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Abstract

With the growing inclusion of renewable energy sources, developing price models
for intraday trading has become an essential task for many market participants
in order to optimize the decision-making process. Yet the available literature on
the topic has not been keeping up with the pace of increased intraday trading
activity. We predict prices in the final hour prior to delivery on the German
intraday market, utilizing Deep Learning techniques.

This thesis looks into the usage of feed-forward neural networks and recurrent
neural networks (LSTM and GRU). Price information from earlier transactions
for a given target contract is known to be strong variables for this predictive task.
For this study, we also look at how well the models can forecast with merely ex-
ogenous effects. We make use of a rich feature set composed of weather forecasts,
and their intraday updated errors, changes in available production capacities, im-
balance volumes, and features engineered from the bid-offer curve. That makes
this is a novel study when applying computational intelligence methods for in-
traday market research.

Prices in the final trading hour are known to be very noisy, caused by short-
term dynamics. With careful training of the neural networks, we are able to
outperform the statistical baselines on linear errors.
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Chapter 1

Introduction

This chapter begins with an introduction to the electricity price forecasting do-
main and the motivation behind undertaking these studies. We further explain
our research goals in Section 1.2 and how we plan to answer them in Section 1.3.
Finally, Section 1.4 describes the structure of this thesis.

1.1 Background and Motivation

Electricity is an essential element in modern societies, both in advancing in-
dustries and supporting our personal lives at home. With the liberalization of
electricity, many power markets have become deregulated, meaning that free com-
petition is introduced to create more efficient and secure markets. As a result,
power from a great variety of different sources can enter the grid, for instance,
wind, solar, nuclear, coal, and hydro.

Market participants include energy generators, companies that distribute the
energy further, large consumers on the demand side who buy power on exchanges
or through bilateral contracts, as well as traders who can see economic profits
by operating in these rapidly evolving markets. Accurately estimating future
electricity prices is an important task for all producers, consumers, and retailers,
as it contributes to a more secure and efficient market.

Electricity is an extraordinary commodity since it has limited storage capabilities.
In order to maintain a stable frequency in the electric grids, electricity must
be consumed as it is produced [Kaminski, 2012]. Though, it is impossible to
know ahead of time the exact supply and demand levels for electricity due to
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CHAPTER 1. INTRODUCTION 2

stochastic fluctuation in consumption and production. Of particular attention is
the current shift in installed renewable capacity. As we progressively transition
into greener energy markets, predicting the future situation is increasingly driven
by weather data such as wind and solar production. The weather is, as we all
know, stochastic in its very nature. Forecast errors of solar and wind from the
day before are regularly above thousands of megawatts (MW) in countries such as
Germany; mean absolute errors are rarely below 10 percent. Market participants
make their decisions based on those forecasts, and misplanning leads to over- or
undersupply in the electricity markets [Ziel, 2017].

European markets usually solve this problem through a set of cascading markets
that are highly interrelated. The exact dynamics between these markets differ
from country to country because the supply share of different power production
technologies can vary greatly. In this thesis, we focus on the German market since
it is commonly used amongst researchers. The reason for this is that Germany
has been one of the leading nations transitioning into renewable energy. Over 25
percent of the current energy mix is powered through renewables, and this keeps
on increasing [Murdock et al., 2019]. Wind and solar production alone accounted
for more than a third of the net electricity generation in Germany in 20191. It is
the largest electricity market in Europe and has over one thousand active market
participants [Germany Trade And Invest, 2018]. Furthermore, since Germany
has been at the forefront of innovating modern energy market designs, certain
results found here may be predictive of what may yet become relevant in other
electricity markets [Goodarzi et al., 2019].

The main market for electricity trading is the spot market. This market is also
called the day-ahead market because market participants trade power contracts
for fixed time slots for the following day. The goal with such a market is to
match the supply and demand to determine a market clearing price, which is
the intersection between the (aggregated) supply offers and bids for different
power volumes submitted by market participants [Weron, 2014]. This concept
is shown in Figure 1.1. The spot market in Germany closes at 12 PM, and a
market-clearing price is then obtained for each of the 24 hours for the next day.

The intraday market is the subsequent market that allows participants to contin-
uously adjust to the evolving levels of demand and supply that was not foreseen
from earlier. Intraday trading is therefore especially valuable for market par-
ticipants with a high share of renewable energy sources such as wind and solar,
and need to balance their short-term deviations due to weather forecast errors.
The intraday market in Germany allows for trading of hourly and quarter-hourly
products closer to the final hour of delivery. In Germany, it is possible to trade

1See www.energy-charts.de



CHAPTER 1. INTRODUCTION 3

until 30 minutes before delivery, with an exception being a special rule that al-
lows for trading until 5 minutes before delivery if localized inside one the four
regional control zones. Trading on the German continuous opens at 15:00 for
hourly products and at 16:00 for quarter-hourly products of the following day.
Figure 1.2 illustrates the timing between the day-ahead auction and the intraday
market.

Figure 1.1: Supply offers and demand bids for the 10th of May 05:00 on the EPEX
day-ahead exchange in Germany. The intersection between the supply offers and
demand bids for different power volumes determines the market-clearing price.
Figure from Refinitiv’s visualization platform.

Figure 1.2: Timing between spot and intraday market.

If the supply has not matched demand after trading activities on the day-ahead
and intraday market, imbalances are corrected shortly before delivery by the
transmission system operators on a real-time regulating market to ensure final
equilibrium. Imbalances are managed financially by imposing a settlement cost
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that traders must pay if they diverge from their original binding plans to the real-
time production or consumption levels. In many areas, this cost can be very high
because system operators need to be able to hold back or call in extra production
at very short notice [Weron, 2014].

To avoid punishing imbalance costs, market participants are encouraged to fix
their position on the intraday market. With more intraday trading caused by
stochastic generation levels and greater uncertainties, these costs have been rising.
Market participants face in turn greater risk [Goodarzi et al., 2019]. The tendency
is to trade more power intraday; total trading volumes from intraday trading
sessions in Germany have increased from 26 TWh in 2014 to above 50 TWh in
2018 [Glas et al., 2020].

Traditional literature on the topic of Electricity Price Forecasting (EPF) is usu-
ally concerned with day-ahead prices, whereas the body of articles related to
intraday EPF still is little, but now steadily growing. To this developing trend
we wish to contribute.

It should be made clear that the motivation behind accurately predicting electric-
ity prices is not just about making pure economic profits, but also ensuring system
stability and reliability. As prices become more volatile from unpredictable con-
ditions, the chance of severe imbalances occurs, and hence the risk of an unstable
frequency in the grid increases. By accurately forecasting future electricity prices,
system stability also improves [Lago et al., 2018].

From a research perspective, EPF makes for a fascinating study. Electricity prices
have characteristics like seasonality in different frequencies (daily, weekly, yearly),
as production and consumption depend on the weather situation and the business
cycle [Weron, 2014]. Moreover, prices can change rapidly and unpredictably and
cause sharp spikes, but with a mean-reverting process in the long run. Complex
and dynamic non-linearities influence financial bidding strategies in the short
term. In turn, prices are obscured with leptokurtic noise caused by many factors.
[Weron, 2007].

In this thesis, we look into some of these factors, and study to what extent
they can be used as features in Machine Learning (ML) models to predict the
hourly prices on the European Power Exchange (EPEX) intraday market traded
shortly before delivery. The justification for the latter is simple: Most market
participants trade in the final hours before delivery because they want to be
able to react to the latest information. We choose to focus on the prediction
of prices for the final hour, as most transactions happen this hour (opposed to
any other hour) [Narajewski and Ziel, 2019]. Our constructed target series is
an approximation of the average price for hourly products traded in the final 60
minutes before delivery, described more thoroughly later in Section 4.1. Similarly
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to [Marcjasz et al., 2020], we work under the assumption that a practitioner has
one hour to make the forecast, take strategic decisions, and schedule bids. This
aims to be as similar to real conditions as possible.

Deep Learning-based models have been a major success in many fields for dealing
with unstructured, complex, and noisy time series data. We are motivated by the
idea that using these techniques can be beneficial on this task as well, because
of their known flexibility and efficiency in handling complexity and non-linearity
[Zhang and Fleyeh, 2019] [LeCun et al., 2015].

Using Neural Networks is no new phenomenon in the EPF literature, and many
have reported much success in using them [Ugurlu et al., 2018], [Lago et al.,
2018] [Kuo and Huang, 2018]. But the literature employing computational intel-
ligence methods is especially scarce when intraday market research is concerned.
Day-ahead and intraday electricity markets are characterized by different data
generating processes and therefore require different modeling approaches [Ma-
ciejowska and Weron, 2019]. There is a clear research need for exploring advanced
computational intelligent methods within the intraday EPF literature.

We have a unique dataset composed of fundamental variables such as weather
forecasts of wind and solar production and their errors since spot time, changes
in grid availability, imbalance volumes, and features that are engineered from
the bid-offer curve. In this thesis, we explore how our different proposed deep
learning-based models tackle the task of predicting final intraday prices on the
German continuous and compare them against state-of-the-art statistical meth-
ods utilizing data from June 2019 till March 2020.

1.2 Goals and Research Questions

The objective is to predict the final intraday prices using artificial neural net-
works. In that process, we want to explore and especially find out the following:

Research question 1 To what extent does exogenous factors determine the final
intraday prices that can be predicted?

We define exogenous factors in this setting to be all data that is not directly tied
to intraday market state variables. Specifically, we want to explore the difference
in the proportion of variance that can be explained with and without involving
prior intraday prices in the set of feature variables. This translates to comparing
R2 scores from two sets of models: The first set is built from models that do not
include prior intraday transaction prices, while models in the second set have no
such restriction.

We want to emphasize this because the price formation from earlier transactions
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for a given target contract is already known to be influential variables for this
predictive task. That is because fundamental information already is partly or
fully incorporated into the observable transaction prices. From a research point
of view, it can be interesting to build a more fundamentals-based model that only
includes exogenous effects. Undertaking such a study gives a clearer picture of
how fundamental data determine the final intraday prices.

In addition, we want to compare different architectures of neural networks and
see how they apply in this domain.

Research question 2 How do recurrent networks compare to feed-forward net-
works when predicting final intraday prices?

This means that we want to compare model architectures that lack the concept
of time with sequential models designed to deal with the serial dependence in
the time series. We build a Feed-Forward Neural Network (FFNN), Long Short-
Term Memory (LSTM) and Gated Recurrent Unit (GRU) to help us answer these
questions. The FFNN is fed only with the most recent updated values, whereas
the recurrent models are fed with a history of prior values.

1.3 Research Method

Our research questions will be answered through data-driven design and experi-
ment.

This research methodology builds on induction: We try to find theories from
data, and seek conclusions from particular cases to the general case. Specifically,
we build models as well as we possibly can, that might find patterns expressing
certain regularities in the underlying data-generating process. On the contrary,
we might not find any significant patterns at all. Machine learning is, to some
extent, always stochastic, and we can give no definite answers. We will perform
hypothesis tests to assess the statistical significance of different forecast results.

We further argue that the best way to answer our type of questions and put them
to use, is to place ourselves in the shoes of a practitioner and exhibit having
conditions similar to real conditions. This principle is kept in mind throughout
this work.

1.4 Thesis Structure

First, Chapter 2 presents the background theory required to understand the base-
lines and proposed models, and how we statistically can assess the relative sig-
nificance of different forecast accuracies obtained from them. We also say some
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words about price determinants in the intraday market as these insights are re-
quired to know why and how we choose to include certain variables in the feature
set.

Chapter 3 then moves into a review of published related work, where we put
ourselves in the landscape of literature that concerns intraday EPF research.

Afterward, we turn to the dataset in Chapter 4 and explain precisely how the
variables are timely constructed. Chapter 5 then introduces our baselines and
proposed models.

Chapter 6 specifies the experimental setting. How we search for optimal net-
work configurations is an integral part of this work, and explained here in the
experimental setup.

Further, we report our results in Chapter 7 by evaluating the models’ predictive
capability and test the significance of the outperformance of different forecasts.
From the results, we evaluate and give a thorough discussion.

In Chapter 8 the thesis ends with answers to our research questions. We also
argue whether any contributions have been made to the field, and finally give
some words about suggested future work.



Chapter 2

Background Theory

This chapter covers the theoretical background of this Master’s thesis. Section 2.1
to 2.3 present the theory of neural networks and linear regression methods that
is needed to understand how our models work. We then proceed to the Diebold-
Mariano test in Section 2.4, which is the test we use to statistically identify
out-performance between forecast series. Finally, Section 2.5 summarizes price
determinants in the German intraday market. The latter is included to better
understand the market dynamics and why we choose to train the models with
certain input variables.

Relevant background material on neural networks were carried out in the project
preceding this thesis [Ullern and Fjeldberg, 2019]. Section 2.1 and 2.2 are taken
from the project report, with some additional background theory included.

2.1 Artificial Neural Networks

Figure 2.1: Illustration of a biological neuron

8



CHAPTER 2. BACKGROUND THEORY 9

The human brain consists of nearly 10 billion basic information-processing units
called neurons, interconnected through synapses. As Figure 2.1 illustrates, neu-
rons have a simple structure. Each neuron consists of a cell body, soma, sev-
eral fibers called dendrites, and a single long fiber called the axon. Although
the structure is simple, together, the neurons constitute tremendous processing
power [Negnevitsky, 2005, p. 165-166].

An Artificial Neural Network (ANN) is a computational model loosely inspired
by the functionality of the human brain. An ANN is composed of simple inter-
connected units, also called neurons. The neurons pass signals to its connected
neurons through their shared link. The functionality of the link is not only to
propagate signals but also to determine the sign and strength. Each link, there-
fore, has an associated weight, w, where the magnitude and sign express the
importance of the signal [Negnevitsky, 2005, p. 166-167]. Neurons also have a
bias, b, used to shift its activation. Artificial neural networks are used to ap-
proximate generally unknown functions, including tasks like speech recognition,
machine translation, playing board games, and predicting stock prices.

2.1.1 Feed-forward neural networks

Figure 2.2: Feed-forward network with two input layers and two output layers.

The FFNN is the simplest type of neural networks, where information moves
only in one direction, with no cycles. Figure 2.2 illustrates a simple FFNN with
two input and two output neurons. The output signal of a neuron j is generated
by first computing the weighted sum of its input signals, and subtract the value
of the bias (Equation 2.1). Then the neuron applies an activation function g to
derive the output (Equation 2.2) [Russell and Norvig, 2010, p. 728].

inj =

n∑
i=0

wi,jxi − bj (2.1)
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aj = g(inj) = g(

n∑
i=0

wi,jxi − bj) (2.2)

The network illustrated in Figure 2.2 is also a perceptron since all inputs are
connected directly to the outputs. With such a network, only linearly separable
functions can be learned [Russell and Norvig, 2010, p. 729].

Deep neural networks

Figure 2.3: Deep neural network with two hidden layers.

Things get more interesting when we add hidden layers between the input and
output layers. We then get a multilayer neural network that can solve quite com-
plex tasks. Figure 2.3 shows a deep neural network with a four neurons input
layer, two hidden layers with two neurons, and an output layer with one neuron.
Each layer has its functionality. The input layer accepts inputs from the outside
world and passes them to the hidden layer, usually without computation. Then
the output layer gets information from the hidden layer and uses this to deter-
mine the output. Multiple processing layers learn representations of data with
multiple levels of abstraction [LeCun et al., 2015]. According to [Touretzky and
Pomerleau, 1989], the hidden layers should be called learned-feature detectors or
re-presentation units because the activity pattern in the hidden layer is an en-
coding of what the network thinks are the significant features of the input. With
one hidden layer, any continuous function of the input signal can be represented.
With two layers, even discontinuous functions can be represented [Russell and
Norvig, 2010, p. 731-732].
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2.1.2 Backpropagation

The most commonly used learning algorithm for artificial neural networks is
backpropagation. Based on a training set of input patterns with corresponding
desired outputs, the algorithm repeatedly adjusts the network’s weights, ensuring
that the actual output of the model is the same as, or sufficiently close to, the
desired output. [Rumelhart et al., 1986].

A network calculates its output by propagating the input to the output layer.
This procedure is called the forward pass. When the forward pass is done, the
backpropagation algorithm can adjust the weights. All neurons are a part of the
computation and responsible for some of the errors. Therefore weights have to
be adjusted accordingly. The first step is to compute the error between actual
and desired output, based on the chosen loss function. Mean squared error is a
commonly used loss function, calculating how close a regression line is to a set of
points (Equation 2.3), where y is the actual value and ŷ is the predicted value.

MSE =
1

n

n∑
i=1

(yi − ŷi)2 (2.3)

The goal then is to minimize the loss function by using gradient descent. It is
necessary to compute the partial derivatives of the loss function with respect
to each weight in the network. In the backward pass, these partial derivatives
are propagated from the output layer to the input layer, and the weights get
adjusted. Backpropagation is, therefore, a procedure of repeatedly using the
chain rule to assign the blame for a particular error to specific weights in the
network [Rumelhart et al., 1986].

Although such a learning rule lacks biological plausibility, networks trained with
backpropagation (or slight variations of them) have been the most used neural
network architecture since its invention. Significant successes have been achieved
in real-world applications, meaning that it is one of the most impressive engi-
neering feats of our time [Stork, 1989][Specht and Shapiro, 1991].

Optimization algorithms

Backpropagation is an iterative process. For each iteration, we feed the network
with training data and modifies parameters based on the calculated gradient
of the loss function, to slightly improve it. Different optimization algorithms
have been presented, and they can be divided into three categories; batch gra-
dient descent, Stochastic Gradient Descent (SGD), and mini-batch gradient de-
scent. Batch gradient descent computes the gradient by processing all the training
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records simultaneously in a large batch. This computation can be very slow as
we need to calculate the gradients of all the records to perform one update but is
guaranteed to converge to the global minimum for convex error surfaces and a lo-
cal minimum for non-convex surfaces. SGD methods only use a single record at a
time, which is usually much faster and can be used to learn online, meaning that
records are drawn for a continually created stream of records, rather than from
a fixed set of records. Mini-batch gradient descent takes the best of both worlds
by performing an update based on a mini-batch of records. Standard mini-batch
sizes range between 50 and 256 but is also an optimization problem as it can vary
for different applications [Ruder, 2016][Goodfellow et al., 2016, p. 275-278]

Weight initialization

When training networks, local optimization techniques are usually employed, of-
ten leading the training algorithm to reach a local minimum. Therefore, the local
minimum will determine the quality of the network, making it advantageous to
get a local minimum close to the global minimum. A factor that influences the
final local minimum is weight initialization. Several weight initialization methods
exist, such as the uniform random initialization inside the interval [-0.05, 0.05].
Different weight initialization methods should be explored when training neural
networks to find the initialization that best suits the network. Weight initializa-
tion is also influencing the speed of convergence, the probability of convergence,
and the generalization capabilities [Fernández-Redondo and Hernández-Espinosa,
2001].

2.1.3 Regularization techniques

The goal of machine learning is to build models that learn from data to find
patterns or give accurate predictions on new and unseen similar data. The con-
cept of a model that can learn from some data, and apply the gained knowledge
correctly on unseen data is called generalization. Neural networks are known to
be difficult to generalize, and how well a network generalizes depends, among
other things, on the number of samples available for training, the complexity of
the underlying structure in the data, and the network architecture.

The process of training neural networks is demanding, and a trained network’s
predictive power can be classified into three types of fit. Figure 2.4 illustrates
these types of fit. The blue dots are samples used to train the model, the green
line is the real underlying data structure, and the red line is the model predic-
tion. Underfitting is characterized by a model that can neither produce accurate
predictions on the training data nor generalize to new data. The model struggles
to capture the underlying trend and is often a result of a too simple architecture.
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When a model fits the training data too well, it is known overfitting. Overfitting
occurs when a model is too complicated relative to the complexity of the data.
The model then starts to memorize the training data by capturing its noise and
can’t generalize to new data.

Figure 2.4: Underfitting vs. overfitting.

Both overfitting and underfitting lead to weak predictions on unseen data, and
ideally, we want a model to be robust. Robustness can be achieved by applying
regularization techniques. A regularization technique is any modification we make
to a learning algorithm that is intended to reduce its generalization error but not
its training error [Goodfellow et al., 2016, p. 117].

L1 and L2 regularization

Many regularization techniques exist. L1 and L2 regularization are two ap-
proaches based on limiting the capacity of neural networks by adding a norm
penalty Ω(θ) to the loss function. Equation 2.4 and Equation 2.5 respectively
describe the L1 and L2 norm penalties mathematically, where w refers to the
weights of the network.

Ω(θ) = ||w|| (2.4)

Ω(θ) = ||w||2 (2.5)

L2 is commonly known as weight decay and drives the weights in a network closer
to zero by adding the sum of squared values of weights to the loss function while
the L1 penalty is the sum of absolute values. One can look at L1 regularization as
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a feature selection mechanism, as this norm penalty causes some of the weights to
become zero. These zero-weights correspond to features not essential and can be
discarded in a feature selection analysis. L2 doesn’t force weights to be zero and
performs better when all input features influence the output [Goodfellow et al.,
2016, p. 227-231].

Dropout

Dropout is a well-used regularization technique, providing a computationally in-
expensive but yet powerful method to regularize models. Dropout is similar to
bagging methods in some way. Bagging is an ensemble method where we train
multiple models and combine their results to achieve better performance on new
unseen inputs [Goodfellow et al., 2016, p. 255]. It can be seen as a voting scenario
where all the models in the ensemble vote for output. For example, the ensemble
outputs the prediction with the most votes if it is a classification problem or the
mean of all predictions if it is a regression problem.

Figure 2.5: Base network with sub networks.

A naive approach to get the same behavior in a neural network is to train all
subnetworks and use them in an ensemble. This is done by constructing different
combinations of non-output neurons from the original network, as illustrated in
Figure 2.5. But as we can see, a lot of the subnetworks have no input units or
connected paths from input to output. As mentioned earlier, neural networks
usually consist of several hidden layers with many neurons, so the problem esca-
lates with the size of the network. Another issue with this approach is the lack of



CHAPTER 2. BACKGROUND THEORY 15

shared parameters between subnetworks and the escalating memory usage with
more sophisticated networks.

Dropout approximates the process of training an ensemble of networks with dif-
ferent architectures, but with shared parameters. For each iteration, we sample
a randomly different binary mask applied to all the input and hidden neurons.
The binary mask chooses which neurons to be dropped out during the forward
pass, backward pass, and the parameter update. Usually, input neurons have
a probability 0.2 of being dropped and hidden neurons 0.5 [Goodfellow et al.,
2016, p. 256-257]. In Figure 2.6, neurons are being dropped out in each iteration,
resulting in different architectures.

Conceptually the effect of dropout makes the training process noisy, forcing neu-
rons to be more independent and take on more or less responsible for the inputs.

Figure 2.6: The effect of dropout in neural networks when training on different
iterations.

2.2 Recurrent Neural Networks

Feed-forward networks offer a lot of useful properties and capabilities. Input-
output mapping, with fixed input size, is one of them. In input-output mapping,
an input vector is presented to the network, and the weights are then modified to
minimize the error between the network’s actual output and the input vector’s
desired output. This is repeated for all vectors in the train set over several epochs
as to get the most optimal weights. The network learns from the examples by
constructing an input-output mapping of the data [Svozil et al., 1997].

Many problems can be solved by using FFNNs with a fixed input size vector, but
not all. The fixed input size limits their usage, especially affecting problems with
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no predetermined input size. This is, for instance, the case in machine translation
problems, where the length of sentences may vary.

Another limitation of FFNNs is their lack of the concept of time. Several problems
require this as useful information can be found. When predicting a stock price,
the price trend during the last hours may contain useful patterns that can give a
more precise prediction of the future price. FFNNs have no built-in mechanisms
to remember information back in time. They lack the expressivity to remember
past information for arbitrarily large input sizes.

RNNs address the issue of remembering past information by having cycles in
them. The structure of the RNN is similar to that of a standard feed-forward
network, but through the cycles, the network can retain information about the
past, making it possible to discover temporal relationships between information
that are far away from each other in the input data [Pascanu et al., 2013]. Figure
2.7 visualizes an unfolded RNN.

Figure 2.7: RNN architecture, both folded and unfolded.

From Figure 2.7 we see that the RNN consists of a hidden state , h, and operates
on a variable sequence length x = (x1, x2, ..., xt), ordered in time. At each time
step, i, we feed the network with xi, and the hidden state is updated. Hence,
hi is a vector representation of the i’th point in time. When we refer to the last
hidden state in an RNN, what we mean is ht, which is the hidden state produced
after feeding the network with the final element, xt, in the sequence x. It is
also possible to stack recurrent layers. This idea was first introduced in [Graves
et al., 2013]. The idea of stacking recurrent layers is to feed the hidden state,
hi, through another recurrent layer, as visualized in Figure 2.8. This allows for
more complex functions to be captured in the input sequence. Even though the
additional power gained by stacking RNNs is not theoretically clear, some studies
have shown indications of deep recurrent networks performing better compared
to shallower ones [Sutskever et al., 2014] [Irsoy and Cardie, 2014].



CHAPTER 2. BACKGROUND THEORY 17

Figure 2.8: A stacked RNN, with two stacked RNN layers.

RNNs are configured differently based on the task. Figure 2.9 shows three config-
urations. If the problem is to translate sentences, a many-to-many structure can
be used, as both the original sentence and the translated sentence contain several
words. When predicting a stock’s price exactly an hour in the future, a many-to-
one structure is suitable based on its price history. Many-to-many may also be
used if it is desirable to predict several future prices of the stock. A one-to-many
configuration can be used if a neural network is trained to map a one-dimensional
vectorized sentence to a whole sentence. The vectorized sentence is then fed into
the RNN.

Figure 2.9: Different RNN configurations.

RNNs can also be trained with backpropagation, but the algorithm is called
backpropagation through the time when dealing with recurrent networks [Pas-
canu et al., 2013]. Backpropagation through time is an extension of the standard
backpropagation, allowing us to calculate the derivatives needed when optimiz-
ing neural networks with the capability of learning temporal patterns [Werbos,
1990]. It works by treating the recurrent model as a multi-layered model (with



CHAPTER 2. BACKGROUND THEORY 18

the theoretical possibility of having an unbounded number of layers) with back-
propagation performed on the unrolled model.

Even though we have algorithms for learning with recurrent networks, it is still
considered to be a difficult process. Sequences fed into recurrent networks may
often have long-range dependencies the network needs to extract, but it is too
hard to capture due to exploding and vanishing gradients. This is when the
norm of the gradient increases or decreases exponentially during training. To see
why this happens, consider a large unrolled network: Computing the gradient
of hinit involves many repeated factors of the weight matrix W. If the largest
singular value in W is greater than 1, the weights will quickly intensify and
grow large. The opposite happens when the largest singular value is less than
1. Exploding and vanishing gradients thus occur when backpropagating errors
across long sequences [Lipton et al., 2015, p. 13-14].

LSTM and GRU cells are configurations of the RNN, where sequences propagates
through the cells the same way, but is designed to deal with the vanishing gradient
problem.

2.2.1 LSTM

Vanishing and exploding gradients make it challenging for RNNs to learn long-
range dependencies. Standard RNNs fail to learn in the presence of time lags
greater than 5-10 discrete time steps between relevant input events and target
signals [Gers et al., 1999]. In 1997, Hochreiter and Schmidhuber introduced the
LSTM, a recurrent neural network, designed to overcome the problem of vanishing
and exploding gradients [Hochreiter and Schmidhuber, 1997].

Figure 2.10: The architecture of an LSTM cell.
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LSTM is a modification of the architecture of recurrent networks, with the idea
of allowing error derivatives to flow better [Le et al., 2015]. LSTMs and RNNs
are similar in the way they have a chain of repeating nodes, but the hidden layer
is replaced by a more complex memory cell, illustrated in Figure 2.10.

In Figure 2.10, σ is the sigmoid function, tanh is the hyperbolic tangent function,
× is element-wise multiplication and + is element-wise addition

The key to LSTM is the cell state, illustrated as the horizontal line from Ct−1

to Ct running through the network with minor interactions. The cell state is
responsible for gathering and keeping information from earlier time steps so as
not to lose dependencies between the target and earlier input signals.

With the inclusion of the cell state and the hidden state, new parameters are to
be optimized. Standard ways to initialize the states are either by setting them
to zero or a random value between -0.5 and 0.5. A third method is to learn a
good representation for the initial state. The latter method requires enough state
resets to be present in the training data. If that is the case, the model can learn
a reasonable default initial state, making it more robust.

LSTM introduces gates to distinguish between essential and superficial informa-
tion. A gate is a sigmoidal unit that takes activations from the hidden layer at
time step ht−1 and the current input signal xt and produces a value that is used
to multiply the cell state to manipulate it [Lipton et al., 2015, p. 18]. LSTMs
have three different gates; the forget gate, the input gate, and the output gate.

The forget gate, ft, does the first manipulation of the cell state. [Gers et al.,
1999] introduced the forget gate in 1999, learned to reset the cell state once its
content is out of date and hence useless. Then the input gate, it, decides what
new information is to be stored in the cell state. First, a sigmoid layer is fed
with xt and ht−1 and decides which values to update. Second, a tanh layer is
also fed with xt and ht−1 and creates a candidate vector, ĉt, that could be added
to the state. These are then combined and used to update the cell state with
new information. Finally, we have the output gate, ot, where xt and ht−1 run
through a sigmoid. The cell state run through a tanh, and finally multiplied with
ot to get the output ht, which the LSTM cell believes is the best representation
of time step t. [Lipton et al., 2015, p. 17-19].
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Many LSTM variations exist with minor differences in the implementation of the
gates. In this thesis we use:

ft = σ(Wxfxt + bxf +Whfht−1 + bhf )

it = σ(Wxixt + bii +Wxiht−1 + bhi)

ĉt = tanh(Wxcxt + bxc +Whcht−1 + bhc)

ot = σ(Wxoxt + bxo +Whoht−1 + bho)

Ct = ft × Ct−1 + it × ĉt
ht = ot × tanh(ct)

where the W terms denote weight matrices and the b terms denote the bias
vectors. For example, Wxf , is the weight matrix for the input, xt, passing through
the forget gate, ft, while bxf is the corresponding bias vector.

Variations of LSTMs exist, and the first LSTM to be introduced did not have
any forget gate. An LSTM architecture with no forget gate has a weakness in
situations of large input streams. The cell state often tends to grow linearly
during a time series presentation, and without resets, it may break down the
network. Forget gates were introduced as a solution to this [Gers et al., 1999].

2.2.2 GRU

Figure 2.11: The architecture of a GRU cell
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GRU is another recurrent layer modification and was proposed in [Cho et al.,
2014]. GRU has been motivated by the LSTM but is less complex and, therefore,
simpler to compute and implement. Both LSTM and GRU keep existing infor-
mation and add new information, but are different as the GRU cannot control
the exposure of the cell state. The output gate controls this in LSTM, and as
shown in Figure 2.11, GRU does not have this gate and therefore exposes its
full content. The separate cell state in the GRU is not distinguished with the
hidden state, but instead merged. Therefore, the gates behave differently, and
have different naming conventions; the reset (rt), update (zt), and new (ĥt) gates,
computing the following functions:

rt = σ(Wxrxt + bxr +Whrht−1 + bhr)

zt = σ(Wxzxt + bxz +Whzht−1 + bhz)

ĥt = tanh(Wxĥxt + bxĥ + rt × (Whĥht−1 + bhĥ))

The final oupout ht is then:

ht = (1− zt)× ĥ+ zt ∗ ht−1

The performances of GRU and LSTM are often on par, but the GRU is said to
be computationally more efficient due to its less complex structure [Chung et al.,
2014].

2.3 Linear Regression Methods

2.3.1 OLS

Linear regression makes predictions based on a hyperplane fitted in feature space.
For a target variable that can be indexed by day (d) and hour (h), the prediction
can be formulated as

ŷd,h = β0 +

m∑
j=1

βjx
d,h
j + εd,h

Where xj are the input features, βj are the fitted coefficients, ε is the error term,
and β0 is the intercept term (also better known as bias in Machine Learning
literature).
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The hyperplane is built with a loss-function that minimizes the residual sum of
squares (RSS) between the observed targets and targets predicted by the model.
Hence this model-type is often referenced as Ordinary Least Squares (OLS).

RSS(β) =

n∑
i=1

(yd,hi − ŷd,hi )2

2.3.2 LASSO

OLS might be prone to overfitting. There is the option of increasing bias for a
reduction in variance by adding a model complexity term to the loss function.

The Least Absolute Shrinkage and Selection Operator (LASSO) extends OLS
built by miniziming the RSS while putting a linear penalty function on the co-
efficients. That is, find the coefficients β that minimize RSS while subject to∑m
j=1 |βj | ≤ λ.

λ is a regularization parameter that must be carefully set. If λ = 0 we have
ordinary least squares, and when limλ→∞, the coefficients shrink towards zero.
The parameters in LASSO are known to become sparse with many coefficients
vanishing, and thus provides implicit feature selection when λ > 0.

2.4 Diebold-Mariano Test Statistics

The Diebold-Mariano (DM) test statistic is a way to assess the null hypothesis of
equal forecast accuracy [Diebold and Mariano, 1995]. It can be used to formally
assess the significance of the outperformance of different forecasts.

A DM test goes beyond just comparing forecast losses (such as with mean squared
error or mean absolute errors), but also says something about how likely two
different forecast accuracies are to be caused merely from chance. Note that this
test is not intended for comparing models, i.e., it aims to assess the significance
between forecasts, not the underlying forecasters [Diebold, 2015].

The test itself is pretty easy to understand. Say that model i outputs a forecast
error εi,t = yt− ŷi,t, {t = 1, ..., T}, applied with a loss function L(εi,t), such as the
absolute |εi,t| or square error loss ε2i,t. A loss differential series can be constructed
between two series of forecasts, i.e., dt = L(ε1,t) − L(ε2,t). The test is then an
asymptotic test of the hypothesis that the mean of the loss differential series is
zero.

Specifically, the test statistic is calculated as DM = d̄
σ̂d

, where d̄ is the sample
mean loss differential and σ̂d is a consistent estimate of the standard deviation
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of d̄. Forecast errors may be serially correlated, DM therefore requires the loss
differential to be covariance stationary and that σ̂d is to be calculated robustly
[Diebold, 2015].

The statistic is then usually conducted two-sided with critical values obtained
from the standard normal distribution. However, in the presence of real-world
applications where the size of the estimation sample remains finite, and errors
occasionally can be huge with more heavy-tailed distributions than the normal, a
possible extension is to use the student-t distribution with T-1 degrees of freedom
to compare the critical values. This modification is done by [Harvey et al., 1997].

2.5 Price Determinants in the German Intraday
Market

Effectively predicting electricity prices requires both domain knowledge of how
to choose and structure the input variables, as well as sophisticated algorithms.
Studying the intraday price drivers is therefore a necessary step to visit before
trying to construct a sensible price model.

The intraday market is the subsequent market where participants trade after
the spot market has closed. This market is used to balance the deviations of
forecasted demand and supply from updated values. In Germany, you can trade
intraday continuously just until a few minutes before delivery. Still, the actual
errors in the hour of delivery must, in turn, be balanced on a regulating market
in real-time by the transmission system operators.

As a consequence, intraday trading has seen increased activity with the growth
of renewable energy sources. Between 2014 and 2018, annual wind production
levels increased by ca. 55 percent and solar production levels by ca. 19 percent1.
In the same period, intraday trading almost doubled [Glas et al., 2020].

But the spot market is still the place where the vast majority of power is traded.
This is because it is financially advantageous for the system to aggregate liquidity.
In the long run, prices are determined mainly by generation technologies and
their relative capacities, fuel prices, and demand levels [Pelagatti, 2018]. As
these macro factors are unlikely to change extremely from one day to the next,
the intraday price for an hourly contract will, on average, be quite correlated
with the spot-price for the corresponding hour.

After the spot price has been settled, supply and demand changes drive the
direction of the new intraday price. Deviations can stem from numerous different

1See www.energy-charts.de
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causes. How much an occurrence of one such cause affects the price, depends
on the available technologies and their capacity constraints, and the flexibility
and start-up costs of the power plants. In general, the closer the system works
towards its capacity constraints, the higher the intraday prices may be, as the
system is under pressure [Hagemann and Weber, 2013].

The electric grids always require a stable frequency, meaning that all the pro-
duced electricity must be consumed at every point in time. Consequently, it
should be clear that even a small cause can result in a massive price spike if the
system can recover from it only through expensive means. A well functioning
electricity market thus requires the inclusion of flexible electricity technologies
that can provide dispatch-ability to the power grid. These energy sources in-
fluence electricity prices differently than less flexible sources such as the volatile
power generated from wind or solar.

Information about dispatchable energy sources might be obtainable from the
merit-order. The merit-order system ensures that the first electricity sources
accepted to meet the demand are those with the lowest marginal cost. This is
done by arranging the available power plant capacities sorted in their short term
variable costs, see Figure 2.12. This principle is the basis for setting day-ahead
prices (also known as spot prices). The spot price then equals the marginal cost
of the last operating power plant that is needed to satisfy the demand [Pape
et al., 2016]. Assuming a perfectly competitive market, this ensures overall profit
maximization [Hagemann, 2015].

It can also be assumed that the price formation in the intraday market may, to
some extent, be explained through the same merit-order [Hagemann, 2015]. This
is because the submitted generation technologies for the day-ahead are also likely
the sources that are partly used in adjusting to the evolving equilibrium levels of
supply and demand intraday.

With this in mind, we will briefly explain some of the most critical intraday price
determinants after the day-ahead market has closed.

2.5.1 Solar and wind forecast errors

Wind and solar power are volatile in their production levels. Forecast errors
of solar and wind from the day before have regularly absolute errors above 10
percent. Market participants make their decisions based on those forecasts, which
means that over- or undersupply initially enter the electricity markets [Ziel, 2017].
There is a clear need to be able to balance the errors coming from old forecasts as
new forecasts become available. Forecast errors from renewables are, therefore,
one of the primary sources of intraday liquidity [Hagemann and Weber, 2013].
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Figure 2.12: Merit-order for 16 May 14:00 in Germany, showing marginal cost
[EUR/MWh] as a function of total accumulated generation capacity [MW] for the
hour. In this figure, the yellow depicted area under the curve might be generation
capacity coming from mostly gas plants, whereas when the curve steepens, and
the color becomes more brown, lignite and coal plants are in succession involved.
Wind and solar generation yields power that is submitted into the grid with
priority, and its marginal costs are therefore deduced from consumption. The
purple line is the expected system-wide load minus the generation coming from
renewables, i.e., the residual load. This figure is from Refinitiv’s visualization
platform.

The effect of forecast errors from renewable energy sources on intraday prices
is well documented in the literature. See for example [Würzburg et al., 2013],
[Kiesel and Paraschiv, 2017], [Ziel, 2017] and [Gürtler and Paulsen, 2018]. There is
conclusive evidence that an increase of power generation coming from renewables
results in decreasing electricity prices, and vice versa. Electricity generation from
renewable sources has low marginal costs and is, therefore, going into the grid
with priority.

But the effect on prices is non-linear. [Kiesel and Paraschiv, 2017] argues that
the impact on intraday prices coming from the forecast errors in renewables
should not be judged in isolation, but dependent on the demand quote (that
is to which extent the forecasted demand is covered by the traditional capacity
already planned for in the day-ahead market). The impact of weather changes
is reported to be more severe for mid-day delivery periods. This is because the
demand is high (factories are running), and the merit-order is usually steeper. In
these periods, market participants adjust their bids to the updated forecasts more
quickly. In this case, the system is under pressure, operating closer towards its
constraints, and imbalance costs can, as a consequence, be much higher if rapid
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activation of expensive technologies is required. Likewise, [Kremer et al., 2019]
finds that renewable forecast changes are more significant in the steep than in the
flat merit-order regime and that renewable forecasts have a higher explanatory
power at noon than in the morning and evening.

2.5.2 Consumption forecast errors

It is not only the supply side that determines the intraday price. The system load,
or actual consumption values, is influenced by seasonal effects, smart appliances,
weather, and random effects.

Consumption is systematically higher during day than night and higher on work-
days than weekdays [Hagemann and Weber, 2013]. Moreover, some hours see a
higher demand. For instance, in the morning times when people are waking up
and industrial shifts begin, causes the grid load to quickly increase [Kath and
Ziel, 2018]. In the evening, factories might shut their activities, but consump-
tion increases in personal homes from the use of home appliances. Moreover,
some smart devices can automatically be turned on when electricity prices are
estimated to be at its lowest, e.g., recharging an electric vehicle during night
time.

Consumption is also very related to the weather. Colder weather means that
electricity must be turned up when it is used for heating. Additionally, one can
observe a slight increase in demand during summer months through the use of
air-condition [Maciejowska and Weron, 2019].

2.5.3 Unplanned power outages

The impact of sudden changes to the planned production can have enormous
effects. This is typically caused by production failures, unanticipated power out-
ages, or availability changes in the grid infrastructure.

If power plant owners experience unplanned outages, they still have to deliver
the already scheduled electricity production [Hagemann, 2015]. This calls for
trading activity. Market participants are legally required to minimize their use
of the imbalance market [Garnier and Madlener, 2015], and imbalance prices are
usually so punishing that it puts an economic incentive to use the intraday market
to balance predictable deviations. When market participants are encouraged to
fix their position on the intraday market, unplanned power outages influence
intraday prices.
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2.5.4 System imbalance

Almost all trades on the intraday market happens in the last 3 hours prior to
delivery [Narajewski and Ziel, 2019]. The reason for this is not only to operate
with the most recent weather forecasts. Fundamental weather drivers are some-
times known in advance, but not exploited until very close to delivery. Another
reason to trade shortly before gate closure is that you can also better predict the
direction of the system imbalance and its corresponding price.

There are price incentives for intraday imbalance optimization. At the time of
writing, the volume-weighted average price is used as a reference price, with no
particular emphasis on the market situation close to delivery time. [Koch, 2019]
reports that utilizing such a reference price is problematic: Between 01/07/2017
and 30/06/2019, the imbalance price incentive was said to be too low in 13
percent of the quarter-hours. Taking intentional imbalance positions is forbidden.
However, [Koch and Maskosa, 2019] argues that some practitioners might, to
some extent, react to imbalance price expectations, based on their empirical
analysis.

Actual imbalance prices are in Germany released to the public long after the
settlement period. But imbalance volumes are released almost in real-time. All
information regarding the regulating market can be expected to influence intraday
prices. Moreover, this might contribute to a wait-and-see behavior among market
participants. When the market tightens up shortly before delivery, prices are
more volatile, and predicting them is harder for practitioners.

2.5.5 Imports and exports

The influence of neighboring markets can, in certain situations, be of importance.
There is currently an increasing share of cross-border trades taking place between
countries. The importance of considering market integration for intraday market
research is, therefore, an emerging topic. [Hagemann, 2015] finds some empiri-
cal evidence that flows between France and Germany influence intraday prices,
specifically that French trades affect German intraday prices only during the
off-peak periods. [Kath, 2019] is, however, not able to measure any significant
influence from the intraday cross-border project.

Transmission capacities between countries is another factor that then comes into
play. Line congestions and bottlenecks in the grid cause additional imbalance.
Although the transmission system operators might take this part of the bill, it
promotes further intraday trading as market participants are legally bound to
balance all predictable deviations.
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2.5.6 Market power and strategic behavior

Some market participants might be able to influence prices through market power.
The typical example is that a generator can offer power when the system is already
operating towards its constraints for non-competitive prices that exceed marginal
generation and ramping costs [Hagemann, 2015].

Furthermore, larger firms might be able to operate around the clock having offices
in different parts of the world. In contrast, small producers are only able to
clock-in during regular office hours. Traders sitting on larger shares might also
have a richer set of trading strategies to utilize. For example, imbalances can
be internally adjusted from within their portfolios before trading the difference
in the market. In this way, market power can be used to darken the available
market state variables for other participants.

This is very relevant because empirical results also show that traders tend to use
present or past price information to forecast future prices [Pape et al., 2016]. If
you are a price setter, this can be used as an advantage.

That was a brief introduction to some of the price determinants that affect the
intraday market. It does not aim to be a complete study on this comprehensive
topic (for that, please consult the referenced literature). Instead, this helps us
understand which variables we should include in our feature set, how we should
go about formatting them, and what kind of predictive ability we might expect
to see.



Chapter 3

Related Work

This chapter studies the related literature. Following the review of [Weron, 2014],
the various methods proposed within the EPF literature can be divided into
five areas: Multi-agent methods, reduced-form methods, fundamental models,
statistical models, and methods that utilize computational intelligence:

• Multi-agent methods create simulations where agents interact with each
other in a game-theoretic fashion. Different agents have different utility
functions and goals in the electricity market, so their interdependent be-
havior jointly builds the price estimating process.

• Reduced-form models are quantitative models that study the statistical
properties of electricity prices over time to deduce optimal positions.

• Fundamental methods use the underlying assumption from standard eco-
nomic theory that prices in competitive markets result from the equilibrium
of demand and supply [Pape et al., 2016]. These methods then look at the
physical and economic factors that drive the demand and supply levels for
electricity prices.

• Statistical methods utilize traditional econometric models. These models
search after an equation based on the statistical relationship of the variables.

• Computational intelligence is a broad term for all types of nature-inspired
methodologies where dynamic learning is employed to accomplish a task,
usually by finding non-linear and complex patterns in a dataset.

29
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Regression methods (statistical) and neural networks (computational intelligence)
are the two most widely used models [Weron, 2014]. A pitfall of statistical models
is often said to be that they lack the expressive power required to effectively model
the non-linear behavior in high-frequent data, as these methods often are linear
forecasters [Lago et al., 2018] [Amjady and Hemmati, 2006]. Neural networks
have greater expressive power but a higher variance in their performance, as they
are dependent on a broad set of parameters that can be hard to tune effectively.

In this chapter, we review the literature which, to the best of our knowledge,
exists for predicting intraday prices in the very short term on European electricity
markets. Market designs from other parts of the world are often quite different
from European and are outside the inclusion of this study. We furthermore
emphasize that predicting prices in the very short term means predicting prices
after the day-ahead market has closed and hence having full knowledge of the
settled spot prices.

Section 3.1 covers studies on the German intraday market. Other European
market studies are reviewed in 3.2. Finally, in Section 3.3, we summarize the
findings.

3.1 The German Intraday Market

[Narajewski and Ziel, 2019] analyze the ID3-price (an index that records the
volume-weighted average price in the final 3 hours before delivery in the German
intraday market) for hourly and quarter-hourly products separately. Using data
from 01/01/2015 to 29/09/2018, this study utilizes three statistical modeling
techniques: Ordinary least squares, LASSO, and elastic net (elastic net linearly
combines both L1 and L2 penalties on the size of the coefficients). In the set of
regressors, they include results from the day-ahead and intraday market, as well
as the imbalance volume from the balancing market. Among the proposed linear
models, the LASSO performed the best.

By assuming full information and hence having access to the most recent trans-
actions, they claim the market to be weak-form efficient when hourly products
are concerned. That is, none of the proposed models performed better than the
volume-weighted average price of the last 15 min before the forecast. For quar-
terly products, the most recent price was reported not to give satisfying results.
One explanation for this might be the lower number of transactions by the time
of forecasting compared to hourly products. They say this is because the distri-
bution of transactions for quarter-hourly products is even more skewed close to
delivery time.

Also [Uniejewski et al., 2019] use the LASSO estimator to predict an ID3-like
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time series for the German intraday market, using data from 01/01/2015 to
30/04/2018. The LASSO model was reported to significantly outperform its
competitors, namely an extremely naive benchmark that is just the corresponding
spot price, as well as an autoregressive expert-model. Unsurprisingly, they also
found the strongest regressor to be the latest available price. No fundamental
variables were included in this study; only day-ahead prices and prior ID3-prices
were used as external regressors.

In later work, the same authors showed that it is possible to beat the latest avail-
able ID3-price slightly, but significantly [Marcjasz et al., 2020]. This the case
if the LASSO model is also augmented with timely predictions of fundamental
variables for the coming hours. In that study, the system-wide load, solar and
wind generation forecasts, and their corresponding ex-post errors are accounted
for. Furthermore, balancing volumes and recent price information from neigh-
boring products are included. The latter could say something about changes in
the expectations about price levels over time, they argue.

Be aware that the latest available price, in this case, is the volume-weighted price
between 4 hours and 4 hours and 15 minutes before delivery, i.e., they give the
market participants one hour to make the forecast and make strategic decisions.
This price is not the same as the one used by [Narajewski and Ziel, 2019], which
assumes full information and is constructed in the final quarter before forecasting,
giving only 15 minutes for an agent to schedule bids. The latter is harder to beat
since many transactions are likely to happen within that differing 45-minute time
window.

A technique that these authors make use of to boost performance is to ensemble
different forecasts. The best result takes a simple average of the two predictions
coming from the LASSO-estimated model and the most recently available ID3
price. The reason why this simple averaging scheme improves on linear errors is
because of the massive price spikes that can occur in the electricity price time
series. Because they happen rather infrequently, models trained on a limited
sized dataset and designed to generalize will not be capable of predicting the full
magnitudes of price spikes. In these cases, the autocorrelation coming from prior
transaction prices are tremendously rewarding on aggregated error measurements.

An interesting extension made in this study is the inclusion of knowing future
values of the exogenous variables for the day, i.e., having ”perfect” forecasts at
hand. In this case, they claim to be able to reduce the mean absolute error by
over 2 percent, highlighting the importance of accounting for the latest forecasts
when predicting electricity prices in the very short term.

A rather different approach is taken by [Janke and Steinke, 2019], who forecast the
entire volume-weighted price distribution in the final 3 hours of German intraday
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electricity market using data from 01/07/2017 to 31/03/2019. This work aims to
estimate a much richer representation of the market behavior, which is important
if different market participants value electricity differently.

More specifically, this study looks into forecasting the quantiles for the last three
hours before delivery, using various linear regression models and an ensemble of
neural networks with two hidden layers. Their forecasts report to not improve
significantly over the naive benchmarks, except for the tail of the distribution.
Among the proposed models, the LASSO again performs the best.

Note that both the proposed models and naive benchmarks utilize price infor-
mation all the way up until 3 hours before delivery. From this, they find that
including exogenous variables of load, wind, and solar power forecasts do not im-
prove on the accuracy while considering time-series information from neighboring
products and quantiles did. This finding is perhaps not surprising if market par-
ticipants quickly adjust their bids to updated forecasts of renewables [Kiesel and
Paraschiv, 2017]. Empirical studies of [Kremer et al., 2019] find that renewable
forecast updates are reflected in intraday prices within one trading minute. Re-
ceiving an update on the weather forecasts every hour is thus likely not sufficient
enough.

3.2 Other European Intraday Markets

[Monteiro et al., 2016] look into hourly price forecasting in the six intraday ses-
sions of the Iberian electricity market (mainland of Portugal and Spain), having
data from 2012 and 2013. In this work, each intraday session was modeled inde-
pendently using shallow neural networks with a single hidden layer with 2n + 1
neurons, where n is the number of input explanatory variables. For robustness,
the outputs of 20 training processes of the same network were assembled to a
single value.

Many networks were built differing only in the selected input variables, which
were all a subset of recent prices, demands, generations from the previous day,
forecasts of demand, forecasts of wind production, as well as calendar effects.
The best results on the majority of the intraday sessions were obtained from
only utilizing prior prices from the day-ahead and the intraday session, as well
as accounting for calendar effects.

[Andrade et al., 2017] also find that simpler models tend to yield the best perfor-
mance for Iberian intraday auctions. Using data from June 2015 to June 2017,
linear quantile regression models for each intraday session were constructed. De-
spite having a broad set of fundamental predictors available, the models that only
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incorporated price information from previous sessions performed the best for the
probabilistic forecasts.

In [Kolberg and Waage, 2018], multiple Deep Learning-based models were de-
signed to predict the volume-weighted average price for the last six hours of
trading before each delivery hour on Elbas, the Nordic continuous. This study
had an extensive dataset covering all intraday transactions from 02/11/2011 till
31/12/2017. Weather forecasts were included in the form of having separate
spatio-temporal networks for pattern-finding in weather forecast maps. Other
interesting features included in this work were grid transmission capacities and
prices from the regulating market, as these are quickly publicly released in the
Nordics.

Networks as deep as 18 layers were tried in this study. An LSTM network with
residual connections was reported to perform the best. In this architecture, the
weather forecast maps are first sent through a convolutional section before going
through an LSTM layer. This new feature representation of the weather situation
is further concatenated with the sequential market data features, which have also
first been sent through two stacked LSTM layers. Finally, three residual blocks
are piped, where extensive use of dropout and batch normalization is employed.

A more recent article from [Oksuz and Ugurlu, 2019] uses data from 01/01/2017
to 28/02/2019 to predict prices in the Turkish intraday market. In this setting,
the target series was the quantity weighted average of all the intraday trades
of the hourly contract. Five input variables were used: The day-ahead prices,
balancing market prices, forecasts of the generation’s ratio coming from renew-
ables, forecasted demand over forecasted supply, and the volumes that have been
traded for the delivery hour. The spot price was reported to be the most impor-
tant variable because intraday prices were said to be very close to the day-ahead
prices.

Among the proposed models, the recurrent neural networks outperformed the
classical statistical methods. The GRU achieved the best results, which had a
simple architecture of one GRU-layer with a hidden dimension of 50 blocks.

3.3 Summary

We see that the proposed models in the visited literature are all either statistical
linear regression models or neural networks. Whereas neural networks have been
reported to outperform linear methods outside of Germany, the latter methods
have shown the most convincing results there.

One must keep in mind that the generalizability of the results coming from the
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literature concerning intraday markets outside of Germany, translated over to
our task, is very questionable. We note that:

• Although the Iberian market is characterized by having a tight integra-
tion of different renewable energy technologies in their supply share (with
comparable wind and solar generation levels to Germany), the Iberian mar-
ket with its 6 auction-based intraday sessions is a different market design
compared to the continuous trading in Germany.

• The study by [Kolberg and Waage, 2018] in the Nordic intraday market
experienced issues with liquidity. The intraday market had an average of
only 23 intraday transactions per delivery hour in their dataset. The target
series had to be calculated in a six-hour wide window because shorter win-
dows would give sparsity problems. The problem of little intraday liquidity
stems from having a lot of lucrative hydropower in the Nordics1. Having
flexible hydropower to balance over- or undersupply might put on less of a
burden for market participants to trade on the intraday market. This likely
makes the settlement costs lower, and market participants are further not
as encouraged or required to trade on the intraday platform. Low liquid-
ity causes the benefits of trading renewable energy sources in the intraday
market to remain unexploited [Skajaa et al., 2015].

• The Turkish intraday market is also not as liquid as the German market.
Even though Germany and Turkey have similar population levels, Turk-
ish intraday trading in 2018 only accounted for 2.93 TWh [Epias, 2018],
whereas German intraday trading in 2018 surpassed 50 TWh [Glas et al.,
2020]. One of the reasons for this is the fact that Turkey has a much lower
share of wind and solar production levels2.

It is thus more likely to be the other way around; as Germany has been at the
forefront of innovating modern energy market designs, certain results found here
may be predictive of what may yet become relevant elsewhere [Goodarzi et al.,
2019].

In Germany, it is the LASSO augmented with fundamental variables that has
shown the best results. We include a LASSO-model in our baselines later. This
model provides both implicit feature selection and strict regularisation. Yet
we have seen from section 2.5 that many non-linearities determine the intraday
prices, so it is somewhat difficult to envision that the best one can do is drawing a
straight line through feature space and make predictions from that. Evidently, re-
search employing advanced computational intelligence methods should be further

1See, for example, https://www.iea.org/statistics
2See footnote 1.
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explored, and so this is where we are.

Furthermore, all of the studies in Germany incorporate prior price information.
The lagged transaction price for a specific target contract will alone be a powerful
predictor because parts of the fundamental information is already incorporated
into prior prices, coupled with other unobservable effects. It can be interesting
to build a more fundamentals-based model that only includes exogenous effects
and no prior price information. This extension will be included in this work.



Chapter 4

Data

This chapter describes the dataset in some detail.

In Section 4.1 we look into the properties of our target series, that is the average
of the 4 latest traded prices, sampled every quarter for the hourly product. We
further elaborate on how to scale and transform it in order to maximize generality
and accelerate learning capabilities in Section 4.2.

4.3 covers the features. At the center are the weather forecasts made at spot
time for renewable generation and the system wide consumption load, together
with their respectively intradaily updated forecast errors. We then utilize the
forecast errors in relation to the bid-offer curve that is available from the day-
ahead in order to get data on how the supply side might value the change coming
from updated values. We call this the merit-order response. Finally, we incor-
porate power outages, imbalance volumes and price formations from neighboring
products.

We wrap it up with a summary of the features in Section 4.4.

Important to note is that all of these variables are very timely constructed. We
work under the assumption that a practitioner has one hour to make the forecast,
take strategic decisions and schedule bids for the final hour. This aims to be as
similar to real conditions as possible.

Notation-wise, V d,hq depicts variable V with its value recorded q quarters before
delivery for the product that is delivered at hour h on day d.

All data is either given directly by, or engineered from data given by, Refinitiv.

36
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4.1 Target Series

The German continuous intraday market is a pay-as-bid market, meaning that
the exchange can match a buy order and a sell order if they are of identical prices.
This results in a large number of transactions with different volumes and prices.
Capturing the overall market price thus requires some form of aggregation scheme
for point prediction tasks.

The volatility of the prices is said to depend on the volume in the transaction
[Narajewski and Ziel, 2019]. Therefore, small volumes can result in quite different
prices even though they are traded close in time. The leading reference price in
the German intraday literature is, therefore, the ID3 or ID1 price index. This
is, in essence, the volume-weighted price for all transactions happening 3 and 1
hours before delivery, respectively.

Unfortunately, we do not have volumes available to us. Instead, we have the latest
traded price on the hourly products, for every quarter in the last 96 quarters (or
24 hours) prior to delivery. Most market participants trade in the final couple
of hours before delivery because they want to be able to react to the latest
information. In our work, we choose to focus on predicting the prices for the final
hour, as this is the hour with the maximum number of transactions [Narajewski
and Ziel, 2019]. Moreover, the traded volume from hourly contracts is more
than five times larger than the volume of the quarter-hourly products [Janke and
Steinke, 2019], so we focus on the hourly product.

We decide to take the average of the final 4 quarters and have that constitute
our target series. We hope that this, overall, is a good representation of the final
intraday prices. Formally, our target series can be described as

yd,h ≡ pd,h1 + pd,h2 + pd,h3 + pd,h4

4

Where pd,hq is the difference between the latest traded price with delivery on hour
h at day d, recorded q quarters before delivery and the corresponding spot price
for hour h on day d.

From this definition, it should be clear that we do not predict the full magni-
tudes of actual intraday prices, but rather the spread between the intraday and
day-ahead prices. The delta has a smaller solution space because intraday and
day-ahead prices are pretty correlated to begin with, as previously explained in
Section 2.5. Predicting the price spread is a better way to train the models and
evaluate their actual predictive ability.
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Figure 4.1 illustrates how the target series is calculated for 15 randomly sampled
hours in the dataset. It shows that some ”outliers” are bound to exist when we
aggregate prices from individual transactions. To further highlight how prices
differ within the final trading hour, some basic statistics of the differential series
between the maximum and minimum price sampled in the final hour have been
summarized in Table 4.1. However, it is also evident from Table 4.2 that the price
spread between intraday and day-ahead prices are altogether quite correlated
when being close in the temporal order.

Figure 4.1: How the target series is constructed. Blue dots are sampled prices
(spread between spot and intraday price) for every quarter in the final trading
hour before delivery. The red circles denotes the average that constitute a point
in the target series.

mean std min 25% 50% 75% max

max
1≤i≤4

pd,hi − min
1≤i≤4

pd,hi 8.53 13.75 0 3.04 6.00 10.41 498.00

Table 4.1: Descriptive statistics for the differential series between the maximum
and minimum price observed during the 4 final quarters, i.e. statistics calculated
from the series {max

1≤i≤4
pd,hi − min

1≤i≤4
pd,hi }.
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p1 p2 p3 p4

p1 1
p2 0.85 1
p3 0.77 0.92 1
p4 0.71 0.83 0.83 1

Table 4.2: Correlation coefficient among the pq sampled in the four final quarters
before delivery.

To avoid too many outliers, we take several measures to enhance robustness.
Firstly, in our target series, we only include those prices that are constructed from
four non-missing values. This means that no imputation is done with regards to
missing values in the variables that build the target series. This accounts for
572 hours or nearly 3 weeks of data, which is ca 7.9 percent of our original
data that spans from 01 June 2019 till 27 March 2020. Losing this amount of
data is a serious hit for any data-driven model, especially for ANNs with a lot
of parameters (weights) that need to be finely tuned. We argue that it is better
than the alternative of running the risk of including potential erroneous or (more)
noisy targets.

Secondly, as will be described in more detail in the next section, we utilize variance
stabilizing transformations on electricity price data. That means that no outlier
can contribute with a loss that is many standard deviations higher than that of
any other data point.

The constructed time series is illustrated in Figure 4.2. Descriptive statistics for
it has been summarized in Table 4.3 below.

Figure 4.2: The constructed target series.
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mean std min 25% 50% 75% max
yd,h 0.49 15.15 -80.82 -5.68 -0.30 5.66 384.27

Table 4.3: Descriptive statistics for the target series.

4.2 Variance Stabilizing Transformation

Noticeable from Figure 4.2 is the price spikes in the target series. Such outliers
should be dealt with somehow; otherwise, a model built by minimizing quadratic
or absolute errors might severely overfit these occurrences.

The first option is to design a model with a separate price spike component built
into it. A second option is to apply a Variance Stabilizing Transformation (VST)
to reduce the variation in the data. Applying such a transformation reduces
the impact of extreme outliers, and is well-studied within the EPF literature
[Uniejewski et al., 2017].

When utilizing deep neural networks, one can hope that the network automati-
cally finds an appropriate mapping from original values to a more useful repre-
sentation in parameter space in the first couple of layers. But this is not given,
and puts on additional complexity to the learning process. We argue that we
should, from having a relatively short dataset, apply a VST to the price series
beforehand.

A common way to transform a spiky time series is simply through the logarithm.
This can seldom be used within EPF studies because electricity prices can be
negative1. The same goes for the price spread between day-ahead and intraday
prices. Instead, we use a well-known VST that works for negative values, the area
hyperbolic sine (asinh) function. This transformation has not too long ago been
used by, for example, [Marcjasz et al., 2020] and [Narajewski and Ziel, 2019],
and shown convincing results. This function is illustrated in Figure 4.3, and
calculated as:

asinh(x) = log(x+
√

(x2 + 1))

And the back-transformation is simply the hyperbolic sine:

sinh(x) =
ex − e−x

2

1Negative prices occur when the costs of shutting down and ramping up a power plant exceed
the loss of accepting negative prices. This usually happens when demand is low, and production
levels from renewable sources, in turn, are very high (mostly due to wind) [Weron, 2014].
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Figure 4.3: The area hyperbolic sine function.

Note that before applying this VST to a variable, we remove the median and
scale it according to the interquartile range. This is an alternative to the more
common standardization approach by removing the mean and scaling to unit
variance. However, for small and spiky datasets where the sample mean and
variance are sensitive to outliers, the median and the interquartile range is a
more robust alternative.

Figure 4.4 depicts the original target series scaled and transformed. This is the
format of the prices in which we train our models to predict. But when we later
report and plot our results, we do the back-transformation such that the outputs
still appear in a realistic form.

Figure 4.4: The target series transformed.
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4.3 Input Features

4.3.1 Wind and solar forecasts made at spot time

For each target hour, yd,h, we have data on the forecasted total wind power

generation, Ŵ I
d,h

, and solar power generation, ŜO
d,h

, made at day d-1. These
are estimates produced by Refinitiv. They, in turn, utilize forecasts from solar
radiation, wind speed, temperature, etc., made by The European Center for
Medium-Range Weather Forecast (ECMWF). These power generation forecasts
are therefore built from proprietary models using public inputs. ECMWF runs
four forecasts a day, which is every six hours. The first distributed forecast is
made between 05.40 and 06.55 UTC, known conventionally as the spot forecast.
This is the forecast we include in our feature set.

Figure 4.5: Spot time forecasts for wind power production, Ŵ I
d,h

.

Figure 4.6: Spot time forecasts for solar power production, ŜO
d,h

.
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Figure 4.5 and 4.6 visualizes the Ŵ I
d,h

and ŜO
d,h

time series from 01/06/2019,

to 27/03/2020, in an hourly resolution. For ŜO
d,h

we see a natural pattern.
Estimated solar power is low at night, increases in the morning and into the af-
ternoon, and decreases towards the evening. Sunny months have higher forecasts,
measured in magnitude, compared to cooler months. This is not unexpected as
the sun is stronger and lasts longer in the spring and summer. By studying Figure
4.7, this effect becomes more evident, where we plot the forecasted solar power
for the first two weeks of August and December.

For the Ŵ I
d,h

feature, we see that the forecasted wind power is, on average,
lower in the summer with a steady escalation in the following months.

Figure 4.7: ŜO
d,h

first two weeks of (a) August and (b) December.
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4.3.2 Wind and solar forecast errors since spot time

Updated forecasts closer to the delivery hour have higher precision. With new
forecasts, we can estimate the error relative to the one made at spot time, which
we refer to as deltas. Refinitiv supplements us with this data in two variations.
The first one is the deltas between the spot forecast and the forecast made by
Refinitiv that builds on the data most recently published by the ECMWF. In
the second variation, live production data (aggregated by the system operators)
is utilized by interpolating the latest forecast against the latest production data.
The resolution of the data is quarterly. The two variations have been illustrated
in Figure 4.8.

A positive delta leads to a power shortage in the system, and a negative value
leads to a power surplus in the system, compared to what was assumed at spot
time.

We define solar power deltas and wind power deltas to be ∆SOd,hq and ∆WId,hq .
The calculated deltas represent the forecast errors made for the day d and hour
h, recorded q quarters before delivery. As we give an hour in advance to make
the forecast for the final hour, q=8, is the latest delta that we can use.

Figure 4.8: ∆WId,hq illustrated in the 10 final hours before delivery for the prod-
uct with delivery 2020-03-19 16:00 UTC with (red) and without (blue) the inclu-
sion of interpolation against live production data.

If we miss a value for a certain quarter, we forward-fill with the most recently
observed delta for that hour. If we have no prior observed deltas, we assume the
forecast error is 0. In total we miss 186 hours or ca 2.8 percent of ∆SOd,h8 and
∆WId,hq in the dataset. In 23 of those 186 hours, we have no observation history
for that hour, and thus have to assume that the forecast error is 0.
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Figure 4.9: ∆WId,h8 and∆SOd,h8 correlations with yd,h, both with and without
the inclusion of interpolation against live production data.

Figure 4.9 shows a diagram of the correlation between the target series and the
forecast deltas eight quarters before delivery, both with and without the inclusion
of live production data. We see a higher correlation when the latest production
data is included in the error calculation for both ∆SOd,h8 and ∆WId,h8 , so we
choose to include only them in our feature set.

The ∆SOd,h8 and ∆WId,h8 deltas are represented in Figure 4.10 and 4.11. We see
that weather forecast errors from the day-ahead often are large. The solar deltas
show a mean absolute error of 157 MWh/h and a maximum absolute error of 4.8
GWh/h. Extreme changes are also seen in the wind deltas with a mean absolute
error of 853 MWh/h and a maximum absolute error of 7.7 GWh/h.

Figure 4.10: Solar forecast errors, ∆SOd,h8 , since spot time.
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Figure 4.11: Wind forecast errors, ∆WId,h8 , since spot time

4.3.3 Consumption forecast made at spot time

The total estimated power consumption (or the system-wide load) at spot time
for a given hour h, on day d, is captured in the feature that we will refer to

as ĈO
d,h

. Figure 4.12 visualizes it for our dataset, and we notice a few things.
Firstly, in cooler periods, forecasted consumption increases, which is expected as
more energy is needed for electrical heating. Secondly, consumption has a daily
pattern. This is captured in Figure 4.13, showing a plot of 4 consecutive days
of the forecast. The consumption is usually lowest in the middle of the night
and has a steady increase in the morning, reaching its daily peak around midday.
After that, consumption decreases as industrial shifts end, but one can observe a
slight plateau when people return from work and cook their dinners, and possibly
turning up the electrical heating.

We can also see the effect holidays have on consumption forecasts. In periods with
low economic activity, power consumption is also, in turn, much lower. Hence,
information about holidays, weekends, time of year, etc., is implicitly captured

in the ĈO
d,h

feature. The weekend effect of estimated consumption is visualized
in Figure 4.14, where 4 weeks of data is plotted.
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Figure 4.12: Forecasted consumption, ĈO
d,h

, made at spot time.

Figure 4.13: Four consecutive days of ĈO
d,h

.

Figure 4.14: Weekend effect of consumption forecasts. On the November 1st
is the All Saints’ Day, also this public holiday in Germany is captured in the
consumption forecast.
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4.3.4 Consumption forecast errors since spot time

We refer to consumption forecast errors since spot time as ∆COd,hq . In this case,
the delta is not calculated against live data (as it is bad from the source), but
rather the most recent forecast relative to the spot forecast.

We forward-fill with the most recently observed delta for that hour if we miss a
value for a certain quarter. If we have no prior observed deltas, we assume the
forecast error is 0. In total, we miss 199 hours or ca 3 percent of ∆COd,h8 in the
dataset. In 23 of those 199 hours, we have no prior observed history, and thus
have to assume that there is no forecast error.

Figure 4.15: Consumption forecast errors, COd,h8 .

The consumption forecast errors for q = 8 are plotted in Figure 4.15. We see that
the consumption errors have a smaller mean absolute error (128 MWh/h) and
maximum absolute error (1.2 GWh/h) compared to the wind and solar forecast
errors. This makes sense because the factors determining estimated consump-
tion are likely less volatile than factors determining solar power production, and
especially wind power production.

4.3.5 Changes in available production capacities since spot
time

Power plant owners might experience unplanned outages after spot time, which
leads to a reduced quantity of power offered in the market, affecting the prices.
Refintiv supplements us with data representing changes in available production
capacities. By parsing Urgent Market Messages, they assume whether this infor-
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mation was known at spot time, and estimates how much power this change in
availability corresponds to.

We define the feature to be ∆AV d,hq , which is the changes in availability q quarters
before hour h on day d since spot time.

We forward-fill with the most recently observed delta for that hour if we miss a
value for a certain quarter. If we have no prior observed deltas, we assume there
is no change in available production. In total, we miss 186 hours or ca 2.8 percent
of ∆AV d,h8 in the dataset. In 23 of those 186 hours, we have no prior observed
history, so we must assume that there is no change in available production.

Figure 4.16: Changes in available production capacities, ∆AV d,h8 , since spot time.

We have plotted ∆AV d,h8 for our entire dataset in Figure 4.16. Outages are com-
mon occurrences. In some cases, levels are negative, meaning that power plant
owners reported on having available production capacities, previously assumed
not to be available at spot time. This can, for example, be explained by delaying
planned maintenance work. However, positive deltas are the most usual, with
a mean value of 370 MWh/h and a max value of 5.1 GWh/h. The correlation
coefficient with the target series is just slightly positive, showing a value of 0.06.

4.3.6 Sum of errors since spot time

Two simple features are engineered from the errors since spot time. The first
one is the sum of the wind, solar, and consumption forecast errors, and says
something about the net forecast errors for weather-dependent variables. Hence
we refer to this as ∆WEd,hq . In the second engineered feature, we also include the
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change in availability to the aggregation, which we refer to as ∆AEd,hq . Formally
they can be described as

∆WEd,hq = ∆SOd,hq + ∆WId,hq + ∆COd,hq

∆AEd,hq = ∆SOd,hq + ∆WId,hq + ∆COd,hq + ∆AV d,hq

As can be seen in Figure 4.17, these constructions have a slightly higher correla-
tion with the target series. Therefore, we include them in the feature set.

Figure 4.17: Deltas correlations with yd,h.

4.3.7 Spot price

Spot prices are settled at 12 PM on the day ahead, and we refer to them as
DAd,h. Figure 4.18 shows plots of both the spot prices and the full intraday
prices in the final hour. Spot prices have a lower standard deviation and a lower
number of extreme levels. The time series have a high correlation coefficient of
0.75, hence telling us that the linear relationship between them already is strong.

Although we are not predicting the magnitudes, but rather the spread between
day-ahead and intraday prices, it is reasonable to believe that the spot price is
an important feature for this predictive task. Theoretically speaking, high spot
prices arise from the fact that many power plants, including those with high
marginal costs, are needed to equalize the demand in the day-ahead market.
This leads to less available flexibility in the total system, and small changes can
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cause major price changes because we are in a steep part of the merit-order.
On the contrary, a low spot price probably means that the system is far from
operating towards its constraints, but might then require ramping effects with a
rapid increase in marginal costs to equalize demand. This is the convex property
of the merit-order.

Figure 4.18: Spot price, DAd,h, in red vs. intraday prices, DAd,h + yd,h, in blue.

We can empirically validate this by plotting in Figure 4.19 the average absolute
spread for every 10-quantile in the spot price. More extreme spot prices at the
outer quantile levels tend to show, on average, more extreme price spreads too.

Figure 4.19: Average absolute spread for every deciquantile in the spot prices.
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4.3.8 Merit-order response

Recall from section 2.5 that the aggregated generation capacities from the day-
ahead market are transparent data from the submitted bid-offers. We can en-
gineer two simple price features based on sensitivity analysis on the submitted
bid-offer curve for a specific hour. The general idea is that the merit-order effect
determines the electricity price, not just the spot price, but also the intraday
price when there is an over- or undersupply of power compared to the forecast
made at spot time. One way to model the merit-order is through the supply side
from the submitted bid-offers.

Originally the market-clearing price is determined by the intersection between
the supply bid-offers and demand for different power volumes. We can traverse
the bid-offer curve using the sum of errors since spot, i.e., utilize AEd,hq to hy-
pothetically determine a slightly different market clearing price (assuming that
the market price is sensitive to this change of supply). Moreover, we assume that
only half of AEd,hq is traded on exchanges.

The latter assumption is made because not all power is traded on exchanges, but
rather through bilateral contracts. The share of power traded bilaterally varies
greatly, and finding the exact amount is a complex and non-linear problem that
likely depends on many latent factors. Ideally, this share should rather be dy-
namically determined, but that is outside the scope of this study. Our choice
of picking half of the sum of errors stems from the fact that the prices of unob-
served bilateral agreements are not deviating from exchange prices systematically
because market participants have the option to trade either on the exchange or
bilaterally. If the prices were very different, it would be possible to profit from
pure arbitrage [Pape et al., 2016]. As a consequence, if prices on either platform
are reasonably similar, then the simplest assumption we possibly can make is to
think that half of the power volumes are traded on exchanges (or more specifically,
the EPEX day-ahead exchange in Germany).

Note that we only have prices in the granularity of 50 MWh/h increments. So,
for example, if there is a net error of 70 MWh/h, we linearly calculate with a
factor of 0.4 times the first price increment and a factor of 0.6 times the second
price increment.

The concept of following the bid-offer curve is best illustrated as in Figure 4.20.
Say the market-clearing price for hour h on day d from the day-ahead market is
DAd,h EUR/MWh for a total power supply offering of X MWh/h. Now assume

that AEd,h8 = V , i.e., a net undersupply of V MWh/h 8 quarters before delivery
compared to what was forecasted since spot. We traverse the bid-offer curve with
V/2 MWh/h to find a new price, DAd,h + t.
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Figure 4.20: Traversing the bid-offers with half of the sum of errors since spot in
order to construct the MOd,hq feature.

Our first feature is the price difference between the actual settled spot priceDAd,h

and the traversed bid-offer price DAd,h + t. The goal with this is to incorporate
the response of merit-order effect, and we hence refer to this variable as MOd,hq :

MOd,hq = t

This feature quantifies how the supply side might value the change coming from
updated values, relative to the original market-clearing price. We also capture
the response from the merit-order effect between two consecutive hours:

∆MOd,hq = MOd,hq −MOd,h−1
q

The justification for including the latter is as follows: if the net errors since spot
are low, but MOd,h is high, this signals that the system likely is in a steep part
of the merit-order curve. A rapid increase in price terrain indicates, for example,
ramping effects from the involvement of new power plants, and is an important
determinant for the intraday price.

There are 49 hours, that is, ca 0.7 percent of the total data, where we have no
bid-offer curve. Imputing merit-order effects is difficult. To avoid this problem,
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we choose to remove the corresponding rows altogether in the dataset.

4.3.9 System imbalance

Figure 4.21: System imbalances, SId,h9 .

The deviation between the scheduled and the actual physically transmitted power
in real-time are called imbalances. Some market participants might produce more
than scheduled, while others might produce less than scheduled. Positive and
negative imbalances offset each other, and the transmission system operators
have to compensate for the net position, which is the system imbalance [Koch,
2019].

In Germany, the imbalance settlement period is 15 minutes. The system imbal-
ance is released to the public after some time; [Maskos, 2017] finds that German
system operators regularly publish the past system balance ca 10 minutes after
settlement. For our task, in order to give a practitioner one hour to make the
forecast and decide upon strategies for the final hour, we take the conservative
approach being that the latest imbalance, SId,hq , that we can use is the one con-

cerning the settlement period 2 hours and 15 minutes prior to delivery: SId,h9 .

SId,h9 have a correlation coefficient of 0.25 with the target series and is visualized
in Figure 4.21.

This lagged value is not available for the first 3 hours in our dataset. Instead
of trying to impute them, we remove the corresponding rows altogether in the
dataset.
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4.3.10 Latest available transaction price

The latest available price for a product, which we refer to as the näıve transaction
price, is simply pd,h8 . As can be seen from Figure 4.22, the naive transaction price
is regularly in the same direction as the target series, but often less extreme. The
correlation coefficient between the two series is 0.495.

Figure 4.22: Illustration of the target series yd,h relative to the naive transaction
price pd,h8 .

4.3.11 Neighboring products

Some studies have shown that considering time-series information from neigh-
boring products increases predictive abilities [Janke and Steinke, 2019] [Marcjasz
et al., 2020]. This is motivated by the fact that similar market information drives
adjacent contracts [Kremer et al., 2019].

When our target price is yd,h ≡ pd,h1 +pd,h2 +pd,h3 +pd,h4

4 , it is very feasible to include
in the feature set, not only the lags of prior targets, or prior transaction prices
(e.g. näıve) for the same target, but also for example

−1NP
d,h
8 ≡ pd,h−1

5 + pd,h−1
6 + pd,h−1

7 + pd,h−1
8

4

+1NP
d,h
8 ≡ pd,h+1

13 + pd,h+1
14 + pd,h+1

15 + pd,h+1
16

4

With this notation, iNP
d,h
q is the average price spread sampled quarterly in

the latest available trading hour for the neighboring product i hours before the
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referenced product with delivery at hour h on day d, q quarters before delivery.

In simpler terms, these two features are the average price between hours 1 and 2
prior to delivery for the previous product and the average price between hours 3
and 4 prior to delivery for the next product.

The very first hour in the dataset does not have a previous product (but this case
is already removed from missing the lagged system imbalance). Furthermore, the
latest hour in the dataset does not have a next product. In this case, we patch
with the prices from the previous hour.

4.4 Summary of Features

Here we summarize the variables with a simplified description, report on elemen-
tary statistics and imputation methods.

Simplified description
ˆWId,h Wind production forecast made at spot time
ˆSOd,h Solar production forecast made at spot time

∆WId,h8 Wind production forecast error 8 quarters prior to delivery

∆SOd,h8 Solar production forecast error 8 quarters prior to delivery
ˆCOd,h System wide consumption forecast made at spot time

∆COd,h8 System wide consumption forecast error 8 quarters prior to delivery

∆AV d,h8 Change in available production capacity 8 quarters prior to delivery

∆WEd,h8 Sum of wind, solar and consumption forecast errors 8 quarters
prior to delivery

∆AEd,h8 Sum of wind, solar, consumption forecast errors and changes
in available production capacity 8 quarters prior to delivery

DAd,h Spot price from the day ahead

MOd,h8 Traversed bid-offer curve with intradaily updated values
to obtain merit-order response

∆MOd,h8 Change in merit-order response from one hour to the next

SId,h9 System imbalance 9 quarters prior to delivery

pd,h8 Transaction price recorded 8 quarters before delivery

−1NP
d,h
8 Average price between hour 1 and 2 prior to delivery for the

previous product

+1NP
d,h
8 Average price between hour 3 and 4 prior to delivery for the

next product

Table 4.4: Simplified description of the input features.
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mean std min 25% 50% 75% max
ˆWId,h 15358.2 10946.5 566.6 6436.6 12618.8 22212.2 48993.3
ˆSOd,h 4555.4 6819.5 0.0 0.0 209.0 7286.0 29562.0

∆WId,h8 -73.1 1183.0 -6990.0 -698.7 -61.8 519.7 7709.2

∆SOd,h8 -8.7 323.3 -4832.7 -55.6 0.0 4.6 2600.5
ˆCOd,h 63365.9 10990.3 37223.0 54263.0 63449.0 72092.0 85553.0

∆COd,h8 -5.8 185.7 -1070.0 -95.0 -7.0 70.0 1183.0

∆AV d,h8 370.4 688.0 -1452.0 0.0 20.0 667.1 5091.5

∆WEd,h8 -103.0 1301.9 -6936.9 -812.5 -83.3 585.5 7522.0

∆AEd,h8 267.4 1484.3 -6939.9 -596.1 208.3 1097.2 8225.0
DAd,h 33.9 15.5 -90.0 27.5 35.2 43.1 87.1

MOd,h8 1.0 5.1 -32.6 -1.0 0.2 2.7 89.5

∆MOd,h8 0.0 1.6 -26.7 -0.3 0.0 0.3 21.7

SId,h9 0.4 513.1 -2239.9 -300.7 -3.8 292.2 3542.4

pd,h8 0.3 8.8 -78.0 -3.2 0.1 3.4 118.1

−1NP
d,h
8 0.3 9.5 -84.8 -3.3 0.0 3.4 233.3

+1NP
d,h
8 0.4 6.8 -57.0 -2.5 0.1 2.9 76.1

Table 4.5: Descriptive statistics for the input features.
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Missing values Imputation method
ˆWId,h 0
ˆSOd,h 0

∆WId,h8 2.8 % Forward fill

∆SOd,h8 2.8 % Forward fill
ˆCOd,h 0

∆COd,h8 3% Forward fill

∆AV d,h8 2.8 % Forward fill

∆WEd,h8 0

∆AEd,h8 0
DAd,h 0

MOd,h8 0.7 % Remove rows

∆MOd,h8 0.7 % Remove rows

SId,h9 0.05 % Remove rows

pd,h8 0

−1NP
d,h
8 0.01 % Remove rows

+1NP
d,h
8 0.01 % Forward fill

Table 4.6: Missing values in the features.



Chapter 5

Models

This chapter covers the baselines and proposed models. The baselines are defined
in Section 5.1, and are either statistical linear regression-based models or single
variable values with no model built on top of it. Further, the proposed neural
networks are described in Section 5.2. Finally, Section 5.3 explains how the study
is extended by averaging different forecasts.

5.1 Baseline Models

5.1.1 Näıve

This baseline simply outputs the latest available transaction price for the target
product, that is the näıve price:

ŷd,h = pd,h8

5.1.2 MOR

The second baseline predicts the target price by traversing the bid-offer curve
with the sum of the latest available forecast errors and uses this Merit-Order
Response (MOR) as the suggested target price. In other words:

ŷd,h = MOd,h8

Again, the fundamental idea behind this is that the merit-order-effect determine
the electricity price, not just the spot price, but also the intraday price when there
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is an over- or undersupply of power compared to what was originally forecasted
at spot time.

5.1.3 LASSO

With this, we try to create a similar1 model to the so-called ”full model” in
[Marcjasz et al., 2020], that perhaps has shown the most convincing results in
the visited literature. It utilizes a rich set of input variables:

ŷd,h = β0︸︷︷︸
bias

+

25∑
i=2

βi−1 · yd,h−i︸ ︷︷ ︸
lagged targets

+

24∑
i=1

β24+i ·DAd,i︸ ︷︷ ︸
spot prices for today

+1h≥14

24∑
i=1

β48+i ·DAd+1,i

︸ ︷︷ ︸
spot prices for tomorrow

+

7∑
i=1

β72+i ·Dd

︸ ︷︷ ︸
day-of-week dummies

+

24∑
i=1

β79+i · ˆCOd,i︸ ︷︷ ︸
consumption forecasts

+

24∑
i=1

β103+i · ˆWId,i︸ ︷︷ ︸
wind forecasts

+

24∑
i=1

β127+i · ˆSOd,i︸ ︷︷ ︸
solar forecasts

+

23∑
i=2

β151+i ·
∑4i+4
j=4i ∆COd,hj

4︸ ︷︷ ︸
hourly consumption forecast errors

+

23∑
i=2

β173+i ·
∑4i+4
j=4i ∆WId,hj

4︸ ︷︷ ︸
hourly wind forecast errors

+

23∑
i=2

β195+i ·
∑4n+i
j=4i ∆SOd,hj

4︸ ︷︷ ︸
hourly solar forecast errors

+

11∑
i=9

β210+i · SId,hi︸ ︷︷ ︸
imbalance volumes

+ β221 ·−1 NP
d,h
8︸ ︷︷ ︸

prior product price info

+ β222 ·+1 NP
d,h
8︸ ︷︷ ︸

next product price info

+β223 · pd,h8︸ ︷︷ ︸
näıve

+ εd,h︸︷︷︸
error term

This model incorporates a few new things. Firstly, spot prices for tomorrow are
included in the set of regressors when forecasting hours 14 to 24. This is possible
because spot prices for the next day should be available at 12 PM, and we make
the forecast 2 hours prior to delivery. Secondly, dummy variables per weekday
are included to directly account for weekly seasonality. Also, note that this model
takes as input not only the forecasts for the designated target hour but for every
hour on that day. Additionally, hourly forecast errors are accounted for as long
back in time as we have data, that is back until 24 hours before delivery.

1It is not identical. Note that [Marcjasz et al., 2020] predict the ID3 price and we predict a
target series constructed from the prices in the final hour before delivery. Other slight differences
in the variables exists.
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5.1.4 OLS

This baseline is also a linear regression model, but is built only by minimizing the
residual sum of squares. Less input variables are used compared to the LASSO.
The input variables are the features previously summarized in Table 4.4 plus the
target price for the previous hour:

ŷd,h = β0︸︷︷︸
bias

+ β1 · yd,h−1︸ ︷︷ ︸
lagged target

+β2 ·DAd,h︸ ︷︷ ︸
spot price

+ β3 · ˆCOd,h︸ ︷︷ ︸
consumption forecast

+ β4 · ˆWId,h︸ ︷︷ ︸
wind forecast

+ β5 · ˆSOd,h︸ ︷︷ ︸
solar forecast

+ β6 ·∆COd,h8︸ ︷︷ ︸
consumption forecast error

+ β7 ·∆WId,h8︸ ︷︷ ︸
wind forecast error

+ β8 ·∆SOd,h8︸ ︷︷ ︸
solar forecast error

+ β9 ·∆WEd,h8︸ ︷︷ ︸
sum of errors from weather-related variables

+ β10 ·∆AEd,h8︸ ︷︷ ︸
Same as ∆WEd,h

8 , plus changes in availability

+ β11 · SId,h9︸ ︷︷ ︸
imbalance volume

+ β12 ·−1 NP
d,h
8︸ ︷︷ ︸

prior product price info

+ β13 ·+1 NP
d,h
8︸ ︷︷ ︸

next product price info

+β14 · pd,h8︸ ︷︷ ︸
näıve

+ β15 ·MOd,h8︸ ︷︷ ︸
Merit order response

+ β16 ·∆MOd,h8︸ ︷︷ ︸
Change in merit order response

+ εd,h︸︷︷︸
error term

5.2 Proposed Models

5.2.1 FFNN

The first proposal is a standard fully-connected FFNN. The model is visualized
in Figure 5.1, with an input layer, In, of size Sin, which is equal to the number
of input features. It is then followed by n number of dense layers, Di for i ∈
[1, n] with size SDi

, all with the same activation function a and dropout rate
d. The final output layer, O, is of size 1 and represents ŷd,h. This is a general
explanation of the model, and Table 5.1 summarizes the hyperparameters that
need to be specified. The exact model specification will later be found through
excessive validation search, see Section 6.2. This model takes as input the same
features as the OLS, also described in Table 4.4.
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Hyperparameter Description
Sin Size of the input layer, In
n Number of dense layers
SDi

Size of dense layer Di

a Activation function all dense layers
d Dropout rate in all dense layers

Table 5.1: Description of hyperparameters that need to be specified for the pro-
posed FFNN

Figure 5.1: Proposed FFNN

5.2.2 LSTM and GRU

We also propose models with two variations of recurrent layers, namely LSTM
and GRU. The models are fed with the same conceptual features as the FFNN
but differ as more historical data will propagate through the recurrent layer(s),
and not just the most recent value.

The sequential models are designed to better deal with the serial dependence
that is in the time series of fundamentals that have evolved between spot time
and the delivery hour. It is not apparent if only the most recent fundamental
values or, if also old values from many hours ago to some extent, dictate future
prices. If any trends since spot time determine the final intraday prices, these
types of patterns are likely captured in these sequential models. For example,
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cases where wind forecast errors gradually increase since spot time could affect
prices differently than if the error appears more suddenly before gate closure.

We, therefore, split the features into sequential features, SF , and other features,
OF , as described in Table 5.2. SF then contains the features where we also
add historical data. We use 12 hours of historical data. Since the resolution of
historical data is quarterly, the number of added values in the history is 48. For
a feature V d,hq , the recorded values then correspond to V d,h56 to V d,h8 . The only

exception is SId,hq , where SId,h9 is the latest value we use and is thus shifted a
quarter earlier. Hence, the size of SF is (48, NSF ), where NSF is the number of
sequential features used. NOF represents the number of other features.

Sequential features Other features

∆WId,hq
ˆWId,h

∆SOd,hq
ˆSOd,h

∆COd,hq
ˆCOd,h

∆AV d,hq DAd,h

∆WEd,hq −1NP
d,h
8

∆AEd,hq +1NP
d,h
8

MOd,hq yd,h−1

∆MOd,hq
SId,hq
pd,hq

Table 5.2: Sequential features and other features.

The model architecture is presented in Figure 5.2. SF and OF are fed into
two different input layers, producing OSF and OOF , where both output sizes are
determined by the value of the latent vector l. The function of the input layers
is to give the model the chance to project the data into a parameter space that
is easier for a network to find patterns in. OSF then propagates through the
recurrent layer, where the output (Ornn) corresponds to the final hidden state,
as illustrated in Figure 5.3 (a). This behavior assumes that Nlayers equals 1. If
recurrent layers are stacked (Nlayers >1), the final output is then the sum of each
layer’s last hidden state. This is visualized in Figure 5.3 (b). Recall from Section
2.2 that the final hidden state is the vector representation after the last value in
the sequence has propagated through the recurrent layer.
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Figure 5.2: Proposed RNN

Further, we concatenate Ornn and OOF and feed it through a specified number of
dense layers activated with a. The goal with this part is to find any non-linearities
in the combinations of sequential and other features. Processing the data through
multiple layers can be necessary if the concatenated features require embedding
into some feature space where patterns can get learned more effectively. A com-
plex multi-layered function might also be required if the non-linearities are very
complex. The network should automatically find the appropriate number of lay-
ers and is thus among the hyperparameters that can be specified.

Finally the data is propagated to the output layer to get ŷd,h. Hyperparameters
that need to be specified are summarized in Table 5.3.
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Figure 5.3: Data propagation through RNN. If Nlayers = 1 then (a) describes
the final output. If Nlayers >1 then (b) describes the final output.

Hyperparameter Description
l Size of latent vector
n Number of dense layers
SDi Size of dense layer Di

a Activation function in input and dense layers
d Dropout rate in dense layers
Nlayers Number of stacked recurrent layers
RNNcell Type of recurrent layer. Either LSTM or GRU
RNNinit Cell/hidden state initialization method
RNNsize Size of the cell/hidden state

Table 5.3: Description of hyperparameters that need to be specified for proposed
GRU/LSTM
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5.3 Averaging Forecasts

From Section 2.5, we know that many factors jointly impact the final intraday
prices and that our dataset only has systematized a subset of the many deter-
minants. The most recently available transaction price is thus expected to carry
some latent information that otherwise is not available elsewhere in our data. A
straightforward extension to our work is to take a simple average of the näıve
transaction price and the predicted ŷd,h outputted from the models:

ens(m(Xd,h)) =
1

2
m(Xd,h) +

1

2
pd,h8

With this notation, m(Xd,h) is the ŷd,h outputted from either the MOR, LASSO,
OLS, FFNN, LSTM or GRU model.

Averaging forecasts’ possible effects on accuracy gains for spot and intraday price
prediction is known in the EPF literature [Nowotarski and Weron, 2015] [Marcjasz
et al., 2020]. Because minimal extra engineering effort is required to incorporate
this, we include it in our work.
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Experimental Setting

This chapter begins by explaining how we plan to go about the experiments
and what research questions the experiments aim to answer. Section 6.2 then
covers the setup for how we thoroughly train, validate and determine the final
configurations of the models.

6.1 Experimental Plan

The objective is now to predict the final intraday prices. With that, we especially
want to research the effect that exogenous factors have on the predictable prices,
and how recurrent neural networks compare to feed-forward networks.

To study the effect of exogenous factors, we choose to make the forecasts in two
separate stages:

Stage 1 No intraday transaction prices are used in the feature set. That ac-
counts for prior targets, näıve transaction prices, available prices from
neighboring products, or any other variables constructed from preceding
intraday prices.

Stage 2 All features can be included.

By comparing the R2 scores from the two stages on the test data, we will be able
to explore the difference in proportion of variance that can be predicted with and
without the involvement of prior intraday prices. R2 is a metric that statistically
shows the proportion of variance in the dependent variable that is predictable

67
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from the independent variables. It is calculated as the accuracy of the predicted
values relative to a horizontal line through the mean of the target series:

R2 ≡ 1−
∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

However, to better assess the differences between the models and their outputted
forecasts, comparing R2 scores is not sufficient. Because of the spikes that can
occur in electricity price time series, metrics that squares the residuals will be
very sensitive to what the model outputs for these spiky points, and conservative
predictions with price spreads close 0 are often rewarded. Thus, we also report
the mean absolute errors (MAE) and the percentage of times the prediction has
the same sign as the true observation, as these metrics are more robust to outliers.
The correct sign metric is simply the accuracy of times the predicted value has
the same sign as the actual observation, and MAE is calculated as:

MAE ≡ 1

n

n∑
i=1

|yi − ŷi|

Note that we predict the price spread between the day-ahead prices and intraday
prices. Therefore we report the results on these deltas. Evaluation of the full
back-transformed prices (that is the sum of the spot price and predicted deltas)
is available in Appendix D.

The test covers data from February and March 2020.

Figure 6.1: Initial train-test split.
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The second research question is about comparing recurrent networks to feed-
forward neural networks for this predictive task. In order to answer that, we
apply the metrics as mentioned earlier to judge model performance. Moreover,
we evaluate the significance of outperformance of different forecasts obtained with
the Diebold-Mariano test, as described in Section 2.4. This test is not designed
to compare model designs, but says something about the significance of different
forecast results. We use the modifications of the test proposed by [Harvey et al.,
1997], formulated as a two-step ahead forecast and mean absolute deviation as
the chosen loss criterion1.

Furthermore, to obtain an even better understanding of the models’ true per-
formance under different conditions, the metrics are reported when examining
only specific subsamples of the test data. Concretely, we filter the test-data not
to include spikes (we define spikes to be when the target lies outside the 5 and
95 percentile levels). Likewise, we look into the predictive skills of the models
when fundamental inputs are at its outer percentile levels. The results for outer
percentile levels in stage 1 and stage 2 are placed in Appendix C, because they
are many.

Further discussion of model complexity, learning behavior, and statistical prop-
erties of the forecasted series is included in the comparison of models to assess
their relative strengths and weaknesses for the learning task at hand.

6.2 Experimental Setup

This section explains how the models will be trained, how we search for opti-
mal hyperparameters, and other implementational details that are required for
reproducibility purposes.

In modern ML in practice, arguably more important than the exact model choice
is how the parameters of the model are tuned. Sophisticated models have many
tunable parameters, i.e., hyperparameters, and the default ones seldom work
optimally for the specific task at hand. Instead, they must be optimized for the
current task.

As we are proposing three models (FFNN, GRU, and LSTM) and are doing the
experiments in two stages, we optimize hyperparameters for six models in total.
In Section 5.2, we presented the tunable hyperparameters for each model. In
addition to these, some hyperparameters that are not model-specific also require
specification: The optimizer, batch size, learning rate, and the loss function.

1We use the open-source code in Python made available by John Tsang:
https://github.com/johntwk/Diebold-Mariano-Test
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We have directed the strategy for finding the best hyperparameters in two steps;
first a grid search, followed by a forward chained validation. In the grid search,
a large space of hyperparameter values is systematically explored on a single val-
idation set with the objective of evaluating the effect of different loss functions,
dropout rates, batch sizes, and model structures. The grid search builds a model
for each parameter combination possible. Based on the findings from this, we
proceed with the forward chained validation. The search space will be reduced
with approximately an order of magnitude after the grid search, and the final hy-
perparameters for each model type are determined by validating more thoroughly
on more of the data in the forward chain.

However, since this type of optimization is a very time-consuming process2, and
the hyperparameter value space is incredibly large, some hyperparameters will
have to be set to a fixed value and not taken into account during the two steps.

All neural networks are implemented in Pytorch, an open-source machine learning
framework [Paszke et al., 2019]. Our networks are composed of Linear (Dense),
GRU, and LSTM layers with weights initialized with default Pytorch parameters.

6.2.1 Grid search

In the grid search, we first split the training data into a separate training and vali-
dation set. The training set consists of the data from 01/06/2019 to 31/12/2019,
while the validation set consists of the data from 01/01/2020 to 31/01/2020.
Then, for each hyperparameter combination, we train our models on 100 epochs
for the FFNN and 70 epochs for the GRU and LSTM. The recurrent models are
trained on fewer epochs because we see that they more quickly overfit due to
model complexity, i.e., from having a richer set of model parameters. Then, for
each epoch, we track the MAE on the validation set, and the lowest MAE gained
during the training is defined as the score of the hyperparameter combination.
This concept is visualized in Figure 6.2. By evaluating the different combina-
tions and compare their scores against others, we can get useful insights into the
hyperparameters that perform better on the chosen evaluation metric.

Minimizing MAE is chosen as the optimization criterion because it, from trial
and error, seems to be more robust than other alternatives.

Table 6.1 presents hyperparameters included when grid searching the FFNN,
while Table 6.2 presents the hyperparameters tested in the GRU and LSTM grid
search. Since GRU and LSTM have similar architectures they are also tested with
the same values. For the RNNinit we are testing three initialization methods, all
described in Table 6.3.

2We train with a Tesla P100-PCIE-16GB GPU
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Figure 6.2: Example on how hyperparameters are evaluated. In this case, the
model got the lowest MAE on epoch 40, with a value of 7.67, which is then set
to be the score of the hyperparameter combination.

Batch
Size

Loss
Function

Learning
rate

d SD1;...;SDn

32 SmoothL1Loss 0.001 0 16
64 L1Loss 0.0001 0.25 64

128 MSE 0.50 128
16;16
64;16
64;64
128;128
16;16;16
64;64;64
12;64;16
128;128;128

Table 6.1: Tested hyperparameters in the FFNN grid search.
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Batch
size

Loss
function

Learning
rate

d l

32 SmoothL1Loss 0.001 0 5
64 L1Loss 0.0001 0.25 25

MSE 0.50

Nlayers RNNsize RNNinit SDi;...;SDn

1 64 zero 128
2 random 128; 128

learn 128; 128; 128

Table 6.2: Tested hyperparameters in the GRU/LSTM grid search.

Initialization method Description

zero
Parameters in the hidden/cell state are initialized
to zero distribution

random
Parameters in the hidden/cell state are initialized
to random numbers sampled from the normal
distribution

learn
Parameters in the hidden/cell state are first xavier
initialized, then updated during backpropagation

Table 6.3: Initialization methods in the GRU/LSTM.

Findings from the grid search

Overall, it was not trivial to distinguish between the results in the grid search.
The differences were small, due to the fact that the dataset undoubtedly is noisy
and complex. However, there were some indications that certain hyperparameters
produced more robust results than others.

For the FFNN, the effect of dropout is hard to evaluate solely by looking at the
MAE scores. Models without dropout produced just as good results as other
models, but models with no dropout showed a more unstable learning behavior
throughout the epochs. In Figure 6.3 (a) and (b), we are plotting the train and
validation learning of two models with the same hyperparameters, except for the
dropout rate. We can see that the learning results seem to be more robust by
adding dropout. When it comes to the structure of the dense layers, one layered
network with a size of either 64 or 128 tended to yield better results. A fixed-size
of 100 epochs was not enough for networks trained with a learning rate of 0.0001,
but as the simpler models performed best and their training time is fast, a low
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learning rate seemed advantageous. From what we could see, no loss function
and batch size had any results significantly different from others.

Figure 6.3: Dropout effect in the FFNN. Both models are trained with the same
hyperparameters, except for the dropout rate, where blue is trained with no
dropout and red with a dropout rate of 0.5. We can clearly see that the dropout
yields more robustness.

It was also difficult to come to a conclusion on which parameters that worked
best for the GRU and LSTM. These models are more complex than the FFNN,
with many more knobs to turn and tweak. This was noticeable as the models,
regardless of the hyperparameters, started to overfit on the train set from an
early epoch. Figure 6.4 visualizes a typical learning curve for these models.
Fortunately, there are hints of learning in the first epochs, and that might be
enough to produce good results if we can stop the training at the right time. Due
to the overfitting issues of the LSTM and GRU, a low learning rate with a high
dropout seemed to be advantageous. When it comes to the other parameters, it
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was again difficult to distinguish between their relative performances.

Figure 6.4: Typical GRU/LSTM learning curves in the grid search. The Figure
is taken from the GRU grid search for stage 1.

Based on these findings, a smaller hyperparameter space was further explored
in the forward chained validation. Since we did not seem to improve perfor-
mance by using a specific loss function or batch size, we set the batch size to 32
and SmoothL1Loss as the chosen loss function. In PyTorch, SmoothL1Loss is
formulated as:



CHAPTER 6. EXPERIMENTAL SETTING 75

SmoothL1Loss(ŷ, y) =
1

n

n∑
i=i

zi

where n is the batch size and zi is given by:

zi =

{
0.5 · (ŷi − yi)2, if |ŷi − yi| < 1
|ŷi − yi| − 0.5, otherwise

This loss function uses a squared term when the absolute error is below 1 to get
more out of the gradients when the prediction is relatively close to the target.
This can make sense for a target series that is closely distributed around zero
mean. To prevent the gradients from being dominated by outliers, the error
is not squared when it is above 1. This behavior can be preferable to avoid
overfitting to extreme observations.

6.2.2 Forward chained validation

From Section 4.1, we know that we are dealing with a very noisy target series
that can quickly change from short-term dynamics. The risks of overfitting will
be huge when fitting a model with many parameters in such domains, as we al-
ready have seen. Because of having a relatively short dataset, we should probably
not select the final hyperparameters based on the performance on a separate val-
idation period, because that would imply a systematic bias towards the selected
period of time. We know that electricity prices are determined from processes
with seasonality on the annual level. Furthermore, it is natural to assume that
the more data we can train on, the better the results.

The conventional way to solve these types of problems is to make use of cross-
validation techniques. It is, however, risky to employ shuffled grouping of train
and test data for time series data. A cross-validation strategy implicitly assumes
that each observation is independent across the temporal dimension, but for time
series there is usually a clear statistical dependence following the natural tempo-
ral order. In the EPF domain, future prices might, for instance, be influenced by
new installations, changes in market design3, or new expectations that were con-
structed among market participants. Training with ”the future” in these rapidly
evolving markets is a design flaw that potentially could yield a too optimistic
estimate of the true test error.

3The German intraday market has undergone some major regulatory changes in the last
several years. Since July 2017, it is possible to trade until 5 min before delivery inside of the
control zones. Second, in October 2018, the Austrian control zone was split from the former
German-Austrian market. [Janke and Steinke, 2019].
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We therefore employ a forward chained validation technique instead. It works
by selecting a number of chains where each chain gradually grows the size of
the training set, whilst validating on some subsequent data. Each parameter
combination then gets a score, which is made from the basis of the minimal
MAE obtained throughout the training. This then proceeds for all of the chains.
Figure 6.5 illustrates how we select 5 chains and assigns weights to the validation
results proportional to the months involved in the training set. The score of
each parameter combination is determined by the weighted sum of MAEs across
all of the chains. The combination with the lowest aggregated MAE score will
then be chosen as the hyperparameters for the final model. Although individual
validation results in a chain are heavily biased towards the subsequent evaluated
months, the final model will hopefully not, as its hyperparameters are obtained
from weighting validation results across multiple validation months.

Figure 6.5: Forward Chaining. A new model is built for each hyperparameter
combination and for each of the 5 chains. Chain number n + 1 is trained on an
additional month of data compared to chain number n and then validated on the
two subsequent months. The score of a model is after this determined from the
weighted average of the minimal MAE obtained across the chains. Weights are
assigned to the validation results proportional to the months trained.

Chains that are validated on more recent data is weighted more heavily for two
reasons. Firstly, these chains have been trained on more data and are thus likely
to have found more robust and generalizable patterns. Secondly, they have been
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trained to fit more recent data better. It makes sense to emphasize recent data
for time series forecasting. The data generating process might slightly evolve
with time, as previously explained. If you fit a model too heavily with outdated
data, the model might learn trends that are not relevant anymore.

The tested parameters in the forward chained validation process are presented in
Table 6.4 and Table 6.5, trained with 500 and 150 epochs for the FFNN and the
recurrent models, respectively.

Learning
rate

d SD1;...;SDn

0.001 0.25 64
0.0005 0.4 128

0.5 64;64
0.6 128;128

128;64

Table 6.4: Tested parameters for FFNN in the forward chained validation.

Learning
rate

d l Nlayers RNNsize RNNinit SD1;...;SDn

0.0005 0.25 5 1 64 zero 128
0.0001 0.5 20 2 learn 128;128

Table 6.5: Tested parameters for LSTM and GRU in the forward chained valida-
tion.

Final models and hyperparameters

As mentioned initially, some hyperparameters have been left out from the opti-
mization search. In our case, these are the optimizer and activation functions used
in dense layers. We should also mention how we chose to scale the input variables.
All inputs have their median removed and then scaled to the interquartile range.
Intraday price features have also been transformed with the area hyperbolic sine
function to reduce variance, as previously explained in Section 4.2.

We decide to use Adam as the optimizer. It is instantiated with default param-
eters in PyTorch, except for the learning rate, which is chosen for each model
in the forward chained validation. Adam is a popular optimizer choice in the
field of Deep Learning, where a learning rate is maintained for each parameter
in the network, and adapted during learning to find good individual learning
rates. Adam was introduced in [Kingma and Ba, 2014]. The Rectified Linear
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Unit (Relu) is the selected activation function, due to its good properties when
the gradient is backpropagated, especially advantageous in deep networks where
vanishing gradients can cause problems. Relu simply outputs the max of 0 and
the input, i.e. relu(x) = max(0, x).

Table 6.6 summarizes the hyperparameters that is equal for all models.

Hyperparameter Selected value
Optimizer Adam
Activation function (a) Relu
Batch size 32
Loss function SmoothL1Loss

Table 6.6: Selected hyperparameters that are not model specific.

The rest of the hyperparameters are chosen relative to the model and the stage,
and further selected by the parameter combination that got the best score on
the forward chaining validation. Table 6.7 to 6.12 present the optimized hyper-
parameters.

Learning
rate

d SD1

0.001 0.4 64

Table 6.7: Optimized hyperparameters for FFNN stage 1.

Learning
rate

d SD1

0.0005 0.6 64

Table 6.8: Optimized hyperparameters for FFNN stage 2.

Learning
rate

d l Nlayers RNNsize RNNinit SD1

0.0001 0.5 20 2 64 learn 128

Table 6.9: Optimized hyperparameters for GRU stage 1.
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Learning
rate

d l Nlayers RNNsize RNNinit SD1

0.0005 0.5 20 2 64 learn 128

Table 6.10: Optimized hyperparameters for GRU stage 2.

Learning
rate

d l Nlayers RNNsize RNNinit SD1; SD2

0.0005 0.25 5 1 64 zero 128;128

Table 6.11: Optimized hyperparameters for LSTM stage 1.

Learning
rate

d l Nlayers RNNsize RNNinit SD1; SD2

0.0005 0.25 5 1 64 zero 128;128

Table 6.12: Optimized hyperparameters for LSTM stage 2.

Model Stage 1 Stage 2
FFNN 961 1217
GRU 468389 514529

LSTM 147722 159257

Table 6.13: Number of trainable parameters in the proposed models.

The final model architectures are illustrated in Appendix A. In Table 6.13 we
include the number of trainable parameters (weights and biases) for each of the
proposed models, as a measure of their complexity.

The regularization parameter λ in the LASSO was determined in the same way,
i.e., from the weighted average across the 5 chains. It ended up as 0.034 for stage
1 and 0.015 for stage 2 (when validating on the transformed prices). The LASSO
was also constructed with an upper bound of 100000 on the number of iterations
required to find the coefficients, and the rest were default hyperparameters from
Scikit-learn. This library implements ML algorithms made available in a high-
level language [Pedregosa et al., 2011]. OLS was also built merely using default
hyperparameters from Scikit-learn.
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6.2.3 When to stop final training

After the final models have been selected, we merge the previous train and vali-
dation sets, to get all the available training data. The challenging part is now to
determine when to stop training because we have no distinct validation data to
use for early-stopping purposes. Instead, we have to deduce a sensible amount of
training based on the experience we have made from training on the chains.

We make this choice because we have little data, to begin with, and cannot afford
not to utilize everything for training. Besides, months can be very different from
seasonal effects. It is not given that an early-stopping scheme on selected months
would yield robust results on unseen testing months.

In Table 6.14, we see the epoch numbers that minimized the mean absolute error
on each chain validation for the final models. The number of epochs varies greatly,
and individual validation results are likely biased towards the evaluated months.
The final number of epochs used to train our models should take this into account
somehow. Our decision is to decide on the number of epochs in the same way as
we have optimized for any other hyperparameter. That is, we decide to train our
final models with the number of epochs equal to the weighted number of epochs
that minimized the MAE across all of the chains (where the weight of each chain
is proportional by the number of months involved in the training).

Chain

1 2 4 4 5
Weighted

Sum
FFNN stage 1 10 6 5 97 156 74
GRU stage 1 10 8 7 8 12 9
LSTM stage 1 5 7 4 4 17 8
FFNN stage 2 482 410 183 451 479 403
GRU stage 2 11 7 4 6 6 6
LSTM stage 2 21 10 8 12 11 12

Table 6.14: Number of epochs that minimized the MAE on each chain for the
final models. Weighted sum is the weighted number of epochs across all of the
chains, where the weight of each chain is proportional by the number of months
involved in the training.

6.2.4 Rolling window evaluation

The out-of-sample testing set is from 01/02/2020 to 27/03/2020. To exhibit
having conditions as real as possible, we utilize a rolling window for the testing
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phase. More precisely, we choose to retrain the models once a day at midnight4

with all available data. Because we make the forecast two hours before delivery,
all available data at midnight in this setting is data up until 10 PM on the night
before. This means that, for example, when predicting the prices for 27/03/2020,
the models are trained with data from 01/06/2019 00:00 to 26/03/2020 22:005.

6.2.5 Ensemble learning

Furthermore, we do not fit just a single neural network every new day, but rather
10 and select the median ŷd,hi , {i = 1, ..., 10} outputted from all the similar mod-
els. The reason for this is that neural networks are sensitive models, especially
for smaller datasets. They can, for example, be unfortunate with the randomized
weight initialization or get stuck in local minima during gradient descent. The
median is a well-suited estimate of the central tendency for outlier-prone dis-
tributions. The baselines are deterministic in their training and do not require
similar care-taking. The eager reader who is curious about the variance observed
when training the proposed neural networks can visit Appendix B.

4Theoretically, we could have retrained the models every hour, but with a substantial increase
in computational burden, for practical reasons, we did not do that.

5As a reminder, note that almost 3 weeks from the total dataset had to be removed due to
missing prices in the final hour prior to delivery, see Section 4.1.



Chapter 7

Results and Discussion

In this chapter, we first evaluate the forecasts for stage 1 and stage 2 on the
unseen test data, and plot the forecasts that have obtained the lowest linear errors
for each stage. Further in Section 7.2, we describe in more detail properties of
the the forecasted series. Section 7.3 assess the significance of different forecast
accuracies. We finally discuss the results that deserve specific attention in Section
7.4.

Some results have been placed in the Appendix. This accounts for metrics re-
ported on specific subsamples of the test-data, see Appendix C. Metrics reported
on the full back-transformed prices, i.e. the sum of the spot price and predicted
deltas since spot, can be found in Appendix D. Visualizations of the forecasted
time series for all models are left in Appendix E.

7.1 Forecast Evaluation

Model MAE R2 Correct sign
MOR 9.198 0.069 0.593
OLS 9.180 0.078 0.586
LASSO 9.094 0.067 0.609
FFNN 9.122 0.083 0.588
LSTM 8.938 0.105 0.611
GRU 8.965 0.086 0.622

Table 7.1: Results from stage 1 for selected evaluation metrics. The best score
for each metric is emphasized in bold.
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Figure 7.1: LSTM stage 1 forecast.

Model MAE R2 Correct sign
Näıve 7.545 0.364 0.726
OLS 7.651 0.300 0.722
LASSO 7.648 0.294 0.727
FFNN 7.659 0.293 0.722
LSTM 7.924 0.265 0.717
GRU 7.926 0.234 0.712
ens(MOR) 7.971 0.276 0.711
ens(OLS) 7.551 0.352 0.723
ens(LASSO) 7.568 0.338 0.727
ens(FFNN) 7.534 0.351 0.726
ens(LSTM) 7.632 0.329 0.718
ens(GRU) 7.640 0.316 0.723

Table 7.2: Results from stage 2 for selected evaluation metrics. The best score
for each metric is emphasized in bold.
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Figure 7.2: ens(FFNN) stage 2 forecast.

7.2 Forecast Characteristics

Model mean std min 25 50 75 max
MOR -0.069 5.012 -32.552 -2.142 0.000 2.292 22.743
OLS 1.546 3.940 -16.494 -0.912 1.406 3.793 20.446
LASSO 0.569 2.974 -15.795 -1.112 0.473 2.310 10.063
FFNN 2.403 5.054 -12.647 -0.230 1.890 4.322 35.722
LSTM 1.004 4.209 -8.779 -1.629 0.589 3.253 21.727
GRU 0.787 3.705 -9.423 -1.589 0.346 2.959 13.989

Table 7.3: Forecast characteristics stage 1

Model mean std min 25 50 75 max
Näıve 0.301 7.965 -56.960 -3.610 0.290 4.130 60.920
OLS 0.660 6.653 -24.330 -3.378 0.661 4.427 34.050
LASSO 0.450 6.360 -26.903 -3.561 0.282 4.380 31.348
FFNN 0.765 6.892 -37.178 -2.554 0.586 3.902 33.412
LSTM 0.452 6.590 -30.823 -2.989 0.186 3.520 41.156
GRU 0.372 6.356 -23.717 -2.830 -0.034 3.494 24.624
ens(MOR) 0.116 5.469 -28.308 -2.558 0.093 2.762 35.858
ens(OLS) 0.390 7.600 -48.773 -3.575 0.362 4.222 53.867
ens(LASSO) 0.368 7.199 -43.434 -3.580 0.322 4.294 47.613
ens(FFNN) 0.417 7.637 -50.918 -3.423 0.374 4.149 53.295
ens(LSTM) 0.376 7.060 -37.378 -3.256 0.281 3.987 46.770
ens(GRU) 0.336 6.920 -32.352 -3.335 0.160 3.971 40.711

Table 7.4: Forecast characteristics stage 2
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7.3 Significance of Different Forecasts

Figure 7.3: Heatmap to indicate range of p-values obtained from the Diebold-
Mariano test on stage 1. P-values less than 0.05 are colored white.
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Figure 7.4: Heatmap to indicate range of p-values obtained from the Diebold-
Mariano test on stage 2. P-values less than 0.05 are colored white.

7.4 Discussion

7.4.1 General results for stage 1

From Table 7.1, the GRU and LSTM obtain the best scores in stage 1. The
FFNN and LASSO then follow, when linear errors are concerned. Finally, the
OLS and MOR perform the worst.

With that being said, errors are generally quite comparable with a 2.7 percent
difference in MAE from the best to the worst-performing model. This does
not imply that the models are equally as good, but more than anything is a
testament to the difficulty of predicting prices in the final trading hour. The
market tightens up very much shortly before delivery. Many operators try to
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balance their remaining forecast errors. At the same time, resources designated
for balancing purposed become scarce due to finite availability and long ramp-
up times [Garnier and Madlener, 2015]. The direction of the upcoming system
imbalance further becomes clearer. The entire situation looks very difficult to
estimate two hours prior to delivery, which is when we make the forecast. It
seems very plausible that even a significant advancement in modeling can result
in just a minor error reduction on average.

As a result, the significance of outperformance of different forecasts obtained with
the DM test is not very evident, as can be seen from Figure 7.3. The only signif-
icant difference obtained at the 0.05 critical level is that the forecasts produced
by the recurrent networks do not equal the forecast accuracy obtained from the
OLS. We also have a limited test set and a heavy-tailed target distribution. The
null-hypothesis of equal forecast accuracy could avoid getting rejected due to hav-
ing a pretty small test set of only 1257 hours. The complexity of the objective,
combined with scarce data, is a threat to validity and makes drawing general
conclusions more difficult.

However, note that the DM test has no concept of knowing how robustly the
forecasts are constructed. Rerunning the experiments would, in all likelihood,
yield very similar results on the reported metrics. We argue that this is the case
because we re-calibrated each network every day with the latest available data.
Moreover, to enhance robustness, we made the final prediction from the median
across ten independently trained models. Hundreds of models were thus collec-
tively built during the approximately two months of testing data, undoubtedly
lowering the probability of good results to be caused merely by random effects.

Differences in model performance also become greater when price spikes are re-
moved. If we consider scores obtained when predicting only the prices between
the 5 and 95 percent quantile levels, the difference in MAE from the best model
(GRU) to the worst model (MOR) grows to well above 5 percent, highlighted in
Table C.1.

Interestingly, as can be seen in Table C.2, the MOR performs best at the outer
percentile levels. This could indicate that extreme prices usually happen in the
steep merit-order regime and that the other models underestimate the importance
of fundamental merit-order characteristics relative to other exogenous input vari-
ables. A more likely explanation is perhaps that the models have not been trained
with enough historical occurrences of data with high price spreads. On top of
that, they appear to be regularized very strictly with the purpose of minimizing
mean errors and hence perform poorly for prices at outer quantile levels.

Generally speaking, the models seem to perform the worst in cases when the
price spread is assumed to be the highest. Detailed scores on outer percentile
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levels of input variables is found in Appendix C. High or low spot prices, extreme
system imbalances, major power outages, and rapid movement in the merit-order
(i.e., ramping effects) are all correlated with higher than normal price spreads.
Generalized models constructed to minimize mean absolute errors do poor in
these situations.

7.4.2 General results for stage 2

For stage 2, the highest obtained R2 has increased to over 0.36 from what previ-
ously was ca 0.10 in stage 1, see Table 7.2. The relative results between models
are, in turn, more similar. The truth is likely that the näıve input, which is
the most recent available price for the target contract, is already very correlated
with the target price. Models that are built from minimizing errors tend to assign
much importance to this input variable, and pattern finding in other exogenous
variables is down-prioritized. Simplicity is further rewarded because the näıve in-
put is coupled with fewer interactions from additional model complexity during
inference.

It seems as fundamental information is already partly or fully incorporated into
the most recent transaction price. Complex networks with more historical inputs,
i.e., the LSTM and GRU, struggle to give enough weight to the näıve input. The
passes of historical fundamentals through the recurrent layers introduce noise to
the final output.

The difference in MAE from best to worst model drops a whole percentage when
concerning only the prices between the 5 and 95 percent quantile levels. In this
case, the FFNN is getting a slightly lower MAE than the näıve baseline, so the
network seems capable of adding some useful information for typical price spreads.
Linear concepts also outperform the näıve price when spikes are removed. The
differences are, however, not very significant, as can be seen from Figure 7.4,
and which model is preferable in this scenario looks inconclusive based on these
empirical results.

Averaging forecasts does better on a macro-scale. The autocorrelation coming
from prior transaction prices is very rewarding for errors when there is a price
spike. In contrast, more sophisticated models that incorporate the latest funda-
mental information looks to do better in more normal price ranges. Averaging
them hence reduces mean errors.

Although it is hard to significantly outperform the näıve two hours prior to
delivery, other forecast horizons would likely give different results. Our models
are built profoundly with fundamental inputs. Fundamental weather drivers are
often known in advance, but not captured in the observable market prices until
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very close to delivery. Other studies have, for instance, shown that it is possible
to beat the näıve 4 hours before delivery significantly with the LASSO estimator
[Marcjasz et al., 2020].

7.4.3 Comparing the networks

The proposed neural networks are very different. The recurrent models have more
than a hundred times as many model parameters that must be tuned, compared
to the FFNN (see Table 6.13). One might think that this should result in the
recurrent models to require more training, but what we see is the opposite. The
recurrent networks overfit quickly; the lowest errors on the validation sets were
obtained fast, and we in-turn, had to stop training from an early epoch.

The recurrent models are trained with more historical data given as input fea-
tures. The advantage of this is that they are less sensitive to single noisy mea-
surements. The disadvantage is formerly knowing if all of the extra input data is
relevant. Furthermore, if one of the input variables happens to be of particularly
high importance, parts of its information could more easily be lost from the op-
erations jointly performed on all of the input data. The latter seems to be the
case for stage 2 with the influential näıve transaction price added.

Recall that we fitted each network several times, where the final output was
calculated as the median across ten independent predictions. In Appendix B,
we have assessed the sensitivity of the networks by exploring the maximum and
minimum outputs for each of the predictions made from the ten networks. In
stage 1, it turns out that the LSTM shows the highest variance in training. On the
other hand, the GRU is a more regularized network and has the lowest empirical
standard deviations of predictions across the 10 networks. This situation is not
repeated in stage 2, where the GRU and the LSTM are a lot more sensitive
compared to the FFNN.

In stage 1, the GRU and LSTM get the best results. These results are interesting
as they are the most complex models and trained with the smallest number of
epochs. By comparing it with the much simpler FFNN, we see that the recur-
rent networks are more robust, indicating that useful non-linearities perhaps are
picked up in the 12 hours of historical data through the recurrent layers. The
GRU stands out in this regard, as it utilizes two stacked layers. LSTM has just
one recurrent layer but a deeper dense section.

We should mention that the FFNN showed more promising learning behavior
during the grid search and forward chained validation. Admittedly, we were
somewhat surprised to see that the more advanced recurrent models obtained
the lowest errors on the unseen test data. New questions arise to validate this
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more thoroughly beyond two months of testing.

7.4.4 Comparing the networks to the statistical baselines

Linear concepts tend to show convincing results for EPF, and our results show
that they indeed perform comparable, but just slightly worse than the proposed
non-linear neural networks. The difference between model classes is greater for
stage 1. However, whether this difference is statistically significant is still an open
question from the studies conducted on a rather small test set of 1257 hours.

The LASSO has the lowest variance in predictions (see Table 7.3 and 7.4), as it
is regularized the hardest of all models. Consequently, it performs very well on
the metric that counts the percentage of times the predicted value has the same
sign as the true observation. Magnitudes do not matter for the calculation of this
score.

Having simple models that are easily interpretable is arguably more important
as a decision support tool than a complex price model, even if the latter has
just a marginally lower error. Yet we have seen from Section 2.5 that many non-
linearities determine the intraday prices, so coupling non-linear methods with
explainable ML is likely the way to go.

7.4.5 The importance of accounting for the merit-order ef-
fect

Although the MOR is performing the worst, it is still doing surprisingly well
when considering the very simplistic assumptions that we made. Recall that
we assumed that only half of the power were traded on exchanges and the rest
through bilateral contracts.

Also, note the MOR is the only model that does not incorporate information
about the system imbalance; it only uses the forecast errors since spot time to
traverse the bid-offer curve. It is known that the system imbalance 2 hours and 15
minutes prior to delivery correlates a lot with the constructed series (we measured
a coefficient of 0.25 in our dataset). Performance would likely be higher if the
MOR somehow included data on system imbalance to make its future estimates.

Nevertheless, we argue that these results highlight that sensible price models
should take fundamental characteristics from the merit-order into account.
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7.4.6 Training with enough data and accounting for sea-
sonal effects

The FFNN in stage 1 shows some unhealthy signs concerning generalization ca-
pabilities. We see in Table 7.3 that the FFNN is overestimating in general, with
a mean prediction of 2.403, which is a lot larger than the actual mean of 0.923.
The same can be said about OLS. Interestingly, the FFNN and OLS are fed with
exactly the same features, indicating that these models perhaps were not trained
with enough data to find generalizable patterns in the input variables. This ar-
gument is further strengthened from the observation that the average price in the
training data is skewed slightly positive, which causes the models to be biased to-
wards predicting positive deltas. This weakness stems from having too few cases
in the historical dataset; in the long run, price deltas will likely revert to zero
mean. The models trained with richer feature sets do not show any tendency to
overestimate towards positive deltas.

A further problem in EPF studies with a limited sized dataset is to account
for seasonal effects. The models’ final hyperparameters were chosen from the
weighted sum of MAEs across all of the monthly chains. This was done to
not get parameters heavily biased towards specific months, which can be very
different. Accounting for seasonal effects is extremely important in order to
obtain robust results. A pitfall would, for instance, be to use January explicitly
for hyperparameter tuning. With this scheme, solar generation forecasts would
get close to zero importance because it is not sunny in the winter. That clearly
would not be desirable when testing on months with more sun. Forecasts built
from at least a year of data bypasses this problem to some extent.

For seasonality in smaller frequencies, some readers might be surprised that we
avoid using hourly and weekly dummy input variables. We make this choice
because calendar effects are already implicitly captured in the consumption fore-
casts. Besides, throwing in another 24 or 31 input variables would make learning
a lot more difficult from the curse of dimensionality.

7.4.7 Some words on the limitations of the conducted DM-
test

A hurdle in the DM test is, as just briefly mentioned in Section 2.4, that the loss
differential series can be autocorrelated. Generally speaking, prices close in tem-
poral order are predicted using similar fundamental input drivers, and residuals
might thus also become serially correlated. The modified DM test proposed by
[Harvey et al., 1997] that was conducted, is very sensitive to the chosen lag-order
h. In our study, we chose to employ a two-step ahead h because from inspecting
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the autocorrelations from the residuals, lags greater than 2 were usually close to
zero and thus had a negligible covariance. Results would seem more significant if
we instead were to use h = 1; especially noteworthy is that all forecasts obtained
from neural networks on stage 1 would now statistically outperform the forecasts
obtained from the baselines at the 5 percent significance level.

The optimal lag order to use in the DM test is likely model-specific as they
take different inputs. Ideally, a more sophisticated method should be performed
in order to estimate the individual orders of covariance-stationary. [Ziel et al.,
2015] used an autoregressive process to tackle correlation in the DM test. Taking
these types of measures was outside the scope of this study.



Chapter 8

Conclusion

This chapter is the final chapter. We first conclude and give answers to the
research questions. In Section 8.2, we argue if any contributions have been made
to the field. Section 8.3 says some words about suggested future work.

8.1 Conclusion

This work has been centered around the creation of artificial neural networks
to tackle the task of predicting final electrical intraday prices on the German
intraday market. The constructed target series was an approximation of the
average price delta from the spot price for hourly products traded in the final 60
minutes before delivery.

We have seen that the market tightens up considerably in the final trading hour
because market participants need to be able to react to the latest information.
Predicting prices in the final trading hour while making the forecast two hours
in advance remains a very challenging task. A major improvement in modeling
seems to translate into just a small MAE reduction on average.

The very noisy target series resulted in strict regularization and careful training of
the proposed FFNN, LSTM, and GRU. A comprehensive forward-chained valida-
tion search was applied to combat the overfitting-problem. With this technique,
the optimal training time and hyperparameters were determined from a weighted
average of the minimal MAEs acquired across numerous validation months.

Linear models tend to show convincing results in EPF studies, and our results
show that these baselines indeed perform comparable, but slightly worse than the
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proposed non-linear networks. The significance of the outperformance of different
forecasts obtained with the Diebold-Mariano test is further debatable from the
studies that we have conducted on a limited test set of 1257 hours.

A rolling window-technique was utilized during the testing phase such that mod-
els were re-trained every new day with the latest available data. To enhance
robustness, we fitted ten similar networks and selected the median outputted
from all the alike models. Thus, hundreds of neural networks were built during
the entire testing phase. This suggests that the neural network’s reported per-
formance is unlikely to be caused by chance, even if the null-hypothesis of equal
forecast accuracy could not be rejected.

Research question 1 To what extent does exogenous factors determine the final
intraday prices that can be predicted?

The results show that up to 10 percent of the variance of the price spread can
be predicted merely from exogenous effects. When allowing for the inclusion of
variables constructed from preceding intraday prices, i.e., in stage 2, the most
recently available transaction price sampled two hours before delivery accounts
alone for over a third of the variance. The best estimates are obtained when
the preceding price is combined with models enhanced with timely constructed
fundamental variables.

Research question 2 How do recurrent networks compare to feed-forward net-
works when predicting final intraday prices?

There are some indications that recurrent models can better capture the serial
dependence that evolves in the time series of fundamental variables. Although
the LSTM obtains the lowest MAE for stage 1, error measurements are gener-
ally susceptible to price spikes. If spikes are removed, a GRU with two stacked
recurrent layers gets the lowest errors. Besides, the GRU has a lower variance in
training. For these reasons, GRU seems like a more robust alternative.

We experience that complex models do worse when prior intraday prices are added
to the feature set. With greater model expressivity comes increased sensitivity
and more unstable behavior in the training process. In this case, a shallow feed-
forward network with extensive use of dropout seems preferable based on our
empirical results.

8.2 Contributions

We have shown that parameter-rich artificial neural networks can outperform
state-of-the-art statistical baselines, even for smaller datasets with a noisy target
series constructed from final intraday prices. Complex models perform better
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relative to simpler models in typical price ranges when only exogenous effects are
used as input variables. In this way, we have contributed with positive indications
of the further potential of Deep Learning within the EPF domain.

A necessary prerequisite for robust performance with neural networks is very
careful training. We hope that our forward chained methodology perhaps can
help aspiring practitioners to not walk into the pitfalls of excluding the potential
of neural networks in EPF applications even if deep structures seem to overfit at
first sight.

A more practical contribution is the suggestion on how to engineer simple fea-
tures from the submitted bid-offers from the day-ahead to boost predictive per-
formance. We have empirically validated the known importance of accounting
for fundamental characteristics in the merit-order.

8.3 Future Work

In order to assess the significance of results more robustly, this study should
ideally be done again when there is enough test-data for at least a year. Fur-
thermore, it would be wise to account for the power volumes traded in the final
hour. We suggest utilizing the ID1 index as the target series for reproducibility
purposes.

In future work, it is possible to do a more systematic study on the feature selec-
tion problem. A natural extension is to use more sophisticated algorithms and
automated methods. Additional work can especially be done into engineering
fundamental characteristics from the merit-order into the shape of appropriate
input variables. It is then advisable to dynamically find the more precise amounts
of power traded on exchanges.

An interesting study to conduct on artificial neural networks is to explore the
potential of transfer learning. The idea is that a network pre-trained on neigh-
boring or prior transaction prices can adjust the weights to something better than
random initialization. We have briefly experimented with pre-training networks,
but it deserves a more systematic study.

Furthermore, Convolutional Neural Networks (CNNs) is a model-type known to
work well in applications where locally grouped data is correlated. It might be a
good fit for EPF studies aiming to predict prices in the very short term.

Finally, although profits are thought to be closely related to small price prediction
errors, it is plausible that certain positions can be more optimal than others,
albeit generating higher predictive errors on average. Complementary analysis of
economic benefits is something to consider in the future.
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A Figures of the final proposed models

A.1 Stage 1

Figure A.1: FFNN architecture stage 1
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Figure A.2: GRU architecture stage 1

Figure A.3: LSTM architecture stage 1

’
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A.2 Stage 2

Figure A.4: FFNN architecture stage 2

Figure A.5: GRU architecture stage 2



Figure A.6: LSTM architecture stage 2
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B Variance in training the networks

When testing our models, the final prediction, yd,h, was selected by calculating
the mean of the output of 10 trained networks. We can assess the sensitivity
of the models by exploring the output of similar networks. For each model, we
have constructed two time series, predmax and predmin, where predmax contains
the maximum outputs of the 10 trained networks for each hour in the test set,
while predmin contains the minimum outputs. The times series is mathematically
constructed as follow:

predmax = {max(net1i , ..., net
10
i ), ...,max(net1n, ..., net

10
n )}

predmin = {min(net1i , ..., net
10
i ), ...,min(net1n, ..., net

10
n )}

where n is the number of hours in the test set, and net1i is the first network’s
prediction of the i’th hour. Then, we can calculate the difference of the time
series, where:

diffi = predmaxi − predmini

Table B.1 describes the predmax and predmin for our proposed models, while
Table B.2 describes the diff . What we can see is that predmax and predmin

yield quite different characteristics for all models saying something about the
maximum and minimum boundaries for the models. By inspecting the different
diff ’s we see that the models behave differently. In stage 1, LSTM is the model
with the highest variability and most sensitive during training. Interestingly,
given the number of model parameters, GRU has the most. In this case, it
leads to more stable training compared to the other networks, as its mean error,
maximum error and the standard deviation of the errors are smaller. The GRU
is therefore the most regularized network, and it seems to be advantageous with
complex models when only exogenous factors are considered in the feature set.

In stage 2, less complex architectures seem preferable, as some features have
such great explanatory power relative to other features, so other features mainly
contribute to noise.
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mean std min 25 50 75 max
FFNN
Stage 1

predmax 3.71 5.82 -10.10 0.55 2.67 5.57 44.30
predmin 1.19 4.70 -15.92 -1.29 1.01 3.24 26.19

GRU
Stage 1

predmax 1.95 3.97 -7.93 -0.77 1.25 4.30 15.83
predmin -0.27 3.59 10.40 2.52 0.68 1.83 10.98

LSTM
Stage 1

predmax 3.67 5.38 -6.75 0.30 2.76 5.82 38.60
predmin -1.29 3.97 -13.35 -3.70 -1.36 1.19 14.74

FFNN
Stage 2

predmax 1.60 7.07 -34.89 -1.98 1.01 4.62 37.51
predmin 0.02 6.92 -43.05 -3.10 0.20 3.35 29.39

GRU
Stage 2

predmax 2.95 7.28 -18.67 -1.32 1.06 6.23 43.71
predmin -1.92 6.560 -31.77 -4.83 -1.08 1.55 19.43

LSTM
Stage 2

predmax 3.49 8.46 -19.25 -1.44 1.69 5.86 58.16
predmin -2.22 7.44 -47.29 -4.57 -1.47 1.82 24.64

Table B.1: predmax and predmin for the proposed models

diff for
model:

mean std min 25 50 75 max

FFNN
stage 1

2.53 1.98 0.25 1.38 2.07 2.93 20.51

GRU
stage 1

2.21 0.98 0.38 1.53 2.04 2.73 7.51

LSTM
stage 1

4.96 2.87 0.72 3.02 4.38 6.20 25.84

FFNN
stage 2

1.58 1.25 0.25 0.82 1.20 1.90 10.61

GRU
stage 2

4.87 3.29 0.64 2.43 4.05 6.29 24.28

LSTM
stage 2

5.71 5.18 1.03 2.68 3.95 6.45 46.95

Table B.2: diff for the proposed models
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C Results on selected subsamples of test data

C.1 Stage 1

Model MAE R2 Correct sign
MOR 6.938 -0.054 0.580
OLS 6.809 0.046 0.575
LASSO 6.655 0.067 0.600
FFNN 6.846 0.019 0.578
LSTM 6.624 0.065 0.603
GRU 6.596 0.075 0.613

Table C.1: Results from stage 1 for selected evaluation metrics when spikes are
removed, i.e. only consider prices yd,h between the 5 and 95 percentile levels in
the test set.

Model MAE R2 Correct sign
MOR 29.486 0.115 0.714
OLS 30.463 0.089 0.690
LASSO 30.987 0.066 0.690
FFNN 29.550 0.106 0.675
LSTM 29.706 0.119 0.683
GRU 30.233 0.089 0.706

Table C.2: Results from stage 1 for selected evaluation metrics on spikes only,
i.e. only consider prices yd,h outside the 5 and 95 percentile levels in the test set.

Model MAE R2 Correct sign
MOR 9.731 0.072 0.602
OLS 9.581 0.104 0.630
LASSO 9.716 0.070 0.628
FFNN 9.523 0.102 0.619
LSTM 9.436 0.120 0.628
GRU 9.537 0.091 0.640

Table C.3: Results from stage 1 for selected evaluation metrics on February data
only.
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Model MAE R2 Correct sign
MOR 8.610 0.030 0.584
OLS 8.739 -0.018 0.538
LASSO 8.409 0.028 0.589
FFNN 8.681 0.004 0.554
LSTM 8.388 0.037 0.592
GRU 8.336 0.045 0.602

Table C.4: Results from stage 1 for selected evaluation metrics on March data
only.

Model MAE R2 Correct sign
MOR 9.526 -0.375 0.617
OLS 8.462 -0.237 0.732
LASSO 9.014 -0.343 0.681
FFNN 8.027 -0.183 0.786
LSTM 8.657 -0.247 0.657
GRU 8.836 -0.301 0.647

Table C.5: Results from stage 1 for selected evaluation metrics on positive target
observations only, i.e. yd,h > 0.

Model MAE R2 Correct sign
MOR 8.826 -0.854 0.567
OLS 9.995 -1.182 0.421
LASSO 9.185 -0.954 0.528
FFNN 10.364 -1.304 0.363
LSTM 9.257 -0.990 0.559
GRU 9.113 -0.954 0.594

Table C.6: Results from stage 1 for selected evaluation metrics on negative target
observations only, i.e. yd,h < 0.
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Model MAE R2 Correct sign
MOR 16.907 0.047 0.571
OLS 15.791 0.067 0.651
LASSO 16.684 0.030 0.659
FFNN 16.126 0.067 0.611
LSTM 16.493 0.077 0.571
GRU 16.751 0.038 0.595

Table C.7: Results from stage 1 for selected evaluation metrics at extreme spot
prices, i.e. only consider predictions whenDAd,h is outside the 5 and 95 percentile
levels in the test set.

Model MAE R2 Correct sign
MOR 9.215 -0.077 0.690
OLS 8.724 0.116 0.667
LASSO 8.716 0.144 0.730
FFNN 8.840 0.053 0.675
LSTM 8.388 0.164 0.722
GRU 8.444 0.156 0.738

Table C.8: Results from stage 1 for selected evaluation metrics at extreme wind
forecast errors, i.e. only consider predictions when ∆WId,h8 is outside the 5 and
95 percentile levels in the test set.

Model MAE R2 Correct sign
MOR 8.186 0.088 0.603
OLS 8.359 0.083 0.556
LASSO 8.129 0.144 0.627
FFNN 8.056 0.125 0.556
LSTM 7.799 0.191 0.675
GRU 7.694 0.214 0.667

Table C.9: Results from stage 1 for selected evaluation metrics at extreme solar
forecast errors, i.e. only consider predictions when ∆SOd,h8 is outside the 5 and
95 percentile levels in the test set.
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Model MAE R2 Correct sign
MOR 6.681 0.115 0.603
OLS 7.209 0.051 0.516
LASSO 6.775 0.109 0.611
FFNN 7.067 0.088 0.540
LSTM 6.527 0.159 0.683
GRU 6.499 0.161 0.675

Table C.10: Results from stage 1 for selected evaluation metrics at extreme con-
sumption forecast errors, i.e. only consider predictions when ∆COd,h8 is outside
the 5 and 95 percentile levels in the test set.

Model MAE R2 Correct sign
MOR 11.812 0.037 0.621
OLS 11.525 0.069 0.583
LASSO 11.357 0.014 0.544
FFNN 11.276 0.094 0.612
LSTM 11.226 0.080 0.563
GRU 11.416 0.027 0.621

Table C.11: Results from stage 1 for selected evaluation metrics at extreme avail-
ability forecast errors, i.e. only consider predictions when ∆AV d,h8 is outside the
5 and 95 percentile levels in the test set.

Model MAE R2 Correct sign
MOR 8.881 0.056 0.738
OLS 8.676 0.215 0.738
LASSO 8.892 0.215 0.778
FFNN 8.831 0.138 0.778
LSTM 8.384 0.264 0.754
GRU 8.487 0.254 0.770

Table C.12: Results from stage 1 for selected evaluation metrics at extreme sum
of weather forecast errors, i.e. only consider predictions when ∆WEd,h8 is outside
the 5 and 95 percentile levels in the test set.
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Model MAE R2 Correct sign
MOR 10.174 0.056 0.706
OLS 9.482 0.241 0.698
LASSO 9.805 0.166 0.706
FFNN 9.372 0.228 0.746
LSTM 9.292 0.236 0.706
GRU 9.375 0.194 0.722

Table C.13: Results from stage 1 for selected evaluation metrics at extreme sum
of all forecast errors, i.e. only consider predictions when ∆AEd,h8 is outside the
5 and 95 percentile levels in the test set.

Model MAE R2 Correct sign
MOR 8.983 0.205 0.698
OLS 9.773 0.136 0.643
LASSO 9.940 0.064 0.706
FFNN 8.800 0.189 0.675
LSTM 8.584 0.214 0.714
GRU 8.930 0.183 0.714

Table C.14: Results from stage 1 for selected evaluation metrics at extreme wind

power forecasts made at spot time, i.e. only consider predictions when ˆWId,h is
outside the 5 and 95 percentile levels in the test set.

Model MAE R2 Correct sign
MOR 9.573 0.073 0.635
OLS 10.135 -0.104 0.508
LASSO 9.345 0.090 0.587
FFNN 10.008 -0.051 0.524
LSTM 9.518 0.033 0.619
GRU 9.263 0.074 0.635

Table C.15: Results from stage 1 for selected evaluation metrics at extreme solar

power forecasts made at spot time, i.e. only consider predictions when ˆSOd,h is
outside the 5 and 95 percentile levels in the test set.
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Model MAE R2 Correct sign
MOR 11.371 0.067 0.667
OLS 11.157 0.074 0.571
LASSO 10.983 0.040 0.683
FFNN 11.395 0.080 0.611
LSTM 10.672 0.112 0.667
GRU 10.792 0.062 0.698

Table C.16: Results from stage 1 for selected evaluation metrics at extreme con-
sumption power forecasts made at spot time, i.e. only consider predictions when

ˆCOd,h is outside the 5 and 95 percentile levels in the test set.

Model MAE R2 Correct sign
MOR 14.527 0.068 0.611
OLS 13.889 0.097 0.643
LASSO 13.982 0.054 0.667
FFNN 13.660 0.117 0.635
LSTM 13.676 0.114 0.651
GRU 13.834 0.067 0.667

Table C.17: Results from stage 1 for selected evaluation metrics at extreme sys-
tem imbalances, i.e. only consider predictions when SId,h9 is outside the 5 and
95 percentile levels in the test set.

Model MAE R2 Correct sign
MOR 14.299 0.058 0.690
OLS 13.910 0.106 0.722
LASSO 14.588 0.060 0.730
FFNN 13.556 0.118 0.706
LSTM 13.203 0.152 0.714
GRU 13.538 0.097 0.714

Table C.18: Results from stage 1 for selected evaluation metrics at extreme traver-
sals of the bid-offers, i.e. only consider predictions when MOd,h8 is outside the 5
and 95 percentile levels in the test set.
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Model MAE R2 Correct sign
MOR 14.973 0.063 0.627
OLS 14.105 0.088 0.627
LASSO 14.449 0.071 0.659
FFNN 14.800 0.088 0.611
LSTM 14.165 0.132 0.651
GRU 14.229 0.086 0.690

Table C.19: Results from stage 1 for selected evaluation metrics at extreme
changes in traversals of the bid-offers, i.e. only consider predictions when
∆MOd,h8 is outside the 5 and 95 percentile levels in the test set.

C.2 Stage 2

Model MAE R2 Correct sign
Naive 5.875 0.153 0.711
OLS 5.756 0.216 0.707
LASSO 5.723 0.225 0.710
FFNN 5.830 0.191 0.707
LSTM 5.994 0.168 0.700
GRU 5.960 0.169 0.694
ens(MOR) 5.982 0.183 0.693
ens(OLS) 5.835 0.173 0.708
ens(LASSO) 5.793 0.191 0.711
ens(FFNN) 5.827 0.172 0.711
ens(LSTM) 5.833 0.192 0.700
ens(GRU) 5.821 0.191 0.704

Table C.20: Results from stage 2 for selected evaluation metrics when spikes are
removed, i.e. only consider prices yd,h between the 5 and 95 percentile levels in
the test set.
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Model MAE R2 Correct sign
Naive 22.529 0.444 0.865
OLS 24.654 0.331 0.849
LASSO 24.932 0.320 0.881
FFNN 24.076 0.331 0.857
LSTM 25.256 0.301 0.865
GRU 25.572 0.258 0.873
ens(MOR) 25.818 0.311 0.873
ens(OLS) 22.949 0.419 0.857
ens(LASSO) 23.498 0.393 0.873
ens(FFNN) 22.857 0.419 0.865
ens(LSTM) 23.776 0.381 0.881
ens(GRU) 23.966 0.363 0.897

Table C.21: Results from stage 2 for selected evaluation metrics on spikes only,
i.e. only consider prices yd,h outside the 5 and 95 percentile levels in the test set.

Model MAE R2 Correct sign
Naive 7.628 0.411 0.769
OLS 7.765 0.325 0.751
LASSO 7.798 0.313 0.762
FFNN 7.791 0.310 0.750
LSTM 8.172 0.284 0.748
GRU 8.150 0.245 0.744
ens(MOR) 8.232 0.296 0.745
ens(OLS) 7.639 0.392 0.765
ens(LASSO) 7.671 0.372 0.763
ens(FFNN) 7.625 0.390 0.763
ens(LSTM) 7.774 0.359 0.750
ens(GRU) 7.782 0.342 0.754

Table C.22: Results from stage 2 for selected evaluation metrics on February data
only.
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Model MAE R2 Correct sign
Naive 7.453 0.224 0.679
OLS 7.524 0.214 0.689
LASSO 7.483 0.225 0.689
FFNN 7.514 0.226 0.692
LSTM 7.652 0.194 0.682
GRU 7.678 0.181 0.677
ens(MOR) 7.682 0.203 0.674
ens(OLS) 7.453 0.228 0.677
ens(LASSO) 7.453 0.231 0.687
ens(FFNN) 7.434 0.231 0.686
ens(LSTM) 7.475 0.233 0.684
ens(GRU) 7.484 0.228 0.689

Table C.23: Results from stage 2 for selected evaluation metrics on March data
only.

Model MAE R2 Correct sign
Naive 7.673 0.070 0.732
OLS 7.618 -0.031 0.749
LASSO 7.730 -0.056 0.737
FFNN 7.591 -0.049 0.753
LSTM 8.022 -0.082 0.719
GRU 8.089 -0.149 0.698
ens(MOR) 8.244 -0.092 0.707
ens(OLS) 7.650 0.048 0.737
ens(LASSO) 7.684 0.018 0.734
ens(FFNN) 7.625 0.045 0.738
ens(LSTM) 7.739 0.010 0.725
ens(GRU) 7.796 -0.023 0.723

Table C.24: Results from stage 2 for selected evaluation metrics on positive target
observations only, i.e. yd,h > 0.
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Model MAE R2 Correct sign
Naive 7.399 -0.292 0.720
OLS 7.687 -0.404 0.691
LASSO 7.555 -0.365 0.716
FFNN 7.736 -0.393 0.688
LSTM 7.814 -0.472 0.715
GRU 7.740 -0.476 0.728
ens(MOR) 7.661 -0.377 0.716
ens(OLS) 7.437 -0.306 0.708
ens(LASSO) 7.435 -0.306 0.720
ens(FFNN) 7.431 -0.303 0.713
ens(LSTM) 7.510 -0.336 0.711
ens(GRU) 7.463 -0.328 0.723

Table C.25: Results from stage 2 for selected evaluation metrics on negative
target observations only, i.e. yd,h < 0.

Model MAE R2 Correct sign
Naive 11.349 0.423 0.833
OLS 12.318 0.288 0.833
LASSO 12.284 0.278 0.833
FFNN 12.453 0.268 0.833
LSTM 13.364 0.248 0.794
GRU 13.561 0.180 0.817
ens(MOR) 13.276 0.279 0.825
ens(OLS) 11.539 0.394 0.833
ens(LASSO) 11.704 0.364 0.833
ens(FFNN) 11.587 0.388 0.825
ens(LSTM) 12.164 0.348 0.825
ens(GRU) 12.331 0.317 0.841

Table C.26: Results from stage 2 for selected evaluation metrics at extreme spot
prices, i.e. only consider predictions whenDAd,h is outside the 5 and 95 percentile
levels in the test set.
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Model MAE R2 Correct sign
Naive 7.547 0.334 0.698
OLS 7.587 0.354 0.683
LASSO 7.615 0.347 0.706
FFNN 7.537 0.352 0.683
LSTM 7.803 0.317 0.714
GRU 7.735 0.300 0.722
ens(MOR) 8.016 0.248 0.714
ens(OLS) 7.547 0.345 0.690
ens(LASSO) 7.565 0.348 0.698
ens(FFNN) 7.503 0.345 0.683
ens(LSTM) 7.636 0.344 0.690
ens(GRU) 7.581 0.341 0.698

Table C.27: Results from stage 2 for selected evaluation metrics at extreme wind
forecast errors, i.e. only consider predictions when ∆WId,h8 is outside the 5 and
95 percentile levels in the test set.

Model MAE R2 Correct sign
Naive 6.638 0.472 0.698
OLS 7.014 0.384 0.738
LASSO 6.919 0.409 0.706
FFNN 6.711 0.442 0.738
LSTM 7.074 0.349 0.722
GRU 7.086 0.297 0.714
ens(MOR) 7.039 0.387 0.706
ens(OLS) 6.720 0.466 0.706
ens(LASSO) 6.755 0.459 0.698
ens(FFNN) 6.617 0.478 0.714
ens(LSTM) 6.749 0.452 0.714
ens(GRU) 6.780 0.436 0.706

Table C.28: Results from stage 2 for selected evaluation metrics at extreme solar
forecast errors, i.e. only consider predictions when ∆SOd,h8 is outside the 5 and
95 percentile levels in the test set.
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Model MAE R2 Correct sign
Naive 6.151 0.194 0.730
OLS 5.980 0.224 0.730
LASSO 5.954 0.231 0.738
FFNN 5.941 0.227 0.738
LSTM 5.782 0.269 0.738
GRU 5.975 0.225 0.706
ens(MOR) 6.149 0.213 0.730
ens(OLS) 6.102 0.203 0.730
ens(LASSO) 6.054 0.213 0.730
ens(FFNN) 6.068 0.207 0.738
ens(LSTM) 5.876 0.248 0.738
ens(GRU) 5.947 0.226 0.730

Table C.29: Results from stage 2 for selected evaluation metrics at extreme con-
sumption forecast errors, i.e. only consider predictions when ∆COd,h8 is outside
the 5 and 95 percentile levels in the test set.

Model MAE R2 Correct sign
Naive 10.027 0.385 0.660
OLS 10.276 0.234 0.689
LASSO 10.405 0.215 0.650
FFNN 10.692 0.195 0.660
LSTM 10.428 0.217 0.689
GRU 10.670 0.136 0.660
ens(MOR) 10.378 0.235 0.738
ens(OLS) 10.082 0.350 0.670
ens(LASSO) 10.195 0.313 0.650
ens(FFNN) 10.169 0.342 0.680
ens(LSTM) 10.155 0.308 0.670
ens(GRU) 10.290 0.271 0.660

Table C.30: Results from stage 2 for selected evaluation metrics at extreme avail-
ability forecast errors, i.e. only consider predictions when ∆AV d,h8 is outside the
5 and 95 percentile levels in the test set.
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Model MAE R2 Correct sign
Naive 7.723 0.407 0.770
OLS 7.873 0.414 0.762
LASSO 7.729 0.425 0.770
FFNN 7.768 0.417 0.754
LSTM 7.962 0.388 0.770
GRU 8.004 0.360 0.770
ens(MOR) 7.835 0.350 0.762
ens(OLS) 7.740 0.415 0.770
ens(LASSO) 7.710 0.423 0.770
ens(FFNN) 7.686 0.416 0.762
ens(LSTM) 7.781 0.419 0.762
ens(GRU) 7.802 0.409 0.770

Table C.31: Results from stage 2 for selected evaluation metrics at extreme sum
of weather forecast errors, i.e. only consider predictions when ∆WEd,h8 is outside
the 5 and 95 percentile levels in the test set.

Model MAE R2 Correct sign
Naive 8.806 0.442 0.667
OLS 9.030 0.368 0.659
LASSO 8.950 0.354 0.667
FFNN 9.029 0.337 0.659
LSTM 9.058 0.369 0.683
GRU 9.090 0.300 0.675
ens(MOR) 9.072 0.316 0.706
ens(OLS) 8.842 0.430 0.667
ens(LASSO) 8.855 0.410 0.667
ens(FFNN) 8.824 0.425 0.667
ens(LSTM) 8.894 0.425 0.675
ens(GRU) 8.920 0.393 0.667

Table C.32: Results from stage 2 for selected evaluation metrics at extreme sum
of all forecast errors, i.e. only consider predictions when ∆AEd,h8 is outside the
5 and 95 percentile levels in the test set.
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Model MAE R2 Correct sign
Naive 7.698 0.362 0.770
OLS 7.783 0.348 0.778
LASSO 7.739 0.350 0.770
FFNN 7.859 0.340 0.770
LSTM 8.143 0.277 0.794
GRU 7.885 0.293 0.802
ens(MOR) 8.045 0.334 0.770
ens(OLS) 7.709 0.360 0.762
ens(LASSO) 7.690 0.358 0.770
ens(FFNN) 7.681 0.360 0.754
ens(LSTM) 7.759 0.336 0.794
ens(GRU) 7.679 0.339 0.794

Table C.33: Results from stage 2 for selected evaluation metrics at extreme wind

power forecasts made at spot time, i.e. only consider predictions when ˆWId,h is
outside the 5 and 95 percentile levels in the test set.

Model MAE R2 Correct sign
Naive 7.199 0.518 0.714
OLS 8.297 0.346 0.762
LASSO 7.938 0.417 0.730
FFNN 7.851 0.426 0.730
LSTM 8.428 0.299 0.714
GRU 8.939 0.191 0.698
ens(MOR) 7.853 0.441 0.698
ens(OLS) 7.392 0.498 0.698
ens(LASSO) 7.474 0.495 0.714
ens(FFNN) 7.313 0.508 0.730
ens(LSTM) 7.690 0.460 0.714
ens(GRU) 7.915 0.422 0.698

Table C.34: Results from stage 2 for selected evaluation metrics at extreme solar

power forecasts made at spot time, i.e. only consider predictions when ˆSOd,h is
outside the 5 and 95 percentile levels in the test set.
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Model MAE R2 Correct sign
Naive 8.290 0.428 0.802
OLS 8.846 0.274 0.786
LASSO 8.833 0.262 0.786
FFNN 8.820 0.251 0.770
LSTM 9.067 0.250 0.825
GRU 9.219 0.187 0.841
ens(MOR) 9.337 0.271 0.786
ens(OLS) 8.412 0.392 0.794
ens(LASSO) 8.524 0.357 0.794
ens(FFNN) 8.374 0.387 0.778
ens(LSTM) 8.563 0.345 0.786
ens(GRU) 8.652 0.316 0.810

Table C.35: Results from stage 2 for selected evaluation metrics at extreme con-
sumption power forecasts made at spot time, i.e. only consider predictions when

ˆCOd,h is outside the 5 and 95 percentile levels in the test set.

Model MAE R2 Correct sign
Naive 11.388 0.413 0.778
OLS 11.934 0.277 0.746
LASSO 11.841 0.265 0.778
FFNN 11.737 0.261 0.778
LSTM 12.273 0.259 0.738
GRU 12.492 0.192 0.746
ens(MOR) 12.393 0.270 0.730
ens(OLS) 11.500 0.382 0.770
ens(LASSO) 11.536 0.351 0.770
ens(FFNN) 11.437 0.379 0.770
ens(LSTM) 11.774 0.343 0.754
ens(GRU) 11.846 0.313 0.754

Table C.36: Results from stage 2 for selected evaluation metrics at extreme sys-
tem imbalances, i.e. only consider predictions when SId,h9 is outside the 5 and
95 percentile levels in the test set.
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Model MAE R2 Correct sign
Naive 12.386 0.400 0.738
OLS 12.508 0.274 0.746
LASSO 12.675 0.259 0.746
FFNN 12.682 0.253 0.754
LSTM 12.383 0.277 0.746
GRU 12.603 0.196 0.754
ens(MOR) 12.728 0.274 0.714
ens(OLS) 12.402 0.372 0.738
ens(LASSO) 12.473 0.342 0.746
ens(FFNN) 12.410 0.368 0.738
ens(LSTM) 12.250 0.348 0.738
ens(GRU) 12.404 0.311 0.738

Table C.37: Results from stage 2 for selected evaluation metrics at extreme traver-
sals of the bid-offers, i.e. only consider predictions when MOd,h8 is outside the 5
and 95 percentile levels in the test set.

Model MAE R2 Correct sign
Naive 11.088 0.444 0.762
OLS 11.837 0.306 0.770
LASSO 11.843 0.296 0.794
FFNN 11.995 0.296 0.754
LSTM 12.374 0.289 0.754
GRU 12.772 0.209 0.754
ens(MOR) 12.482 0.299 0.738
ens(OLS) 11.228 0.415 0.754
ens(LASSO) 11.390 0.384 0.778
ens(FFNN) 11.236 0.412 0.762
ens(LSTM) 11.535 0.381 0.746
ens(GRU) 11.743 0.345 0.746

Table C.38: Results from stage 2 for selected evaluation metrics at extreme
changes in traversals of the bid-offers, i.e. only consider predictions when
∆MOd,h8 is outside the 5 and 95 percentile levels in the test set.
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D Metrics evaluated on full intraday prices

This section evaluates on the full back-transformed prices, i.e. the sum of the
spot price and predicted deltas since spot. The best MAE from each stage will
also be plotted.

D.1 Stage 1

Model MAE R2 Correct sign
MOR 9.198 0.547 0.902
OL 9.180 0.552 0.909
LASSO 9.122 0.554 0.912
FFNN 9.094 0.546 0.909
LSTM 8.938 0.565 0.908
GRU 8.965 0.556 0.909

Table D.1: Results from stage 1 for selected evaluation metrics on full intraday
prices.

Figure D.1: LSTM stage 1 forecast full intraday prices.
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D.2 Stage 2

Model MAE R2 Correct sign
Naive 7.545 0.691 0.921
OLS 7.651 0.659 0.915
LASSO 7.648 0.657 0.919
FFNN 7.659 0.656 0.916
LSTM 7.924 0.643 0.913
GRU 7.926 0.627 0.914
ens(MOR) 7.971 0.648 0.924
ens(OLS) 7.551 0.685 0.921
ens(LASSO) 7.568 0.678 0.922
ens(FFNN) 7.534 0.684 0.918
ens(LSTM) 7.632 0.674 0.914
ens(GRU) 7.640 0.667 0.913

Table D.2: Results from stage 2 for selected evaluation metrics on full intraday
prices.

Figure D.2: ens(FFNN) stage 2 forecast on full intraday prices.
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E Plots of all forecasts

E.1 Stage 1

Figure E.1: MOR stage 1 forecast.

Figure E.2: OLS stage 1 forecast.
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Figure E.3: LASSO stage 1 forecast.

Figure E.4: FFNN stage 1 forecast.
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Figure E.5: GRU stage 1 forecast.

Figure E.6: LSTM stage 1 forecast.
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E.2 Stage 2

Figure E.7: OLS stage 2 forecast.

Figure E.8: LASSO stage 2 forecast.
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Figure E.9: FFNN stage 2 forecast.

Figure E.10: GRU stage 2 forecast.
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Figure E.11: LSTM stage 2 forecast.

Figure E.12: ens(MOR) stage 2 forecast.
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Figure E.13: ens(OLS) stage 2 forecast.

Figure E.14: ens(LASSO) stage 2 forecast.
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Figure E.15: ens(FFNN) stage 2 forecast.

Figure E.16: ens(GRU) stage 2 forecast.
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Figure E.17: ens(LSTM) stage 2 forecast.
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