region, which allows for fast reads and writes
in that region. However, this can come at the cost of failure tolerance,
as downtime in this region will make the affected rows unavailable in all
regions. Another strategy is to place replicas in adjacent regions close to
where they are most needed in order to minimize latency while still being
failure tolerant.

CockroachDB also allows requesting the placement of the Raft group leader
in a certain region. Since CockroachDB implements leaseholder reads, this
means that reads can be served with very low latency in this region, while
writes still require cross-region communication. This can be a good trade-
off for certain applications if the read speeds are more important than write
speeds. Another approach that is possible with CockroachDB is to enable
follower reads, which enables low latency reads in all regions that have
replicas. This, however, does not guarantee that reads return the most
recent data and may result in inconsistencies if doing writes based on these
reads. If read-only transactions can tolerate old data, though, and they
require very low latency, it may be a suitable feature for the application.

2.13 TiDB

TiDB is a NewSQL database that is built on top of the key-value database
TiKV, and was first released in 2017. Both TiDB and TiKV are developed
by PingCAP under the Apache 2 open source license. For the purposes of
this section, we count TiKV as a part of TiDB, even though it can run
independently of TiDB. The design of TiKV was largely inspired by Per-
colator, described in Section 2.9. This means that TiDB uses a centrally
assigned version number for ordering transactions rather than timestamps
with uncertainty. The Percolator design also means that TiDB only sup-
ports Snapshot Isolation, which is weaker than serializability that Cock-
roachDB and YugabyteDB offer.

Below, we describe TiDB and the relevant parts of TiKV in depth to give
insight into how the database works. Our descriptions are based on TiDB’s
and TiKV’s online documentation [23, 24]. First, we describe the archi-
tecture of a cluster and the software, followed by how the storage engine
TiKV works and handles transactions. Finally, we include a short section
about how TiDB works in a geo-replicated scenario.

17

Figure 2.1: TiDB’s architecture

https://pingcap.com/docs/stable/architecture/

2.13.1 Architecture

A TiDB cluster consists of three main parts: the timestamp oracle, called
the Placement Driver (PD), the key-value store, called TiKV, and the
SQL processing system, called TiDB. These three parts interact to form a
NewSQL system that can handle SQL transactions. Each of the parts sup-
ports replication and is usually run on separate machines. A fourth part
that may also be included in a cluster for Online Analytical Processing
(OLAP) queries is TiSpark. The four components are illustrated in figure
2.1. The TiSpark component is not discussed in this chapter, as it is not
related to NewSQL. As can be seen in the figure, the three components of
the NewSQL system, PD, TiKV and TiDB must all communicate together
to execute SQL queries for clients.

All SQL clients communicate with TiDB, either directly or through a load
balancer. TiDB is responsible for translating user queries into key-value
operations that can be handled by TiKV. TiDB is a stateless service, which
means it can be scaled up and down quickly depending on demand. All
data in the system is stored in TiKV and the Placement Driver.

The Placement Driver acts as a kind of master for the cluster, and is a single
shard replicated system. PD is replicated with Raft, and only the leader
performs actions on behalf of the PD cluster. The PD keeps track of the
different shards in TiKV and knows which TiKV nodes are responsible for
which data. In addition to this, the Placement Driver acts as a timestamp

18

oracle for the cluster and assigns timestamps to all transactions for ordering
purposes. As this is done by a single system, there is no requirement for all
clocks to be synchronized. The Placement Driver is replicated on a number
of nodes, but they act as one system, which means that adding nodes does
not increase PD’s performance, and extra nodes only help by adding more
failure tolerance. In order to ensure that no timestamp is assigned twice if a
leader crashes, the leader must reserve a block of timestamps by committing
to the Raft log before assigning timestamps, which ensures that the next
leader can not assign any timestamps in the same block.

TiKV is the key-value interface of TiDB, and it also has full transaction
support. The design of TiKV is further described in the storage engine
section below. TiKV mainly responds to requests from TiDB, but it can
also communicate with clients that wish to use a key-value interface instead
of an SQL interface. TiKV nodes also communicate with the PD cluster,
for example in order to know what shards they should be serving. Since
shards are spread out evenly between TiKV nodes, adding TiKV nodes to
the cluster will increase performance for most workloads, as there are more
nodes that can share the work.

2.13.2 Storage engine

As described in the previous section, TiKV is the storage engine of TiDB.
TiKV was inspired by Google Percolator, and has support for transactions
with snapshot isolation.

TiKV uses Raft for synchronously replicating data, and by default repli-
cates data to three nodes. The key-value space is range-partitioned into
“regions”, where each region is usually small, which allows for fast move-
ment of regions between nodes. Since regions are small, each node in the
cluster usually serves many of them. An illustration of how Raft groups,
regions and nodes interact can be seen in Figure 2.2. The figure shows a
cluster where data is sharded into three regions that are distributed among
four nodes. No node stores more than one replica of each group, as this
would reduce redundancy. When using TiDB as a NewSQL system, the
clients on the top of the figure would be TiDB nodes that have translated
client SQL requests into key-value requests.

For storing key-value data to disk, TiKV uses RocksDB. This choice was
made based on the high performance and maturity of the technology [24].
Similar to CockroachDB, TiKV also uses RocksDB as an MVCC store and
therefore requires prefix bloom filter support. Another RocksDB feature
that TiKV utilizes is the multi column family support, which essentially
means that there are multiple databases stored on the RocksDB instance,
and there is support for atomic writes across these. How this is used is

19

Figure 2.2: TiKV sharding and replication.

https://tikv.org/docs/3.0/concepts/overview/

described further in the next section.

2.13.3 Transaction handling

All transaction handling in TiDB happens inside TiKV, as TiDB is a state-
less layer in the database. TiKV implements Percolator’s concurrency con-
trol mechanism and therefore supports snapshot isolation between transac-
tions. However, if one needs to avoid the write skew anomaly, a special SQL
syntax can be used: SELECT .. FOR UPDATE. As in Percolator, transac-
tion ordering in TiKV depends on the timestamps that are assigned by a
central timestamp oracle, which in TiKV’s case is the Placement Driver.

Each key in TiKV has three separate columns that contain the data, lock
and write values. To support these three separate values, TiKV uses one
RocksDB column family for each value type. The same key may have a
different value in each column family, enabling the multi-value functionality
required by the Percolator model. The data column of each key contains
multiple versions of the data, but does not contain any information about
whether or not this data is committed. The lock column stores a single
lock for the row, and finally the write column contains commits for the
key, where each commit is stored with a timestamp and points to a value
in the data column. The timestamps of MVCC keys are encoded in such a
way that the latest version will always be the first version to appear in a
scan operation.

20

When a transaction in TiKV starts, it requests a timestamp from the times-
tamp oracle. For a write transaction, the next step is to acquire locks on
all of the data items it wants to write to. If any key has a value with a
higher timestamp than the current transaction, or a lock already exists,
the transaction needs to release its locks and retry with a later timestamp.
The first lock to be created by a transaction is assigned as the primary
lock, and all other locks contain a pointer to the primary lock. After each
lock is created, a data value is also added to the data column of the key.
After all of the writes have been performed in this way, the transaction can
commit by updating the primary lock and at the same time create an entry
in the corresponding write column. The primary lock is the source of truth
for the transaction status, and can be used by other transactions if they
encounter a secondary lock. After the primary lock has been deleted, all
of the secondary locks can be converted into write values, but this is done
asynchronously.

When a transaction wants to read values, it uses the timestamp that it
received from the timestamp oracle. It must then first check if there is a
lock that has a timestamp lower than the current transaction. If there is no
lock, it can fetch the newest version from the write column that has a lower
timestamp than the current transaction, and then read the value that the
write points to. However, if there is a lock on the key, the read transaction
must check the state of the writing transaction. This is done by looking up
the primary lock, and if it is still active the read transaction needs to wait
or be retried. If the primary lock does not exist, it must be determined if
the transaction was aborted or committed. This can be done by checking
if there is a value in the write column that corresponds to the primary
lock. If there is a write, the transaction is considered committed, and if
not, it is considered aborted. This mechanism for handling secondary locks
ensures that commits are atomic, as the action of changing the primary
lock guarantees that the whole transaction is either committed or aborted.

2.13.4 Geo-replication

TiDB has some support for geo-replication, but a large issue with its design
is that TiDB is highly dependent on the centralized Placement Driver. Only
one replica of the PD can hand out timestamps to transactions, and any
transaction that is started from a region different from where the PD leader
is will get a high latency because of this. However, having PD replicated to
multiple regions will increase the failure tolerance of the system, as replicas
in other regions can take over in case of region outages.

21

2.14 YugabyteDB

YugabyteDB, developed by Yugabyte, is an open source NewSQL database
that is inspired by Google Spanner. YugabyteDB is licensed under the
Apache 2 open source license, and the company behind it also sells a man-
aged cloud version of the database. Like CockroachDB, YugabyteDB has
no specialized hardware clocks for the TrueTime protocol, but instead they
use Hybrid Logical Clocks. The database supports both snapshot isolation
and serializability and allows the user to choose which level of transaction
isolation they require. YugabyteDB is quite new, with its SQL interface
becoming production-ready in late 2019.

The sections below describe YugabyteDB in depth in the same format as
the descriptions of CockroachDB and TiDB: architecture, storage engine,
transaction handling and geo-replication. Our descriptions are based on
the YugabyteDB online documentation [26].

2.14.1 Architecture

A YugabyteDB cluster consists of nodes with two separate roles, the mas-
ter nodes and the storage instances, called tablet servers (TServer). The
master nodes are replicated with Raft, and act as a single node, i.e. no
sharding. The TServers are also replicated with Raft, but also sharded in
order to support horizontal scalability.

The master node in YugabyteDB is responsible for the placement of shards
and stores metadata for the whole system. However, unlike in TiDB, the
master nodes are not involved in every transaction, as they only control the
placement and movement of data. YugabyteDB instead relies on Hybrid
Logical Clocks to order transactions.

TServers in YugabyteDB are sharded by hash of the primary key, and
they are also replicated to a configurable number of nodes, usually three.
TServers receive SQL requests from SQL clients and then translate these
to key-value operations that are handled by the document layer, called
DocDB. Any TServer can process queries, and clients do not need to be
aware of data placement. In addition to SQL clients, YugabyteDB also
supports the Redis and Cassandra query interfaces, and they all use the
same underlying key-value storage to fulfill queries.

2.14.2 Storage engine

YugabyteDB’s storage engine is called DocDB, and transactions are han-
dled in this layer. DocDB is a key-value database and is the underlying
storage for both the SQL, Redis and Cassandra interfaces of YugabyteDB,

22

Figure 2.3: Sharding and replication in Yugabyte Tablet Server

https://docs.yugabyte.com/latest/architecture/concepts/yb-tserver/

but we will only focus on the features that enable SQL support in this
section.

DocDB is a sharded system, and each shard is called a tablet, which is why
storage nodes in YugabyteDB are called Tablet Servers (TServers). Each
tablet is small in size and is replicated synchronously with Raft to ensure
consistency, and is usually replicated to three nodes. DocDB is designed so
that different SQL tables are never assigned to the same tablet, but a table
may consist of multiple tablets. An illustration of the sharding of DocDB
is shown in Figure 2.3, where there is one table consisting of 16 tablets,
spread out among four nodes.

For Raft reads, DocDB implements leader leases as described in Section
2.7. This greatly improves the read performance of DocDB, while still
ensuring consistency. DocDB also supports follower reads, but this does
not guarantee that clients receive the most recent data.

The underlying storage system for DocDB is RocksDB, which is used as
an MVCC store. DocDB has chosen to use one instance of RocksDB for
each tablet, meaning that each TServer will run many independent in-
stances of RocksDB. The reason for doing this is that copying a tablet to
another node is very simple, as the raw SSTable files from disk can sim-
ply be copied to another node. Additionally, table deletions mean that

23

the RocksDB instance can simply be deleted, instead of needing to create
tombstone records and waiting for compactions to free up space. DocDB
uses RocksDB as an MVCC store with a timestamp version for each key,
and therefore also utilizes RocksDB’s support for prefix bloom filters.

2.14.3 Transaction handling

YugabyteDB, like TiDB and CockroachDB uses MVCC for their concur-
rency control. Each key has a timestamp attached so that there can be
many versions of the same key. In order to ensure proper isolation, trans-
actions do not write normal records, but rather what is called a provisional
record. Provisional records are marked by having a special prefix on the
key, but they are always stored in the same tablet that the actual record
would be stored on, in order to enable an atomic replacement of the provi-
sional record.

Transactions in YugabyteDB, or more specifically in DocDB, are tracked
in a transaction table. Any provisional record that is created by a trans-
action points to the corresponding record in the transaction table, which
ensures that the status of a provisional record can always be looked up
by other transactions. Any change to the transaction record acts as an
atomic action on the whole transaction, and this enables atomicity in Yu-
gabyteDB. Whenever a transaction commits, it will update the transaction
record first, and then convert all provisional records into normal records
asynchronously. However, clients receive a result once the transaction com-
mits, and do not need to wait for the asynchronous cleanup. The TServer
that initiates a transaction becomes the manager for that transaction and is
responsible for coordinating the execution of the transaction and returning
results to the client.

When a transaction wants to write data, it first needs to acquire a lock for
the relevant data. However, locks are not stored explicitly but rather, the
provisional records are considered locks [20]. Additionally, the Raft leader
will keep all of these locks in memory for fast access. If a transaction
wants to write data but a provisional record already exists, one of the
transactions must be aborted based on priority. In order to abort the
transaction that has the lock, the provisional record of that transaction
can be removed. However, this also means that all transactions need to
check that all their provisional records still exist before committing, to
ensure that the transaction wasn’t aborted due to a conflict.

When a transaction reads data, it uses its own timestamp to choose the
correct MVCC version to read. The highest version that is lower than
the transaction’s timestamp is always chosen. However, because HLCs
have some uncertainty, it can not always be determined if the key was

24

written before or after the current transaction. In this case, the whole
transaction is aborted and retried with a later timestamp in order to ensure
consistent reads. If a provisional record is encountered by a read, the
transaction status needs to be looked up from the transaction table. If the
transaction is committed, the value is considered as a normal value, while if
the transaction is aborted the value is ignored. If, however, the transaction
is still in progress, the transaction needs to abort and be retried with a
later timestamp.

Figure 2.4 shows the write path of a transaction that involves writes to mul-
tiple tablets. First, a client sends a request to a TServer (1). In the figure,
this is a key-value request, but it could also be a SQL request when using
YugabyteDB as a NewSQL system. This TServer then becomes the trans-
action manager and creates a record in the transaction table (2). Next,
the transaction manager creates provisional records by contacting the Raft
leader of each tablet that is affected (3). Finally, a commit is performed
by updating the transaction record (4) and the client receives a response
(5). After the transaction is committed, the provisional records are asyn-
chronously turned into normal records (6). This figure also shows that each
tablet has two followers, which is a typical deployment, i.e. three replicas
for all data.

2.14.4 Geo-replication

YugabyteDB currently has no explicit support for geo-replication, but they
have some partitioning features on their roadmap1. A YugabyteDB cluster
can currently be run in different regions, but operations may have high
latency, and the user has no control over data placement.

YugabyteDB also has support for follower reads, which may be helpful
for some applications that require high availability and can sacrifice some
guarantees by allowing reads to get stale data.

1https://github.com/yugabyte/yugabyte-db/issues/1958

25

Figure 2.4: Write Path in a YugabyteDB transaction

https://docs.yugabyte.com/latest/architecture/transactions/transactional-
io-path/

26

Chapter 3

Implementation

The goals of this thesis, as described in Section 1.2, require us to test mul-
tiple databases in many different configurations. We need to vary both
cluster and instance sizes, and each configuration should run several dif-
ferent workloads. Because of the variance in cloud instance performance,
described in Section 3.3.1, we also need to repeat each configuration mul-
tiple times to get an average value. These requirements made us realize
early on that we needed to automate as much of the testing as possible.
The result of our work is an extendable system that enables automatic ex-
ecution of benchmarks by defining which databases and configurations one
wants to test. This system also makes it easy to reproduce benchmarks
that others have run and published.

3.1 Benchmarking system

Our system consists of three main parts: the benchmarking software run-
ning on client machines, the database clusters that are being tested, and
a control script that creates clusters and coordinates execution of bench-
marks. The three parts are described in detail below, and finally we illus-
trate how the different parts interact.

3.1.1 Benchmarking software

For executing benchmarks, we considered multiple options that could all
run standard database benchmarks. Specifically, we investigated oltpbench-
mark [8], YCSB1, go-ycsb2 and go-tpc3. Out of these four tools, the only

1https://github.com/brianfrankcooper/YCSB
2https://github.com/pingcap/go-ycsb
3https://github.com/pingcap/go-tpc

27

one to support more than one type of workload was oltpbenchmark. For
this reason, combined with the advantages we describe below, we chose to
base our system on oltpbenchmark.

Oltpbenchmark [8] was created because of the lack of standardized tool-
ing for running benchmarks. Many benchmarks were hard to reproduce,
and the authors hypothesized that their standardized tool might help. A
benchmark is defined by configuring a database connection and workload
settings in an XML file, which can then be published alongside the results
of benchmarks for easy reproduction. Oltpbenchmark supports 15 differ-
ent benchmarks and any database that has a Java Database Connectivity
(JDBC) driver.

3.1.2 Database clusters

Starting a distributed database cluster to run benchmarks against is no
small task. Servers first need to be started and configured, and the database
software needs to be installed. Finally, the different servers need to be made
aware of each other so that they can communicate and create a cluster. In
many cases, servers also have different roles in the cluster which need to
be configured. All of this is a lot of work to perform manually, and the
many steps involved also makes it error-prone when trying to reproduce a
benchmark.

We decided to automate the cluster setup process to make benchmarks
faster to execute and easier to reproduce. To accomplish this, we use
a combination of Packer [11], Terraform [12] and cloud-init [5]. Packer
handles build time configuration of servers, Terraform communicates with
a cloud API to start servers, and cloud-init handles run time configuration
of servers. These three components are described in detail below.

Packer

Packer is used to create snapshots of a fully configured server that can
be used when starting new servers. A snapshot, often called an image, is
created by starting a clean server, running some configuration commands
based on a user-defined manifest, and finally requesting for the cloud service
to generate a snapshot based on this server. The building of this snapshot
can be seen as the build time configuration of databases in our system.
However, this configuration alone is not enough to start a database cluster,
since IPs of the servers that need to communicate in the cluster are not
known at this point. To address this issue, there is a separate run time
configuration that is described in the cloud-init section below.

Using Packer for configuring servers has multiple advantages. First, it

28

speeds up cluster setup significantly, as servers are preconfigured with
software preinstalled when started. Second, allowing the configuration of
servers to be defined as code makes it easier to reason about system state
and to reproduce tests. However, one disadvantage of using Packer is that
changes to the configuration mean that a new snapshot needs to be created
and servers need to be recreated based on this snapshot. This is not a large
issue for our system though, as servers only live for the duration of a single
benchmark.

Terraform

Terraform is used to start the different servers that make up a database
cluster, and it communicates with a cloud API to create these servers and
connect them to a network. Terraform has its own configuration language
where one can define any cloud resources that should be created and the
relation between them. When starting servers with Terraform, an image
created by Packer can be chosen as the base for the server, meaning the
server will get an exact copy of the configuration generated in the Packer
build.

Terraform supports all of the largest and many small cloud providers. How-
ever, since all clouds have different offerings, a Terraform file written for
one cloud will not work for another cloud without some small adjustments.
We only provide configuration files for the cloud that we used in our work,
but the modifications needed to run the benchmarks on another cloud are
minor.

Cloud-init

As mentioned earlier, the build time configuration that Packer performs is
not enough to start a cluster, as servers need to be made aware of their role
in the cluster and their peers. For this purpose, we use cloud-init [5], which
runs a series of tasks the first time a server boots. These tasks can involve
installing software, configuring networks, running scripts and changing files.
In our case, we use cloud-init to write a few configuration files and start
the required services for the server’s role in the cluster. More specifically,
the files written include cluster configurations with the network addresses
of peers, and the services started can be e.g. the master node service. In
practice, cloud-init works by passing a configuration string to the cloud
API when the server is being created. This is handled by Terraform, as
Terraform is the component in our system that handles communications
with the cloud API.

29

3.1.3 Control script

The components described in the previous section, Packer, Terraform and
cloud-init, together enable the creation of a cluster without manual work.
However, to run complete tests, there is still some manual work involved,
since each step needs to be initiated manually: starting the cluster, start-
ing the benchmarks and stopping the cluster. In order to eliminate manual
work altogether, we have automated the flow of these operations in our
system. This also enables a user to easily run multiple benchmarks concur-
rently. Automating the flow of operations is performed by a Python script
that takes as input the cluster configurations and workloads that should be
tested, and then coordinates with Terraform and oltpbenchmark to execute
benchmarks.

The control script starts by creating all the required clusters concurrently
with Terraform. Each cluster also contains a client machine that has oltp-
benchmark installed, which removes the risk of high WAN latencies af-
fecting performance, while also ensuring isolation between benchmarks as
each benchmark has a separate client. Once each cluster has successfully
been created and cloud-init has run, the script logs into the client machine
through SSH, uploads the benchmark workload XML files, and runs the
benchmarks sequentially. After all benchmarks are completed, the result
files are downloaded for later analysis. Finally, the cluster is shut down by
using Terraform, and the benchmark is considered as completed.

3.1.4 System overview

The different moving parts of our benchmarking system are illustrated
in Figure 3.1. The control script first communicates with the cloud API
through Terraform to start all the necessary servers. After all servers are
started, the control script communicates with the clients to start and keep
track of benchmarks. The benchmark client runs oltpbenchmark, and it
communicates with the cluster through a load balancer to ensure even load
between cluster nodes. Finally, the cluster is configured behind the load
balancer. The figure shows a cluster with three identical instances, but this
configuration differs depending on which database is running. The control
script can also communicate with the cloud API to start multiple indepen-
dent configurations of the cluster, load balancer and client. This enables
faster collection of results, since different benchmarks run in parallel instead
of sequentially.

30

Figure 3.1: An overview of the different parts of a benchmark that is being
executed with our system.

31

3.2 Benchmarks

For this thesis, we decided to test the databases with two different bench-
marks that are commonly used to test databases, as it allows us to see how
the databases perform in different scenarios. The choices of benchmarks
are described in the two sections below.

3.2.1 YCSB

Yahoo! Cloud Serving Benchmark (YCSB) is a popular benchmarking tool
created to test a multitude of databases. YCSB operates on a single user
table and only performs simple key-value operations on this table. This
means that YCSB supports most databases, but does not test any rela-
tional features of the database. However, it can still be a useful benchmark
for relational systems, as it is able to show the raw performance of each
system. YCSB defines four operations that can be performed on the user
table: read a record, insert a record, update a record, and scan n records.
These operations are combined into six standard workloads that are com-
monly used in benchmarks. The workloads are named A through F and
are described below:

• Workload A – Update heavy: This workload has a 50% reads
and 50% updates.

• Workload B – Read mostly: This workload is another variant of
workload A, but with a different balance: 95% reads and 5% updates.

• Workload C – Read only: This is the simplest workload with only
reads.

• Workload D – Read latest: This workload inserts new rows while
reading mostly new records. There are 95% reads and 5% inserts.

• Workload E – Short ranges: Short ranges are scanned in this
workload instead of fetching individual rows. There are 95% scans
and 5% inserts in this workload.

• Workload F – Read-modify-write: Clients retrieve rows, modify
them and then write this change to the database. There are 50%
reads and 50% read-modify-write operations in this workload.

3.2.2 TPC-C

TPC-C is a benchmark meant to measure the performance of online trans-
action processing (OLTP) databases [25]. TPC-C is an industry stan-
dard benchmark and is defined by the Transaction Processing Performance

32

Council. The benchmark simulates the activity of a wholesale supplier that
has a number of warehouses. Each warehouse is linked to ten districts, and
each district is linked to three thousand customers. The benchmark has
five different transaction types that access a total of nine different tables.
This benchmark tests a wider set of functionality of the databases we are
testing, as tables include additional constraints such as foreign keys and
unique columns. The performance of TPC-C is measured in the number of
“new order” transactions that are executed per minute.

3.3 Choice of cloud provider

For our research, we considered different cloud providers to run our bench-
marks on. Some of the large providers like Amazon Web Services, Google
Cloud Platform and Microsoft Azure are often the go-to platforms when
choosing a public cloud. These clouds provide numerous advantages by
being very large and having a lot of managed services. There are many
other providers in the cloud market, and they usually have fewer services
but much cheaper pricing. One of these clouds is Hetzner Cloud, and it
only offers Virtual Machines, networking and disks. However, all we need
for our running our benchmarks are virtual servers and disks. Addition-
ally, there is a larger incentive to run your own NewSQL database if using
a smaller cloud, as they usually do not offer a managed database service.

After talking to Hetzner Cloud, we received a generous grant that would
allow us to perform our research on the platform. This, in addition to
wanting to use a platform that did not have an existing database offering,
was the basis for our decision to run on Hetzner Cloud.

3.3.1 Variable server performance

In a cloud environment one usually shares hardware with multiple other
tenants. This causes performance to often vary a lot, which is often referred
to as “noisy neighbours”, as one can notice other tenants (neighbours)
running on the same machine. Hetzner Cloud has an offering where one
can get dedicated virtual CPUs, which reserves a number of hyperthreads
on the CPU to only your virtual server. This works well and yields very
stable CPU performance. However, Hetzner Cloud does not provide any
guarantees for memory or disk performance. The disks are very performant,
but the performance is highly variable, both between different servers and
even on the same server over time.

As the performance of virtual machines is variable, the result of bench-
marks will also vary between runs, which means that we need to gather

33

multiple samples so that we get good average performance results. How-
ever, gathering results from multiple runs is simple with the automated
system as we described in Section 3.1.

3.4 Database specifics

For our tests we decided to test three open source NewSQL databases:
CockroachDB, TiDB and YugabyteDB. Each of the databases needed to
be configured differently, and we wrote separate Packer and Terraform man-
ifests for each database. For all of the databases we used the default repli-
cation level of three. We have described specifics of how we configured and
ran each database in the following sections.

3.4.1 CockroachDB

CockroachDB, as described in Section 2.12, runs as a homogenous cluster
without any dedicated master nodes. We configured CockroachDB to run
on Ubuntu 18.04, as suggested by their documentation. We configured
network time protocol (NTP) on the servers and installed CockroachDB
v20.1.0. Further, we set up a HAProxy instance between the client and the
cluster that all requests were routed through. Load balancing is recom-
mended in CockroachDB’s documentation as it ensures that requests can
be balanced evenly between nodes.

Since clusters in CockroachDB are homogenous, there are only two cluster
variables to tune: the number of nodes in the cluster and the hardware re-
sources of these nodes. CockroachDB supports the Postgres wire protocol,
and we therefore used the Postgres JDBC driver to run benchmarks against
CockroachDB. However, some issues arose when CockroachDB was return-
ing retryable errors that oltpbench did not support. We had to modify
oltpbench slightly in order to retry when receiving one of these errors.

3.4.2 TiDB

TiDB, described in Section 2.13, has three different components in a cluster:
the placement driver which acts as a kind of master, TiKV which stores
key-value data and TiDB which handles SQL execution and translation
to key-value operations. As recommended by TiDB’s documentation, we
configured the cluster to run on CentOS 7. We also configured some system
limits on the operating system, following the instructions from TiDB’s
documentation [23]. Finally, we installed TiDB v3.0 on the servers.

When starting a cluster, placement drivers need to be started first and
communicate directly with each other. Next, TiKV servers are started and

34

communicate with placement drivers for synchronization. Finally, TiDB
servers are started and also communicate with placement drivers. Place-
ment drivers act as masters of the cluster and enable the other components
to communicate. We also configured a HAProxy load balancer between
the client and the TiDB instances to spread the load evenly between the
servers. Balancing of TiKV is handled internally by TiDB, as different
TiKV instances are responsible for different sets of shards.

TiDB has many parts that can be tuned when testing performance. We
decided to use the same instance size for all components for simplicity, but
varied which instance type we used. Additionally, we varied the number of
TiKV and TiDB nodes.

TiDB supports the MySQL wire protocol, and we were able to use the
MySQL JDBC driver to run benchmarks against TiDB. TiDB worked with-
out modifications with all of the benchmarks we performed against it.

3.4.3 YugabyteDB

YugabyteDB is described in Section 2.14. A cluster consists of two parts:
master nodes and TServers, and the master software is usually run on the
same node as a TServer. We used CentOS 7 as the operating system for
this cluster, as recommended by YugabyteDB’s documentation. Next, we
configured NTP and some limits on the operating system, and installed
YugabyteDB v2.1.6.0.

To start a cluster, we first started the master nodes and allowed them to
communicate directly. Afterwards, all the TServer processes were started
and pointed to the master nodes for registration. Since any TServer can
receive client requests, we configured HAProxy between the client and
TServers to balance the load. For benchmarks we varied the number of
TServers and the instance sizes of these.

YugabyteDB supports the Postgres wire protocol, and we could therefore
use the Postgres JDBC driver to run benchmarks. We initially had some
issues with benchmarks getting stuck on table creation, but solved this by
adding retries in case of failure. YugabyteDB also returned some retryable
errors that oltpbenchmark did not recognize. We therefore implemented
some additional logic to recognize and retry these transaction failures.

3.5 Final test configuration

As described above, we are testing CockroachDB, TiDB and YugabyteDB.
YugabyteDB also supports two different isolation levels, serializable and
snapshot, and we test both of these settings separately, meaning we test a

35

total of four databases. Because of the performance variance described in
Section 3.3.1, all of our tests are run on five separate clusters to get a good
average performance value.

Each database configuration is tested with seven different workloads, six
of which are YCSB workloads and the last being TPC-C. The workloads
are described in depth in Section 3.2. Each YCSB benchmark uses a table
of 100,000 records, while the TPC-C benchmark uses 2 warehouses. All
workloads are run for 5 minutes each, and we use the average performance
for comparisons.

To analyze the vertical scalability of each database, we test them with four
different instance sizes that are available on Hetzner Cloud. These have
a different number of CPU cores and sizes of memory and disk, but they
all have the same disk performance and no guaranteed disk speeds. We
believe this is the largest factor of variance in tests. The instances sizes we
used are listed below.

• 2 virtual CPUs, 8 GB RAM, 80 GB NVMe disk

• 4 virtual CPUs, 16 GB RAM, 160 GB NVMe disk

• 8 virtual CPUs, 32 GB RAM, 240 GB NVMe disk

• 16 virtual CPUs, 64 GB RAM, 360 GB NVMe disk

In addition to evaluating vertical scalability, we investigate horizontal scal-
ability. To do this, we test each database with various cluster sizes between
3 and 12. For all of these tests, we use the instance size of 4 CPUs and
16GB RAM.

36

Chapter 4

Results and Discussion

This chapter presents and discusses the results of running our benchmark-
ing system on various configurations of CockroachDB, TiDB and Yugabyt-
eDB, as described in Section 3.5. We run both YCSB and TPC-C on
different instance sizes and on clusters with different numbers of nodes. In
total, we have run more than 200 different clusters using over 1,500 virtual
machines for these evaluations.

We start by presenting the YCSB results for each database separately to
analyze what configurations they each work best with. Next, we present
some comparisons for both YCSB and TPC-C that will show the strengths
and weaknesses of each database, and finally, we compare the scalability
numbers of each database.

4.1 CockroachDB

Instance size

To investigate CockroachDB’s vertical scalability, we analyze the perfor-
mance of different instance sizes using clusters of three nodes. The exper-
iment was conducted by taking the average of five samples as mentioned
previously. The results of the test can be seen in Figure 4.1, where all of the
YCSB benchmarks are shown for four different instance sizes, each being
twice as powerful as the previous. In order to see how much performance
per hardware the different configurations yield, Figure 4.2 normalizes the
performance number by dividing by the number of CPU cores. In an ideal
world, normalized performance should stay constant, meaning that all types
of queries scale perfectly with the provided resources, but in reality this can
not be expected.

37

A B C D E F
0

5,000

10,000

15,000

20,000

25,000

YCSB Workload

O
p

er
at

io
n
s/

s
2 CPU, 8GB RAM 4 CPU, 16GB RAM
8 CPU, 32GB RAM 16 CPU, 64GB RAM

Figure 4.1: YCSB performance for three-node CockroachDB clusters with
different instance sizes.

A B C D E F
0

1,000

2,000

3,000

4,000

5,000

YCSB WorkloadO
p

er
at

io
n
s/

s
p

er
C

P
U

an
d

4G
B

R
A

M

2 CPU, 8GB RAM 4 CPU, 16GB RAM
8 CPU, 32GB RAM 16 CPU, 64GB RAM

Figure 4.2: YCSB performance per CPU and 4GB RAM for three-node
CockroachDB clusters with different instance sizes.

38

Cluster size

Next, we conduct an experiment to investigate how well CockroachDB’s
performance scales when adding nodes. We used nodes with 4 CPUs and
16GB of RAM and set up clusters of sizes 3, 6, 9 and 12. Figure 4.3 shows
the results of these tests, and Figure 4.4 shows a normalized performance
score per node.

A B C D E F
0

5,000

10,000

15,000

20,000

25,000

YCSB Workload

O
p

er
at

io
n
s/

s

3 nodes 6 nodes
9 nodes 12 nodes

Figure 4.3: YCSB performance for CockroachDB clusters with different
numbers of nodes, using 4 CPU 16GB RAM nodes.

39

A B C D E F
0

2,000

4,000

6,000

YCSB Workload

O
p

er
at

io
n
s/

s
p

er
n
o
d
e

3 nodes 6 nodes
9 nodes 12 nodes

Figure 4.4: YCSB performance per node for CockroachDB clusters with
different numbers of nodes, using 4 CPU 16GB RAM nodes.

Evaluation

Based on the presented figures, we can see that CockroachDB scales better
vertically than it does horizontally for the workloads we ran. However,
increasing from 8 to 16 CPUs seems to have almost no effect except for
workload B. CockroachDB’s per core performance is best with the small-
est instance sizes, and this may be because the disk performance on all
instances is the same, meaning that smaller instances get higher disk per-
formance per cost. Finally, we can see that workload E scales very poorly,
and increasing hardware resources has little effect on performance. We be-
lieve this may also be caused by scan operations being I/O-heavy compared
to other operations.

CockroachDB’s horizontal scalability is not very promising in the tests we
ran. The write-heavy workloads A and F do not increase performance at
all, and doubling the number of nodes increases performance by less than
50% for the other workloads. One surprising result is that 12 node clusters
do not increase performance at all over 9 node clusters for workloads C, D
and F. We believe that this is caused by the fact that our test datasets are
only 100,000 rows, which might not be enough to balance the data evenly
between nodes. We believe that there would be a larger difference between
the performance of cluster sizes if using a larger test dataset or different
workload types.

40

4.2 TiDB

TiDB clusters contain nodes with three different roles: TiDB, TiKV and
PD. Each of these can be scaled independently, but the main performance
differences should come from scaling TiDB and TiKV, as PD acts as a
single node, independent of replication factor.

To find which cluster configurations to experiment with, we started by in-
vestigating the performance effect of PD. TiDB’s documentation mentions
that clusters can use any odd number of PDs, but that three is the mini-
mum for failure tolerance. However, for our tests, we do not need failure
tolerance, meaning that if there is no performance difference between one
and three PDs, we can use smaller clusters and get the same results. The
documentation also mentions that it is possible to run PD on either a sep-
arate node or on a shared node with TiDB. To investigate the effect of
these cluster configurations, we performed an experiment with four differ-
ent configurations listed below. Our hypothesis is that the performance is
the same for all configurations, and that we can therefore use the simplest
configuration in the rest of our tests.

1. 3 PD, 1 TiDB, 3 TiKV

2. 1 PD, 1 TiDB, 3 TiKV

3. 3 PD, 1 TiDB, 3 TiKV (TiDB running on same node as a PD)

4. 1 PD, 1 TiDB, 3 TiKV (TiDB running on same node as a PD)

The result of these four configurations with standard deviations can be
seen in Figure 4.5, and they show that our hypothesis was correct. As the
performance is not significantly different between the configurations, we
can use the configuration with one PD and one TiDB on a shared node.
All further tests of TiDB will use this setup, and when using multiple TiDB
nodes, PD will be running on only one of the TiDB nodes.

41

A B C D E F
0

5,000

10,000

15,000

YCSB Workload

O
p

er
at

io
n
s/

s
1 PD, 1 TiDB
3 PD, 1 TiDB

1 PD, 1 TiDB (shared node)
3 PD, 1 TiDB (shared node)

Figure 4.5: TiDB clusters with different configurations for PD and TiDB.
Each cluster has three TiKV nodes and uses 4 CPU 16GB RAM nodes.

Instance size

Next, we investigated the vertical scalability of TiDB. We used TiDB’s
minimal configuration, as described above, and tested the cluster with four
different instance sizes. It is also possible to run TiDB and TiKV on
different instance sizes, but we chose to use uniform clusters in these tests
to make the analysis simpler. The results of the experiment can be seen
in Figure 4.6. Figure 4.7 shows the performance per CPU core and 4GB
of RAM, giving a picture of the performance per hardware resource when
scaling.

42

A B C D E F
0

5,000

10,000

15,000

20,000

YCSB Workload

O
p

er
at

io
n
s/

s
2 CPU, 8GB RAM 4 CPU, 16GB RAM
8 CPU, 32GB RAM 16 CPU, 64GB RAM

Figure 4.6: YCSB performance for four-node TiDB clusters with different
instance sizes. The cluster consists of three TiKV nodes and one shared
TiDB and PD node.

A B C D E F
0

1,000

2,000

3,000

YCSB WorkloadO
p

er
at

io
n
s/

s
p

er
C

P
U

an
d

4G
B

R
A

M

2 CPU, 8GB RAM 4 CPU, 16GB RAM
8 CPU, 32GB RAM 16 CPU, 64GB RAM

Figure 4.7: YCSB performance per CPU and 4GB RAM for four-node
TiDB clusters with different instance sizes. The cluster consists of three
TiKV nodes and one shared TiDB and PD node.

43

Cluster size

As TiDB clusters can be scaled by both varying the number of TiDB and
TiKV nodes, we decided to test a set of different combinations listed below.
Note that all of these configurations have one instance of PD running on
one of the TiDB nodes.

• 3 TiKV, 1 TiDB (4 nodes in total)

• 3 TiKV, 3 TiDB (6 nodes in total)

• 3 TiKV, 6 TiDB (9 nodes in total)

• 6 TiKV, 1 TiDB (7 nodes in total)

• 6 TiKV, 3 TiDB (9 nodes in total)

• 6 TiKV, 6 TiDB (12 nodes in total)

These clusters were all run on 4 CPU, 16GB RAM nodes, and the results of
our tests can be seen in Figure 4.8. We have also normalized these results
to show how much performance per node the clusters give in Figure 4.9.

A B C D E F
0

5,000

10,000

15,000

20,000

YCSB Workload

O
p

er
at

io
n
s/

s

3 TiKV, 1 TiDB 3 TiKV, 3 TiDB 3 TiKV, 6 TiDB
6 TiKV, 1 TiDB 6 TiKV, 3 TiDB 6 TiKV, 6 TiDB

Figure 4.8: YCSB performance for TiDB clusters with different numbers
of TiDB and TiKV nodes, using 4 CPU 16GB RAM nodes. All clusters
use one PD running on a TiDB node.

44

A B C D E F
0

1,000

2,000

3,000

YCSB Workload

O
p

er
at

io
n
s/

s
p

er
n
o
d
e

3 TiKV, 1 TiDB 3 TiKV, 3 TiDB 3 TiKV, 6 TiDB
6 TiKV, 1 TiDB 6 TiKV, 3 TiDB 6 TiKV, 6 TiDB

Figure 4.9: YCSB performance per node for TiDB clusters with different
numbers of TiDB and TiKV nodes, using 4 CPU 16GB RAM nodes. All
clusters use one PD running on a TiDB node.

Evaluation

TiDB’s performance for workloads B, C and D scales consistently when
vertically scaling a cluster. However, the write-heavy workloads A and F
do not scale particularly well, and the performance on the scan workload
E does not increase by using the largest instance size. We believe that
workloads A and F may scale poorly because of contention to some keys, in
addition to the disk performance being the same on all instances. Looking
at the workloads that do scale, they scale best for the two smallest instance
sizes and lose more performance when scaling beyond that. Again, we
believe this may have to do with constant disk performance, as increasing
cores and memory are not the only qualities that affect performance.

TiDB’s horizontal scalability is a bit harder to analyze because of the many
combinations of configurations. Looking at Figure 4.9, we can see that
the two smallest clusters have the best performance per node. They have
almost identical per-node performance in workloads B, C and D and E,
while the smallest cluster is best for write heavy workloads A and F. This
is likely because all disk operations are handled by TiKV, while TiDB is
only a stateless query layer on top of that, and thus, adding more TiDB in-
stances does not increase write performance. However, for reads and scans,
the increased capacity in the query layer seems to increase performance
significantly.

45

Another interesting finding is that when using 3 TiKV nodes, increasing
from 3 to 6 TiDB nodes does not have any positive impact on the results.
This indicates that at this point, TiKV is the bottleneck, and any extra
TiDB capacity will be unused. Finally, when using 6 TiDB nodes and going
from 3 to 6 TiKV nodes, the throughput of the cluster is actually reduced.
We have no good explanation for this, but believe it is largely caused by
highly variable cluster performance, and that a larger sample size would
remove this anomaly.

4.3 YugabyteDB

YugabyteDB supports both serializable isolation like CockroachDB and
snapshot isolation like TiDB. The two isolation levels perform significantly
different, so we have chosen to present both results in separate sections
below.

4.3.1 Snapshot isolation

Instance size

We performed instance size tests with four different hardware configura-
tions, using a minimal cluster of three nodes. The results of the experiment
can be seen in Figure 4.10 and the normalized performance can be seen in
Figure 4.11.

A B C D E F
0

5,000

10,000

15,000

20,000

YCSB Workload

O
p

er
at

io
n
s/

s

2 CPU, 8GB RAM 4 CPU, 16GB RAM
8 CPU, 32GB RAM 16 CPU, 64GB RAM

Figure 4.10: YCSB performance for three-node YugabyteDB clusters with
snapshot isolation on different instance sizes.

46

A B C D E F
0

1,000

2,000

3,000

4,000

YCSB WorkloadO
p

er
at

io
n
s/

s
p

er
C

P
U

an
d

4G
B

R
A

M
2 CPU, 8GB RAM 4 CPU, 16GB RAM
8 CPU, 32GB RAM 16 CPU, 64GB RAM

Figure 4.11: YCSB performance per CPU and 4GB RAM for three-node
YugabyteDB clusters with snapshot isolation on different instance sizes.

Cluster size

To get a picture of the horizontal scalability of YugabyteDB, we test clusters
of sizes 3, 6, 9 and 12 nodes. Each of the clusters TServers running on all
nodes, and three masters running on the same nodes as TServers. For all
cluster sizes, we use nodes with 4 CPU and 16GB of RAM. The results can
be seen in Figure 4.12, and Figure 4.13 shows the per node performance
numbers.

47

A B C D E F
0

5,000

10,000

15,000

20,000

YCSB Workload

O
p

er
at

io
n
s/

s
3 nodes 6 nodes
9 nodes 12 nodes

Figure 4.12: YCSB performance for YugabyteDB clusters with snapshot
isolation using different numbers of 4 CPU 16GB RAM nodes.

A B C D E F
0

1,000

2,000

3,000

4,000

5,000

YCSB Workload

O
p

er
at

io
n
s/

s
p

er
n
o
d
e

3 nodes 6 nodes
9 nodes 12 nodes

Figure 4.13: YCSB performance per node for YugabyteDB clusters with
snapshot isolation using different numbers of 4 CPU 16GB RAM nodes.

48

Evaluation

The first thing that is very noticeable in these results is the performance
of workload E. Workload E achieves only between 5 and 10 operations per
second, with a latency of over 30 seconds. One can therefore conclude that
workload E is not compatible with YugabyteDB’s snapshot isolation. One
explanation for this performance is that YugabyteDB partitions data with
hash partitioning rather than range partitioning. This makes scans more
expensive, as many different shards and nodes need to communicate in
order to serve a query. However, there is likely some other factor involved
in this slow performance as well, as the number of nodes is low and the
communication overhead is therefore somewhat limited.

One more issue with YugabyteDB with snapshot isolation is that workload
F fails for the smallest instance size, but scales well for the three other
instance sizes. We have no good explanation for this failure, but believe it
may be caused by many conflicts that result in unrecoverable transaction
errors. This might be fixed by some modifications to oltpbenchmark’s error
handling, but this was not prioritized in this thesis.

Other than the issue with workload E, the database scales quite well for
the rest of the workloads with the three smaller instance sizes. However,
when going from 8 to 16 CPUs, there is no performance gain for workloads
B, C and D. We suspect this has to do with the disk performance, as
mentioned in the other databases. Overall, the three smallest instances
have similar per-hardware performance, and YugabyteDB with snapshot
isolation therefore seems to scale very well on these instances.

The horizontal scalability of YugabyteDB with snapshot isolation is similar
to its vertical scalability, where it scales well up until a certain point. The
largest cluster of 12 nodes even performs worse than the cluster of 6 nodes.
This result combined with the vertical scalability leads us to believe, as
mentioned earlier, that the dataset for these benchmarks might not be
large enough to see the benefits of more powerful configurations. A small
dataset is harder to distribute, and it will also introduce contention when
operations are very fast.

4.3.2 Serializable isolation

Serializable isolation is the strongest isolation level that YugabyteDB pro-
vides. We expect this to have significantly lower performance than snap-
shot isolation, as it needs to prevent more anomalies and therefore do more
checks during transaction runtime.

49

A B C D E F
0

2,000

4,000

6,000

8,000

YCSB Workload

O
p

er
at

io
n
s/

s
2 CPU, 8GB RAM 4 CPU, 16GB RAM
8 CPU, 32GB RAM 16 CPU, 64GB RAM

Figure 4.14: YCSB performance for three-node YugabyteDB clusters with
serializable isolation on different instance sizes.

Instance size

For instance size tests, we use clusters with three nodes, each having the
master and TServer software running, on four different instance sizes. The
results can be seen in Figure 4.14. We also show a normalized version of
this graph in Figure 4.15, where the performance per hardware resource is
shown.

Cluster size

Varying cluster sizes with YugabyteDB serializable isolation were also
tested, using 3, 6, 9 and 12 nodes. All of these clusters also had three
master processes running on three of the TServer nodes. Figure 4.16 shows
the performance results, while Figure 4.17 shows normalized numbers with
per node performance.

50

A B C D E F
0

200

400

600

800

YCSB WorkloadO
p

er
at

io
n
s/

s
p

er
C

P
U

an
d

4G
B

R
A

M
2 CPU, 8GB RAM 4 CPU, 16GB RAM
8 CPU, 32GB RAM 16 CPU, 64GB RAM

Figure 4.15: YCSB performance per CPU and 4GB RAM for three-node
YugabyteDB clusters with serializable isolation on different instance sizes.

A B C D E F
0

2,000

4,000

6,000

8,000

YCSB Workload

O
p

er
at

io
n
s/

s

3 nodes 6 nodes
9 nodes 12 nodes

Figure 4.16: YCSB performance for YugabyteDB clusters with serializable
isolation using different numbers of 4 CPU 16GB RAM nodes.

51

A B C D E F
0

200

400

600

800

1,000

YCSB Workload

O
p

er
at

io
n
s/

s
p

er
n
o
d
e

3 nodes 6 nodes
9 nodes 12 nodes

Figure 4.17: YCSB performance per node for YugabyteDB clusters with
serializable isolation using different numbers of 4 CPU 16GB RAM nodes.

Evaluation

YugabyteDB with serializable isolation scales quite well for all benchmarks
except E. However, unlike snapshot isolation, serializable isolation is able
to handle workload E with good results. The per core performance of
YugabyteDB with serializable isolation is reduced steadily with the num-
ber of nodes, which is expected as overhead grows when more nodes are
introduced in a cluster.

The horizontal scalability is similar to the vertical scalability, with all work-
loads scaling well except for the scan workload E. There are no issues when
scaling to the largest instance or cluster sizes with this database, but we
believe that this is caused by the absolute performance numbers being sig-
nificantly lower than for other databases. As absolute numbers are lower,
the issues with a small workload size are not as apparent, since fewer op-
erations per second mean that a smaller subset of data is accessed.

4.4 Comparison

YCSB

To compare the performance of all four databases, we analyze the per node
performance of a minimal cluster where nodes have 4 CPUs and 16GB of
RAM for each database. The results are shown in Figure 4.18. The graph

52

shows that CockroachDB performs best on read-heavy workloads B, C, D
and E, while TiDB performs best on write-heavy workloads A and F. On
average, YugabyteDB with serializable isolation performs worst of the four
databases we tested. Another observation, as mentioned earlier, is that
YugabyteDB with snapshot isolation is almost unable to handle workload
E.

If we divide the databases by their isolation level, we can see that for serial-
izable isolation, CockroachDB is a clear winner over YugabyteDB in these
tests. For snapshot isolation, however, there is no clear winner between
TiDB and YugabyteDB in general. The two big differences between TiDB
and YugabyteDB are seen in workloads C and E. On workload C, Yugabyt-
eDB significantly outperforms TiDB, while on workload E, YugabyteDB
has almost zero performance.

A B C D E F
0

2,000

4,000

6,000

YCSB Workload

O
p

er
at

io
n
s/

s
p

er
n
o
d
e

CockroachDB
TiDB

YugabyteDB snapshot
YugabyteDB serializable

Figure 4.18: YCSB performance per node for minimal CockroachDB, TiDB
and YugabyteDB clusters using 4 CPU 16GB RAM nodes.

Using the same benchmark as above, Figure 4.19 shows the average latency
of each database. The graph is cut off on the y-axis because of Yugabyt-
eDB’s snapshot isolation performance with workload E. The graph shows
that in general, the databases with snapshot isolation have lower latencies
than the databases with serializable isolation. This shows that there is a
significant cost to the stronger isolation. When looking at CockroachDB in
specific, one can see that the largest cost occurs for the write-heavy work-
loads A and F, while on read-heavy workloads, CockroachDB is comparable

53

to the databases with snapshot isolation. This figure also shows that the
latency of workload E for YugabyteDB, which is hash partitioned, is much
higher than CockroachDB and TiDB, which are both range partitioned.

A B C D E F
0

100

200

300

400

YCSB Workload

A
ve

ra
ge

la
te

n
cy

(m
s)

CockroachDB
TiDB

YugabyteDB snapshot
YugabyteDB serializable

Figure 4.19: YCSB latencies for minimal CockroachDB, TiDB and Yu-
gabyteDB clusters using 4 CPU 16GB RAM nodes. The y-axis is cropped
because YugabyteDB with snapshot isolation on workload E has a latency
of over 30 seconds.

TPC-C

We also evaluated all of the databases with the TPC-C benchmark in order
to get more data points to compare. However, there were some issues with
Yugabyte where it would get stuck on table creation, and we were not able
to resolve these issues. This means that we only have TPC-C numbers for
CockroachDB and TiDB. Nevertheless, we present these results here for an
additional data point in the comparison between the two. The results are
shown in Figure 4.20, and we can see that the per node performance results
are comparable. TiDB outperforms CockroachDB on a smaller instance
size, while the opposite is true for the larger instance size. This figure also
shows that the TPC-C benchmark’s vertical scalability is not very good
with these databases, as the performance of smaller and larger nodes is
almost identical.

54

TPC-C
0

1,000

2,000

3,000

Workload

O
p

er
at

io
n
s/

m
in

p
er

n
o
d
e

CockroachDB, 4 CPU, 16GB RAM
CockroachDB, 16 CPU, 64GB RAM

TiDB, 4 CPU, 16GB RAM
TiDB, 16 CPU, 64GB RAM

Figure 4.20: TPC-C performance per node for minimal CockroachDB and
TiDB clusters using both 4 CPU 16GB RAM and 16 CPU 64GB RAM
nodes. YugabyteDB is excluded because it was not able to run the TPC-C
workload.

Scalability

Finally, we illustrate the scalability of each of the systems by finding the
average performance per node scaled to the smallest cluster size. This
means that the smallest cluster size has a performance per node of 1, while
larger clusters have a number that reflects how much the performance per
cluster is reduced. The smallest cluster for TiDB is four nodes, it is three
for the other databases. The results of this are shown in Figure 4.21.
The figure shows that YugabyteDB appears to maintain the highest per
node performance while scaling, while CockroachDB is worst at scaling
horizontally. However, it should be noted again that the absolute values
for CockroachDB are higher, and that the benchmark datasets are likely
too small, effectively punishing higher performing clusters.

55

3 4 5 6 7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

Number of nodes

P
er

fo
rm

an
ce

p
er

n
o
d
e

re
la

ti
ve

to
sm

al
le

st
cl

u
st

er
CockroachDB

TiDB
YugabyteDB serializable
YugabyteDB snapshot

Figure 4.21: Comparison of performance per node for CockroachDB, TiDB
and YugabyteDB when scaling horizontally. Performances are normalized
to illustrate the cost of scaling by defining that minimal cluster of each
database has a performance per node of 1.

4.5 Discussion

YugabyteDB started as a snapshot isolation database, and later added seri-
alizable isolation [26]. Analyzing the performance of the two isolation levels
should show the “cost” of stronger isolation, and it appears that serializable
isolation inherently can provide a much lower throughput than snapshot
isolation. However, when also looking at CockroachDB and TiDB, it is ap-
parent that CockroachDB, a database built from the start for serializable
isolation, is able to compete quite well with snapshot isolation databases.
The throughput of CockroachDB is competitive with the snapshot isolation
databases on workloads B through E, but is slightly lower on write-heavy
workloads A and F. This is to be expected, as write transactions are the
ones that make isolation harder, as read transactions do not block each
other.

56

As mentioned in the previous section, when comparing latencies of the
database categories, there is a significant increase in latency for stronger
isolation levels when there are many writes. This is likely caused by more
write transactions needing to wait for read transactions. In CockroachDB,
for example, write skew is avoided by storing the latest read timestamp
for keys, and ensuring that write intents have a higher timestamp than
this. Write transactions may need to wait longer and push their times-
tamps when writing to frequently read keys, causing a higher latency. This
scenario is avoided by databases with snapshot isolation, as they can allow
write skew to occur.

57

Chapter 5

Conclusion and Future Work

5.1 Conclusion

We have successfully compared the performance of CockroachDB, TiDB
and YugabyteDB with the standardized YCSB and TPC-C workloads, al-
though the latter failed to run on YugabyteDB. During our work on this
thesis, we have tested over 200 separate clusters using over 1,500 virtual
machines in a cloud environment. The volume of tests that we were able
to perform without manual intervention speaks to the success of our novel
automated testing approach.

For the YCSB workload, the databases had generally comparable perfor-
mance, but YugabyteDB with serializable isolation was an outlier with
worse performance. Thus, for applications requiring serializable isolation,
CockroachDB is the best performing option. However, if isolation require-
ments are more flexible, CockroachDB, TiDB and YugabyteDB with snap-
shot isolation are all good options. The two snapshot isolation databases
outperform CockroachDB in throughput and latency for write-heavy work-
loads, but have lower throughput for read-heavy workloads.

Out of the databases we have evaluated, YugabyteDB is the newest one,
with their SQL interface being officially released two years after Cock-
roachDB and TiDB. Their recent release indicates their implementation
may not be as mature as other offerings, which we also noticed during our
evaluation. First, YugabyteDB with snapshot isolation struggles with han-
dling the scan workload, having less than ten operations per second and
latencies of over 30 seconds. Second, YugabyteDB with either isolation
level was not able to run the TPC-C workload without failures. Further-
more, YugabyteDB does not perform well with serializable isolation, as
mentioned previously. We hypothesize that this is because the database

58

was originally created with only snapshot isolation, and that serializable
isolation was added later, meaning that it might not be as optimized yet.
In summary, YugabyteDB’s performance with snapshot isolation shows po-
tential, but there is currently no good reason to choose YugabyteDB if
serializable isolation is a requirement.

The scalability numbers of all the databases show that the performance
per node quickly deteriorates when scaling horizontally with the YCSB
workloads. This can largely can be attributed to the overhead of network
communications and the cost of transaction conflicts that span between
nodes. However, we also hypothesize that these numbers would be better
with workloads that are larger and therefore easier to distribute.

Overall, we conclude that CockroachDB and TiDB are currently better
choices than YugabyteDB as NewSQL databases. It should be noted that
YugabyteDB also supports other protocols which can make it a more at-
tractive offering, but that is out of the scope of this research. Between
CockroachDB and TiDB, aside from the isolation differences, they both
have strengths and weaknesses. The most important performance differ-
ence that can be seen in the benchmarks is that CockroachDB has worse
throughput and latency on write workloads, while TiDB has lower through-
put but similar latency for read workloads. Thus, the choice between Cock-
roachDB and TiDB will highly depend on both the isolation and workload
requirements of an application.

5.2 Future Work

In this section we present some work that we believe are worthwhile efforts
to expand on this thesis. First, we would like to expand our benchmarking
system to support multiple clouds without needing to rewrite Terraform
manifests. This would make it easier to evaluate databases across even
more hardware configurations, and would also allow a user to compare the
performance of different clouds. Additionally, in a more configurable cloud,
one might be able to tune CPU, RAM and disk independently, which will
make it easier to analyze the effect each resource has on performance.

As mentioned previously, we hypothesize that some of our performance
results may have been lowered because of the structure and size of our
workloads. To investigate this further, we would like to try more workloads
and increase the size of datasets. This could result in a better evaluation
for high performing clusters, making the comparisons fairer across cluster
sizes.

Another analysis that we hypothesize can help gain insight into the

59

databases’ performance is to analyze the results over time while performing
changes to a cluster. For instance, one could add or remove different types
of nodes from the cluster and see how this affects performance. One would
expect that adding a node will increase performance, but in order to syn-
chronize data to that node, some query capacity must be sacrificed until
the node is up to date. Showing these trade-offs visually and comparing
how different systems handle scaling during runtime can enable a deeper
understanding of these NewSQL systems.

60

References

[1] Daniel Abadi. “Consistency tradeoffs in modern distributed database
system design: CAP is only part of the story”. In: Computer 45.2
(2012), pp. 37–42.

[2] Daniel J Abadi. Demystifying Database Systems, Part 1: An Intro-
duction to Transaction Isolation Levels. 2019. url: https://fauna.
com/blog/introduction- to- transaction- isolation- levels

(visited on 12/07/2019).
[3] Daniel J Abadi. Demystifying Database Systems, Part 2: Correctness

Anomalies Under Serializable Isolation. 2019. url: https://fauna.
com / blog / demystifying - database - systems - correctness -

anomalies-under-serializable-isolation (visited on 12/07/2019).
[4] Daniel J Abadi. Demystifying Database Systems, Part 4: Isolation

levels vs. Consistency levels. 2019. url: https://fauna.com/blog/
demystifying-database-systems-part-4-isolation-levels-

vs-consistency-levels (visited on 12/07/2019).
[5] Cloud-init: The standard for customising cloud instances. url:

https://cloud-init.io/ (visited on 05/16/2020).
[6] CockroachDB Docs. url: https://www.cockroachlabs.com/docs/

stable/ (visited on 11/01/2019).
[7] James C Corbett et al. “Spanner: Google’s globally distributed

database”. In: ACM Transactions on Computer Systems (TOCS)
31.3 (2013), p. 8.

[8] Djellel Eddine Difallah et al. “Oltp-bench: An extensible testbed for
benchmarking relational databases”. In: Proceedings of the VLDB
Endowment 7.4 (2013), pp. 277–288.

[9] Seth Gilbert and Nancy Lynch. “Brewer’s conjecture and the feasibil-
ity of consistent, available, partition-tolerant web services”. In: Acm
Sigact News 33.2 (2002), pp. 51–59.

[10] Rachael Harding et al. “An evaluation of distributed concurrency con-
trol”. In: Proceedings of the VLDB Endowment 10.5 (2017), pp. 553–
564.

[11] HashiCorp Packer. url: https : / / www . packer . io/ (visited on
05/16/2020).

61

[12] HashiCorp Terraform. url: https://www.terraform.io/ (visited
on 05/16/2020).

[13] Orhan Henrik Hirsch. Distributed SQL databases for the cloud.
Project report in TDT4506. Department of Computer Science,
NTNU – Norwegian University of Science and Technology, Dec.
2019.

[14] Peter Mattis, Ben Darnell, and Spencer Kimball. Why We’re Reli-
censing CockroachDB. 2019. url: https://www.cockroachlabs.
com/blog/oss-relicensing-cockroachdb/ (visited on 12/01/2019).

[15] Diego Ongaro and John Ousterhout. “In search of an understandable
consensus algorithm”. In: 2014 USENIX Annual Technical Confer-
ence (USENIX ATC 14). 2014, pp. 305–319.

[16] M Tamer Özsu and Patrick Valduriez. Principles of distributed
database systems. Springer Science & Business Media, 2011.

[17] Andrew Pavlo and Matthew Aslett. “What’s really new with NewSQL?”
In: ACM Sigmod Record 45.2 (2016), pp. 45–55.

[18] Daniel Peng and Frank Dabek. “Large-scale incremental processing
using distributed transactions and notifications”. In: (2010).

[19] Karthik Ranganathan. Low Latency Reads in Geo-Distributed SQL
with Raft Leader Leases. 2019. url: https://blog.yugabyte.com/
low- latency- reads- in- geo- distributed- sql- with- raft-

leader-leases/ (visited on 12/07/2019).
[20] Karthik Ranganathan. Yes We Can! Distributed ACID Transactions

with High Performance. 2018. url: https://blog.yugabyte.com/
yes - we - can - distributed - acid - transactions - with - high -

performance/ (visited on 12/01/2019).
[21] Siddon Tang. How TiKV Uses ”Lease Read” to Guarantee High

Performances, Strong Consistency and Linearizability. 2018. url:
https://pingcap.com/blog/lease-read/ (visited on 12/07/2019).

[22] Alexander Thomson et al. “Calvin: fast distributed transactions for
partitioned database systems”. In: Proceedings of the 2012 ACM SIG-
MOD International Conference on Management of Data. ACM. 2012,
pp. 1–12.

[23] TiDB Docs. url: https://pingcap.com/docs/stable/ (visited on
11/01/2019).

[24] TiKV Docs. url: https://tikv.org/docs/ (visited on 11/01/2019).
[25] Transaction Processing Performance Council Benchmark C. url:

http://www.tpc.org/tpcc/ (visited on 05/15/2020).
[26] YugabyteDB Docs. url: https://docs.yugabyte.com/latest/

(visited on 11/01/2019).

62

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Orhan Henrik Hirsch

Scalability of NewSQL Databases in a
Cloud Environment

Master’s thesis in Computer Science

Supervisor: Svein Erik Bratsberg

June 2020

