
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

August Lund Eilertsen

Team Accelerator

Web-application for monitoring team performance
and progression in project related academic work.

Master’s thesis in Computer Science, Software Engineering

Supervisor: George Adrian Stoica

May 2020

August Lund Eilertsen

Team Accelerator

Web-application for monitoring team performance
and progression in project related academic work.

Master’s thesis in Computer Science, Software Engineering
Supervisor: George Adrian Stoica
May 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Contents

1 Introduction 5
1.1 Introduction . 5
1.2 Method and approach . 5
1.3 An important notice . 6
1.4 Summary . 6

2 Background & Research 6
2.1 Challenges with teamwork . 6
2.2 Tactics to overcome challenges for group members 7
2.3 Tactics to overcome challenges for the instructor 7
2.4 Other solutions . 8
2.5 Student survey . 8

2.5.1 Survey results . 9
2.6 Interviews . 11

2.6.1 Interviews with professors . 11
2.6.2 Interviews with teaching assistants . 12

2.7 A need for a group status/progression application? 12
2.7.1 Research conclusion . 12

3 Design 13
3.1 Methodology . 13
3.2 Design of the graphical user interface . 13

3.2.1 Initial design . 13
3.2.2 Design iteration 1 . 14
3.2.3 Design iteration 2 . 15
3.2.4 Design iteration 3 . 17

4 Architecture 20
4.1 Overall Architecture . 20
4.2 Frontend Architecture . 21
4.3 Backend Architecture . 22
4.4 Database Architecture . 22
4.5 Feide user and authentication . 23

5 Implementation 25
5.1 Implementation method . 25
5.2 Choice of technology . 26

5.2.1 Frontend: React & Redux . 26
5.2.2 Backend: Django REST Framework . 26
5.2.3 Database: PostgreSQL . 26

5.3 Code and project structure . 27
5.3.1 Backend . 27
5.3.2 Backend folder & app structure . 31
5.3.3 Frontend folder and & component structure 31
5.3.4 Frontend React code . 32

5.4 Hosting the application for testing with Heroku and Surge 35
5.4.1 Heroku for backend . 35
5.4.2 Surge for frontend . 35

1

5.5 Hosting the application for production . 35
5.6 Handling the course permissions . 36

5.6.1 First solution . 36
5.6.2 Second solution . 36
5.6.3 Current solution . 36

6 Privacy Policy and GDPR 39
6.1 GDPR Compliance . 39
6.2 NSD . 39
6.3 Privacy Policy In-App . 40

7 Results and future work 41
7.1 The application . 41

7.1.1 The registration process . 41
7.1.2 Student in-app functionality . 42
7.1.3 Staff in-app functionality . 46

7.2 Django backend admin panel . 51
7.3 Qualitative user testing . 54

7.3.1 Test form . 54
7.3.2 Introduction for student test . 55
7.3.3 Student test tasks . 55
7.3.4 Introduction for staff test . 56
7.3.5 Staff test tasks . 56

7.4 Qualitative user testing results . 57
7.4.1 Student tests . 57
7.4.2 Staff tests . 59
7.4.3 Elements changed based on the user testing 62
7.4.4 Elements that can or should be changed based on the user testing 62

7.5 Quantitative user testing . 63
7.6 Conclusion & future work . 63

8 Resources used 64

Appendices

A The old login process

B Additional and alternative design

C Personas

List of Figures

1 Results of survey question 1 . 9
2 Results of survey question 3 . 10
3 Results of survey question 4 . 11
4 Initial design of the student side of the application 14
5 Design iteration 1 . 15
6 Design iteration 2 - Student side . 16
7 Design iteration 2 - Professor/Teaching assistant side 17

2

8 Design iteration 3 - Student after-rating page . 18
9 Design iteration 3 - Professor/Teaching assistant side 19
10 Overall architecture . 20
11 React & Redux architecture - simplified .
12 The backend architecture - simplified . 22
13 Database architecture . 23
14 The Team model . 27
15 Endpoint for getting the user . 28
16 Format of the JSON returned . 29
17 The SubjectSerializer . 29
18 The UserSerializer . 30
19 Screenshot of a simple POST request . 30
20 Folder structure of backend project . 31
21 Frontend folder structure . 32
22 TeamList component . 33
23 TeamList component . 34
24 Usage of TeamList component . 35
25 Access control upload flow . 38
26 Delete user in app . 39
27 Privacy policy in app . 40
28 Login process . 41
29 The rating side for students . 42
30 Student side . 43
31 Student profile page . 44
32 Changing to another course . 45
33 Staff side of the application . 46
34 Continuation of staff side of the application . 47
35 Continuation of staff side of the application . 48
36 Continuation of staff side of the application . 49
37 Pin and unpin teams . 50
38 Staff profile . 51
39 Admin panel, main overview . 52
40 Admin panel, user overview . 53
41 Admin panel, view and change one user . 54
42 Result student 1 . 57
43 Result student 2 . 58
44 Result student 3 . 58
45 Result student 4 . 59
46 Result staff 1 . 59
47 Result staff 2 . 60
48 Result staff 3 . 61
49 Result staff 4 . 61
50 Appendix: Login process .
51 Appendix: Additional design of student side .
52 Appendix: Additional design of staff side .

3

Frontend code repository
https://gitlab.stud.idi.ntnu.no/augustle/master_react

Backend code repository
https://gitlab.stud.idi.ntnu.no/augustle/master_api

Testing the application
If you want to test this application, contact one of the following emails, and you will be given a
test user:

• augustle.lund@gmail.com

• stoica@ntnu.no

4

https://gitlab.stud.idi.ntnu.no/augustle/master_react
https://gitlab.stud.idi.ntnu.no/augustle/master_api
augustle.lund@gmail.com
stoica@ntnu.no

1 Introduction

1.1 Introduction

If we take a look at the evolution and how the human kind has evolved over thousands of years,
we can conclude with one major important factor: If our ancestors were unable to work in teams
and get along in groups, they would probably not survive [8]. We are a result of the people who
had the ability to cooperate with others and make decisions as a group, rather than lone wolfs.
In this master thesis, we are going to discuss the many important factors of teamwork and how
to succeed with it. It will cover research on important factors on how to succeed with team work.
It will also take the reader through all the stages of development of a group status monitoring
application. The results from testing the application with various methods will be discussed.

The overall goal of the project is to assess and visualize the status of group projects, and construct
a web application that provide help to teams that struggles with their work and performance.
The research will serve as a justification on why there would be beneficial to have a software to
monitor and control the overall status of teams in university courses. The development of this
product will also be based on interviews with instructors and teaching assistants at NTNU, and
a student survey.

The final product is a web application for monitoring and assessing team status. This web
application is tailor-made for smartphones, but also works on desktop. Team status in this sce-
nario means how well a team is doing based on feedback from students. It is a twofold application
consisting of two different user interfaces. The first user interface is for students and allows them
to rate their group on a weekly basis, with a number between 1 to 5 respectively very poor to very
good. The average score will be calculated and displayed to the students and the professor. The
second user interface is for professors and teaching assistants. The instructor and TA will have
the ability to view all the different groups and their average score including individual scores.

1.2 Method and approach

The software development method used in this thesis is agile development. For the overall
structure and tasks, meetings and retrospectives was held every two weeks with the project
supervisor, with exceptions. The technical development part included continuous integration
with agile development. The problem was divided into many small tasks, and each tasks was
solved in incremental cycles. The delivery includes a study of research on important key elements
to succeed with teamwork, the graphical design of the application, the architecture of the web-
application, the actual implementation and development of the application and the results of it.
The delivery also includes the results of testing the application on the relevant target audiences.
Other elements used in the method and approach:

• Design research and user centered design was applied

• Personas and a number of empirical research methods was applied, such as interviews and
user tests.

• Prototypes was used over several iterations, to test and verify the product.

”Group work” and ”teamwork” are used interchangeably in this thesis, and means the same
thing.

5

1.3 An important notice

Due to the outbreak of the COVID-19 virus during the spring semester of 2020, the results
of testing this application were weakened. The original plan was to test the app on various
students and teaching assistants in person. This had to be adjusted, and all the user-testing
was performed virtually. The application was also planned to be presented in one of the lectures
of TDT4180 - Human Computer Interaction, but this had to be canceled. The result of this is
fewer test results, but sufficient.

1.4 Summary

This master thesis is about design, development and testing of a new web application that will
focus on problems related to academic team work, and how such problems can be solved more
easily with the use of such an application. It also covers the underlying research and theories
related to team work, problems related to team work, and how to succeed with it.

From start to end, the reader will be guided through the whole process of the construction
of a web application based on the research and theory part of the thesis. The reader will then be
guided through the design section where the major decisions on how the application was going
to look were taken, included the first design sketches. After this, the architecture section is pre-
sented, where the reader will gain an insight of the underlying technical parts that is the basis
of the application, both on the frontend and backend side. After this, the reader will gain an
insight in how the application actually was developed through the implementation section that
describes the code structure, the technologies used, programming languages and more. Finally,
the reader will be presented the results, which includes the final application product, and the
results of the user testing of the application in various settings.

2 Background & Research

2.1 Challenges with teamwork

Most people have one or several experiences with group work that did not work out well. Maybe
the group was a mismatch from the start, or the group developed bad norms, conflicts and
unequal workload distribution over time. Anyways, the final product was likely a poor-quality
product. Newly formed groups are never the same, as each individual is unique. But no matter
how many different personalities there are in a group, it is critical to find common ground right
from the start, without misunderstandings. We are going to discuss several different tactics on
how to succeed with a team, despite the differences that might exist between the individuals.

The most common problem reported in group work is uneven workload, also called “free riding”.
Another very common problem is lack of group norms and bad communication [10]. Often in
groups that perform bad, these things were not established and clarified right from the start.
Such bad habits are easy to develop. The result is a lack of cohesion and integration. These
things can often lead to conflicts, which makes the situation even worse, and if the team did not
establish any norms on how to solve conflicts beforehand, it worsens the situation. Other common
problems are domineering personalities [2] [9], difficulty getting started due to no development
of common ground, roles or norms and inability to focus on the tasks.

6

2.2 Tactics to overcome challenges for group members

Researchers studying strategy teams at IBM found that the emotional climate and norms estab-
lished by teams in the first few minutes of their encounters tended to persist and become resistant
to changes [4]. It is very important to establish group norms at the very start of the project
[7]. This means a set of “rules” and a common ground for the group. Discussing expectations,
responsibilities, setting goals and establish basic communication habits/rules [3] [7] [8]. Setting
roles is important so that each member has a clear understanding of their own responsibilities,
but equally as important is knowing the roles of the other team members [10] [3] [7]. Setting a
detailed plan and agenda makes it easier to get the project started [2] [9]. Also, it is important
to take time to recognize the other team members accomplishments, either orally or through
software. Without recognition, some people can end up feeling unappreciated[1].

The team has to make sure each member has an equal chance to speak, contribute and make
suggestions. There is also often an advantage to promote a group-leader, which has the responsi-
bility of scheduling meetings etc [9]. A study made by google which is called “Aristotle”, points
out the importance of structure and clarity. Each team-member’s expectations of their tasks,
the process of fulfilling these expectations, and the consequences of each member’s performance
are important for the effectiveness of the team [6]. Another important tactic to overcome group
challenges is to regularly assess the team and how the team is doing. Unhealthy climate is often
left to grow and become the norm. It is important that the team and the team-leader reflect
on and assess team behaviors and practices [1] [7]. Frequent feedback improves teams perfor-
mance. Team coordination requires member interaction. More and better interaction improves
project outcomes [5]. Setting goals and having a leader who is responsible for overall plans
and stakeholder communication is important. Goal-oriented team leadership strongly improves
performance [5].

2.3 Tactics to overcome challenges for the instructor

The instructor can do several things to promote a healthy team-environment and an effective
team. First of all, the instructor should provide the group with opportunities to discuss their
expectations, to set roles, setting group norms and discuss communication norms with the group
[10] [2]. The instructor should make sure that the choice of technology promotes collaboration.
It is wise for the instructor to provide the students with some kind of tool that makes peer
evaluations possible. This gives the instructor an opportunity to identify individual effort and
“free-riders” [3]. Studies show that students report greater satisfaction with group work if the
instructor has implemented methods to monitor and manage groups and the status of the groups
[3].

Another study has shown that there are other methods to reduce “free-riders”, and the most
relevant for this project is the option to “divorce” a team member, or the option to leave a team.
[3]. Peer-evaluation comments are not useful for identifying group dysfunction. Researchers
have recommended peer ratings in form of dividing points between group members, and has
been shown to be an effective method to provide an effective team where everyone contributes
[3]. The ratings are anonymous, and the students will only see their own points. This insight is
especially relevant for this project and thesis.

Either if it is through a software or just spoken out, the instructor should make sure that
each student understands the assignments, the purpose of the project, the learning objective
and the skills that need to be developed through group work. Also, the instructor needs to help

7

the students manage and solve conflicts and disagreements [2] [8]. It is worth to mention that
conflict is not necessarily negative, but can help to provide the energy a motivation necessary to
do things better. In many cases, without conflict, we do not learn. The question is not whether
conflict is good or bad for teams - it is whether it is managed so that we can channel its energies
effectively [4]. Relationship conflicts harm the performance, while task-related conflicts enhance
performance [5].

Conflicts are probably inevitable in teamwork; the question is how to manage them. Teams
that focus on conflict management do better, according to a study measuring both team and
product performance [5].

A method to help instructors with the challenges involving their teams is to have the students
submit weekly progress reports [2] [9]. These reports should include:

• Who attended the meeting

• The objective for next week/meeting

• What the group discussed during the meeting

• The current effectiveness and productivity of the team

It is important that the instructor invites the members of the group to provide honest feed-
back [1]. Anonymity to some extent may be important in these cases, otherwise the feedback
have a likelihood of being dishonest. Sometimes there is no other way than to break up the
group, but in most cases it is important to try to avoid breaking up the group. If a breakup
happens, the dynamics, habits and norms of the original group will be negatively affected, and
the addition of new members to other groups with established norms will likely disrupt their
dynamics [2].

2.4 Other solutions

There are a lot of tools supporting teamwork on different aspects, but none of the current
solutions I found, solely focuses on the status and progress of the team in terms of effectiveness
and performance. The most widely used tool in Norwegian universities is blackboard. While
blackboard handles certain content and functionality related to group work, it does not handle
monitoring group status and performance.

2.5 Student survey

To get approval of the concept and create a broader justification for developing the application,
a survey was made and targeted at NTNU students. The three most relevant questions from the
survey are displayed below with results.

8

2.5.1 Survey results

In total there was 50 students that answered the survey. Below are the results of the various
questions.

Question 1: Have you experienced working in a bad group that did not work because of
”free-riders”, bad workload distribution, bad communication etc?

Figure 1: Results of survey question 1

It is clearly a majority of the asked students that has experienced troubles with group work.
68% of the students answered that they have experienced trouble several times with group work
while 24% answered one time. This indicates that bad group work occurs a lot, and there is a
need for means to deal with this.

9

Question 3: Could you regularly visit an app on mobile or PC, and anonymously report in on
how you feel about your group with a number from 1 to 5, where 5 is very good and 1 is very
bad ? The mean score based on every member’s answer will be displayed to you, the other group
member’s and the professors/TA’s.

Figure 2: Results of survey question 3

When the students were directly asked about the application, 48% answered that they would use
such an application, versus 24% that answered the opposite. This is positive, and indicates that
an group status monitoring application could be beneficial.

10

Question 4: How often would you be willing to go into the application and report the status
of your group?

Figure 3: Results of survey question 4

The majority of the students with 60% would be willing to visit the application once a week.
Based on these results, the product will give the user the possibility to rate the group once a
week.

2.6 Interviews

2.6.1 Interviews with professors

There was conducted interviews with two different professors on NTNU. During the interviews,
they were presented with a simple prototype of the product. The purpose of these interviews
was to get valuable feedback on the design presented, and have them pointing out important key
elements for further development.

Interview with professor Professor 1

Professor 1 thought the concept of having an application that focuses on monitoring and im-

11

proving group status and performance was a useful and good idea. Himself as a professor see the
challenges with group work, and he was positively tuned with the concept. During the interview,
he pointed out several elements with the design that could be improved, and mentioned several
key elements that should be included. The specifics of these elements will be described in the
design section.

Interview with professor Professor 2

Professor 2 was positively tuned regarding the concept and design, but his biggest concern was
how to make the students go into such an application and give weekly ratings. What motivates
them to do so?

2.6.2 Interviews with teaching assistants

The application will potentially be used by teaching assistants as well as professors, therefore
it was important to gather feedback from at least one teaching assistant currently managing a
project related course at NTNU. One interview was conducted with a teaching assistant, and
the results of it will be mentioned under the design section.

2.7 A need for a group status/progression application?

2.7.1 Research conclusion

With the amount of studies done on group work, a lot of the same challenges and the same tactics
to solve these challenges are presented. These challenges are bad group norms, bad communica-
tion, “free-riding”, unequal workload, avoidance of responsibility, lack of commitment and much
more.

The main tactics presented for solving the different challenges are establishing group norms,
setting roles and goals, regularly provide feedback to the team, discussing expectations, facili-
tate peer evaluations, setting a plan and an agenda and much more that involves structure and
clarification from the very start. Many of the tactics involve the students providing input in the
form of feedback, peer evaluations, peer ratings, discussions etc. If an instructor should have
the ability to see any progress status on a group, the students have to provide some input. The
goal here is to find an easy, quick and informative way for the students to provide input so that
the group status and progression easily can be revealed and done something about if necessary.
Following are some possible features of a potential group work application based on the research
and the survey:

• Feedback: The most important factor would be a method for students to give feedback
about what he/she feels about the group. This will be a simple rating from 1-5 that the
students have to do once a week. The instructor should have the ability to see the overall
rating, see individual ratings, and take certain actions to organize the groups better and
get an informative overview.

• Meeting notifications: A possibility for the instructor to invite the group to a meeting
to solve the problems the group may have.

• Role assignment: To give structure and clarity to the team, roles should be assigned and
displayed in the application. The research indicates that roles are important.

12

An application focusing on preventing bad and ineffective team work, and facilitate easy commu-
nication between instructors and teams, would be beneficial for students as far as the research
states. If this is actually true is yet remained to be proven. The first step is to try out a basic
feedback functionality. Every team member simply rates how they feel about the progress and
the overall satisfaction of their team every week. The instructor should be able to view all group
statuses, individual scores, and certain actions to provide an informative overview. The web
application will first and foremost be customized to fit smartphone screens, so that users easily
can access it.

3 Design

3.1 Methodology

During the project, an agile way of working was used. There were scheduled meetings every
two weeks, with exceptions when meetings was not necessary. These meetings consisted of the
current work progress, retrospectives and future work. This working methodology has elements
of the known Scrum framework, which is an agile process framework used for teams in software
development.

3.2 Design of the graphical user interface

The design was developed in an incremental way as described in the previous section. Only the
most important parts of the design will be provided in the main report. The rest of the design
can be viewed in the appendix.

3.2.1 Initial design

At the very start of the project, the design was solely based on the project description. With
own thoughts and experience with GUI design, the first sketch of the design was made. The first
design only included the student side of the application:

13

(a) Student rating page (b) Student after-rating page

Figure 4: Initial design of the student side of the application

3.2.2 Design iteration 1

After the first sprint and retrospective with the project supervisor, important decisions were
made. The following changes were the most important:

• Only having the rating functionality appearing at the start. The display of the overall
team score can possibly influence the student’s rating.

• After rating, the overview screen should appear

• Rename the ”Schedule meeting” button to ”Request assistance”. This button should make
it possible to only request assistance from professor/TA, not schedule a meeting.

• Make the design more simple, not showing unnecessary information like team members.
Make an own ”Team info” button for this.

The first design of the professor page was also made. Figure 5 (a) and (b) shows the student
side, while (c) shows the initial design of the Professor/TA page:

14

(a) Student rating page (b) Student after-rating page (c) Professor/TA overview page

Figure 5: Design iteration 1

3.2.3 Design iteration 2

After the second design iteration, during the progress meeting and retrospective, guest professor
at NTNU Guttorm Sindre was present to provide feedback on the design. The design changes
are also based on the results from the student survey.
The most important changes from this iteration:

• The groups the instructor/TA are responsible for should be pinned out so they appear at
the top of the list. It should also be possible to pin out other teams of interest as well.

• The instructor/TA should have the ability to search for groups and apply filters.

• The instructor should have an overview screen of simple statistics regarding the teams in
the course.

• Make a ”Gather group” button. This button should make it possible to call your team into
a meeting.

• Provide the students with the possibility to say a few words about their score when they
rate.

• It should only be necessary and possible for the students to rate the team once a week.
This is a change done in regard to the results of the student survey, where the majority
answered that they would prefer to rate their team once a week.

15

The changes are reflected in figure 6 and 7 below:

(a) Student rating page (b) Student after-rating page

Figure 6: Design iteration 2 - Student side

16

(a) Overview page (b) Team list page

Figure 7: Design iteration 2 - Professor/Teaching assistant side

3.2.4 Design iteration 3

The new changes in design iteration 3 was a result of feedback from interviews with professors
and teaching assistants, including the retrospective from the progress meeting. This was the last
design iteration before the actual development and programming of the application started.

The most important changes from this iteration:

• The professor page should view the gap between the scores within a team. This means
showing the difference between the person that rate the lowest in average vs the person
that rated the highest.

• Replace the emoji showing the score with a progress bar in the professor page, and the
student status page. Make it possible to click on the different list headers to sort the list
based on the header clicked. These changes was a result of the interview with Professor 1,
described in the background section.

• The professor/TA should also be able to view individual scores. This change was a direct
result of feedback from the teaching assistant interviewed.

17

Figure 8: Design iteration 3 - Student after-rating page

18

(a) Overview page (b) Team list page (c) Team info

Figure 9: Design iteration 3 - Professor/Teaching assistant side

19

4 Architecture

4.1 Overall Architecture

The application is build up in a client - REST API style. The backend and frontend are entirely
seperated and independent of each other. One part can be developed without affecting the other.
This means increased flexibility and a seamless possibility for connecting other types of clients
to the API. The passing of data between the client and server is done using the HTTP protocol.
This includes GET requests for reading data, and POST, PUT and DELETE for adding, altering
and removing data. The same goes for connecting to the FEIDE API, which is described further
under the section ”4.6 Feide”.

The figure below illustrates the overall architecture:

Figure 10: Overall architecture

20

4.2 Frontend Architecture

The frontend is based on the React-component architecture. Every visible page in the applica-
tion is a component, with many small components inside including in-component functionality.
Redux keeps track of the global state of the application. The files in the project are mainly
structured in a way where one component occupies one Javascript file.

The figure on the next page illustrates the overall architecture of the React application. It also
illustrates on a very simplified level how the Redux global state is handled. Part ”A” marked
on the figure shows a simplified illustration of how the react component structure is exploited in
the student rating page of the application. The ”Navbar”, ”VerticalContainer”, ”Button” and
”TabBarStudent” tags are self made reusable React-components, and reused on several screens in
the application. Part ”B” on the figure, illustrates how the NavBar, VerticalContainer and Tab-
BarStudent components are reused in this component as well. In part ”C”, we also see reusing
of some components. To specify the advantage of the reusable-components, for instance, instead
of having to create a container that displays it’s content vertically-centered on every screen, it is
created once and then imported and reused in all screens. In this case the ”VerticalContainer”
component.

The Redux global state is divided into several parts. Figure 11 below shows the global state
of the student attached to the student-side of the application, and the same for the staff. It is
worth to notice that every component can attach to every global state and Redux action. This
means it would be no problem to attach both the staff and student state to one component.

The global state is accessed through the ”props.” syntax. In part ”C” of figure 11, we can
see that ”props.teams” is used in the ”TeamList” component. This is the data for the teams in
one course. We can also see that above this inside the function ”getTeamList”, ”props” is used
again, only this time for accessing the Redux-actions to fetch data. Once component ”C” renders
and shows on the user’s screen, the function ”props.fetchTeamList()” is called. This is a HTTP
GET request that fetches the teams from the Django API. When the response-data is returned
from the API to Redux-actions, it is passed to and stored in the Redux global state, specifically
in the global state of the staff, under ”teams”. All components that uses this team data will
re-render/reload. Only the team-list will reload, not the entire page, which is mentioned earlier
as one of the great advantages with React.

21

Figure 11: React & Redux architecture - simplified

4.3 Backend Architecture

The backend architecture is built up in REST-ful style. Looking at figure 12 below, it all starts
with a request from the client. The request is passed to the API views. Depending on which
request is received, it will call that API view. Taking the example from figure 11 with fetching
the team list, the request calls the HTTP GET function for the team list. It uses the Django
object-relational-mapping-layer (ORM) and Django-queries to get the teams from the database.
Once the teams are collected, they are passed to the serializers which converts the teams into
JSON. The list of JSON objects are finally returned to the client.

The same process is executed for every API call. Requests that alter the database like POST
requests, are in addition to this writing to the database via Django ORM. The updated data is
returned to the view and the same process described above follows.

Figure 12: The backend architecture - simplified

4.4 Database Architecture

The database is a relational PostgreSQL database. Figure 13 below shows the internal architec-
ture, the different data models and the relations between them:

22

Figure 13: Database architecture

The arrows on the figure indicates which model the foreign keys is pointing to. The dotted lines
are not foreign key relations. These are only relations to strings that eventually will exist in
a user instance. The reason for this is that these relations need to exist before the user has
registered in the database, to have control over which people has access to the relevant course.
For instance the ”PreTeamRegister”. This model is used to register both students and Teaching
assistants like an enrollment list. When the user first creates his/her user, the username will be
checked with this list, to give the user access to the subject.

4.5 Feide user and authentication

The authentication in the application is handled by using the Feide API. When the user presses
the login button in the application, it will redirect the user to the Feide login portal. When the
user provides the correct credentials, the Feide API will return an authentication token, which
then can be used to fetch information from Feide. This token is then used to fetch the username,

23

user id and name from Feide. The information along with the token is stored in the application
database, and the access token is further used by the application to authenticate requests. Any
request that comes into the TeamAccelerator API must have a valid access token to be validated.
The access token from FEIDE times out after a couple of hours. When this occurs, the user
must log in again with their credentials.

24

5 Implementation

5.1 Implementation method

Under the implementation phase, much of the same methodology used in the design sprint was
utilized. The implementation phase was primarily based on continuous integration. This means
that small changes and new features were implemented in small steps, then published directly to
the code base ready for re-deployment. The implementation was primarily based on the design
sketches, but as the application was tested on various people, and different feedback was take
into consideration, the final product was slightly different from the design sketches.

At the early stages of the implementation, the application was developed in defined sprints.
After the first development sprint, a simple version of the student side of the application was
developed. The ability to login, choose team and subject was present, and the ability to rate the
weekly score and see the team status including a simple profile page. At the first progress meet-
ing it was quickly concluded that a simple first version of the professor side of the application
should also be completed to include in the first version. It was also concluded that there should
be a simpler way to add information about team and students, instead of having the students to
choose team by themselves. This applied to the role selection at the start as well.

After the second implementation iteration a complete working version of the application was
done. This included in addition to the parts described in iteration 1, a simple professor side
of the application where the professor/TA could view all the teams an their different scores,
including individual student scores. In the third implementation iteration, the main focus was
to get ready a testable version of the application, so it could be tested on students and teaching
assistants. In addition to this, it was needed to make the privacy policy of the app ready, and
submit an application to the NSD to get approval of collecting personal data such as name,
username and email.

The main focus of the fourth iteration was to get the app published on NTNU servers, han-
dle the privacy policy correctly with NSD, and further improve the app with adding additional
features. The rest of the implementation phase was focused on testing the application on students
and teaching assistants to get specific feedback and make changes according to this. In addition
to this, a lot of time was also spent trying to get approval from NSD of handling personal data,
and also moving both the frontend and backend over to a NTNU virtual machine. Both of these
processes was time consuming. In general, the latter sprints was less defined than the first ones,
and were mainly focused on the same things.

25

5.2 Choice of technology

5.2.1 Frontend: React & Redux

The frontend part of the application was developed with React and Redux. React is a Javascript
library tailor-made for building user interfaces. It is one of the most popular libraries for building
frontend applications and is widely used in the IT-industry. The reason for its popularity and
the choice of using it in this project is mainly because of the following features:

• React is based on constructing and reusing react-components. A react-component is a self
made chunk of code, which can render a view with GUI, and have functionality and state.
The key element of react is the ability to break down your interface into small reusable
components everywhere in your application which saves you time, gives you structure and
less redundant code.

• React is declarative. This means that only the components affected by a data change will
re-render, not the entire website which is the case with traditional web-sites. This also
makes the code more predictable and easier to debug.

• Once an application is written in React, you can reuse most of the code and turn you
application into a native mobile application using React Native.

• Since its popularity, the React-community is large with many contributors, and the docu-
mentation is excellent.

• Redux is used to keep control of the global state of the application, instead of keeping all
the state inside the components. React and Redux works seamlessly together.

5.2.2 Backend: Django REST Framework

The backend of the application was developed as a REST API with Django and its rest frame-
work. It is a widely used framework, and provides the developer with great possibilities for
making web APIs. The main reasons for using Django in this project:

• The rest framework makes serialization of data easy. The serializer classes provided in the
framework lets the developer convert data into readable REST-ful formats in a simple way,
and make it ready to send to the client. In the case of this project, it is serialized JSON
data.

• In Django, you define you database models using python. The object relation mapping
layer (ORM) of django converts your python code into SQL.

• Django comes with an own database query API, which is simpler than writing raw SQL
queries.

5.2.3 Database: PostgreSQL

The default database provided with Django is SQLite. SQLite does not support concurrency.
That means two users writing to the database at the same time. Because of this, the choice
landed on using PostgreSQL, which is a powerful and widely used SQL database.

26

5.3 Code and project structure

View the full source code from the links below:

Backend code repository
https://gitlab.stud.idi.ntnu.no/augustle/master_react

Backend code repository
https://gitlab.stud.idi.ntnu.no/augustle/master_api

5.3.1 Backend

The database models are defined in Python. As described in the architecture section for the
backend, the defined python models are converted by the Django ORM to SQL models. Below
in figure 14 is a screenshot of the code for the Team model. To convert the python code to SQL,
a migration is required, which is simply done by running two separate commands in the terminal.

Figure 14: The Team model

An image from a part of the API endpoint for getting the user model is displayed below:

27

https://gitlab.stud.idi.ntnu.no/augustle/master_react
https://gitlab.stud.idi.ntnu.no/augustle/master_api

Figure 15: Endpoint for getting the user

This endpoint returns the user model in JSON format, as well as the subject model which rep-
resents which subject the user currently has selected. The if statement in the code uses the
”Subject” class to check if there exits any subject that the user has selected. If this is the
case, the subject is queried with ”Subject.objects.get(pk=user.selected subject id)”, where ”pk”
stands for ”primary key”, which is the same as id referenced to in figure 13 of the database ar-
chitecture. This returns the Django ORM model, which needs to be converted to JSON. Further
below in figure 15, we can see the ”subject data” variable. Here the ”SubjectSerializer” is used
to convert the data to JSON format. The same goes for the User class with the ”UserSerializer”.
The boolean field ”many=” is just an option to choose whether you want to return a list of JSON
objects or a single JSON object. I this case many=False to return a single subject and a single
user. The two JSON objects are combined and returned further below in the code which is not
visible on the screenshot.

Below is the JSON format of the data returned from the ”return object” from the code above.
The UserSerializer and SubjectSerializer wraps the data models into JSON format. As we can
see in the figure, the ”api user” field is coming directly from the UserSerializer, and the same
applies to the ”subject” field with the SubjectSerializer.

28

Figure 16: Format of the JSON returned

Below in figure 17 is the serializer for the Subject class.

Figure 17: The SubjectSerializer

Below in figure 18 is the serializer for the User class.

29

Figure 18: The UserSerializer

All the serializers inherits from ”serializers.ModelSerializer”. The only thing that needs to be
done is specifying in the ”Meta” class what fields should be included in the JSON object. If a
foreign key field also is needed, this needs to be specified. See the source code for more.

The code below is the HTTP POST request for unselecting a subject from the profile section
of the application. This is one of the simplest post requests in the application, but illustrates
the simple Django architecture. The user model is accessed from the request object, and can be
altered directly with first setting the accessible fields to a desired value, then saving the model.
In this example, we can see that the ”user.selected subject id” is set to ”None”, as well as the
”role” field. Then, these changes are easily applied with the ”.save()” function which is a part of
the Django ORM and query API. The updated user is then returned from the API to the client
in JSON format.

Figure 19: Screenshot of a simple POST request

30

5.3.2 Backend folder & app structure

The folder structure in the Django project is divided into so called ”Django apps”. Each app
represents a side of the application with associated endpoints. The different apps are: data,
staff, student and user. The data app handles most of the database models of the application,
the students app handles the student functionality, the staff app handles the professor and TA
functionality, and the user is common for both the student and staff app and mostly handles user
related functionality. Inside each app folder is the respective views, url’s, serializers and models
if used, for that side of the application. The ”project api” folder keeps the settings of the project
and the main url’s. Figure 20 below shows this structure:

Figure 20: Folder structure of backend project

5.3.3 Frontend folder and & component structure

The frontend code is divided into react components. The most common components are in
the ”common” folder which is inside the ”components” folder. These components are basic
components such as buttons and containers. These are not necessarily related to this project
and could potentially be used by another react project as well. In the ”components” folder there
are also project specific components. Every component has its own folder with it’s respective
Javascript files, CSS styling files and images folder. The different screens/pages in the application
are placed in a separate folder ”screens”. Each screen components represents an app screen
and GUI(Graphical User Interface). The ”reducer” and ”actions” folders are containing Redux
functionality, which is overall described under section 4.3 above.

31

(a) Src folder & screens folder

(b) Component folder

(c) Common component folder

Figure 21: Frontend folder structure

5.3.4 Frontend React code

Below in figure 22 and 23 is the ”TeamList” component. This component has a classical react
structure used in the application. It contains javascript functionality, JSX code to render and
display elements on screen, CSS and some HTML. This component is used to show all the teams
and their respective rating score in the staff section of the application. Within this class there
is sorting functionality, which is used to sort the list based on the different header parameters.
Figure 23 shows how this List component is used and rendered in the code of the staff side of
the application.

32

(a) The TeamList component part 1

(b) TeamList component part 2

Figure 22: TeamList component

33

Figure 23: TeamList component

(a) TeamList component part 3

(b) TeamList component part 4

34

Figure 24: Usage of TeamList component

As seen in the code of the ”TeamList” component, this component also uses other smaller
components like ”ListRow” and ”ListHeader”. Figure 24 shows the easy usage of the TeamList
component. It can be reused anywhere in the application with one line of code.

5.4 Hosting the application for testing with Heroku and Surge

Before the application was ready for production and testing on an actual NTNU course, there
was need for testing the application qualitative directly on people. For this matter, there was
no need to have real users and data, because it was the mere design and functionality of the
application that was going to be tested. The way this was done was to deploy a testversion of
the application on the free services Heroku and Surge.

5.4.1 Heroku for backend

Heroku is a cloud platform as a service(PaaS). It is used by many companies both in production
and for testing, and it supports several programming languages including Python and Django.
This simple service lets the developer deploy an application to the cloud very effectively and
without any domain. The domain is generated by Heroku. This service also lets the developer
easily integrate a PostgreSQL database, which is used in the TeamAccelerator application.

5.4.2 Surge for frontend

Surge is a service for publishing frontend applications, just within seconds. This is especially
optimal for React applications. The only actions the developer has to do to get an application
published to the internet is one simple command in the terminal. Surge gives you a URL and
the application is up and running. This service was optimal for publishing the application for
the purpose of testing.

5.5 Hosting the application for production

Publishing the application for production was a substantially more comprehensive task. Both the
frontend and backend application was to be hosted on a NTNU virtual machine. This machine
is a Ubuntu 18.04 machine. There were certain permissions that was needed to be bypassed in
order to get the application up and running on the Ubuntu machine with the specified domains.
The backend application is running on the Ubuntu machine with Nginx and Gunicorn. Gunicorn
is a Python Web server gateway interface HTTP server. In shorter terms, Gunicorn is the HTTP
server for the application, and serves the Django API. Nginx is a high performance HTTP server

35

and reverse proxy. In the case of this application, Nginx is used as a reversed proxy to Gunicorn,
giving the application access to the security features and performance of Nginx. A reverse proxy
means that Nginx sits in front of Gunicorn, and forwards the client requests to Gunicorn.

5.6 Handling the course permissions

A challenge with testing the application on an actual course was to control which people had
access to the given course. Only the people enrolled in the course and the people responsible
for the course should have access to the course. The optimal solution to handle this would be
to automatically fetch this data from Blackboard, FEIDE or another data source that sits on
this information. Unluckily, this turned out to be to comprehensive and not possible to achieve
within the time frame of the spring.

5.6.1 First solution

The first tried access solution of the app was letting the user select their role, the subject and
which team they belong to. In the Appendice part A below, this login process is illustrated.
To avoid having people not enrolled in a course registering in a course, a temporary password
solution was implemented. Every team has a password, and it is only possible to register to a
team if the user has the correct password.

It was quickly concluded that this login process was consisting of too many steps, and would
probably prevent the user from taking the effort to register in the application. In addition to this,
there was no access control to the staff side of the application. This means that every FEIDE
user could potentially login as a teaching assistant or professor, and view all the course data.

5.6.2 Second solution

In the second solution of the access control, role selection was controlled and there were no
password protection on the teams. This means that only users that are pre-registered in the
database with staff access, can register as a teaching assistant or a professor. As there are usually
not a substantially large amount of professors and teaching assistants, these people could easily
be registered manually in the database. The password protection of the teams was removed. The
reason for this was the potential challenge in handling and distributing passwords to all teams
in a course. Something more had to be done with the access control. This solution would let
anybody register to a team in a course.

5.6.3 Current solution

The current solution handles the access control of the app in a way that only lets the people
with the right permissions register in the application. The way this works, is with a pre-defined
list of all students in a course, and which team they belong to. With instructor permissions,
all this information is possible to download from blackboard. The information is converted over
to a simple .txt file, that can be uploaded in the application. The format of the data is simply
the team name, followed by a comma and the FEIDE username, seperated line by line for each
student. This is illustrated below, where each item represents a line in the txt file:

• Team 1, user1

• Team 2, user2.

36

• Team 2, user3

• Team 1, user4

• ..

A user with instructor permissions has the ability to upload a txt file in this format. The ap-
plication converts this to JSON data, and sends it to the backend. This information is then
registered in the ”PreTeamRegister” model. If a given team in a row of this txt file does not
exist, it will be created. In figure 25 below, this process is illustrated. It starts with selecting and
uploading the desired .txt file in the format described above. When the user hits the ”Submit
teamlist” button, the text in the txt file will be converted to JSON format, as illustrated in the
figure. The backend will receive this HTTPS POST request, with the entire list of JSON objects.
These objects are then iterated through, creating all the team objects in the list ass well as the
”PreTeamRegisters” for all the students in the list.

When a student then registers in the application, the student will be directly enrolled and
registered in the course/subject and the team. The application validates the FEIDE username
of the newly registered user with all the PreTeamRegister objects, and assigns the user to the
correct team. The user has to select the subject from a list. A user could potentially be enrolled
in many subjects with group work projects. Staff permissions for TA’s and professors must be
manually registered in the admin backend panel of the application. Since there are not so many
of them in each course, this can be done fairly quickly.

37

Figure 25: Access control upload flow

38

6 Privacy Policy and GDPR

6.1 GDPR Compliance

To comply with the privacy policy and the requirements of the EU GDPR rules, specific func-
tionality was implemented. According to the GDPR, the user should have the ability to delete
themselves and all related data at any point in time. This was implemented in the application
under the profile section, and is illustrated in figure 26 below:

Figure 26: Delete user in app

According to GDPR, the user should also have the ability to ask for all the data that is stored in
the database, and the ability to export it on a readable format. As seen in figure 26, the user has
the ability to make email contact in order to request this. As the application in this scenario do
not have a large amount of users, this way of handling GDPR requests is sufficient. On the other
hand, if the application were to be expanded into several courses with a large amount of users,
it might would have been necessary to implement a page in the application where the users had
the ability to view all data and export it.

The data transferred from client to backend and back is SSL encryped.

6.2 NSD

In order to be allowed to collect user data through the application for research purposes on
NTNU, an application had to be approved by the Norwegian Centre for Research Data. An
application was sent to the NSD. The processing and approval time of this application was
about 3-4 weeks. After this, the app could be deployed to the students and the staff at the
NTNU course TDT4180 - Human Computer Interaction.

39

6.3 Privacy Policy In-App

When the user logs in for the first time thought FEIDE, the user will immediately be asked
if he/she agrees to the overall privacy policy of the application. This means agreeing to let
the application collect their FEIDE username, email and full name. In figure 27 below, is a
screenshot of this. The user will not have the ability to create a profile if they choose not to
accept the policy. The ”Create profile” button will only appear when the checkbox is checked.

Figure 27: Privacy policy in app

40

7 Results and future work

7.1 The application

The final product is a fully functional application for both students and course staff. Course
staff includes teaching assistants, professors and other assistants that have some kind of role
in managing the course. The application will be described below with screenshots. The data
in the screenshot is only test data, but will give a sufficient description and illustration of the
application.

(a) Login with FEIDE (b) Accept the privacy policy (c) Select subject

Figure 28: Login process

7.1.1 The registration process

• (a) - The first page that meets the user is the Feide login button. When the user clicks
this button, the user will be redirected to the FEIDE login portal. When the users type in
their credentials and hit enter, they will be redirected directly to the privacy policy screen
in the figure

41

• (b) - Unless the user has checked the checkbox that he/she is willing to let TeamAccelerator
store data about them, it is not possible to go any further. The privacy policy has to be
accepted.

• (c) - Once the privacy policy is accepted, the users have the ability to select which course
they want enroll in.

7.1.2 Student in-app functionality

Below are the different features of the student side of the application.

(a) A bad rating (b) A good rating (c) After-rating screen

Figure 29: The rating side for students

• The ability to register the weekly score to your team. It is only possible to rate once a
week.

• (a) - If the student is not pleased with his/her team, the natural thing to do would be to
give a bad rating. In this case that is 2 out of 5.

• (b) - The same applies to a student that is pleased. In this case, 4 out of 5 is a good score.

• (c) - After rating, the team overview page appears. Here the user can view the basic
information of the team, and see the average score and the last score of the user registered.
The user can also see how many people on the team that has rated the current week. In
this case there are 3 team members that has rated.

42

• Basic information about which course is selected, the total average rating of the team and
team name is displayed at the top.

(a) Show team information (b) See your previous ratings (c) Contact the teaching assistant

Figure 30: Student side

• (a) - The student can view information about the team members, the total average score,
and the responsible teaching assistant for the team, with full name.

• (b) - The students can view their previous ratings, and the date they were registered.

• (c) - The app provides a simple gateway to contact the teaching assistants. When the
student click on the ”Send Email” button, the native email application will automatically
open on the platform the students are using, with the teaching assistant as the recipient.

43

(a) Hiding extra information by default (b) Extra information expanded

Figure 31: Student profile page

• In the profile page, the basic information about the selected course and which team the
student belongs to is displayed.

• The user logs out of the application by clicking the ”Log out” button at the top.

• The ”More info” section is by default hidden. When clicked, it expands to view more
information. The user has the ability to delete themselves entirely. This process is described
a bit more in detail in section 6.1.

44

Figure 32: Changing to another course

• In the potential case where a student is enrolled in several project based courses, the
students can easily change to another course by clicking the ”Change course” button.

• It is not possible to select a course which the student is not pre-registered in. This process
is described in section 5.5.3.

45

7.1.3 Staff in-app functionality

Described below is the functionality of the staff side of the application, with images.

(a) Staff overview page
(b) Teams below 2.5 in average rat-
ing

(c) Teams you are responsible for

Figure 33: Staff side of the application

• (a) - The ability to view an overview of basic statistics of all the teams in the selected
subject. These statistics are the average score of all teams, total number of teams, number
of teams below score 2.5 and what teams you are responsible for.

• (b) - In the overview section, the user can click on the box to view the teams below 2.5 in
rating.

• (c) - The user can also click on the box of the responsible teams to view the specific teams

46

(a) Click on a team (b) View more details of the team (c) Simple graph representation

Figure 34: Continuation of staff side of the application

• (a) - The user can click on a team appearing in the dropdown list when it is expanded
in the overview section. This will make more information about the team appear on the
screen, as well as some actions.

• (b) - When the user clicks on the ”More Details” button, he/she will be redirected to a
new page with more information about the team.

• (c) - The detail page shows a simple graph representation of the history of the rating of
the team. First a bar chart, then a line chart. These graphs represents the same numbers.
They show the average rating of the team, every week someone has rated the team. The
list above the graphs also shows some more information. It is possible to click on one week
to view even more information, which will be illustrated below.

47

(a) View a specific week (b) Click on a bar (c) Click on data point

Figure 35: Continuation of staff side of the application

• (a) - The user can click on a specific week to view all the individual ratings of the team
members that particular week, and the date.

• (b) & (c) - The user can highlight the bars and click on the data points on the line chart
to see the details.

48

(a) View a list of all teams (b) Search for a team (c) Sort the list

Figure 36: Continuation of staff side of the application

• (a) - View a list of all the teams in the course, the average rating of the team, and the
responsible teaching assistant for the team.

• (c) - It is possible to sort the list based on all the headers. In this case the list is sorted
by rating in a descending order. It can also be sorted in a ascending order, by clicking the
header once more. As seen in the (a) figure, the list is sorted by team number, ascending.

49

Figure 37: Pin and unpin teams

• To gain a better overview of the teams, it is possible to pin a team, so that it appears at
the top of the list. In the same way, it is possible to unpin a pinned team, by clicking the
team and then ”unpin”. All the teams the user are responsible for will always appear at
the top of the list as pinned.

50

Figure 38: Staff profile

The profile page of the staff side of the application is the exact same as the student profile side,
illustrated in figure 31 and 32. The only difference is that there is naturally no team to display
in the staff profile, and the profile logo is different.

7.2 Django backend admin panel

Django provides the developer with a backend panel that allows the developer to manage the
database and access all the data. It also allows the developer to customize the site with simple
Python code. The admin panel shows all the data models in the database, and it is possible to
click into each instance and do changes if necessary.

51

Figure 39: Admin panel, main overview

The overview in figure 39 gives the user control over all the data models in the database.

52

Figure 40: Admin panel, user overview

In figure 40, we can se all the users in the database, and do certain actions.

53

Figure 41: Admin panel, view and change one user

Figure 41 shows an example of clicking into one user in the database. Here it is possible to
change the user and save it, including deleting it.

7.3 Qualitative user testing

7.3.1 Test form

In order to try to verify and find out if the concept of TeamAccelerator is of value to students
and course staff, some tests were conducted on various people. Due to the situation with the
COVID - 19 virus, the tests needed to be conducted over the internet, either in the form of video
or just written. Ideally, the tests should have been conducted with the test - subject in-person,
but this was not possible. The user-testing was conducted as follows:

• The test subject was firstly presented with the basic concept of the application, and the
main problem it is trying to solve.

• After this, the test - subject was presented with several tasks in chronological order, to
complete one after another.

• These tasks are presented below with the application introduction

54

7.3.2 Introduction for student test

Below is the introduction the test-students was presented with:

”This application is about teamwork at NTNU in project based courses. The goal of the appli-
cation is to make it easier to prevent bad or incomplete group work. The application is relevant
for you as a student that at this point in time, or in previous semesters has worked with project
based courses in teams. The app consist of a simple platform where you have the ability to give
feedback to your project team every week, based on how happy you are with your group. This
feedback is a number from 1 to 5, where 1 is very bad and 5 is very good. In other terms, 1
means that you are very unsatisfied with your team, and 5 means the opposite.

The other students on your team will not be able to see what you have answered, but all stu-
dents can see the average score of their team. Professors, teaching assistants and other course
staff will get another side of the application where they have overview over all the groups, the
average-rating of every group, and all individual scores of every student. The goal is to find out
if students like you feel that this can be a valuable tool that can help improving group work, and
make it easier to solve problems related to it.

Your honest feedback will be very appreciated. Don’t be afraid to point out errors, drawbacks,
weaknesses or other things you think should be improved or added. The more feedback the better!
Think “loudly” and note everything that is of value.”

7.3.3 Student test tasks

The test subjects went through the following tasks:

1. You are registered in the subject TDT4140 - Software Engineering at NTNU. This is a
project based course where the students work in teams on a project that lasts the entire
semester. The project counts 100% of the grade, so it is important that you are satisfied
with your team. Teamwork can be challenging from time to time, therefore, the professor of
TDT4140 has recommended a new application where you as a part/member of your team,
can give weekly feedback in the form of a number from 1-5, where 1 means you are very
unsatisfied and 5 means you are very satisfied with your team. You now wish to log into
the application through your phone.

2. Lately, you have felt that your team is doing bad. You are not satisfied with either the
progression or the other team members. You want to give your team a bad rating this week.

3. You don’t remember which student assistant that is responsible for your team, and you wish
to find this out now

4. During the project period, you have given different scores to your team the different weeks.
One of the weeks, you gave a very bad rating, while the other weeks, you rated your team
pretty good. You don’t remember what weeks you gave the bad rating, and you wish to find
this out now.

5. Since you are not happy with your team this week, you wish to contact your teaching
assistant.

6. You want to view your own profile in the application, and wonder if there is any more
information about the app.

55

7. You are done for this week, and now wish to log out of the app.

7.3.4 Introduction for staff test

Below is the introduction the staff that was tested was presented with:

This application is about team work at NTNU. It is trying to make it easier to prevent bad
and incomplete team work. Bad teamwork in this case is teams that have one or several members
that are unsatisfied with their team, and feel like the team does not achieve any or enough results,
which can lead to a bad grade or in the worst case failing the course. This application is relevant
for you as a professor or teaching assistant, that is currently leading and assisting a project based
course on NTNU, or have done so in the past.

The app consists of a simple platform where the students give feedback to their teams based
on how satisfied they are with the teams. This feedback is for each student a number between 1 to
5, where 1 means that the student is very unsatisfied and 5 is very satisfied. You as a professor
or TA, will get another side of the application where you have overview of all the teams and the
individual team members ratings and average ratings. The goal is to find out if this is a tool that
can enhance and improve the team work and make it easier to solve problems that occur during
the project period. This is especially relevant for teams that have a poor performance.

Your honest feedback will be very appreciated. Don’t be afraid to point out errors, drawbacks,
weaknesses or other things you think should be improved or added. The more feedback the better!
Think “loudly” and note everything that is of value.

7.3.5 Staff test tasks

1. Log into the application with FEIDE.

2. The app points out teams that has an average rating below 2.5. You now want to find out
which teams are below this point.

3. One of the teams with rating below 2.5, you wish to follow a bit closer. Therefore, you want
to “pin” team 16, so that this group will appear at the top of the list over all teams later.

4. You are responsible for 2 teams, Team 23 and Øvingsgruppe 1. You now want to view more
information about Øvingsgruppe 1

5. An average score of 2.9 you think is pretty bad. Du wish to see if most people on the team
have given more or less the same rating, or if there are a large gap between the members.

6. You now wish to view more detailed information about Øvingsgruppe 1.

7. One of the weeks, Øvingsgruppe 1 had the lowest average rating. You now want to find out
which week this is, and view the different individual member ratings of this week as well.

8. You feel like you have gotten a good overview, and wish to continue over to the list of all
teams in TDT4140

9. You no longer want to have Team 16 at the top of your list. Do something about it.

10. To gain a better overview, you now wish to sort the list based on rating, in an ascending
order.

56

11. At first glance, you cannot see Team 14 in the list. Therefore, you wish to search for team
14 and view some more info about it.

12. You want to view your own profile in the application, and wonder if there is any more
information about the app.

13. You are done for this week, and now wish to log out of the app.

7.4 Qualitative user testing results

The results and feedback from the various people tested on was valuable. Some test users had a
lot to say, others less. In general, most of the test subjects thought the concept of this application
was interesting and could have potential. The test subjects are mainly students that are both
studying and working part time as teaching assistants, or have done so in the past. All of them
have experience with teamwork. The age of the people tested ranges from 22 to 26. Displayed
below are the feedback and results of testing the application on these people.

7.4.1 Student tests

Figure 42: Result student 1

57

Figure 43: Result student 2

Figure 44: Result student 3

58

Figure 45: Result student 4

7.4.2 Staff tests

Figure 46: Result staff 1

59

Figure 47: Result staff 2

60

Figure 48: Result staff 3

Figure 49: Result staff 4

61

7.4.3 Elements changed based on the user testing

Elements in the application that was improved and changed based in the user testing:

• Result staff 1: When viewing the history ratings of one team, the date text of one week
was made a lot clearer. The week number was also added.

• Result staff 1: When clicking on one history row to view individual scores of a team, all
the other weeks should hide to avoid confusion of what data belongs to that week. This is
implemented.

• Result staff 1: When clicking on one team to view information, the email of the respon-
sible teaching assistant should be displayed.

• Result staff 1: In the list of all teams, the header of the list named ”Status” should be
renamed to rating, which is now the case in the app.

• Result staff 4: Removing the unnecessary arrows below the categories when they are
expanded in the overview section.

• Result staff 4: Both the pinned and unpinned items are now sorted together, instead of
sorting them separately in the same list.

7.4.4 Elements that can or should be changed based on the user testing

Elements in the application that can be improved based on the user testing:

• Result student 2: Rename or move the tab for contacting the responsible teaching
assistant, to avoid confusing this with contact of system responsible for bugs and errors.

• Result student 3: In the information section of the application, remove the ”More info”
button and place it on a different tab or another place.

• Improving the PC version of the application. The app is tailor made for smartphones,
but not desktop. Re-Arranging the whole PC app to make it look more like a desktop
application.

• Result student 4: Improving the slider in the student rating page. Make it easier to
slide.

• Result student 4: Implement auto login when visiting the base URL. Auto login on all
the other URLS is already implemented.

• Result staff 2 & 3: Make some kind of indication that makes it easier to understand
that it is possible to sort the list over all teams. A possible solution is to pre-sort the list
so that the indicating arrow appears by default.

• Result staff 2: Make it easier to click on the graphs. This was possible the whole time,
but it may not work as well in some browsers, which may be the reason it did not work in
this test case.

• Result staff 2 & 3: The arrow in the right corner of the categories should be switched
up when expanding the category.

62

7.5 Quantitative user testing

To try to test the application in a real environment, it was released to a real course at NTNU,
TDT4180 - Human Computer Interaction. As described earlier, due to large delays with deploy-
ment, and the COVID - 19 situation, the data gathered from this testing is rather incomplete,
but some results were achieved.

• In total, there were 61 users registered in the application from TDT4180.

• Out of these users, 45 of them rated their team.

• Nearly all the users only rated their team once.

• In nearly all teams in which someone has rated, there is only one person at the team that
rated.

• There were only 5 teams that had several team members rating the team.

• Only 2 teams had more than 2 people rating the team.

• Only one team where several people rated, had one person rating 2 different weeks.

• Out of 153 teams in total, only 34 teams had someone that rated it.

• Out of these 34 teams, the total average rating was 3.5 out of 5.

7.6 Conclusion & future work

There are certain things that can be improved and further extended in the application. The
following list provides further extensions and improvement of the application:

• Fetch the information about what course people are enrolled in from blackboard API,
instead of having to upload this manually in the database.

• To further emphasize the gap in rating between the students, make it more visible with
graphical representation.

• Based on the user testing, the elements pointed out that was not implemented or improved,
should be improved or implemented.

• Implement the rest of the functionalities in the design sketches. These can be found with
images and descriptions under section 3, and in the appendix.

Another important future work is to publish the application in a real course at the very start of
a semester, under normal circumstances without COVID - 19 and the restrictions that follows
from it. In this master thesis and testing, the application was not mandatory to use, and stu-
dents tend to not do the effort of doing extra work if they don’t get anything back from it. The
same applies to teaching assistants. If this application was counting 1-5% of the grade, there is
a probability that a substantial larger amount of students would use this application. But, that
is up for the future testing to prove.

Based on the work of this thesis, there are several indications that this application and way
to improve team work, could be useful in many situations. Most of the students that tested the

63

application, thought the concept was interesting, and could be used to potentially prevent bad
team work. But, the approach on how to get students to actually use it, need to be further
developed. Students usually do not do academic related work voluntary, if the work does not
have an impact on any grade. The approach described above could be a potential solution to
that. Overall, this application could be used today in real academic situations, but ideally, the
application needs to be tested and potentially improved more, to gain a greater verification that
it actually prevents bad team work or at least improves some aspects of it.

8 Resources used

The various images and icons used in the design of this application are gathered from https:

//www.flaticon.com. This includes the following icons:

• Emojii icons used in the rating slider - made by ”Smashicons”.

• By Smashicons: pie-chart, add and pin

• By Freepik: status-bar, info button, group, mortarboard, professor

• By Itim2101: Book

• By Gregor Cresnar: Avatar, teamwork

• By Becris: Meeting

All the other icons used in both the design and the application itself are self-designed and made.
This also includes the application logo.

References

[1] N. Bendaly. 6 practices to help build a healthy team cli-
mate. 2018. https://www.theladders.com/career-advice/

6-practices-to-help-build-a-healthy-team-climate.

[2] A. Burke. How to use groups effectively. 2011. https://uncw.edu/jet/articles/vol11_

2/burke.pdf.

[3] P. Chang, Y. Brickman. When group work doesn’t work: Insights from students. CBE Life
sci. Edic. 17. 2018. https://doi.org/10.1187/cbe.17-09-0199.

[4] P.T Coleman. The Science of Teamwork. 2018. https://www.psychologytoday.com/blog/
the-five-percent/201806/the-science-teamwork.

[5] T.E. Dyb̊a T. Haugset B. Lindsjørn Y. Dingsøyr, T. Fægri. Team Performance in Software
Development. 2016.

[6] Charles. Duhigg. Project Aristotle. 2016. https://rework.withgoogle.com/print/

guides/5721312655835136.

64

https://www.flaticon.com
https://www.flaticon.com
https://www.theladders.com/career-advice/6-practices-to-help-build-a-healthy-team-climate
https://www.theladders.com/career-advice/6-practices-to-help-build-a-healthy-team-climate
https://uncw.edu/jet/articles/vol11_2/burke.pdf
https://uncw.edu/jet/articles/vol11_2/burke.pdf
https://doi.org/10.1187/cbe.17-09-0199
https://www.psychologytoday.com/blog/the-five-percent/201806/the-science-teamwork
https://www.psychologytoday.com/blog/the-five-percent/201806/the-science-teamwork
https://rework.withgoogle.com/print/guides/5721312655835136
https://rework.withgoogle.com/print/guides/5721312655835136

[7] L.S Huang. Group work strategies to ensure students pull their weight. 2018.
https://www.facultyfocus.com/articles/effective-teaching-strategies/

students-riding-coattails-group-work-five-simple-ideas-try.

[8] C. Lino. The Psychology of Teamwork: The 7 habits of highly effecgive teams. 2016. https:
//positivepsychology.com/psychology-teamwork.

[9] University of Queensland. Problems associated with group work. 2014. https://www.uq.

edu.au/student-services/learning/problems-associated-group-work.

[10] P. Brame C.J. Wilson, K.J. Brickman. Group work. 2018. https://doi.org/10.1187/

cbe.17-12-0258.

65

https://www.facultyfocus.com/articles/effective-teaching-strategies/students-riding-coattails-group-work-five-simple-ideas-try
https://www.facultyfocus.com/articles/effective-teaching-strategies/students-riding-coattails-group-work-five-simple-ideas-try
https://positivepsychology.com/psychology-teamwork
https://positivepsychology.com/psychology-teamwork
https://www.uq.edu.au/student-services/learning/problems-associated-group-work
https://www.uq.edu.au/student-services/learning/problems-associated-group-work
https://doi.org/10.1187/cbe.17-12-0258
https://doi.org/10.1187/cbe.17-12-0258

Appendices

A The old login process

(a) Login with Feide (b) Feide credentials (c) Select role

(d) Select subject (e) Select team (Student only) (f) Grant access (Student only)

Figure 50: Appendix: Login process

B Additional and alternative design

(a) Gather the group for a meeting (b) Request assistance from staff (c) After requests

(d) Messages (e) One request (f) After request resolved

Figure 51: Appendix: Additional design of student side

(a) Having additional filters (b) Call group into meeting (c) Messages

(d) View a request from a team (e) After request accepted (f) View a message from a team

Figure 52: Appendix: Additional design of staff side

C Personas

View the personas in the attachments, or simply click the links below.

• Persona of a typical professor user: Click here to view.

• Persona of a typical teaching assistant user: Click here to view.

• Persona of a typical student user: Click here to view.

https://drive.google.com/file/d/1LM2BOkNMO9PHsoWvT_4z4xcwikkzQsMk/view?usp=sharing
https://drive.google.com/file/d/12NKqGC51bnktAW5XjI9FkLxndAzeHEr8/view?usp=sharing
https://drive.google.com/file/d/1iue5NM6hVbEP757MU-dgr5Y8tVUrlGpR/view?usp=sharing

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

August Lund Eilertsen

Team Accelerator

Web-application for monitoring team performance
and progression in project related academic work.

Master’s thesis in Computer Science, Software Engineering

Supervisor: George Adrian Stoica

May 2020

	Introduction
	Introduction
	Method and approach
	An important notice
	Summary

	Background & Research
	Challenges with teamwork
	Tactics to overcome challenges for group members
	Tactics to overcome challenges for the instructor
	Other solutions
	Student survey
	Survey results

	Interviews
	Interviews with professors
	Interviews with teaching assistants

	A need for a group status/progression application?
	Research conclusion

	Design
	Methodology
	Design of the graphical user interface
	Initial design
	Design iteration 1
	Design iteration 2
	Design iteration 3

	Architecture
	Overall Architecture
	Frontend Architecture
	Backend Architecture
	Database Architecture
	Feide user and authentication

	Implementation
	Implementation method
	Choice of technology
	Frontend: React & Redux
	Backend: Django REST Framework
	Database: PostgreSQL

	Code and project structure
	Backend
	Backend folder & app structure
	Frontend folder and & component structure
	Frontend React code

	Hosting the application for testing with Heroku and Surge
	Heroku for backend
	Surge for frontend

	Hosting the application for production
	Handling the course permissions
	First solution
	Second solution
	Current solution

	Privacy Policy and GDPR
	GDPR Compliance
	NSD
	Privacy Policy In-App

	Results and future work
	The application
	The registration process
	Student in-app functionality
	Staff in-app functionality

	Django backend admin panel
	Qualitative user testing
	Test form
	Introduction for student test
	Student test tasks
	Introduction for staff test
	Staff test tasks

	Qualitative user testing results
	Student tests
	Staff tests
	Elements changed based on the user testing
	Elements that can or should be changed based on the user testing

	Quantitative user testing
	Conclusion & future work

	Resources used
	Appendices
	The old login process
	Additional and alternative design
	Personas

