
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Maria Soleim

Reproducibility of the Top-Performing
Methods in the M4 Competition

Master’s thesis in Computer Science

Supervisor: Odd Erik Gundersen

June 2020

Maria Soleim

Reproducibility of the Top-Performing
Methods in the M4 Competition

Master’s thesis in Computer Science
Supervisor: Odd Erik Gundersen
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Reproducibility has recently received increased attention within artificial intelligence. Al-
though it is claimed that artificial intelligence is having a reproducibility crisis, this is not
yet confirmed about time series forecasting. This study aims to determine to what degree
today’s research within the field of time series prediction is reproducible. An attempt to
reproduce some of the methods from the M4 competition could fill this gap in the liter-
ature. Ten of the top-performing methods in the M4 competition have been attempted
reproduced. The eight methods that were successfully rerun produced forecasts that were
not equal to the original submissions, but still gave a score that did not change the order of
the top-performing methods in the competition.

i

Sammendrag

Reproduserbarhet har nylig fått økt oppmerksomhet innen kunstig intelligens. Selv om det
hevdes at kunstig intelligens har en reproduserbarhetskrise, er dette ennå ikke bekreftet om
tidsserieprognoser. Denne studien tar sikte på å bestemme i hvilken grad dagens forskning
innen tidsserieprognoser er reproduserbar. Et forsøk på å reprodusere noen av metodene
fra M4-konkurransen kunne fylle dette gapet i litteraturen. Ti av de beste resultatene i
M4-konkurransen er blitt forsøkt reprodusert. De åtte metodene som vellykket ble kjørt
om igjen produserte prognoser som ikke var like de originale innleveringene, men ga en
poengsum som ikke endret rekkefølgen på resultatlista i konkurransen.

ii

Table of Contents

Abstract i

Sammendrag (Abstract in Norwegian) ii

Table of Contents v

List of Tables viii

List of Figures xi

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Problem Outline . 2
1.3 Research Context . 2
1.4 Objective and Research Questions . 2

2 Background 3
2.1 Time Series . 3

2.1.1 Forecasting . 3
2.1.2 Models . 4
2.1.3 Patterns . 4
2.1.4 Simple Forecasting Methods . 6
2.1.5 Time Series Decomposition . 9
2.1.6 The Random Walk Model . 13
2.1.7 ARIMA . 13
2.1.8 ETS . 16

2.2 The M4 Competition . 17
2.2.1 The M4 Competition Dataset . 17
2.2.2 Performance Measures . 17

2.3 Relevant Methods from the M4 Competition 21
2.3.1 ES-RNN . 21

iii

2.3.2 M4metalearning . 24
2.3.3 WESM . 26
2.3.4 GROEC . 27
2.3.5 SCUM . 32
2.3.6 THIEF Combination . 33
2.3.7 Theta Box-Cox . 34
2.3.8 Predilab . 35

2.4 Reproducibility . 35
2.4.1 A Reproducibility Framework 36

3 State of the Art 39
3.1 On the State of the Art of Evaluation in Neural Language Models 39
3.2 Are GANs Created Equal? A Large-Scale Study 40
3.3 Deep Reinforcement Learning that Matters 41
3.4 Unreproducible Research is Reproducible 42
3.5 Are We Really Making Much Progress? A Worrying Analysis of Recent

Neural Recommender Approaches . 43
3.6 Objectivity, Reproducibility and Replicability in Forecasting Research . . 43

4 Proposed Methodology 45
4.1 Methods to Reproduce . 45
4.2 Rerunning the Methods . 46

4.2.1 Documentation by the Original Researchers 47
4.2.2 Docker Image . 47
4.2.3 Computers . 47

4.3 Evaluating a the Results . 47
4.3.1 Similarity Between the Forecasts 48
4.3.2 Similarity in the Performance 48
4.3.3 Variance Between the Reruns 49
4.3.4 Difference Between Computers 50

5 Results 53
5.1 The Rerunning of the Methods . 53

5.1.1 ES-RNN . 53
5.1.2 M4metalearning . 54
5.1.3 WESM . 55
5.1.4 forecaster18 . 55
5.1.5 GROEC . 55
5.1.6 SCUM . 55
5.1.7 THIEF Combination . 56
5.1.8 Theta Box-Cox . 56
5.1.9 Card . 56
5.1.10 Predilab . 56

5.2 Similarity Between the Forecasts . 57
5.3 Similarity in the Performance . 60
5.4 Variation Between the Reruns . 61

iv

5.5 Difference Between Computers . 61

6 Discussion and Conclusion 65
6.1 Discussion . 65

6.1.1 To what degree is the top-performing methods in the M4 competi-
tion reproducible? . 65

6.1.2 Which factors make research on time series forecasting difficult to
reproduce? . 68

6.1.3 How can we work for future research on time series forecasting to
reach a higher level of reproducibility? 70

6.2 Conclusion . 70
6.3 Further Work . 70

Bibliography 73

Appendices 77

A Reproducibility 79
A.1 Variables that makes up the factors that decide the reproducibility degree . 79

B The M4 Competition 81
B.1 An overview of the M4 competition’s contributions 81

C Results 83

v

vi

List of Tables

2.1 The number of time series in the M4 competition based on their resolution
and origin. 18

2.2 The horizon to predict in the M4 competition given the resolution of the
time series. 18

2.3 The frequency for each resolution considered by the organizers. The fre-
quency is used for calculating MASE, which again is used to calculate
OWA. 20

2.4 The number N of observations from the last part of the training set that
is used as a hold-out for estimating the quality of the different forecasting
methods. 26

4.1 The methods that will be attempted reproduced in prioritized order. 46

4.2 Examples of values that could be produced when the algorithms f, g, h, i,
and j are running on computer A and B. 52

5.1 An overview over which methods that were rerun on which computers. . . 54

5.2 The percentage of time series where the sMAPE between a rerun and the
original submission was equal to 0 on computer A and B. 60

5.3 The percentage of time series where the sMAPE between a rerun and the
original submission was less than 1 ∗ 10−5 on computer A and B. 60

5.4 Average coefficient of variation between five reruns of a method on the
same computer. 61

5.5 The average DRMSD and PD between all forecasted values from the five
reruns on computer A and the five reruns on computer B. 62

A.1 The factors needed for differend degrees of reproducibility and the vari-
ables that specify them as specified by Gundersen (2019). 80

vii

B.1 The table contains all 49 contributions to the M4 competition, arranged
from best performing to worst performing method. The column ”Repli-
cability category” is the category given by Makridakis et al. (2019). The
category ”Unknown” could be that they did not succeed in replicating the
method for various reasons, whereas the category ”Not considered” indi-
cated that they were not mentioned in the original table of Makridakis et al.
(2019) at all. The table also shows which of the methods that are publicly
available at the time of writing and the time estimated by Makridakis et al.
(2019) for some of the methods. 82

C.1 Difference between OWA values of the original submission and average
OWA of the five reruns for method 036 on computer A. 83

C.2 Difference between OWA values of the original submission and average
OWA of the five reruns for method 036 on computer B. 84

C.3 Difference between OWA values of the original submission and average
OWA of the five reruns for method 039 on computer A. 85

C.4 Difference between OWA values of the original submission and average
OWA of the five reruns for method 039 on computer B. 85

C.5 Difference between OWA values of the original submission and average
OWA of the five reruns for method 069 on computer A. 85

C.6 Difference between OWA values of the original submission and average
OWA of the five reruns for method 078 on computer A. 85

C.7 Difference between OWA values of the original submission and average
OWA of the five reruns for method 118 on computer A. 86

C.8 Difference between OWA values of the original submission and average
OWA of the five reruns for method 118 on computer B. 86

C.9 Difference between OWA values of the original submission and average
OWA of the five reruns for method 237 on computer A. 86

C.10 Difference between OWA values of the original submission and average
OWA of the five reruns for method 245 on computer A. 86

C.11 Difference between OWA values of the original submission and average
OWA of the five reruns for method 260 on computer A. 91

C.12 Difference between OWA values of the original submission and average
OWA of the five reruns for method 260 on computer B. 91

viii

List of Figures

2.1 A time series can be predicted with point forecast or prediction interval.
The light blue dots shows a point forecast. A specific value is predicted
as the most likely value. The light blue shade behind the light blue dots
shows a prediction interval. The real value is most likely inside this area. . 4

2.2 A time series generated to illustrate an increasing trend. 5
2.3 A time series generated to simulate white noise. 6
2.4 Forecasting with the naı̈ve method. The dark blue dots indicate observed

values and the light blue dots indicate the predicted values. Every predic-
tion equals the last observed value. 7

2.5 Forecasting a time series with frequency 7 using the seasonal naı̈ve method.
The dark blue dots indicate observed values and the light blue dots indi-
cate the predicted values. Every prediction equals the last observed value
of the same season. 7

2.6 Forecasting a time series with SES. The blue dots indicate observed values,
while the green, yellow and red dots indicate different forecasts. Different
values of α gives different weights to the earlier observed values and make
different forecasts. The forecast does not necessarily increase or decrease
with an increasing α. α = 1 give a forecast equal to the last observed
value. α = 0.6 gives more weight to earlier values and in this case, it
gives a higher forecast than α = 1. α = 0.4 gives even more weight to the
early observations and in this case that gives a forecast lower than α = 0.6
and higher than α = 1. SES gives a flat forecast: the forecast is the same
for every timestep in the future. 8

2.7 A time series Y is decomposed into a trend component T , a seasonal com-
ponent S and a remainder component R. In this example, additive decom-
position is used. That means that T , S and R adds up to Y 12

2.8 A series that acts like a random walk without drift and a series that acts
like a random walk with drift. 14

2.9 A time series showing the number of waffles sold each day. The series
seems to have a weekly pattern. 15

ix

2.10 The waffle sale time series from figure 2.9 is differenced. 16
2.11 A yearly time series with input window size 4 and output window size

6, which are sliding over the series. The values in the input window are
supposed to predict the values in the output window. 22

2.12 The values from the input window and the output window are preprocessed
separately. After being preprocessed, the values from the input window
are concatenated with a one-hot encoding of the origin of the series. The
concatenated vector is input to an RNN. The output from the RNN is com-
pared to the preprocessed values from the output window. 23

2.13 The M4metalearning method preprocesses time series before training a
model. The training part M4-train of a time series from the M4 competi-
tion dataset could be divided into a training set M4metalearning-train and
a test set M4-metalearning-test, so that the test-set M4-test is left out for
testing. 25

2.14 The WESM method preprocesses a yearly time series before training a
model. The values from the original training set are labeled M4-train and
the values from the original test set are labeled M4-test. The values from
the original test set cannot be used for training. Therefore, the original
training set values are split into a new training set 237-train and a new test
set 237-test. The length of the new test set depends on the resolution of
the series. 26

2.15 The values α and β that are used in the theta method. Least Squares Re-
gression is used to find the line that best fits the data points. α is the
y-coordinate where the regression line intersects with the y-axis. β is the
slope of the regression line. 29

2.16 The blue time series is transformed to different Theta-lines using the for-
mula Yt(θ) = θ∗Yt+(1−θ)∗(α+β ∗t), where α and β are derived from
linear regression. The larger the θ, the more extreme become the curves.
A θ less than 1, however, makes the curves smaller than original. 30

2.17 An example of how SCUM combines the forecast of four methods. A
time series is forecasted by the four different methods ES, CES, ARIMA,
and DOTM. For a given step in the horizon, they predict one value each.
The predicted values are sorted and the median is found, which also is the
average of the two middle values. That is the prediction that SCUM will
make for that step in the horizon. 32

2.18 A monthly series (blue) with frequency m = 12 is aggregated into groups
of k = 3. The sum of three values in a group becomes the new value of
the aggregated series (green). The aggregated series has a frequency of
bmk c = b 123 c = 4. 33

2.19 The lifetime of a time series being forecasted with Theta Box-Cox. The
series is first deseasonalized if it has a seasonal pattern. Then Box-Cox
transformation is applied. Then the Theta method is used for forecasting
the time series. The predicted values are reverse transformed with Box-
Cox and re-seasonalized if it was earlier deseasonalized. 34

x

2.20 The reproducibility level of a computer science experiment is decided by
its documentation. 36

2.21 The results of an experiment have a reproducibility degree, which depends
on whether the same implementation of the AI method is used and whether
the same data is used when producing the same results. 37

4.1 The time series varies in size. The figure illustrates the time series having
a mean lower than 10511. There are 85 additional series that have larger
means and are not included in the table. 50

4.2 The figure illustrates two samples of numbers, green and blue. It is difficult
to say if they are picked from the same distribution or not. 51

5.1 Average sAPE between the original submission and five reruns for each
step in the horizon. The x-axis shows the timesteps in the forecasting
horizon and the y-axis shows the sAPE. 59

5.2 The sMAPE is calculated between all forecasted time series and the orig-
inal submitted forecast computed with the same method. The sMAPE is
averaged over all time series on the same rerun. Then the average is taken
over the sMAPE value for the five reruns. 59

5.3 Average OWA for the original submissions and for the reruns. The subfig-
ures shows the same data, but in the first graph, the y-axis is cut off so that
the details are available. The methods are sorted from the lowest original
OWA to the highest original OWA. 61

5.4 Coefficient of variation between five reruns on the same computer. 62
5.5 The DRMSD of the forecasted values between reruns of method 118 on

two different computers. 63
5.6 The DRMSD of the forecasted values between reruns of method 118 on

two different computers. 63

C.1 Average sAPE between the original submission and five reruns for each
step in the horizon. The x-axis shows the timesteps in the forecasting
horizon and the y-axis shows the sAPE. 84

C.2 Average OWA for the different resolutions for the original submissions
and for the reruns. 87

C.3 Average OWA for the different origins for the original submissions and the
reruns. 88

C.4 Average OWA for the different resolutions for the original submissions
and for the reruns. 89

C.5 Average OWA for the different origins for the original submissions and for
the reruns. 90

xi

Chapter 1
Introduction

1.1 Background and Motivation

This research is spurred by the experience that a lot of recent artificial intelligence (AI)
research has turned out to be difficult to reproduce. Reproducibility is a cornerstone of
the scientific method. Through reproducibility, researchers can confirm and build upon
each other’s work. Not all research is perfect and some hypotheses must be discarded
in an attempt to reproduce an experiment. When a research paper cannot be reproduced,
there is no evidence that the results are correct and the paper is simply worth nothing.
Reproducibility has gained increased attention in the last years in a variety of fields like
psychology (Aarts et al., 2016), medicine (Stupple et al., 2019; Niven et al., 2018), and
also in AI.

It has turned out that many AI experiments are not even possible to recreate due to poor
documentation (Dacrema et al., 2019; Gundersen and Kjensmo, 2018). Some reports are
missing critical information such as parameters, source code or data. Even if a model is
well documented, there could be sources to non-determinism like different initialization of
variables or data examples or the order of the data presented during training. Also informa-
tion about hardware and compilation settings used might be crucial for the result due to the
way floating-point operations are performed. Last, but not least, when comparing novel
models against baselines, it is not uncommon that poor baselines are used (Dacrema et al.,
2019). They might not be optimized or they might not be the current state-of-the-art at the
specific task. As a result, the proposed method is claimed to be the new state-of-the-art.
We can say that AI is having a phantom progress.

During this work, I will investigate if reproducibility is a problem in the field of time se-
ries forecasting. Similar contributions have been done in other machine learning fields like

1

GANs (Lucic et al., 2018), deep reinforcement learning (Lynnerup and Hallam, 2019), and
image classification (Bouthillier et al., 2019). Melis et al. (2017) has conducted a relevant
study on NLP, concluding that vanilla LSTM might be as good as recently published fore-
casting methods. To the best of my knowledge, no other studies have so far examined the
reproducibility of forecasting architectures.

1.2 Problem Outline

In this project, I will attempt to reproduce some of the methods from the M4 competition,
the most extensive time series competition to date. As the main goal of the M4 compe-
tition is to discover new forecasting methods, it is a competition with a strong focus on
reproducibility. Even a reproducibility prize is awarded to one of the methods. If there
are somewhere in the field of time series forecasting where the methods should be repro-
ducible, it is in this competition. There were 49 valid submissions, which were compared
and ranked from best to worst. Many of the models are publicly available, as well as the
training and test data and the results of every model.

1.3 Research Context

This work is my master’s thesis for my degree in Computer Science at the Norwegian
University of Science and Technology (NTNU). The project builds upon work from the
preliminary specialization project written by the author of this thesis (Soleim, 2019). The
project was carried out at TrønderEnergi under the supervision of Odd Erik Gundersen,
associate professor at the Department of Computer Science at NTNU and chief AI officer
at TrønderEnergi.

1.4 Objective and Research Questions

The objective of this master’s thesis is to ensure that future research within the field of
time series forecasting is reproducible. Three research questions are formulated:

1. To what degree is the top-performing methods in the M4 competition reproducible?

2. Which factors make research on time series forecasting difficult to reproduce?

3. How can we work for future research on time series forecasting to reach a higher
level of reproducibility?

2

Chapter 2
Background

2.1 Time Series

A time series is a series of observations taken sequentially over time (Pole et al., 1994).
Typically, successive observations are done with equal spacing in between each observa-
tion. The time between each interval is called the resolution of the series. For example,
we could measure the height of the ocean tides every hour, or we could measure the air
pollution once every day.

2.1.1 Forecasting

When forecasting, we are trying to predict the future values of a time series as precisely
as possible, given all of the information available (Hyndman and Athanasopoulos, 2018).
Given a time series of the number of people visiting the gym each day for two weeks,
we could try to predict the number of people visiting the gym each day for the upcoming
week. The forecasting horizon is the number of timesteps ahead that we try to predict. In
this case, we will have a horizon of seven. In point forecasting, we predict the most likely
value for each timestep in the forecasting horizon. For example, we could predict that
there will be 112 visitors at the gym on Monday, 87 on Tuesday, and so on. Another kind
of forecasting is by using a prediction interval. That is, instead of predicting one value,
we could predict an interval in which the real value is likely to be contained. In the gym
example, a 95% prediction interval could be that on Monday there will be between 100
and 124 visitors, Tuesday there will be between 77 and 97 visitors etc. Figure 2.1 shows
the difference between a point forecast and a prediction interval.

3

value

time

Figure 2.1: A time series can be predicted with point forecast or prediction interval. The light blue
dots shows a point forecast. A specific value is predicted as the most likely value. The light blue
shade behind the light blue dots shows a prediction interval. The real value is most likely inside this
area.

2.1.2 Models

A model that predicts future values of a time series using only the previous values of that
series is a pure time series model. However, it is very often not only the previous values
in a time series that affect its future. Usually, there are predictor variables influencing a
future value. Say we have a time series of how much popcorn a cinema has sold every day,
and we want to predict how much popcorn the cinema will sell tomorrow. People may go
more to the movies and buy more popcorn in the weekend or holidays. Cold temperature
outside or generally bad weather may attract people to the cinema and consequently boost
the popcorn sale. A new movie coming out could appeal to the community. Some of
these factors could be time series themselves. For instance, one series could tell if it is a
weekend by giving the value one on Saturdays and Sundays and zero otherwise. Another
time series could tell if it is a holiday, and a third time series could tell the temperature
outside. Tomorrow’s value of those predictor variables could be predicted to then be the
input to a model that foresees tomorrow’s popcorn sales. Other variables are information
that the cinema employees know, like if there is a new movie coming out. This information
could also be input to the same model. The popcorn sales from the past could be included
in the model or not. If we leave it out, we call it an explanatory model. Otherwise, we
have a mixed model.

2.1.3 Patterns

A time series could follow several patterns. A trend exists when there is a long-term
increase or decrease in the data (Hyndman and Athanasopoulos, 2018). When a trend
pattern exhibits a general direction that is upwards, where there are higher highs and higher
lows, like in figure 2.2, there is an increasing trend. In the same way, when there is a
gradual movement to relatively lower highs and lower lows, there is a decreasing trend. A
trend is not necessarily linear - it could also be exponential, like in the figure. Even if a
series segment has no increasing or decreasing trend, we could call that a horizontal or a
stationary trend.

4

Figure 2.2: A time series generated to illustrate an increasing trend.

A seasonal pattern occurs when a series is affected by seasonal variations such as time
of the year or day of the week. The frequency is the number of observations before the
pattern repeats. These observations are called a year. Each timestep in a year is of a
different season. The seasons repeat every year. This is easy to understand if you have
a time series where you measure something four times a year. Then the calendar year is
a year and the seasons are summer, fall, winter, and spring. But a year does not have to
be a calendar year and the seasons could be different. For example, a zoo could measure
the number of visitors each day. They could experience a high number of visitors on
the weekend and a lower number of visitors the other days of the week. Consequently,
there is a seasonal pattern of seven days. In other words, one regular week is called a
year. Each day of the week is a season. A time series is not restricted to only have one
seasonal pattern. For instance, we can measure the temperature once every hour. Since
the temperature at noon today will be about the same temperature as noon yesterday, there
will be a frequency of 24 timesteps. Yet, the temperature at noon today will also be about
the same as the temperature at noon one year ago. 24 timesteps each day and a year having
a mean of 365.24 days yields a frequency of 24 × 365.24 ≈ 8766. As a result, there are
not only one, but two seasonal patterns in this time series.

A cyclic pattern occurs when the data points increases and decreases without any fixed
frequency. It must not be confused with seasonal patterns. In a time series with a seasonal
pattern, we can divide the series into consecutive subintervals of equal length (the length
is the frequency), which will have peaks at about the same data point in every subinterval.
For example, the temperature throughout the year will be the highest sometime in the
summer half of the year. However, the highest measured temperature will never occur in
January in the northern hemisphere, which could have been the case if the temperature
had a cyclical pattern. To clarify, seasonal patterns have a fixed length of the repeating
pattern, whereas cyclical patterns can vary widely in duration. The stock market typically
has cyclical patterns.

As well as systematic components like trends, seasonal patterns, and cyclic patterns, a time
series contains noise, which simply is random variation in the series. More specifically, we

5

Figure 2.3: A time series generated to simulate white noise.

have white noise. A time series is white noise if it has a mean equal to zero, the standard
deviation is constant over time and the correlation between variables is zero. Such a series
is shown in figure 2.3. White noise can by definition not be predicted. When you are doing
time series forecasting, the difference between the predicted values and the real values is
the error of the forecast. This error should ideally be close to white noise. When the error
is white noise, it is impossible to do any better prediction, because the values are random.

2.1.4 Simple Forecasting Methods

The Naı̈ve Method

To predict a value in a series, we can simply use the last observed value in the series as
our prediction. For instance, a zoo could keep track of the number of visitors every day.
To predict how many visitors the zoo will have tomorrow, they could simply look at the
number of visitors from the last day and use that number as the prediction. The day after
tomorrow will have the same prediction and so will every day in the future. The equation
for a forecast given by the Naı̈ve method is

ŷt = yt−n, (2.1)

where yt is the observed value at timestep t and n number of timesteps since the last
observed value. Notice that t is not a variable in the forecast. The forecast is the same for
all steps in the horizon. This is what we call a flat forecast.

The Seasonal Naı̈ve Method

If a time series is having a seasonal pattern, one could use the last observed value of the
same season as the new prediction. For instance, if tomorrow is a Saturday, the number of
people in the zoo last Saturday could be used as a prediction. The prediction of Sunday will

6

value

time

Figure 2.4: Forecasting with the naı̈ve method. The dark blue dots indicate observed values and the
light blue dots indicate the predicted values. Every prediction equals the last observed value.

value

time

Figure 2.5: Forecasting a time series with frequency 7 using the seasonal naı̈ve method. The dark
blue dots indicate observed values and the light blue dots indicate the predicted values. Every pre-
diction equals the last observed value of the same season.

have the same prediction as last Sunday. The next Sunday will have the same prediction.
The prediction of a value ŷt is given by the formula

ŷt = yt−k∗m,

where m is the frequency and k is the number of commenced years since the last observed
value. In the zoo example, the year is one week and the frequency is seven. When there is
less than one week since the last observed value, k = 1 and ŷt = yt−m = yt−7, so that the
prediction is the value from seven days ago. If there is between one and two weeks since
the last observed value k = 2 and ŷt = yt−2∗m = yt−2∗7 = yt−14, so that the prediction
is the value from 14 days before.

Exponential Smoothing

Exponential smoothing (ES) algorithms use a weighted average of past observations to
predict the future. The weights are larger for recent observations and shrinks exponentially
for earlier observations.

One form of ES is simple exponential smoothing (SES). It is useful when the time series

7

value

time

α = 0.4

α = 0.6

α = 1

Figure 2.6: Forecasting a time series with SES. The blue dots indicate observed values, while the
green, yellow and red dots indicate different forecasts. Different values of α gives different weights
to the earlier observed values and make different forecasts. The forecast does not necessarily increase
or decrease with an increasing α. α = 1 give a forecast equal to the last observed value. α = 0.6
gives more weight to earlier values and in this case, it gives a higher forecast than α = 1. α = 0.4
gives even more weight to the early observations and in this case that gives a forecast lower than
α = 0.6 and higher than α = 1. SES gives a flat forecast: the forecast is the same for every timestep
in the future.

has no clear trend or season. A forecast using SES is done with the following equation:

ŷt = α ∗ yn + α ∗ (1− α) ∗ yn−1 + α ∗ (1− α)2 ∗ yn−2...

=

n∑
x=1

α ∗ (1− α)x−1 ∗ yn+1−x,

where n is the number of observed timesteps in the series and α is a smoothing parameter
in the range from zero to one. If α = 1, then all terms become 0 except for the first and
the forecast is equal to the forecast of the seasonal naı̈ve method. As α approaches zero,
more weight is added to observations from the past. Notice that t is not a variable in the
forecast. Thus, SES produces a flat forecast.

Another special kind of ES is Holt-Winters’ multiplicative method. This method is able to
capture seasonality. There is one forecast equation and three smoothing equations for the
level `, trend bt, and seasonal component st:

ŷt+h|h = (`t + hbt)st+h−m(k+1) (2.2)

`t = α ∗ yt
st−m

+ (1− α)(lt−1 + bt−1) (2.3)

bt = β ∗ (`t − `t−1) + (1− β)bt−1 (2.4)

st = γ ∗ yt
`t−1 + bt−1

+ (1− γ)st−m (2.5)

8

The equation 2.2 is the forecast equation and the equations 2.3-2.5 are the smoothing
equations. α, β, and γ are smoothing parameters. The level `t, is an estimate of the level
of the series at time t. The trend bt denotes an estimate of the change in the series at
time t. The seasonality st denotes seasonal variations and is expressed in relative terms
to the series. Within each year, the seasonal component will sum up to approximately
m. This means that we can divide all values in the series with the seasonal component to
deseasonalize the series.

2.1.5 Time Series Decomposition

Hyndman and Athanasopoulos (2018) describes how a time series Y can be divided into
different components: a trend component T , a seasonal component S and a remainder
component R. These components are series themselves. Decomposition could be done
either additive or multiplicative. With additive decomposition, each timestep in Y , yt,
equals the sum of the three components Yt, St and Rt. With multiplicative decomposi-
tion, each timestep equals the product of the three components. This tool can be used for
analyzing a time series as well as a preparation step before forecasting.

Additive decomposition yt = Tt + St +Rt (2.6)
Multiplicative decomposition yt = Tt ∗ St ∗Rt (2.7)

Detrending

To detrend means to remove the trend component from a series. We do this by finding
the trend component T and then removing it from the time series. If we use additive
decomposition, we remove it by subtracting it from the series and if we use a multiplicative
decomposition we divide the series with the trend component.

The method for obtaining the trend component is the same for additive and multiplicative
decomposition. For every step yt in the time series, the average is taken over a year of data.
One value from each season is included in the average. An equal number of timesteps
before the given timestep and after the current timestep is used. For instance, a time series
could have daily observations and a weekly pattern. Step four is a Thursday. The trend
value of step four T4 is the average of the whole week. The trend value for step five T5
will be the average of the steps 2 to 8, namely Tuesday to Monday. We do this with each
step of the series, except for the very earliest steps and the very latest steps, which do not
have enough steps on each side to average. This way a new time series is obtained and this
is what we call the trend.

If the frequency is an even number, however, it is not possible to pick an equal number
of steps on each side of yt. For instance, a series could have quarterly observations and
a yearly pattern. For the summer step, should we average winter to autumn or spring to

9

winter? For the season that is furthest away from yt in time, in this case, winter, we could
either pick the value preceding yt, or we could pick the value following yt. They are both
the same distance away from yt. That is yt−k and yt+k where k = f/2. We solve this by
picking half of the preceding one and half of the following one.

Formally, we can say that each value in the trend is computed the following way:

Tt =

1

f

k∑
j=−k

yt+j , when f is odd

1

f

(
1

2
yt−k +

1

2
yt+k +

k−1∑
j=−k+1

yt+j

)
, when f is even

where f is the frequency of the series and k = b f2 c.

Figure 2.7a shows a series along with its trend component and how it becomes when it is
detrended with additive decomposition. Note how the detrended series keeps close to the
x-axis. It does not tend to move upwards or downwards like a trended series. The trend
component, however, keeps close to the original series, but is smoother.

Deseasonalizing

Time series having a seasonal pattern can be deseasonalized. By deseasonalizing a time
series, we remove the seasons, such that the mean within each season is stationary. For
instance, the mean of all spring values will equal the mean of all summer values in a time
series with a quarterly pattern. First, the seasonal component is calculated. That is done
by first finding the average value of every season. Then create a time series equal to the
original series, but substitute all values with the average value for that season. The newly
created series is shifted to obtain the seasonal component. In additive decomposition, the
series is shifted to add up to 0, whereas in multiplicative decomposition, it is shifted to
add up to the frequency. To obtain the deseasonalized series we either subtract or divide
with the seasonal component depending on whether we are doing additive or multiplicative
decomposition. An example of the procedure follows.

Imagine we have the time series

x = [6 13 8 6 8 14 8 5 7 15]

with a quarterly pattern, hence the frequency is 4. The average of each season. Given that

10

the first value in the series is spring, the next summer and so on, we have

µspring =
6 + 8 + 7

3
= 7

µsummer =
13 + 14 + 15

3
= 14

µfall =
8 + 8

2
= 8

µwinter =
6 + 5

2
= 6.5

We create a new time series with the average of all seasons:

averages = [7 14 8 5.5 7 14 8 5.5 7 14]

Now we want to shift the series. For additive decomposition, we shift the averages such
that they add up to zero. We do this by subtracting the average of the series. The average
of this series is 9. Subtracting 9 from all averages gives us

season = [−2 5 −1 −3.5 −2 5 −1 −3.5 −2 5].

To obtain the deseasonalized series we subtract the seasonal component from the original
series.

deseasonalized = [8 8 9 9.5 10 9 9 8.5 9 10]

Notice that the average value for every season is nine for every season. For multiplicative
series, we shift the averages such that they add up to the frequency of the series. We do
that by subtracting the number we get when we add up all the numbers in the series and
subtract the frequency and then divide it with the length of the series.

subtrahend =
sum(series)− frequency

length(series)
=

90− 4

10
= 8.6

Dividing the averages with 8.6, the season becomes

season = [−1.6 5.4 −0.6 −3.1 −1.6 5.4 −0.6 −3.1 −1.6 5.4].

We divide with the seasonal component to obtain the deseasonalized series:

deseasonalized = [7.6 7.6 8.6 9.1 9.6 8.6 8.6 8.1 8.6 9.6]

Also here, the average value for every season is the same, this time 8.6.

If we deseasonalize an already detrended series, we are left with the remainder compo-
nent. Figure 2.7b shows the earlier detrended series with its seasonal component and the
remainder component. Figure 2.7c shows the trend component, the seasonal component,
and the remainder component, which all add up to the original time series.

11

(a) The original time series Y is detrended with
additive decomposition. The trend component T is
first calculated. Then the trend is subtracted from
the original series to obtain a detrended series Y −
T .

(b) The previously detrended series is deseasonal-
ized.

(c) The components T , S and R add up to the orig-
inal series Y .

Figure 2.7: A time series Y is decomposed into a trend component T , a seasonal component S and
a remainder component R. In this example, additive decomposition is used. That means that T , S
and R adds up to Y .

12

2.1.6 The Random Walk Model

The random walk model is a simple, but important model in time series forecasting. The
model assumes that every value in a time series takes a random step away from the previous
value. The steps are independently and identically distributed in size. A rational forecast
for a random walk would be a naı̈ve forecast, like in equation 2.1. The series is equally
likely to go up or down. Therefore a naı̈ve forecast is also called the random walk forecast.

A random walk could also have a drift. That happens if the average of the random steps
away from the previous value is non-zero. If this average is positive, the time series will
have a drift upwards. For instance, if the average value of the random step is 0.2, then the
time series will on average increase with 0.2 for each timestep. If the average step away
from the previous is negative, then the time series will have a drift downwards. In both
cases, the naı̈ve forecast will not be best. If the average increase from one value to another
is d, then a rational forecast for step t+ h would be

Ŷt+h = Yt + h ∗ d.

Figure 2.8 shows two random walks, one with drift and one without, and their forecasts.
Both are going up and down, but in the long term, the series without drift is about the same
value that it was at t = 0. The random walk with drift has increased from 0 to 200 in 1000
steps which indicates an average increase in d = 0.2 each step.

2.1.7 ARIMA

The ARIMA method is a combination of three other methods: differencing, autoregres-
sion, and moving average model. A description of each of them follows.

Differencing

The method is based on comparing each observation with the value of the observation of
the same season, one year earlier. The value of the observation a year earlier is subtracted
from the value of the observation this year.

For instance, we could have a time series showing how many waffles that are sold from a
waffle stand every day, like shown in figure 2.9. The waffle sale has a weekly seasonality,
each day of the week being a season. To deseasonalize the series, we subtract the number
of waffles sold every Monday with the number of waffles sold one Monday earlier. For
instance, the value at Monday 8th is 6. The value of the same season, one year earlier,
namely Monday 1st, has the value 4. The value of Monday 8th is then 6 − 4 = 2. The
same is done with the other days of the week. Figure 2.10 shows the differenced series.
This will create a new time series, which is more likely to be seasonal stationary. If the
new time series is not seasonal stationary, it could be differenced itself. Then we have
second-order differencing. In practice, you will probably never have use for a higher order

13

Figure 2.8: A series that acts like a random walk without drift and a series that acts like a random
walk with drift.

14

value

time

M
on

da
y

1s
t

Tu
es

da
y

2n
d

W
ed

ne
sd

ay
3r

d
Th

ur
sd

ay
4t

h
Fr

id
ay

5t
h

Sa
tu

rd
ay

6t
h

Su
nd

ay
7t

h
M

on
da

y
8t

h
Tu

es
da

y
9t

h
W

ed
ne

sd
ay

10
th

Th
ur

sd
ay

11
th

Fr
id

ay
12

th
Sa

tu
rd

ay
13

th
Su

nd
ay

14
th

M
on

da
y

15
th

Tu
es

da
y

16
th

W
ed

ne
sd

ay
17

th
Th

ur
sd

ay
18

th
Fr

id
ay

19
th

Sa
tu

rd
ay

20
th

Su
nd

ay
21

st

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Figure 2.9: A time series showing the number of waffles sold each day. The series seems to have a
weekly pattern.

than second-order differencing. For each round of differencing, the new time series will
not have any data for the first year.

Autoregressive Models

Autoregression is simply forecasting using a linear combination of past values of the vari-
able. An autoregressive model of order p can be written as

yt = c+ φ1yt−1 + φ2yt−2 + ...+ φpyt−p + εt

where εt is white noise.

15

value

time

M
on

da
y

1s
t

Tu
es

da
y

2n
d

W
ed

ne
sd

ay
3r

d
Th

ur
sd

ay
4t

h
Fr

id
ay

5t
h

Sa
tu

rd
ay

6t
h

Su
nd

ay
7t

h
M

on
da

y
8t

h
Tu

es
da

y
9t

h
W

ed
ne

sd
ay

10
th

Th
ur

sd
ay

11
th

Fr
id

ay
12

th
Sa

tu
rd

ay
13

th
Su

nd
ay

14
th

M
on

da
y

15
th

Tu
es

da
y

16
th

W
ed

ne
sd

ay
17

th
Th

ur
sd

ay
18

th
Fr

id
ay

19
th

Sa
tu

rd
ay

20
th

Su
nd

ay
21

st

-3
-2
-1
0
1
2
3

Figure 2.10: The waffle sale time series from figure 2.9 is differenced.

Moving Average Models

A moving average model of order q can be written as

yt = c+ εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q.

Combining the Methods to ARIMA

The three methods are combined to the following formula:

y′t = c+ φ1y
′
t−1 + ...+ φpy

′
t−p + θ1εt−1 + ...+ θqεt−q + εt,

where y′t is the differenced series. It could be differenced zero, once or several times. We
can write ARIMA(p, d, q) where

• p is the order of the autoregressive part

• d is the order of differencing

• q is the order of the moving average

2.1.8 ETS

Hyndman et al. (2008) describes the concept of ETS. ETS is a collective name for differ-
ent kinds of ES algorithms. The letters E, T, and S stands for Error, Trend, and Seasonal.

16

They can take different values. Error could have the values ”Additive” or ”Multiplica-
tive”. Trend could take the values ”None”, ”Additive” or ”Additive damped”. Seasonal
could take the values ”None”, ”Additive” or ”Multiplicative”. This means that there is
2 ∗ 3 ∗ 3 = 18 different kinds of ETS methods. We usually write them ETS(X, X, X)
with the first X indicating which kind of error there is, the second describing the trend
and the last describing the seasonal. For instance, we could have ETS(A, N, N) which
indicates additive error, no trend, and no seasonal. That is in fact SES with additive error
as described in section 2.1.4. By decomposing a time series like in section 2.1.5, we can
use different kinds of ETS-methods.

2.2 The M4 Competition

The M4 competition was held in 2018 and was the fourth competition in the series of M
competitions (M4Team, 2019). The main goal of these competitions is to discover methods
to predict the future. The purpose of the M4 competition was to replicate the results of the
previous three ones and extend them into two directions. Firstly, increasing the number
of series to 100,000. Secondly, including machine learning methods. The competition is
divided in two. One part of the competition is about making the best point prediction. The
other is about making the best 95% prediction interval. This research will only focus on
the point prediction part of the competition.

2.2.1 The M4 Competition Dataset

The dataset consists of 100000 time series of different resolutions and origins as seen in
table 2.1. The length of the series varies widely. For instance, the yearly series has lengths
between 13 and 835. The horizon for the contestants to predict depends on the resolution
of the time series and could be seen in table 2.2. For example, a yearly time series would
require a forecast of 6 points ahead in time. The dataset is given in six CSV-files, one for
each resolution type. Each line represents a time series. The first comma separated value
in the line gives an id of the time series, and the following values are points in the time
series. In addition, there is an info file that for each series tells the origin of the series
(demographic, finance, etc.), as well as the resolution (yearly, quarterly, etc.).

2.2.2 Performance Measures

The performance measure chosen to evaluate the point predictions was a combination
of two popular accuracy measures: symmetric mean absolute percentage error (sMAPE)
(Makridakis, 1993) and mean absolute scaled error (MASE) (Hyndman and Koehler, 2006).

17

Demographic Finance Industry Macro Micro Other Total
Yearly 1088 6519 3716 3903 6538 1236 23000
Quarterly 1858 5305 4637 5315 6020 865 24000
Monthly 5728 10987 10017 10016 10975 277 48000
Weekly 24 164 6 41 112 12 359
Daily 10 1559 422 127 1476 633 4227
Hourly 0 0 0 0 0 414 414
Total 8708 24534 18798 19402 25121 3437 100000

Table 2.1: The number of time series in the M4 competition based on their resolution and origin.

Resolution Horizon
Yearly 6
Quarterly 8
Monthly 18
Weekly 13
Daily 14
Hourly 48

Table 2.2: The horizon to predict in the M4 competition given the resolution of the time series.

sMAPE

To understand the performance measure sMAPE, it might be convenient to first have a
look at the simpler function symmetric absolute percentage error (sAPE):

sAPE =
|Yt − Ŷt|

1
2 (|Ŷt|+ |Ŷt|)

∗ 100%,

where Yt is the real value at point t and Ŷt is the predicted value at point t. In the numerator,
|Yt − Ŷt| is the absolute error between a real value and a predicted value. The absolute
error could be used as a performance measure by itself, but it would provide larger error for
time series with high values, and opposite with time series with values close to zero. That
is unfavorable when there are time series from various domains. Therefore, the absolute
error is divided with the average of the predicted value and the real value 1

2 (|Yt| + |Ŷt)|).
Multiplying this with 100%, we get a measure of how large the error is relative to how
large the numbers actually are. For example, if the real value Yt = 100 and we make the
prediction Ŷt = 150, the error for this individual point will be

sAPE =
|100− 150|

1
2 (|100|+ |150|)

∗ 100% =
50

125
∗ 100% = 40%.

If the prediction equals the actual value, then |Yt − Ŷt| = 0, resulting in sAPE = 0, which
is the best sAPE value. The larger sAPE, the worse is the prediction.

18

The sAPE metric is useful for calculating the difference between one forecasted value and
the real value. In the M4 competition, the participants are supposed to predict not only one
value for each time series, put several values given by the forecasting horizon. To put a
number on the quality of a model that predicts several steps into the future, we can average
the sAPE values. That gives us the sMAPE:

sMAPE =
1

h

n+h∑
t=n+1

|Yt − Ŷt|
1
2 (|Yt|+ |Ŷt|)

∗ 100%,

where n is the number of timesteps in the training set and h is the number of steps in the
forecasting horizon. Notice that the summation starts on timestep n+1 in the series, which
is the first timestep in the forecasting horizon, and ends at n+h, which is the last timestep
in the horizon. Hence, the error is summed up over all predicted values and divided with
the number of points in the forecasting horizon. In other words, the average relative error
is found. The numerator and the denominator could be multiplied with 2, and the 2 could
be pulled out of the summation to obtain the formula as it is usually written:

sMAPE =
2

h

n+h∑
t=n+1

|Yt − Ŷt|
|Yt|+ |Ŷt|

∗ 100%. (2.8)

MASE

In order to calculate sMAPE, all we needed was the predicted forecast and the real values
for the forecast. MASE, on the other hand, takes into account the values from the training
set as well as the frequency for the series. It can be discussed how to find the frequency
of a series. For the competition, the organizers decided which frequency that should be
used for each type of resolution. These are shown in table 2.3. The participants were
encouraged to explore other frequencies in the series, but these exact frequencies were
used for the evaluation. First, we take a look at the simpler function absolute scaled error
(ASE):

ASE =
|Yt − Ŷt|

1
n−m

∑n
t=m+1 |Yt − Yt−m|

,

where m is the frequency considered by the organizer as in table 2.3. In the numerator,
we have the absolute error between the predicted and the real value. In the denominator,
there is a summation. Inside the summation, the difference between an actual value and
the actual valuem timesteps earlier is found. In other words, this is the difference between
an actual value and the actual value of the last observed value with the same season. That
is the absolute error if we used a seasonal naı̈ve method and it is referred to as the seasonal
difference. The seasonal difference could for example be the difference between the tem-
perature the 1st of December this year and the 1st of December last year. The difference
is averaged over all training values that have an earlier observation of the same season.
Hence, the ASE is the absolute error in the forecast divided by the average seasonal dif-
ference in the training set. Put differently, ASE is a measure for how good we are doing

19

Resolution Frequency
Yearly 1
Quarterly 4
Monthly 12
Weekly 1
Daily 1
Hourly 24

Table 2.3: The frequency for each resolution considered by the organizers. The frequency is used
for calculating MASE, which again is used to calculate OWA.

compared to how good we could have been doing using seasonal naı̈ve method. As with
sAPE, if the prediction is correct then the ASE is zero, and the higher the ASE the worse
an algorithm is doing. If the ASE is one we are doing just as good as a seasonal naı̈ve
method. If it is larger than one we are doing worse.

If we have several predicted values in the forecasting horizon, we use the average of all
the absolute errors in the horizon and divide by the same denominator:

MASE =
1
h

∑n+h
t=n+1 |Yt − Ŷt|

1
n−m

∑n
t=m+1 |Yt − Yt−m|

That is the MASE. Pulling 1
h out of the fraction, we obtain the formula as it is more

commonly known:

MASE =
1

h

∑n+h
t=n+1 |Yt − Ŷt|

1
n−m

∑n
t=m+1 |Yt − Yt−m|

(2.9)

This version of MASE differs from the version proposed by Hyndman and Koehler (2006),
where m was set equal to 1 regardless of the frequency.

The combination of sMAPE and MASE is referred to as the overall weighted average
(OWA). The sMAPE and MASE is calculated for every single time series before they are
averaged over all series. Then the average sMAPE is divided by the average sMAPE of
the baseline model Naı̈ve2, programmed by the organizers of the competition, to achieve a
relative sMAPE. The average MASE is divided by the average MASE of Naı̈ve2 to achieve
a relative MASE. OWA is then found by calculating the average of the relative sMAPE and
the relative MASE. A model with OWA less than one is doing better than Naı̈ve2 and a
model with OWA larger than one is doing worse.

OWA =
relative sMAPE + relative MASE

2
(2.10)

20

2.3 Relevant Methods from the M4 Competition

A description of the methods from the M4 competition that will be relevant later in the
thesis is described here.

2.3.1 ES-RNN

The winner of the M4 competition was Slawek Smyl. His method Exponential Smoothing
Recurrent Neural Network (ES-RNN) achieved an OWA of 0.821, hence it was 17.9% bet-
ter than Naı̈ve2. Like the name of the model says, it is a combination of ES and Recurrent
Neural Network. It is not an ensemble, but what Smyl calls a truly hybrid model (Makri-
dakis et al., 2019). All ES parameters, like the seasonality and smoothing coefficients, are
fitted concurrently with the neural network weights. The method is global in the way that
the network parameters are learned based on multiple series. At the same time, the model
learns parameters locally, considering that each series has its own smoothing parameters,
which are updated only based on the loss for that series. The method has received positive
attention due to the novel combination of global and local learning (Barker, 2019). The
algorithm is written in C++.

Since many time series are several hundreds or even thousands of timesteps long, the long
series are chopped such that only the last part of the series are used. For example, the
yearly time series, where some series are as long as 835, are cut down to a maximum
length of 60. Daily series, which could be over 9000 timesteps, are cut down to be no
longer than 13 weeks, equivalent to 91 timesteps. Each series is assigned twice to one out
of five networks. That means that it is first assigned to one network, and then it is assigned
to another network that may or may not be the same as the first. Hence, each network will
be trained on about 40% of the series.

However, when a series has 91 timesteps, not all timesteps are sent through a network at
once. An input window and an output window of fixed size are sliding over the series as
shown in figure 2.11. The values in the input window are sent together into a network
and are supposed to predict the values in the output window. Smyl has experimented with
sizes of the input window and set one size for each resolution. That is, for instance, four
for yearly and seven for daily series. The prediction horizon determines the size of the
output window. These are the values succeeding the values in the input window. The first
time a series is introduced to a network, the input window starts at the beginning of the
(possibly cut) series. The values from the input window are sent through the network.
The output from the network is compared to the values in the output window. The loss is
calculated and noted. Then the window slides one timestep ahead in time and the process
is repeated. First when the output window reaches the end of the series and the windows
cannot slide any further, the network weights and the smoothing parameters (α and γ) are
updated, using the average loss.

The values in the input window are preprocessed as shown in figure 2.12: each small part

21

value

time

Input window Output window

Figure 2.11: A yearly time series with input window size 4 and output window size 6, which are
sliding over the series. The values in the input window are supposed to predict the values in the
output window.

is deseasonalized, like described in section 2.1.5. Each kind of series, depending on its
resolution, is treated with zero, one or two seasonalities. The figure shows a yearly series,
which is treated with no seasonality and is therefore unaffected by this step. The desea-
sonalized values are normalized, by dividing with the level of the series. The logarithm is
taken of every value and lastly, some noise is added. The preprocessed series is concate-
nated with a one-hot encoding of the origin of the series. The concatenated vector is sent
through the network. The number of output nodes equals the prediction horizon required
in the challenge.

The level of the series and the seasonal component are calculated the following way:

lt = α
yt
st

+ (1− α) ∗ lt−1

st+m = γ
yt
lt

+ (1− γ) ∗ st,

which we recognize from Holt-Winters’ multiplicative method. α and γ are smoothing
coefficients between 0 and 1.

The values of the time series succeeding the input values, are the labels we are trying to
predict. They are preprocessed in the same way as the input values, but without adding
any noise. The output of the network is compared to the preprocessed labels using pinball
loss. The pinball loss for one forecasted value is

pinBallLoss(y, ŷ) =

{
2 ∗ (y − ŷ) ∗ τ, if y ≥ ŷ
2 ∗ (y − ŷ) ∗ (τ− 1), otherwise,

where y is the target value and ŷ is the predicted value. If τ = 0.5 the formula would
have become |y − ŷ| for all values of y and ŷ. Setting the value of τ to another value than

22

421 356 293 232 227 247 266 284 357 341[] []

Deseasonalization Deseasonalization

421 356 293 232 227 247 266 284 357 341

Dividing with level Dividing with level

1.449 1.225 1.009 0.799 0.781 0.850 0.916 0.978 1.229 1.174

Natural logarithm Natural logarithm

0.371 0.203 0.009 -0.225 -0.247 -0.162 -0.088 -0.023 0.206 0.160

Adding noise

0.372 0.203 0.009 -0.223

RNN

-0.224 -0.161 -0.075 0.019 0.218 0.178

Comparison

0 0 0 1 0 0

Figure 2.12: The values from the input window and the output window are preprocessed separately.
After being preprocessed, the values from the input window are concatenated with a one-hot encod-
ing of the origin of the series. The concatenated vector is input to an RNN. The output from the
RNN is compared to the preprocessed values from the output window.

23

0.5 allows for the possibility to adjust for a model that tends to have a positive or negative
bias. If the model tends to have a positive bias, we can set the value of τ to a value less
than 0.5, for example 0.48. A model that predicts ŷ = 12 when y = 10 would usually
have a loss of 2. With the pinball loss, the loss is 2∗ (10−12)∗ (0.48−1) = 2.08. Hence,
we give a larger penalty when the model predicts too large values, and correspondingly a
smaller penalty when the model predicts values that are too low. The pinball loss for each
output node is averaged over all the output nodes to gain the pinball loss for the specific
run through the network. The pinball loss for all the runs of the different windows through
a network is averaged over the different runs.

In order to obtain a network’s forecast for the next values in a series, the last values in the
series are preprocessed and concatenated with the one-hot encoding of the origin and sent
through the network. The output vector of the network is re-leveled and re-seasonalized
by multiplying with the level and seasonality components to achieve the predicted values.
The final results are decided by a combination of the topN networks for each series, where
N is three or four depending on the resolution. These are the networks with the smallest
pinball loss for a series during training.

2.3.2 M4metalearning

The second best contribution to the M4 competition was the method M4metalearning,
which achieved an OWA of 0.838. The method is written in R. The model combines nine
different well-known forecasting algorithms. A model is trained to assign weights to the
different methods. A linear combination of the nine forecasts from the simple methods is
used as the final result.

Firstly, the training set is prepared by splitting the training values in the M4 competition
into a training set and a test set as shown in figure 2.13. It is done by splitting up the
original training set M4-train into a new training set M4metalearning-train and a new test
set M4metalearning-test. The last h observations in the training set is assigned to a test set,
where h is the number of steps required in the forecasting horizon from the competition,
and is hence also the length of the original test set M4-test. The remaining values from the
original training set is assigned to the new training set M4metalearning-train.

The nine simple forecasting are all from the forecast package of R:

1. ARIMA like described in 2.1.7 using the method auto.arima(stepwise=FALSE,
approximation=FALSE)

2. ETS like described in 2.1.8 using the method ets()

3. NNETAR - a feed-forward neural network where a single hidden layer is fitted to
the lags as described by Hyndman (2017) using the method nnetar()

4. TBATS - the ES state space trigonometric, Box-Cox transformation, ARMA errors,
Trend and Seasonal components model like described by De Livera et al. (2011)

24

M4-train M4-test

M4metalearning-train M4metalearning-test

Figure 2.13: The M4metalearning method preprocesses time series before training a model. The
training part M4-train of a time series from the M4 competition dataset could be divided into a
training set M4metalearning-train and a test set M4-metalearning-test, so that the test-set M4-test is
left out for testing.

using the method tbats()

5. STLM-AR - using the method stlm(modelFunction=stats::ar)

6. Random walk with drift like described in 2.1.6 using the method rwf(drift=TRUE)

7. The theta method like described in Assimakopoulos and Nikolopoulos (2000) using
the method thetaf()

8. The naı̈ve method like described in 2.1.4 using the method naive()

9. The seasonal naı̈ve method like described in 2.1.4 using the method snaive()

For each time series, M4metalearning-train is used as input to all nine of the basic fore-
casting methods. This results in nine forecasts f1, f2, ...f9 of length h that has the ground
truth M4metalearning-test. In addition, for every series a set of 42 features are calculated.
The features are labeled a. These includes for instance the length of the series, the number
of seasonal periods in the series and the number of times the series crosses the median of
the values.

An XGBoost model is trained on all series using these 42 features as input. The output of
the model is a vector of length nine. The output of XGBoost is labeled y(a). The ith entry
is then labeled y(a)i That is one entry for each of the basic methods. When the model is
finished training, the entries are supposed to indicate how good each basic method is doing
for a time series with 42 specific features. To make the entries sum up to 1, the softmax
function is used on the vector. The model is trained to minimize the loss function

LOWA(y, a, f,M4metalearning-test) =

M∑
i=1

ey(a)i∑
ey(a)

OWA(fi,M4metalearning-test).

Finally, when the model is trained, each of the original series can be forecasted. The 42
features are extracted from a series. These are input to the XGBoost model which decides
how large weight that should be assigned to which of the nine basic forecasting methods.
A forecast is created using the nine basic forecasting methods and the weights are used to
create a final forecast for submission.

25

N Horizon Aggregation function Weight
Yearly 3 6 Exponential weights with base 0.3 scores−2

Quarterly 8 8 Mean scores−2

Monthly 10 18 Mean scores−2

Weekly 13 13 Mean exp(scores−1)
Daily 8 14 Exponential weights with base 0.5 scores−2

Hourly 24 48 Mean scores−1

Table 2.4: The number N of observations from the last part of the training set that is used as a
hold-out for estimating the quality of the different forecasting methods.

M4-train M4-test

237-train 237-test

Figure 2.14: The WESM method preprocesses a yearly time series before training a model. The
values from the original training set are labeled M4-train and the values from the original test set
are labeled M4-test. The values from the original test set cannot be used for training. Therefore, the
original training set values are split into a new training set 237-train and a new test set 237-test. The
length of the new test set depends on the resolution of the series.

2.3.3 WESM

The third best contribution to the M4 competition was the method Weighted Ensemble of
Statistical Models (WESM), which achieved an OWA of 0.841. The method is written in
R. The model assigns weights to different forecasting methods for each series and the final
result is a weighted average of standard forecasting techniques.

For each series, a set of standard forecasting methodsm1,m2...mi are chosen based on the
resolution of the series and if the series has a significant trend or seasonality. For instance,
for a quarterly series with no trend and no seasonality five methods are used: the naı̈ve
method, SES, the theta method, the optimized theta method and ETS. The training set M4-
train into a new training set 237-train and a new test set 237-test. The last N observations
in M4-train is assigned to a test set, where N is smaller than or equal to the forecasting
horizon. The value of N can be seen in table 2.4. For instance, N is set to 3 for yearly
series which is less than the forecasting horizon of 6, and N is set to 8 for quarterly series
which is the same as the forecasting horizon. An example of how a training set is divided
can be seen in figure 2.14.

The remaining values from the original training set is assigned to the new training set
237-train. The chosen methods are used on 237-train to predict 237-test and the sMAPE

26

between the forecasts and the real values are calculated so that each method m1,m2, ...mi

has a set of sMAPE scores for each predicted value. The sMAPE scores the predicted
values in the horizon for one method are combined using an aggregation function given
by table 2.4. The aggregation function is a weighted average between the sMAPE scores.
Usually, equal weights are used so that the aggregation function is simply the mean of the
scores. For yearly and daily series, however, the scores from the most recent observations
count the most and the weight decreases exponentially for each timestep further away
(earlier) in time. This results in one score for each of the forecasting methods, s1, s2...si.

The scores are translated to weights. The methods to perform this transformation depends
again on the resolution to the time series. This gives the weights w1, w2, ...wi. The weight
for method k is given by

wk =

1

s2k
, if resolution is yearly, quarterly, monthly or daily

1

sk
, if resolution is hourly

e
1
sk , if resolution is weekly

Finally, the set of methods m1,m2...mi takes M4-train as input and predicts the forecast-
ing horizon required in the M4 competition. Each forecast is multiplied with its associated
weight to generate the final forecast for the series. That is, the final prediction for each
step in the forecasting horizon will be

Ŷ =

i∑
k=1

wk ∗ Ŷk,

where wk is the weight for method k, Ŷk is the prediction made by method k for the value
Y and i is the number of different forecasting methods considered for this series.

2.3.4 GROEC

The fifth best contribution to the M4 competition was the method Generalized Rolling
Origin Evaluation Combination (GROEC), which achieved an OWA of 0.843. The algo-
rithm is written in R. The method simply combines four different forecasting methods with
weights proportional to the quality of the cross-validation result of each.

Four individual forecasts

Unlike ES-RNN, GROEC is a local method. Each time series is treated for itself. First, the
forecast for a time series is calculated using each of the four algorithms: DOTM, OTM,

27

ETS, and ARIMA. Each method is used both to find a forecast for the unknown horizon as
required by the M4 competition, but also to forecast the last path of the training set so that
cross-validation can be used to estimate the quality of each algorithm. A short description
of each of the four methods follows.

The Theta model created interest with researchers after being the most accurate in the
M3 competition (Makriadis and Hibon, 2000). The original method is described by Assi-
makopoulos and Nikolopoulos (2000). Fioruci et al. (2015) later describes the Optimized
Theta Method (OTM). The concept is based on modifying the local curvatures of a time
series. This change is obtained by a coefficient, called the Theta-coefficient. First, the lin-
ear regression of the original time series is found, as shown in figure 2.15. The point where
the linear regression intersects with the y-axis is labeled α and the slope is labeled β. Then
Y1, Y2, ...Yn is transformed to a Theta-line such that Yt(θ) = θ ∗Yt+ (1− θ)∗ (α+β ∗ t).
Figure 2.16 shows the results of transforming a time series with different values of θ. A
θ-value smaller than 1 makes the curves of the time series smaller. In the extreme case
where θ = 0, the time series becomes linear. A θ-value larger than 1 makes the curves
larger.

In the Theta method, the original time series is decomposed into two or more theta lines.
The Theta lines can be regarded as individual time series and are extrapolated individually
using a simple forecasting method such as for example ES. The Theta-model used in the
M3 competition used a Theta-line with θ = 0 and one with θ = 2. The first theta line
is linear and the forecast was found by extending the line. The second theta line was
predicted with SES. In this way, the first theta line predicts the long-term behavior of the
time series, while the second theta line approximates the short-time behavior. For each
point in the forecasting horizon, the average of the different forecasts is found. This is the
prediction for the original time series. The time series is also deseasonalized and before
the whole process and the re-seasonalized after the process.

The optimized theta model distinguishes from the original theta model in the way that it
optimizes the theta parameters by finding theta values that give a low error on the last part
of the known time series. When combining the forecasts, the weights are not necessarily
equal. More details can be found in Fioruci et al. (2015).

Barker (2019) describes the Dynamic Optimized Theta Model (DOTM). Easily explained,
in this model, α and β are individual for each timestep. The details of the procedure are
left out of this thesis. In GROEC, the method dotm() from the forecTheta package was
used.

ETS is described in section 2.1.8. In the GROEC-method, the method ets() from the
forecast package was used. Different ETS-methods are tried and the best one is chosen for
the forecast.

The ARIMA method is described in section 2.1.7. In the GROEC method, The method
auto.arima() from the forecast package of R was used. This method chooses appro-
priate values for p, d and q.

28

value

time
0 1 2 3 4 5 6 7 8 9 10 11 12 13

0

1

2

3

4

5

6

7

8

9

10

α = 4

β = 0.37

Figure 2.15: The values α and β that are used in the theta method. Least Squares Regression is used
to find the line that best fits the data points. α is the y-coordinate where the regression line intersects
with the y-axis. β is the slope of the regression line.

29

Figure 2.16: The blue time series is transformed to different Theta-lines using the formula Yt(θ) =
θ ∗Yt+(1−θ)∗ (α+β ∗ t), where α and β are derived from linear regression. The larger the θ, the
more extreme become the curves. A θ less than 1, however, makes the curves smaller than original.

30

Cross-validation

The novel thing about GROEC is not the four methods described so far, but the way they
are combined to create the final forecast. Let t be the number of timesteps in the training
set for a time series. Let H be the number of steps in the forecasting horizon. Then n is
the number of steps in the training and test set together. There are six different origins,
denoted by n1, n2, ..., n6. The first origin is defined by the equation

n1 =

{
n−H, if n−H ≥ 5

5, otherwise

The rest of the origins are decided by the number m = bH6 c. We have

ni = ni−1 +m for i < 1.

The GROE loss function is calculated for each individual method.

GROE =

6∑
i=1

min(H,n−ni)∑
j=1

g(yni+j , ŷni+j),

where g(y, ŷ) is the error function:

g(y, ŷ) = 0.5 ∗ sAPE(y, ŷ)

sMAPE*
+ 0.5 ∗ ASE(y, ŷ)

MASE*
.

Here, sMAPE* and MASE* is the sMAPE error and the MASE error, that the naı̈ve2
method would have done in this case. The formula corresponds to the OWA score in the
M4 competition. Usually, the OWA is done over whole series

Combining the Forecasts

A score is calculated for each of the four methods, as the inverse of the loss:

si =
1

li

A low loss is good, and will then give a high score. The weight for a method is defined as
the score divided by the total score for all the methods:

wi =
si∑4
j=1 sj

The four forecasts are combined using the weights.

31

M4-train

ES

CES

ARIMA

DOTM

4748

5164

4978

4823

sort

4748

4823

4978

5164

median
4900.5

Figure 2.17: An example of how SCUM combines the forecast of four methods. A time series
is forecasted by the four different methods ES, CES, ARIMA, and DOTM. For a given step in the
horizon, they predict one value each. The predicted values are sorted and the median is found, which
also is the average of the two middle values. That is the prediction that SCUM will make for that
step in the horizon.

2.3.5 SCUM

The 6th best contribution to the M4 competition was the method Simple Combination of
Univariate Models (SCUM), which achieved an OWA of 0.848. The method is written in
R and combines four different forecasting methods and use the median of the results as the
final forecast.

Four Individual Forecasts

Each time series is forecasted using each of the four algorithms: ES, complex ES, auto-
matic ARIMA and DOTM. ES is described in section 2.1.4. For yearly, quarterly, monthly
and daily series, the ets() function from the forecast package was used. For weekly and
hourly series, the es() function of the smooth package is used. Complex ES method is
described by Svetunkov and Kourentzes (2016). auto.ces() from the smooth package
was used. The ARIMA method is described in section 2.1.7. auto.arima() function
of the forecast package was used. DOTM is described in section 2.3.4. In SCUM, the
dotm() method of the forecTheta package was used.

Combining the Forecasts

The forecasted value is the median of the four produced forecasts. For example, if ES fore-
casts 4748, CES 5164, ARIMA 4978, and the dynamic optimized theta method 4823, then
the final forecast will be 4900.5. Figure 2.17 shows how SCUM combines the individual
forecasts.

32

Figure 2.18: A monthly series (blue) with frequency m = 12 is aggregated into groups of k = 3.
The sum of three values in a group becomes the new value of the aggregated series (green). The
aggregated series has a frequency of bm

k
c = b 12

3
c = 4.

2.3.6 THIEF Combination

The 7th best contribution to the M4 competition was the method Temporal Hierarchical
Forecasting Combination (THIEF Combination), which achieved an OWA of 0.860. The
method was written in R.

Temporal Hierarchical Forecasting

Temporal hierarchical forecasting (THIEF) is a technique for seasonal time series used
in combination with regular forecasting algorithms. In this approach, a time series y is
preprocessed by aggregating it, meaning that groups of subsequent observations are com-
bined into one single value. An example of this is shown in figure 2.18. The observations
are simply combined by summation. The number of observations that are aggregated k
must be a factor in the frequency of the series m. For instance, a monthly series with sea-
sonality m = 12 can be aggregated into groups of 2, 3, 4, 6, or 12. This results in another
series y ∗ ∗[k] with fewer observations than y. The frequency of the aggregated series will
be m

k . For example, a monthly series aggregated into groups of 3 will have a frequency
of 4. The aggregated series can be forecasted individually and the predicted values could
be split up to give a forecast for the original series. By aggregating a series using different
values of k, several forecasts can be created that can be combined into a single forecast for
the original series. See Athanasopoulos et al. (2017) for details about the procedure.

THIEF Combination

THIEF Combination calculates two different forecasts using THIEF. One forecast is used
with ARIMA as the base function for forecasting the aggregated series and one with the
Theta method as the base function. This is accomplished using the thief() function
from the thief package in R passing the argument usemodel equal to "arima" and
"theta". The average of the two forecasts is used as the final forecast for THIEF Com-

33

Deseason-
alization

Box-Cox
transfor-
mation

The Theta Method

Reverse
Box-Cox
transfor-
mation

Re-
seasonal
ization

Figure 2.19: The lifetime of a time series being forecasted with Theta Box-Cox. The series is first
deseasonalized if it has a seasonal pattern. Then Box-Cox transformation is applied. Then the Theta
method is used for forecasting the time series. The predicted values are reverse transformed with
Box-Cox and re-seasonalized if it was earlier deseasonalized.

bination.

2.3.7 Theta Box-Cox

The 8th best contribution to the M4 competition was the method Theta Box-Cox, which
achieved an OWA of 0.861. The algorithm is written in R.

Figure 2.19 shows the process a time series goes through using the Theta method. The
seasonal component of quarterly, monthly, and hourly data is checked for seasonality. In
the case that there is a seasonal pattern, the time series is deseasonalized using multiplica-
tive decomposition. Then, Box-Cox transformation (Box and Cox, 1964) is applied to all
series. Put simply, this is a way to transform non-normal dependent variables into a normal
shape. Every observation yt is translated to wt using the formula:

wt =

ln yt, if γ = 0

yγt − 1

γ
, otherwise

A value of γ is chosen such that the seasonal variation is about the same across the whole
series. After deseasonalization and Box-Cox transformation, the series is ready to be
forecasted. This is done with the theta method. The function thetaf() from the forecast
package is used. Reverse Box-Cox transformation is done with the formula

yt =

{
ewt , if γ = 0

(γwt + 1)
1
γ , otherwise

using the same gamma values that were used for transformation. Finally, the predictions
are re-seasonalized.

34

2.3.8 Predilab

The 10th best contribution to the M4 competition was the method Predilab, which achieved
an OWA of 0.869. The algorithm is written in R. A different approach is used for different
kinds of resolutions.

For yearly and quarterly series the method Theta4-ARMA is used. No textual description
of the method is given except that it is a generalization of the theta method. It has not been
prioritized to study the details of this method.

For a series that has a monthly, weekly or daily resolution, the training set is divided in
two like in figure 2.13. We name the first part of the series predilab-train and the second
part predilab-test. All the seven following methods are used on predilab-train to give a
forecast for predilab-test:

• Seasonal naı̈ve

• Naı̈ve2

• SES

• Holt

• Damped

• Theta4

• Theta4-ARMA (a variation of Theta4)

The sMAPE scores of the methods are calculated. The three best methods are used on
M4-train to give a forecast for M4-test. The three predictions are averaged.

Hourly series is tested on whether they have a weekly frequency. That is a repeating pattern
every 24 * 7 = 168th step. If a time series has a weekly frequency, seasonal naı̈ve with
frequency 168 is used. Otherwise, seasonal naı̈ve with frequency 24 is used.

2.4 Reproducibility

What is meant by reproducibility is not clearly defined. Stodden (2011) distinguishes be-
tween replication and reproduction. She defines replication as the process of rerunning the
code used by the original researcher on the same data obtaining the same result. Repro-
duction, on the other hand, is a broader term. It includes both replication and the process
of obtaining equivalent findings with some independence from the original code or data.
Bollen et al. (2015), on the other hand, refer to replicability as the process of duplicating
results using the same procedures, but different data than in the original study. They refer
to reproducibility if both the same procedures and materials are used. Here, replication is
the broader term.

35

R1

R2

R3

Method Data Experiment

Figure 2.20: The reproducibility level of a computer science experiment is decided by its documen-
tation.

2.4.1 A Reproducibility Framework

Due to conflicting definitions and the lack of a common standard, Gundersen and Kjensmo
(2018) provided a framework for evaluating reproducibility in empirical AI research. They
define reproducibility in empirical research as ”the ability of an independent research team
to produce the same results using the same AI method based on the documentation made
by the original research team”. The individual team should use the same AI method, but
that does not mean that they have to use the same implementation of the method. The result
captured by the performance measures should be the same as in the original experiment
for the experiment to be reproducible.

They distinguish between three different degrees of reproducibility. The reproducibility
degree of an experiment is decided by the information contained in the experiment’s doc-
umentation, as shown in figure 2.20. For an experiment to be R3 reproducible, also called
method reproducible, the method used by the original research team must be documented.
For instance, they could report that they used k-means for solving a clustering problem.
For an experiment to be R2 reproducible, or data reproducible, the documentation must not
only include information about the method used, but also information about the data used.
The dataset should be available. What data that is used for training, validation, and testing
should be reported. In order to achieve R1 reproducibility, experiment reproducible, the
documentation must also contain information about the experiment that was conducted.
That includes source code, the operating system used, and parameters used in the experi-
ment. A full overview of information required for each of the three factors can be found
in table A.1.

To put it differently, for an experiment to be reproducible at all, an individual research team
has to reproduce the same results. When reproducing the experiment, the implementation
and data used decide the reproducibility degree as shown in table 2.21. The results of an
experiment are method reproducible when the execution of an alternative implementation
of the AI method produces the same results when executed on different data. They are data
reproducible if an alternative implementation, but the same data is used. The results are
experiment reproducible if both the same method is used and the same data. The definition
of replication in Stodden (2011) corresponds to this definition of experiment reproducible.
Both the definition of method reproducible and the definition of data reproducible fit under
the definition of reproducibility provided by Stodden (2011).

36

R1

R2

R3

Data Implementation

Same Same

Same Different

Different Different

Figure 2.21: The results of an experiment have a reproducibility degree, which depends on whether
the same implementation of the AI method is used and whether the same data is used when producing
the same results.

There are positive and negative sides with both ends of this ”scale”. An experiment doc-
umented to an R1 degree might be easier for an independent research team to reproduce.
Also important is that having all these details from the original experiment increases the in-
dependent researchers’ trust in the initial study’s results. From the view of an independent
research team, an experiment documented to an R1 degree might be preferable. However,
more documentation work is required from the original research team. In addition, if an
experiment could be reproduced using a different implementation and a different dataset,
that is positive for the original research team. Their method does not only work with an
exact implementation at a specific dataset, but is more general than that. As a result, the
original research team may have little motivation for documenting more than the method.

37

38

Chapter 3
State of the Art

Like mentioned earlier, reproducibility in AI has received increased attention during the
last years. Research includes AI tasks like language modeling, reinforcement learning,
image classification, and recommending systems. A number of papers are collected and a
summary is given for each of them.

3.1 On the State of the Art of Evaluation in Neural
Language Models

Several novel recurrent neural network architectures have recently claimed to be the new
state-of-the-art. Due to the usage of different codebases and limited computational re-
sources, there existed no fair comparison of the models before Melis et al. (2017) con-
ducted an experiment running a variety of recent published algorithms against each other
and some standard recurrent neural network architectures.

Three different datasets were used. Two word-based datasets, and one character-based
dataset. For each of the datasets, three standard recurrent architectures are trained: LSTM,
RHN, and NAS. Three LSTM networks of different depths are trained, so that there are
five different models. Hyperparameters are optimized by Google Vizier, a black-box hy-
perparameter tuner. Each of the five models is given a parameter budget of 10000 and
20000 parameters, which is the total number of trainable parameters in the model. As a
result, ten different models were trained.

The models were compared against the results of recently published ”better” versions of
LSTMs, RHNs, and NASs. On the two word-based datasets, the recently published ar-
chitectures were outperformed by the standard methods. For the character-based dataset,

39

the novel algorithms were not outperformed. The authors blame the number of training
epochs, which is only about one-tenth of the number used in some of the novel methods.
The conclusion is that standard LSTM architectures today still outperform more recent
models when properly regularised.

3.2 Are GANs Created Equal? A Large-Scale Study

Lucic et al. (2018) examined different Generative Adversarial Networks (GAN) models to
find out if any of the algorithms performed better than others.

A GAN is a subclass of generative models. The task of generative models is to learn
patterns in data and generate new data that could just as well have been drawn from the
original dataset. For example, we could create a model that is trained on a bunch of real
human faces to create new images of new human faces that no one has seen before. A GAN
is a neural network that uses a generative model (generator) together with a discriminator
model (discriminator) to become good at creating new examples that look like they belong
to the distribution. While the generator learns to generate new data, the discriminator
learns to discriminate between real and fake data. In other words, the discriminator is a
classifier that takes as input either a real or a fake data example and learns to classify it
as either of the categories. The generator can be trained to generate better examples by
making it generate examples that are more confusing for the discriminator. In this way,
a GAN can be viewed as a two-player game between the generator and the discriminator.
While the discriminator is getting better discriminating between real and fake data, the
generator becomes a better data generator (Walia, 2017).

Several different versions of GANs has recently been proposed, and up to this point in
time, there was no clear consensus on which models performed better than others. One
reason for this is the lack of a robust and consistent metric to measure which GAN that per-
forms better. You can imagine several different models that enable to generate human face
images. How can you decide which images that looks most like real people? The authors
discuss several evaluation metrics and provide a fair and comprehensive comparison of
state-of-the-art GANs. A proposed evaluation metric is Fréchet Inception Distance, FID.
It is computed by considering the difference in the embedding of true and fake data. The
generated data are embedded into a feature space given by a specific layer of Inception
Net. Viewing the embedding layer as a continuous multivariate Gaussian. The Fréchet
distance between the two Gaussians is used to quantify the quality of the samples.

Four popular datasets from GAN literature were chosen - CelebA, Cifar10, Fashion-Mnist
and Mnist. First, a wide one-shot setup with 100 samples of hyper-parameters were se-
lected. Then a narrow two-shots setup with 50 samples from more narrow ranges were
selected manually after the wide range search. For each five epochs in the hyperparameter
optimization, the best FID between 10k samples generated by the model and 10k samples
from the test set were computed. In the end, the best FID across the training run was
chosen. There was no algorithm that clearly outperforms the others.

40

It is concluded that most models can reach similar scores with enough hyperparameter
optimization and random restarts. There was not found any evidence that any of the tested
algorithms consistently outperformed the original GAN algorithm. The authors claim that
it is necessary to report a summary of the distribution of results, rather than the best result
achieved. It is suggested that future GAN research should be based on more systematic
and objective evaluation procedures.

3.3 Deep Reinforcement Learning that Matters

Reinforcement learning differs from supervised learning in that it does not have any la-
beled training data to learn from. Instead, an agent is interacting with its environment and
learns what is good and bad actions by achieving rewards or penalties. The agent learns
by trial and error. The goal is to maximize the reward.

Henderson et al. (2017) address the problem of literature reporting a wide variety of results
for the same reinforcement learning algorithms. They experiment with four model-free
policy gradient algorithms that are frequently used as baselines for comparison against
novel methods. Two different environments are used.

To see how the choice of network architecture affects the performance of a model, they
are varying the number of hidden layers and the number of nodes in each layer for all
the models in both environments. Also the hyperparameters and activation function is
varied. The results show that how good a model is, depends on the architecture. Which
architecture that is the best is a matter of model and environment. An instance of a model
that works best in one environment is not necessarily the best in the other environment.
Thus, the architecture must be adjusted to the specific environment the agent is learning in.
Hyperparameter agnostic algorithms are suggested. That is, algorithms that itself is doing
the hyperparameter optimization to ensure that some good hyperparameters for a specific
problem. For a baseline algorithm, an architecture and hyperparameters should be found
such that the performance of the model matches the performance of the original baseline
algorithm.

Reward rescaling is to multiply the reward generated from an environment by some scalar
for training. The researchers train one of the models using several reward scales. The
reward scale does not always affect the result, but sometimes it has a large effect. They
warn against using reward scaling and refers to a more principled approach.

Due to the major concern in machine learning regarding randomness during the learning
phase, an experiment is being conducted in which the goal is to find out if the average of a
number of networks trained with different random seeds was a good measure. 10 networks
are trained with all parameters fixed except for a random seed. The networks are divided
into two groups of five, and it turns out that the two groups can be very different. No rule
of thumb is given when it comes to the number of runs with different random seeds, but it
is recommended that there are many.

41

In order to tell how the environment properties affect variability in algorithm performance,
the models are trained on the same four environments. It varies which models that outper-
form the others. Consequently, it is possible to make an algorithm seem better by reporting
only the environments in which a proposed novel algorithm outperforms some baselines,
or simply to be lucky if you only test in one environment. The authors recommend that a
wide range of environments should be tested and reported, also the ones where the novel
model was outperformed.

Lastly, the researchers are testing if commonly used baseline implementations of the same
model are comparable. It is not unlikely that authors implement their own versions of
baseline algorithms to compare against. For that reason, an experiment is conducted where
several implementations are tested against each other. The results show that implementa-
tion differences can have dramatic impacts on performance. For this reason, it is important
that also the baseline code is made available.

3.4 Unreproducible Research is Reproducible

Bouthillier et al. (2019) extends the works by Melis et al. (2017) and Lucic et al. (2018)
to image classification. In contrast to NLP and GANs, the evaluation metric in image
classification is simple. An image belongs to a specific class and you can measure what
percentage of the images that are classified correctly. If an experiment is not reproducible,
it must be something different with the model, not with the evaluation metric. In contrast
to the RL experiments in Henderson et al. (2017), the environment is strongly controlled
and there is only a small number of sources to random variations in the algorithm. If an
image classification experiment is not reproducible, we cannot blame those variations.

Depending on how much information that is used when repeating an experiment, repro-
ducibility is divided into three different categories: methods reproducibility, results re-
producibility, and inferential reproducibility. We have methods reproducibility if reusing
the original code leads to the same results. If we reimplement the experimental setup
and achieve statistically similar results, we have results reproducibility. Inferential repro-
ducibility is the concept that a finding or a conclusion is reproducible if one can draw it
from a different experimental setup, for instance using a different dataset.

10 popular deep learning models for image classification were trained several times. For
each model, 10 different seeds were used for initialization of the model parameters and
ordering of the data presented by the data iterator. All models were trained twice on six
different datasets: one in a biased scenario where the hyperparameters were the same for
all models (those that were best for one model) and one in an unbiased scenario where
the hyperparameters were optimized given a specific budget. It is found that which model
that performs best varies with the random seed used. This applies particularly for simpler
datasets. To ensure inferential reproducibility, one should train several models with differ-
ent seeds on various datasets. One algorithm is rarely the best on all datasets, but in that
case, also the negative results should be reported.

42

3.5 Are We Really Making Much Progress? A Worrying
Analysis of Recent Neural Recommender
Approaches

Dacrema et al. (2019) is conducting a systematic analysis of deep learning based proposals
for top-n recommendation tasks. That is, algorithms that for a given user, recommend a
number, n, of items that the user is likely to be interested in. It could be movies, goods in an
online store or other things. Now that methods are published continuously, it is difficult to
keep track of the current state-of-the-art methods, and for that reason, the authors analyze
the degree of reproducibility within the field.

Papers that were published on the conferences KDD, SIGIR, TheWebConf (WWW), and
RecSys between 2015 and 2018 were manually scanned. A paper was considered relevant
if it proposed a deep learning based technique to solve the top-n recommendation problem.
18 relevant papers were found. A paper was categorized as reproducible if the source
code and at least one dataset used in the original paper was available. If not available,
the original authors were contacted, and if they could provide code and data, the paper
would still be categorized as reproducible. It was found that seven out of 18 papers met
this definition of reproducible. Furthermore, it is attempted, for these seven papers, to
run the source code against some baselines to check whether they perform better than the
baselines. Seven baselines were picked out and fine-tuned for each paper’s algorithm and
dataset. Only one of the seven models was able to outperform all the baselines.

The authors conclude that reproducing published research is challenging. The reasons why
many articles might not be reproducible are many: the source code is not shared; the code
used for hyper-parameter optimization, evaluation, data preprocessing or baselines are not
shared; data is not shared; or the computational complexity to reproduce an experiment
could be high. They claim that a phantom progress is happening in the field of recom-
mendation approaches. Many new approaches are published, but are not necessarily good.
Novel algorithms are compared against baselines that are not certainly a strong baseline
or that are not properly fine-tuned. It is suggested that future research practices are more
accurate with respect to the evaluation of algorithmic contributions.

3.6 Objectivity, Reproducibility and Replicability in
Forecasting Research

Makridakis et al. (2018) tried to reproduce an algorithm using machine learning to achieve
a high degree of accuracy. Several points needed clarifying, but they did not succeed in
getting in touch with the authors of the article. Furthermore, they tried to replicate the
results of a paper that used eight machine learning methods on the M3 competition data.
The results where approximately replicated. They wrote a paper about the previous find-

43

ings to Neural Networks, stating that all statistical forecasting methods were more accurate
than machine learning methods. The paper was rejected with the reason editors claiming
that many machine learning methods are superior to statistical models. Makridakis et al.
(2018) could not find any such results and the editors would not give any references on
this. The paper was however accepted by Neurocomputing and to PLOS ONE. Frustrated
after being ignored by both the authors of the paper they tried to replicate and the editors
of Neural Networks, they suggest how the field could work towards reproducibility and
replicability. They have got nine concrete suggestions:

1. Forecasting journals should require all information needed to reproduce or replicate
an experiment

2. The dataset used for evaluating a proposed method should be publicly available

3. Describe Methods: Any method implemented within the paper should be clearly
defined

4. The authors should specify what software was used for producing the published
results, as well as its version.

5. The authors should define the formulas used for evaluating their results, including
all the measures, metrics and criteria exploited

6. Forecasting journals should offer the readers the ability to comment on the papers
published, submitting thoughts, questions and requirements publicly visible

7. Editors of forecasting journals should regularly call for replications of important
studies and encourage reviewers to accept such submissions on the basis of the qual-
ity of the experiments conducted, the significance of the hypotheses tested and the
new information provided

8. Editors and reviewers should be objective, judging the work made by the authors
based on its quality and potential impact and not just on the conclusions drawn

9. New methods should be tested on multiple large-sized datasets

The authors are organizing the M4 competition. To ensure reproducibility and replicability,
the participants will be required to publish their code as well as a detailed description of
the method used.

44

Chapter 4
Proposed Methodology

In order to answer the research questions, an attempt will be made to reproduce some
of the methods from the M4 competition. Here, the word reproduce is used as in the
definition of reproducibility provided by Gundersen and Kjensmo (2018). As a researcher,
independent from the original research teams in the M4 competition, I will attempt to
produce the same results using the same AI methods as the original teams, based only on
their documentation. Using the original implementation and dataset, it will be examined
if the methods are of reproducibility degree R1, experiment reproducible. Some methods
are machine learning models. Those could either be reproduced by training a new model
from scratch or by using a pre-trained model to forecast the series. In this project, all such
models will be trained from scratch.

4.1 Methods to Reproduce

A requirement for the methods to be attempted reproduced is of course that they are pub-
licly available. 36 out of the 49 participants have made their source code publicly available,
some with instructions on how the code could be reproduced. For it to be relevant to run
the code, it must not only be a skeleton code, but it needs to be fully runnable or require
only small changes.

Makridakis et al. (2019) has already evaluated the reproducibility of most of the methods.
This is valuable when selecting which methods to attempt to reproduce. The result can be
seen in table B.1. Based on the sMAPE difference between the original method’s result
and the result of the retrained method, each model is categorized as fully replicable (in
the original paper full replicable), replicable or not replicable. The running time for a
majority of the models is given.

45

Priority Id Name of Method
1 118 ES-RNN
2 245 M4metalearning
3 237 WESM
4 72 forecaster18
5 69 GROEC
6 36 SCUM
7 78 THIEF Combination
8 260 Theta BoxCox
9 238 Card

10 39 Predilab
11 5 4Theta
12 251 DOTM
13 250 Tartu M4 Combination

Table 4.1: The methods that will be attempted reproduced in prioritized order.

Based on (Makridakis et al., 2019)’s result, some methods are chosen to be attempted
reproduced in this project. The chosen methods are listed in table 4.1. First of all, a method
must be publicly available in the official GitHub repository for the M4 competition to be
considered. Methods categorized as ”not replicable” by Makridakis et al. (2019) will be
skipped. The same goes for methods that are marked with a running time of more than
two months. The last condition for a model to be rerun is that it must be better than all of
the benchmark methods from the M4 team. We are not interested in the reproducibility of
methods that are not performing well. The best benchmark method is the theta method.
Methods having a score worse than this (OWA larger than 0.897) will not be attempted
rerun.

Regarding the time limit for this project, it would be an optimistic goal to run the code of
all 13 methods. For that reason, priority must be given to the methods that have the lowest
OWA scores. How many methods that will be investigated will depend on how much time
this takes.

4.2 Rerunning the Methods

Starting at the top of table 4.1, the following procedure will be applied for each method:
Based on the documentation given by the original researchers, an environment will be
attempted set up in a Docker image, ready for running the source code. The Docker image
is downloaded to two different computers. Five instances of the docker image is created
on each computer and a single rerun of the algorithm is performed in each container to
produce forecasts for the time series. They are not necessarily run at the same time, but if
the computer resources are sufficient, several reruns of the same or different methods can

46

be carried out at once. If the code is unnecessarily difficult to run or has a running time of
more than two months, the method will be considered not feasible to reproduce.

4.2.1 Documentation by the Original Researchers

Each participating team was asked to deliver the source code used for generating the fore-
casts and instructions on how to exactly reproduce the submitted forecasts. These deliv-
eries are located in the team’s folder in the M4 competition’s official GitHub repository.
The team’s GitHub folder makes up the documentation that this experiment will be based
upon.

4.2.2 Docker Image

Based on the submitted documentation a Docker image is created. The docker image sets
up an environment for the method to run in. This makes it easy to run the same algorithm
several times in the same environment, also on different computers. Besides, it makes this
work easily reproducible.

4.2.3 Computers

When the Docker image is ready, it is downloaded to computer A and computer B. Both
computers run the Ubuntu 18.04.4 LTS. Computer A has more cores and working memory
than a usual home computer. It has a CPU with 28 physical and 56 logical kernels of the
type Intel Xeon Gold 6132. The total working memory was 755 GiB. Computer B is a
more typical home computer. It has a CPU with 4 physical and 8 logical kernels. The total
working memory was 15.6 GiB.

4.3 Evaluating a the Results

According to Gundersen and Kjensmo (2018), for an experiment to be reproducible, the in-
dependent researchers must produce the same result. However, same result is not defined.
In the context of the M4 competition, this could mean that the same forecasts should be
produced when rerunning a method. On the other hand, two models could predict different
values that are equally good according to some performance measure. Different forecasts
might have the same OWA value in the M4 competition. Therefore, it might be just as
interesting to investigate if the scores of a rerun is the same as the score of the original
submission. As a score, we could use the same performance measure as in the competi-
tion, namely OWA. One last possibility is to compare the OWA values for several methods

47

from the competition at once. When rerunning them and giving them new scores, does
that change the overall order of the best-performing methods?

If a rerun of a method is feasible, then five reruns of that method will be performed on
computer A and five reruns will be performed on computer B. For each rerun we will obtain
a result consisting of 100,000 forecasts with different horizon lengths. The following
subsections describe how the reruns will be evaluated.

4.3.1 Similarity Between the Forecasts

For each rerun, the result will be compared to the original method’s result. Both a rerun
and the original submission will consist of 100,000 forecasts. Each series’ forecast will
consist of several forecasted values, one value for each step in the horizon. For instance,
a yearly series would have six forecasted values in a rerun and six forecasted values from
the original submission. Each of those forecasted values in a rerun are compared to the
corresponding forecasted value from the original submission. The comparison is done with
sAPE. This will create a schema of the same format as a rerun, but instead of containing
forecasts, containing the sAPE value between the rerun forecasted values and the original
forecasted values.

The sAPE schema is created for all ten reruns. An average sAPE schema is created where
each value is the average of all corresponding values from the five schemas. The average
sAPE schema is then processed the following way: For each of the six different time series
resolutions (yearly, quarterly, and so on), the average sAPE is calculated for each step in
the horizon. For example, the average is taken over all sAPEs for the first step in the
horizon for yearly series, then the average is taken over all sAPEs for the second step in
the horizon for yearly series and so on. This way it will be detected if the reruns are similar
to the original submission early in the horizon or late in the horizon.

The sAPE values for a time series’ horizon is then averaged, so that the sMAPE value
for the series is obtained. The sMAPE values for all series in a rerun is calculated. Then
the average is taken over the sMAPE averages for five reruns of the same method on the
same computer. The value is compared to other methods and the same method on the other
computer.

Next up, the proportion of the time series that have an sMAPE equal to zero is calculated.
This share is averaged over the five reruns for a method on one computer. The same thing
is done with all sMAPE equal to or below the threshold 1 ∗ 10−5 = 0.00001. This is such
a small sMAPE value that the forecasts can be considered equal.

4.3.2 Similarity in the Performance

The previous subsection described a procedure to tell how equal the forecasts produced by
the reruns are to the original forecasts. However, it does not say if the reruns are doing

48

better or worse than the original result. A well-performing method produces forecasts
similar to values that are later observed in the future. These are the values from the test
set. Hence, we can use some performance measure comparing the reruns to the test set
and the original submission to the test set and see if they are doing equally good.

We can compare a forecast to the test set using OWA, like they also do in the competition
for comparing the methods. The following is procedure is carried out:

1. The following is done for each rerun and for the original result:

(a) The sMAPE and the MASE for each series is calculated as in the equations 2.8
and 2.9

(b) The sMAPE and MASE is averaged over all series with the same resolution
and origin

(c) The sMAPE and MASE is averaged over all series having the same resolution

(d) The sMAPE and MASE is averaged over all series having the same origin

(e) The sMAPE and MASE is averaged over all series

(f) The OWA is calculated for each of the previously mentioned categories as in
equation 2.10

2. The OWA value over the five reruns for each of the mentioned categories

3. The average of the reruns are compared to the original OWA values. Is it better,
worse or the same?

4.3.3 Variance Between the Reruns

When we run the same algorithm five times on the same computer, do we get the same
result every time? And if we do not, how much does the result variate from run to run?
To measure how different the forecasts are we could have simply used the variance or the
standard deviation. However, these do not take into account the magnitude of the numbers.
For example, we could measure the height of a child once every year in inches and then
predict the height of the child next year. We run the same algorithm five times and calculate
the values 44, 44, 45, 46, and 46. The standard deviation between the values is 1. If we
have the same values in centimeters we would have got the values 111.8, 111.8, 114.3,
116.8, and 116.8 which has the standard deviation 2.5. The values, which in practice
means the same, gives us different standard deviation. This becomes an issue when we
have time series from different domains measuring totally different things. To solve the
problem, we divide the standard deviation with the mean of the values. This is called
the coefficient of variation. In this example, we will get the same coefficient of variation,
namely 0.022 regardless of which unit is used for measuring.

The time series in the M4 competition training set do not all have the same magnitude.
Figure 4.1 illustrates a histogram over the average value of all observed values for a series.

49

Figure 4.1: The time series varies in size. The figure illustrates the time series having a mean lower
than 10511. There are 85 additional series that have larger means and are not included in the table.

Even though many series have a mean observed value of just under 2000, there are also
series that have a mean observed value of around 10 000. 85 series is also left out of the
histogram because they had extremely high means. H57 has the very largest values with a
mean of approximately 525 000. Because of the large spread in magnitude of the series, the
coefficient of variation is used to measure the variation of each method on each computer:

CV =
σ

x̄
,

where σ is the sample standard deviation between the values given by the formula

σ =

√∑N
i=1(xi − x̄)

N − 1
,

where x1, x2...xN is forecasted values for the same timestep of the same series, forecasted
with the same method on different reruns, x̄ is the mean of those values and N is the
number of values. The reason for using the sample standard deviation (using N − 1 in the
denominator) and not the population standard deviation (using N in the denominator) is
that we have been running a method five times out of infinite many times. We only have a
sample of five different reruns.

After finding the coefficient of variation for every forecasted value, we can take the average
over each step in the horizon for all resolutions.

4.3.4 Difference Between Computers

Do we get the same results when we run the algorithm on two different computers? For
every method, we have five reruns on each of the two different computers. That means
that for every value in the forecasting horizon there are five forecasted values from one
computer and five forecasted values from another computer. If all ten values are the same,

50

value7245 7250 7255 7260 7265

Figure 4.2: The figure illustrates two samples of numbers, green and blue. It is difficult to say if
they are picked from the same distribution or not.

the answer is easy: yes, they are equal. But what if the method is not deterministic and
predicts different values each time and we got ten different values? Figure 4.2 illustrates
this case. The values are all different, but all in the range 7245 to 7265. The blue values
have a mean of 7253.6 and the green values have a mean of 7256.2, so the blue values
seem to be a bit smaller than the green ones. However, the difference between 7253.6 and
7253.2 is small compared to the magnitude of the numbers. When putting a number on
how equal the samples are, there are some requirements for this metric:

1. A larger distance between the two groups should give a larger error

2. If we multiply all the numbers in the two groups with some constant, the error
between the two new groups should be the same as for the old ones

3. If we add a positive constant to all the numbers in the two groups, that should give
a smaller error (assuming that all numbers were already positive)

4. A larger variation in a group should give a smaller error

Using the example groups from table 2.4, we can take a deeper look into the requirements.
The letters f...j can be thought of as different algorithms run five times each on computer
A and B. For instance, algorithm f produces the values 10, 11, 12, 13 and 14 on computer
A and the values 11, 12, 13, 14 and 15 on computer B. This might be forecasted values
for one timestep in a horizon for one series in the M4 dataset. We can refer to the groups
of numbers as fA and fB . Requirement 1 says that a larger distance between the two
groups should give a larger error. gA is equal to fA, while gB is higher than the values
in fB . There is a larger difference between the g-groups than the f-groups. Hence, the
error between the g-groups should be larger than the errors between the f-groups. When
it comes to requirement 2, we can compare the f-groups to the h-groups. All values in
the h-groups equals to the values in the f-group times 10. The f-groups and the h-groups
should have equal errors, so that the error scales with the magnitude of the different series.
All values in the i-groups equals to the values in the f-groups added to 100. This brings us
to the third requirement. The difference between 110 and 111 should count less than the
difference between 10 and 11. Lastly, we have the j-groups, which equals to the f-groups
except that the variation between jA is larger than the variation between the numbers in
fA. This should give a smaller error, since a large variation within the groups would make
it more likely that the two groups are from the same distribution.

A metric that matches the requirements is difference relative to mean and standard devia-
tion (DRMSD):

DRMSD =
(µA − µB)2

µ ∗ σ
,

51

f g h i j
A B A B A B A B A B

x1 10 11 10 12 100 110 110 111 6 11
x2 11 12 11 13 110 120 111 112 9 12
x3 12 13 12 14 120 130 112 113 12 13
x4 13 14 13 15 130 140 113 114 15 14
x5 14 15 14 16 140 150 114 115 18 15

Table 4.2: Examples of values that could be produced when the algorithms f, g, h, i, and j are
running on computer A and B.

where µA and µB is the average of computer A and B, respectively; µ is the average of the
averages (also the average of all the numbers); and σ is the average of the sample standard
deviation of computer A and the sample standard deviation of computer B. If the mean of
the averages are equal, then DRMSD = 0. There is no limit on how large the DRMSD
can be, as there is no value for how large the difference can be between the two groups
of numbers. The metric is undefined if the average of the averages or the average of the
standard deviations is zero. This means that if an algorithm is deterministic, the error is
never defined. The algorithm could be deterministic independent from the computers such
that it always predicts the same value. It can also be deterministic such that it gives five
equal values on computer A and five other values on computer B which are equal to each
other, but unequal to the values from computer A. In both cases we can use the percentage
difference as the error metric:

PD =
|µA − µB |

µ
∗ 100%

DRMSD will be calculated for all forecasted values in the horizon. A graph over the
average DRMSD for each timestep sorted on resolution will be created. The average
DRMSD for all forecasted values in the horizon for each series will be calculated. The
series will be sorted on resolutions and origins and the average DRMSD within each group
will be calculated.

52

Chapter 5
Results

The docker images can be found at Docker Hub (Soleim, 2020a) together with a step by
step instruction for how you can rerun the algorithms. The Dockerfiles used for building
the Docker images are available in the GitHub repository (Soleim, 2020b).

The top ten methods from the priority list (118, 245, 237, 72, 69, 36, 78, 260, 238, and
39) were attempted reproduced. The last three methods from the priority list (5, 251, 250)
were not attempted rerun due to time constraints and limited resources in the project. Out
of the ten methods that were attempted reproduced, eight (118, 245, 237, 69, 36, 78, 260,
and 39) was possible to rerun. Four of these (118, 36, 260, and 39) were successfully rerun
on both of the computers mentioned in 4.2.3. The other four (245, 237, 69, and 78) were
only rerun on computer A, the one with the most resources. Two models (72 and 238)
were considered infeasible to get up and running during this project. Table 5.1 shows an
overview of this. The produced forecasts can be found in the GitHub repository (Soleim,
2020b).

5.1 The Rerunning of the Methods

A short description of the process of examining each method’s source code and setting up
the environment follows.

5.1.1 ES-RNN

ES-RNN was written in C++ and was the only one of the ten examined methods that were
not written in R. The author claims that the algorithm can be run on Windows, Linux, and

53

Method id Name of method Rerun on Computer A Rerun on Computer B
118 ES-RNN Yes Yes
245 M4metalearning Yes Not enough working memory
237 WESM Yes Not enough working memory
72 forecaster18 Poorly documented Poorly documented
69 GROEC Yes Not enough working memory
36 SCUM Yes Yes
78 THIEF Combination Yes Unknown error

260 Theta Box-Cox Yes Yes
238 Card Poorly documented Poorly documented
39 Predilab Yes Yes
5 4Theta Not attempted Not attempted

251 DOTM Not attempted Not attempted
250 Tartu M4 Combination Not attempted Not attempted

Table 5.1: An overview over which methods that were rerun on which computers.

macOS. The process of setting up this environment was a complicated process. A zip-
file was submitted containing 43 different files in a folder structure. Even though some
of those files were readme-files that explained a few things, it was not obvious where
to start. The code uses DyNet, a neural network library developed by Carnegie Mellon
University among others. Although it was time-consuming to get started with this method,
it produced forecasts on both computer A and computer B. The forecasts were carried out
one resolution type at a time. After running the main code in R, some code written in
C++ had to be run to produce the final forecast file for each resolution. No programmatic
procedure was given for combining the forecast files for the different resolutions into one
final submission file, so a Python script was created to accomplish this.

In the preliminary work for this thesis, it was detected one variable that most likely had
changed between the training of the original model and the source code delivery. This was
a variable indicating the number of seasonal patterns in the series. In the submitted source
code, this was set to 0. A warning message showed up when running, indicating that
something might be wrong with this variable. Additionally, there was a large difference
between the original hourly forecasts and the forecast produced by a rerun. Due to these
reasons, the variable was changed to 1 before rerunning the code.

5.1.2 M4metalearning

The authors of M4metalearning provides both a pre-trained model used for the submission
in the competition and source code written in R for retraining the model. In this project, the
latter one is of interest. A dedicated R package provides the core of the method. A Docker
image is created from ubuntu 18:04, installing R and the necessary libraries. The method
was able to run on computer A, but crashed after a few days of running. It was investigated
whether the crash was caused by a specific time series. A binary search over all time series
was executed and some specific time series turned out to be guilty: ”Y12146”, ”Y21168”,

54

”Y22801”, ”Q5619”, ”M16993” or ”D2085”. The source code was modified to forecast
all time series except these. After the rerun, the forecast files were updated manually,
adding the lines with the given ids and giving every value in the forecasting horizon the
value ”NA”.

The method did not run on computer B. The code crashed shortly when trying to assigning
the training set with an error message informing that a vector could not be allocated.

5.1.3 WESM

The authors specify that R version 3.5.0 was used and the forecast package version 8.2, so
these were installed with the given versions. A demo file showing how the forecasts could
be executed was attached, but the forecasts were only stored in a variable and were not
saved to a file. A main file run.R was created to run the forecasts and write them to a file.
This file was written such that forecasts for only one specific resolution was executed. The
forecast files were later concatenated using the same Python program as for ES-RNN.

5.1.4 forecaster18

The code is split up into one R file for each resolution and a file for merging the results. The
dataset is loaded as a local file with RData format. This file is not enclosed, neither is any
code for transforming the original dataset provided by the organizers of the competition
into RData format. Not having the data needed for running the code, this method was
considered infeasible to reproduce in this project.

5.1.5 GROEC

No description of a procedure for how to reproduce the results of the GROEC method is
provided. However, only a single file is delivered, which simply had to be run in R after
installing the necessary packages, to produce forecasts for all the series. It is given in the
source code that R version 3.4.3 was used.

5.1.6 SCUM

Two programs with R code are delivered. The first program transforms the dataset from
the CSV-files provided by the competition’s organizers into an RData format. The second
program gives forecasts from the RData. This is explained in the method’s description. It
is stated that R version 3.4.3 was used, in addition to the version of all the libraries that are
used. Also the output of the R function sessionInfo() is given. The source code is

55

written so that the user can easily decide exactly which time series from the dataset he/she
want to forecast. All time series from the dataset were chosen to be forecasted in one run.

5.1.7 THIEF Combination

This method was already provided with a Dockerfile in the submission folder. A Docker
image was simply built from this Dockerfile. The code did not require any changes to run.
One file was produced for each resolution, which was saved one by one after all time series
with the given resolution was forecasted. At computer A, two of the Docker containers
stopped during running, one such that quarterly and yearly time series were not finished
yet, and another such that only the yearly time series was left. The Docker containers had
exited with error 137, an out of memory error. The code was edited to predict only the
missing resolutions. This was considered reasonable to do to save computing time as this
was understood to be a local method, where the prediction of one series is not affected
by other time series. On computer B, there were larger problems running the code. After
some days of running, it was noticed that the CPU usage was too low to be working on the
forecasts. The Docker containers were still running and there was no error message in the
nohup file. Yet, there was no further progression in the run according to the nohup files
during the next days. After two weeks of trying forecasting different resolutions, the code
was considered impossible to rerun on computer B.

5.1.8 Theta Box-Cox

Installing R and the necessary libraries to run the one delivered source code file was straight
forward. Although the source code looked finished at first glance, it turned out after a run
that for each new resolution to forecast, these new forecasts wrote over the old forecasts
in the data frame. Some small changes in the source code solved the problem, so that it
became possible to forecast all series in one run.

5.1.9 Card

This method is written in the programming language Ox. The dataset is meant to be stored
in in7/bn7 files, which is very fast for Ox to read. Unfortunately, these files were not
available, neither was the code to generate them. The method was considered infeasible to
reproduce.

5.1.10 Predilab

The submission consists of two source code files: one main file and one with auxiliary
functions. There were no problems during the setup of the environment. Nevertheless,

56

when the forecasts were produced, the ids of the time series was not as expected. The
original ids start with a letter giving the resolution of the series. Within that resolutions,
all series are given a partial key. The combination of the letter and the partial key is the
series’ primary key or id. The ids are Y1, Y2, ..., Y23000, Q1, Q2, ..., Q24000, M1, and so
on. The ids for the forecasts given by Predilab, however, are Y1, Y2, ..., Y23000, Q23001,
Q23002, ..., Q47000, M47001, and so on. A Python script was created and run on the
forecasts to give back their old id.

5.2 Similarity Between the Forecasts

For all the methods that were rerun, the sAPE for each step in the horizon averaged over the
five reruns as described in section 4.3.1. The results from computer A is shown in figure
5.1. Notice that the y-axis differs from method to method. The methods are not supposed
to be compared to each other in this figure. On the other hand, we can compare how a
specific method did for the different resolutions. For instance, we observe that method
039 had a higher sAPE for daily series. It may look like the reruns predicted the other
resolutions similarly to the original submission, while something might have been done
differently with the daily series. The figure also illustrates that in some cases, values early
in the horizon were predicted more similarly to the original submission than values late
in the horizon. The corresponding results from computer B is shown in figure C.1 in the
appendix. All the results from computer B are very similar to the results from computer
A.

For each method, the average sMAPE is calculated for five reruns of the same methods on
the same computer. The averages are shown in figure 5.2. We observe that method 118
has the highest sMAPE values, hence that is the method that gives the most different result
compared to the original submission. Method 039 and 260 are the ones with the lowest
sMAPE and are the methods that are most similar to their original submission.

Which proportion of the series that have an sMAPE equal to zero is shown in table 5.2. We
observe that method 039 predict the same result as delivered in the original submission for
73% of the series, both using computer A and computer B. Method 078 also stands out,
predicting the same result for 58% of the time series on computer A. This result differs
from the result in figure 5.2 in that method 260 predicts no time series equally to the
original submission, even though it has a low average sMAPE.

When increasing the threshold to 1 ∗ 10−5 we get the results in table 5.3. Accepting all
time series that have an sMAPE less than or equal to 1 ∗ 10−5 as equal to the original
submission, also method 237 and 260 predict the same values as the original submission
for more than half of the series.

57

(a) 036-A (b) 039-A

(c) 069-A (d) 078-A

(e) 118-A (f) 237-A

58

(g) 245-A (h) 260-A

Figure 5.1: Average sAPE between the original submission and five reruns for each step in the
horizon. The x-axis shows the timesteps in the forecasting horizon and the y-axis shows the sAPE.

Figure 5.2: The sMAPE is calculated between all forecasted time series and the original submitted
forecast computed with the same method. The sMAPE is averaged over all time series on the same
rerun. Then the average is taken over the sMAPE value for the five reruns.

59

Method id A B
036 0 0
039 73 73
069 2 -
078 58 -
118 0 0
237 5 -
245 0 -
260 0 0

Table 5.2: The percentage of time series
where the sMAPE between a rerun and the
original submission was equal to 0 on com-
puter A and B.

Method id A B
036 13 13
039 90 90
069 3 -
078 60 -
118 0 0
237 78 -
245 0 -
260 55 55

Table 5.3: The percentage of time series
where the sMAPE between a rerun and the
original submission was less than 1 ∗ 10−5

on computer A and B.

5.3 Similarity in the Performance

The OWA is calculated as described in section 4.3.2 and compared to the original submis-
sion’s OWA. The differences are shown in table C.1-C.12 in the appendix. Positive values
show that the original submission had a greater OWA than the reruns, and hence that the
reruns did better. Those are marked in green. Negative values show that the reruns did
not do as good as the original submissions. Those are marked in red. Common for all the
methods is that the reruns are doing a bit better in some categories and a bit worse in other
categories.

A summary of the tables is shown in figure 5.3. It shows the OWA value for the original
method compared to the average OWA value for the reruns of that method. 036, 069, 078,
and 237 are overall doing a bit better on the reruns than the original submission. 039, 118,
245, and 260 are doing a bit worse on the reruns. However, the OWA values of the reruns
do not change the order of the best methods in the competition.

Figure C.2 and figure C.3 also shows comparisons of the OWA values of the original
method and the reruns, but for individual resolutions and origins. For some of the time
series, the reruns do not provide the same order of the best methods as the original results.
For example, for demographic series, method 118 was better than method 237 according
to the OWA score. The reruns, however, gives the opposite result. It has to be said that the
OWA values are very close and very small changes in the OWA values cause the change of
order. Figure C.4 and C.5 shows the same results, but with the y-axis starting at zero. These
figures illustrate both that the OWA values of the top 10 methods in the M4 competition
are very similar, and they illustrate how close the rerun OWA values are to the original
results.

60

(a) Truncated y-axis (b) Y-axis starting at zero

Figure 5.3: Average OWA for the original submissions and for the reruns. The subfigures shows the
same data, but in the first graph, the y-axis is cut off so that the details are available. The methods
are sorted from the lowest original OWA to the highest original OWA.

Method id Computer A Computer B
036 0 0
039 0 0
069 0 -
078 0 -
118 0.00927 0.00941
237 0 -
245 0.01006 -
260 0 0

Table 5.4: Average coefficient of variation between five reruns of a method on the same computer.

5.4 Variation Between the Reruns

The average coefficient of variation between five reruns of a method on the same com-
puter is shown in table 5.4. The methods 118 and 245 are the only ones that are non-
deterministic. Figure 5.4 shows the coefficient of variation averaged over each timestep in
the horizon for these methods.

5.5 Difference Between Computers

The methods that were rerun on computer B was 036, 039, 118, and 260. The DRMSD and
the PD is shown in table 5.5. Method 118 was not deterministic. The DRMSD between
the five reruns on computer A and computer B, for each step in the horizon, is shown in
figure 5.5. Figure 5.6 shows the DRSMD for each resolution and origin.

61

(a) 118-A (b) 118-B

(c) 245-A

Figure 5.4: Coefficient of variation between five reruns on the same computer.

DRMSD PD
036 - 0
039 - 0
118 0.00453 0.00508
260 - 0

Table 5.5: The average DRMSD and PD between all forecasted values from the five reruns on
computer A and the five reruns on computer B.

62

Figure 5.5: The DRMSD of the forecasted values between reruns of method 118 on two different
computers.

Figure 5.6: The DRMSD of the forecasted values between reruns of method 118 on two different
computers.

63

64

Chapter 6
Discussion and Conclusion

This work aims to ensure that future research within the field of time series forecasting is
reproducible. The three research questions mentioned in section 1.4 was:

1. To what degree is the top-performing methods in the M4 competition reproducible?

2. Which factors make research on time series forecasting difficult to reproduce?

3. How can we work for future research on time series forecasting to reach a higher
level of reproducibility?

In this chapter, the research questions will be discussed and a conclusion will be made.

6.1 Discussion

6.1.1 To what degree is the top-performing methods in the M4
competition reproducible?

The experiments performed in this thesis is based on the definition of reproducibility by
Gundersen and Kjensmo (2018): ”Reproducibility in empirical AI research is the ability
of an independent research team to produce the same results using the same AI method
based on the documentation made by the original research team.”. The meaning of same
result is interpreted in different ways in this project.

65

Performing a Rerun

First of all, for a method to be reproducible, it must be possible to rerun the code. Most
of the methods require small changes in the source code to be rerun. Eight out of the ten
attempted reproduced methods were possible to rerun and at least get some forecasts. Two
methods were not rerun with minor modifications, both due to missing information about
the preprocessing of the dataset. The methods were not documented sufficiently enough
for them to be experiment reproducible. To achieve this level of reproducibility, either
the dataset should be given in the needed format, or the source code for transforming the
original dataset should be given.

Similarity Between the Forecasts

None of the eight methods that were rerun produced the same forecast as the original
submission for all time series. According to table 5.3, four of the methods produced the
same forecasts for more than half of the time series.

Method 039 was the one that produced the same forecast for most of the series. It predicted
the same values as the original submission for 90% of the series. Figure 5.1b shows that
the daily series is predicted especially different in the reruns from the original submission.
Method 039 has the same procedure for monthly, weekly, and daily series, so it is odd that
only the results for daily series are different. An explanation for this might be that some
variable for daily series, or some other code affecting the daily series, has been changed
between the original run and the reruns.

The method with the second most similar forecasts to the original submission was the fore-
casts of method 237 with 78% of the forecasts equal to the original submission. Method
078 is number third with 60% and method 260 is the fourth with 55%.

These are the same four methods that comes best out of the scatterplot in figure 5.2. They
are not only the methods that have the most time series predicted equally as the original
submission, but they are also the methods that have on average most equal predictions to
the test set according to sMAPE.

The reruns of methods 036, 069, 118, and 245 produced forecasts more different from the
original submission. It must be said that even though the forecasts were not the same, they
are not terribly different. The reruns of method 118 on computer B were the ones most
different from the original submission with an average sMAPE of 1.66. To give understand
what this value of sMAPE means, we can take an example. The sAPE between the values
1000 and 1017 is about the same. If the original method predicted the value 1000 for some
point in the horizon, a rerun in this project could have predicted 1017. That is typically
how different the forecasts of the reruns of method 118 are from the original submission.

In the description of method 245, it is mentioned that the results may slightly vary since
one of the individual forecasting methods uses random initialization. The statement agrees

66

with these observations.

Similarity in the Performance

It could also be argued that the most important thing is not if the forecasts of a rerun is
equal to the original forecasts, but whether the two forecasts are having a similar score ac-
cording to some performance measure. The OWA of the original submission is compared
to the average OWA of the reruns in section 5.3.

The result shows that the OWA is not always the same for the reruns as for the original
submission. Nevertheless, they are proved to be very similar. All methods have some
categories where it does better and some categories where it does worse. Half of the
methods are doing a bit better overall and half of the methods are doing a bit worse.

Even though the final OWA score is not the same for any method, the results of the reruns
did not change the order of the best methods in the competition. When we sort the methods
according to OWA of the original submission and average OWA for the reruns, we get the
same order. This is in spite of a tight competition with OWA scores all between 0.821 and
0.869 for the considered methods.

Variance Between the Reruns

The six methods 036, 039, 069, 078, 237, and 260 have no variation at all. All the fore-
casted values were the same in all five reruns. Those methods seem to be deterministic.
118 and 245 on the other hand, produced different forecasts on different reruns. Hence,
they are non-deterministic. The variation is s slightly bit higher for method 245.

Figure 5.4 shows the coefficient of variation for every step in the horizon for every resolu-
tion. Method 118 has the highest variation in quarterly, monthly, and weekly series. For
method 245, the hourly series is the ones with the highest variation. The coefficient of
variation increases for forecasts further into the forecasting horizon.

Difference Between Computers

Three out of the six methods that were deterministic given the computer were rerun on
both computers. All these produced the same forecasts on computer A as for computer B.
Method 118 was the only non-deterministic method that was run on both computers.

The DRMSD of the forecasted values between reruns of method 118 on the two different
computers is shown in figure 5.5. This figure looks very much the same as 5.4a, but with
a different y-axis. The difference between the computers is proportional to the size of the
variation between the individual reruns. There is nothing to suggest that the difference

67

Figure 5.4a: Coefficient of variation between five reruns of method 118 on computer A. (repeated
from page 62)

Figure 5.5: The DRMSD of the forecasted values between reruns of method 118 on two different
computers. (repeated from page 63)

between the computers is larger than the difference between the individual reruns on the
same computer.

6.1.2 Which factors make research on time series forecasting
difficult to reproduce?

A quite obvious source to non-determinism among some of the methods was the use of
randomness in the algorithm. Method 118 and 245 are both using randomness as part of
their algorithms. Method 118 is using randomness several places in the algorithm. First,
each series is assigned randomly to different networks for training. Prior to training, each
network shuffles all its assigned series. When a series is preprocessed, noise is added to
the series. Then, the smoothing coefficients are initialized uniformly between -0.5 and 0.5.
Method 245 is a linear combination of nine different forecasting methods where one is a
neural network initialized with random weights.

68

Randomness is a cornerstone in machine learning. Scardapane and Wang (2017) describes
how important randomness is in neural networks. Randomness is part of the deal when
choosing to use a machine learning model. Of course, a random seed can be saved so that
others can use the same one later.

Threading can also cause non-determinism in the results. Lee (2006) shows how this can
happen. A multi-core processor could have several cores execute different parts of the
program at the same time. The result becomes timing sensitive.

Several of the methods behave deterministically, also when run on different computers.
However, the forecasts are not equal to the forecasts submitted by the original researchers.
The methods seem to be deterministic when run by the author of this thesis, but produced
different results for the original authors of the methods.

One explanation may be that the code is unequal. There is no guarantee that the code
delivered was not changed after running the methods. Section 5.1 describes how some
methods contained small bugs that needed to be fixed for the code to run. It is not unlikely
that some changes have happened when the participants in the competition has prepared
their source code for delivery.

One reason may be that not the same version of the programming language or libraries is
used. First of all, if a newer version of the programming language is used when a new
researcher is trying to rerun some code than the version used by the original researchers,
there might be functions that are removed such that the code is not runnable with the new
version at all. The same might be the case if the researcher uses a too old version of the
programming language. There might have come new functions or new syntaxes afterward
that did not exist in that version. The latest version of R at the time of the deadline for the
M4 competition was R-3.5.0. There have been eight updates since then and the newest
version of R to date is R-4.0.0. An example of the difference between the two is the
default value for the argument stringsAsFactors in the function data.frame().
In R-3.5.0 this is set to TRUE, whereas in R-4.0.0 this is set to FALSE. In the older
version of R, the elements of a data frame were of class factor, while in the newer
version they are of class character. This makes different functions available. This
way, the exact same code can turn out different in different versions. R-4.0.0 came out
in 2020, so we know that this was not used in any of the deliveries. From the time at
which the competition was announced in November 2017 until the delivery date in May
2018, there were two new R versions. Nor can we exclude that even older versions might
have been used. Four out of the eight submissions had not specified which version of the
programming language they were using.

Another possible explanation for the different results might be differences in hardware
components. The hardware might have a significant impact on the results due to rounding
errors in floating-point arithmetic according to (Hong et al., 2013).

Even though the code was run on two different computers, it was run in Docker containers
from the same Docker image, simulating the same environment. The use of Docker image
might have went against its purpose in this situation. It might be that the forecasts pro-

69

duced by the methods are different from computer to computer, but that the use of Docker
provided deterministic results. Maybe the two computers had produced different results if
the code had been run directly on the machines, not using a Docker image.

6.1.3 How can we work for future research on time series forecasting
to reach a higher level of reproducibility?

When publishing any novel method, the researcher should ensure to document the envi-
ronment in which the method has been running. That includes hardware, operating system,
and the version of programming language and libraries used. To create a Docker image
for others to run is an easy way to allow others to run the code in the same environment.
A researcher should also ensure that the data is publicly available along with the source
code. Any code for preprocessing the data should also be included. A seed could be used
for random variables.

6.2 Conclusion

Ten methods were attempted rerun. Two of the methods were unable to predict any fore-
casts. Eight were able to predict forecasts for all time series in the M4 competition dataset
on a computer with more cores and working memory than a regular home computer. Four
of the methods were able to predict forecasts for all time series on a regular home com-
puter. The forecasts produced by these two computers were similar. For the three methods
that were deterministic when run on the first computer that were also run on the second
computer, all of these were also deterministic on the second computer and predicted the
same values as on the first computer. For the method that was non-deterministic on the first
computer that was also run on the second computer, no evidence could be found that the
two groups of forecasts were from different distributions. Hence, there was nothing that
indicated that the two computers acted differently for any of the methods. Nevertheless,
none of the methods gave the same forecasts as in the original submission for all time se-
ries. One can speculate about the reason for this. A main theory is that something with the
environment in which the code was run was different from the original experiment. That
could be the hardware on the computer where the method ran, the operating system, the
programming language version or the version of packages used in the code. Even though
the reruns not gave the same result as the original submissions, they did not change the
order of the best methods in the competition.

6.3 Further Work

The methods analyzed in this project are specialized to give good results on the M4 dataset.
The parameters has been fine-tuned manually, or by methods that are not reported, to give

70

the best result for this exact dataset. It is not reported how much resources were put into
this process. For example, method 118 has different neural network architectures for the
different resolutions. It would be interesting to test the algorithm on other datasets to see
how they generalize. Method 237 uses a special technique for daily and hourly series
where it finds highly correlated segments from other series in the training set and use that
information to produce forecasts. Is this technique transferable to other datasets?

In this project, each method was tested in two different environments. The only parameter
that distinguished the environments was the computer hardware. For the methods that
acted deterministic on computer A, it was also the case that they gave the same result for
computer B as for computer A. This experiment could be carried out in a larger scale,
testing with even more computers. Will the algorithms from one Docker image always
create the same result or can the hardware from the computer it is running on affect the
results?

Another possibility is to create Docker images based on different operating systems and
run them on the same hardware. In that way, one can examine if the environment in which
a method is run can affect the result.

71

72

Bibliography

Aarts, A., Anderson, C., Anderson, J., van Assen, M., Attridge, P., Attwood, A., Baranski,
E., 2016. Reproducibility project: psychology.

Assimakopoulos, V., Nikolopoulos, K., 2000. The theta model: a decomposition approach
to forecasting. International Journal of Forecasting 16, 521–530.

Athanasopoulos, G., Hyndman, R.J., Kourentzes, N., Petropoulos, F., 2017. Forecasting
with temporal hierarchies. European Journal of Operational Research 262, 60–74.

Barker, J., 2019. Machine learning in m4: What makes a good unstructured model? Inter-
national Journal of Forecasting 36, 150–155.

Bollen, K., Cacioppo, J.T., Kaplan, R.M., Krosnick, J.A., Olds, J.L., 2015. Social, behav-
ioral, and economic sciences perspectives on robust and reliable science.

Bouthillier, X., Laurent, C., Vincent, P., 2019. Unreproducible research is reproducible, in:
Chaudhuri, K., Salakhutdinov, R. (Eds.), Proceedings of the 36th International Confer-
ence on Machine Learning, PMLR, Long Beach, California, USA. pp. 725–734. URL:
http://proceedings.mlr.press/v97/bouthillier19a.html.

Box, G.E.P., Cox, D.R., 1964. An analysis of transformations. Journal of the Royal
Statistical Society. Series B (Methodological) 26, 211–246.

Dacrema, M.F., Cremonesi, P., Jannach, D., 2019. Are we really making much progress? A
worrying analysis of recent neural recommendation approaches. CoRR abs/1907.06902.
URL: http://arxiv.org/abs/1907.06902, arXiv:1907.06902.

De Livera, A.M., Hyndman, R.J., Snyder, R.D., 2011. Forecasting time series with com-
plex seasonal patterns using exponential smoothing. Journal of the American Statistical
Association 106, 1513–1527.

Fioruci, J.A., Pellegrini, T.R., Louzada, F., Petropoulos, F., 2015. The optimised theta
method. arXiv: Methodology .

73

http://proceedings.mlr.press/v97/bouthillier19a.html
http://arxiv.org/abs/1907.06902
http://arxiv.org/abs/1907.06902

Gundersen, O.E., 2019. Standing on the feet of giants — reproducibility in ai. AI Maga-
zine 40, 9–23.

Gundersen, O.E., Kjensmo, S., 2018. State of the art: Reproducibility in artificial intelli-
gence, in: AAAI.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., Meger, D., 2017. Deep
reinforcement learning that matters. CoRR abs/1709.06560. URL: http://arxiv.
org/abs/1709.06560, arXiv:1709.06560.

Hong, S.Y., Koo, M.S., Jang, J., Kim, J.E.E., Park, H., Joh, M.S., Kang, J.H., Oh, T.J.,
2013. An evaluation of the software system dependency of a global atmospheric model.
Monthly Weather Review 11, 4165–4172.

Hyndman, R., Koehler, A., 2006. Another look at measures of forecast accuracy. Interna-
tional Journal of Forecasting 22, 679–688. doi:10.1016/j.ijforecast.2006.
03.001.

Hyndman, R., Koehler, A., Ord, J., Snyder, R., 2008. Forecasting with exponential
smoothing: the state space approach. Springer-Verlag.

Hyndman, R.J., 2017. Prediction intervals for nnetar models. URL: https://
robjhyndman.com/hyndsight/nnetar-prediction-intervals/.

Hyndman, R.J., Athanasopoulos, G., 2018. Forecasting Principles and Practice. 2nd ed.,
OTexts: Melbourne, Australia. URL: OTexts.com/fpp2.

Lee, E.A., 2006. The problem with threads.

Lucic, M., Kurach, K., Michalski, M., Gelly, S., Bousquet, O., 2018. Are gans created
equal? a large-scale study. NIPS’18 Proceedings of the 32nd International Conference
on Neural Information Processing Systems 32, 698–707.

Lynnerup, N., N.L.H.R., Hallam, J., 2019. A survey on reproducibility by evaluating deep
reinforcement learning algorithms on real-world robots.

M4Team, 2019. The m open forecasting center (mofc). URL: https://www.
mcompetitions.unic.ac.cy/.

Makriadis, S., Hibon, M., 2000. The m3-competition: results, conclusions and implica-
tions.

Makridakis, S., 1993. Accuracy measures: theoretical and practical concerns. Interna-
tional Journal of Forecasting 9, 527–529. URL: https://EconPapers.repec.
org/RePEc:eee:intfor:v:9:y:1993:i:4:p:527-529.

Makridakis, S., Assimakopoulos, V., Spiliotis, E., 2018. Objectivity, reproducibil-
ity and replicability in forecasting research. International Journal of Forecasting
doi:10.1016/j.ijforecast.2018.05.001.

74

http://arxiv.org/abs/1709.06560
http://arxiv.org/abs/1709.06560
http://arxiv.org/abs/1709.06560
http://dx.doi.org/10.1016/j.ijforecast.2006.03.001
http://dx.doi.org/10.1016/j.ijforecast.2006.03.001
https://robjhyndman.com/hyndsight/nnetar-prediction-intervals/
https://robjhyndman.com/hyndsight/nnetar-prediction-intervals/
OTexts.com/fpp2
https://www.mcompetitions.unic.ac.cy/
https://www.mcompetitions.unic.ac.cy/
https://EconPapers.repec.org/RePEc:eee:intfor:v:9:y:1993:i:4:p:527-529
https://EconPapers.repec.org/RePEc:eee:intfor:v:9:y:1993:i:4:p:527-529
http://dx.doi.org/10.1016/j.ijforecast.2018.05.001

Makridakis, S., Spiliotis, E., Assimakopoulos, V., 2019. The m4 competition: 100,000
time series and 61 forecasting methods. International Journal of Forecasting 36.
doi:10.1016/j.ijforecast.2019.04.014.

Melis, G., Dyer, C., Blunsom, P., 2017. On the state of the art of evaluation in neural
language models. CoRR abs/1707.05589. URL: http://arxiv.org/abs/1707.
05589, arXiv:1707.05589.

Niven, D.J., McCormick, T.J., Straus, S.E., Hemmelgarn, B.R., Jeffs, L., Barnes, T.R.M.,
Stelfox, H.T., 2018. Reproducibility of clinical research in critical care: a scoping
review. BMC Medicine 16.

Pole, A., West, M., Harrison, J., 1994. Applied Bayesian Forecasting and Time Series
Analysis. Taylor & Francis Group.

Scardapane, S., Wang, D., 2017. Randomness in neural networks: an overview. John
Wiley Sons, Ltd 7.

Soleim, M., 2019. Reproducibility in time series forecasting. The preliminary work for
this thesis.

Soleim, M., 2020a. Docker images for running the top m4 methods. URL: https:
//hub.docker.com/u/mariasoleim.

Soleim, M., 2020b. Reproduction of m4 methods. URL: https://github.com/
MariaSoleim/M4-reproduction.

Stodden, V.C., 2011. Trust your science? open your data and code.

Stupple, A., Singerman, D., Celi, L.A., 2019. The reproducibility crisis in the age of
digital medicine. npj Digital Medicine 2.

Svetunkov, I., Kourentzes, N., 2016. Complex exponential smoothing for seasonal time
series.

Walia, A.S., 2017. Generative models and gans. URL: https://
towardsdatascience.com/generative-models-and-gans-fe7efc20020b.

75

http://dx.doi.org/10.1016/j.ijforecast.2019.04.014
http://arxiv.org/abs/1707.05589
http://arxiv.org/abs/1707.05589
http://arxiv.org/abs/1707.05589
https://hub.docker.com/u/mariasoleim
https://hub.docker.com/u/mariasoleim
https://github.com/MariaSoleim/M4-reproduction
https://github.com/MariaSoleim/M4-reproduction
https://towardsdatascience.com/generative-models-and-gans-fe7efc20020b
https://towardsdatascience.com/generative-models-and-gans-fe7efc20020b

76

Appendices

77

Appendix A
Reproducibility

A.1 Variables that makes up the factors that decide the
reproducibility degree

79

Factor Variable Description

Method

Problem
Is there an explicit mention of the problem
the research seeks to solve?

Objective
Is the research objective explicitly
mentioned?

Research method
Is there an explicit mention of the research
method used (empirical, theoretical)?

Research questions
Is there an explicit mention of the research
question(s) addressed?

Pseudocode
Is the AI method described using
pseudocode?

Hypothesis
Is there an explicit mention of the
hypotheses being investigated?

Prediction
Is there an explicit mention of predictions
related to the hypothesis?

Experiment setup
Are the variable settings shared, such as
hyperparameters?

Data

Training data Is the training set shared?
Validation data Is the validation set shared?
Test data Is the test set shared?

Results
Are the relevant intermediate and final
results output by the AI program shared?

Experiment

Method source code
Is the AI system code available open
source?

Experiment source code
Is the experiment code available open
source?

Software dependencies Are software dependencies specified?

Hardware
Is the hardware used for conducting the
experiment specified?

Table A.1: The factors needed for differend degrees of reproducibility and the variables that specify
them as specified by Gundersen (2019).

80

Appendix B
The M4 Competition

B.1 An overview of the M4 competition’s contributions

Rank Id Replicability category Code publicly available Running time (min)
1 118 Fully replicable Y 8056.0
2 245 Fully replicable Y 46108.3
3 237 Fully replicable Y 39654.8
4 72 Not considered Y -
5 69 Not considered Y -
6 36 Fully replicable Y 4049.5
7 78 Fully replicable Y 8575.0
8 260 Fully replicable Y 25.0
9 238 Fully replicable Y 2.1

10 39 Fully replicable Y 6742.6
11 5 Fully replicable Y 3335.9
12 132 Not replicable Y -
13 251 Fully replicable Y 109.6
14 250 Not considered Y -
15 243 Not replicable Y -
16 235 Not replicable Y -
17 104 Unknown Y >2 months
18 223 Not replicable Y -
19 239 Not replicable Y -
20 211 Replicable Y 232.1
21 231 Not considered N -
22 227 Fully replicable Y 27432.3

81

23 82 Not considered N -
24 212 Not considered N -
25 236 Not considered N -
26 248 Not considered N -
27 30 Not considered N -
28 234 Not considered N -
29 24 Not considered N -
30 218 Unknown Y -
31 106 Fully replicable Y 62242.9
32 43 Not replicable Y -
33 216 Not replicable Y -
34 169 Not replicable Y 26719.2
35 241 Not considered N -
36 191 Not considered N -
37 126 Not replicable Y -
38 244 Not considered N -
39 70 Not considered N -
40 249 Not considered N -
41 252 Fully replicable Y 393.5
42 255 Fully replicable Y 154.8
43 9 Fully replicable Y 63.6
44 256 Fully replicable Y 72.5
45 253 Fully replicable Y 37.2
46 91 Unknown Y -
47 219 Unknown Y -
48 225 Unknown Y -
49 258 Unknown Y -

Table B.1: The table contains all 49 contributions to the M4 competition, arranged from best per-
forming to worst performing method. The column ”Replicability category” is the category given by
Makridakis et al. (2019). The category ”Unknown” could be that they did not succeed in replicating
the method for various reasons, whereas the category ”Not considered” indicated that they were not
mentioned in the original table of Makridakis et al. (2019) at all. The table also shows which of the
methods that are publicly available at the time of writing and the time estimated by Makridakis et al.
(2019) for some of the methods.

82

Appendix C
Results

Demographic Finance Industry Macro Micro Other Total
Yearly -0.00044 0.00060 -0.00049 -0.00045 0.00057 -0.00146 0.00008
Quarterly -0.00068 0.00004 0.00078 0.00135 -0.00041 0.00156 0.00033
Monthly -0.00559 0.00124 -0.00087 0.00347 0.00609 -0.00721 0.00195
Weekly -0.04589 -0.00374 -0.02935 -0.01937 0.00306 -0.04942 -0.01267
Daily -0.00041 0.00134 0.00032 0.00033 -0.00066 -0.00051 0.00034
Hourly NA NA NA NA NA 0.02268 0.02268
Total -0.00336 0.00068 -0.00041 0.00167 0.00258 0.00234 0.00099

Table C.1: Difference between OWA values of the original submission and average OWA of the five
reruns for method 036 on computer A.

83

(a) 036-B (b) 039-B

(c) 069-B (d) 078-B

Figure C.1: Average sAPE between the original submission and five reruns for each step in the
horizon. The x-axis shows the timesteps in the forecasting horizon and the y-axis shows the sAPE.

Demographic Finance Industry Macro Micro Other Total
Yearly -0.00044 0.00060 -0.00049 -0.00045 0.00057 -0.00146 0.00008
Quarterly -0.00068 0.00004 0.00078 0.00135 -0.00041 0.00156 0.00033
Monthly -0.00559 0.00124 -0.00087 0.00347 0.00609 -0.00721 0.00195
Weekly -0.04589 -0.00374 -0.02935 -0.01937 0.00306 -0.04942 -0.01267
Daily -0.00041 0.00134 0.00032 0.00033 -0.00066 -0.00051 0.00034
Hourly NA NA NA NA NA 0.02268 0.02268
Total -0.00336 0.00068 -0.00041 0.00167 0.00258 0.00234 0.00099

Table C.2: Difference between OWA values of the original submission and average OWA of the five
reruns for method 036 on computer B.

84

Demographic Finance Industry Macro Micro Other Total
Yearly 0.00000 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000
Quarterly 0.00000 0.00000 -0.00005 -0.00001 -0.00001 0.00000 -0.00001
Monthly 0.00002 0.00000 -0.00001 0.00001 -0.00001 -0.00004 0.00000
Weekly 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Daily -0.01992 0.01520 -0.01905 0.01246 -0.04091 -0.00177 -0.00757
Hourly NA NA NA NA NA 0.00000 0.00000
Total -0.00011 0.00042 -0.00052 -0.00002 -0.00189 -0.00059 -0.00051

Table C.3: Difference between OWA values of the original submission and average OWA of the five
reruns for method 039 on computer A.

Demographic Finance Industry Macro Micro Other Total
Yearly 0.00000 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000
Quarterly 0.00000 0.00000 -0.00005 -0.00001 -0.00001 0.00000 -0.00001
Monthly 0.00002 0.00000 -0.00001 0.00001 -0.00001 -0.00004 0.00000
Weekly 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Daily -0.01992 0.01520 -0.01905 0.01246 -0.04091 -0.00177 -0.00757
Hourly NA NA NA NA NA 0.00000 0.00000
Total -0.00011 0.00042 -0.00052 -0.00002 -0.00189 -0.00059 -0.00051

Table C.4: Difference between OWA values of the original submission and average OWA of the five
reruns for method 039 on computer B.

Demographic Finance Industry Macro Micro Other Total
Yearly -0.00246 -0.00038 0.00009 0.00117 0.00279 -0.00474 0.00048
Quarterly 0.00275 0.00037 -0.00274 0.00392 -0.00104 -0.01001 0.00013
Monthly -0.00660 0.00149 -0.00062 -0.00025 0.00557 -0.01034 0.00098
Weekly -0.00673 0.00371 -0.01161 0.00175 -0.00544 -0.00683 -0.00080
Daily -0.00014 0.00134 0.00121 0.00066 -0.00099 0.00140 0.00069
Hourly NA NA NA NA NA 0.03358 0.03358
Total -0.00314 0.00039 -0.00049 0.00136 0.00333 0.00138 0.00099

Table C.5: Difference between OWA values of the original submission and average OWA of the five
reruns for method 069 on computer A.

Demographic Finance Industry Macro Micro Other Total
Yearly 0.00038 -0.00012 0.00003 -0.00022 0.00039 0.00076 0.00009
Quarterly 0.00077 0.00034 -0.00056 -0.00007 0.00012 -0.00089 0.00003
Monthly -0.00025 0.00328 0.00201 0.00087 0.00092 0.00222 0.00164
Weekly -0.00424 -0.03376 -0.00398 0.00524 0.00150 0.02999 -0.00658
Daily -0.00093 0.00026 0.00192 -0.00009 0.00017 0.00473 0.00107
Hourly NA NA NA NA NA -0.00032 -0.00032
Total 0.00018 0.00120 0.00089 0.00037 0.00051 0.00071 0.00073

Table C.6: Difference between OWA values of the original submission and average OWA of the five
reruns for method 078 on computer A.

85

Demographic Finance Industry Macro Micro Other Total
Yearly 0.00284 0.00480 0.00130 0.00685 -0.00053 0.01783 0.00366
Quarterly -0.00212 -0.00229 -0.00241 -0.00347 -0.00388 0.00291 -0.00282
Monthly -0.02077 -0.00601 -0.00950 -0.02085 -0.03389 -0.00508 -0.01803
Weekly 0.00269 -0.07647 0.00463 0.06478 0.02073 -0.01570 -0.01691
Daily -0.02884 -0.04378 -0.00635 -0.01487 0.05624 -0.01555 -0.00575
Hourly NA NA NA NA NA -0.00500 -0.00500
Total -0.01023 -0.00374 -0.00424 -0.00780 -0.01118 0.00548 -0.00660

Table C.7: Difference between OWA values of the original submission and average OWA of the five
reruns for method 118 on computer A.

Demographic Finance Industry Macro Micro Other Total
Yearly 0.00312 0.00511 0.00099 0.00630 0.00010 0.01560 0.00368
Quarterly -0.00260 -0.00243 -0.00307 -0.00298 -0.00326 -0.00320 -0.00290
Monthly -0.01990 -0.00619 -0.00893 -0.02126 -0.03810 -0.00121 -0.01895
Weekly 0.00378 -0.07565 0.00054 0.06719 0.01610 -0.01205 -0.01737
Daily -0.02674 -0.04318 -0.00589 -0.01644 0.05475 -0.01529 -0.00586
Hourly NA NA NA NA NA -0.00488 -0.00488
Total -0.00986 -0.00357 -0.00425 -0.00812 -0.01242 0.00393 -0.00698

Table C.8: Difference between OWA values of the original submission and average OWA of the five
reruns for method 118 on computer B.

Demographic Finance Industry Macro Micro Other Total
Yearly 0.00401 0.00155 0.00214 0.00292 0.00368 -0.00046 0.00244
Quarterly -0.00052 -0.00007 -0.00042 0.00071 -0.00102 0.00119 -0.00022
Monthly 0.00013 -0.00078 -0.00022 0.00010 -0.00010 0.00018 -0.00023
Weekly 0.00000 0.00107 0.00000 -0.00033 -0.00435 0.00000 -0.00096
Daily 0.00520 0.00451 -0.00449 0.00543 0.00082 -0.00263 0.00131
Hourly NA NA NA NA NA 0.00000 0.00000
Total 0.00089 0.00066 0.00049 0.00130 0.00125 -0.00042 0.00087

Table C.9: Difference between OWA values of the original submission and average OWA of the five
reruns for method 237 on computer A.

Demographic Finance Industry Macro Micro Other Total
Yearly -0.00685 -0.00174 -0.00291 -0.00392 -0.00353 -0.00676 -0.00322
Quarterly -0.00194 -0.00470 -0.00431 -0.00188 -0.00274 -0.00271 -0.00322
Monthly -0.00299 -0.00565 -0.00187 -0.00106 0.00196 -0.00413 -0.00171
Weekly -0.01963 -0.00738 0.00436 -0.01595 -0.00341 -0.00058 -0.00877
Daily -0.07653 0.00468 -0.00179 -0.00289 0.00094 0.00038 0.00145
Hourly NA NA NA NA NA -0.00009 -0.00009
Total -0.00420 -0.00267 -0.00259 -0.00209 -0.00105 -0.00381 -0.00226

Table C.10: Difference between OWA values of the original submission and average OWA of the
five reruns for method 245 on computer A.

86

(a) Yearly (b) Quarterly

(c) Monthly (d) Weekly

(e) Daily (f) Hourly

Figure C.2: Average OWA for the different resolutions for the original submissions and for the
reruns.

87

(a) Demographic (b) Finance

(c) Industry (d) Macro

(e) Micro (f) Other

Figure C.3: Average OWA for the different origins for the original submissions and the reruns.

88

(a) Yearly (b) Quarterly

(c) Monthly (d) Weekly

(e) Daily (f) Hourly

Figure C.4: Average OWA for the different resolutions for the original submissions and for the
reruns.

89

(a) Demographic (b) Finance

(c) Industry (d) Macro

(e) Micro (f) Other

Figure C.5: Average OWA for the different origins for the original submissions and for the reruns.

90

Demographic Finance Industry Macro Micro Other Total
Yearly -0.00089 -0.00054 0.00051 0.00014 -0.00030 -0.00092 -0.00020
Quarterly -0.00006 0.00014 -0.00024 -0.00001 0.00001 0.00000 -0.00001
Monthly 0.00009 -0.00006 0.00000 0.00006 -0.00006 -0.00033 -0.00001
Weekly 0.00000 0.00001 -0.00001 0.00000 -0.00001 0.00002 0.00000
Daily 0.00001 0.00000 0.00000 0.00000 -0.00001 -0.00023 -0.00004
Hourly NA NA NA NA NA 0.00000 0.00000
Total -0.00016 -0.00018 0.00012 0.00003 -0.00012 -0.00051 -0.00008

Table C.11: Difference between OWA values of the original submission and average OWA of the
five reruns for method 260 on computer A.

Demographic Finance Industry Macro Micro Other Total
Yearly -0.00089 -0.00054 0.00051 0.00014 -0.00030 -0.00092 -0.00020
Quarterly -0.00006 0.00014 -0.00024 -0.00001 0.00001 0.00000 -0.00001
Monthly 0.00009 -0.00006 0.00000 0.00006 -0.00006 -0.00033 -0.00001
Weekly 0.00000 0.00001 -0.00001 0.00000 -0.00001 0.00002 0.00000
Daily 0.00001 0.00000 0.00000 0.00000 -0.00001 -0.00023 -0.00004
Hourly NA NA NA NA NA 0.00000 0.00000
Total -0.00016 -0.00018 0.00012 0.00003 -0.00012 -0.00051 -0.00008

Table C.12: Difference between OWA values of the original submission and average OWA of the
five reruns for method 260 on computer B.

91

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Maria Soleim

Reproducibility of the Top-Performing
Methods in the M4 Competition

Master’s thesis in Computer Science

Supervisor: Odd Erik Gundersen

June 2020

	Abstract
	Sammendrag (Abstract in Norwegian)
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background and Motivation
	Problem Outline
	Research Context
	Objective and Research Questions

	Background
	Time Series
	Forecasting
	Models
	Patterns
	Simple Forecasting Methods
	Time Series Decomposition
	The Random Walk Model
	ARIMA
	ETS

	The M4 Competition
	The M4 Competition Dataset
	Performance Measures

	Relevant Methods from the M4 Competition
	ES-RNN
	M4metalearning
	WESM
	GROEC
	SCUM
	THIEF Combination
	Theta Box-Cox
	Predilab

	Reproducibility
	A Reproducibility Framework

	State of the Art
	On the State of the Art of Evaluation in Neural Language Models
	Are GANs Created Equal? A Large-Scale Study
	Deep Reinforcement Learning that Matters
	Unreproducible Research is Reproducible
	Are We Really Making Much Progress? A Worrying Analysis of Recent Neural Recommender Approaches
	Objectivity, Reproducibility and Replicability in Forecasting Research

	Proposed Methodology
	Methods to Reproduce
	Rerunning the Methods
	Documentation by the Original Researchers
	Docker Image
	Computers

	Evaluating a the Results
	Similarity Between the Forecasts
	Similarity in the Performance
	Variance Between the Reruns
	Difference Between Computers

	Results
	The Rerunning of the Methods
	ES-RNN
	M4metalearning
	WESM
	forecaster18
	GROEC
	SCUM
	THIEF Combination
	Theta Box-Cox
	Card
	Predilab

	Similarity Between the Forecasts
	Similarity in the Performance
	Variation Between the Reruns
	Difference Between Computers

	Discussion and Conclusion
	Discussion
	To what degree is the top-performing methods in the M4 competition reproducible?
	Which factors make research on time series forecasting difficult to reproduce?
	How can we work for future research on time series forecasting to reach a higher level of reproducibility?

	Conclusion
	Further Work

	Bibliography
	Appendices
	Reproducibility
	Variables that makes up the factors that decide the reproducibility degree

	The M4 Competition
	An overview of the M4 competition's contributions

	Results

