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Assignment text

The end of Dennard scaling and the imminent end of Moore’s law is causing dis-
ruptive changes to the way computers are designed. An attractive option is to cre-
ate specialized hardware units — called accelerators — that are able to execute
performance-critical code regions (much) more efficiently than a general-purpose
processor. Unfortunately, designing accelerators is costly which limits their applic-
ability to high-volume domains such as graphics or machine-learning. Another op-
tion is to add tightly coupled reconfigurable fabrics to general-purpose processors
and combine this with tools that automatically generate application-specific ac-
celerators.

A key challenge for automatic accelerator generation tools is to determine
which part of the application should be accelerated. This is typically determined
based on a performance profile of the application which can be collected using
instrumentation or sampling. Instrumentation can gather precise information but
can interfere with program behavior. Sampling, on the other hand, minorly af-
fects application performance but cannot gather key information such as dynamic
call graphs. For these reasons, researchers run the application twice to (i) determ-
ine per-function performance with sampling, and (ii) retrieve the dynamic call
graph using instrumentation. The performance overhead of this approach can be
substantial for long-running applications.

In this thesis, the student should develop an LLVM-compatible approach for
gathering application performance profiles that uses both sampling and instru-
mentation. The objective of the thesis is to investigate if it is possible to design
a profiler that combines intelligent instrumentation — to gather key information
such as dynamic call graphs without extensive interference — and sampling — to
determine the relative performance impact of each function.
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Abstract

CPUs are general purpose chips that are able to perform all computations, but
they are not optimized to perform any particular computation significantly faster
than others. It is possible to create chip that are optimized to perform a limited
set of computations that are much faster than the CPU at those specific computa-
tions. Such chips are called accelerators. Since CPU performance has stagnated in
recent years researchers have suggested using reconfigurable chips such as Field
Programmable Gate Arrays and Coarse Grained Reconfigurable arrays as accel-
erators that can be programmed to accelerate any program. To be able to know
which part of a program that should be accelerated the programmer can profile
the program to gain information on how the program behaves. If it is possible to
profile multiple kinds of information in a single run of the program without the
profilers interfering with each other it is possible to save time by not having to
run the program multiple times.

In this thesis I have investigated if it is possible to do profile both how much
time is spent in each function of the program and profile the dynamic call graph
of the program in a single run. To this I have created the Fast Call Graph profiler
which can profiles the dynamic call graph of programs. I also evaluated how much
overhead the profiler causes and how it compares to similar tools that profile the
dynamic call graph.

I found that the Fast Call Graph profiler does not change the time distribution
information in any significant way. This means that it is possible to do both time
distribution profiling and dynamic call graph profiling in a singe program run
and get useful profile results. The overhead of the Fast Call Graph profiler is also
significantly lower than the tools I compared it with which were Gprof and the
instrumentation built into Clang.
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Sammendrag

CPUer er ikke-spesialiserte chiper som kan utføre alle beregninger, og de er ikke
optimalisert til å utføre noen beregninger mye raskere enn andre. Det er mulig å
lage chiper som er optimaliserte til å utføre et begrenset sett med beregninger mye
raskere enn en CPU kan gjøre tilsvarende beregninger. Slike chiper kalles akseler-
atorer. Siden CPU-ytelse has stagnert de siste årene har forskere foreslått å bruke
re-konfigurerbare chiper, slik som Field Programmable Gate Arrays og Coarse
Grained Reconfigurable Arrays, som akseleratorer som kan akselerere hvilket som
helst program. For at programmerer skal vite hvilken del av programmet som bør
akselereres så han han kjøre kode som obsererer hvordan hans program oppfører
seg. Dersom det er mulig å kjøre programmet en gang med kode som observerer
flere forskjellige aspekter ved programmet, uten at koden for de forskjellige as-
pektene påvirker hverandres observasjoner, så er det mulig å spare tid fordi man
trenger kun å kjøre programmet en gang.

I denne oppgaven har jeg undersøkt om det er mulig å observere både hvor
mye tid som blir brukt i hver funksjon i koden og observere den dynamiske funksjonskall-
grafen i en enkelt kjøring av programmet. For å gjøre dette så har jeg laget Fast
Call Graph profiler som observerer funksjonskall-grafen til programmer. Jeg har
også evaluert hvor mye dette verktøyet sakker ned koden som det observerer og
sammenlignet med hvor mye liknende vertøy sakker ned koden.

Det jeg har funnet er at Fast Call Graph profiler påvirker ikke i noe stor grad
hvor mye tid programmet bruker i hver funksjon. Det vil si at det er mulig å både
observere hvor mye tid som brukes i hver funksjon og observere den dynamiske
funksjonskall-grafen samtidig og få brukbare resultater. Fast Call Grap profiler sak-
ker programmet ned betydelig mindre enn Gprof og innebygd Clang observering,
som var de andre verktøyene jeg sammenlignet med.
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Chapter 1

Introduction

From the 1990’s to around 2010 the performance of central processing units
(CPU) grew exponentially. But the end of Dennard scaling and the rise of dark
silicon has in recent years lead to a stagnation in single core CPU performance.
To further increase the performance of CPUs the microprocessor makers has in-
creased the number of cores per CPU. The problem with this strategy is that the
CPUs are still affected by dark silicon. [1] [2]

1.1 Accelerators

Accelerators has been proposed as a response to this performance stagnation. Ac-
celerators are digital chips that are created to do a specific type of computation
either faster than a CPU or to be more energy efficient than a CPU performing the
same computations. They are integrated into the computer and can offload some
computation from the CPU. Modern computers are already using accelerators,
both integrated in and external to the CPU.

One example of a CPU integrated accelerator is the CPU hardware needed to
support the AES-NI instruction set for the x86 architectures [3]. Using this hard-
ware for AES computations can, according to Intel, be performed 3 to 10 times
faster than performing the computations by using non-AES-NI CPU instructions.

An example of an external accelerator is the graphics processing unit (GPU).
GPUs are used to compute and draw graphics onto the computer screen. In most
graphics computations the new value of each pixel is independent of the other
pixels, which means that the new value for every pixel can be computed in par-
allel. GPUs makes use of this fact and are made up of a large number of simple
arithmetic units that perform computations on pixels in parallel, and there can
be from 100s to 1000s of these units in a single GPU. By doing computations on
all these units in parallel the GPU is able to perform more graphics computations
per second than a CPU. The arithmetic units are also more energy efficient per
graphics computation than normal CPU cores since they are running at a lower
clock frequency, in the range 1 to 2GHz, and they are also simpler circuits since
they only support graphics related computations. [4] [5]
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FPGA
CGRA

Sp
ee

d
Faster

How specific the accelerator is

General purpose Domain specific

GPU AES accelerator

Figure 1.1: Simple and coarse grained classification of accelerators

Accelerators can be classified according to how specific they are and how fast
they are. Figure 1.1 shows a simple and coarse grained classifications of the two
accelerators I have discussed and two types of accelerators that I will discuss.
The AES accelerator is an example of a domain specific accelerator. The circuit is
only able to perform AES computations, but it performs them fast and efficient.
The GPU is a more general purpose accelerator, since it can be programmed to
perform arithmetic computations on a set of data. It is fast because of the large
degree of parallelism.

FPGA and CGRA, which are abbreviations for Field Programmable Gate Ar-
rays and Coarse Grained Reconfigurable Arrays respectively, are two types of re-
configurable accelerators. Reconfigurable means that it is possible to program the
behaviour of the accelerator, i.e. which computations it performs.

A FPGA is a chip consisting of small, programmable logic blocks that are con-
nected via programmable interconnects [6]. The advantage of FPGAs is that the
logic blocks can be programmed to simulate logic gates such as AND and OR and
therefore it is possible to program a digital circuit, i.e. digital computation, into
the FPGA. The only limit on which computations can be programmed is the num-
ber of logic blocks and interconnects that the FPGA has. The main downside of
FPGAs is that they are normally slow since they are only able to achieve low clock
speeds, typically less than 1 GHz.

A CGRA is similar to a FPGA in that it can be programmed to perform a compu-
tation. The difference is that a CGRA consists of larger functional units compared
to the FPGAs small and simple logic blocks. The functional units performs a some-
what complex computation, such as addition, subtraction, multiplication and/or
division, and they can be connected via interconnects the same way as as the lo-
gic blocks in FPGAs. [7]. Each functional unit is implemented in hardware and a
CGRA can therefore be faster or more energy efficient than a FPGA. The cost of
this increased speed over FPGAs is that the CGRA is less flexible than a FPGA, it
can only perform computations that consists of the operations that the functional
units perform.
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Step 2:
Profile program

Step 3:
Partition program

into CPU and
accelerator parts

Done, program
has been

accelerated

Step 1:
Compile program

Does program
meet

performance
requirements?

Yes

No

Start

Figure 1.2: Illustration of the generic development process

1.2 Program acceleration

To make programs use the available accelerators both the programmers and their
tooling have to be aware of the accelerators and know how to utilize them. They
also need some information on how the program behaves so that they can reason
about which accelerator to use and how to use it. The act of running a program
to gather program behaviour information is called profiling. Interesting program
behaviour can be the number of calls to each function in the program, how the
program utilizes the cache, how much of the execution time is spent in different
parts of the program, etc.

The process of accelerating a program can be described by the generic devel-
opment process from STHEM [8], illustrated in Figure 1.2. Following that pro-
cess the programmer compiles and profiles the program on the CPU. If the profile
information indicates that the program meets the programmers performance re-
quirements, such as execution time, energy usage, etc. they use the program as it
is. If it does not meet their requirements the programmer uses the profile inform-
ation to choose an accelerator to accelerate the program with and then partition
the program into a CPU part and an accelerator part. With this new, partitioned
program the programmer then restarts the process from step 1.

One challenge that comes with profiling a representative "version" of the pro-
gram is that it might take some time, since programs that a programmer wants to
accelerate are often long running programs, as if they were short programs there
is little to be gained from accelerating them. Profilers will also introduce some ex-
ecution time overhead, i.e. slow down the program, which can make the profiling
step take a lot of time. In addition, in some cases the programmer might have to
profile the program several times with different profilers if each profiler gathers
different information and the profilers can not run at the same time.
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1.3 Transparent acceleration

Transparent acceleration is the process where either a program automatically per-
forms the process described in Figure 1.2 to produce an accelerated binary, or
accelerates a program dynamically at runtime as suggested in [9].

NEEDLE [10] is an example of a transparent acceleration tool. Its main goal is
to reduce energy consumption, but in the paper they also report slight speedups.
The process that NEEDLE follows is similar to the process in Figure 1.2, but it
skips the "meets requirements" part and the process is complete after partitioning
the program. This process is fully automatic. But before the automatic process can
start the programmer has to manually select which function to accelerate. To se-
lect the most suitable function the programmer needs profiling information about
the program. The reason that NEEDLE has to be told which function to accelerate
is that it profiles execution paths starting at the selected function, by enumerating
all possible paths from the selected function and also instruments those paths. In
some programs the total number of paths from the "main" function can become
large, needing more than 64 bits to represent the number of paths. And instru-
menting every single path in the program will lead to a greater slowdown than if
only instrumenting paths in a single function.

To select the function to accelerate the programmer can use a profiler that
gathers information on how the execution time is distributed between the func-
tions and select the function with the largest time distribution, since that function
has the greatest theoretical absolute potential of speedup. The programmer can
combine the time distribution profile with a call graph and function call counts
profile to select a function that is both responsible for a relatively large part of the
execution time and is called a low number of times, for example if the accelerator
they use takes a long time to invoke.

1.4 Fast Call Graph (FCG) Profiler

As part of this thesis I have created the Fast Call Graph Profiler. It can be used to do
both time distribution profiling, and call graph and function call count profiling
during a single program run. It instruments each function call and keeps a counter
for each caller-callee function pair. A caller is the function that the call was per-
formed in, and a callee is the function that is being called. These counters can be
used to make an accurate call graph after running the program. An example of the
output from the FCG profiler is shown in Figure 1.3. The output lists each caller-
callee pair from the source program along with the counter of how many times
each call were performed. The FCG profiler works by instrumenting LLVM bitcode,
which is the Intermediate Representation (IR) of the LLVM compiler framework
[11]. The Clang C/C++ compiler is a part of LLVM that can produce bitcode for
C and C++ programs.

The FCG profiler can be combined with the perf profiler, which is a time distri-
bution profiler, to obtain both function call counts and time distribution informa-
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Program:
function1:

call function3
instruction 1
call function2

function2:
instruction1
call function3
call function3

Profile output (if running function1):
Caller: Callee: Number of times:

function1

function1

function2

function3:
instruction1

function2

function3

function3 1

1

2

Figure 1.3: Illustration of the FCG profiler output

tion from a single program run.

1.5 Tasks

From the assignment text I have formulated the following tasks that I am to do:

• T1: create an instrumentation profiler that is compatible with the LLVM com-
piler framework,
• T2: the profiler should gather dynamic call graphs, which is key information

about the program,
• T3: investigate if the profiler from T1 can be used with a sampling profiler to

obtain both dynamic call graphs and function time distribution information
from a single program run, without the instrumentation causing extensive
interference for the sampling profiler,
• T4: in addition I will compare the performance of the T1 profiler against

existing tools.

One example of extensive interference, as mentioned in T3, is when profil-
ing a function where a large fraction of the instructions are function calls. If this
function is instrumented to count function call the result information from a time
sample profiler might attribute a artificially large fraction of the execution time
to this function compared to the functions it calls, since the instrumentation adds
extra instructions to count each function call and the function consists of a larger
fraction of function calls than normal.

I will use Linux’s perf [12] as the sampling profiler in task T3. perf is a widely
used sampling profiler and since it runs "on top of" the program binary it is com-
patible is compatible with all compilers.
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To investigate and measure task T3 I will compare the output of perf when
running with and without the instrumentation profiler and see if the time dis-
tribution of functions is different. I will also measure the execution time of the
programs with and without instrumentation to quantify the overhead introduced
by the instrumentation.

And to answer T4 I will compare the performance of the profiler with two other
profilers that both record function call counts and are easy to use, namely gprof
[13] which is built into the GCC compiler [14] and the built in instrumentation
in the Clang compiler [11] that is used for profile guided optimization (PGO).

For both T3 and T4 I will run the profilers on the benchmarks in the SPEC [15]
and PARSEC [16] [17] benchmark suites.

1.6 Contributions

My contributions in this thesis is the following:

• C1: the Fast Call Graph profiler, as a response to task T1 and T2,
• C2: demonstrated that the Linux perf profiler can be used with the Fast

Call Graph profiler to obtain caller-calle execution counts and function time
distribution as a response to task T3,
• C3: found that the Fast Call Graph profiler does not cause extensive inter-

ference in the perf profile data as a response to task T3,
• C4: found that Fast Call Graph profiler causes significantly lower overhead

than Clang instrumentation and gprof as a response to task T4.

My solution to T1 and T2 is the Fast Call Graph profiler described in Sec-
tion 1.4. The profiler records dynamic call graphs for the program and will be
described in greater detail in Chapter 3. This is the first contribution, C1.

My second contribution, C2, is that I have evaluated how the Fast Call Graph
profiler can be used in conjunction with perf, as a response to task T3. The result
of C2 is C3, I found that the time distribution of the benchmarks does not change
significantly with profiling, which means that it can be feasible to do both instru-
mentation and sampling in a single program run as a step of automatic or manual
program acceleration.

The last contribution, C4, is that I have show that the overhead of Gprof is very
high and that the Fast Call Graph profiler almost always has lower overhead than
the Clang instrumentation, which is most likely since the Fast Call Graph profiler
records less information than the Clang instrumentation.

1.7 Outline

In the next chapter I introduce additional background information that has not
been covered in this introduction. It will also cover related work and state of the
art research. Chapter 3 introduces and describes the profiler that I have created
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in detail, the Fast Call Graph profiler. Chapter 4 describes how the Fast Call Graph
profiler were evaluated.Chapter 5 presents, compares and discusses the results
of the Fast Call Graph profiler against gprof and the built in instrumentation in
Clang. Chapter 6 sums up my work and concludes the thesis.





Chapter 2

Background

There are three main approaches to profiling program behaviour. They are sampling,
static binary instrumentation and dynamic binary instrumentation. Each of them
have their strengths and weaknesses and are suited for different types of profil-
ing. In the following sections I will describe each of the approaches. I have also
included a section called Combined approaches where I discuss research and tools
that combine multiple of the four main approaches.

2.1 Sampling

Sampling is an approach where the program is regularly interrupted, and at each
interrupt the profiler records information about the program or the hardware,
such as hardware counters. By varying the interrupt interval, i.e. the number of
samples per second, the overhead of the profiler can be adjusted at the cost of
granularity in the samples. Fewer samples per second results in lower overhead,
since the work performed by the profiler is done fewer times per second. The
trade-off of reducing the number of samples per second is that the samples be-
comes more coarse-grained and could hide behaviour that only occurs for short
intervals of time.

Normally the sampling profilers run on the same host as the program being
profiled. There are also sampling profiler which are called non-intrusive, which
runs on another host and gets profiler information about the host running the pro-
filed program though protocols such as JTAG or external measurements such as
power consumption. Aveksha is an example of non-instrusive profiling, the CPU
of the host running the profiled program outputs the program counter (PC) over
JTAG (this capability is built into the CPU, so little/no overhead) and another
host samples the PC. [18]. This is similar to how the Lynsyn board from STHEM
[8] works, it samples energy information and sends it the the profiling host. Non-
intrusive sampling profilers are supposed to not affect the host running the pro-
filed program, so that the profiled program is not affected by the running profile
and the profile data is the "ground truth". Normal, intrusive sampling profilers
which runs on the same host as the program being profiled can be implemented

9
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either in the application binary, such as gperftools [19], as userspace programs,
such as [20], or in the kernel, such as Linux perf.

Intrusive sampling profilers has normally low overhead, at least if they are
only performing light work such as time distribution profile, which is a profile of
how much time is spent in each function. For time distribution profiles the over-
head is normally a low single digit percentage, the oprofile profiler reports 1-8%
depending on workload and sampling frequency. [21] Intrusive samling profilers
can influnce the behaviour of the program being profiled and therefore reduce
the accuracy and correctness of the profile, but they are often significantly easier
to use than non-intrusive profilers since they do not require setting up multiple
hosts with the correct capabilities and connecting them together.

2.1.1 Perf

Perf is a intrusive sampling profiler built into the Linux kernel. It can record a large
number of different metrics about the running program, e.g. function time distri-
bution, number of instructions executed, number of cache hits etc. It interrupts
the running program at a regular interval and records statistics for the program
execution since last interrupt. Perf is a low overhead tool to record time distribu-
tion of programs and easily accessible since it is part of the Linux kernel.

2.2 Static binary instrumentation

Static binary instrumentation profiling, where additional machine instructions are
inserted into the program binary before the binary is executed, are one way of
obtaining accurate information about the program being run, and it can be done
with a low overhead if the recorded information is easy to compute and store.. This
type of profiling can be used to obtain information such as the number of times
each function is called and how often each branch in the program is taken. Since
this type of profiling inserts extra machine instructions to be executed the result
is almost always a slowdown, and more instrumentation/data recorded results
in a greater slowdown. During my work I found that in some special cases the
instrumented binary can execute faster than the uninstrumented one. I suspect
this is because of alignment and/or cache and/or branch prediction gains.

2.2.1 Clang instrumentation

Clang has built in support for instrumenting the binaries it generates to produce
profile data that can be used in profile guided optimization (PGO), which is a
process where the profile data is used to make decisions when optimizing the
program. Clang instruments the binary to count how many times each function
is executed and how many times each basic block is executed. The start and end
of basic blocks corresponds to branches and function calls in the program. The
instrumentation does not record any caller-callee relations or call stacks. It does
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however count indirect function calls. The profiler is intented to be used for PGO
in clang, but it can also be used as an easy way to get accurate call counts for all
functions.

2.3 Dynamic binary instrumentation

Dynamic binary instrumentation instruments the machine code stream on the fly.
Can get detailed information about the program without modifying the binary.
Examples are Valgrind [22] and Pin [23]. The overhead of this approach can be
high and are closely related to the amount of instrumentation being done. Valgrind
states that the slowdown factor can range 5 to 100. Since these tools only operates
on the binary they are independent of the source program and its build tools unlike
some static instrumentation profilers which are implemented in a specific compiler
(such as Clang instrumentation).

2.4 Combined approaches

Combined approaches are approaches that combine multiple of the three main
approaches.

2.4.1 Gprof

Gprof is a GCC built in function call counting instrumentation and program time
distribution sampling profiler. It combines sampling with static binary instrument-
ation. It instruments the code to count how many times each function is executed
and sets up a sampling function that samples at regular intervals to record how
much time is spent in each function.

2.4.2 Causal profiling

Causal profiling [24] is a recently proposed way of doing profiling to provide a
profile that fits the programmer intuition of how to optimize a program. It can
be seen as a combination of sampling profiling and dynamic binary instrument-
ation since it runs at regular intervals and instruments the program code on the
fly when it runs. The way causal profiling works is by slowing down all threads
but one which is approximately equivalent to speeding up the one thread not be-
ing slowed. During this slow down they record how much slower the program
executes and use that to determine how large speedup it is possible to achieve
by optimizing the code that ran in the normal-speed thread. The problems associ-
ated with the traditional approach of using a sampling profiler that record function
time distribution and then optimize the functions with a large percentage of the
execution time that causal profiling seeks to solve is that some functions might be
waiting for external resources, such as disk or network, and therefore consume a
lot of execution time. In multi threaded applications there might also be several
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threads that execute at the same time and then waits for all the threads to com-
plete before proceeding. In such a case speeding up any individual thread will not
result in a speedup of the whole program since the execution time depends on the
slowest of the threads execution together.

2.4.3 DYPER

The DYPER framework [25] is another approach that combines sampling and dy-
namic binary instrumentation. It lets the programmer set a target performance
overhead and the framework then makes sure that the profiling done does not
slow the program down more than the target overhead. Profiling in DYPER is
done by proflets, which are pieces of code that each profile a different perform-
ance aspect. Each proflet can do two types of analysis, basic and detailed. The
basic analysis is done in a sampling fashion, where DYPER samples the stack and
then the proflets analyse the stack sample. The detailed analysis is implemented
by using dynamic binary instrumentation to instrument the program at runtime
to obtain the performance data that the proflet is interested in. The proflets also
include information about their detailed analysis, how long it takes to run it, how
much it slows the program down and its priority. DYPER uses this information
from each proflet and the target overhead to determine how often it should do
sampling (basic analysis), how often it should do dynamic binary instrumentation
(detailed analysis) and how often each proflet should run. The data that DYPER
gathers are a statistical approximation to the actual data since it does not profile
all the time. The tradeoff is to reduce the overhead compared to profiling all the
time by profiling at regular intervals and then extrapolate numbers to cover the
whole program execution.
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Fast Call Graph (FCG) profiler

3.1 Profiling strategy

The goal of the profiler is to record the dynamic call graph, i.e. it should count
how many times each distinct edge in the call graph is taken, and be compatible
with LLVM. To achieve this I considered three different approaches, mcount in-
strumentation (will be explained soon) or similar instrumentation, using existing
instrumentation frameworks or doing LLVM IR instrumentation.

Both the GCC and Clang compilers can be configured to insert calls to the func-
tion mcount at function entry. I can then write an implementation of the mcount
function that does the necessary edge counting and link the function against the
program binary. A drawback of using this approach is that the mcount function
does not directly get any information on which function it was called from or
which function called the current function. To get this information it is necessary
to traverse the stack and find the information there. Traversing the stack is not a
zero-cost operation so this approach will give a larger overhead than to just incre-
ment a counter. There is also some overhead associated with calling the mcount
function, but Link Time Optimization (LTO) might be used to inline the mcount
function body in each function. One advantage of this approach is that indirect
function calls require no special treatment, they are supported in the same way
as direct function calls. GCC can also insert calls to __cyg_profile_enter and
__cyg_profile_exit at function entry and exit respectively. These functions are
called with the address of the current function and the call site. This solves the
main problem associated with using mcount instrumentation, but it is still a func-
tion call which means that there is some overhead in calling the profiling function.
It also seems to be GCC only which means that I can not use it since the profiler
needs to be LLVM compatible.

The CSI framwork [26] is an instrumentation framework for LLVM. It functions
similarly to the mcount function in that it inserts calls to instrumentation functions
that the user needs to write and link the binary against. The framework has an
instrumentation function that is inserted before function calls which I could have
used. The instrumentation function gets the called function and a call site ID as

13
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Figure 3.1: Illustration of the Fast Call Graph profiler instruments code

arguments. It might be possible to write the instrumentation function in such a
way that it can be optimized into a single increment instruction and inlined during
LTO to reduce the overhead. This type of optimization will not work for indirect
calls, so they have to be treated separately.

The last approach is the one I chose. Instrumenting the LLVM IR directly is
more work and harder than writing the instrumentation code in C, as you could
with the other two approaches, especially when you are inexperienced with LLVM
IR. But I think the approach is the most flexible and the one where it is easiest
to obtain a low overhead since I write the actual IR and can be sure that the
instrumentation is inlined.

This approach is similar to the built in instrumentation in Clang, but my pro-
filer is going to record a slightly different set of information. As mentioned in the
Background Chapter, Clang instrumentation records execution counts for each
function and basic blocks. I am not interested in basic block counts and can there-
fore achieve lower overhead than Clang since I record less data. The other differ-
ence is that I will record where each function was called from which is something
that Clang does not do.

3.2 Implementing the Fast Call Graph Profiler

I use the NEEDLE source code [27] as a starting point for my profiler since I have
worked with it previously and it does LLVM instrumentation. Some parts ofo the
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code and design choices are inspired by an demo of LLVM instrumentation by Nick
Sumner [28], especially how to store the function names. The profiler is imple-
mented as a stand alone tool that takes a LLVM bitcode file as input and outputs
an instrumented binary. To be able to use the profiler on C and C++ programs that
consists of more than one compilation element (source file) the Whole Program
LLVM (WLLVM) [29] Clang wrapper can be used, which creates a single LLVM IR
bitcode file by merging the LLVM IR files of each compilation element. Since the
focus of the profiler is low overhead it does not currently support indirect calls,
i.e. calls where the target function is computed at runtime, because supporting
them would require more instrumentation which leads to larger overhead. This
weakness will be further discussed in the Results chapter.

Figure 3.1 shows an illustration of how the profiler is implemented, with call
count IDs and instrumentation. To store the call counters I chose to use a C array
where each index represents a caller-callee pair. A C array is an efficient and simple
way to store the counters since it is a contiguous block of memory and the address
for each index can be computed at compile time. The mapping of caller-callee pair
to array indexes is done by iterating over the whole LLVM IR and finding all call
instructions. This is shown as Step 1 in the figure. Each call instruction is assigned
an ID that starts at 0 and increments by 1 for each call instruction. This ID later
used as an index into the counters array. During this ID assignment the profiler also
gets the name of the caller and calleee functions and stores the pair of function
names in an array to be used as labels for each counter value when outputting
the profile data at the end of execution. This function name array is also indexed
by the ID. If the function call is an indirect call the name of the called function is
set to "indirect_callNNN" with NNN being a counter that is incremented in the
same way as the ID. By handling indirect calls this way it is possible to see how
often each indirect function call is executed even though it is not possible to see
the target function.

After each call instruction has been assigned an ID the profiler performs the
actual instrumentation. This is Step 2 in the figure. Before each function call it
inserts instructions to get the counter value at array index ID, increment the value
by 1 and then store the value in the array.

When the instrumentation is done the tool links the bitcode against a C func-
tion which is set up to run at program end by using the LLVM dtor (destructor)
feature. This function outputs the counters from the counter array and the func-
tion pair names to a file so that the execution counts can be inspected later. After
linking the tool compiles the program into a native binary.

Pre-allocating space in the counter array for each caller-callee pair that ap-
pears in the program source is not the most memory efficient way to implement the
counters, since some caller-callee pairs might not be called during the course of the
program. But by allocating space for each caller-callee pair the profiler knows the
counter index for each pair at compile time and there is no need for runtime code
to allocate space for each new counter and keeping track of which caller-callee
pairs have been executed. Adding more runtime code would have increased the
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overhead and since there is normally an abundance of memory available I chose
to prioritize speed and low overhead over memory frugality/efficiency.

3.3 Performance overhead

The instrumentation that increments the array counter at runtime consists of four
LLVM IR instructions. The instructions are to first compute the counter address,
then load the counter value, then increment the counter value by 1 and then lastly
store the counter value back to the counter array. The first instruction, the counter
address computation, has only constant arguments so during optimization it can
be computed and replaced with a constant. On x86 architecture and optimization
level -O0 this leads to the four instructions being mapped to three machine code
instructions, one MOV to load the counter value, then increment it by one and
lastly one MOV to store the value. On higher optimization levels the instrument-
ation is realized with a single INC instruction.

Execution time overhead will most likely correlate with the total number of
function calls since each function call adds either three or one extra instruction
depending on optimization level. Since the program has to execute the extra in-
strumentation for each function call, call intensive functions will most likely get at
least a bit larger percentage of execution time with instrumentation. The correla-
tion between function calls and overhead will be further discussed in the Results
chapter.

Data listed at [30] indicates that the INC instruction on memory addresses
can be executed at one instruction per cycle, with at least 5-6 cycles between
multiple INCs of the same address. Since each INC is followed by a function call,
which normally takes a at least tens of cycles, it is safe to assume that none of the
instrumentation INC instructions will have to wait for each other. This means that
the INC instruction instrumentation can be executed at one instruction per cycle
and does not cause a large slowdown of the program.



Chapter 4

Experimental setup

4.1 Environment

Table 4.1 lists the main information about the computer used to run all evalu-
ations. GCC is used to compare the Fast Call Graph profiler with gprof, which is
the built in profiling in GCC. GCC 7 was used since I encountered problems with
GCC 9, which were the most recent version when I started my work, and GCC 7 is
the default compiler in Ubuntu 18.04. I used LLVM 3.8 because I used the NEEDLE
source code as a starting point for my profiler and NEEDLE uses LLVM 3.8.

My evaluation process is illustrated in Figure 4.1. To record time usage I use
the built in SPEC time reporting and /usr/bin/time for PARSEC. Each benchmark
is run three times and I use the minimum execution time when comparing con-
figurations since it is an approximation to how fast the program is able to execute
under ideal conditions. The overhead is calculated by dividing the execution time
by the baseline execution time for each config. The configs and their baseline is
listed at the start of the next chapter. The mean overhead for each config is calcu-
lated as the arithmetic mean over all the benchmarks. When doing perf profiling
I run the benchmarks one time. I only run them once so that I do not have to
set up a system that saves the perf data for each SPEC run, since the SPEC tools
runs multiple iterations of each benchmark in the same directory, which causes
the perf data to be overwritten for every iteration. I also observed that the time
measurements were fairly consistent so I found it reasonable to believe that the
perf samples would also be consistent. In addition small differences in function
time distribution does not matter that much since we are interested in the high
level picture, i.e. in which functions is the most time spent. In real life usage, if sev-
eral functions use about the same amount of time the programmer might choose
which function to accelerate based on knowledge of the code and the accelerator.
Or they can use another metric as tie breaker, e.g. number of calls to function,
number of calls the function makes, size of function, etc.

17
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Table 4.1: Computer hardware and software used

CPU: Intel i7 6700K, HyperThreading disabled [31]
RAM: 16 GB
OS: Ubuntu 18.04 [32]

GCC version: 7.5.0
LLVM version: 3.8

WLLVM version: 1.2.7

Program source Compile Program binary

Time 3 program runs

Profile program using
perf

Calculate overhead
by comparing to base

configuration

Time distribution
profile

For each configuration:

Figure 4.1: Illustration of my evaluation process

4.2 Benchmarks

All benchmarks were compiled with "-g -O3 -march=native -fno-unsafe-math-
optimizations" compiler options. These compiler options are based on the de-
fault options in SPEC CPU. -O3 enables the highest level of compiler optimizations
and tries to reduce execution time of the resulting binary. -march=native lets the
compiler use all instructions supported by the CPU, e.g. SIMD instructions. -fno-
unsage-math-optimizations makes sure that the compiler generates floating poing
code that is correct and does not assume anything about arguments.

The SPEC benchmarks are run with one thread for the speed benchmarks and
one copy for the rate benchmarks. OpenMP is disabled to make the programs
serial. I want serial programs so that the profilers does not have to handle mul-
tiple threads potentially writing to the same counters at the same time. Only the
benchmarks that execute as a single command were used, so that I avoid having
to support running a profiler multiple times in same directory and having the pro-
file information overwrite each other, as discussed previously with running perf a
single time. Since I am using the Clang compiler I have only used the benchmarks
that consists of C and/or C++ code since Clang does not support Fortran. The
benchmarks 510.parest_r and 525.blender_r did not compile with the default
options in GCC and/or Clang, so I have not used them.

I have use the code at [33] as basis for PARSEC, as the code at the Princeton
web site does not build out of the box. The serial version for each benchmark
were used, for the same reasons as why I run SPEC serially. All benchmarks were
run with the native input. The benchmarks facesim, raytrace and dedup did not
compile with Clang so I have not used them. x264 segfaulted when I ran it after
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compiling it with GCC so it was also not used. Lastly I had a problem with the
vips benchmark, it did not compile/link correctly when using the Fast Call Graph
profiler tool. This is a shortcoming of the method used to instrument the binary,
and could be overcome by making the profiler into a Clang pass, which is a piece
of code that is run as part of the Clang optimizations.

One problem I encountered is that the ferret benchmark from PARSEC is not
deterministic. When running it multiple times the function-pair call counts repor-
ted by the Fast Call Graph profiler are different. Despite not being deterministic it
has fairly consistent execution times so I have included it in my testing.

In 511.povray_r, 538.imagick_r and 638.imagick_s the SPEC benchmark
runner runs a verification binary after running the benchmark to validate the out-
put. Since the SPEC compile options applies to all binaries being built for each
benchmark, the validation-binaries are also built with Gprof and Clang instru-
mentation profiling enabled. This means that the validation binaries also produce
profile data, which overwrites the profile data from the benchmark binary since
the profiling uses a standard name for the profile output file. This is the same type
of problem that made me use only single command benchmarks and run perf a
single time. Despite this I have included the benchmarks in the overhead evalu-
ation since I discovered the problem after obtaining time measurements for them.
And the Fast Call Graph profiler does not have this problem with, since for that
profiler I have to manually instrument the main binary.
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Results

The five compiler and profiling configurations I have evaluated are:

• GCC,
• Gprof,
• Clang,
• Clang instrumentation,
• Fast Call Graph profiler.

The GCC configuration is used as a baseline for the Gprof configuration. The
Gprof configuration is compiled using GCC with the -pg command line argument
to enable Gprof. Gprof is an easily accessible profiler for gathering function exe-
cution counts. Clang is used as a baseline for the Clang instrumentation and the
Fast Call Graph profiler configurations. Clang instrumentation is enabled by using
the -fprofile-generate command line argument and is another easily access-
ible profiler for gathering function execution counts. The last configuration is the
Fast Call Graph profiler. For this configuration the benchmarks are compiled using
WLLVM, which used Clang under the hood, and then instrumented with the Fast
Call Graph profiler.

5.1 Profiling overhead

To compare the execution time/profiling overhead of the profilers I have normal-
ize the execution time to the execution time of the baseline for each configuration.
Since GCC and Gprof uses another baseline than Clang, Clang instrumentation
and Fast Call Graph profiler I have present them in different figures.

Figure 5.1 shows normalized execution times for the GCC and Gprof config-
urations. The overhead for Gprof varies a lot, from approximately zero for lbm
to almost 250% for povray. The mean overhead is close to 45%. Because of the
variability it can be hard for programmers to develop an intuition of how much
Gprof will slow down the program being profiled. Not knowing how much the
program will be slowed down can be discouraging if the program normally takes
a long time to run, e.g. if it normally 4 hours to run a program it might take more

21
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Figure 5.1: Normalized execution time for Gprof profiling. The key takeaway is
that the Gprof overhead varies a lot and in multiple cases causes a slowdown of
more than 2x.

than 8 hours to run it with Gprof.
In Figure 5.2 the normalized execution time of the LLVM based configurations

are plotted. The overhead caused by the two LLVM based profilers are well below
Gprof, both the average and maximum overhead. The figure shows that the instru-
mentation done by Clang is much more costly than only counting function calls as
the Fast Call Graph profiler does. The difference is most likely caused by the fact
that Clang instrumentation counts how many times each basic block is executed
and a program consists of more basic blocks than function calls. Fast Call Graph
profiler has a mean overhead of approximately 2% and Clang instrumentation
mean overhead is close to 20%.

The maximum overhead for the Fast Call Graph profiler is on 511.povray_r,
with 11% overhead. Gprof also had the highest overhead for this benchmark. This
could indicate that the benchmark has many calls, since the overhead of the Fast
Call Graph profiler is related to the number of function calls. This will be discussed
in a later section.

There are several interesting benchmarks in the figure. Both 519.lbm_r and
ferret is sped up when instrumented, 519.lbm_r by the Clang instrumentation
and ferret by the Fast Call Graph profiler.

The 519.lbm_rClang instrumented binary runs about 3% faster than the baseline
Clang binary. To investigate this I ran the tool perf stat on both binaries and
saw that the instrumented binary executes a lot fewer branches than the baseline,
about 20% fewer. The baseline does also execute more instructions than the in-
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Figure 5.2: Normalized execution time for the Fast Call Graph profiler and the
Clang instrumentation. The key takeaway is that the Fast Call Graph profiler has
lower overhead than Clang instrumentation in almost all benchmarks and a sig-
nificantly lower mean overhead.

strumented binary, but the difference in number of instructions executed is much
smaller than the difference in branches, the difference in instructions executed is
ca. 1.5%. I do not know the reason for this difference, but I looked at the assembly
of each of the binaries and saw that the hot loop in the benchmark seemed to be
structured differently in the two binaries, which could explain the fewer branches.
Why Clang/LLVM chooses to structure or optimize the hot loop differently when
profiling is enabled is not clear to me, but it could be that the extra instrumenta-
tion instructions makes the code cross some optimization thresholds which applies
optimizations that proves to improve performance.

In the ferret benchmark the binary instrumented by the Fast Call Graph pro-
filer executes about 3% faster than the Clang baseline. This speedup happens des-
pite the fact that perf stat reports that the instrumented binary executes on the
order of 109 more instructions than the baseline. The instrumented binary also
executes more branches than the baseline but at the same time the number of
branch misses are lower than the baseline. Less branch misses could explain the
speedup since a branch miss is normally costly because the instruction pipeline
must be flushed.

The graph in Figure 5.3 shows the number of function calls per second. When
comparing it to the Fast Call Graph profiler overheads there seems to be a correl-
ation between the number of calls and the overhead. This is what I expected to
be the case, and the graph reinforces that expectation.
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Figure 5.3: Number of function calls per second for each benchmark. The key
takeaway is that the benchmarks differ widely and 511.povray_r is an outlier.

Figure 5.4: Scatter plot to show correlation of normalized execution time and
number of function calls per second for the Clang instrumentation. The key
takeaway is that there does not seem to be any clear correlation between the
variables.
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Figure 5.5: Scatter plot to show correlation of normalized execution time and
number of function calls per second for the Fast Call Graph profiler. The key
takeaway is that there seems to be a positive correlation between the variables.

To further investigate if there is a correlation I have created Figure 5.4 and
Figure 5.5 which plots the normalized execution time against the number of calls
per second for Clang instrumentation and the Fast Call Graph profiler. For the
Clang instrumentation it is hard to see any correlation between the variables, so
there must be additional variables that explains the overhead. But the Fast Call
Graph profiler shows a positive correlation between the overhead and the number
of calls per second and suggests that the number of calls per second can be used
to predict the overhead of using the Fast Call Graph profiler on a program.

5.2 Time distribution impact

Figure 5.6 shows the amount of time used in each of the top 5 GCC functions for
GCC and Gprof when profiled with perf. The main thing to take note of is that the
percentages differ widely between the configurations. The reason that the Gprof
functions makes up a smaller share of the execution time is that the profiling
functions takes part of the execution time.

To try to compensate for the Gprof profiling functions I have created Fig-
ure 5.7. The GCC data is the same as in the previous figure. But the Gprof data is
the perf data from running Gprof with the Gprof functions removed and the result-
ing percentages normalized to 100%. By doing this GCC and Gprof agree well on
the time percentages. I also included Gprof-Gprof which is the time percentages
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Figure 5.6: The percentage of execution time for the top 5 functions as reported
by perf. The key takeaway is that the mcf, deepsjeng and leela benchmarks has
a large difference in total execution time for the plotted functions.

Figure 5.7: The percentage of execution time for the top 5 functions as reported
by perf (for GCC and Gprof) and by Gprof (for Gprof-Gprof). The key takeaway
is that GCC and Gprof are similar while Gprof-Gprof has some outliers.
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reported by Gprof and not perf. Because of the overwriting problem mentioned
in the last Chapter I do not have Gprof data for 511.povray_r and the two ima-
gick benchmarks. Gprof-Gprof does not agree that well with GCC and I think the
reason for that is that Gprof does not count the time spent in library functions.
The key takeaway is that using perf and removing the profiling functions from the
Gprof samples gives a fairly accurate representation of the true time distribution.

Figure 5.8: Comparison of the percentage of execution time for the top 5 func-
tions as reported by perf for Clang-instrumenter and the Fast Call Graph profiler.
The key takeaway is that the Fast Call Graph profiler agrees with the Clang dis-
tribution.

In Figure 5.8 I have plotted the top 5 functions for the Clang based con-
figurations. Fast Call Graph profile is similar to the Clang baseline but Clang-
instrumentation has several benchmarks where there are differences. I investig-
ated the differences and found that they seemed to be caused by different inlining
strategies in Clang and Clang-instrument.

To make the comparison more fair for Clang-instrument I have created Fig-
ure 5.9. In it I have removed all benchmarks where there are significant differences
in how functions are inlined. I did this by finding the functions in each configur-
ation that accounted for more than 5% of the execution time. Then I compared
the set of functions from each configuration and removed the benchmarks where
the sets did not contain the same functions. The key takeaway is that the function
time distribution is fairly similar to Clang for both profilers and they can therefore
be used together with perf to profile function time distribution and function call
counts.
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Figure 5.9: Comparison of the percentage of execution time for the top 5 func-
tions as reported by perf for Clang-instrument and the Fast Call Graph profiler.
Benchmarks where the configurations differ in inlined functions (of the functions
accounting for > 5% execution time) have been removed. The key takeaway is
that both Clang-instrument and the Fast Call Graph profiler changes the distribu-
tion little enough to make it usable for selecting functions to accelerate.

5.3 Accuracy of function call counts

In the blackscholes benchmark I discovered something about the function call
counting done by the Fast Call Graph profiler and the Clang instrumentation. In
the hot function, the function where the program spends the most time, there is a
call to the sqrt function in the standard C library. This function call is optimized
to use the built in x86 sqrt instruction by both Clang/LLVM and GCC when lower-
ing/translating the program to machine code. Since this optimization happens at
the machine code generation stage, and not as part of inlining, both the Fast Call
Graph profiler and the Clang instrumentation counts the number of times the sqrt
function is executed, even though it is only an instruction and there is no func-
tion call. The sqrt instruction were always used by the compilers when I tested,
regardless of which compiler flags I used. This observations suggests that there
could be some cases the function called is not really a function call. I assume that
this function call to instruction mapping is only done for basic arithmetic functions
and that it will not pose a problem for normal function calls.
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Figure 5.10: Percentage of indirect function calls in each benchmark. The key
takeaway is that the mcf benchmarks has almost only indirect calls and that the
majority of the benchmarks has little or no indirect function calls.

5.4 Indirect calls

Since the profiler does not store the target of an indirect call, it is not possible to
attribute indirect calls to the correct caller-callee function pair. Figure 5.10 shows
that this is mostly a problem for the mcf benchmarks where more than 90% of
the function calls are indirect calls. For the majority of the benchmarks it is not a
problem since they do not use indirect calls.

As explained in the Profiler chapter it is possible to add support for correctly
counting indirect calls in my profiler at the cost of additional overhead when pro-
filing indirect calls. In this thesis low overhead were the top priority and indirect
calls were not prioritized. And as the figure shows indirect calls is not widely used
in most of the benchmarks so it is not a major problem that the profiler does not
support indirect calls.





Chapter 6

Conclusion

6.1 Conclusion

The key takeaway is that small amounts of call recording instrumentation does not
change the function time distribution in any significant way, so it is possible to run
both instrumentation and sampling at the same time and obtain data that can be
used when selecting which function to accelerate when using an accelerator such
as an FPGA.

My main contribution is C1, the Fast Call Grap profiler. This profiler instru-
ments LLVM bitcode to count the number of times each caller-callee pair in the
program is executed to generate a dynamic call graph. This contribution fulfills
task T1 and T2.

I have also demonstrated that the Fast Call Graph profiler can be used to-
gether with the perf profiler to get both function time distribtion information and
dynamic call graph information from a single program run. This demonstration
is contribution C2 and it partly fulfills task T3. Contribution C3 fulfills the rest of
task T3, it is that I have evaluated how the Fast Call Graph profiler interacts with
the perf profile and found that there is little difference between running with and
without Fast Call Graph instrumentation, so it is reasonable to run both profilers
at the same time.

The last contribution, C4 as a fulfillment of task T4, is that I have shown that
the Fast Call Graph profiler has a much lower average overhead compared to the
Gprof and Clang instrumentation profilers.

6.2 Further work

I have identified multiple things that can be done as further work following this
thesis.

The first thing is to add support for indirect calls to the Fast Call Graph profiler
and measure it there is any additional overhead. Adding indirect call support will
make the profiler more accurate at the cost of a likely increase in overhead. One
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way of adding support for indirect calls is to keep the direct call instrumentation
as it is and then write new instrumentation for indirect calls that are only inserted
at indirect call sites. By implementing it this way the indirect call support will
not add any additional overhead to direct calls but only add additional overhead
to indirect calls.As Figure 5.10 shows the usage of indirect calls is varied in the
benchmarks I ran and are not used in the majority of them.

The next thing that can be done is to extend NEEDLE so that it can read profile
information from perf and Fast Call Graph profiler to automatically select which
function to accelerate. Doing this can make NEEDLE and automatic FPGA accel-
eration more approachable and easier to use for developers.

The third thing that can be done is to make the Fast Call Graph profiler into a
Clang pass so that WLLVM is not needed. A Clang pass is code that runs as part of
the optimization process when compiling programs. Having the profiler as a Clang
pass will make it easier to use since it will allow you to compile your programs
normally and not use WLLVM. As already mentioned I did encounter a problem
with the vips benchmark where it would not compile since the compilation and
linker options were not correct when the profiler tool tried to generate the binary.
That problem would most likely have been solved by having the profiler as a Clang
pass.
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