
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Stine Forås

Database Systems in Relation to Sports
Data

A Performance Test of a Relational Database and
Graph Database

Master’s thesis in Master of Computer Science

Supervisor: Svein Erik Bratsberg

June 2020

Stine Forås

Database Systems in Relation to Sports
Data

A Performance Test of a Relational Database and
Graph Database

Master’s thesis in Master of Computer Science
Supervisor: Svein Erik Bratsberg
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

This project aims to find out whether relational databases or graph
databases would be the better fit when working with sports data. There
are several different systems that could be tested, but for this study,
MySQL and Neo4j are the systems chosen to be compared. Whether one
of them was significantly better than the other should be determined by
running a benchmarking process with several different queries to see how
they perform and compute statistical tests on the results to determine
how much they differ. The data used are soccer data from Premier
League season 19/20. However, due to the spread of Covid-19 and Premier
League being postponed from middle of March 2020, there was less data
than originally planned. Three different databases was created for both
database systems with different structure in each to be able to test their
performance on different levels of depth and amount of data. For this
study an external server was used for MySQL and a local server for Neo4j,
which created an advantage for MySQL. But as the structure of the data
was in favor of Neo4j, being a graph database, it was expected that it
should not perform much worse and hence an interesting point to look
at when comparing the two systems. Due to the choice of two different
types of servers, the topic of local vs. external database will be briefly
discussed as well, but was not the foundation of the study. The results of
this study shows that even with a more powerful server MySQL might not
be significantly better than Neo4j and that other factors can be considered
when choosing the best system to handle sports data.

1

Sammendrag

Dette studiet ønsket å finne ut om relasjonelle databaser eller grafdatabaser
ville være det beste alternativet n̊ar man jobber med sportsdata. Det er flere
forskjellige systemer som kunne blitt sammenlignet, men for denne studien ble
MySQL og Neo4j valgt. Om én av de var signifikant bedre enn den andre
ble bestemt ved å kjøre en ”benchmarking” prosess med forskjellige spørringer,
og deretter utføre statistiske tester p̊a resultatene for å se hvor forskjellige de
var. Dataen brukt for denne studien var data fra Premier League sesong 19/20.
Grunnet spredningen av Covid-19 og at Premier League ble utsatt fra midten av
mars, var det mindre data enn opprinnelig planlagt. Tre forskjellige databaser
ble lagd i begge databasesystemene med forskjellig struktur for å kunne teste
ytelse etter forskjellige niv̊a og mengde data. Denne studien benyttet en ekstern
server for MySQL og en lokal server for Neo4j som ga MySQL en fordel. Men
siden datastrukturen var til fordel for Neo4j, da den er en grafdatabase, var det
forventet at ytelsen ikke ville være mye d̊arligere og dermed et interessant punkt
å se p̊a i sammenligningen. Siden det ble valgt å bruke to forskjellige servere, er
ogs̊a temaet som omhandler ekstern vs. lokal server diskutert kort, men dette
var ikke grunnlaget for studiet. Resultatet fra denne studien viser at selv om
MySQL hadde en kraftigere server, er den muligens ikke signifikant bedre enn
Neo4j og andre faktorer kan vurderes n̊ar man velger det beste systemet for
h̊andtering av sportsdata.

2

Acknowledgment

Thank you to Sportradar for allowing me to use their data in this project and
to Martin Folke Emdal for giving me guidance when choosing systems and
creating databases and queries. I would also like to thank my advisor Professor
Svein Erik Bratsberg from the Norwegian University of Science and Technology
(NTNU), for feedback and support.

3

Contents

1 Introduction 7
1.1 Topics to be Studied . 7

1.1.1 Database Technologies . 7
1.1.2 Implementations . 7
1.1.3 Results from Queries . 8

1.2 Sportradar AG . 8

2 Database Technologies 8
2.1 Relational Databases . 8

2.1.1 What is a Relational Database? 9
2.1.2 Relational Databases for Sports Data 9

2.2 Graph Databases . 10
2.2.1 What is a Graph Database? 10
2.2.2 Why can Graph Databases be Used for Sports Data . . . 10

3 Choosing the Graph Database System 11
3.1 Neo4j’s Guide to Compare Graph Technologies 11
3.2 Neo4j . 11

3.2.1 OrientDB . 12
3.2.2 Dgraph . 15

3.3 Why Neo4j was chosen . 17

4 Related Work 19

5 Implementation 19
5.1 MySQL . 19

5.1.1 InnoDB . 19
5.1.2 NTNU Student Server . 24
5.1.3 Graphical User Interface: PhpMyAdmin 24

5.2 Neo4j . 26
5.2.1 Native Graph Storage . 26
5.2.2 Neo4j Desktop . 29
5.2.3 Neo4j Browser . 29

5.3 Data Import . 29
5.3.1 MySQL . 29
5.3.2 Neo4j . 31

5.4 Database Structure . 32
5.4.1 Database 1 . 32
5.4.2 Database 2 . 34
5.4.3 Database 3 . 36

5.5 Query Languages . 37
5.5.1 SQL . 37
5.5.2 Cypher . 37

5.6 Queries . 39

4

5.6.1 Depth . 40
5.6.2 Soccer . 40

6 Results 43
6.1 Results from Depth Queries . 44
6.2 Results from Soccer Queries . 48

6.2.1 Database 1 . 48
6.2.2 Database 2 . 50
6.2.3 Database 3 . 52

7 Discussion 54
7.1 Database Systems . 54
7.2 Servers . 55
7.3 Results . 56

7.3.1 Queries by depth . 56
7.3.2 Soccer queries . 58

8 Conclusion 60
8.1 Future Work . 61

8.1.1 Servers . 61

9 Appendix 62
9.1 Data Import . 62

Bibliography 63

List of Figures

1 Comparison between Neo4j and OrientDB Workload A - Update
heavy [Orib] . 13

2 Comparison between Neo4j and OrientDB Workload B - Read
mostly [Orib] . 13

3 Comparison between Neo4j and OrientDB Workload C - Read
latest [Orib] . 14

4 Comparison between Neo4j and OrientDB Workload D - Short
Ranges [Orib] . 14

5 Dgraph vs. Neo4j Cache off read-only [Raw] 16
6 Dgraph vs. Neo4j Cache on read-only [Raw] 16
7 Dgraph vs. Neo4j Cache off read-write [Raw] 16
8 Dgraph vs. Neo4j Cache on read-write [Raw] 17
9 Results from queries in Neo4j and OrientDB [For19] 18
10 Neo4j Database in project work 18
11 Results from comparison done by Partner and Vukotic 19
12 InnoDB Structure [MySi] . 23
13 InnoDB Buffer Pool Structure [MySb] 24
14 Profiling in PhpMyAdmin . 25

5

15 Neo4j Architecture [Cha] . 28
16 Neo4j Store File Record Structure [RWE15b] 28
17 Neo4j Physical Storage [RWE15b] 29
18 Structure Database 1 . 33
19 Structure Database 2 . 35
20 Structure Database 3 . 36
21 Cypher Query Visually [Neoa] . 38
22 Graph Depth 1 . 47
23 Graph Depth 2 . 47
24 Graph Depth 3 . 47
25 Database 1 Query 1 . 49
26 Database 1 Query 2 . 49
27 Database 2 Query 1 . 51
28 Database 2 Query 2 . 51
29 Database 3 Query 1 . 53
30 Database 3 Query 2 . 53

List of Tables

1 Questions by depth . 39
2 Questions for each database . 39
3 Results Depth 1 . 44
4 Results Depth 2 . 45
5 Results Depth 3 . 46
6 Average Execution Time and T-test 46
7 Results Database 1 Query 1 . 48
8 Results Database 1 Query 2 . 49
9 Database 1 Average Execution Time and T-test 50
10 Results Database 2 Query 1 . 50
11 Results Database 2 Query 2 . 51
12 Database 2 Average Execution Time and T-test 52
13 Results Database 3 Query 1 . 52
14 Results Database 3 Query 2 . 53
15 Database 3 Average Execution Time and T-test 54

Listings

1 Python MySQL import . 30
2 Python Neo4j Import . 31
3 Genaral SQL . 37
4 Cypher Queries Depth . 40
5 SQL Queries Depth . 40
6 Cypher Queries for Soccer . 41
7 SQL Queries for Soccer . 42

6

1 Introduction

In the last decade the amount of data collected from various sources have grown
enormously due to simpler ways of collecting data and faster ways of sending
and distributing it. This is also true for sports data. Today, one is able to
collect thousands of data points from one single game using sensors, cameras
and observations. The company Sportradar AG collects sports data and analyze
it for multiple purposes. In order to be able to do this they need good systems
for saving and querying data that is collected. The most common systems are
relational databases as they are dependable and relatively fast for querying data
that is not too large and does not need to be handled in real time. However,
due to the increase of the amount of data, new database systems have emerged
in the past years, one of them being graph databases. They have their origin
from social networks, where it was discovered that by structuring the database
on disk after the graph structure, querying could be made easier and faster.
This has led to more applications for the database, and it is now used by many
enterprises all over the world.

1.1 Topics to be Studied

This section presents what this case study examined and how the study was
performed. First it looks into general background of the technologies and then
describe in more detail the chosen systems and databases and how they are
implemented and designed.

1.1.1 Database Technologies

The database technologies that this study wants to examine and perform a
benchmarking process on are relational databases and graph databases. It will
describe how they work and why they can be used for this particular use case and
data. This section will also present why Neo4j was the chosen graph database
system based on the project work done by the author. Hence section 3 and
subsection 2.2 is partly based on the project work done by the author. [For19]

1.1.2 Implementations

The implementation section presents the database systems chosen for the bench-
marking process and describes the implementation of each of the systems for this
project. It presents the query languages used for each system and subsection
5.5.2 is partly based on the project work done by the author. [For19] Further,
there will be a detailed description about the data imported to the databases,
the structure of the databases in both systems and the queries to be used in the
benchmarking process.

7

1.1.3 Results from Queries

This section presents all results from queries done on the data in both databases.
A description of how the results are reached and how statistical tests are per-
formed is presented as well. This section will be the basis of the discussion and
conclusion for this study.

1.2 Sportradar AG

This case study was based on data from the company Sportradar AG. Sportradar
is an international company that works with collecting sports data and attain
value from it for many different purposes. Their mission is ”to empower the
broadest range of businesses with state-of-the-art sports data and digital content
solutions that fuel the passion of sports fans across the globe.”[Spo] Having
data and services in-house they provide solutions that their customers need for
a complete sporting experience.[Spo] In order to provide the best services, they
are ever growing and interested in new insight and thoughts. This project aims
to provide insight into database technologies that could be useful for Sportradar.

2 Database Technologies

Today there are several database technologies that can be used for a variety of
applications. The most common being the relational database as it has proved to
be the best and most stable system for decades. However, as the amount of data
accumulated has increased drastically over the years, it has been an increase in
the need of scalable systems. Relational databases has a problem when it comes
to scalability and NoSQL databases has been proposed as a solution for this.
However, there seem to be a drawback of NoSQL databases, that they are not
as reliable. Graph databases are NoSQL databases, but in most cases based on
native graph storage. They therefore have the same challenge as other NoSQL
databases. Some databases have chosen to meet this challenge by ensuring
that they are dependable by applying some of the features used in relational
databases. This section discusses relational databases and graph databases and
their use on sports data.

2.1 Relational Databases

Relational databases has been the most commonly used database technology for
decades. It has a wide range of application and many different systems exist
that are based on the relational model. This section describes what a relational
database is and why it can be used for soccer data.

8

2.1.1 What is a Relational Database?

Relational Databases are databases that stores data and their relations to each
other. It utilizes an intuitive relational model with tables and relationships
between them. Data is stored in tables consisting of rows and columns. The
rows are records of data and has an ID attribute, referred to as a key. Each
record has a unique key, which is the primary key, used when pointing to other
records it is related to. Other attributes can be set when creating an record
and can be used when querying the database for information. The columns are
where the content of each attribute is held and for most attributes this value
is set, but it can be empty if this attribute is not relevant for the particular
record.[Ora]

Before the Relational Model was created, data was structured in individual
ways and if a user wanted to manipulate the data it had to gain knowledge of
how this particular data structure. This was time consuming and required a lot
of work before an actual application for manipulating data could be made. The
Relational Model changed this and created a universal method for structuring
data that was intuitive and easy to use due to its utilization of tables as a
structure. [Ora]

Oracle lists four major benefits of using Relational Databases: The first one
is Data Consistency which makes sure that multiple instances of the database
has the same data at all times. The second one is Commitment and Atomicity
which means that it has strict rules for commitment and atomicity ensures
that data is equal for all instances. It will not update data unless it knows it
can be updated for all instances. Stored Procedures and Relational Databases
is the third benefit and allows users to store procedures to avoid extra work
of writing them repeatedly. Also it helps to ensure that data is stored in a
particular way, which creates consistency. The last benefit is Database Locking
and Concurrency. This avoids conflicts when several users are accessing the
same database simultaneously and to uphold integrity. Locking ensures that
users cannot access data while it is being updated and this can be done at a
table level or at record level, where doing it at a record level makes it easier to
work with the database as it does not lock the entire table for a record update.
Concurrency gives permissions according to data control policies when multiple
users are querying data simultaneously on the same database. [Ora]

2.1.2 Relational Databases for Sports Data

Sportradar collects millions of data points for many sports throughout a season.
This must be stored in order to analyze it and relational databases is a natural
choice as the data is connected to each other. For example a game has players,
teams and events which are all interconnected. Hence a relational database
would be able to display these relationships in a natural way using tables with
rows and columns. Additionally, looking at the benefits of a relational database
presented in the previous section, the data is ensured to stay consistent even
though many employees are accessing data simultaneously.

9

2.2 Graph Databases

Graph Databases has in recent years grown in popularity for use cases where
data that is heavily connected. By structuring the data differently, using nodes
and edges, it brings certain advantages for storing and querying the data in
addition to an even clearer visual display of relationships between data. This
section will describe what a Graph Database is and why it can be used for sports
data.

2.2.1 What is a Graph Database?

Since the Internet was launched the world is getting deeply connected. It is
based on a network of nodes and edges representing the computers and how
they are connected. This principle is easy to understand because it is visual
and one can trace the connections through the graph. Today the world is facing
a new issue: how to make sense of the large amount of data that is retrieved every
day. Graph databases are NOSQL-based and has tables on disk like relational
databases, but unlike relational databases, the relationships between the objects
are stored in lists related to each node. By using this relationship model instead,
the search-and-match computation can be avoided, and the relationships can be
treated as equally important as the data. In many cases when analyzing data,
the relationship between the data can be of a higher value, and it can be easier
to find this using graph databases.[Neoa]

2.2.2 Why can Graph Databases be Used for Sports Data

One of the challenges in today’s computer ruled world is the large amount of
data that is retrieved and stored for the purpose of being analyzed and used
to improve services and benefit the users. To retrieve relevant information is
crucial, but even more important is that the relevant information is retrieved
and presented at the right time, which puts a lot of pressure on the performance
of the systems used for storing and querying data. Sports data is highly related
and there is a lot of information in the relationships between the objects. The
arguments for using graph databases are based on three categories: performance,
flexibility and agility.[RWE15a]

The performance tends to remain relatively constant in a Graph Database
even when the data set increases. This is mostly due to the fact that one can
perform queries that are only localized to a certain part of the graph. Hence the
execution time for each query only depends on the size of the portion of the graph
traversed for the given query, rather than the size of the whole graph.[RWE15a]

Graphs in general benefits from the fact that it can grow in the and manner
of how the user wants it to. This flexibility is useful because in many cases one
does not know the entire complexity of the situation in advance, and to model
and build a database step by step is a lot easier. Graphs are also a lot easier to
change during the research as one easily can remove nodes and relationships for
specific parts, without effecting other nodes and their relationships.[RWE15a]

10

Developing software systems is often done by incrementally adding new
solutions, reviewing them, changing them and then repeating this process.
Therefore, it is natural that this incremental and iterative way is used when
building databases as well. The agility property lets the user add information
as they continue to acquire more information and understanding of the problem.
[RWE15a]

3 Choosing the Graph Database System

Choosing the graph database system for this comparison was done on the basis of
the project work done by the author. [For19] This section presents the different
database systems that was eligible and why Neo4j was chosen.

3.1 Neo4j’s Guide to Compare Graph Technologies

Neo4j is the leading provider of graph databases today, and therefore has sat
the standards for many of the definitions within the technology and have also
laid the foundation for continuous work within the field. However, they have
recognized the increasing offer of graph technologies out there and have provided
a guide to what should be considered when choosing a graph database system.
[Neoc] This guide will be used as a guideline for the comparison in this paper,
with some additional elements discovered from trying out the different solutions.
The different topics used for the description and comparison of the different
systems are as follows: Open Source Foundation Community, Native Graph
Storage, ACID Compliance, Graph Query Language, Hybrid Transactional-
Analytic Platforms (HTAP), Graph Platform with Tools and
Support for All Types of Users and Business Model, Focus & Staying in Power.
[Neoc]

3.2 Neo4j

Neo4j is as mentioned in the previous section, the leading graph database system
today. This mainly because it is easy to learn and provides many tools for
learning the system properly in a tidy and constructive matter. According
to the list from the graph database guide, provided by Neo4j for comparing
graph databases, it scores well on most points. For the first point, Open Source
Foundation Community, Neo4j is the leading system, it has a well-established
user group and has the “Biggest and Most Active Graph Community on the
Planet” [Neod] The second point addresses whether it is a native graph storage
system, also here Neo4j initiated this term and has set the definition for it.
According to themselves “It is the only enterprise-strength graph database
that combines native graph storage, scalable architecture optimized for speed,
and ACID compliance to ensure predictability of relationship-based queries.”
[Neod]. This quote also addresses the third point. Neo4j uses Cypher as it’s
query language which is “one of the most powerful and productive graph query

11

languages in the world” [Neod] according to themselves This combined with
a clear and easy-to-understand interface, Neo4j scores high on being intuitive.
The fifth point addresses the issue of evaluating the system based on their
own measures. There is a comparison between Neo4j and MySQL as presented
in section 4 and this case study will test the same two systems on sports data.
However, when other systems compare themselves to others, it is highly common
that they compare their system to Neo4j which says something about Neo4j’s
position. The sixth point checks whether the system that is being tested is easy
to use even if you have little to no experience with databases or programming
beforehand. As discussed above, Neo4j is highly intuitive and with the numerous
resources of learning tools, it is easy for anyone who wants to learn, to master it.
The last point checks whether the supplier is eager to stay up to date and support
its users. Neo4j has numerous lectures and talks about graph databases, and by
having the largest community of users, it is always being tested and improved
by them, giving Neo4j a great advantage for future improvements.

3.2.1 OrientDB

One of the biggest opponents of Neo4j is OrientDB, which is a multi-model
database. A multi-model database means that it combines different database
models such as graph, document, key/value, reactive, object-oriented and geo-
spatial into one operational database. This differs from Neo4j that only provides
a graph model. According to their own website OrientDB has considered the
enterprises needs for more than just one model and states that “in being able to
view data in different models it provides more insight in today’s age of big data”.
[Orid] However, as this study looks at comparing graph models, the following
comparison will be regarding this model only. [Orie] Following the steps of the
guide for choosing a graph database system, OrientDB is also an open source
foundation and has a growing community. They provide a online school for
learning how to set up and use the system for free and lets users discuss their
issues in forums. It is however not as large as Neo4j’s community, but it is
growing, and they have many resources for users to dive into and get familiar
with. [Oria] The second step is regarding native graph storage which OrientDB,
like Neo4j, is based on. The relationships between the data are stored in the
vertices, and in OrientDB it is stored as documents and as stated on their web
page “Native graph databases that apply index-free adjacency report reduced
latency in create, read, update and delete (CRUD) operations.” [Oric] OrientDB
also provide ACID transaction like Neo4j, which means that it preserves the
properties of atomicity, consistency, isolation and durability during a transaction
and checks of the third point in the list. The fourth point is concerned with
the query language used. In OrientDB SQL is used for querying the graph.
However, the SQL is modified in order to work with graphs instead of relational
databases. This brings the benefit of being able to provide new users, with a
background from SQL with an easier transition into the graph database world.
OrientDB provides a comparison of itself towards the two other systems, Neo4j
and MongoDB, where MongoDB also is a multi-model system. This relates to

12

the fifth point and in the comparison towards Neo4j, which is performed as an
independent benchmark by Tokyo Institute of Technology and IBM Research in
2012 [DS12], however these benchmarks are based on tests in the cloud which
differs from the case study presented in this paper, but the results from their
own web site is shown in Figure 1, 2, 3 and 4.

In the first comparison as shown in the figure below the query is “A mix of
50/50 read/update workload. Read operations query a vertex V and reads all
its attributes. Update operation changes the last login time.” [Orib] One can
see that the throughput of operations is quite faster than Neo4j.

Figure 1: Comparison between Neo4j and OrientDB Workload A - Update heavy
[Orib]

For the second workload B, which is read mostly, the query is a mix of 95/5
of read/update. This gives quite similar results as the previous workload.

Figure 2: Comparison between Neo4j and OrientDB Workload B - Read mostly
[Orib]

The third workload is a read latest and defined as follows: “Inserts new
vertices to the graph. The inserts are made in such a way that the power-law

13

relations of the original graph are preserved.” The graph in figure 3 shows that
in this case OrientDB also outperforms Neo4j.

Figure 3: Comparison between Neo4j and OrientDB Workload C - Read latest
[Orib]

The last workload tested is short ranges and defined as “Reads all the
neighboring vertices and their Vertex attributes. For example, loading the
closest friend to a person in a social graph.” Figure 4 shows the result and
OrientDB does not perform as good in this case, but still better than Neo4j.

Figure 4: Comparison between Neo4j and OrientDB Workload D - Short Ranges
[Orib]

The performance may depend on the type of data that is used and might be
different in other cases. For the sixth point of the list OrientDB has chosen to
give the users opportunity to choose the language they prefer between SQL
and JavaScript which gives a wider range of new users an easy transition.
Additionally, there are a lot of sources available on the internet to learn these
languages quickly if one is not familiar with it. However, this system might
not be as intuitive and easy to start out with and requires some knowledge of

14

using shells or Docker in order to set it up and the sources for learning is a bit
outdated in this regard, which makes it harder for users not familiar with it.
But when this hurdle is overcome the graphic interface in their studio is easy
to follow and it does not require much knowledge to start creating a graph and
querying it. OrientDB is as of the time this paper is written ranked number
two of databases that has a community edition available. They are also quite
forward leaning on their web page trying to gather more users and doing so by
making it easy to migrate from other systems. The main difference from Neo4j
is that they are pursuing a multi-model database, but the graph side is quite
important, and it shows from their own web page that this is something that
they spend a lot of time developing. They are also making it easy to convert
a database from Neo4j into their systems, showing that they are interested in
taking up the competition with the today’s leading system.

3.2.2 Dgraph

Dgraph is a system that was released in 2016 and is now ranked number 11
among graph database systems according to “db-engines.com.” [db-] It is a
pure graph database that allows the user to create graph databases like the
previously two described systems. It is a system that seems to be mostly focused
on performance, but it provides an interface for users who prefers this over
shell. When it comes to the first step in the guide for choosing graph databases
systems, Dgraph is both open source and has a community for its users. Since
Dgraph in many ways is made by developers for developers they are focused on
letting others bring their thoughts and changes to the system and has a Slack-
community where users can interact and contribute to each other. According to
their own description of their system, “Dgraph is an open-source, transactional,
distributed, native Graph database.” [Rao] which addresses both the second
and the third point of the list, being native and ACID. The fourth point is
regarding the query language, which in Dgraph is GraphQL+-. GraphQL+-
is based on Facebook’s language GraphQL, which was not originally made for
querying graphs, but its structure is very similar to the graph structure which
makes it a natural choice when working with graphs. [D-g] GraphQL+- is
developed by Dgraph for their solution and is a work in progress constantly
being improved to facilitate operations and querying in an even more efficient
way. [D-g] Since this language is based on a language that is not used by
many, it requires users to learn a new language, making the transition harder,
but for new users it should not be harder to learn than any other language
used for graph databases. However, they do not provide any learning resources
for setting up or learning the language which sets the barrier for learning the
language higher. The fifth point addresses how Dgraph performs in comparison
to other systems. At their own web page they have made a comparison to
Neo4j as it is the leading system today. In their comparison they completed a
benchmarking process. They made queries that was based on read and writes
and since Dgraph does not do query caching they completed the test with both
caching on and off in Neo4j, but standard for Neo4j is that it’s turned on. [Raw]

15

The results from this comparison are presented in figures 5, 6, 7 and 8.

Figure 5: Dgraph vs. Neo4j Cache off read-only [Raw]

Figure 6: Dgraph vs. Neo4j Cache on read-only [Raw]

Figure 7: Dgraph vs. Neo4j Cache off read-write [Raw]

16

Figure 8: Dgraph vs. Neo4j Cache on read-write [Raw]

As shown in the results for this data, Dgraph performs better in all cases
except for read-only when query caching is used in Neo4j. This benchmarking
process was done in 2017 so changes to performance might have changed in the
time between then and when this paper is written. The sixth point in the list
for evaluating graph database systems considers if the system is easy to use for
all users. Dgraph does have a user interface that can be used to manage the
graph if wanted, however, it is not as intuitive as the other interfaces presented
in this paper and therefore not straight forward to understand how to build and
manage a graph. Thus, Dgraph might not be the best solution for new users not
familiar with coding and databases in general. The last point on the list points
to Dgraph’s business model and how it tries to stay in power. From their web
page and how they present their system they are focused on presenting what
their strengths are regarding different topics and guides users directly into the
steps of getting started with their system. However, it does not show tendencies
of wanting to be the most preferred system by everyone, but to provide the best
performance for certain cases as stated on their blog “Dgraph is optimized for
high-performance reads and writes. It can serve queries and mutations with low
latency and high throughput, even when they involve deep joins and traversals.”
[Rao]

3.3 Why Neo4j was chosen

For the benchmarking process in this project work Neo4j and OrientDB was
chosen. One database was created which contained the data for five games
for Manchester United during Premier League 19/20. The total graph can be
viewed in figure 10. The results from this benchmarking process are presented
in figure 9. This project work concluded that Neo4j was the preferred graph
database system for this use case. This lead to choosing Neo4j as the graph
database system in this case study.

17

Figure 9: Results from queries in Neo4j and OrientDB [For19]

Figure 10: Neo4j Database in project work
[For19]

18

4 Related Work

There has been several experiments with Neo4j compared to a relational data-
base trying to prove why it is a better choice for heavily connected data. One
theory was that Neo4j will outperform MySQL when the depth of the structure
increases. This was tested by Jonas Partner and Aleksa Vukotic in the book
”Neo4j in action”. For this comparison they used a social network graph with 1
million users and intended to test ”friends of friends” queries. Which, essentially
mean that they tested the graph by depth. The results from their comparison
is shown in figure 11. This study shows that for queries written for a limit of
1000 users, Neo4j seems to perform better than MySQL as the depth increases.
[new] This is an interesting case study which aims to show the benefits of graph
databases and is the basis of what should be investigated in the comparison for
this case study.

Figure 11: Results from comparison done by Partner and Vukotic
[new]

5 Implementation

5.1 MySQL

MySQL was chosen as the relational database for this project and is widely
used all over the world. MySQL is developed by Oracle and provides many
different services, including community editions, enterprise editions, servers and
clusters. It also provides provides a cloud service for handling larger amounts
of data.[MySn] The server and storage engine used for this project, and the
interface used for handling data will be presented in the following sections.

5.1.1 InnoDB

There are several ways to store data in MySQL depending on how data is
handled. The data for this project needed to be updated for each game played,
and it was important to be able to insert and query data easily for the bench-
marking process. Therefore, the standard storage engine was chosen, namely
InnoDB. This is a ”general-purpose storage engine that balances high reliability
and high performance” [MySl], which is needed to be able to execute queries
rapidly and not risking loosing important information. InnoDB supports SQL
language and by its Data Manipulation Language (DML) operations it goes
along with the Atomicity, Consistency, Isolation and Durability (ACID) model

19

which supports commit, roll-back and crash-recovery. It supports multi-user
concurrency and performance by featuring row-level locking and consistent reads
after the Oracle style. [MySl] InnoDB will also store data on disk in a way that
optimizes queries. This means that data is stored and structured in a way that
reduces input/output (I/O) for lookups and all this is based on primary keys.
To support integrity, the primary key has certain constraints, ensuring that
when data is inserted, deleted or altered these constraints are checked in order
to maintain consistency in the database. [MySl] InnoDB handles Disk I/O by
the use of asynchronous disk I/O where it is feasible. This is done by creating
threads to manage this operations, while giving other database operations the
possibility to continue their operations while I/O is performed. InnoDB uses
two major mechanisms to reduce the need for frequent disk access. The first one
is Read-Ahead which means that if InnoDB recognize a high probability that
some data will be needed in the near future, it executes a read-ahead operations
gathering data into the buffer pool to make it available in-memory. This tactic
might be useful as it creates less, but larger read request which can be more
efficient than making many smaller ones. Read-ahead has two heuristics which
are sequential and random. Sequential is used when a pattern is noticed in
a segment in the tablespace stating that access is sequential and thus, it can
read several pages in advance. Random is used if InnoDB realizes that most
of the area in a tablespace is being read into the buffer, then it acquires the
remaining area as well. The Doublewrite Buffer is the second mechanism used
and is described in the paragraph for System Tablespace, and is used as a safety
measure for a crash or any other event that causes the system to cease working.
[MySk]

The structure of InnoDB is shown in figure 12. The In-Memory Structure
consists of four parts. The largest one is the Buffer Pool which resides in main
memory and is where tables are cached and index data obtained. The benefit
of this Buffer Pool is that it allows for data that is used often to be processed
directly from main memory which reduces processing time. According to the
MySQL website, if there are dedicated servers, ”up to 80% percent of physical
memory is often assigned to the buffer pool.”[MySb] This means that processing
can be increased by utilizing the Buffer Pool to its full extent. The Buffer Pool
is created as a linked list of pages and each page can hold one or several rows.
It uses a variation of the Least Recent Used (LRU) algorithm to remove unused
data. A figure of how this algorithm works is shown in Figure 13. When a new
page is added to the Buffer Pool, it removes least recently used page which is
the page at the end of the Old Sublist. The new page is inserted in the middle
of the list, between the Old and the New Sublist and if the page is accessed it
is moved into the New Sublist. By default the Buffer Pool List is divided as to
give 5/8 to the New Sublist and 3/8 to the Old Sublist. [MySb]

The Change Buffer handles the pages that does not reside in the Buffer Pool
and therefore has its changes cached to secondary index pages. These changes
are buffered and may result from DML operations. When these pages later are
loaded into the Buffer Pool the changes are merged. Using Change Buffer allows
InnoDB to avoid random access I/O that would have been required to read

20

secondary index pages from disk. There is a purge operation that periodically
writes updated index pages to disk and this happens when the system is mainly
idle or during a slow shutdown. This operation speeds up writing to disk in
contrast to if the system where to write data to disk immediately after a DML
operation. [MySc]

InnoDB does not use hash indexes, but it does use Adaptive Hash Index
internally. This feature is used when the system has the suitable combinations
of workload and enough memory for the Buffer Pool, without jeopardizing trans-
actional features or reliability. By using these Adaptive Hash Indexes, InnoDB
can perform more like an in-memory database. They are created by using a
prefix of the index key, which can be of any length. Since only a prefix of the
index key is used, only some values in the B-tree may appear in the hash index.
In order to work more like an in-memory database only the pages that are in the
New Sublist in the Buffer Pool can be used when creating an index. If an entire
table fits into main memory these hash indexes can speed up execution of queries
by allowing direct lookup of any element and using the index as a pointer. This
features does not need to be set by the user as InnoDB has mechanisms that
survey index searches and will automatically use hash indexes if it notices that
it can speed up queries. [MySa]

The last part of the in-memory structure of InnoDB is the Log Buffer.
Data that is to be written to log files on disk resides in this buffer. The Log
Buffer flushes its content to disk in a periodically manner. [MySm] This buffer
is a useful tool when using many DML operations because it permits ”large
transactions to run without the need to write redo log data to disk before the
transactions commit.” [MySm]

On the disk side, InnoDB has several systems for handling tables and a redo
log as shown in Figure 12. When creating tables in InnoDB, primary keys has
to be defined that are not null, unique and never or very rarely changed after
being inserted. This value is used by the most important queries.[MySe] InnoDB
uses two types of indexes, clustered and secondary. Clustered indexes are just
another name for the primary key and InnoDB uses this index to optimize DML
operations and most common lookups. If a primary key is not set for a table,
InnoDB will choose the first value that is not null and unique. If this does not
exist, it will generate a hidden clustered index which creates a synthetic column
with row IDs. These IDs are used to order the rows and for lookups. Using
these clustered indexes, will speed up queries by being able to access the page
with all data directly. Secondary indexes are indexes that is not a clustered
index. Hence, all records in a secondary index has the primary key columns for
the row in addition to the columns assigned for the secondary index.[MySd]

The indexes are structured using B-trees, a popular data structure for data-
bases. B-trees are continuously sorted and makes it possible to do fast lookups
for exact matches and ranges. B-trees are used for all indexes except the spacial
indexes that uses R-trees due to its specialty for indexing multi-dimensional
data. InnoDB will try to keep 1/16 of the page free when inserting new records
to a clustered index. This is easy to do when records are inserted sequentially,
but it gets harder if insertions happens at random which could lead to pages

21

being 1/2 to 15/16 parts full. InnoDB uses sorted index build, which means
that it loads data in bulks when it creates or rebuilds B-tree indexes. [MySq]

One of the major parts of the physical structure in InnoDB is the system
tablespace which stores the Data Dictionary, Doublewrite Buffer, Change Buffer
and Undo Logs. By default there is one system tablespace data file, but it can
have more which can be defined during startup. [MySg] The second part in
the On-Disk structure is the File-Per-Table Tablespace which retain data and
indexes for a single InnoDB table and ”is stored on the file system in its own
data file.” [MySg] Table and index data can reside in the system tablespace if the
tables are created there, in stead of in the file-per-table or general tablespace.
The System Tablespace consists of four parts and the first one is the InnoDB
Data Dictionary which consists of internal system tables which retains metadata
that is utilized to monitor tables, indexes and table columns. [MySj] The second
part is the Doublewrite Buffer. When pages are flushed from the Buffer Pool,
InnoDB first writes pages to the Doublewrite Buffer before it writes pages to
the correct position in the data files. The Doublewrite Buffer is also used
to find a copy of a page in case of a crash recovery. It writes data in large
consecutive chunks to avoid large I/O overhead or doubling the amount of I/O
operations.[MySf] The third part of the System Tablespace is the Change Buffer.
The last part is the Undo Logs. They are usually created and held in System
Tablespace, but the system storage can be better utilized by creating a separate
Undo Tablespace.

The general tablespaces is shared in InnoDB and is created when a tablespace
is created. They can store multiple tables, but has the advantage to keep
tablespace metadata in memory wile the tablespace is running. Additionally,
by keeping several tables in a few general tablespaces, it is possible to use
less memory for the metadata than if tables where in different file-per-table
tablespaces. It has many of the same capabilities as the file-per-table tablespace
and can therefore be wise to use in some cases to speed up processing. [MySh]

On-disk structure also has Undo Tablespaces which holds Undo Logs. Undo
Logs consists of Undo Log records that retain information about how to undo
the latest change. This is done by performing a transaction to a clustered
index record. The Undo Logs resides within Undo Log segments, which again
are retained in rollback segments. The Undo tablespace does not exist by
default as Undo Logs are usually stored in the system tablespace, but by using
this structure one can have undo tablespace in SSD storage while having the
remaining system tablespace on hard disk.[MySr] The last tablespace is the
Temporary tablespace which contains non-compressed, user-created tables and
on-disk internal temporary tables. It is a shared temporary tablespace, and
therefore no cost due to performance connected to creating and removing a file-
per-table tablespace for every temporary table. Additionally, since there is a
temporary table-space there is no need to store temporary table metadata in
InnoDB system tables. [MySp]

The last component in the On-disk structure is the Redo Log which is a disk-
based data structure and is utilized when a crash has occurred and recovery
needed. The most common procedure is that redo logs encodes the requests

22

made to alter table data, that derive from SQL statements or low-level API-
calls. If some alterations did not finish due to a crash in the system, data files are
rerun automatically when the system is initialized and before new connections
can be accepted. [MySo]

Figure 12: InnoDB Structure [MySi]

23

Figure 13: InnoDB Buffer Pool Structure [MySb]

5.1.2 NTNU Student Server

The server chosen for this project was the NTNU Student Server. This is a
remote server for students where one can create their own private databases
or multi-access databases. The reason for choosing this server was that there
was difficulties downloading a local community server and a server with more
functionality than the community server was desirable. Since this server was
remote some adjustments had to be done to the benchmarking due to network
delays when sending the data. Fortunately, the interface provided satisfactory
statistics for the network delay, giving the opportunity to eliminate this factor
when comparing execution time. The server used was version 5.7.29-0ubuntu
0.16.04.1 and was connected to by using PhpMyAdmin in a browser.

5.1.3 Graphical User Interface: PhpMyAdmin

This graphical user interface has become a frequently used interface for working
with a MySQL server and was recommended to use when working with the
NTNU MySQL server. It is easy to use and provides features for monitoring,
running queries and handle data. Using profiling mechanism in PhpMyAdmin
version 4.5.4.1deb2ubuntu2.1, shown in Figure 14, it was possible to determine
the seconds spent sending data, which could be subtracted from the execution
time. PhpMyAdmin shows all databases created for that user and it was easy to
switch between them when querying or handling data. However, this interface

24

could not be used for crating new databases and setting permissions, this was
done by connecting to the server using SSH through X-Win.

Figure 14: Profiling in PhpMyAdmin

25

5.2 Neo4j

Neo4j was chosen as the database system to compare MySQL with due to two
reasons. It is already used by Sportradar for some use cases and there was an
interest in investigating it further as a substitute for relational databases. It was
also compared with other commonly used graph database system in the project
work done by the author [For19], where Neo4j came out as the best system to
use for this particular case.

Neo4j is the leading graph database system according to their website.
[Neod] It is a native graph storage system and ”is the only enterprise-strength
graph database that combines native graph storage, scalable architecture opti-
mized for speed, and ACID compliance to ensure predictability of relationship-
based queries.” [Neod] It uses its own developed query language, Cypher for
mani-pulating data and has many users world wide, both enterprise and comm-
unity. [Neod]

5.2.1 Native Graph Storage

Native Graph Storage is made in order to be able to handle graph data better
than the relational model. This means that the storage is built in a way that
optimizes for graphs and makes sure that nodes and relationships are written
adjacent on disk. Graph databases can be based on a non-native graph storage,
but this will lead to poorer performance as the storage is not optimized for it,
having nodes and relation-ships stored far off from each other on disk.

Native graph processing includes storage and queries that optimize the graph
structure and obtains optimal performance of the graph database. What sepa-
rates native graph storage from other common storage engines used, as InnoDB
described in Section 5.1.1, is that it does not use indexes. It uses index-free
adjacency. This means that when writing data, the process is made faster by
making sure that the node is stored directly near its neighboring nodes and
relationships. Index-free adjacency removes the need for indexes when reading
because it retrieves only adjacent nodes and relationships. Since there is no
need for indexes there is a high need for ACID writes. This ensures a higher
data integrity than in other NoSQL databases. When a relationship record is to
be inserted into the graph it cannot only insert the record, but updates to the
graph at both its end, thus at two nodes must occur. If one of these operations
fails, the graph will be corrupted. This is only possible to avoid in total by using
fully ACID compliant transactions. [Cha]

Neo4j’s architecture is shown in Figure 16. This lays the foundation for
native graph storage where data is kept in store files made up of data for a
particular part of the graph, being nodes, relationships, labels or properties.
Since storage is divided in such a manner different responsibilities are set for
each part. This helps separating the graph structure from property data and
makes it easy to perform graph traversals. [RWE15b]

The structure of a store file record is depicted in Figure 16 and shows how a
node and a relationship is stored on disk. Every node store is of a fixed-size and

26

every record is nine bytes long. Since they are fixed size it is possible to perform
rapid lookups for nodes. The first byte in the file is called the in-use flag and tells
the system whether this record is in use or not. The next four bytes is the ID of
the first relationship linked to the node and the next four is the ID of the nodes
first property. There are five bytes for labels which are used for pointing to the
label store for this particular node. One extra byte is used for flags. There are
several types of flags, one is used to identify if nodes are connected to many other
nodes. The rest of the space in the store file is left to be used in the future.The
relationships are also stored in a store file of fixed-size records. These records
reside the IDs of nodes at both ends of the relationship, several pointers, one to
the relationship type and others for next and previous relationships of the nodes
at both ends of this relationship. It also has a flag which states whether this
relationship is the first one in a so called relationship chain. Figure 17 shows the
physical storage in Neo4j. [RWE15b] The use of record IDs in a pointer-like way
and fixed-size records makes it possible to implement traversals which can be
performed at high speed. Traversals is done by tracing these pointers trough the
data structure. In order to traverse a relationship from one node to another one,
the system executes ID computations that can be done cheaply in contrast to
using global indexes which would have had to be done in a non-native database.
From the first node connected with the particular relationship, the first record in
the relationship chain is found by computing its offset into the relationship store
which leads straight to the correct record. Using this relationship record, it is
possible to find the ID of the second node by looking into the second node field
in this record. This ID leads to the right node record. Constraints according
to relationship type or label can be added by using lookups in the relationship
type store or label store, again using the corresponding pointer. Nodes and
relationships also have properties stored as key-value pairs in a property store
file and can be referenced from both nodes and relationship store files.[RWE15b]

Properties are physically stored and are records of fixed-size. Depending on
the size of the property it is stored in a dynamic store or inlined value. Inline
values are preferable as it provides faster lookups, but if the properties are too
large it does not fit in an inlined value. Here either a dynamic string store or
array store is used. These dynamic records will contain linked lists of fixed-size
records and can therefore take up more than one dynamic record.[RWE15b]

To increase performance, having the entire graph in main memory is prefer-
able, but as graphs get larger this is not possible in most cases. Therefore Neo4j
uses in-memory caching to boost the performance of the database. The cache
used in Neo4j is an Least Recently Used-K page cache. This cache divides the
stores into discrete regions and keeps a fixed number of regions for each store
file. Evictions are based on Last Frequently Used (LFU) cache policy, with a
variation based on page popularity. If a page becomes unpopular it will be
removed to let more popular pages in, even if the more popular pages has not
been accessed lately.[RWE15b]

Another important part of the database is ensuring that it is dependable. It
needs to be able to access data when needed and recover from potential crashes.
In relational databases it is highly common that they are fully ACID, but for

27

many graph databases this is not always the case. Neo4j however, ensures
that it is fully ACID by being a transactional system. Transactions in graph
databases are by definition the same as traditional transactions, except that it
handles nodes and relationships. Transactions are implemented by representing
each transaction as an in-memory object supported by a lock manager. The
lock manager gives write locks to nodes and relationships when they are either
created, updated or deleted. When trans-action roll-back occurs the object is
abandoned and the write locks released. If this is successful the changes will be
committed to disk. This is done by a write ahead log, where changes are added
to an active transaction log. When a transaction commit is called, it will flush
the log’s content to disk. Only then will the changes be applied to the graph
and all write locks connected to the transaction will be released. Recoverability
is handled by checking the transaction log and replaying transactions if they are
in the log. [RWE15b]

Figure 15: Neo4j Architecture [Cha]

Figure 16: Neo4j Store File Record Structure [RWE15b]

28

Figure 17: Neo4j Physical Storage [RWE15b]

5.2.2 Neo4j Desktop

The Desktop version used for this study comes with different licenses, but for
this project a license for on local database was used. This gave access to the
enterprise version which provided more features than the community one. But
as this was a local database, it was mostly features for profiling that was of use
to this project. Neo4j Desktop Version 3.5.6 was downloaded to a stationary
computer from Norwegian University of Science and Technology (NTNU) with
Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz processor and 32GB RAM.

5.2.3 Neo4j Browser

The Neo4j Browser is a graphical interface used for handling data and querying
in Neo4j. The browser is available from Neo4j Desktop and can be started after
a database is running. The browser provides features for querying, profiling and
other features for handling data. Bookmarks for queries can be created and it
displays the result of the queries as either both a graph and a table or only
tables if the result cannot be represented as a graph.

5.3 Data Import

The data used for the project came from Sportradar’s web API for Soccer.
The version used was Soccer v3 for Premier League 19/20 and the JSON-files
retrieved was related to the tournament, matches and players respectively. A
list of JSON-files retrieved is provided in Section 9 Appendix.

5.3.1 MySQL

In order to import large amounts of data to all MySQL databases, several
methods in Python converted JSON-files to tuples to be inserted into the data-
base. One method retrieved data from JSON-files from Sportradars web API
and the second method connected to the database and inserted each element in
a set created in the first method. An example of how this was done is shown in
Listing 1.

29

1 def get_teams(url):

2 response = requests.get(url)

3 data = response.json()

4 teams = set()

5 for event in data["sport_events"]:

6 for team in event["competitors"]:

7 id = team["id"]

8 name = team["name"]

9 val = (id, name)

10 teams.add(val)

11 return teams

12

13

14 def insert_team(team_set):

15 query = "INSERT INTO Team (team_id , name) VALUES (%s, %s)"

16 try:

17 db = mysql.connector.connect(host="mysql.stud.ntnu.no",

user=user , passwd=password , database=db)

18 cursor = db.cursor ()

19 cursor.executemany(query , team_set)

20 db.commit ()

21 except Error as e:

22 print(’Error:’, e)

23 finally:

24 print(cursor.rowcount , "records inserted")

25 cursor.close()

26 db.close ()

Listing 1: Python MySQL import

30

5.3.2 Neo4j

Neo4j gives the user the option to add a library called APOC. APOC stands for
Awesome Procedures On Cypher and consists of many procedures and functions
to make handling data easier in Neo4j. [Neob] It is mostly used for data
integration, graph algorithms and data conversion. The APOC library brings
more functionality to the user and makes it easier to work with the data. This
project uses APOC for data import from Sportradar’s web API, regarding a
converter from a JSON-file, defines what data should be imported as nodes and
where the edges should be created. APOC makes the import intuitive and it is
effective for one JSON-file. However, when many JSON-files needs to be loaded
in sequence, there is not a obvious way to do this in APOC for Neo4j version
3.5.6. Therefore, a Python script was created for this task in order to run the
APOC function for several URLs in a loop. The code used for this is shown in
Listing 2 and the query part of the code shows how APOC is used for retrieving
data from each JSON-file.

1 def add_statistics(player_list):

2 tournament_name = "Premier League 19/20"

3 for player in player_list:

4 query = "call apoc.load.json($url) yield value" \

5 " unwind value.statistics.seasons as s" \

6 " unwind value.player as pl" \

7 " MATCH (p:Player {player_id: pl.id})" \

8 " MATCH (t:Tournament {name: s.name})" \

9 " WITH * WHERE s.name = $name" \

10 " MERGE (p) -[:HAS_STATS {team_name: s.team.name ," \

11 "matches_played: s.statistics.matches_played , " \

12 "substituted_in: s.statistics.substituted_in , "\

13 "substituted_out: s.statistics.substituted_out , " \

14 "goals_scored: s.statistics.goals_scored , "\

15 "assists: s.statistics.assists , " \

16 "own_goals: s.statistics.own_goals , "\

17 "yellow_cards: s.statistics.yellow_cards , " \

18 "yellow_red_cards: s.statistics.yellow_red_cards , "

\

19 "red_cards: s.statistics.red_cards }]->(t)"

20 session.run(query , parameters ={

21 "url": url_part1 + player +

22 url_part2 , "name": tournament_name })

Listing 2: Python Neo4j Import

31

5.4 Database Structure

In order to test different queries on different depths and sizes of a database, three
databases was created for this study. This sections describes each database and
shows their structure.

5.4.1 Database 1

Database 1, was the simplest database with the least amount of data. It
consisted of one Tournament instance which was Premier League 19/20, all
the games played this season and the home and away teams for each game.

The MySQL structure had a tournament table with an id and a name.
The game table had an id as primary key, tournament id as foreign key and
attributes stating when the game was scheduled and the status of the tourna-
ment, being either closed or postponed. It also had attributes for the scores of
each team in the first and second half, and the final scores for each team. To
link the games to home and away-teams, a has game table was used that had
a foreign key to the game id and the team id in addition to an attribute stating
whether it was a home or away-team in that particular game. The team table
consists of a team id and the name of the team. The table structure is shown
in Figure 18a.

The Neo4j structure had a tournament node with an id and a name like
the MySQL structure, it had an edge directed to a game node named HAS
to represent the relationship between tournament and game. The game node
had the attributes id, scheduled and status and the scores like described for
MySQL. It had the edges HOME and AWAY directed to a team node. This
relationship was used to represent whether this team was the home or away-
team for this game. The team node had the same attributes as in MySQL. The
graph structure is shown in Figure 18b.

32

(a) Table structure 1 MySQL from PhpMyAdmin

(b) Graph Structure 1 Neo4j

Figure 18: Structure Database 1

33

5.4.2 Database 2

The second database had the same basic foundation as described above with
tournament, games and teams. This database had more data added to it for
more complex querying.

The MySQL structure is shown in Figure 19a. A event table was added
with a primary key id and foreign keys game id and two player ids. The first
player id represents the primary player for this event or the only player related
to the event, depending on the nature of the event. For example if the event was
a corner kick, only the first attribute was set as it was the only player kicking. If
the event was a substitution the first player would be the player in, the second
player attribute would be the player out. The remaining attributes are type,
match clock, team and method. Here team was represented as home or away
to represent which of the participating teams who’s event this was. A player
table was also created, this was linked directly to a event tabled as described
above and linked to a game through a has player table which had the foreign
keys game id and player id. This table also contains the attributes stating the
team the player plays for being home or away and summary of events related
to the player, for example goals scored, assists and yellow cards. The player
table itself contains a primary key player id and an attribute name.

For Neo4j the basic structure was also identical to the first database and
the graph structure is shown in Figure 19b. This structure also had a event
and player node added with the same attributes as in MySQL. The edges
created was HAS EVENT and HAS PLAYER, the first one between game
and event, the second one between game and player. The HAS PLAYER
edge contains the same attributes as in the has player table in MySQL. The
difference for Neo4j was that it had several edges from event to player. These
edges are GOAL SCORER, ASSIST, PLAYER IN, PLAYER OUT, and
represent the context of which the player was related to that particular event.

34

(a) Table structure 2 MySQL from PhpMyAdmin

(b) Graph Structure 2 Neo4j

Figure 19: Structure Database 2

35

5.4.3 Database 3

The final and third database had the same structure as the second one, but an
additional statistics element was added for more query options. The structures
for both databases is shown in figure 20.

For MySQL the statistics table was added having a foreign key to the player
id from the player table. The attributes for this table was a summary of all
events related to the player for the entire season. One player could have more
than one table related to it if the player had changed teams during the season.

For Neo4j the statistics where represented as a an edge between the player
node and the tournament node. This edge had the same attributes as described
for the statistics table in MySQL.

(a) Table structure 3 MySQL from PhpMyAdmin

(b) Graph Structure 2 Neo4j

Figure 20: Structure Database 3

36

5.5 Query Languages

There are several query languages that can be used when working with both
relational databases and graph databases. SQL is the most common basis for
query languages for relational databases, but are adapted to the system they are
used for. For graph databases, several different query languages exist as well,
however a standard query language, GQL, is in the progress of being made, but
is not yet commonly used. This section introduces the query languages used for
this project.

5.5.1 SQL

SQL stands for Structured Query language and is the most common language for
querying databases. There are many different versions of the language, but it is
a ANSI and ISO standard and hence it has to support the main commands such
as SELECT, WHERE and INSERT. This study used MySQL and therefore
their version of SQL is presented. The execution of the queries was done in
PhpMyAdmin as described in Section 5.1.3.

SQL syntax
In order to be able to write queries in SQL there has to be a database with tables
to query. Tables has rows and columns where the columns are the attributes
and the rows are the records.[W3Ca] When writing a SQL query it is the records
that are the result, the SELECT statement defines the columns to be retrieved
and the FROM statement declares which table or tables to get them from.

The SQL language is not case sensitive so there is no difference in writing
the commands in upper or lower case letters. Additionally, some SQL version
requires a semi-colon behind the statements.[W3Cb] This has to be done when
writing MySQL queries in a shell, however in PhpMyAdmin used in this case
study it is not necessary.

Listing 3 shows a basic SQL query in MySQL using SELECT, FROM,
WHERE and ORDER BY. Which commands used depends on the query, but
every query needs to have a SELECT and FROM command stating what is to
be retrieved and where it should be retrieved from.

1 SELECT * FROM A

2 WHERE A.attribute = value

3 ORDER BY A.other_attribute

Listing 3: Genaral SQL

5.5.2 Cypher

Cypher is the query language used in Neo4j. It is open source and supports
operations like insert, update and delete. One of the main goals for the language
is that it should be simple to learn and use, even for user with little or no
experience with coding or databases. [Neoa]

37

Cypher is a declarative language that is inspired by SQL and in order to
achieve the previous mentioned goal, it strives to be as visual and logical as
possible when querying the database. This is done by letting the user write a
query in the natural way one would think nodes are related, as shown in Figure
21. [Neoa]

Figure 21: Cypher Query Visually [Neoa]

Neo4j provides a developer guide for new users to learn Cypher which takes
the user through the basics step by step.

Cypher Syntax
The main part of the Cypher syntax is to handle and query data as nodes and
relationships. Nodes are represented with a label that represents the nodes type.
Attributes can be added to the nodes to define differences between the nodes,
for example the node Player has a property name, and player id, to identify
the player. Attributes are used to show the individuality between the nodes
and used when querying the graph. The relationships between the nodes are
represented with an arrow that points in the direction the relationship goes.
Relationships can in some cases be bidirectional, this is not possible to show
with Cypher, but as it is bidirectional, one can choose which direction to set the
relationship. Attributes can also be added to the relationship, providing more
detailed information about the relationship. [Neoa]

38

5.6 Queries

The queries are divided into two categories. The first examine the performance
of each database in regards to three different depths. The second category wants
to obtain information related to soccer using aggregations. The questions that
is to be answered using queries are listed in Table 1 and 2.

Depth Question

1 Get all games for the tournament

2
Get all events of type corner kick for all games in the

tournament

3
Get all players that have done a corner kick for all games in the

tournament

Table 1: Questions by depth

Database Query Question

1 1
Find average of goals scored in first and

second half at home for Manchester United

1 2
Which teams have Manchester United won over

at home this season?

2 1
How many goals has Manchester United scored

for each game at home this season?
Sort the result after number of goals scored

2 2
How many goals has each player playing for

Manchester United scored this season?

3 1
Count how many players that has left, right
or both feet as preferred foot for each team

3 2
How many goals has each player scored this

season and how many shots on target do they have?

Table 2: Questions for each database

39

5.6.1 Depth

Three different levels of depth was queried for this case study. The queries
were written to find all information regarding the nodes/tables for each level,
hence a lot of data was retrieved. All queries for this category was performed
in Database 2. The queries are shown in Listing 4 and 5

1 //Depth 1

2 MATCH (t:Tournament)-->(g:Game)

3 RETURN t,g

4

5 //Depth 2

6 MATCH (t:Tournament)-->(g:Game) -->(e:Event {type=" corner_kick "})

7 RETURN t,g,e

8

9 //Depth 3

10 MATCH (t:Tournament)-->(g:Game) -->(e:Event {type=" corner_kick "})

-->(p:Player)

11 RETURN t,g,e,p

Listing 4: Cypher Queries Depth

1 #Depth 1

2 SELECT * FROM Game INNER JOIN Tournament on Tournament.

tournament_id = Game.tournament_id

3 LIMIT 500

4

5 #Depth 2

6 SELECT * FROM Event INNER JOIN Game on Game.game_id = Event.game_id

7 INNER JOIN Tournament on Tournament.tournament_id = Game.

tournament_id

8 WHERE Event.type = "corner_kick"

9 LIMIT 10000

10

11 #Depth 3

12 SELECT * FROM Event INNER JOIN Game on Game.game_id = Event.game_id

13 INNER JOIN Tournament on Tournament.tournament_id = Game.

tournament_id

14 INNER JOIN Player on Player.player_id = Event.player_id

15 WHERE Event.type = "corner_kick"

16 LIMIT 10000

Listing 5: SQL Queries Depth

5.6.2 Soccer

Two queries for each database was made with the intention to find out more
about the soccer tournament using aggregations and subqueries. As these
queries are written to acquire information about the tournament they are not
written to explicitly measure execution time. However, they are used for com-
paring execution time as they indicate performance in common queries for
Sportradar and would indicate if one was to prefer over the other for common
use. The queries for the two different systems is shown in Listing 6 and 7.

40

1 // Database 1

2 //Query 1

3 MATCH (g:Game { status: "closed" }) -[r: HOME]->(t:Team {name: "

Manchester United "})

4 RETURN avg(g.first_period_home_score) as avg_first_period , avg(g.

second_period_home_score) as avg_second_period

5

6 //Query 2

7 MATCH (te) <-[:AWAY]-(g:Game {status: "closed "}) -[r: HOME]->(t:Team

{name: "Manchester United "})

8 WHERE g.final_home_score > g.final_away_score

9 RETURN te.name

10

11

12 // Database 2

13 //Query 1

14 MATCH (e:Event {team: "home", type: "score_change "}) <-[:HAS_EVENT -(

g:Game) -[:HOME]->(t:team{name: "Manchester United "})

15 WHERE toInt(split(e.match_clock ,":") [0] <= 45

16 RETURN g.id , e.type , count(e.type)

17

18 //Query 2

19 MATCH (p)<--[r:GOAL_SCORER]-(e:Event) <-[:HAS_EVENT]-(g:Game)-->(t:

Team {name: "Manchester United "})

20 RETURN p.name as player_name , count(r) as goals_scored

21 ORDER BY goals_scored DESC

22

23

24 // Database 3

25 //Query 1

26 MATCH (p:Player)-[r:HAS_STATS]->(t)

27 WHERE p.preferred_foot IS NOT NULL

28 RETURN r.team_name , p.preferred_foot , count(p.preferred_foot)

29 ORDER BY r.team_name

30

31 //Query 2

32 MATCH (e:Event {type: "shots_on_target "}) -[DONE_BY]->(p) -[r:

HAS_STATS]->(t)

33 RETURN p.name as player_name , count(e) as shots_on_target , r.

goals_scored as goals_scored

Listing 6: Cypher Queries for Soccer

41

1 #Database 1

2 #Query 1

3 SELECT avg(g.first_half_home_score) as avg_first_home , avg(g.

second_half_home_score) as avg_second_home

4 FROM Game g

5 INNER JOIN Has_team ht ON g.game_id = ht.game_id

6 INNER JOIN Team t ON ht.team_id = t.team_id

7 WHERE ht.qualifier = ’home’ and t.name = ’Manchester United ’ and g.

status = ’closed ’

8

9 #Query 2

10 SELECT t.name FROM Game g

11 INNER JOIN Has_team ht ON g.game_id = ht.game_id

12 INNER JOIN Team t ON ht.team_id = t.team_id

13 WHERE g.game_id IN

14 (SELECT g.game_id FROM Game g

15 INNER JOIN Has_team ht ON g.game_id = ht.game_id

16 INNER JOIN Team t ON ht.team_id = t.team_id

17 WHERE ht.qualifier = ’home’ and t.name = ’Manchester

United ’ AND g.status = ’closed ’ AND g.total_home_score > g.

total_away_score)

18 AND ht.qualifier = "away"

19

20

21 #Database 2

22 #Query 1

23 SELECT e.game_id , e.type as type , COUNT(e.type) as

number_of_occurences

24 FROM Event e WHERE e.game_id IN

25 (SELECT g.game_id FROM Game g INNER JOIN Has_team ht ON g.

game_id = ht.game_id

26 INNER JOIN Team t ON ht.team_id = t.team_id

27 WHERE ht.qualifier = ’home’ and t.name = ’Manchester United ’

and g.status = ’closed ’) and e.team = ’home’ and (CONVERT(

SUBSTRING(e.match_clock ,1), SIGNED INTEGER) <= 45)

28 AND e.type = ’score_change ’

29 GROUP by e.game_id

30

31 #Query 2

32 SELECT p.name as player_name , count(p.name) as goals_scored FROM

Game g

33 INNER JOIN Has_team ht on ht.game_id = g.game_id

34 INNER JOIN Team te on te.team_id = ht.team_id

35 INNER JOIN Event e on e.game_id = g.game_id

36 INNER JOIN Player p on p.player_id = e.player_id

37 WHERE e.type = ’score_change ’ and te.name = ’Manchester United ’

38 GROUP BY player_name

39 ORDER BY goals_scored DESC

40

41

42 #Database 3

43 #Query 1

44 SELECT s.team_name as team_name , count(p.preferred_foot),

preferred_foot

45 FROM Player p

46 INNER JOIN Statistics s on s.player_id = p.player_id where

preferred_foot IS NOT NULL

42

47 GROUP BY preferred_foot , team_name

48 ORDER BY team_name

49

50 #Query 2

51 SELECT pl.name , s.goals_scored as goals_scored , shots_on_target

from Statistics s INNER JOIN (SELECT p.player_id as

player_id , count(e.type) as shots_on_target

52 FROM Player p INNER JOIN Event e on e.player_id = p.player_id

53 WHERE e.type = "shot_on_target" GROUP BY p.player_id) as A

54 ON A.player_id = s.player_id

55 INNER JOIN Player pl on pl.player_id = s.player_id

Listing 7: SQL Queries for Soccer

6 Results

The results for this study came from running the queries in 25 iterations through
the graphical interfaces for each of the database technologies. The execution
time presented in the results, that will be used for the discussion, are execution
times without considering the time it takes to present the data. In the case of the
MySQL Server, the time it takes to send the data was also not considered when
comparing the results. However, the time it takes to send data is presented in
the result to give a complete overview of how the execution time was calculated.

A T-test was performed for all query execution times in order to determine
if one of the two database solutions have results that are dissimilar enough to
state that one was better than the other. This T-test was a paired two sample
for means. This was chosen to be able to compare each iteration, taking into
account the mean value for all iterations. The results are shown in Table 6

43

6.1 Results from Depth Queries

This section presents the results from the Depth Queries for each query and
depth. The results are shown in table 3, 4, 5 and as graphs in figure 22, 23, 24.

Iteration Depth
Execution

Time
MySQL (ms)

Sending
Data

MySQL (ms)

Final Execution
Time

MySQL (ms)

Execution
Time

Neo4j (ms)

1 1 3,6 0,361 3,239 62,484
2 1 5,5 1,100 4,400 0,000
3 1 3,5 0,359 3,141 0,000
4 1 2,8 0,365 2,435 15,625
5 1 2,8 0,349 2,451 0,000
6 1 3,5 0,865 2,635 15,652
7 1 3,7 1,000 2,700 0,000
8 1 4,2 1,000 3,200 5,196
9 1 3,6 0,375 3,225 0,000
10 1 1,7 0,360 1,340 0,000
11 1 3,1 0,357 2,743 0,000
12 1 3,7 0,341 3,359 15,626
13 1 3,7 0,353 3,347 0,000
14 1 3,6 0,369 3,231 0,000
15 1 3,3 0,353 2,947 0,000
16 1 4,3 1,100 3,200 0,000
17 1 3,5 0,348 3,152 0,000
18 1 3,4 0,355 3,045 0,000
19 1 5,5 1,100 4,400 0,000
20 1 4,2 0,340 3,860 15,621
21 1 3,5 0,339 3,161 0,000
22 1 3,5 0,330 3,170 0,000
23 1 3,1 0,339 2,761 0,000
24 1 3,6 0,358 3,242 0,000
25 1 3,8 0,349 3,451 0,000

Table 3: Results Depth 1

44

Iteration Depth
Execution

Time
MySQL (ms)

Sending
Data

MySQL (ms)

Final Execution
Time

MySQL (ms)

Execution
Time

Neo4j (ms)

1 2 24,2 21,400 2,800 93,729
2 2 31,1 23,100 8,000 0,000
3 2 31,9 21,600 10,300 0,000
4 2 33,0 22,700 10,300 15,624
5 2 27,7 21,700 6,000 0,000
6 2 31,8 21,800 10,000 0,000
7 2 25,9 22,000 3,900 0,000
8 2 33,2 22,000 11,200 14,123
9 2 32,1 21,800 10,300 0,000
10 2 29,5 22,100 7,400 0,000
11 2 32,3 22,300 10,000 0,000
12 2 22,5 21,200 1,300 0,000
13 2 30,7 21,500 9,200 0,000
14 2 28,4 21,600 6,800 15,627
15 2 30,3 22,200 8,100 0,000
16 2 23,2 21,600 1,600 0,000
17 2 27,5 20,900 6,600 0,000
18 2 31,1 21,400 9,700 15,621
19 2 23,2 22,100 1,100 0,000
20 2 22,5 21,100 1,400 0,000
21 2 30,3 22,100 8,200 0,000
22 2 31,1 22,400 8,700 15,625
23 2 25,1 21,100 4,000 0,000
24 2 27,3 21,400 5,900 0,000
25 2 29,9 21,100 8,800 0,000

Table 4: Results Depth 2

45

Iteration Depth
Execution

Time
MySQL (ms)

Sending
Data

MySQL (ms)

Final Execution
Time

MySQL (ms)

Execution
Time

Neo4j (ms)

1 3 26,5 25,200 1,300 62,479
2 3 29,2 27,500 1,700 6,850
3 3 31,5 24,700 6,800 0,000
4 3 29,0 24,100 4,900 0,000
5 3 30,4 25,900 4,500 0,000
6 3 29,4 25,200 4,200 15,627
7 3 34,5 27,900 6,600 0,000
8 3 30,7 24,700 6,000 15,956
9 3 25,4 24,600 0,800 0,999
10 3 27,8 24,400 3,400 7,049
11 3 26,1 24,900 1,200 0,000
12 3 29,7 24,600 5,100 0,000
13 3 27,4 25,000 2,400 0,000
14 3 42,1 24,800 17,300 15,625
15 3 30,8 24,800 6,000 0,000
16 3 33,7 24,500 9,200 15,621
17 3 25,6 24,700 0,900 0,000
18 3 30,5 24,000 6,500 0,000
19 3 26,3 24,600 1,700 0,000
20 3 26,0 24,239 1,761 0,000
21 3 25,8 24,157 1,643 0,000
22 3 32,0 24,075 7,925 15,622
23 3 27,6 23,993 3,607 0,000
24 3 25,9 23,911 1,989 0,000
25 3 30,6 23,829 6,771 0,000

Table 5: Results Depth 3

Query Average
MySQL (ms)

Average
Neo4j (ms)

T-test (P=t) two-tail

1 3,113 5,208 0,438
2 6,864 6,814 0,99003
3 4,568 6,233 0,543

Table 6: Average Execution Time and T-test

46

Figure 22: Graph Depth 1

Figure 23: Graph Depth 2

Figure 24: Graph Depth 3

47

6.2 Results from Soccer Queries

There was performed two queries per database related to soccer. These are
relevant queries for Sportradar, and are used in this case study to establish
whether either of the systems should be preferred over the other. The structure
for all databases both MySQL and Neo4j are shown in Figure 18, 19 and 20 and
the queries are shown in Listing 6 and 7.

6.2.1 Database 1

This section presents the results done for the first database.

Iteration
Execution

Time
MySQL (ms)

Sending
Data

MySQL (ms)

Final Execution
Time

MySQL (ms)

Execution
Time

Neo4j (ms)

1 3,200 0,383 2,817 265,6
2 1,100 0,395 0,705 0,000
3 1,900 0,424 1,476 0,000
4 1,500 0,375 1,125 0,000
5 1,500 0,386 1,114 0,000
6 1,400 0,385 1,015 0,000
7 1,400 0,370 1,030 15,59
8 1,600 0,366 1,234 0,000
9 1,500 0,403 1,097 0,000
10 1,400 0,383 1,017 0,000
11 1,600 0,379 1,221 0,000
12 1,400 0,363 1,037 0,000
13 1,400 0,367 1,033 0,000
14 1,400 0,396 1,004 0,000
15 1,500 0,366 1,134 15,62
16 1,600 0,365 1,235 0,000
17 1,700 0,394 1,306 0,000
18 1,600 0,401 1,199 0,000
19 1,500 0,367 1,133 0,000
20 1,800 0,410 1,390 0,000
21 1,700 0,374 1,326 0,000
22 1,400 0,378 1,022 0,000
23 1,600 0,396 1,204 0,000
24 1,400 0,365 1,035 0,000
25 1,500 0,367 1,133 0,000

Table 7: Results Database 1 Query 1

48

Iteration
Execution

Time
MySQL (ms)

Sending
Data

MySQL (ms)

Final Execution
Time

MySQL (ms)

Execution
Time

Neo4j (ms)

1 10,70 9,000 1,700 131,5
2 3,200 1,300 1,900 0
3 3,200 1,400 1,800 15,62
4 3,100 1,300 1,800 0
5 3,200 1,400 1,800 0
6 3,000 1,300 1,700 0
7 3,000 1,300 1,700 6,505
8 3,200 1,400 1,800 0
9 2,900 1,400 1,500 0
10 2,800 1,300 1,500 0
11 3,000 1,300 1,700 0
12 3,100 1,400 1,700 0
13 2,800 1,300 1,500 0
14 3,200 1,300 1,900 0
15 3,200 1,300 1,900 0
16 3,200 1,300 1,900 0
17 2,900 1,300 1,600 0
18 2,800 1,300 1,500 15,63
19 2,800 1,300 1,500 0
20 3,000 1,300 1,700 0
21 2,900 1,300 1,600 0
22 3,200 1,400 1,800 0
23 3,000 1,300 1,700 0
24 2,800 1,300 1,500 0
25 2,300 1,400 0,9000 0

Table 8: Results Database 1 Query 2

Figure 25: Database 1 Query 1 Figure 26: Database 1 Query 2

49

Query Average
MySQL (ms)

Average
Neo4j (ms)

T-test (P=t) two-tail

1 1,202 11,87 0,3215
2 1,664 6,770 0,3423

Table 9: Database 1 Average Execution Time and T-test

6.2.2 Database 2

This sections presents the results for Database 2.

Iteration
Execution

Time
MySQL (ms)

Sending
Data

MySQL (ms)

Final Execution
Time

MySQL (ms)

Execution
Time

Neo4j (ms)

1 16,400 14,000 2,400 359,7
2 15,500 13,800 1,700 0
3 18,000 13,900 4,100 21,66
4 15,900 14,000 1,900 0
5 15,600 13,900 1,700 0
6 16,200 14,400 1,800 0
7 16,200 14,500 1,700 30,18
8 16,200 14,200 2,000 0
9 16,400 14,100 2,300 0
10 16,700 13,900 2,800 0
11 15,300 13,800 1,500 0
12 15,700 14,000 1,700 8,052
13 15,600 14,000 1,600 0
14 15,700 14,100 1,600 0
15 15,500 13,900 1,600 42,32
16 15,800 14,100 1,700 0
17 15,700 13,800 1,900 0
18 15,400 13,800 1,600 0
19 15,600 13,900 1,700 0
20 15,700 13,900 1,800 0
21 15,700 14,100 1,600 0
22 16,100 14,400 1,700 0
23 15,700 14,000 1,700 0
24 15,800 13,800 2,000 8,016
25 15,700 13,800 1,900 0

Table 10: Results Database 2 Query 1

50

Iteration
Execution

Time
MySQL (ms)

Sending
Data

MySQL (ms)

Final Execution
Time

MySQL (ms)

Execution
Time

Neo4j (ms)

1 26,600 24,900 1,700 78,10
2 18,200 16,200 2,000 0
3 18,600 15,800 2,800 15,65
4 17,800 16,100 1,700 0
5 17,500 16,100 1,400 0
6 17,800 16,100 1,700 0
7 17,400 15,900 1,500 15,59
8 17,400 15,700 1,700 0
9 17,600 16,000 1,600 0
10 17,300 15,900 1,400 0
11 18,900 16,100 2,800 0
12 17,200 15,800 1,400 15,62
13 17,400 16,000 1,400 0
14 17,500 15,900 1,600 0
15 17,400 15,900 1,500 15,62
16 17,700 16,000 1,700 0
17 17,200 15,800 1,400 0
18 17,400 15,900 1,500 0
19 17,200 15,800 1,400 0
20 17,700 16,000 1,700 0
21 17,500 15,900 1,600 0
22 17,400 15,900 1,500 0
23 17,800 16,100 1,700 0
24 17,400 15,900 1,500 14,44
25 18,200 15,900 2,300 0

Table 11: Results Database 2 Query 2

Figure 27: Database 2 Query 1 Figure 28: Database 2 Query 2

51

Query Average
MySQL (ms)

Average
Neo4j (ms)

T-test (P=t) two-tail

1 1,92 18,80 0,251
2 1,7 6,201 0,18

Table 12: Database 2 Average Execution Time and T-test

6.2.3 Database 3

This section presents the results for Database 3.

Iteration
Execution

Time
MySQL (ms)

Sending
Data

MySQL (ms)

Final Execution
Time

MySQL (ms)

Exectuion
Time

Neo4j (ms)

1 2,300 1,200 1,100 242,03
2 1,800 1,000 0,800 10,05
3 2,500 1,000 1,500 30,16
4 1,800 1,000 0,800 0
5 2,100 1,000 1,100 0
6 1,900 1,000 0,900 0
7 3,300 1,000 2,300 30,15
8 2,800 1,000 1,800 0
9 2,200 0,997 1,203 0
10 1,900 1,000 0,900 0
11 2,100 1,000 1,100 0
12 1,700 1,100 0,600 10,09
13 3,100 1,000 2,100 0
14 2,000 1,000 1,000 0
15 2,000 1,000 1,000 28,11
16 2,200 1,000 1,200 2,014
17 2,000 1,000 1,000 0
18 3,100 1,000 2,100 0
19 2,100 1,000 1,100 0
20 2,200 1,000 1,200 0
21 2,600 1,000 1,600 0
22 2,400 0,991 1,409 0
23 10,600 1,000 9,600 0
24 2,700 1,000 1,700 0
25 3,100 1,000 2,100 0

Table 13: Results Database 3 Query 1

52

Iteration
Execution

Time
MySQL (ms)

Sending
Data

MySQL (ms)

Final Execution
Time

MySQL (ms)

Execution
Time

Neo4j (ms)

1 15,700 13,733 1,967 140,2
2 15,700 13,659 2,041 15,65
3 15,400 13,945 1,455 31,24
4 15,100 13,744 1,356 8,939
5 15,700 13,748 1,952 0
6 15,700 13,841 1,859 0
7 16,000 13,741 2,259 0
8 15,700 13,739 1,961 0
9 15,800 13,94 1,860 31,25
10 17,200 13,743 3,457 0
11 16,300 13,648 2,652 0
12 15,700 13,74 1,960 0
13 15,100 13,64 1,460 0
14 16,100 13,746 2,354 15,65
15 15,600 13,651 1,949 0
16 15,600 13,738 1,862 0
17 17,600 13,94 3,660 0
18 17,500 13,649 3,851 15,62
19 15,600 13,646 1,954 0
20 15,400 13,746 1,654 0
21 15,700 13,735 1,965 0
22 15,300 13,74 1,560 15,62
23 16,100 14,14 1,960 0
24 16,400 14,052 2,348 0
25 15,800 13,852 1,948 0

Table 14: Results Database 3 Query 2

Figure 29: Database 3 Query 1 Figure 30: Database 3 Query 2

53

Query Average
MySQL (ms)

Average
Neo4j (ms)

T-test (P=t) two-tail

1 1,649 14,10 0,2127
2 2,132 10,97 0,1367

Table 15: Database 3 Average Execution Time and T-test

7 Discussion

This case study examines how well each system performs on soccer data and
tries to indicate whether either of the systems should be the preferred choice
over the other for storing and querying data. This section will discuss the
systems chosen for this study, the type of server used and the results from the
benchmarking process.

7.1 Database Systems

This study aimed to see if there was a system that performed better for sports
data and if so how much better. The reason this study compared MySQL
and Neo4j was that the system mostly used in Sportradar today is MySQL,
but they have started using Neo4j for some use cases and was interested in
looking into whether there are significant differences in performance of the two
systems. Choosing Neo4j was also based on the study performed by the author
as presented in section 3. This study compared Neo4j to several other graph
databases using sports data and found that Neo4j was the preferred system.
[For19] Relational Databases has been the most used system for decades and
this is not without reason. It is a well defined database solution with many
different systems based on it, MySQL being one of the most used ones. This
study shows that it can be used in a wide variety of ways, based on the users
background and knowledge and it can be used with different systems on top.
This system used PhpMyAdmin as the graphical interface which was very easy
to understand and operate. This is beneficial for MySQL, that the user can
choose between different system and deploy the system that works best for its
purposes. Neo4j is a Graph Database which has grown in popularity after social
networks became an interesting subject to study and analyze. Graph Databases
has for cases where data is heavily connected a better visual model and can
hence be easier to visualize and work with for the right applications. However,
it has the same structure on disk, but it’s the way data is stored in this tables
and how they are accessed that are different. Neo4j uses native graph storage
which is beneficial storing deeply connected data close to each other on disk,
reducing accessing time. Sportradar employees with programming background
and knowledge about query languages and databases, might have enough skill
to use shell-solutions for both technologies to handle data import, export and
alterations. However, displaying the results in a way that is easy to understand

54

for customers that may not have the same knowledge can be challenging. In
this case the graph model is easier to understand when looking at results and
this is also the case for soccer data.

Summing up the points discussed in this section, MySQL is the natural
choice based on amount of users and stability over many years. Neo4j, being
a newer system, does not have the advantage of being improved over many
years and can in some cases be more unstable. Since this case study looks at
the application for soccer data, the graph model fits well with how the data
is connected. This brings many benefits, being able to build the graph as the
tournament continues, show data in a neat visual way and only query certain
parts of the graph. Looking at these factors Neo4j has a few more advantages
than MySQL and can be a good choice when working with this kind of data.

7.2 Servers

This study compared an external server for MySQL and a local server for Neo4j.
The reason for choosing external MySQL server was due to unforeseen challenges
downloading the local community server and the external server had features
that was useful for the benchmarking process. Following this change in server,
the hypotheses was that the external MySQL server should perform better than
the local Neo4j server as it most likely had better main memory and a more
powerful Central Processing Unit (CPU) than the local machine from Norwegian
University of Science and Technology (NTNU). The external server was the
NTNU server for students and was a MySQL server with more functionality
than the local community server and therefore it was easier to go into more
detail of how queries was processed. This was helpful when looking into time
spent sending data over the internet and gave the opportunity to eliminate this
factor when comparing execution time of queries. The Neo4j local server used,
was the enterprise version of their server for one local machine that gives more
options for tuning the database than the community version. By looking at the
servers and their main memory and CPU capabilities, MySQL should perform
perform better having more advantages in the means of computational power.

Due to the fact that MySQL used an external server for this project, data
had to be sent over the internet to be displayed. Download time, as shown
in the results, was not a part of the comparison. However, it has an impact
for the user. It could take several minutes to view large results in a graphical
interface, making it impractical to use when handling queries with thousands
of rows. This was also the case with a local server, as displaying results takes a
lot of time, even though it was shorter when the data was local. This should be
considered when choosing a database system handling large amounts of data.
The drawbacks sending data can be substantial, but in this case few queries
analyzing soccer data results in thousands of records. Data transmission time
can in this case therefore be ignored. If the server is not in the control of the
company, security can be an issue and therefore must be considered. This could
be of interest when working with sports data as it has great value for analyzing.
However, if several people are to access the same database it is impractical

55

to have a local single user database. Sportradar handles millions of data and
need to have multi-user databases. Thus, might benefit from having an external
server. The server could be in-house to eliminate security risks. On the other
hand, a local database can be used for smaller investigations of the data, hence
both servers could be beneficial for Sportradar for different use cases.

7.3 Results

MySQL and Neo4j had pros and cons in relation to working with soccer data.
For this study MySQL had the advantage of a more powerful server which leads
to the assumption that it would outperform Neo4j. However, as the structure of
the data was beneficial for the graph database, Neo4j may not be as inferior to
MySQL. This section discuss the results from the two different benchmarking
processes, the first being queries by depth, and the second soccer queries.

7.3.1 Queries by depth

This study compared the two systems in regards of processing time of different
kinds of queries. The first part handled queries that tested the systems with
different levels of depth. One of the points made by Neo4j is that it is faster
when querying a graph of ”friends of friends”, or ”friends of friends of friends”
and this section intended to test if this applied to the structure for soccer data.
Since MySQL had a more powerful server than Neo4j, it was expected that
MySQL would perform better. At the same time, benefits of the graph structure
would give Neo4j advantages to compete with the execution time in MySQL.
Looking at the results for the query executed for depth 1, Neo4j had a larger
execution time for the first iteration, but decreases drastically for the second
iteration. In MySQL however it increases from the first to the second iteration,
but not with as large of a variation as Neo4j. Neo4j, likely suffer from larger
cold start problems than MySQL as it needs to load data into main memory in
the first iteration. Having less computer power this takes longer time than for
the MySQL server. However, after the first query it was able to keep data in
main memory for the second query and uses much less time the second time.
MySQL had an increase in execution time from the first to the second iteration.
This could be due to the fact that the server after certain intervals of time
flushes data from main memory and data had to be looked up again from disk
for the second iteration, since the execution time reduces for the third iteration
again. Since MySQL uses an external server, it was not possible to run and
terminate it as one would with a local server. Hence, there might be data in the
cache from previous queries that are reused for the first iteration. MySQL uses
the Least Recently Used (LRU) algorithm which removes the last recently used
page when new ones are loaded. Resulting in a higher execution time in the
second iteration. Both Neo4j and MySQL had fluctuations in their execution
time, this could be due to the use of cache when running queries. Since the
iterations are repeated 25 times, data had to be loaded from disk several times,
therefore there was variations in execution time. In Neo4j it takes longer to

56

retrieve data from disk and the execution time increases. However, looking
at the results from iterations between points of retrieving data from disk, the
execution time was negligible. This might be because data was loaded fully
into main memory and using native graph storage, traversing the graph was
performed rapidly. Since Neo4j uses Least Frequently Used (LFU) for updating
the cache, it removes unpopular pages, keeping statistically popular pages in
memory longer. However, in certain iterations it had to load parts of the data
into main memory, this could be due to either a interval flush or that the LFU
algorithm had removed data. The latter being highly plausible as the intervals
between the higher execution times increases. Indicating that the algorithm
predicts better which pages are popular. The average execution time for Neo4j
was larger than the average execution time for MySQL which was expected. This
study wanted to investigate whether either of the systems where significantly
better than the other. Therefore a T-test was performed as described in Section
6. Table 6 shows the results for all depths. Interestingly, the T-test shows no
significant difference in performance for this depth. MySQL had the advantage
of being an external server with more computer power than the Neo4j server
based on 7.2. Therefore it might be interesting for a future benchmarking to
test an external server for Neo4j, to see if this can improve the execution time
for Neo4j.

Depth 2 had more data processed in the query. Neo4j was expected to
compete better with MySQL due to the increase in depth based on the ”friends
of friends” experiment in section 4. The results for MySQL shows that for
the the first iteration most of the data was in the InnoDB Buffer Pool and
the execution time was low compared to other iterations. Much data seems
to be flushed after the first iteration as the second iteration takes much longer
time. Since a great amount of data was to be loaded into main memory this
execution took longer time than the previous iteration. This query suffered
from higher fluctuations than the first one. This is probably due to fact that
there were more joins which requires more lookups and even though data is
kept in main memory it still had to use indexes to locate the pages resulting in
longer execution time. If whole tables could fit into main memory the use of
Adaptive Hash Index could speed up query time by permitting direct access to
pages, resulting in execution times that were much smaller than others. This
method was controlled by InnoDB, resulting in lower execution times appearing
sporadically. For Neo4j the cold start problem was still present and was larger
than for the query of depth 1 due to larger amount of data being loaded into
main memory. The amount of time loading data from disk in later operations did
not seem to change from the previous query, indicating that it did not remove
more data even though the data amount had increased. Neo4j was able to keep
a considerable amount of data in main memory to reduce execution time in
between the iteration where data was fetched from disk. Because MySQL spent
longer time executing queries at this depth, and Neo4j was able to run queries
quite rapidly when not retrieving data from disk, the average execution time
for this query was quite similar for both systems, which could also be viewed
from the result of the T-test. Hence for this depth they performed almost equal,

57

again raising the interest for testing Neo4j with a more powerful server to see if
it performs better than MySQL.

The query for depth equal to three processed less data, due to the filtering.
MySQL did not have the cold start issue in first iteration, seeming to benefit
from having data in main memory for the first query. Looking at iteration 14 for
MySQL, the server might have had a restart and all data retrieved from disk as
the execution time is a lot higher than the rest. The reason for fluctuating results
in this part could be due to Adaptive Hash Index. Neo4j had a similar result
as in the query for depth one. It had a cold start problem, but running queries
faster after loading data into main memory. MySQL was faster in average than
Neo4j, but not significantly based on T-test. Suggesting again that Neo4j might
be able to perform better if provided with a more powerful server.

7.3.2 Soccer queries

The second part of the test ran queries to find information about the Premier
League tournament, its teams and players. For this part, three different data-
bases were used with different structures and sizes. Two queries were written
for each database and compared using a T-test. For the first database the
first query was a aggregate. It wanted to get the average score for the first
and second half for a team, in this case, Manchester United. This involved
several joins of tables or traversal of nodes to find the data needed to perform
the calculation. MySQL performed all iterations in this query in very similar
time, except for the first one where data was loaded into the Buffer Pool. Since
MySQL probably managed to keep a large portion of the data in the Buffer
Pool, only some data was flushed and retrieved again from disk which resulted
in less fluctuation. Neo4j on the other hand had a large value for the first
iteration. This could be due to the fact that much data had to be retrieved.
It had a low execution time for the following iterations until data had to be
loaded from disk again. MySQL did not have any significant cold start issue
and did not require much additional time when retrieving data from disk the
average value was much lower than for Neo4j. Neo4j, however performed better
in all cases where data was not retrieved from disk. The T-test presents no
significant differences between the databases. The second query wanted to list
all names of teams Manchester United had won over at home this season. This
required several steps of filtering and aggregating data and MySQL executed
this query rapidly in all iterations without any highly differing values. Neo4j
had the same issues as in all previous queries, but again performed fast inn
all iterations where data was not retrieved from disk. There was less difference
between the average values than the previous query and the T-test again showed
no significant difference.

The second database had more data and a more complex structure than
the first. This required more joins for MySQL and traversals in the graph for
Neo4j. The first query retrieved the amount of goals scored in the first half for
each game at home for Manchester United. Neo4j had the longest execution
time running first iteration, due to retrieving large amounts of data from disk.

58

Having more data stored in main memory results in updating the cache more
frequent in addition to retrieving parts of data from disk. Since Neo4j uses the
LFU algorithm for evictions, there could be different amounts of data evicted
from the cache from iteration to iteration, leading to different execution times.
Neo4j did not have a dedicated server, meaning that the allocated space for
Neo4j’s cache could vary from iteration to iteration leading to different amounts
of data removed from main memory. The average value was a lot higher for
Neo4j than for MySQL, but it was still executing faster when data was in main
memory. The T-test showed no significant difference between MySQL and Neo4j
for this query. The second query retrieved a count of all goals scored per player
that plays for Manchester United. This aggregation required approximately the
same amount of data as in query 1 and the results for MySQL were also quite
similar as the previous query. However, it had higher fluctuations, indicating
that more data had to be retrieved from disk after a few iterations. Iteration
one for Neo4j had less execution time than the previous query for this database
even though it was still high. This indicates that the first iteration had to collect
much data from disk. Neo4j had the advantage of running queries fast when
data was in main memory, but disadvantage of fetching data from disk more
often. The T-test showed that the databases were different, but not significantly.

Database 3 was an extension of database 2 with an additional table for
MySQL and a relationship for Neo4j with statistics for each player for the
entire season. The first query for this database retrieved a count of how many
right foots, left foots or both feet there was for each team in Premier League.
This query targeted only two tables in MySQL leading to the assumption that
MySQL had the advantage of few joins in addition to having a better server
than Neo4j. Looking at the results for MySQL it showed that it performed this
query fast except for iteration 23 where it seamed like it had to retrieve more
data from disk. Neo4j, however spent more time executing this query due to
the retrieval of data from disk. MySQL had a lower average execution time
than Neo4j, but as for all previous queries the difference was not significant.
The second query for this database and the last query performed in this study,
retrieved a count of shots on target and goals scored for each player to see
how many shots actually resulted in a goal. This query joined three tables
for MySQL which lead to the assumption that Neo4j should perform well in
comparison to MySQL. The results for this query shows that MySQL spent
more time executing this query due to more join-operations and had a few
iterations that were longer than others where data probably was retrieved from
disk. Neo4j performed this query similar to the past one, indicating that it did
not suffer particularly from having to execute more traversals in the graph. The
iterations with high values, where data was retrieved from disk, was not higher
than in the previous query even though it happened more frequent due to more
data handled. The difference in average execution time for both databases was
less than for the previous query, as MySQL performed poorer and Neo4j a little
better. MySQL was as assumed better than Neo4j, but for this query as well it
was not a significant difference between the databases.

59

8 Conclusion

This case study compared MySQL and Neo4j when using soccer data. MySQL
had a more powerful basis than Neo4j, as an external server was used providing
more computational power, while Neo4j used a local server. The hypothesis
was that Neo4j would not perform much worse in comparison due to its graph
structure and native graph storage. Since there was a unfair basis for the
comparison, it was expected that MySQL was better. In eight out of nine
queries MySQL had in average a better performance than Neo4j, but T-tests
determining difference, showed that it was no significant difference between the
two databases. The results indicated some of the expected behaviors of the
database systems. MySQL performed well when there was one join operation,
but spent more time as depth and data amount increased. However, MySQL
reduced execution time for more joins if the amount of data was reduced. Neo4j
spent more time handling queries with more depth and more data, but reduced
execution time when data amount was reduced even though depth increased.
All these results lead to the conclusion that neither of the systems can be chosen
based purely on performance. Factors as user experience and use cases needs to
be considered when choosing the system that is best for Sportradar.

60

8.1 Future Work

This section introduces some interesting views gathered from the case study
that could be of interest to investigate further in other case studies.

8.1.1 Servers

This case study used an external server for MySQL and a local server for
Neo4j and showed that MySQL had a lower average execution time, but was
not significantly better than Neo4j. This indicates that a comparison with an
external server for both database systems could show in more extent whether
one is significantly better than the other. This case study briefly discusses the
use of a local vs. external server. This could be investigated further. Especially,
looking into security and different use cases for different types of data used by
Sportradar.

61

9 Appendix

9.1 Data Import

• JSON-files from Sportradar API

– Tournament schedule

– Tournament result

– Match timeline

– Match summary

– Player profile

62

Bibliography

[DS12] Miyuru Dayarathma and Toyotaro Suzumura. XGDBench: A Benchmarking
Platform for Graph Stores in Exascale Clouds. 2012. doi: 10.1109/
CloudCom . 2012 . 6427516. url: https : / / orientdb . com / wp -

content/uploads/xgdbench_cloudcom2012.pdf. (accessed: 07.11.19).

[RWE15a] Ian Robbinson, Jim Webber, and Emil Eifrem. Graph Databases:
New oppurtunities for connected data. OReilly Media, Inc, 2015.

[RWE15b] Ian Robbinson, Jim Webber, and Emil Eifrem. “Graph Databases:
New oppurtunities for connected data”. In: OReilly Media, Inc,
2015. Chap. 6.

[For19] Stine For̊as. Graph Databases for Sportsdata (Report available from
the author). 2019.

[Cha] Joy Chao. Graph Databases for Beginners: Native vs. Non-Native
Graph Technology. url: https://neo4j.com/blog/native-vs-
non-native-graph-technology/. (accessed: 11.05.20).

[D-g] D-graph. Dgraph Documentation. url: https://docs.dgraph.io/
/. (accessed: 01.12.19).

[db-] db-engines. DB-Engines Ranking of Graph DBMS. url: https://
db-engines.com/en/ranking/graph+dbms. (accessed: 02.12.19).

[MySa] MySQL. Adaptive Hash Index. url: https://dev.mysql.com/
doc/refman/5.7/en/innodb-adaptive-hash.html. (accessed:
11.05.20).

[MySb] MySQL. Buffer Pool. url: https://dev.mysql.com/doc/refman/
5.7/en/innodb-buffer-pool.html. (accessed: 11.05.20).

[MySc] MySQL. Change Buffer. url: https://dev.mysql.com/doc/

refman/5.7/en/innodb-change-buffer.html. (accessed: 11.05.20).

[MySd] MySQL. Clustered and Secondary Indexes. url: https://dev.

mysql.com/doc/refman/5.7/en/innodb-index-types.html.
(accessed: 11.05.20).

[MySe] MySQL. Creating InnoDB Tables. url: https://dev.mysql.com/
doc/refman/5.7/en/using- innodb- tables.html. (accessed:
11.05.20).

[MySf] MySQL. Doublewrite Buffer. url: https://dev.mysql.com/doc/
refman/5.7/en/innodb-doublewrite-buffer.html. (accessed:
11.05.20).

[MySg] MySQL. File-Per-Table Tablespaces. url: https://dev.mysql.
com/doc/refman/5.7/en/innodb-file-per-table-tablespaces.

html. (accessed: 11.05.20).

[MySh] MySQL. General Tablespaces. url: https://dev.mysql.com/

doc/refman/5.7/en/general- tablespaces.html. (accessed:
11.05.20).

63

[MySi] MySQL. InnoDB Architecture. url: https://dev.mysql.com/
doc/refman/5.7/en/innodb- architecture.html. (accessed:
11.05.20).

[MySj] MySQL. InnoDB Data Dictionary. url: https://dev.mysql.com/
doc/refman/5.7/en/innodb-data-dictionary.html. (accessed:
11.05.20).

[MySk] MySQL. InnoDB Disk I/O. url: https://dev.mysql.com/doc/
refman/5.7/en/innodb-disk-io.html. (accessed: 11.05.20).

[MySl] MySQL. Introduction to InnoDB. url: https://dev.mysql.com/
doc/refman/5.7/en/innodb- introduction.html. (accessed:
11.05.20).

[MySm] MySQL. Log Buffer. url: https://dev.mysql.com/doc/refman/
5.7/en/innodb-redo-log-buffer.html. (accessed: 11.05.20).

[MySn] MySQL. MySQL Products. url: https://www.mysql.com/products/.
(accessed: 10.05.2020).

[MySo] MySQL. Redo Log. url: https://dev.mysql.com/doc/refman/
5.7/en/innodb-redo-log.html. (accessed: 11.05.20).

[MySp] MySQL. Temporary Tablespaces. url: https://dev.mysql.com/
doc/refman/5.7/en/innodb- temporary- tablespace.html.
(accessed: 11.05.20).

[MySq] MySQL. The Physical Structure of an InnoDB Index. url: https:
//dev.mysql.com/doc/refman/5.7/en/innodb- physical-

structure.html. (accessed: 11.05.20).

[MySr] MySQL. Undo Tablespaces. url: https://dev.mysql.com/doc/
refman/5.7/en/innodb- undo- tablespaces.html. (accessed:
11.05.20).

[Neoa] Neo4j. Concepts: Relational to Graph. url: https://neo4j.com/
developer/graph-db-vs-rdbms/. (accessed: 04.12.2019).

[Neob] Neo4j. Neo4j APOC Library. url: https://neo4j.com/developer/
neo4j-apoc/. (accessed: 05.06.20).

[Neoc] Neo4j. Neo4j resources. url: https://neo4j.com/whitepapers/
graph-technology-buyers-guide/. (accessed: 06.11.19).

[Neod] Neo4j. Why Neo4j? Top Ten Reasons. url: https://neo4j.com/
top-ten-reasons/. (accessed: 29.05.20).

[new] Neo4j news. How much faster is a graph database, really? url:
https://neo4j.com/news/how- much- faster- is- a- graph-

database-really/. (accessed: 02.06.20).

[Ora] Oracle. What Is a Relational Database? url: https://www.oracle.
com/database/what-is-a-relational-database/. (accessed:
08.05.2020).

64

[Oria] OrientDB. Getting Started. url: https://orientdb.org/getting-
started. (accessed: 08.11.19).

[Orib] OrientDB. OrientDB vs Neo4j. url: https://orientdb.com/

orientdb-vs-neo4j/. (accessed: 03.12.19).

[Oric] OrientDB. What is a Graph Database? url: https://orientdb.
com/graph-database/. (accessed: 07.11.19).

[Orid] OrientDB. Why a Multi-Model Database? url: https://orientdb.
com/multi-model-database/. (accessed: 07.11.19).

[Orie] OrientDB. Why OrientDB. url: https://orientdb.com/why-
orientdb/. (accessed: 07.11.19).

[Rao] Karthic Rao. Releasing BadgerDB v2.0. url: https : / / blog .

dgraph.io/post/releasing-badger-v2/. (accessed: 02.12.19).

[Raw] Pawan Rawal. Neo4j vs Dgraph - The numbers speak for themselves.
url: https://blog.dgraph.io/post/benchmark-neo4j/. (accessed:
02.12.19).

[Spo] Sportradar. Mission & Vision. url: https://sportradar.com/
about-us/vision/. (accessed: 02.06.20).

[W3Ca] W3C. Introduction to SQL. url: https://www.w3schools.com/
sql/sql_intro.asp. (accessed: 11.05.20).

[W3Cb] W3C. SQL Syntax. url: https://www.w3schools.com/sql/sql_
syntax.asp. (accessed: 11.05.20).

65

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Stine Forås

Database Systems in Relation to Sports
Data

A Performance Test of a Relational Database and
Graph Database

Master’s thesis in Master of Computer Science

Supervisor: Svein Erik Bratsberg

June 2020

