
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Peter Salvesen

Predicting Interference-Free
Performance with Linear Model Trees

Master’s thesis in Computer Science

Supervisor: Magnus Jahre

June 2020

Peter Salvesen

Predicting Interference-Free
Performance with Linear Model Trees

Master’s thesis in Computer Science
Supervisor: Magnus Jahre
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Project Description

Accurate performance accounting is a key component to effectively manage multi-
core resources. It aims to estimate interference-free application performance in
multi-core memory systems. Recently, GDP (Graph-based Dynamic Performance)
was introduced as a new method of estimating interference-free performance at
runtime with high accuracy. A disadvantage of GDP is that it is quite complex
which makes it unattractive for use in commercial multi-core implementations.
In this master thesis, the student should propose and evaluate simplifications to
GDP that retain sufficient accuracy while reducing implementation complexity.
Particular emphasis should be placed on explaining why the proposed techniques
perform well.

iii

Abstract

Modern multicore processors improve hardware utilization and throughput with
resource sharing between cores. However, resource sharing also leads to an unpre-
dictable application performance because of inter-application interference in the
shared resources. Quantifying the performance without this interference, called
the interference-free performance is a key component to effectively manage shared
system resources. Several performance accounting systems have been proposed,
predicting interference-free performance. They are able to predict quite accu-
rately, but have significant storage overhead making them less attractive to be
implemented by commercial vendors.

This master thesis proposes a novel way of predicting interference-free perfor-
mance in multicore processors, with a lower storage overhead. Instead of model-
ing some key performance aspect of the shared memory system to predict perfor-
mance, the behavior is learned by a regression model. Specifically, linear model
trees (LMTs) are used combining decision trees and linear regression. The LMTs
classify observations in the memory system with similar behavior. Succeedingly,
they exploit linearity within each classification. The LMT can either predict the
interference-free performance directly, or provide low-cost predictions to be used
in other performance accounting models. The main focus of the work is retain-
ing prediction accuracy compared to state-of-the-art while reducing the storage
overhead of predictions.

The LMTs can be configured numerous ways, however two specific config-
urations point out how they can reduce storage overhead for interference-free
performance prediction. Both configurations predict IPC directly in a LMT with
10 leaf nodes. The only difference between them is that a set of costly input fea-
tures are removed to reduce storage overhead in one of the configurations. First
configuration improves the prediction error compared to state-of-the-art by 1%,
while reducing the storage overhead by 24%. Secondly, the reduced feature set
configuration increases the prediction error compared to state-of-the-art by 17%.
However, the storage overhead is reduced by 85%.

v

Sammendrag

Moderne flerkjerne-prosessorer bruker ofte delte hardwarekomponenter for å
forbedre utnyttelsen av hver enkelt komponent og en bedre ytelse fra systemet i
sin helhet. Men, slike delte komponenter fører også til at en applikasjon kan tilføre
interferens for en annen applikasjon. Slik blir ytelsen til hver enkelt applikasjon
uforutsigbar fordi den avhenger av hvilke applikasjoner som kjører samtidig. Å
beregne hva ytelsen per applikasjon ville ha vært uten denne interferensen er en
svært nyttig metrikk med tanke på å tildele delte systemressurser effektivt. En
rekke systemer for å predikere en slik interferensfri ytelse har blitt foreslått. De
beste av dem klarer å predikere interferensfri ytelse forholdsvis nøyaktig, men har
en kompleks modellering som gjør at hardware-kostnaden ved å implementere
systemene øker. Dette gjør systemene mindre attraktive for kommersielle proses-
sorprodusenter.

Denne masteroppgaven foreslår en ny måte å predikere interferensfri ytelse
på, med fokus på å redusere hvor mye lagringskapasitet som kreves for å imple-
mentere prediksjonssystemet. Istedet for å modellere enkeltverdier som skal rep-
resentere nøkkelkomponenter i en ytelsesmodell for delte minneressurser, benyttes
læring av regresjonsmodeller for å predikere den resulterende ytelsen. Mer konkret:
lineære trær benyttes som regresjonsmodell. Et linærtre er et beslutningstre som
inneholder lineær regresjon i hver løvnode. De klassifiserer observasjoner med lik
minneoppførsel, og drar nytte av linearitet mellom observasjonene. Lineærtrærne
benyttes enten til å predikere interferensfri ytelse direkte eller til å estimere
nøkkelkomponenter i en ytelsesmodell. Hovedfokuset i denne oppgaven har vært
å bevare så mye av nøyaktigheten i prediksjonene som mulig, mens lagringen som
kreves for å implementere prediksjonssystemet reduseres.

Lineære trær kan konfigureres en rekke måter. For å vise hvilket kraftfullt verk-
tøy lineære trær kan være, presenteres resultatene for to ulike lineærtre-
konfigurasjoner. Begge konfigurasjonene benytter 10 løvnoder i treet, og predik-
erer antall instruksjoner per sykel. Forskjellen mellom konfigurasjonene er at ene
ikke bruker en kostbar input-verdi som krever mye lagringskapasitet. Det første
oppsettet reduserte feilen i prediksjonene med 1% sammenlignet med "state-of-
the-art", mens lagringskapasiteten som kreves for systemet reduseres med 24%.
Den andre konfigurasjonen med et redusert input-sett har en økt feil sammen-
lignet med "state-of-the-art" med 17%, men reduserer lagringskapasiteten som
kreves med hele 85%.

vii

Acknowledgements

First of all, I want to thank Associate Professor Magnus Jahre for the invaluable
feedback and discussions contributing to this thesis. Steering me in the the right
direction was critical, focusing on the "correct" aspects which later lead to im-
provements of the previously proposed work. The contributions from this thesis
would clearly have been much more limited without your in-depth expertise of
the state-of-the-art.

Secondly, both friends and family should be thanked for providing support and
motivation throughout the work with this thesis. Countless technical discussions
and ping-pong games have helped keeping me on track with the work progress.
Although many have contributed with interesting discussions and academic ex-
pertise, I want to mention one in particular. My dear uncle, Associate Professor
Øyvind Salvesen, has patiently provided feedback and input through his knowl-
edge within statistics.

Lastly, I want to show gratitude to UNINETT Sigma2, the National Infrastruc-
ture for High Performance Computing and Data Storage in Norway, for providing
extensive computing resources for the simulations done in this project.

ix

Contents

Project Description . iii
Abstract . v
Sammendrag . vii
Acknowledgements . ix
Contents . xi
Figures . xiii
Tables . xv
1 Introduction . 1

1.1 Predicting Interference-Free Performance 2
1.2 Assignment Interpretation . 2
1.3 Project contributions . 3

2 Background . 5
2.1 Private mode performance prediction 5

2.1.1 Invasive accounting: ASM . 7
2.1.2 Architecture-centric Accounting 8
2.1.3 Dataflow Accounting: GDP . 11

2.2 Linear Model Trees . 12
2.2.1 Decision Trees . 12
2.2.2 Linear Regression . 14
2.2.3 Combining decision trees and linear regression 14

2.3 LMTs in private mode performance prediction 15
3 Implementing Linear Model Trees . 17

3.1 Defining LMT performance models . 17
3.2 Hardware Implementation . 18
3.3 Performance and Area Overhead . 20

3.3.1 Linear Model Tree . 20
3.3.2 Total model storage overhead 22
3.3.3 Reducing storage overhead . 23

4 Methodology . 27
4.1 M5 Simulator . 27
4.2 Workload generation . 27
4.3 Scikit-Learn . 29
4.4 Data and testset . 30
4.5 Feature Selection . 31

xi

xii Peter Salvesen: Predicting Interference-Free Performance with Linear Model Trees

4.5.1 Coefficient of Determination . 32
4.5.2 Linear Regression . 32

4.6 Metrics . 34
5 Results . 35

5.1 IPC prediction . 35
5.1.1 Regression evaluation . 36
5.1.2 Balanced training set . 38
5.1.3 GDP and streaming benchmarks 39
5.1.4 Simulator evaluation . 40

5.2 Stall prediction . 43
5.3 Latency Prediction . 46
5.4 Sensitivity analysis . 47

5.4.1 Number of features for linear regression 47
5.4.2 Auxiliary Tag Directories . 49
5.4.3 Upper bound on prediction values 50

6 Conclusion and future work . 53
6.1 Conclusion . 53
6.2 Future Work . 53

Bibliography . 57
A Workload Generation . 61
B Iterative Feature Selection . 63

B.1 latency . 63
B.2 SMS-load stalls . 65
B.3 IPC . 66

Figures

1.1 Processor setup in shared mode . 1
1.2 Processor setup in private mode . 1
1.3 Illustration of Memory Level Parallelism 3
1.4 Average RMS workload error for IPC in regression evaluation 4

2.1 Classification of private mode performance accounting schemes . . 5
2.2 Regular LLC overview . 6
2.3 LLC ATD overview . 7
2.4 Example function to estimate . 12
2.5 The Decision tree of the example function 13
2.6 Example function estimated by a Decision Tree 13
2.7 Example function estimated by linear regression 14
2.8 Example function estimated by a linear model tree 15

3.1 Hardware model of the tree structure 19

4.1 Workflow of simulation and regression analysis 28

5.1 Average RMS workload error for IPC in regression evaluation 36
5.2 Per benchmark errors for M workloads 37
5.3 IPC prediction and measured IPC for m-8-parser 37
5.4 Average RMS workload error with balanced training data 38
5.5 Per benchmark errors for S workloads 39
5.6 IPC prediction and measured IPC for s-0-lucas0 40
5.7 Snippet of dataflow graph of lucas0 in private and shared mode . . 41
5.8 Average RMS workload errors for IPC in simulator evaluation 42
5.9 Average RMS workload errors for LMT-IPC in regression and simu-

lator evaluation . 42
5.10 Average RMS workload errors for stall predictions 43
5.11 Average RMS workload error for IPC predictions, using LMT-Stall-1 44
5.12 Average RMS workload error for IPC predictions, using LMT-Stall-2 45
5.13 Average RMS workload error for IPC predictions, using LMT-Stall-3 45
5.14 Average RMS errors of LMT-IPC and LMT-Stall-3 46
5.15 Average RMS workload latency estimation errors 46
5.16 Average RMS workload errors for GDP with DIEF and LMT-lat . . . 47

xiii

xiv Peter Salvesen: Predicting Interference-Free Performance with Linear Model Trees

5.17 Average RMS workload errors for varying feature sizes in a 10 leaf
node LMT-IPC . 48

5.18 Average RMS errors for LMT and regular decision trees 49
5.19 Average RMS errors for linear model trees without ATDs 49
5.20 Average RMS errors for linear model trees with and without ATDs . 50
5.21 Average RMS errors of LMT-IPC-10 with varying upper bound . . . 51
5.22 Average RMS errors of LMT-IPC-40 with varying upper bound . . . 52
5.23 Average RMS errors of LMT-IPC-80 with varying upper bound . . . 52

Tables

3.1 Per core LMT storage overhead without ATDs 21
3.2 Total storage overhead for combined models 23
3.3 Total LMT storage overhead for various sizes without ATDs 25

4.1 Model Parameters . 28
4.2 Workload configurations used in data sets, per workload type 30
4.3 Traced features available for regression 31
4.4 R2 values for selected features . 33

B.1 Iterative feature selection using R2 for latency 64
B.2 Iterative feature selection using R2 for SMS-load stall cycles 65
B.3 Iterative feature selection using R2 for IPC 66

xv

Chapter 1

Introduction

Modern Chip Multi-Processors (CMPs) commonly share memory system resources.
This usually gives a valuable improved resource utilization, but can also lead to
destructive interference between the cores [1]. Hence, the performance of an ap-
plication depends on the co-running applications in the CMP. This affects Oper-
ating System (OS) policies, where independent progress of each process often is
assumed [2]. Destructive interference between cores in a CMP breaks this assump-
tion and can lead to unpredictable interactive performance, missed deadlines,
priority inversion and not complying with service-level agreements [3]. Several
means in both software and hardware can be taken to reduce this destructive inter-
ference. However, many of these methods require accurate estimates on how much
this destructive interference affects the performance [2]. So called interference-free
performance estimates can also be useful to cloud service providers, enabling them
to bill users properly without accounting destructive interference from co-running
applications [4, 5].

Figure 1.1: Processor setup in
shared mode

Figure 1.2: Processor setup in pri-
vate mode

1

2 Peter Salvesen: Predicting Interference-Free Performance with Linear Model Trees

1.1 Predicting Interference-Free Performance

Evaluating performance prediction requires an establishment of precise terms and
metrics of what is modeled. The processor setup in shared mode is showed in figure
1.1. In shared mode all cores are active and can thus cause destructive memory
interference. To isolate the performance without this interference we define an op-
posing private mode for evaluation purposes. In private mode, one core has exclu-
sive access to the memory system. This can be considered as having three idle cores
(on a 4 core processor), illustrated in figure 1.2. Several performance accounting
systems have been proposed trying to estimate private mode, or interference-free
performance.

Private mode performance accounting systems can be used widely. Among
others, they have been proposed used in shared memory resource management
systems [2, 6–12] and interference-aware OS schedulers [3, 13–15]. However,
predicting private mode performance is no straight-forward task. Modern proces-
sors have many latency-hiding mechanisms as non-blocking caches, out-of-order
execution, and so on. This complicates private mode performance prediction, and
thus causes area overhead and sometimes performance overhead from the perfor-
mance accounting systems [2].

The current private mode performance prediction methods face some chal-
lenges, making them less attractive to be implemented by vendors. Some have a
substantial complexity [2]. Others have a lower complexity but also much lower
accuracy [3, 16]. Lastly, some also have a negative performance impact [17, 18].
Also, the performance accounting systems are not able to always predict accu-
rately. Although some accounting systems are way more accurate than others [19],
the current solutions typically have consistent errors for some problem types and
have noteworthy errors overall. However, the accuracy of the private mode per-
formance predictors is good enough to be useful for many use cases and give
significant speedups in policies. This is specially the case for state-of-the-art [19]
Graph-based Dynamic Performance (GDP) accounting [2]. Therefore, our main mo-
tivation for improving private mode performance accounting systems is reducing
their overhead.

1.2 Assignment Interpretation

This section explicitly describes how the project description was perceived and
which specific tasks that gave for the thesis. The project description is attached on
page iii. The master thesis builds on a semester project from the fall 2019 [19].
In the semester project, performance accounting systems were analyzed with the
current state-of-the-art challenges. Findings from the semester project was the
primary source of focus areas for improvements in this master thesis. Thus, the
main objective of the master project is interpreted to be: reducing implementation
complexity compared to GDP, while retaining prediction accuracy. This is done to
make private mode performance prediction methods more attractive to be imple-

Chapter 1: Introduction 3

mented in commercial multi-core implementations. The simplifications of GDP
can be either substituting part of the GDP model or by using a completely new
model. This resulted in two specific tasks, T1 and T2:

T1 Find and evaluate improvements to GDP.
T2 Explain the prediction accuracy of the found improvements. This includes

explaining eventual strengths and weaknesses.

1.3 Project contributions

Private mode performance prediction is a trade-off between prediction accuracy
and the resource cost of making the predictions. The complete memory system
behavior cannot be modeled, so the predictors have to abstract some key behavior
of the memory system to make predictions. This works well in many cases [19],
but ideally private mode performance predictors are more lightweight than the
current best solutions.

To increase the prediction accuracy, private mode performance accounting sys-
tems have modeled increasingly complex concepts. One such concept which is
particularly difficult to model accurately is Memory Level Parallelism (MLP). MLP
is when multiple cache misses are generated and serviced by the memory system
in parallel [20]. This is illustrated in figure 1.3, where some compute cycles gen-
erate two memory requests which later stall the computation. The two memory
requests are services in parallel, which exemplifies MLP. Instead of modeling com-
plex concepts such as MLP, our approach to the problem is to see if the memory
system behavior instead can be trained. Finding the right regression model, or
combination of regression models, can reduce the area cost of private mode per-
formance prediction while having sufficient accuracy to be useful. A well trained
regression model can be seen as a wisely chosen heuristic to estimate the private
mode performance.

The main contribution of this master thesis is a design space exploration and
evaluation of using tree based methods for private mode performance prediction.
Specifically, linear model trees (LMTs) are used standalone or as part of a perfor-
mance model for private mode performance prediction. LMTs can be implemented

Compute

Memory request

Compute

Time

Memory request

Parallel memory requests

Figure 1.3: Illustration of Memory Level Parallelism

4 Peter Salvesen: Predicting Interference-Free Performance with Linear Model Trees

a h l m s all
Per Workload Type

0.00

0.05

0.10

0.15

A
ve

ra
ge

R
M

S
E

st
im

at
io

n
E

rr
or

(I
P

C
)

GDP LMT-10 LMT-R-10

Figure 1.4: Average RMS workload error for IPC in regression evaluation

with a low area overhead. Also, LMTs have certain qualities making precise private
mode performance predictions likely. Namely, classifying observations with sim-
ilar memory system behavior and exploiting linearity in the observations. These
qualities and how the LMTs are constructed is discussed more thoroughly in sec-
tion 2.3.

To show the potential of LMTs and motivate further reading, figure 1.4 shows
the average root mean squared (RMS) error for two LMTs compared to GDP within
some defined workload types and overall. The LMTs have 10 leaf nodes where one
of them has a reduced feature set, giving a lower storage overhead. The first LMT
(LMT-10) reduces the error of GDP by 1%, while reducing the storage overhead
by 24%. The LMT with a reduced feature set (LMT-R-10) has a 17% higher overall
error compared to GDP. However, it reduces the storage overhead by 85%.

The motivation, implementation and evaluation of using LMTs for private
mode performance prediction will of course be covered in more detail through-
out this thesis. With the relating task in parenthesis, the contributions from this
master project can be summarized as:

• (T1) Introducing linear model trees for private mode performance account-
ing. LMTs have not been used in private mode performance prediction be-
fore. How they work and the motivation of using them for private mode
performance prediction, is presented.

• (T1) Showing how linear model trees can be implemented in hardware. Ev-
ery component of the LMT is discussed to a corresponding hardware imple-
mentation. Latency and storage overhead estimates are included and com-
pared to previous work.

• (T2) Explaining why linear model trees provide accurate performance ac-
counting predictions. An extensive result set is generated, showing weak-
nesses and strengths of predictions using LMTs.

• (T2) Pointing out certain weaknesses of state-of-the-art, GDP. The critical
path length (CPL) estimation mechanism in GDP does not work as intended
in some scenarios. This leads to consequent overestimation of instructions
per cycle (IPC).

Chapter 2

Background

This background chapter covers two main topics. First, the current private mode
prediction methods are introduced. Knowing how they work give insight on the
challenges of current performance accounting methods, and how those challenges
have been proposed solved. This serves as the baseline to improve private mode
performance prediction, which leads us to the second part. Using regression rather
than modeling private mode performance itself is this master thesis approach to
improve performance accounting. Following, the selected regression methods are
introduced and why they have suitable qualities for private mode performance
prediction.

2.1 Private mode performance prediction

Previously proposed performance accounting systems can be broadly partitioned
into invasive and transparent systems. Where transparent systems can be further
partitioned into Architecture-centric and dataflow accounting. This section will in-
troduce acknowledged private mode performance systems. Figure 2.1 shows how
those systems can be placed in the partitioning.

Invasive performance accounting systems [17, 18, 21] alter architectural poli-
cies. In periods of time, a single process is given higher priority in the memory
system to minimize interference from other processes. The Application Slowdown

Private Mode Performance
Accounting Schemes

Invasive systems Transparent Systems

ASM Architecture-centric Dataflow Accounting

GDPPTCAITCA

Figure 2.1: Classification of private mode performance accounting schemes

5

6 Peter Salvesen: Predicting Interference-Free Performance with Linear Model Trees

Model (ASM) [17] is an example of an invasive performance accounting system.
Such systems can give accurate performance estimates but altering the policies
can also give a negative performance impact, specially for latency-sensitive pro-
cesses [2].

Transparent and architecture-centric performance accounting systems such as
Inter-Task Conflict-Aware CPU Accounting for CMPs (ITCA) [16] and Per-Thread Cy-
cle Accounting (PTCA) [3] do not alter architectural policies, and thus do not have
any direct performance overhead. In general, such systems monitor certain condi-
tions in the processor to determine if a cycle of memory latency also will be there
in private mode, or not. An example of such a condition is whether the Re-Order
Buffer (ROB) is full. A weakness of architecture-centric accounting mechanisms is
that they only account behavior matching their pre-defined monitored conditions
properly. Selecting the appropriate conditions is not trivial as the performance
bottlenecks of applications vary a lot.

Dataflow Accounting is transparent performance accounting systems utilizing
how dataflow dependencies between memory loads and commit periods are simi-
lar in both shared and private mode. Graph-based Dynamic Performance accounting
(GDP) [2] is a private mode performance accounting system based on dataflow
accounting. GDP is the current state-of-the-art of private mode performance ac-
counting [19]. A known weakness of transparent architecture-centric policies is
their inaccurate modeling of private mode MLP. This is a major improvement of
dataflow accounting versus previous transparent accounting systems.

All the presented private mode performance schemes use a hardware unit
called Auxiliary Tag Directories (ATDs), therefore ATDs are introduced before the
schemes themselves. ATDs are separate tag directories private to each core used to
determine if cache accesses would have been hits or misses in private mode. Figure
2.2 shows how data is retrieved from a regular Last-Level Cache (LLC). Physical
addresses are partitioned into tag, set, and offset bits. The tag and set bits are used
to determine if it is a cache hit and the data can be outputted from the cache. An
ATD is shown in figure 2.3. It represent the private mode state of the LLC for a
selected core, but do not store any of the actual data. For each core the tag and
replacement bits are stored to detect whether LLC accesses would have been hits

48-bit physical address

29 Tag bits 14 Set Bits 6 bit offset

LLC cache tag LLC data

=?

Output

Output Data

Tag Comparison

8192
sets

Figure 2.2: Regular LLC overview

Chapter 2: Background 7

48-bit physical address

29 Tag bits 14 Set Bits 6 bit offset

ATD cache tag

=?

Not Used

Private Mode
Cache hit?

Tag Comparison

8192 sets
or

32 sets

Figure 2.3: LLC ATD overview

or misses in private mode. Although ATDs do not store the cache data, they do
have substantial storage overhead. To reduce this overhead, set sampling [22] is
commonly used. With set sampling only a small number of sets are sampled in the
ATD, assuming the behavior in those sets is representative for the whole cache.
This usually gives sufficient accuracy while it removes much of the area overhead.
For example, sampling 32 instead of 8192 sets reduces the storage overhead of
the ATD by 99.6%.

Before introducing the individual performance accounting methods, some com-
mon terms for estimation are established. In general, T denote the total amount of
cycles, C is compute cycles and S are stall cycles. The stall cycles are often divided
in to different stall types to suit the performance model of each system. Whenever
a variable is estimated through some mechanism, a hat (ˆ) on the variable denotes
an estimated value.

2.1.1 Invasive accounting: ASM

ASM [17] is an invasive performance accounting method. The main idea of ASM is
that the performance of a program is strongly correlated with it’s Cache Access Rate
(CAR). The slowdown estimate is the ratio of CAR in private and shared mode.

Slowdown=
performanceprivate

performanceshared
≈

CARprivate

CARshared
(2.1)

In shared mode, CAR can easily be calculated. Where T is the the total number
of cycles the shared cache accesses is counted, CARshared would be:

CARshared =
#Shared Cache Accesses

T
(2.2)

ASM avoids modeling MLP explicitly to estimate private mode performance
and CARprivate. Instead, ASM introduces epochs where certain processes are given
a higher priority in the memory system. This eliminates most of the interference
of the other processes, and is the baseline of the CARprivate estimate. Additionally,

8 Peter Salvesen: Predicting Interference-Free Performance with Linear Model Trees

ASM tries to quantify misses in the shared cache that would have been hits if run-
ning in private mode, so called interference-induced misses. This is sampled using
ATDs. The stall cycles relating to interference-induced misses, SI I M , is estimated
using the difference of average miss and hit times within an epoch. When # IIM
is the number of interference-induced misses, ŜI I M will be estimated as:

ŜI I M = # I I M × (avg-miss-lat − avg-hit-lat) (2.3)

When the highest priority application has no requests, the other applications
can access the shared memory resources. This is done to limit the performance
implications. However, it can also cause queuing delays for the highest priority
application if it has requests arriving after another requests request is scheduled.
Those stall cycles, Squeue, are estimated by multiplying the estimated number of
private LLC misses with the average queuing delay.

Ŝqueue = # Pr-LLCmisses × avg-queuing-delay (2.4)

ˆCARprivate is estimated over epochs, similar to CARshared . Such as, when T
represents the total cycles the system prioritized requests from a specific applica-
tion, the stall cycles related to interference-induced misses (ŜI I M) and the queuing
delay of private LLC misses (Ŝqueue), are subtracted. That gives the following equa-
tion for calculating ˆCARprivate over one epoch (ˆCARprivate estimates can also be
aggregated over several epochs):

ˆCARprivate =
#Application requests during epoch

T − ŜI I M − Ŝqueue
(2.5)

Predictions with ASM are in many cases more accurate than architecture-
centric transparent approaches [19]. However, limiting interference does not recre-
ate private mode performance behavior accurately [2]. With congestion in the
memory system, a core can accumulate a significant backlog of outstanding mem-
ory requests while running at low priority. Using the high priority epoch to get
rid of this backlog does not match private mode execution where those backlogs
do not occur. Also, the invasive technique comes at a performance cost with the
changes to the architectural policies. In specific use cases this performance cost
is significant, at a 57% performance reduction [2]. To summarize, ASM can often
make accurate predictions but have some qualities making it less attractive to be
implemented by vendors, mainly the performance cost of altering the policies.

2.1.2 Architecture-centric Accounting

ITCA

ITCA [13, 16] is a transparent architecture-centric performance accounting method.
During execution it accounts cycles to separate quotas. One quota is stall cycles
due to interference-induced shared cache misses. The other quota is CPU cycles
while progressing or stalls that are not interference-induced. The idea is that if the

Chapter 2: Background 9

interference-induced stalls can be filtered effectively, the other quota will consist
of the cycles the application uses in private mode. Therefore, the prediction accu-
racy of ITCA relies on how effectively the interference-induced stall cycles can be
filtered. Denoting interference-induced stall cycles as Ŝinterference-induced, this can
be viewed as:

T̂Private = TShared − Ŝinterference-induced (2.6)

ITCA names a few specific conditions when it stops accounting progress to
a task, and thus accounts it towards the interference-induced stall cycle esti-
mate, Ŝinterference-induced. ATDs are used to find out whether misses are interference-
induced or not. The monitored conditions are listed as:

1. Interference-induced instruction miss causing an empty ROB.
2. A full ROB while the oldest instruction in the ROB is caused by an interference-

induced miss at the head of the ROB.
3. All Miss Status Holding Register (MSHR) entries are due to interference-

induced misses

Stall cycles when either of these three conditions are met will be counted to the
interference-induced stall cycles. However, ITCA fails to account all interference-
induced cycles in the prediction. Only catching a small part of them, this results
in conservative private mode estimates [2]. With little interference in the memory
system ITCA can predict accurately, but the errors increase significantly with more
congestion in the memory system [19].

PTCA

Similar to ITCA, PTCA [3] is a transparent architecture-centric private mode per-
formance predictor, which originally was suggested for use in simultaneous mul-
tithreading processors [23]. Although, the techniques can be adjusted to other
processor types too and a new paper targeted CMPs [3]. PTCA has more sophisti-
cated conditions than ITCA on how the cycles are accounted, using interval analy-
sis [24]. In interval analysis, the performance is estimated for intervals which are
later aggregated for the complete program behavior. PTCA is known to be the most
accurate architecture-centric performance prediction method [2]. The PTCA pa-
per propose two variants of PTCA, through interpolation and extrapolation. The
extrapolation variant will be covered here, as it has the best accuracy [3]. The
PTCA counter architecture defines two distinct sources of inter-thread interfer-
ence. First, interference-induced misses in the shared cache. Secondly, contention
in the memory subsystems causing misses to take longer, called waiting stalls.

T̂Private = TShared − Ŝinterference-induced-misses − Ŝwait ing (2.7)

The number of interference-induces misses in the shared cache is estimated
using ATDs with set sampling. For the sampled sets, the interference cycles of
interference-induced misses are counted when the an interference-induced miss

10 Peter Salvesen: Predicting Interference-Free Performance with Linear Model Trees

blocks the head of the ROB. These cycles are scaled to account for the sets that
are not sampled in the ATD, and combined provide the Ŝinterference-induced-misses es-
timate.

Estimating the waiting stall cycles coming from resource and bandwidth con-
tention in the memory subsystems, Ŝwait ing , is slightly more comprehensive. It
quantifies how misses that are not interference-induced have a larger penalty be-
cause of the memory subsystem congestion, where the additional stall cycles are
called waiting cycles. First, the total amount of waiting cycles is estimated. This
is done counting cycles lost to the following events:

• Bus contention, when a memory operation must wait to access the bus be-
cause it is occupied by another core.

• Bank contention, when a bank is occupied by another core and thus causes
waiting cycles.

• Interference-induced row buffer misses, when a row buffer hit in private mode
becomes a row buffer miss in shared mode. Servicing a row buffer miss is
considerably longer than servicing a row buffer hit. A hardware unit with
similar functionality as the ATDs check whether a row buffer miss would
have been a row buffer hit in private mode. If so, the difference is accounted
as waiting cycles. This is only necessary if an open-page policy is used.

• Hardware prefetching, when a load miss also appearing in the hardware
prefetch queue blocks a commit at the head of the ROB it is accounted as
waiting cycles. Assuming the prefetch would be timely in private mode, this
is not accurate. However, they claim it accounts for a major fraction of in-
terference due to prefetching.

The waiting cycles are kept track of with counters in the MSHRs. Note that only
waiting cycles for misses that are not interference-induced are tracked, as the wait-
ing cycles for interference-induced misses are covered in Ŝinterference-induced-misses.
Also, waiting cycles are only accounted for when a long-latency load miss makes
it to the ROB head and the ROB becomes full. This is done with insight of the in-
terval analysis proposal [24]. As counting waiting cycles requires the knowledge
if a miss is interference-induced or not, they are only counted for the sampled
sets in the ATD. Therefore the results for those sets must be scaled to provide the
overall Ŝwait ing estimate.

In general, PTCA has a better prediction accuracy than ITCA. It is the most
accurate architecture-centric performance predictor, yet less accurate than ASM
and GDP [19]. However, some of the simplifications in the model can lead to mis-
predictions. The MLP estimate tends to be overestimated as certain limitations to
MLP is not accounted for. Among those are long-latency instruction cache misses
and branch mispredictions that depend on long-latency loads [23]. Weaknesses
of PTCA can be exposed which can lead to severely over and underestimation in
the performance predictions [2, 19].

Chapter 2: Background 11

2.1.3 Dataflow Accounting: GDP

GDP [2] is a transparent performance accounting system based on dataflow ac-
counting. The backbone of GDP is Karkhanis’ and Smith’s analytical performance
model [25], also based on interval analysis [24]. Assuming a perfect branch pre-
dictor and memory system, the performance model quantifies a steady-state sys-
tem where imperfect components are estimated and the following performance
loss subtracted. The basis of performance estimation using the model is that the
combined compute and stall cycles divided on the number of committed instruc-
tions equals the performance, P, over a time period. For a process p, this is modeled:

C PIp = Pp = (Cp + S Ind
p + SLoads

p + SOther
p)/Instp (2.8)

To use the model for prediction, the stall cycles staying similar in shared and
private mode are isolated. Memory independent stall cycles, S Ind

p , and the private

memory system load stall (PMS) stall cycles, SPMS
p , are assumed to stay the same.

SPMS
p is not directly affected by shared mode interference as PMS by definition do

not access shared units. This leaves two stall measures to be estimated. Shared
memory system (SMS) load stall cycles, SSMS

p , are estimated using the insight
of dataflow accounting. The average private mode memory latency is estimated
using DIEF and multiplied with the CPL to predict SSMS

p . The CPL is estimated
using an approximation of Kahn’s algorithm [26] implemented in hardware off
the critical path. Where λ̂p denotes the DIEF latency prediction of the average
private mode memory latency of a process, the SMS-load stall estimate, ŜSMS

p ,
will be:

ŜSMS
p = C P Lp × λ̂p (2.9)

The other stall cycles, ŜOther
p , is considered to have a smaller impact on the

overall performance prediction. They are predicted in a simpler manner. ŜOther
p

denotes three quite rare stall events. First, stalls due to a full store buffer while
the head of the ROB is a store instruction. Secondly, the L1 data cache can become
blocked due to too many in-flight memory requests. This might lead to a stall
when the load needing access to that blocked L1 data cache reach the head of
the ROB. Lastly, the ROB might only contain wrong-path instructions due to a
branch misprediction, which leads to a stall. The average shared memory latency
can be calculated. For each of these events, it is assumed that the stall cycles scale
proportionally with the ratio between the average shared mode memory latency
and the estimated private mode memory latency.

Knowing how ŜOther
p and ŜSMS

p is predicted, the complete GDP prediction
model is summarized as:

ˆC PI p = (Cp + S Ind
p + SPMS

p + ŜSMS
p + ŜOther

p)/Instp (2.10)

GDP is more accurate than ITCA, PTCA and ASM. It is currently the state-of-
the-art within private mode performance prediction [19]. The storage overhead

12 Peter Salvesen: Predicting Interference-Free Performance with Linear Model Trees

Figure 2.4: Example function to estimate

of GDP is 11.9KB [2]. Where the main contributors to this overhead is the ATDs
(7.25KB), DIEFs interference and latency estimation buffers (2,80 KB) and the
CPL estimator (1,85KB). This is substantial, but not more than previously pro-
posed performance accounting systems [2].

2.2 Linear Model Trees

A Linear Model Tree is a regression method combining two other regression meth-
ods. It consists of both a tree structure and linear regression. This section in-
troduces our use of both regression methods and how they are combined. The
weights of the regression models are trained using a training set, minimizing a
defined error for the training data. To visualize the main idea of the different re-
gression models, they are applied to a one dimensional example function showed
in figure 2.4

2.2.1 Decision Trees

Decision trees can be used for both classification and regression. A trained decision
tree is a binary tree with classes or regression values in the leaf nodes. Every
internal node splits the tree recursively comparing a single feature to a constant.

A decision tree used for regression can be seen as a piece-wise constant func-
tion. At each node, the "best guess" of the tree is the average output value of all
observations in the training data ending up in that node in the tree. The splits
of a decision tree can be determined in numerous ways where the best splitting
method depends on how the tree is supposed to be used. The chosen metric to min-
imize should reflect the wanted behavior of the trained tree, and is often known
as the cost function. For our regression usage, each split minimizes mean squared
error (MSE) of the tree’s predictions and the actual values after the split. The most
common alternative cost function to MSE is mean average error (MAE). However,

Chapter 2: Background 13

x ≤ 0.215

value = 3.081

True

x ≤ 3.773

False

x ≤ 2.727 value = 3.03

x ≤ 1.382 value = 1.175

value = 1.21 value = 1.791

Figure 2.5: The Decision tree of the
example function

Figure 2.6: Example function esti-
mated by a Decision Tree

MSE is often preferred penalizing large errors more. Step by step, the variance
and overall errors in the training data are reduced recursively in the tree. If the
usage of the tree reflects the training data, the predictions from the tree should
also reduce data variance and errors. The resulting tree is a white box model. The
output value from an observation in the tree can be explained following its path
in the tree. The observable evaluation differs from black box models where an
observed behavior cannot easily be explained. Although, the underlying mecha-
nisms creating those exact weights in the decision tree are not evident by a single
observation.

Overall, a decision tree can perform quite well for some problems and a trained
tree evaluates data with quite simple comparisons. Typically, if the data is clus-
tered with similar output values for subpopulations, the decision tree can effec-
tively sort these subpopulations if some specific feature divide them. However, the
training data for the tree can make it biased and without restrictions on the deci-
sion tree it is prone to overfitting, creating an over-complex regression model that
do not generalize the data. In theory, a decision tree can be arbitrarily large with
a single observation from the training set in each leaf node. This can be prevented
several ways. A solution is using cross-validation on the model. Cross-validation
can be done numerous ways, but all with the purpose of estimating when to stop
training a regression model to prevent overfitting [27]. Another solution is putting
restrictions on the size of the tree, limiting it to a certain number of leaf nodes or
a limited height in the tree.

Figure 2.5 shows the resulting decision tree trained on the example function
in figure 2.4, with a limitation of 5 leaf nodes in the tree. The resulting predictions
and errors are displayed in figure 2.6, with an average RMS value of 0,31.

14 Peter Salvesen: Predicting Interference-Free Performance with Linear Model Trees

Figure 2.7: Example function estimated by linear regression

2.2.2 Linear Regression

Linear regression tries to approximate a function to an n-dimensional plane. It
minimizes some metric between the linear approximation and observed targets.
We use Ordinary least squared (OLS) Linear Regression, minimizing MSE of the
linear approximation. There are many alternatives to OLS, often with a slightly
higher complexity. There are three common ways to alter the least squares fit [27].
First, by using a way of subset selection to only use some features that are believed
to be related to the response. Secondly, regularization can be used, shrinking co-
efficients towards zero to reduce variance. Lastly, dimension reduction is ways to
project observations to a subspace of lower dimension. The projection is then used
for OLS. Our baseline for linear regression is using OLS with a subset selection.
Section 3.3.3 shows how this is done. The approach was selected due to its low
hardware overhead, where initial testing of other linear regression methods had
negligible accuracy implications.

If a problem is known to be linear, linear regression can give accurate results.
Otherwise, it can be too simple to fully represent the actual data. Figure 2.7 dis-
plays the example function approximated by linear regression. The average RMS
error of using linear regression on the example function is 0,66.

2.2.3 Combining decision trees and linear regression

A linear model tree (LMT) is a combined model with a decision tree having linear
regression in the leaf nodes. This makes the predictions piece-wise linear instead
of piece-wise constant using a decision tree alone. Combining two quite simple
models, the resulting combined model is still not very complex and can be re-
markably accurate for suitable problems. A linear model tree is approximating
the example function in figure 2.8, and is considerably more accurate than both
a decision tree and linear regression alone. For the example function, OLS linear

Chapter 2: Background 15

Figure 2.8: Example function estimated by a linear model tree

regression had an average RMS error of 0,66 while the decision tree alone had
an average RMS error of 0,31. Combining the two regression methods to a LMT
reduces the average RMS error to 0,12. Hence, for suitable problems LMTs com-
bine relatively simple regression methods to significantly reduce the prediction
errors, compared to using any of the regression methods alone. Ideally, the deci-
sion trees divide the observations into locally linear subpopulations. This cannot
be guaranteed but will provide a low cost, accurate model if that is the case.

2.3 LMTs in private mode performance prediction

Linear Model Trees have certain qualities making them attractive for private mode
prediction. We call the key memory system metrics tracked during program ex-
ecution the memory system footprint over a period of time. The primary notion
of using LMTs is that applications with a similar footprint also will have a similar
prediction target value. Assuming this footprint lead to an effective classification
in a LMT tree structure, exploiting the linear nature of the memory system can
improve accuracy over using constant values for the subpopulations. Therefore,
three aspects of why LMTs are well suited for predicting private mode performance
are presented.

Classifying subpopulations: The tree structure of LMTs classifies subpopula-
tions with similar behavior and similar performance. With wisely chosen features,
this serves as a coarse classification of memory system behavior for private mode
performance prediction. Key features are tracked and are the basis for which path
to take in the tree structure. A compute bound application1 requires little cache
access and little BW, leading to a high proportion compute cycles over a period.
The high amount of compute cycles is an important metric classifying a subpopula-
tion with little interference-induced stall cycles. Another example, an application

1The behavior of gamess, in SPEC2006

16 Peter Salvesen: Predicting Interference-Free Performance with Linear Model Trees

requiring much cache2 can be classified by the tree with how many shared cache
accesses the program has where how many of those cache accesses were hits deter-
mine the expected performance. Similarly, every application has a characteristic
footprint over an interval in the processor. This footprint is assumed to be similar
for applications with similar performance. The regression model is trained to re-
duce the variance of the performance in the training data following classification.
If the general patterns of memory system behavior can be contained in the train-
ing data, the classifications provided by the tree structure should also be viable
for prediction.

Linearity: The memory system of a computer is linear by nature. Assuming no
cache levels, the performance of a memory system is determined by BW alone. For
GPUs this insight is used to classify performance as being either BW bound or com-
pute bound [28]. Although, the memory system for CPUs is more latency-sensitive
and multiple cache levels breaks the linearity and corresponding assumptions for
GPUs. There are fewer studies examining linearity for CPU memory systems. How-
ever, MISE [18] discusses memory bound applications, applications that spends a
significant fraction of its execution time outside of the compute phase. It shows
that for memory bound applications, the performance is roughly proportional to
the rate at which memory requests are served. And thus, the performance is lin-
ear to the request service rate for memory bound applications. The request service
rate is not a feature in our LMTs. However, various key components for the request
service rate are used. Hence, if the LMT is trained properly it should be able to
capture some of this linearity. This motivates the use of linear regression in the
leaf nodes and why this should give significantly more accurate predictions than
using constant values as in a decision tree.

Scalability: An important quality of LMTs is how their area overhead can be
scaled. Adding nodes to the tree improves the accuracy, although with diminish-
ing returns. However, not all use cases of private mode performance prediction
requires the same accuracy. Using LMTs, the area overhead can be reduced to the
point where the accuracy is sufficient. In this work, tree sizes of 10, 40 and 80 leaf
nodes are used to show how increasing the area used for regression can improve
the accuracy.

2The behavior of twolf0 from SPEC200

Chapter 3

Implementing Linear Model
Trees

Having established the motivation of using LMTs for private mode performance
prediction, this section explains how they can be implemented. LMTs are suitable
to predict various key aspects of private mode performance prediction. In light
of the GDP performance model, several prediction models will be introduced re-
placing parts or the whole performance model by a LMT. All models uses interval
analysis, where LMTs assists is the prediction of every interval. Later, how LMTs
can be implemented in hardware and the corresponding storage overhead is pre-
sented. As area overhead estimates typically require synthesis, storage overhead
estimates are consequently used to compare the cost of implementing in hard-
ware. Implementing the performance accounting system in hardware is necessary
to make it transparent and thus not causing any performance overhead.

3.1 Defining LMT performance models

In theory, LMTs can be used to predict any output value. This work presents three
main ways to use LMTs for private mode performance prediction. First, by pre-
dicting IPC directly. Secondly, through using the performance model of GDP by
providing both stall and latency estimates with LMTs.

Predicting IPC directly: The simplest way of using LMTs for private mode
performance prediction is predicting IPC directly in the LMT. Without any con-
nection to other performance models, the area overhead of this prediction method
solely comes from the LMT itself. This configuration will be mentioned as LMT-IPC.

Predicting Stall cycles: A major strength of the GDP performance model is
isolating the components staying the same in shared and private mode. The ma-
jority of the storage overhead in GDP comes from the latency predictions of DIEF.
Those are used to predict ŜSMS

p and ŜOther
p . Replacing costly parts of the prediction

requiring DIEF with LMTs can reduce area overhead while still providing accurate
performance predictions, and benefiting of the strengths of the GDP performance

17

18 Peter Salvesen: Predicting Interference-Free Performance with Linear Model Trees

model.
The most important estimated value of the GDP performance model is the

SMS-load stalls, ŜSMS
p . This value can be estimated with a LMT. The goal of such

a prediction is removing the area overhead of DIEF. However, the other estimated
stall cycles, ŜOther

p , still rely on the DIEF latency estimates for prediction. Three

ways of handling ŜOther
p are implemented. They are called LMT-Stall, with number

1, 2 or 3. Having this in mind, the implemented models using LMT for stall cycle
prediction are:

LMT-Stall-1: First, using GDP exactly the same way to model ŜOther
p . This do not remove

the need for the DIEF latency estimates, and thus do not remove the main
cause of storage overhead. However, this configuration is included for evalu-
ation purposes to see how the SMS-load stall estimates using a LMT changes
the GDP accuracy.

LMT-Stall-2: Secondly, ŜOther
p is estimated using OLS linear regression. This provides a

lightweight regression method replacing the costly DIEF scaling of other
stall cycles in the GDP performance model.

LMT-Stall-3: The third approach to remove the need of DIEF for estimating ŜOther
p , is to

avoid modeling it at all. Instead, the combined stall cycles of ŜSMS
p and ŜOther

p
is the target of the LMT predictions. This simplifies the GDP performance
model somewhat, as the combined stall prediction is the only value that
must be estimated.

Predicting latency: The DIEF latency estimates are solely an input to calcu-
late ŜSMS

p and ŜOther
p in the GDP performance model. Predicting the same latency

values by a LMT will leave the rest of the model exactly the same. A moderately
sized LMT has lower area overhead than DIEF. Hence, this configuration can re-
duce the area overhead of the performance prediction. This configuration is called
LMT-Lat

3.2 Hardware Implementation

A hardware implementation of a linear model tree consist of three main parts.
First, the features need to be gathered. Secondly, the binary tree must be tra-
versed, classifying the input data. Lastly, linear regression calculates the output
value using the weights corresponding with the classification by the tree. If a de-
cision tree is used for regression instead of a linear model tree, the output of the
tree points to a constant instead of a pointer to linear regression weights.

Feature retrieval: Retrieving the features mainly depends on strategically
placed counters. The exception from this is the private LLC estimates. Those are
provided using ATDs (Auxiliary Tag Directories) with set sampling [22]. The set
sampling gives sufficient accuracy while reducing the area overhead of ATDs sig-
nificantly. All the features are stored available to be used for evaluation in the
decision tree and linear regression.

Chapter 3: Implementing Linear Model Trees 19

Comparator MUX

C0
C1
...
Cn-1

ADRL ADRR

Control
Unit

Output class
A0
A1
...
Ak-1

Lptr Rptr

Feature Input input ready

I0
I1

In-1

...
Internal
Nodes

Constants for comparison

Figure 3.1: Hardware model of the tree structure

Tree structure: The decision tree is implemented with focus on area efficiency.
Other proposed hardware techniques typically aim to accelerate decision tree eval-
uation using parallelization and pipelining [29, 30]. Our chosen design is much
simpler, although containing some similar elements. Figure 3.1 shows the archi-
tecture of the area efficient tree evaluation. Each internal node (every split in the
tree) is stored as an entry in a table. The entry consists of two parts. First, the con-
stant used for determining which way to go in the tree through the comparator.
Secondly, addresses for the nodes to the left and right in the tree. These addresses
contain the address itself and which feature should be compared to the constant
at the address. A specific feature number is reserved to denote that the child is a
leaf node. The tree is traversed iteratively until reaching a leaf node. The address
of this node is used as an input to the linear regression, pointing to the entry with
the correct weights to use. If a decision tree is used for regression without linear
regression in the leaf nodes, the output here would point to a constant instead of
weights for linear regression.

Linear Regression: Each leaf node represent a linear regressor. The weights
for the regression is stored in a table with one entry per leaf node. The evaluation
of a linear regressor can be seen as the dot product of the weights with a prede-
fined array of features, plus some constant. In the same iterative manner as for
the tree structure, the output of the linear regression is calculated. The hardware
structure will only need one adder and one multiplicator used iteratively to mul-
tiply a feature value with the linear regression weight and add the result to the
aggregated output value.

20 Peter Salvesen: Predicting Interference-Free Performance with Linear Model Trees

3.3 Performance and Area Overhead

The most important qualities of private mode prediction methods is their accuracy
compared to the performance and area overhead of implementing the system. This
section describes the performance and area overhead of LMTs. First, the LMT is
examined standalone before the complete models are evaluated. Lastly, several
means that can reduce storage overhead are discussed.

3.3.1 Linear Model Tree

Implementing LMTs for private mode performance prediction in hardware does
not give a direct performance overhead, because it is off the critical path in the
processor. Although, it can cause an indirect delay if a delay from the private
mode performance prediction causes an untimely quota allocation in some policy.
For example, hardware management policies repartitioning shared resources can
make use of the estimates. However, such events are very rare calculated every
one to five million cycles [6, 7, 31]. For this usage, a low area cost of the hard-
ware implemented LMTs is more important than fast calculations of the results.
Of course the calculations can be done in the processor itself not causing any ad-
ditional storage overhead, but that comes at a performance cost demanding the
processor resources at regular intervals. Nevertheless, the hardware calculations
will not take more than a couple of hundred cycles to compute at maximum. If
the policies are recalculated at regular intervals, the results from the private mode
prediction can be scheduled to be available at the time it is needed. The latency
of the calculations is slightly larger than prior work [2, 3, 13, 17]. However, if
this is problematic for some use cases the latency of the evaluations can be much
reduced at an area cost [29]. The following paragraphs break down the latency
of hardware calculations and the storage overhead of the components in LMTs.

Latency calculation

The latency of the hardware calculations depends on the tree size, which features
are used and how many features are used for linear regression. Assuming addition
and subtraction takes one cycle, multiplication 3 cycles and 25 cycles for division,
the components of the LMT will have the following latencies:

• Retrieving features: Most features do not require any preprocessing. How-
ever, some features we have used are aggregated values or average values.
If the average values are calculated using division before the tree evalua-
tion, this will lead to a 25 cycle latency to make the features available. If all
use the same division unit to save area, this will lead to 75 cycles of latency
as we have used three average feature values.

• Tree traversal: The latency from tree traversal depends on the height of
the tree, and will naturally increase for larger trees. The comparator uses
one cycle, where the Control Unit should be able to check if it is a leaf node

Chapter 3: Implementing Linear Model Trees 21

and make the next comparison ready in one cycle. Therefore, every internal
node in the tree takes two cycles to traverse. For the LMT-IPC tree with 10
leaf nodes the minimum heigh before reaching a leaf node is 2, giving a
latency of 4 cycles. The maximum height is 4, giving a latency of 8 cycles.
The most nodes necessary to traverse in the LMT-IPC tree with 80 leaf nodes
is 10, giving a latency of 20 cycles.

• Linear regression: Using k features for linear regression, the latency will
be k × 3+ 1 cycles using a single multiplication unit. It mostly comes from
multiplying the weights in the linear regression. The extra cycle comes from
adding the results, where all but the last addition can be hidden with pipelin-
ing the multiplication and addition units. Using 12 features, this gives a
latency of 37 cycles.

With these latencies, the maximum latency for our 80 leaf node LMT-IPC is a
total of 135 cycles, while the maximum latency of the 10 leaf node LMT-IPC is
125 cycles. This is 64 and 54 cycles more than the GDP latency of 71 cycles [2].
However, area efficiency has been the main focus of our work. If low latency is
important for a specific use, several means can be taken reducing the latency.
For example: only using features not requiring preprocessing, a balanced tree of
height 4 and 6 features for linear regression will give a latency of 27 cycles. This
is likely to have an accuracy impact, but can be worth considering if a low latency
is critical. Also, at an area cost the preprocessing and linear regression can have
a lower latency by parallelizing the calculations with several hardware units.

Storage overhead

The typical use of private mode performance predictions value area-efficiency over
a low latency of the calculations. Therefore, the main focus of this work have been
reducing area overhead. The following paragraphs break down the area overhead
of the subcomponents in LMTs. An overview of the storage overhead can be found
in table 3.1.

Retrieving features: Storing the feature values causes area overhead. All the
features have to be stored with a certain precision. For simplicity, all features and
constants have been stored with the same precision. Storing features with differ-
ent precision can reduce storage overhead but come at an area cost due to logic
handling the different bits used for storage. We analyzed the training data and

Leaf Nodes Tree structure
(Byte)

Linear regression
weights (Byte)

Total storage
overhead (Byte)

10 45 390 471
40 224 1560 1859
80 474 3120 3669

Table 3.1: Per core LMT storage overhead without ATDs

22 Peter Salvesen: Predicting Interference-Free Performance with Linear Model Trees

chose the lowest amount of bits able to represent the highest feature value in
the training set, which lead to using 24 bits representing numbers. In our setup
a maximum of 25 features are tracked, resulting in a total storage overhead for
representing those features of 75 bytes per core. For the smallest tree sizes not all
features are used, which results in slightly less storage overhead of the features.

Most features are based on counting certain events in the processor. These do
not contribute to additional storage overhead besides storing the feature value.
However, ATDs are used to estimate private mode hits, misses and accesses to the
LLC. The ATDs contribute significant storage overhead. Assuming 48 bits are used
for physical addresses there are 29 tag bits, 13 set bits and 6 bits for offset. Using
set sampling [22] with 32 sets for the 16-way cache, the ATD storage overhead
per core will be 29 × 16 × 32 = 14848 bits. Hence, the total storage overhead
of ATDs for the 4 core processor is 7.25 KB. However, ATDs can also be used for
other purposes than private mode performance prediction. For example, in cache
partitioning policies [22], [6]. Since ATDs are much used and can be used across
policies, they do not cause any additional storage overhead if they are already
implemented for other usage.

Tree structure: In the tree structure, the storage overhead is in the table rep-
resenting the internal nodes of the tree. Each entry in the table uses 24 bits to
store the constant for comparison in that internal node. Additionally, necessary
information of the two children nodes must be stored. Each children node need
information of the child node address, and which feature is compared in that
node. For n leaf nodes, d

p
ne bits are needed to address every node. Note that if

a tree has n leaf nodes, it has n - 1 internal nodes. Leaf nodes and internal nodes
are stored in separate tables, so the same address numbers are used twice (once
for internal nodes and once for leaf nodes) reducing the number of needed bits
for addressing. The leaf node addresses are used for linear regression, not tree
traversal. For k features, d

p
ke bits are needed to address which feature should be

used. In our tree, a specific feature number is reserved to denote a leaf node. This
saves 2 bits per internal node in the tree, compared to having flags denoting leaf
node or not.

Linear regression: The area overhead for the linear regressors in the leaf
nodes is simply the weights of the linear regression. One weight is needed per
input feature, and one additional constant. The storage overhead of these weights
are stored in a table with one entry per linear regressor. Therefore, each entry
uses 24 ∗ (n + 1) bits for n features used in linear regression. The baseline LMT
implementation used in this project selects 12 features for linear regression. See
section 4.5.2 for details on this.

3.3.2 Total model storage overhead

For the LMT-IPC, and LMT-Stall-3 models, there are no storage overhead besides
the LMT and ATDs. The LMT-Stall-2 model only adds the weights for one linear
regressor to this. For other performance models using part of the GDP calculations,

Chapter 3: Implementing Linear Model Trees 23

Model Leaf Nodes Total storage
overhead (KB)

Percent of GDP
overhead (%)

LMT-IPC 10 9.09 76
LMT-IPC 40 14.5 122
LMT-IPC 80 21.6 181
LMT-Stall-1 10 11.9 100
LMT-Stall-1 40 17.3 145
LMT-Stall-1 80 24.4 204
LMT-Stall-2 10 9.13 77
LMT-Stall-2 40 14.5 122
LMT-Stall-2 80 21.6 181
LMT-Stall-3 10 9.09 76
LMT-Stall-3 40 14.5 122
LMT-Stall-3 80 21.6 181
LMT-Lat 10 10.9 92
LMT-Lat 40 16.4 137
LMT-Lat 80 23.4 197

Table 3.2: Total storage overhead for combined models

additional storage overhead come from those components. Section 2.1.3 contains
a breakdown of the storage overhead in GDP. LMT-Stall-1 contain all this storage
overhead except the CPL estimator, while LMT-Lat requires only the CPL estimator
(not overhead from DIEF buffers). The combined storage overhead for selected
tree sizes are displayed in table 3.2. The total storage overhead of the models
combines overhead from ATDs, the LMT representation and eventual parts from
GDP.

Compared to GDP, most of the models reduce the storage overhead with small
trees. Most notably, LMT-IPC and LMT-Stall-3 reduces the storage overhead com-
pared to GDP by 24%. The storage overhead besides ATDs is reduced by 60%. In
some scenarios this might be a more appropriate comparison as ATDs can be used
across various policies and thus do not cause additional storage overhead, being
used for private mode performance prediction.

3.3.3 Reducing storage overhead

Depending on the tree size, different parts of the tree contributes the most storage
overhead. In particular ATDs for small trees and linear regression weights for large
trees. For a specific use case this is an optimization problem between accuracy and
the area cost of the predictions. This section mentions how the storage overhead
of the ATDs and linear regression weights can be reduced.

24 Peter Salvesen: Predicting Interference-Free Performance with Linear Model Trees

Reducing number of features in general

Reducing the number of features reduces the storage cost. Adding and removing
available features usually have a limited cost, with counters keeping track of cer-
tain events. However, this may also affect the storage overhead in other parts of
the LMT. The white-box model of the tree structure in LMTs makes the usage of
each individual feature available. If a feature is neither used for linear regression
or in the decision tree, it can be removed without any accuracy impact. If some fea-
ture is used very little (typically once in a large decision tree), the performance
impact of removing the feature can often be negligible and easily tested. Using
insight from the knowledge of the memory system, the tree can be built with a
compact feature set for example by trying to remove strongly correlated features.
Alternatively, a more extensive analysis of choosing features for the decision tree
can be examined. A way to do this is using R2 scores for a number of selected
features iteratively as for the feature selection for the linear regression (section
4.5.1).

Changing number of features used for linear regression

In the linear model trees, the weights for linear regression is a main contributor
to storage overhead. For the 10, 40 and 80 leaf node LMT-IPC, it contributes 17%,
42% and 56% of the storage overhead. The storage overhead for the linear re-
gressors scale linearly with the number of features used for linear regression. At
the cost of accuracy, the storage overhead can be much reduced by using fewer
features for linear regression. Section 5.4.1 analyzes how varying the number of
features used affects the accuracy of the predictions. Using 6 features instead of
12 reduces the storage overhead of the weights for linear regression by 46%. Ad-
justing the features used for linear regression versus the tree size may give more
accurate predictions at the same storage cost.

A way to select the input for linear regression with fewer features is through
dimension reduction methods such as PCA (Principal Component Analysis) and
PLS (Partial Least Squares) [27]. These methods try to retain as much information
of all the features as possible in a feature set of a lower dimension. For example,
PCA could be implemented as preprocessing for the features used in linear regres-
sion to retain as much accuracy as possible while reducing the storage overhead
of linear regression weights. PCA is making a projection of all input features onto
a feature set of a lower dimension maximizing the variance of the data in the re-
duced feature set. This will yield good results if fewer dimensions can explain the
majority of the data variance. The cost of PCA is the preprocessing, where each
feature after PCA is a linear combination of the input features of PCA. Hence,
the preprocessing cost will correspond to a matrix multiplication and be relatively
small compared to the reduced storage overhead for linear regression weights
if it yields similar accuracy. In some cases the input features of PCA need to be
scaled to give good results, also causing some additional area overhead. This can
be done numerous ways, but through standardization or normalization is the most

Chapter 3: Implementing Linear Model Trees 25

Leaf Nodes Total storage overhead
(KB)

Percent of GDP overhead
(%)

10 1.84 15
40 7.26 61
80 14.3 120

Table 3.3: Total LMT storage overhead for various sizes without ATDs

common. Standardization is scaling the feature input to a standard normal dis-
tribution with the mean at zero and a standard deviation of one. Normalization
scales the feature input to the range between zero and one.

Prediction without ATDs

For small trees the ATDs take up a substantial part of the total storage overhead.
For the 10, 40 and 80 leafnode LMT-IPC it takes up 80%, 50% and 34% of the
storage overhead. This could be reduced by using fewer sets for set sampling in
the ATD, at the cost of accuracy. Alternatively, the features requiring ATDs can
be removed. Assuming this makes ATDs redundant, LMT-IPC will have the area
overhead shown in table 3.3. For a 10 leaf node LMT-IPC, the area overhead of
GDP is reduced by 85%. Section 5.4.2 shows results without using ATDs as a part
of the sensitivity analysis. If ATDs are also implemented for other purposes than
private mode performance prediction, the improved accuracy of predicting with
private LLC estimates is preferred.

Chapter 4

Methodology

The workflow of the project is briefly visualized in figure 4.1. First, an extensive
set of simulations in the cycle accurate M5 simulator [32] was the basis of the
semester project preceding this master thesis. Many data points were gathered
from these simulations. These data points were analyzed using Scikit Learn [33] to
see if some regression method could be used to predict private mode performance.
The gathered data points were divided into a training and test set. The training
set was used to train the regression models, where the test set was used to check
their accuracy. Whenever results are mentioned as regression evaluation, it means
that the results are generated using Scikit Learn with the regression model on the
test set. Later, selected LMTs were exported to the M5 Simulator and tested with
new workloads in the M5 Simulator. The generated results from these simulations
are called simulator evaluation.

4.1 M5 Simulator

For experiment simulations and gathering of data, an extended version of the M5
simulator [32] is used. The derived version [34] is inspired by commercial CMP
implementations [35]. It consists of two private (L1 and L2) cache levels and one
shared cache (LLC). We have consistently used four cores, connected to the LLC
through a shared ring interconnect. A high-level overview of the setup is visualized
in figure 1.1, where detailed specifications of the processor setup in the simulator
can be found in table 4.1.

4.2 Workload generation

The multi-programmed workloads used for simulations are generated from 51
benchmarks from SPEC2000 [36] and SPEC2006 [37]. The benchmarks are cate-
gorized as streaming benchmarks (S), highly memory sensitive benchmarks (H),
medium memory sensitive benchmarks (M) and low memory sensitive bench-
marks (L). The details of the classification can be found in appendix A. Using

27

28 Peter Salvesen: Predicting Interference-Free Performance with Linear Model Trees

Semester Project Simulations
M5 Simulator

Training Set Test Set

Gathered data points from simulations

Trained LMTs

Export LMTs to
M5 Simulator

M5 Simulations
with LMTs

New Generated
Workloads

Generated
Results

Generated
Results

Regression
Evaluation

Simulator
Evaluation

Figure 4.1: Workflow of simulation and regression analysis

Parameter Value
Clock frequency 4 GHz
Processor Cores 128 entry reorder buffer, 32 entry load/store queue, 64

entry instruction queue, 4 instructions/cycle, 4 integer
ALUs, 2 integer multiply/divide, 4 FP ALUs, 2 FP mul-
tiply/divide, 2048 entry hybrid branch predictor, 2048
entry 4-way BTB

L1 Data Cache 2-way, 64KB, 3 cycles latency, 16 MSHRs
L1 Instr. Cache 2-way, 64KB, 3 cycles latency, 16 MSHRs
L2 Private Cache 4-way, 1MB, 9 cycles latency, 16 MSHRs
L3 Shared Cache 16-way, 8MB, 16 cycles latency, 256 MSHRs, 4 banks
Ring Interconnect 4 cycles per hop transfer latency, 32 entry request queue,

1 request ring, 1 response ring
Main memory DDR4-2666, 18-18-18-43 timing, 64 entry read queue,

64 entry write queue, 16 banks, 2 channels, FR-FCFS
scheduling, open page policy

Table 4.1: Model Parameters

Chapter 4: Methodology 29

SimPoints [38, 39], a 100 million instruction sample is used and considered rep-
resentative for the benchmark behavior. Four benchmarks are randomly selected
for the workloads, where a single benchmark can at most appear twice in the same
workload.

For the evaluation of different performance prediction methods of the semester
project, a set of workloads were generated choosing benchmarks from the specific
benchmark classifications. The set of workloads consisted of 25 S-workloads, 25,
H-workloads, 10 M-workloads and 10 L-workloads. Additionally 10 A-workloads
was generated, using benchmarks randomly from all classifications. The results
from these simulations was the basis of the initial comparison of performance ac-
counting methods in the semester project [19] and data used for regression. To
verify the performance of the trained regression model in the simulator, a new set
of workloads was generated. This has a new random seed, and has 5 workloads
within each of the same categories as the initial workload set. The new work-
load set was used to test LMT-IPC in simulation evaluation where a new work-
load set was necessary to ensure evaluation not identical to the behavior in the
test and training set. 5 workloads were chosen as an appropriate trade-off where
there were enough workloads to show the general trends without demanding too
much computing resources (ten-thousands of computing hours on a supercom-
puter have been used for the simulations of the semester project and master the-
sis).

The multi-programmed workloads are simulated until all benchmarks have
committed 100 million instructions. If a benchmark reach 100 million instruc-
tions before all benchmarks are done, it is restarted. This is done to ensure a
similar behavior from the other processes running in shared mode. To provide a
fair comparison between private and shared mode, the instruction sample points
in shared mode are stored. The number of cumulative committed instructions in
these sample points are used as an input to the private mode experiments. There,
it is ensured that the private mode experiments measure the IPC over the exact
same instructions in each interval. Having the exact same instructions in each in-
terval is critical comparing the predicted private mode IPC in shared mode with
the measured IPC in private mode.

4.3 Scikit-Learn

Scikit-Learn [33] is a much used, open-source machine learning library for python.
It was used for all regression analysis of the data in this project. The generated
models from Scikit-learn was exported to the M5 simulator for simulator evalua-
tion through custom made scripts.

The tree structure of the LMTs are the decision tree used for regression, pro-
vided by Scikit-Learn. It is trained with MSE as the metric to reduce variance for.
This results in all the splits of the LMT. The linear regression in the leaf nodes
use the OLS linear regression provided by Scikit-Learn. The only adjustment of
the output values from the linear regression is that eventual negative predictions

30 Peter Salvesen: Predicting Interference-Free Performance with Linear Model Trees

are replaced by zero. This is because negative predictions do not make sense for
either IPC, stall or latency estimates.

4.4 Data and testset

All the data used for training and testing the regression models come from simula-
tions run during the semester project preceeding this master thesis [19]. It consists
of roughly 76000 data points with traced features and a calculated target value
which is supposed to be predicted by the regression models. As explained for the
workload generation, these datapoints come from 10 workloads within workload
categories A, L and M, and 25 workloads within workload categories H and S.

Workload number 7, 8 and 9 within each category was selected as test set. Ini-
tially, workload number 1 through 6 within each category was selected to be the
training set. This training set is denoted as the balanced training set. Initial test-
ing of the regression models showed that the balanced training set did not contain
enough data to properly show the strengths of LMTs. This was specially the case
in the congested workload categories, and when the tree sizes grew. A larger tree
would intuitively give more accurate predictions, but this is not the case if the
training data contain too little information to properly train the tree. Therefore, a
training data set with unbalanced training data have been used in general. The un-
balanced training data uses all available data generated from the semester project
[19]. Sampling new data points require running simulations, where there are no
limit on how many data points that can be generated. However, running extensive
workloads on the simulator often takes weeks. Therefore, generating additional
training data for the regression was not viable within the scope of this thesis. In
the semester project, H and S workloads were examined more closely than A,
M and L workloads. 25 workload configurations were generated within S and H
workloads. For the unbalanced training set used, all workloads except number 7,
8 and 9 (the test set) were used for training. This means that the training set has
22 workloads within H and S workloads, but only 7 workloads within A, L and
M workloads. This is not ideal but is the better option to properly show the qual-
ities of using LMTs for private mode performance prediction. To explicitly show
how the data point are divided, table 4.2 shows which workload configurations

Set name A H L M S
test set 7-9 7-9 7-9 7-9 7-9
balanced
training set

1-6 1-6 1-6 1-6 1-6

unbalanced
training set

1-6 1-6,
10-25

1-6 1-6 1-6,
10-25

Table 4.2: Workload configurations used in data sets, per workload type

Chapter 4: Methodology 31

Feature name
Aggregated Shared Mode LLC Misses and Writebacks for all cores
Average Shared Mode Latency
Average Shared Mode PMS Latency
Average Shared Mode Shared Store Latency
Compute Cycles
Memory Independent Stall Cycles
Number of Shared Mode Hidden Loads
Number of Shared Mode Shared Stores
Number of Shared Mode Write Stalls
Private Mode LLC Access Estimate
Private Mode LLC Hit Estimate
Private Mode LLC Writeback Estimate
Shared Mode Empty ROB Stall Cycles
Shared Mode IPC
Shared Mode LLC Accesses
Shared Mode LLC Hits
Shared Mode LLC Writebacks
Shared Mode PMS Stall Cycles
Shared Mode Private Blocked Stall Cycles
Shared Mode Stall Cycles
Shared Mode Total Latency
Shared Mode Write Stall Cycles
Summarized Shared Mode LLC Misses and Writebacks
Total Number of Shared Mode Memory Requests
Total Shared Mode PMS and SMS Stall Cycles

Table 4.3: Traced features available for regression

are used for testing and training, within the workload categories. The unbalanced
training set is used consequently except for section 5.1.2, which shows results
using the balanced training set. For a project at a larger scale this will not be
problematic as new data points can be sampled by simulations. The data points
are based on counting discrete events, and thus have no data impurity. Training
with more data points from sampled workloads will make the LMT model more
robust.

4.5 Feature Selection

Which features are available is a key aspect of succeeding with any regression
model. The available features for training the LMTs are displayed in table 4.3. The
traced features are centered around SMS-load stall prediction and were originally

32 Peter Salvesen: Predicting Interference-Free Performance with Linear Model Trees

traced to evaluate the performance of predictions made by GDP during simula-
tions. However, the traced features are seemingly suitable for private mode per-
formance prediction with regression too. Although, it is not unlikely that other
features we have not traced might provide even better data points to the LMTs.
Adding additional features representing other events in the processor can only in-
crease the contained information and prediction accuracy. The following sections
describe how only some of the features were chosen and used for linear regres-
sion. All features were on the other hand available to make splits in LMTs.

4.5.1 Coefficient of Determination

The coefficient of determination or R2 is a statistic that gives information on how
good data predicted of a model fits the real data. To properly define R2, we need
to define two other metrics. Where y is the real data values and p is predictions,
SSres (residual sum of squares) is defined in equation 4.1. It measures deviations
between predicted and actual data.

SSres =
∑

i

(yi − pi)
2 (4.1)

The SStot (total sum of squares) is a quantity defined as the squared differ-
ences between actual data and the mean of all the data. It is defined in equa-
tion 4.2, where y is the real data and ȳ is the mean of y observations (ȳ =
1/n×
∑n

i (yi)).

SStot =
∑

i

(yi − ȳ)2 (4.2)

R2 is defined in equation 4.3, as 1 minus the ratio between SSres and SStot . A
perfect model will have a R2 of 1. There is no lower bound of R2 values. However,
a model simply predicting the average value of a set with training data will have
a R2 value of 0 for the training set. Therefore, the regression should have a R2

value significantly larger than 0 to contain the general trends of the data.

R2 = 1−
SSres

SStot
(4.3)

4.5.2 Linear Regression

The features used for linear regression in the leaf nodes of the linear model tree
was selected iteratively using the coefficient of determination. The first chosen
feature was the feature giving the highest R2 value predicting the chosen target
using linear regression. The second chosen feature was the feature giving the high-
est R2 value in pair with the first one. This was continued until all features had
been sorted from the one feature contributing the most in linear regression to the
least given that the preceding features have already been chosen.

Chapter 4: Methodology 33

target (no. features) R2 % of max
latency (1) 0.39856 51.88
latency (3) 0.64262 83.64
latency (6) 0.69204 90.08
latency (9) 0.75249 99.25
latency (12) 0.76487 99.55
latency (25) 0.76829 100.00
SMS-load stall cycles (1) 0.16059 20.80
SMS-load stall cycles (3) 0.38938 50.44
SMS-load stall cycles (6) 0.55030 71.28
SMS-load stall cycles (9) 0.57310 74.24
SMS-load stall cycles (12) 0.62421 80.86
SMS-load stall cycles (15) 0.76665 99.31
SMS-load stall cycles (25) 0.77197 100.00
IPC (1) 0.58773 74.29
IPC (3) 0.65545 82.86
IPC (6) 0.68030 86.00
IPC (9) 0.75875 95.91
IPC (12) 0.78171 98.81
IPC (25) 0.79108 100.00

Table 4.4: R2 values for selected features

34 Peter Salvesen: Predicting Interference-Free Performance with Linear Model Trees

The features were selected on the complete training set, so there may be vari-
ations in which features are important for linear regression in the different sub-
populations classified by the decision tree. Table 4.4 shows the R2 values of a set
of iteratively chosen features to predict IPC, SMS-load stall cycles or latency. At
twelve features the linear regression seemed to contain most of the information
possible by linear regression (The R2 scored for a set of features compared to
using all features). Therefore, 12 features was used for linear regression in the
leaf nodes. Using more features requires more training data to make the regres-
sion stable, and increases the area overhead. Therefore 12 features seemed like
a good initial compromise. Appendix B shows the R2 scores for every iteratively
added feature for each target value, and thus which specific features are used for
linear regression in each case.

4.6 Metrics

Establishing proper metrics is important in quantifying errors between predicted
and actual data values. Also, a such metric is suitable to compare the accuracy of
different private mode performance predictors. Shared mode estimates are noted
α̂, while the actual values are noted α. Absolute errors are used, where an error
E = α̂−α. Absolute errors are preferred over relative errors, as IPC is the primary
prediction target. IPC values can be close to 0 for some data points. This can give
unreasonably high relative errors while the absolute values are small. Therefore,
it seems like a more fair comparison of the data points in the IPC range to use
absolute values. The chosen metric for comparing aggregated error values is Root
Mean Squared (RMS) errors. For n error estimates E, the corresponding RMS error
would be:

RMS =

√

√

√

1/n ∗
n
∑

i=1

E2
i (4.4)

Both under- and overestimated values are captured to an aggregated RMS
value. Thus, both variability and bias is measured in the RMS score. The aggre-
gated errors for a job is measured in RMS. When job errors are aggregated for all
jobs or jobs within a workload category, the arithmetic mean of the RMS errors of
those jobs is used.

Chapter 5

Results

This results chapter evaluates the prediction accuracy of LMT-based prediction
compared to GDP. First, LMTs predicting IPC directly are evaluated. These accu-
racies are compared to GDP at a high level but also in more specific cases. LMTs
predicting IPC has results for both regression evaluation and simulator evalua-
tion. This is the only usage of simulator evaluation, as the LMTs in the other per-
formance models have only regression evaluation. Secondly, the results of using
LMTs for stall predictions in the GDP performance model is presented. Thirdly, re-
sults with LMTs for latency predictions as an input to GDP is shown. Lastly, there
is a sensitivity analysis looking at how the results of LMTs change with different
LMT setups. To briefly summarize the different models using LMTs, the setups are
listed:

LMT-IPC: Predicts IPC Directly using LMTs.
LMT-Stall-1: Predicts shared memory system load (SMS-load) stall cycles with LMTs, but

is otherwise identical to GDP
LMT-Stall-2: Predicts SMS-load stall cycles with LMTs, and estimates Ŝother

p from the GDP
performance model by linear regression.

LMT-Stall-3: Predicts the stall cycles from ŜSMS
p and Ŝother

p by a LMT, combined. Otherwise
uses the performance model of GDP.

LMT-Lat: Uses LMTs to predict latency which is used by GDP.

5.1 IPC prediction

The final output of private mode performance accounting is IPC estimates. This
section shows results using LMTs predicting IPC directly. First, LMT-IPC and GDP
are compared using regression evaluation with both the unbalanced and the bal-
anced training set for the LMT. Later, LMT-IPC and GDP are compared using the
unbalanced training set and simulator evaluation.

35

36 Peter Salvesen: Predicting Interference-Free Performance with Linear Model Trees

a h l m s all
Per Workload Type

0.00

0.05

0.10

0.15

0.20

0.25

A
ve

ra
ge

R
M

S
E

st
im

at
io

n
E

rr
or

(I
P

C
)

0.47*

GDP LMT-IPC-10 LMT-IPC-40 LMT-IPC-80

Figure 5.1: Average RMS workload error for IPC in regression evaluation

5.1.1 Regression evaluation

Using linear model trees to predict IPC directly gives accurate private mode per-
formance estimates. Figure 5.1 shows the estimation errors per workload com-
pared to GDP. For all the workloads combined, the 10 leaf node LMT-IPC has 1.0%
larger errors compared to GDP. The 40 leaf node LMT-IPC reduces this error by
19%, while the 80 leaf node tree increases the error by 51%. This can also be
analyzed per workload. For A workloads, the LMT-IPC regression reduces the pre-
diction errors compared to GDP by 16%, 7% and 14% for the 10, 40 and 80 leaf
node configurations. The corresponding numbers are 16%, 48% and 58% for H
workloads, and 33%, 60% and 65% for S workloads. For L workloads the predic-
tions are 2% worse than GDP for the 10 leaf node tree, 18% better than GDP for
the 40 leaf node tree and 47% better than GDP for the 80 leaf node tree. However,
it is worth pointing out that the GDP errors for L workloads are much smaller than
for other workloads, so the LMT prediction errors are not that huge in absolute
values. For M workloads, LMT-IPC with 10, 40 and 80 leaf nodes perform 94%,
55% and 466% worse than GDP.

The results within each category matches the expectations of the regression,
except for the M and A workloads. Within H, L and S workloads the trees gives a
higher accuracy for larger trees and have significantly better predictions than GDP,
at least for large tree sizes. However, within the M workload the errors surpris-
ingly increase for larger tree sizes and the regression has worse IPC predictions
than GDP. Within A workloads, a single benchmark causes the majority of the error.
This is facerec, a benchmark also within the M workload category. To understand
why this happens, the M workloads are examined with a closer look. Figure 5.2
shows the average RMS error per benchmark for the M workloads of the test set.
It becomes clear that some jobs have very large errors, with increasing errors for
larger trees. This indicates that the model is undertrained for some of the classifi-
cations appearing in M workloads. In other words, the training set do not contain
enough information or have enough data points to properly train the LMT.

Figure 5.3 shows IPC predictions and the measured private IPC per cumula-
tive committed instructions for the 80 leaf node LMT with the parser benchmark
in M workload number 8. It also shows how the linear model tree have fairly

Chapter 5: Results 37

m
-7

-s
6-

le
sl

ie
3d

m
-7

-s
6-

lib
qu

an
tu

m

m
-7

-s
6-

gc
c

m
-8

-s
6-

de
al

II

m
-7

-f
m

a3
d

m
-9

-f
ac

er
ec

m
-8

-p
ar

se
r

m
-9

-g
cc

m
-8

-s
6-

lib
qu

an
tu

m

m
-9

-s
6-

gc
c

m
-9

-p
ar

se
r

m
-8

-s
6-

h2
64

re
f

al
l

Per Benchmark

0.0

0.1

0.2

0.3

0.4

0.5

A
ve

ra
ge

R
M

S
E

st
im

at
io

n
E

rr
or

(I
P

C
)

2.56* 2.03*

GDP LMT-IPC-10 LMT-IPC-40 LMT-IPC-80

Figure 5.2: Per benchmark errors for M workloads

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Instruction Count 1e8

0

2

4

6

8

IP
C

LMT-IPC-80 Prediction Measured Alone IPC

Figure 5.3: IPC prediction and measured IPC for m-8-parser

38 Peter Salvesen: Predicting Interference-Free Performance with Linear Model Trees

good predictions besides huge spikes in the IPC predictions, predicting an IPC of
around 6 and 9 for short periods of time. This confirms that the linear model tree
is undertrained for the classification in that period. If the linear regression in some
leaf node classifications are undertrained, the planes generated by the linear re-
gression may be unstable and thus give huge IPC mispredictions in some cases.
The predictions for M workloads would most likely yield better results with more
training data within the workload. However, the LMT-IPC is able to capture the
general trends. Having spikes with huge misprediction is better than consistent
mispredictions over time. If used by a policy, the "wrong" behavior would have
been corrected quickly. Most likely the next time the policy did rescheduling.

The found outliers of IPC prediction in the M workloads points to an interest-
ing aspect. It seems like when the LMT works, having more nodes in the tree gives
better results. However, when the training data is poor for some behavior, adding
nodes to the LMT makes the linear regression increasingly unstable and thus the
prediction errors get worse.

5.1.2 Balanced training set

With more data points for H and S workloads in the training set, the imbalanced
data could have a negative impact of the performance within L and M workloads,
making those workloads in the training set less significant. An imbalanced training
set indirectly reduces the misprediction penalties in the parts of the training set
with little data, and increases the misprediction penalties in the parts with more
data. Good training data is vital for getting accurate results with a trained model.
To ensure balanced training data with enough samples for regression in every leaf
node, huge training sets are required. Too few samples in the leaf nodes give un-
stable linear regression, and is the cause of increasing errors for larger trees in
some workloads. A way to ensure enough samples for training is using cross val-
idation. This can also prevent overfitting. Although, with the massive constraints
on tree sizes put on the LMTs for our purposes, overfitting seems very unlikely.

Hence, balancing the training data can reduce errors in L and M workloads.
Also, in many systems processing with little congestion in the memory system is
often very common. Therefore it is interesting to look at the corresponding results

a h l m s all
Per Workload Type

0.0

0.1

0.2

0.3

A
ve

ra
ge

R
M

S
E

st
im

at
io

n
E

rr
or

(I
P

C
)

GDP LMT-IPC-10 LMT-IPC-40 LMT-IPC-80

Figure 5.4: Average RMS workload error with balanced training data

Chapter 5: Results 39

using a balanced training set although the overall errors are expected to increase,
specially within H and S workloads. Figure 5.4 shows the average RMS errors for
the balanced training set. Several interesting points can be read of the results with
the balanced training set.

First, the results within L and M workloads are slightly improved, specially in
the small tree sizes. This is because the L and M workloads are relatively more im-
portant in the balanced training set. With LMT-IPC of 10, 40 and 80 leaf nodes, the
L workload accuracy is 21%, 28% and 35% better than GDP. This shows that LMTs
perform well compared to GDP also if the expected behavior consist of mostly lit-
tle congestion in the memory system. LMT-IPC is still struggling in M workloads,
but the prediction accuracy is better with fewer outliers.

Secondly, as the training data has a lower quality, the benefit of adding nodes
in the tree diminishes. The accuracy benefits of adding nodes in the tree for A,
H and S workloads become very limited, and sometimes makes linear regression
unstable and increases the errors. This shows the remarkable accuracy benefits of
adding training data within H and S workloads. For all LMT-IPC combined, the
prediction errors are 69% lower on H workloads in the unbalanced training set
and 42% better combined for S workloads. Looking at how the prediction errors
are lowered for H and S workloads with extra training data in the unbalanced
training set, a similar accuracy improvement is likely with more training data for
M workloads. This strengthens the claim that M workload errors would have been
lowered with more and better training data. The M workload errors would most
likely have improved similar to the H and S workloads in the unbalanced training
set. Hence, the overall accuracy of the prediction can be made better with a larger
balanced training set without increasing the area cost in hardware.

5.1.3 GDP and streaming benchmarks

As the LMT-IPC have a higher predictior error than GDP in M workloads, GDP have
significantly higher errors than the LMT-IPC in S workloads. Figure 5.5 shows the

s-
8-

sw
im

s-
9-

sw
im

s-
7-

sw
im

s-
7-

s6
-g

em
sF

D
T

D

s-
8-

s6
-b

w
av

es

s-
9-

s6
-b

w
av

es

s-
7-

eq
ua

ke

s-
8-

eq
ua

ke

s-
8-

s6
-c

ac
tu

sA
D

M

s-
9-

s6
-c

ac
tu

sA
D

M

s-
7-

s6
-o

m
ne

tp
p

s-
9-

s6
-o

m
ne

tp
p al
l

Per Benchmark

0.00

0.05

0.10

0.15

A
ve

ra
ge

R
M

S
E

st
im

at
io

n
E

rr
or

(I
P

C
)

GDP LMT-IPC-10 LMT-IPC-40 LMT-IPC-80

Figure 5.5: Per benchmark errors for S workloads

40 Peter Salvesen: Predicting Interference-Free Performance with Linear Model Trees

Figure 5.6: IPC prediction and measured IPC for s-0-lucas0

per benchmark error within S workloads using the unbalanced training set for
LMT-IPC. It becomes clear that for some benchmarks GDP consistently have huge
mispredictions.

Examining the GDP accuracy on the training set as well, it becomes clear that
GDP systematically overestimates IPC for some S workload benchmarks. One of
these is lucas0. Figure 5.6 shows how GDP consistently overestimates IPC for lu-
cas0 over most of the execution.

The overestimating behavior of GDP was examined more thoroughly. GDP has
a CPL estimator, where CPL and average memory latency estimates are the key
components of how GDP predicts SMS-stall cycles. Figure 5.7a visualizes part of
the private mode dataflow graph of compute blocks and memory dependencies.
The complete dataflow graph shows a similar ordered pattern between dependen-
cies and compute cycles, in which the CPL is estimated. However, in shared mode
the dataflow graph is much messier. Figure 5.7b shows a snippet of the shared
mode dataflow graph. Note how a memory dependency makes a shortcut past a
compute block in the dependency graph. The congestion in the memory system
in shared mode leads non-overlapping memory dependencies in private mode to
overlap in shared mode. Hence, the calculated CPL in shared mode will be shorter
than the CPL in private mode. This consistent underestimation of CPL causes the
IPC estimates to consistently be too high.

5.1.4 Simulator evaluation

To verify the promising results from the regression evaluation, the LMT-IPC mod-
els trained on the unbalanced training set were exported to the cycle accurate

Chapter 5: Results 41

Comp. Init

mem. Dep mem. Dep mem. Dep mem. Dep

Comp. Block

mem. Dep mem. Dep mem. Dep mem. Dep

Comp. Block Comp. Block

mem. Dep mem. Dep mem. Dep mem. Dep

Comp. Block Comp. Block

mem. Dep

(a) private mode

Comp. Init

mem. Dep mem. Dep mem. Dep

mem. DepComp. Block Comp. Block

mem. Dep mem. Dep

Comp. Block

mem. Dep mem. Dep mem. Dep mem. Dep

Comp. Block

mem. Dep

(b) shared mode

Figure 5.7: Snippet of dataflow graph of lucas0 in private and shared mode

42 Peter Salvesen: Predicting Interference-Free Performance with Linear Model Trees

a h l m s all
Per Workload Type

0.00

0.05

0.10

A
ve

ra
ge

R
M

S
E

st
im

at
io

n
E

rr
or

(I
P

C
)

GDP LMT-IPC-10 LMT-IPC-40 LMT-IPC-80

Figure 5.8: Average RMS workload errors for IPC in simulator evaluation

M5 simulator for a simulator evaluation1. The hardware structure proposed in
section 3.2 was modeled in the M5 simulator, to represent the LMTs. The 10,
40 and 80 leaf node LMT-IPCs were tested together with GDP on a completely
new set of workloads. Figure 5.8 shows the results from the simulator evaluation
per workload, and the combined performance for all workloads. Overall, the re-
sults correspond very well with the findings from the regression evaluation. The
small differences is well inside expected behavior variation of different bench-
marks within a workload category.

The pattern where the LMTs are unstable for M workloads is the same, al-
though in the simulator evaluation the predictions become slightly better with
increasing tree sizes. Removing cumulative committed instructions made regres-
sion evaluation worse for M workloads, but better in most other cases. This some-
what explains the relatively better M workload predictions and worse L workload
predictions in the simulator evaluation. The S workloads are still the category
where GDP struggles the most, but the predictions are slightly better than in the
regression evaluation.

1The simulator evaluations contains Cumulative Committed Instructions as a feature. This was
later removed to prevent the regression model of knowing how long into a benchmark the running
application is. The simulator evaluation was not re-run, without the feature. Running the workloads
can take weeks, and the general pattern in the results of regression evaluation stayed the same

a h l m s all
Per Workload Type

0.00

0.05

0.10

A
ve

ra
ge

R
M

S
E

st
im

at
io

n
E

rr
or

(I
P

C
) R-10

S-10
R-40
S-40

R-80
S-80

Figure 5.9: Average RMS workload errors for LMT-IPC in regression and simula-
tor evaluation

Chapter 5: Results 43

Considering the overall performance of all the categories, the results corre-
spond very well with the regression evaluation. Figure 5.9 shows results for LMT-
IPC in simulator evaluation (S) and regression evaluation (R) when cumulative
committed instructions was included in regression evaluation. There are some
small variances between them, but note how the accuracies are almost identi-
cal overall. The key takeaway from simulator evaluation is that LMTs in private
mode performance prediction is absolutely viable also implemented in a proces-
sor. The results from the simulator evaluation confirm the results from regression
evaluation. The correspondence between the results in regression and simulator
evaluation also shows how regression evaluation is suitable to find promising LMT
configurations in a more lightweight manner.

In any way, the results from the simulator evaluation verifies the results from
the regression evaluation. This again confirms that LMTs are suitable for private
mode performance prediction, and that the predictions can be calculated at run-
time in a processor. The results for the LMT-IPC prediction also points to some
flaws of the training data for the LMT-IPC, where an improvement of the training
data inevitably will better the accuracy of the LMT-IPC.

5.2 Stall prediction

A major strength of the GDP performance model is isolating parameters that are
the same in shared and private mode, and then only estimating some key stall
metrics. The most important of those is shared memory system-load stalls (SMS-
load stalls). Thus, estimating SMS-load stalls with LMTs can be a useful input to
some performance model. Figure 5.10 shows the SMS-load stall prediction error
of GDP and LMTs. Compared to GDP, the relative accuracy of the stall predictions
are much better than IPC predictions in some categories, and worse in other cate-
gories. Namely, for 10, 40 and 80 LMTs the GDP error is reduced by 44%, 58% and
73% in S workloads, 12%, 36% and 43% in H workloads and 5%, 24% and 27% in
A workloads. In M workloads the 10 and 40 leaf node LMT perform 40% and 7%
worse than GDP where the 80 leaf node LMT performs 15% better. However, for
L workloads the 10, 40 and 80 LMTs perform 245%, 213% and 166% worse than

a h l m s all
Per Workload Type

0

200000

400000

A
ve

ra
ge

R
M

S
E

st
im

at
io

n
E

rr
or

(c
yc

le
s)

GDP LMT-10 LMT-40 LMT-80

Figure 5.10: Average RMS workload errors for stall predictions

44 Peter Salvesen: Predicting Interference-Free Performance with Linear Model Trees

a h l m s all
Per Workload Type

0.00

0.05

0.10

A
ve

ra
ge

R
M

S
E

st
im

at
io

n
E

rr
or

(I
P

C
) GDP

LMT-Stall-1-80
LMT-Stall-1-10 LMT-Stall-1-40

Figure 5.11: Average RMS workload error for IPC predictions, using LMT-Stall-1

GDP. Although, the absolute errors for L workloads are still quite small. This sec-
tion shows results where these SMS-load stall estimates are used in a performance
model to examine the resulting IPC estimation accuracy.

LMT-Stall-1: One way of using SMS-load stall estimates from LMTs is straight
into the GDP predictions. Figure 5.11 shows the average IPC error per workload
for GDP and GDP using a LMT for its SMS-load stall predictions. Several interest-
ing points can be read from these results. First, using the exactly same predictions
for Ŝother

p , the relative accuracy of the IPC prediction and SMS-load stall predic-
tions does not correspond. The L workload errors are mostly the same for the IPC
prediction, while they are considerable larger in the SMS-load stall predictions.
This tells us that much of the L workload error of GDP comes from the Ŝother

p esti-
mates, or that some assumption for the performance model is inaccurate. For A, H
and S workloads the IPC accuracy is somewhat improved but the relative change
is much smaller than the improved accuracy for SMS-load stall prediction. Within
the M workload, the combined model performs worse than GDP alone.

Using GDP with SMS-load stall estimates from LMTs can give better predic-
tions than GDP alone. Specially if the expected usage of a processor contains much
S workload behavior. However, this combination will not reduce the area overhead
of GDP. Most of the area overhead in GDP is in the latency estimates provided
by DIEF. Those are needed predicting Ŝother

p , also used for these predictions. Al-
though, removing the CPL estimator can give minor area reductions using LMTs
instead. However, the accuracy of GDP with LMT SMS-load stall estimates is not
as accurate as predicting IPC directly with linear model trees, with a higher area
cost. This is because some errors can be magnified when propagated in the per-
formance model, making the RMS metric worse due to having larger penalties on
larger errors. Also, GDPs predictions of Ŝother

p also contains errors which are in-
cluded. Therefore, this configuration is less attractive than predicting IPC directly
with LMTs.

LMT-Stall-2: To make a combined performance model attractive, the area
overhead compared to GDP has to be reduced. A way to do this is estimating
Ŝother

p through linear regression. Then, the performance model does not need the
DIEF latency estimates and can thus reduce the area overhead much more. Figure

Chapter 5: Results 45

a h l m s all
Per Workload Type

0.0

0.2

0.4

A
ve

ra
ge

R
M

S
E

st
im

at
io

n
E

rr
or

(I
P

C
)

GDP LMT-Stall-2-10 LMT-Stall-2-40 LMT-Stall-2-80

Figure 5.12: Average RMS workload error for IPC predictions, using LMT-Stall-2

5.12 shows the average RMS error for IPC estimates using the GDP performance
model with LMTs for SMS-load stalls and linear regression for Ŝother

p estimates.
This configuration would have approximately the same area overhead as predict-
ing IPC directly by LMTs. However, the accuracy of the model is not as competitive
as predicting IPC directly. It struggles in the L and M workloads, but has better
results than GDP in the H and S workloads. Modeling Ŝother

p with linear regression
alone seems to be too simple to effectively estimate the value properly. Specially
within M workloads this become clear, giving overall results worse than LMT-Stall-
1. The overall performance of LMT-Stall-2 is in general just under the accuracy of
GDP, where there are only small benefits of adding nodes to the LMT.

LMT-Stall-3: Our third approach to using LMTs in a hybrid performance model
based on the GDP performance model, is combining ŜSMS

p and ŜOther
p to a single

stall estimate which is predicted by a LMT. The performance model isolates ev-
erything that stays the same in shared and private mode, where LMTs are used to
predict the combined changing stall cycles. Figure 5.13 shows the results of this
configuration compared to GDP. Overall, the accuracy is very similar to LMTs pre-
dicting IPC directly. To see the prediction accuracy compared to LMTs predicting
IPC directly, figure 5.14 shows the average RMS errors for the workloads com-
pared to LMT-IPC predictions. Interestingly, the M workload predictions are better
with 10 leaf nodes than for predicting IPC directly. Otherwise, they follow simi-
lar patterns although using LMTs for stall predicates give higher errors in A and
S workloads. Overall, predicting IPC directly gives slightly more accurate predic-

a h l m s all
Per Workload Type

0.00

0.05

0.10

0.15

0.20

A
ve

ra
ge

R
M

S
E

st
im

at
io

n
E

rr
or

(I
P

C
)

GDP LMT-Stall-3-10 LMT-Stall-3-40 LMT-Stall-3-80

Figure 5.13: Average RMS workload error for IPC predictions, using LMT-Stall-3

46 Peter Salvesen: Predicting Interference-Free Performance with Linear Model Trees

a h l m s all
Per Workload Type

0.00

0.05

0.10

0.15

0.20

0.25

A
ve

ra
ge

R
M

S
E

st
im

at
io

n
E

rr
or

(I
P

C
)

0.47*

LMT-IPC-10
LMT-Stall-3-40

LMT-IPC-40
LMT-Stall-3-80

LMT-IPC-80 LMT-Stall-3-10

Figure 5.14: Average RMS errors of LMT-IPC and LMT-Stall-3

tions for the same tree sizes. LMT-Stall-3 seems to work effectively in many cases
but outliers in the predicted data may be magnified in the performance model
also here, giving relatively worse RMS scores.

5.3 Latency Prediction

DIEF is the main contributor to area overhead in GDP. Replacing it with a more
lightweight latency predictor could reduce the GDP area cost significantly. Fig-
ure 5.15 shows the accuracy errors per workload category for DIEF and LMT la-
tency predictions. The overall results of LMTs are similar to DIEF. However, LMTs
perform better within H and S workloads. Similarly, DIEF is better for L and M
workloads. The drawbacks of this depends somewhat on the expected use of a
processor. Section 5.1.2 discusses how better training data and a balanced train-
ing set can improve the accuracy within L and M workloads. This is applicable
also for latency predictions.

Figure 5.16 shows IPC estimation errors using both DIEF and LMTs for the la-
tency estimates in GDP. The general trends from the latency predictions also occur
for the IPC predictions. However, for L workloads the relative difference is much
less than for latency predictions alone. With little congestion in the memory sys-
tem, a greater part of the error can come from the CPL estimation and the model

a h l m s all
Per Workload Type

0

50

100

A
ve

ra
ge

R
M

S
E

st
im

at
io

n
E

rr
or

(c
yc

le
s)

DIEF LMT-10 LMT-40 LMT-80

Figure 5.15: Average RMS workload latency estimation errors

Chapter 5: Results 47

a h l m s all
Per Workload Type

0.00

0.05

0.10

0.15

A
ve

ra
ge

R
M

S
E

st
im

at
io

n
E

rr
or

(I
P

C
)

GDP LMT-Lat-10 LMT-Lat-40 LMT-Lat-80

Figure 5.16: Average RMS workload errors for GDP with DIEF and LMT-lat

not able to abstract the complete system behavior. For A, H, M and S workloads,
GDP with LMTs tend to give slightly worse IPC predictions than expected from the
latency predictions. A reason for this might be outliers in the latency predictions
magnified in the GDP performance model. Although LMTs can have good predic-
tions in general, they are more prone to have outliers due to misclassifications in
the tree or unstable planes in the linear regression.

Using LMTs for latency prediction can reduce the are overhead of GDP sig-
nificantly while preserving most of the accuracy. However, predicting IPC directly
or stall estimates in a combined performance model seems like a better option
considering the best accuracy using the same area.

5.4 Sensitivity analysis

The accuracy of the LMTs rely on many aspects. The most notable are probably
training data, available features, the tree structure and the linear regression. Be-
sides the training data, these parts of the system can be altered using less or more
area to make the predictions less or more accurate. If implemented in a processor,
the subparts of the LMTs should be optimized so they together give the best accu-
racy for the area used predicting. In the end there is a tradeoff between accuracy
and area, where the area is best spent on the components giving the highest accu-
racy improvements. Adding nodes to the tree adds accuracy, but with diminishing
returns. Adding features used for linear regression adds accuracy but also with
diminishing returns. This is the case for all adjustable parts of the LMT where the
area resources spent in any part of the tree should be tuned to overall giving the
best predictions.

This section gives a sensitivity analysis altering parts of the LMT subsystems
to see how it will change the IPC prediction accuracy. As the LMT predicting IPC
directly has the best results, it is used as the baseline for the sensitivity analysis.

5.4.1 Number of features for linear regression

The accuracy of the linear regression depends on the number of features available
for the regression. Adding features will add precision if the information is not yet

48 Peter Salvesen: Predicting Interference-Free Performance with Linear Model Trees

a h l m s all
Per Workload Type

0.00

0.05

0.10

0.15

0.20

S
or

te
d

R
M

S
E

st
im

at
io

n
E

rr
or

(I
P

C
)

Dec-tree
6-features

1-feature
12-features

3-features
all-features

Figure 5.17: Average RMS workload errors for varying feature sizes in a 10 leaf
node LMT-IPC

contained in other features or linear combinations of features. However, it is not
clear exactly how much of this accuracy relies on having many features for the
linear regression. Therefore, the number of features used for linear regression
was varied to check how much this altered the results in the test set. Reducing the
number of features used for linear regression will reduce the storage overhead
for the linear regression weights in the leaf nodes of a linear model tree. The
test set was rerun with 1, 3, 6, 12 and all features for linear regression in the
linear model tree with 10 leaf nodes. These results are displayed in figure 5.17,
including a decision tree (A LMT with a constant in the leaf nodes instead of a
linear regressor) for comparison.

As expected, using more features for linear regression yields better results. Us-
ing all features takes away more than half of the error in a decision tree. In general,
increasing the number of features used also increases the accuracy, with only a few
minor exceptions. Although the twelve best features were selected iteratively us-
ing R2 scores for linear regression on all training data, it becomes clear that the
accuracy can be improved further. This is caused by different features being im-
portant for linear regression in different subpopulations of the trees. However,
using all 25 features only makes the predictions a bit more accurate than using
12 features. As the storage overhead for linear regression weights is doubled, the
improved accuracy is 16% better than using 12 features. A way to take advantage
of different features being important in different subpopulations is using different
features for linear regression in the different leaf nodes. The iterative R2 analysis
could be repeated for every leaf node. However, this would also make evaluation
more complex and add area.

Depending on the tree size, adjusting the amount of features used might yield
better results for the same area. We have examined the 10 leaf node tree. Using
3 features for linear regression here instead of 12 features increases the predic-
tion error of 44%. However, it reduces the storage overhead of weights for linear
regression by 60%. This area could be spent making the tree larger, and perhaps
resulting in more precise predictions at the same area cost. Such aspects should
be considered choosing the LMT to be used in a specific implementation.

Chapter 5: Results 49

a h l m s all
Per Workload Type

0.00

0.05

0.10

0.15

0.20

A
ve

ra
ge

R
M

S
E

st
im

at
io

n
E

rr
or

(I
P

C
)

LMT-IPC-10 Dec-Tree-40 Dec-Tree-80

Figure 5.18: Average RMS errors for LMT and regular decision trees

Decision tree vs Linear Model Tree

The linear regression weights are one of the major contributors to area overhead
in LMTs. Decision trees can be used without linear regression in the leaf nodes at
a much lower area cost. Figure 5.18 shows the average RMS prediction error for
chosen tree sizes of LMT and decision trees. They are chosen to examine the pre-
diction accuracy of LMTs and decision trees with similar area overhead. Focusing
only on the tree, the storage overhead of the 10 leaf node LMT is 471 Bytes per
core. The storage overhead of the decision trees are 419 Bytes per core for the 40
leaf node tree, and 789 Bytes of the 80 leaf node tree. Although the decision trees
perform slightly better in H workloads, the overall performance is worse than the
10 leaf node LMT. Even the 80 leaf node decision tree is less accurate than the 10
leaf node LMT, even though it has a higher area cost. Hence, LMT will always the
better option for area efficient private mode performance prediction unless the
available area is less than the minimal viable LMT. The exception is worth men-
tioning, although very accurate predictions cannot be expected at such a low area
cost.

5.4.2 Auxiliary Tag Directories

ATDs are needed providing private LLC estimates as input features in the LMTs.
However, ATDs cause much area overhead. In small trees, they contribute more

a h l m s all
Per Workload Type

0.0

0.1

0.2

A
ve

ra
ge

R
M

S
E

st
im

at
io

n
E

rr
or

(I
P

C
)

GDP LMT-IPC-10 LMT-IPC-40 LMT-IPC-80

Figure 5.19: Average RMS errors for linear model trees without ATDs

50 Peter Salvesen: Predicting Interference-Free Performance with Linear Model Trees

a h l m s all
Per Workload Type

0.00

0.05

0.10

0.15

0.20

A
ve

ra
ge

R
M

S
E

st
im

at
io

n
E

rr
or

(I
P

C
)

LMT-IPC-10 LMT-10-IPC-No-ATD LMT-IPC-40 LMT-IPC-40-No-ATD

Figure 5.20: Average RMS errors for linear model trees with and without ATDs

than half the area overhead alone. If ATDs are already implemented in processors
for other purposes this is not a problem. Otherwise, using LMTs without ATDs
can be a way to significantly reduce the area overhead even further. In regression
evaluation we have run our test set without the features requiring ATDs. Figure
5.19 shows the average RMS prediction errors of LMTs without ATDs. The general
patterns are similar those predicting with ATDs. Although, the errors are slightly
larger and adding nodes to the LMT seem to give less accuracy improvements.
Notably, the diminishing returns of adding nodes in the tree converges to a higher
average RMS estimation error. However, if this error is acceptable, removing ATDs
can be beneficial to reduce the storage overhead. As for the LMT-IPC with ATDs,
the accuracy in M workloads is expected to be better with more training data.

For larger trees, the area overhead of adding ATDs is less compared to the total
overhead. Therefore, removing ATDs is most likely to be beneficial to reduce area
for small trees. Figure 5.20 shows the prediction performance of the 10 and 40
leaf node tree both with and without ATDs. The prediction errors without ATDs are
in general higher than predicting with ATDs. Quite surprisingly, for L workloads
predicting without ATDs is more accurate than predicting with ATDs. The expla-
nation for this is the low congestion in the memory system in L workloads. This
brings the private mode behavior of the memory system closer to the shared mode
behavior. Hence, where it chooses to split the tree based on private LLC estimates
this is a somewhat redundant information in the L workloads. Thus, splitting on
other features reduces the variance more for L workloads and then increases the L
workload accuracy. Overall, the 10 leaf node LMT without ATDs has an increased
prediction error of 17% compared to GDP, while reducing the area overhead by
85%. The 40 leaf node LMT without ATD increased prediction error with 31%
compared to GDP, while reducing the area overhead by 39%. These area reduc-
tions assume ATDs become redundant if not used for private mode performance
prediction.

5.4.3 Upper bound on prediction values

Specially within the undertrained M workloads, the LMT-IPC predict unrealisti-
cally high IPC values. However, even in well trained LMTs there are no guarantee

Chapter 5: Results 51

a h l m s all
Per Workload Type

0.00

0.05

0.10

0.15

A
ve

ra
ge

R
M

S
E

st
im

at
io

n
E

rr
or

(I
P

C
) LMT-IPC-10-1.00

LMT-IPC-10-No-cap
LMT-IPC-10-1.33 LMT-IPC-10-2.00 LMT-IPC-10-4.00

Figure 5.21: Average RMS errors of LMT-IPC-10 with varying upper bound

that misclassifications do not occur leading to outliers and spikes in predicted val-
ues. This can be some edge case where some particularly high value make the IPC
prediction much higher than the private mode IPC. One way to prevent spikes
in the predicted IPC values is through providing upper bounds or caps on how
large prediction values can be. Assuming this will improve accuracy, a critical de-
sign choice is how large this cap should be. The theoretical maximum IPC for our
implemented simulator is 4 (table 4.1). Hence, setting an upper bound of 4 for
predictions will never make predicted values too low. However, over five million
cycles the IPC is never close to being 4 in our training set. Therefore, having a
lower upper bound can improve accuracy even though the theoretical maximum
IPC is higher than the upper bound. The LMT-IPC have been tested on the test
set, with four different configurations of upper bounds. The upper bound is set
to be 4, 2, 1.33 and 1. Additionally, the baseline LMT-IPC with no upper bound
is included. The upper bound of 1.33 was chosen because that was the highest
measured IPC over an interval in the training set. The other upper bounds are
supposed to show how the estimation errors change besides an upper bound of
the theoretical maximum and the maximum measured in the training set. The
upper bounds are tested on LMT-IPC with 10, 40 and 80 leaf nodes.

10 leaf nodes: The 10 leaf node LMT-IPC with upper bounds are displayed
in figure 5.21. First, it becomes clear that the upper bound of 1 is too low and
increases the prediction errors. Otherwise, the prediction errors are almost iden-
tical. As there are many target values in the training data with an IPC over 1,
increased errors with a too low cap is expected. Having upper bounds at 2 and 4
gives the exact same prediction errors as having no cap at all. Therefore it seems
like having stable planes in the linear regression make significant error reductions
by upper bounds unlikely. This also points to the LMTs having few outliers for well
trained trees.

40 leaf nodes: The results for the 40 leaf node LMT-IPC with upper bounds
in figure 5.22 shows more interesting results than for the 10 leaf node LMT-IPC,
in the A workloads. The upper bound of 1 still predicts much worse than all other
configurations, while the upper bound of 1.33 is the best. However, in the A work-
load category having an upper bound of 4 and 2 gives increasing accuracy com-

52 Peter Salvesen: Predicting Interference-Free Performance with Linear Model Trees

a h l m s all
Per Workload Type

0.00

0.05

0.10

0.15

A
ve

ra
ge

R
M

S
E

st
im

at
io

n
E

rr
or

(I
P

C
) LMT-IPC-40-1.00

LMT-IPC-40-No-cap
LMT-IPC-40-1.33 LMT-IPC-40-2.00 LMT-IPC-40-4.00

Figure 5.22: Average RMS errors of LMT-IPC-40 with varying upper bound

a h l m s all
Per Workload Type

0.0

0.1

0.2

0.3

0.4

A
ve

ra
ge

R
M

S
E

st
im

at
io

n
E

rr
or

(I
P

C
) LMT-IPC-80-1.00

LMT-IPC-80-No-cap
LMT-IPC-80-1.33 LMT-IPC-80-2.00 LMT-IPC-80-4.00

Figure 5.23: Average RMS errors of LMT-IPC-80 with varying upper bound

pared to having no upper bound. Hence, some case in a few data points where
huge IPC values are predicted seem to be avoided with the cap. For all other work-
load categories there are only marginal accuracy benefits with the upper bound
of 1.33, compared to having larger upper bounds.

80 leaf nodes: Having upper bounds on IPC predictions give the most in-
teresting results in the 80 leaf node LMT-IPC, displayed in figure 5.23. Clearly,
having upper bounds on the prediction values helps correcting some of the errors
because of unstable linear regression with many leaf nodes in the LMT-IPC. Spe-
cially within M workloads, the upper bounds reduces the errors. With the upper
bound of 1.33, the "spikes" are gone and the errors are reduced by 65% in the M
workloads compared to having no upper bound. Although, with proper training
data there might not be a need for these upper bounds on predictions.

The final notion of comparing LMT-IPC predictions with upper bounds is that
they mostly improve misprediction due to undertrained and unstable linear re-
gression. However, the decision tree cannot guarantee that some observation has
linear regression weights giving too high predictions. To correct this, having up-
per bounds on predictions can be a way to gain some small extra percentages
of accuracy. Also, if the trees are made very small making outliers in prediction
more likely, upper bounds can be a way to prevent large mispredictions. Other-
wise, regular spikes in the IPC predictions should indicate that more training data
is needed.

Chapter 6

Conclusion and future work

6.1 Conclusion

The main goal of this project was reducing the area overhead of accurate pri-
vate performance predictions. First, the LMT structure was proposed for private
mode performance prediction, explaining why the regression model had qualities
making accurate performance accounting likely. In short, the results show that
the proposed way of using LMTs work very well by effectively classifying subpop-
ulations with a similar memory behavior, and exploiting linearity in the memory
system. Hence, the assumptions made motivating the use of LMTs for performance
accounting are viable. The trained LMT-IPC model on the balanced training set re-
duces prediction error compared to state-of-the-art GDP with 1%, while reducing
the storage overhead by 24%. Assuming ATDs are implemented to be used across
policies, the additional storage overhead for private mode performance predic-
tion is reduced by 60%. If ATDs become redundant if not used for private mode
performance prediction, another LMT-IPC setup is proposed having an error in-
crease of 17% compared to GDP where the storage overhead is reduced by 85%.
If accuracy is important, the results also show how the number nodes in the LMT
can be extended to reduce prediction errors. For the LMT-IPC with 40 leaf nodes,
the prediction errors compared to state-of-the-art GDP are reduced by 19%.

6.2 Future Work

Although the proposed use of LMTs for private mode performance prediction im-
proves the challenges mentioned in the project description, some weak points of
the current setup have been exploited as a part of the design space exploration.
Within the scope of this project, there was not time enough to examine all possible
ways of using LMTs for private mode performance prediction, where simulation
evaluation and gathering data often take weeks. Being the first to propose LMTs
for that use, several possible ways to improve the model further have come to
mind. It is likely that more work and a closer examination of LMTs for private

53

54 Peter Salvesen: Predicting Interference-Free Performance with Linear Model Trees

mode performance prediction can lead to an even better accuracy at the same
area cost. Following, possible ways to improve the LMT predictions are discussed.

Better training data: Section 5.1.2 revealed that the accuracy can be signif-
icantly improved with more and better training data. Specially within M work-
loads, the LMT struggle with our test and training set. However, the accuracy
improvements were huge for H workloads with additional training data. Hence,
this is likely to also be the case for M workloads. Seeing how precise the overall
accuracy can be with more and better training data for the LMTs is an obvious
place to start improving the method.

Linear Regression MSE as decision tree cost function: A way which most
likely better the splits in the tree for our usage is by having the linear regression
MSE error as the cost function determining splits in the tree. This is a better option
as the LMT error that should be minimized is the MSE after linear regression. This
would require making a linear regression model of the data for every optional split
in the tree. This would heavily increase the computational intensity of making the
tree, but do not alter the LMT evaluation. For the training data, the MSE splits
(not linear regression MSE) are an upper bound of accuracy compared to linear
regression MSE. Hence, using linear regression MSE is likely to improve prediction
accuracy but how much the improvement will be is not clear.

PCA preprocessing to reduce storage overhead: Section 3.3.3 points out
how fewer features used for linear regression can much reduce storage overhead.
Besides ATDs, the majority of the storage overhead in the trees come from weights
for linear regression. A way to retain information used for linear while reducing
the number of weights and storage overhead is through dimension reduction.
PCA preprocessing maximizes the input variance for a reduced set of dimensions.
Examining setups using PCA can be very interesting to see if that can make the
accuracy even better for the same storage cost.

GDP performance model: An important quality of the GDP performance
model is how it isolates components staying the same in both shared and private
mode. Intuitively, estimating only the changing components should give more ac-
curate predictions than estimating all components combined. However, for our
setup this is not the case. Although providing stall estimates gives quite good re-
sults, predicting IPC directly has better overall results. While the relative accuracy
of predicting stall cycles is slightly better than IPC, some error gets propagated
in the performance model making the IPC predictions through stall cycles slightly
larger. Therefore, it would be interesting to see if the model can be tuned to make
IPC predictions via stall cycles more accurate than IPC directly.

IPC predictions without ATD: Although section 5.4.2 shows preliminary re-
sults for predictions without ATDs. However, a more thorough examination if pre-
dictions without ATDs give sufficient accuracy is needed. The general pattern is
that much of the information of the memory system behavior is contained and
sufficient to predict accurately. Although, the estimation errors are slightly larger.
However, the massive reduction in storage overhead should be considered if ATDs
become redundant if not used for private mode performance prediction. It is also

Chapter 6: Conclusion and future work 55

possible that adding features can include some of the information lost by not using
ATDs.

Per leaf node feature selection: Section 5.4.1 shows how different features
are important in different leaf nodes. The R2 analysis is currently done on all
training data. However, the prediction errors are likely to be reduced by having
an individual analysis of which features to use in each leaf node. For the 10 leaf
node LMT-IPC, using all 25 features reduces the prediction errors compared to
using 12 features by 16%. Using all features will add much storage overhead for
the linear regression weights. A way to gain some accuracy while not having to
double the storage cost of the weights is by selecting features on a per leaf node
basis. However, this will add some extra logic to handle which features are used
in each leaf node.

Bibliography

[1] K. J. Nesbit, M. Moreto, F. J. Cazorla, A. Ramirez, M. Valero, and J. E. Smith,
“Multicore resource management,” IEEE micro, vol. 28, no. 3, pp. 6–16,
2008.

[2] M. Jahre and L. Eeckhout, “GDP: Using dataflow properties to accurately
estimate interference-free performance at runtime,” in 2018 IEEE Inter-
national Symposium on High Performance Computer Architecture (HPCA),
IEEE, 2018, pp. 296–309.

[3] K. Du Bois, S. Eyerman, and L. Eeckhout, “Per-thread cycle accounting
in multicore processors,” ACM Transactions on Architecture and Code Op-
timization (TACO), vol. 9, no. 4, pp. 1–22, 2013.

[4] Amazon EC2 pricing, https://aws.amazon.com/ec2/pricing/.

[5] Microsoft azure, linux virtual machines pricing, https://azure.microsoft.
com/en-us/pricing/details/virtual-machines/linux/.

[6] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A low-overhead,
high-performance, runtime mechanism to partition shared caches,” in 2006
39th Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO’06), 2006, pp. 423–432.

[7] R. Wang and L. Chen, “Futility scaling: High-associativity cache partition-
ing,” in 2014 47th Annual IEEE/ACM International Symposium on Microar-
chitecture, IEEE, 2014, pp. 356–367.

[8] X. Zhou, W. Chen, and W. Zheng, “Cache sharing management for perfor-
mance fairness in chip multiprocessors,” in 2009 18th International Con-
ference on Parallel Architectures and Compilation Techniques, IEEE, 2009,
pp. 384–393.

[9] O. Mutlu and T. Moscibroda, “Stall-time fair memory access scheduling for
chip multiprocessors,” in 40th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO 2007), IEEE, 2007, pp. 146–160.

[10] O. Mutlu and T. Moscibroda, “Parallelism-aware batch scheduling: Enhanc-
ing both performance and fairness of shared DRAM systems,” in 2008 In-
ternational Symposium on Computer Architecture, IEEE, 2008, pp. 63–74.

57

https://aws.amazon.com/ec2/pricing/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/

58 Peter Salvesen: Predicting Interference-Free Performance with Linear Model Trees

[11] M. Xie, D. Tong, K. Huang, and X. Cheng, “Improving system throughput
and fairness simultaneously in shared memory CMP systems via dynamic
bank partitioning,” in 2014 IEEE 20th International Symposium on High
Performance Computer Architecture (HPCA), IEEE, 2014, pp. 344–355.

[12] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread cluster
memory scheduling: Exploiting differences in memory access behavior,” in
2010 43rd Annual IEEE/ACM International Symposium on Microarchitec-
ture, IEEE, 2010, pp. 65–76.

[13] C. Luque, M. Moreto, F. J. Cazorla, R. Gioiosa, A. Buyuktosunoglu, and M.
Valero, “CPU accounting for multicore processors,” IEEE Transactions on
Computers, vol. 61, no. 2, pp. 251–264, 2011.

[14] A. Jaleel, H. H. Najaf-Abadi, S. Subramaniam, S. C. Steely, and J. Emer,
“CRUISE: Cache replacement and utility-aware scheduling,” in Proceedings
of the seventeenth international conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 2012, pp. 249–260.

[15] R. Das, R. Ausavarungnirun, O. Mutlu, A. Kumar, and M. Azimi, “Application-
to-core mapping policies to reduce memory system interference in multi-
core systems,” in 2013 IEEE 19th International Symposium on High Perfor-
mance Computer Architecture (HPCA), IEEE, 2013, pp. 107–118.

[16] C. Luque, M. Moreto, F. J. Cazorla, R. Gioiosa, A. Buyuktosunoglu, and
M. Valero, “Itca: Inter-task conflict-aware cpu accounting for CMPs,” in
2009 18th International Conference on Parallel Architectures and Compila-
tion Techniques, IEEE, 2009, pp. 203–213.

[17] L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and O. Mutlu, “The appli-
cation slowdown model: Quantifying and controlling the impact of inter-
application interference at shared caches and main memory,” in 2015 48th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
IEEE, 2015, pp. 62–75.

[18] L. Subramanian, V. Seshadri, Y. Kim, B. Jaiyen, and O. Mutlu, “MISE: Pro-
viding performance predictability and improving fairness in shared main
memory systems,” in 2013 IEEE 19th International Symposium on High Per-
formance Computer Architecture (HPCA), IEEE, 2013, pp. 639–650.

[19] P. Salvesen, “Towards low-overhead private mode performance prediction
in multicores,” NTNU, 2019.

[20] A. Glew, “MLP yes! ILP no,” ASPLOS Wild and Crazy Idea Session, vol. 98,
1998.

[21] F. J. Cazorla, P. M. Knijnenburg, R. Sakellariou, E. Fernández, A. Ramirez,
and M. Valero, “Predictable performance in SMT processors,” in Proceedings
of the 1st Conference on Computing Frontiers, 2004, pp. 433–443.

Bibliography 59

[22] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt, “A case for MLP-
aware cache replacement,” in 33rd International Symposium on Computer
Architecture (ISCA’06), 2006, pp. 167–178.

[23] S. Eyerman and L. Eeckhout, “Per-thread cycle accounting in SMT proces-
sors,” ACM Sigplan Notices, vol. 44, no. 3, pp. 133–144, 2009.

[24] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A mechanistic
performance model for superscalar out-of-order processors,” ACM Trans.
Comput. Syst., vol. 27, no. 2, May 2009, ISSN: 0734-2071. DOI: 10.1145/
1534909 . 1534910. [Online]. Available: https : / / doi . org / 10 . 1145 /
1534909.1534910.

[25] T. S. Karkhanis and J. E. Smith, “A first-order superscalar processor model,”
in Proceedings. 31st Annual International Symposium on Computer Architec-
ture, 2004., IEEE, 2004, pp. 338–349.

[26] A. B. Kahn, “Topological sorting of large networks,” Communications of the
ACM, vol. 5, no. 11, pp. 558–562, 1962.

[27] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to statis-
tical learning. Springer, 2013, vol. 112.

[28] X. Zhao, M. Jahre, and L. Eeckhout, “HSM: A hybrid slowdown model for
multitasking GPUs,” in Proceedings of the Twenty-Fifth International Con-
ference on Architectural Support for Programming Languages and Operating
Systems, 2020, pp. 1371–1385.

[29] R. J. Struharik and L. A. Novak, “Hardware implementation of decision
tree ensembles,” Journal of Circuits, Systems and Computers, vol. 22, no. 05,
p. 1 350 032, 2013.

[30] S. Lopez-Estrada and R. Cumplido, “Decision tree based FPGA-architecture
for texture sea state classification,” in 2006 IEEE International Conference on
Reconfigurable Computing and FPGA’s (ReConFig 2006), IEEE, 2006, pp. 1–
7.

[31] Y. Xie and G. H. Loh, “PIPP: Promotion/insertion pseudo-partitioning of
multi-core shared caches,” ACM SIGARCH Computer Architecture News, vol. 37,
no. 3, pp. 174–183, 2009.

[32] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K.
Reinhardt, “The m5 simulator: Modeling networked systems,” IEEE Micro,
vol. 26, no. 4, pp. 52–60, Jul. 2006, ISSN: 1937-4143. DOI: 10.1109/MM.
2006.82.

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., “Scikit-learn: Ma-
chine learning in python,” the Journal of machine Learning research, vol. 12,
pp. 2825–2830, 2011.

[34] A. P. Magnus Jahre, Magnus’ m5 simulator, https://github.com/magnusjahre/
MM5.

https://doi.org/10.1145/1534909.1534910
https://doi.org/10.1145/1534909.1534910
https://doi.org/10.1145/1534909.1534910
https://doi.org/10.1145/1534909.1534910
https://doi.org/10.1109/MM.2006.82
https://doi.org/10.1109/MM.2006.82
https://github.com/magnusjahre/MM5
https://github.com/magnusjahre/MM5

60 Peter Salvesen: Predicting Interference-Free Performance with Linear Model Trees

[35] J. Casazza, "intel core i7-800 processor series and the intel core i5-700 pro-
cessor series based on intel microarchitecture (nehalem)", 2009, Published:
White paper, Intel Corp.

[36] S. C. w. p. 2007, Spec, http://www.spec.org/cpu2000/..

[37] J. L. Henning, “2006, SPEC CPU2006 benchmark descriptions,” in SIGARCH
Computer Architecture News, vol. 34, no. 4, pp. 1–17.

[38] G. H. E. Perelman and B. Calder, “Picking statistically valid and early sim-
ulation points,” in PACT’03: Proc. of the 12th Int. Conf. on Parallel Architec-
tures and Compilation Techniques, 2003, p. 244.

[39] J. L. G. Hamerly E. Perelman and B. Calder, “Simpoint 3.0: Faster and more
flexible program analysis,” in Journal of Instruction Level Parallelism, 2005.

http://www.spec.org/cpu2000/.

Appendix A

Workload Generation

We use 51 SPEC2000 [36] and SPEC2006 [37] benchmarks to generate multi-
programmed workloads that contain one benchmark per physical core. Our start-
ing point is to use SimPoints [38], [39] to select a representative 100 million
instruction sample for each benchmark. Then, we functionally simulate the bench-
mark until the start of this sample and take a checkpoint. This checkpoint contains
private cache state. Finally, we profile the representative sample of each bench-
mark while varying the available LLC-ways and off-chip bandwidth. More specif-
ically, we vary LLC capacity by making 1, 2, 4, 8, or all (16) ways available to the
benchmark in an 8MB LLC and letting it access between 1/16, 1/8, 1/4, 1/2, or
all of the bandwidth of a single-channel DDR4 system.

Based on these profiles, we classify the benchmarks into four categories. We
first sort the benchmarks based on their speed-up from the configuration with
the most resources (i.e., 16 ways and all of the DRAM bandwidth) compared to
the configuration with least resources (i.e., 1 way and 1/16 of the DRAM band-
width). Then, we classify the 10 benchmarks with the highest overall speed-up
and speed-up of more than 1.985 between the 16-way and 1-way configuration
as highly memory sensitive (H). After removing these benchmarks, we classify the
10 benchmarks with the highest speed-ups as streaming (S); and we manually ver-
ify that they are exhibiting streaming behavior. Of the remaining benchmarks, the
20 with the highest speed-ups are classified as having medium sensitivity (M),
and the remaining 11 benchmarks are classified as having low sensitivity (L).

Using this classification, we randomly generate 25 workloads with the H-
benchmarks, 25 S- benchmark workloads, 10 M-benchmark workloads, and 10
L-benchmark workloads. To account for heterogeneous workload mixes, we also
randomly generate 10 workloads where benchmarks are drawn from all categories
(i.e., the A-workloads). We require that a single benchmark appears at most twice
in a workload.

61

Appendix B

Iterative Feature Selection

This appendix is an addition to the selection of features for linear regression 4.5.2.
It consists of tables showing every added feature and the corresponding R2 value
for itself and the preceding features combined.

B.1 latency

Table B.1 shows the iterative selection of features to predict latency using linear
regression.

63

64 Peter Salvesen: Predicting Interference-Free Performance with Linear Model Trees

Feature R2

Shared Mode Total Latency 0.39856
Private Mode LLC Writeback Estimate 0.57341
Total Number of Shared Mode Memory Requests 0.64262
Average Shared Mode Latency 0.6643
Aggregated Shared Mode LLC Misses and Writebacks for
all cores

0.68296

Average Shared Mode PMS Latency 0.69204
Private Mode LLC Hit Estimate 0.70314
Shared Mode LLC Hits 0.72966
Private Mode LLC Access Estimate 0.75249
Shared Mode LLC Accesses 0.75777
Number of Shared Mode Shared Stores 0.76296
Shared Mode Write Stall Cycles 0.76487
Number of Shared Mode Hidden Loads 0.76542
Shared Mode LLC Writebacks 0.7658
Shared Mode IPC 0.76611
Compute Cycles 0.76801
Number of Shared Mode Write Stalls 0.76814
Shared Mode PMS Stall Cycles 0.76823
Shared Mode Private Blocked Stall Cycles 0.76827
Average Shared Mode Shared Store Latency 0.76828
Shared Mode Empty ROB Stall Cycles 0.76829
Shared Mode Stall Cycles 0.76829
Memory Independent Stall Cycles 0.76829
Summarized Shared Mode LLC Misses and Writebacks 0.76829
Total Shared Mode PMS and SMS Stall Cycles 0.76829

Table B.1: Iterative feature selection using R2 for latency

Chapter B: Iterative Feature Selection 65

Feature R2

Private Mode LLC Writeback Estimate 0.16059
Shared Mode PMS Stall Cycles 0.26265
Shared Mode Total Latency 0.38938
Average Shared Mode Latency 0.49273
Shared Mode Stall Cycles 0.53165
Aggregated Shared Mode LLC Misses and Writebacks for
all cores

0.5503

Average Shared Mode PMS Latency 0.56205
Shared Mode IPC 0.56768
Compute Cycles 0.5731
Summarized Shared Mode LLC Misses and Writebacks 0.57872
Shared Mode LLC Writebacks 0.61006
Total Number of Shared Mode Memory Requests 0.62421
Private Mode LLC Hit Estimate 0.66981
Private Mode LLC Access Estimate 0.76084
Number of Shared Mode Hidden Loads 0.76665
Number of Shared Mode Write Stalls 0.76802
Shared Mode LLC Accesses 0.76914
Memory Independent Stall Cycles 0.77006
Shared Mode Write Stall Cycles 0.77084
Average Shared Mode Shared Store Latency 0.77119
Number of Shared Mode Shared Stores 0.77141
Shared Mode Private Blocked Stall Cycles 0.77145
Shared Mode Empty ROB Stall Cycles 0.77197
Total Shared Mode PMS and SMS Stall Cycles 0.77197
Shared Mode LLC Hits 0.77197

Table B.2: Iterative feature selection using R2 for SMS-load stall cycles

B.2 SMS-load stalls

Table B.2 shows the iterative selection of features to predict SMS-load stall cycles
using linear regression.

66 Peter Salvesen: Predicting Interference-Free Performance with Linear Model Trees

Feature R2

Shared Mode IPC 0.58773
Private Mode LLC Writeback Estimate 0.63798
Shared Mode Total Latency 0.65545
Shared Mode PMS Stall Cycles 0.66992
Aggregated Shared Mode LLC Misses and Writebacks for
all cores

0.6763

Compute Cycles 0.6803
Memory Independent Stall Cycles 0.68991
Shared Mode LLC Accesses 0.70016
Private Mode LLC Hit Estimate 0.75875
Shared Mode LLC Hits 0.76731
Private Mode LLC Access Estimate 0.77499
Average Shared Mode PMS Latency 0.78171
Average Shared Mode Shared Store Latency 0.7845
Total Number of Shared Mode Memory Requests 0.78698
Shared Mode Stall Cycles 0.78898
Number of Shared Mode Shared Stores 0.78988
Shared Mode LLC Writebacks 0.79041
Shared Mode Write Stall Cycles 0.79069
Number of Shared Mode Hidden Loads 0.79081
Shared Mode Private Blocked Stall Cycles 0.79091
Average Shared Mode Latency 0.79097
Number of Shared Mode Write Stalls 0.79103
Shared Mode Empty ROB Stall Cycles 0.79108
Total Shared Mode PMS and SMS Stall Cycles 0.79108
Summarized Shared Mode LLC Misses and Writebacks 0.79108

Table B.3: Iterative feature selection using R2 for IPC

B.3 IPC

Table B.3 shows the iterative selection of features to predict IPC using linear re-
gression.

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Peter Salvesen

Predicting Interference-Free
Performance with Linear Model Trees

Master’s thesis in Computer Science

Supervisor: Magnus Jahre

June 2020

	Project Description
	Abstract
	Sammendrag
	Acknowledgements
	Contents
	Figures
	Tables
	Introduction
	Predicting Interference-Free Performance
	Assignment Interpretation
	Project contributions

	Background
	Private mode performance prediction
	Invasive accounting: ASM
	Architecture-centric Accounting
	Dataflow Accounting: GDP

	Linear Model Trees
	Decision Trees
	Linear Regression
	Combining decision trees and linear regression

	LMTs in private mode performance prediction

	Implementing Linear Model Trees
	Defining LMT performance models
	Hardware Implementation
	Performance and Area Overhead
	Linear Model Tree
	Total model storage overhead
	Reducing storage overhead

	Methodology
	M5 Simulator
	Workload generation
	Scikit-Learn
	Data and testset
	Feature Selection
	Coefficient of Determination
	Linear Regression

	Metrics

	Results
	IPC prediction
	Regression evaluation
	Balanced training set
	GDP and streaming benchmarks
	Simulator evaluation

	Stall prediction
	Latency Prediction
	Sensitivity analysis
	Number of features for linear regression
	Auxiliary Tag Directories
	Upper bound on prediction values

	Conclusion and future work
	Conclusion
	Future Work

	Bibliography
	Workload Generation
	Iterative Feature Selection
	latency
	SMS-load stalls
	IPC

