
3D Facial Reconstruction from
Front and Side Images

June 2020

M
as

te
r's

 th
es

is

M
aster's thesis

Ola Lium

2020
Ola Lium NT

NU
N

or
w

eg
ia

n 
Un

iv
er

si
ty

 o
f

Sc
ie

nc
e 

an
d 

Te
ch

no
lo

gy
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

De
pa

rt
m

en
t o

f C
om

pu
te

r S
ci

en
ce





3D Facial Reconstruction from Front and
Side Images

Ola Lium

Master of Science in Computer Science
Submission date: June 2020
Supervisor: Theoharis Theoharis, IDI
Co-supervisor: Antonios Danelakis, IDI

Norwegian University of Science and Technology
Department of Computer Science





Abstract

Being able to reconstruct 3D faces from 2D images is useful for a variety of Computer
Vision branches, such as Face Analysis and Face Recognition. Recent advancements in
the Computer Vision field has enabled the use of CNNs to produce good 3D facial re-
constructions. The Position map Regression Network (PRN) is a recent method which
produces convincing 3D faces from 2D images using a CNN. PRN uses a single facial
image as input and predicts a UV position map, containing the aligned 3D positions from
a 3D face. By building on the works made with PRN this thesis proposes a new method
which produces 3D faces from two images, one front and one side. The method uses a
network architecture similar to the PRN network architecture, but is modified to fit two
input images and uses more modern CNN components. The proposed CNN is trained on
both synthetic and real data. The synthetic data is generated using a synthetic facial gen-
eration software. We show that the proposed network is able to predict faces in the MICC
Florence dataset with greater accuracy than PRN.

Sammendrag

Å kunne rekonstruere 3D modeller av ansikter fra 2D bilder er nyttig innenfor biometrisk
ansiktsgjenkjenning. Nylige fremskritt innen datasyn og dyp læring har muliggjort bruk
av nevrale nettverk for å generere rekonstruksjoner av ansikt fra bildedata. En metode
som bruker et nevralt nettverk for å rekonstruere 3D ansikt er en metode kalt Position map
Regression Network (PRN) [1]. Vi skal i denne avhandlingen bygge videre på arbeidet
gjort med PRN og foreslår en ny metode for rekonstruksjon av ansikt fra bildedata. Vår
metode bruker to ansiktsbilder, et foran og et fra siden, for å rekonstruere et ansikt. Et
sentralt element i vår metode er det nevrale nettverket. For å trene dette nettverket bruker
vi både syntetisk og ekte data. Den syntetiske dataen er generert ved hjelp av programvare
spesialisert i syntetisk ansiktsgenerering. Vår metode rekonstruerer ansikter fra MICC
Florence datasettet med større nøyaktighet enn PRN.
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Chapter 1

Introduction

Biometric recognition and analysis from 3D facial images is inherently advantageous com-
pared to 2D facial images, as it does not suffer from pose and illumination variations.
However, many existing databases consist of only one or more 2D facial images. By ac-
curately reconstructing 3D faces from 2D images we eliminate the need for 3D imaging
technology and can make use of the larger 2D facial image databases. Reconstructing 3D
faces from 2D images is therefore an important computer vision problem.

By applying recent deep learning techniques several methods have been proposed to
solve this problem. A method proposed in [1] has had good success compared to other
methods with reconstructing 3D faces from a single input image by utilizing position maps
to record facial shapes. The method is called Position map Regression Network (PRN) and
applies an end-to-end Convolutional Neural Network (CNN) to predict position maps from
a single input facial image.

The goal of this thesis is to reconstruct 3D faces from front and side images. By
expanding on a previous single image method and utilizing synthetic data we aim to re-
construct 3D faces with greater accuracy. We propose a new method which builds on
the work in [1]. The proposed method uses a CNN to map two facial images, one front
and one side, into a position map. The new CNN is also fitted with more modern net-
work components. The backbone ResNet [4] encoder network in PRN is replaced with
inverted residuals components from MobileNetV2 [5]. The proposed method is trained
on both synthetic and real data to further increase the performance. For the generation
of the synthetic data the FaceGen1 tool was used, while for the real data, the 300W-LP
[7] was recruited. The differences between the proposed method and PRN are outlined in
figure 1.1. To assess and compare our proposed method to the PRN, we test the networks
on the MICC Florence Dataset [6] by introducing an evaluation pipeline which aligns and
calculates the facial reconstruction accuracy.

1https://facegen.com/
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Front

Side

CNN (MobileNetV2) position map 3D face mesh

Front CNN (ResNet) position map 3D face mesh

300W-LP

300W-LP

Synthetic
Data

FaceGen

PRN

Proposed method

Figure 1.1: Outline of the proposed method (top), compared to the PRN (bottom). The CNN in the proposed
method is trained on both synthetic and real data.

1.1 Structure of Thesis

The thesis is structured as follows:
Chapter 1 introduces the work in this thesis.
Chapter 2 covers the necessary background theory.
Chapter 3 describes relevant works and datasets for 3D facial reconstruction.
Chapter 4 contains the proposed method implementation.
Chapter 5 presents the evaluation pipeline and results on the MICC Florence dataset.
Chapter 6 provides the conclusion and outline further work.
Appendix A lists relevant code from our implementation.
Appendix B contains the installation manual for our prototype.
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Chapter 2

Background

This chapter covers the necessary background theory to understand the methodology de-
scribed later in this thesis. Only relevant theory will be covered. To gain a further insight
the reader is encouraged to examine referenced sources.

Section 2.1 covers the basic concepts of Convolutional Neural Networks(CNNs)
Section 2.2 examines two relevant CNN architectures
Section 2.3 covers relevant data augmentations for image processing
Section 2.4 looks at example uses of synthetic data
Section 2.5 introduces generative models for faces
Section 2.6 describe the FaceGen software
Section 2.7 defines relevant matrix transformations
Section 2.8 covers UV mapping and UV Position mapping
Section 2.9 give a description of a point cloud alignment algorithm

2.1 Convolutional Networks

If the reader is not familiar with the biological background of Neural networks and the
basic Artificial Neural Network perception the reader is encouraged to read Nielsen[8] or
Goodfellow et al. [2, p. 164-224]. Unless explicitly stated otherwise, the theory in this
section is from Goodfellow et al. [2].

Convolutional networks, also known as convolutional neural networks (CNNs) are
neural networks which contain at least one convolutional layer. Typically a CNN contains
one or more convolutional layers interspersed with pooling layers and one or more fully
connected layersin the end. The following sections 2.1.1-2.1.11 detail the CNN basics.

3



2.1.1 Convolution operator

The name convolutional networks comes from the mathematical operation which these
networks use, namely convolution. The convolution operation can be defined as an opera-
tion on two functions x and w of a real-valued argument t.

s(t) =
∫

x(a)w(t−a)da. (2.1)

The operation is typically denoted with an asterisk: s(t) = (x ∗w)(t). As the data in
computer applications usually are discrete, we define a discrete convolution:

s(t) = (x∗w)(t) =
∞

∑
a=−∞

x(a)w(t−a). (2.2)

the x in equations 2.1 and 2.2 is, in CNN terminology, referred to as the input, while
the w is called the kernel. The output can be referred to as feature maps. The input
in computer applications is usually a multidimensional array of data, while the kernel is
usually a multidimensional array of parameters, or weights. The weights are what the
learning algorithm is adapting. Assuming that the functions are zero everywhere but in the
finite set of point values, the infinite summation can be replaced by a summation of a finite
number of array elements. Additionally convolutions are often used over more than one
axis at a time, for example over a two-dimensional image. With a two-dimensional image
I input and a two-dimensional kernel K the convolution is defined as:

s(i, j) = (I ∗K)(i, j) = ∑
m

∑
n

I(m,n)K(i−m, j−n). (2.3)

As convolution is commutative, 2.3 is equivalent to 2.4.

s(i, j) = (K ∗ I)(i, j) = ∑
m

∑
n

I(i−m, j−n)K(m,n). (2.4)

The commutative property occurs because the kernels are flipped relative to the input.
This way the input index increases with m as the kernel index decreases. In practice a
more commonly used function is the cross-correlation function. The function is the same
as a convolution, but without flipping the kernel:

s(i, j) = (I ∗K)(i, j) = ∑
m

∑
n

I(i+m, j+n)K(m,n). (2.5)

An example of a cross-correlation can be found in figure 2.1. As many neural network
libraries implement the cross-correlation function, these functions are not differentiated
any further and both are referred to as convolutions.

4



Figure 2.1: Figure from Goodfellow et al. [2] showing an example of a cross-correlation, with input, kernel and
output

2.1.2 Fully Connected Layer

The traditional feedforward neural networks, also called Multi-layer perceptrons (MLPs),
predict a category based on an input using perceptrons. The input is passed through layers
of perceptrons to approximate a function mapping the input to the output. Increasing the
number of layers allows the network to approximate more complex functions. Each of
the outputs from the previous layer is passed through every perceptron in the following
layer. The traditional feedforward neural network uses fully connected layers to predict
categories from an output, while CNNs contain at least one convolutional layer.

2.1.3 Convolutional Layer

Convolutional layers use convolutions to compute their output. The convolutional opera-
tion entails three beneficial properties, namely sparse connectivity, parameter sharing and
equivariance to translation.

5



Sparse connectivity

In fully connected layers every input unit interacts with every output unit by a matrix
multiplication. However, in convolutional layers the convolution kernels are smaller than
the input, each output unit is then only connected to a subset of input units specified by the
kernel. This causes sparse connectivity. When passing an image through a convolutional
layer the input image might be thousands or millions of pixels, while the kernel which can
detect meaningful image features might be tens or hundreds of pixels. The result of sparse
connectivity is a reduced model size and fewer mathematical operations.

Parameter Sharing

In a fully connected layer each weight is used only once when computing the output, while
in convolutional layers each weight is used multiple times. This is called parameter sharing
and further reduces the storage needed by the network. As each kernel is used on every
input unit, the learning algorithm has to learn far fewer weights.

Equivariance to translation

Convolutional layers also have the property of equivariance to translation. The particu-
lar form of parameter sharing found in convolutional layers means that any translation
changes in the input causes the same translation in the output. This property is very useful
when detecting edges in an image input, as the edge location is simply translated together
with the image, if the input image changes position.

2.1.4 Pooling layer

Typical convolutional network layers consists of three stages. At the first stage, the layer
performs several convolutions to produce a set of linear activations. The output of the
linear activations are then passed through a nonlinear activation function. For the third and
final stage of a typical convolutional network layer we use some sort of pooling function
to further modify the output from the nonlinear activation function.

The pooling function produces a summary statistic of nonlinear activation outputs. An
example of a pooling function can be the max pooling function. This function simply
reports the maximum nonlinear activation output within a set neighbourhood.

2.1.5 Transposed Convolutional Layer

A transposed convolution is a transposed convolution operation. A transposed convolu-
tional layer is similar to a convolutional layer, but uses transposed convolution matrices to
calculate its output. Transposed convolutional layers usually use feature maps predicted
by a neural network to predict an aspect of the input image that produced the feature maps.

6



Transposed convolutional layers are for instance used in deconvolutional networks to pre-
dict the original input image from a set of feature maps [9].

2.1.6 Training a CNN

The weights of CNNs are trained similarly to fully connected neural networks. After
calculating the network prediction loss by the selected cost function, typically the squared
loss, the update gradient is calculated and passed backwards through the network through
backpropagation.

2.1.7 Transfer Learning

Using a previously trained network to initialize the weights or predict features relevant
for another network is called transfer learning. If a prediction application lacks labeled
training data or want to make use of a large dataset transfer learning is applicable. Trans-
fer learning is particularly relevant in image processing problems as datasets can contain
millions of pictures [10], and labeled data can be hard to come by. There are two main
transfer learning approaches, using a pretrained CNN as a feature extractor and fine-tuning
a pretrained CNN [3].

By fine-tuning a pretrained CNN the classification layers of the pretrained CNN is
replaced and trained on new data relevant to a new problem. Some of the upper layers
of the pretrained network might be freezed to reduce overfitting. Using a lower learning
rate is crucial to limit big gradient updates in the pretrained layers. If we want to train a
pretrained network on a large dataset fine-tuning can be an effective approach [3].

2.1.8 Generalization, Overfitting and Underfitting

The goal of a CNN is to perform well on new, previously unseen relevant inputs. The abil-
ity to do well on unseen inputs is called generalization. Observing the generalization is
simply done by labeling a percentage of the input data as validation data, on which the net-
work never optimizes, but simply evaluates. When the network is unable to further lower
the error cost of the validation data, or validation loss, the network should not optimize
any further.

A network is overfitted if the network has low error on the training data, but has a
high error on new unseen data. Overfitting occurs when the gap between these loss values
are too large. If the network is unable to find a low error value on the training error, the
network is suffering from underfitting. By increasing or reducing the number of layers,
and network parameters, we may control the capacity of the network. This capacity may
affect the networks likelihood of overfitting or underfitting.
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2.1.9 CNN Hyper Parameters

This section details relevant hyper parameters for the network implementation later in this
thesis 4.3.2. Hyper parameters are the variables defining the network architecture and
learning parameters. Selecting the best hyper parameters for a neural network is not a
trivial problem, it is done through experimentation and intuition. An approach to find
the best parameters can be through a grid search. A grid search manually or automatically
trains the target network with all relevant hyper parameter combinations and select the best
one. To save resources and time, an alternative approach is to first set the hyper parameters
based on experience and intuition, and then grid search the hyper parameters you see most
relevant.

Network Architecture

When deciding on the architecture of the network the appropriate number of units and
the number of layers is important. Increasing the number of layers in CNNs generally
produce better result, but at a certain depth the gain of prediction accuracy drops as the
network is harder to optimize. Also, increasing the depth of the network increases the
number of weights to optimize, which will affect the performance of the network. The
size of the different layers also affects the network’s ability to learn. To maximize the
network generalization it is important to find the best ratio between depth and size. The
depth and size of the network is found through experimentation and careful monitoring of
the validation loss result. It is also useful to use previous successful network architectures
to find inspiration when creating a new network.

Activation Functions

Activation functions define the output value of a unit from it’s inputs. We will go through
the relevant two activation functions relevant for the network implementation later in this
thesis. Plots of the activation functions is found in figure 2.2

(a) Sigmoid (b) ReLU

Figure 2.2: Plots of activation functions from the CS231n webpage[3]
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Sigmoid

The Sigmoid activation function is defined as σ(x) = 1/(1+ e−x). The function takes a
numerical input at squashes it into a number between 0 and 1. Large negative numbers
become 0 while large positive numbers become 1. One issue with the sigmoid function is
that it saturate and kill gradients, as the gradient for 0 or two is almost zero. The sigmoid
function is also not zero centered, causing undesirable learning behaviour [3].

ReLU and Leaky ReLU

A commonly used activation function in recent years is the Rectified Linear Unit (ReLU).
It is defined by the function f (x) = max(0,x). The activation is 0 if the input value is
below 0, and the same as the input otherwise. It has been found to greatly increase learning
compared to the sigmoid function, and is computationally inexpensive. A problem with
the ReLU function is dead units. If the input to a ReLU unit is too great, the unit may
never be able to update the unit again [3].

A proposed solution to the dead ReLU unit problem is the Leaky ReLU. Instead of re-
turning zero when the input is smaller then 0, the network instead outputs a small negative
slope. This is thought to relieve the dead ReLU unit problem, but results have varied [3].

Convolution Kernels

For each network layer, the number of kernels and their size needs to be specified. Increas-
ing the kernel sizes increases the capacity of the network, but in turn increases the storage
requirements of the network. Balancing the size and capacity of the network is important
to improve network generalization [11].

When applying the specified kernels to the input of each layer, the stride of the kernels
needs to be specified. In the example in figure 2.1, the stride is 1, as the kernel moves
one space for each convolution. To reduce the output size, the stride can be increased, for
example by moving the kernel 2 steps over the input for each kernel operation. Using a
stride of 2 in the example in figure 2.1 would produce 4 outputs instead of 6. However,
increasing the stride might discard information as some inputs are not covered by the
kernel. This is useful if the input is of too high resolution and the goal is to down sample
the input data. Selecting the correct stride for a network layer is important to down sample
the input data when relevant.

A problem when applying convolution kernels is that some information might be lost
as the kernel is applied fewer times at the perimeter of the input [11]. By padding the
input with extra information, typically zeros, zero-padding, the effective size of the input
is increased the kernel is applied the entire input. Zero-padding preserves information and
the spatial dimension.
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Learning rate, threshold

When training a network the learning rate also needs to be specified. The learning rate is
used by the optimizer to calculate the size of the optimization gradient. The best learning
rate depends on the optimizer, ans is found empirically. The learning rate might also
change depending on how long the network has trained for. There are several approaches
for modifying the learning rate during training. One way to change the learning rate is to
cut it in half every X epochs. This makes the gradient size smaller and leads to the network
making smaller adjustments during the later stages of training.

2.1.10 Regularization

To increase the generalization of the network, several regularization techniques have been
proposed. In this section two regularization techniques relevant for the network imple-
mentation later in this thesis are covered.

Data augmentation changes the training data to increase the networks performance
on new input data. By augmenting the data the dataset size can be increased and more
relevant real world cases can be covered. Data augmentations relevant to the network
training implementation in 4.3.3 are covered in section 2.3.

Monitoring the networks performance on validation data, and stopping the network
training when the validation loss stagnates is another regularization technique. This tech-
nique is called early stopping and is easy to implement. After each training epoch, the
validation loss is measured. If the validation loss is the lowest recorded, the network in-
stance is saved, and the training continues. If the validation loss is higher than the lowest
recorded validation loss, the network instance is not saved and the training continues. If
the network does not improve over a set threshold, the training is terminated.

2.1.11 Adam Optimizer

After defining a loss function a optimization algorithm is applied to minimize the loss.
In this thesis the Adam [12] optimizer is used. Adam combines the techniques of previ-
ous relevant optimization algorithms and requires little tuning. It is an adaptive learning
algorithm and is closely related to RMSProp [13] and AdaGrad [14].

Adam uses minibatches to increase performance, as the gradient is computed over
batches instead of the whole dataset to support parallelization. Adam also implements
momentum through exponential weighted moving averages, to reduce the chance for the
algorithm to be stuck in a local minimum. By finding the relevant momentum and using
the user defined learning rate we find the scale of the gradient which is then used to update
the network. The algorithm is robust, but may encounter some problems if the gradients
have significant variance. A solution can be to increase the batch size.
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2.2 CNN Architectures

In this section two relevant network architectures are covered, namely ResNet [4] and
MobilenetV2 [5]. These architectures are relevant to the network implementation 4.3.2
later in this thesis.

2.2.1 ResNet

ResNet is a residual learning framework to better train deep neural networks. ResNet
greatly improved the accuracy on the ImageNet [10] and CIFAR-10 [15] datasets amongst
others. When adding a layer to a neural network the capacity of the network is usually in-
creased, but at a certain point the added layers decrease the networks error. This increase
of error is not caused by overfitting, but rather the networks inability to optimize the deep-
est parts of the network. ResNet introduces an approach to improve the optimization of
deep parts of the network.

In a residual network the output of a network layer is the result of both the layer
output and the original input. This is called residual mapping and is visualized in figure
2.3. Residual mapping is realized by using "shortcut connections". Shortcut connections
simply skips one or more layers. In residual layers the shortcuts allow the input to be
added to the layer output. This operation is computationally inexpensive and does not
require additional parameters.

Figure 2.3: Residual network layer, from Deep Residual Learning for Image Recognition[4]

2.2.2 MobileNetV2

MobileNetV2 [5] is a network architecture particularly well suited for light weight, mobile,
deep neural networks. The network builds on the first paper introducing MobileNets [16].

The main contribution of MobileNetV2 is its building block, the inverted residual with
linear bottleneck. This module takes a low-dimensional representation, expands it to a high
dimension and then filters it with a lightweight depthwise convolution. The output features
are then projected back to a low dimensional representation. Figure 2.4 is a visualization
of the feature maps in an inverted residual layer.
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Figure 2.4: Inverted residual layer from MobileNetV2: Inverted Residuals and Linear Bottlenecks[5]

2.3 Data augmentation

If there is an insufficient training data foundation or the training data is imbalanced data
augmentation is applicable. By applying augmentations to the training data the data foun-
dation can be improved. Within the 3D face reconstruction field image data is used as input
to predict 3D vertices. Augmentation of the input image data is therefore relevant. Aug-
menting the input image must also be reflected in the corresponding ground truth vertices.
Translating, scaling and rotation must be done to both the image input and the ground
truth vertices to maintain any image to vertex alignment. In figure 2.5 three relevant aug-
mentation techniques are presented to improve generalization; image rotation, image color
channel scaling and image dropout.

By rotating the image in the xy-plane the network is be able to predict vertices from
faces in different angles better. An identical rotation is applied to the ground truth vertices
to align the face vertex image coordinates correctly. Image color channel scaling helps the
network see faces in different color and light settings. This is achieved by scaling each
color channel in the input image by a random factor. To simulate occlusion randomly
sized black boxes are applied to the input data. Dropout, similar to the network regulariza-
tion technique which deactivate certain activation units [2, p. 255], increases the networks
ability to predict partially occluded faces.

original image rotated image color scaled image image with dropout

Figure 2.5: Image from the MICC Florence dataset[6] and some example augmentations
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2.4 Synthetic Training Data

Data augmentation can be useful to reduce network overfitting and to increase the dataset
size. Another way of increasing the dataset size is through creating and using synthetic
data. Generating synthetic data using a generative model can improve the training data
foundation. Following are two example papers which use synthetic data to increase net-
work performance and a paragraph on how synthetic data can be generated for the facial
reconstruction problem.

The SOMAnet [17] is an early example of using synthetic data to improve neural net-
work performance in the person re-identification problem. With a human body generator
they were able to render a 100K instance dataset called the SOMAset. Using this data,
the network was able to generalize on real world inputs and achieve state-of-the art perfor-
mance.

In [18] synthetic data is used, together with real data, to train a facial recognition
network. By generating synthetic faces with a face image generator they were able to
reduce the dataset bias and consequently increase the performance of their neural network.
They also showed that transfer training, using first synthetic then real-world data, increased
the performance of their network.

To generate synthetic faces for the 3D facial reconstruction problem a generative model
is needed. The generative model needs to generate the 3D face models and a way to render
them into images. Section 4.2.3 details the implementation of a generative 3D face model.

2.5 3D Morphable Face Models

The concept of 3D Morphable Face Models (3DMMs) was introduced in the 1999 by
Volker Blanz and Thomas Vetter [19]. A 3DMM is a generative 3D face model where
the shape, illumination, projection and texture parameters can be modified based on a
probability density. The 3DMM also serves as a way to parameterize human faces by
splitting different features and expressions into vectors. Creating 3DMMs is inherently
difficult as constructing such models requires a 3D scanner, several hundred individual face
scans and the computation of dense correspondence between the scans. Several 3DMMs
are available today [20], but this thesis will focus on one of the most popular ones, the
Basel Face Model [21].

The Basel Face Model (BFM) was introduced in 2009 as a public 3DMM. The BFM
parameterize face pose, lighting, imaging and identity parameters. This model was further
improved in 2017 in the paper ’Morphable Face Models - An Open Framework’[22]. The
original one will be used in this thesis. When referring to the BFM we hereby refer to the
BFM from 2009. The BFM can generate an unlimited number of 3D faces by sampling
from a statistical distribution. Thus, the BFM serves as a standardized generative model
of a human face. The ground truth of several 3D face datasets have been transformed
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into BFM parameters [7]. A 3D face mesh can thus be generated synthetically using the
parameters provided. Regressing these 3DMM parameters instead of just N number of 3D
vertices with a neural network has also been done to predict 3D faces[23].

Mathematically the BFM describes a face by its shape and texture as indicated by 2.6
and 2.7 [24].

S = S+Aα, (2.6)

T (l) = T (l)
+Bβ (2.7)

Here S is the 3D face vertices, S is the mean shape of the BFM, and the α is the shape
parameters corresponding to the 3D shape bases A defining an unique face. The T (l) is the
texture of the face defined within the mean shape S. T (l) represents the mean texture, with
B being its texture bases and β the texture’s unique parameters.

2.6 FaceGen

FaceGen 1 is a 3D face generating software available through a license. FaceGen has cre-
ated its own 3DMM using 273 high-resolution 3D face scans. The face model is parame-
terized through 80 dimensions of shape, and 50 dimensions of color. The FaceGen 3DMM
is able to produce different mesh topologies through composite statistical appearance mod-
els(CSAMs), or just SAMs. A SAM is composite of a statistical shape model(SSM) and a
statistical color model (SCM). A SAM is able to generate random faces and render these
faces with a mesh topology. FaceGen also provides mesh integrating tools for generating
SAMs for any mesh topology layout. Example faces generated with FaceGen are shown
in figure 2.6.

Figure 2.6: Synthetically generated FaceGen faces rendered with the Preview SAM

The face generation and rendering pipeline using the FaceGen SDK is outlined in this
paragraph. First a SAM is chosen from one the provided FaceGen SAMs. The Preview
CSAM for example defines the mesh of a face. After navigating to the SAM folder running
the fg3 random command generates a random face. The fg3 construct then generates a
3D mesh and texture image from the generated face. The constructed face mesh and
texture image can then be rendered with fg3 render. A short description of the different
commands is found below.

1https://facegen.com
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fg3 random

To create a random face a XML-file defining some settings needs to be set up. The fg3
random setup produces such a XML-file where the pose, rendering and output settings
are specified. An example setting which can be modified is the face rotation range. After
specifying the relevant settings the fg3 random run command produces a random face.

fg3 random run <XML file><output label><number of faces>
This command returns a face in the .FG file format. A .FG file is a binary file containing a
face coordinate.

fg3 construct

fg3 construct takes a SAM, .FG face file and output file name and produces a 3D mesh
and texture image.

fg3 construct <sam> <face>.fg <out>
The output is a mesh file in .tri format and a texture image.

fg3 render

Similarly to the fg3 random command the rendering settings are specified by an XML-
file. The pose, lighting and camera pose is specified in the file. By passing an argument
to the fg3 render the face pose and camera projection parameters can be saved for later.
These parameters will be necessary to find the image coordinates of all the vertices of the
rendered face. The command is thus:

fg3 render <XML file> -s <save param file> <mesh>.tri <texture>.jpg
The result is a rendered image of the face as well as XML files with the pose and camera
projection settings.

2.7 Transformations

In order to transform the FaceGen vertex coordinates into image coordinates relevant trans-
formations need to be defined. The transformations should take the vertices from the eye
coordinate system (ECS) to the viewport coordinate space (VCS) via the canonical screen
space (CSS). To convert vertices from the ECS to the CSS an extended viewing transfor-
mation is used. A viewport transformation will be described in order to further conver the
vertices from the CSS to to the VCS.
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2.7.1 Extended Viewing Transformation

Given a viewing volume’s clipping planes a perspective transformation matrix can be cre-
ated. The Extended Viewing Transformation 2.8 as described in Theoharis et al. [25,
p. 138] is suiting as the truncated pyramid view volume is not necessarily symmetrical
about the ze-axis. The transformation matrix is described below.

no = near clipping plane,
fo = far clipping plane,
bo = y coordinate as bottom clipping plane intersects with the near clipping plane,
to = y coordinate as top clipping plane intersects with the near clipping plane,
lo = x coordinate as left clipping plane intersects with the near clipping plane,
ro = x coordinate as right clipping plane intersects with the near clipping plane,

MPERSP
ECS→CSS =


2n0

(r0−l0)
0 0 0

0 2n0
(t0−b0)

0 0

0 0 n0+ f0
( f0−n0)

2n0 f0
( f0−n0)

0 0 1 0

 (2.8)

2.7.2 The Viewport Transformation

A viewport is the rectangular part of the screen where the contents are displayed. A view-
port can be described by its bottom-left-nearest [xmin,ymin,zmin]

T and top-right-furthest
[xmax,ymax,zmax]

T corners. With these variables vertices can be converted from CSS to
VCS using a viewport transformation. The Viewport Transformation 2.9 as described in
Theoharis et al. [25, p. 141] is used.

MV IEWPORT
CSS→VCS =


xmax−xmin

2 0 0 xmax+xmin
2

0 ymax−ymin
2 0 ymax+ymin

2
0 0 zmax−zmin

2
zmax+zmin

2
0 0 0 1

 (2.9)

2.8 UV Mapping

Later in this thesis UV Position mapping, a version of UV mapping, will be used to store
the 3D vertices of faces in UV space. UV mapping and UV Position mapping is therefore
briefly explained in this section.

UV mapping is the process of mapping a 2D image to a 3D model’s surface. U and
V typically denote the two axes of the 2D texture image. This way of mapping or storing
information has been utilized to express textures [25], height maps [26], and geometry
images [27]. Another take on UV mapping is UV Position mapping.
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2.8.1 UV position mapping

A UV Position map is a representation of 3D points in UV space [1] [27] where the RGB
components are typically used to store XYZ positions. In [1] the 3D positions of points
from a 3D face mesh aligned with a corresponding facial image is stored in UV space. The
Position mapping is expressed in 2.10

Pos(ui,vi) = (xi,yi,zi) (2.10)

The (ui,vi) is the UV coordinate of the ith point in a 3D face mesh and (xi,yi,zi) is the
corresponding 3D position. The (xi,yi) represents the corresponding 2D position in a RGB
facial image, while zi represents the depth of this point. An image from [1] which neatly
illustrates a Position map is found in figure 2.7.

Figure 2.7: The left image shows the 3D mesh plotted on the input image. The top-left image of the 6 image
boxes on the right shows the input image, the top-center shows the extracted texture in UV space, and the top-
right shows the corresponding UV Position map. The bottom images visualize the XYZ channels of the UV
Position map.

2.9 Iterative Closest Point

In the evaluation pipeline later in this thesis 5.2 the Iterative Closest Point (ICP) algorithm
is utilized. The ICP is therefore briefly explained in this section.

ICP is a method for aligning 3D objects introduced by Besl and McKay (1992) [28].
The goal of the algorithm is to transform the point set X to the point set P. The algorithm
produces a rigid transformation with a translation vector t and rotation matrix R. By ap-
plying the R and t to X we can align the point set to P. Initially, the ICP algotihm starts
with an estimation R and t. The points in X are then matched with the closest neighboring
points in P. A rotation matrix R′ and transformation vector t ′ is then added to the initial
R and t, R = R ∗R′, t = t + t ′. The new R and t are then evaluated. If the transformation
meets the convergence criteria the algorithm terminates, if not the algorithm make another
iteration.
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Chapter 3

Related Works

3.1 3D Face Reconstruction

The deep learning field has been more and more researched in the last years and conse-
quently there have been multiple publications in the 3D facial reconstruction field recently.
In 2020 alone, several papers have been released on the subject [29] [30], specially tar-
geting facial texture reconstruction. Several methods focus on the single view 3D face
reconstruction[1], but there are some papers with multi-view approaches as well [31] [32].
To the best of the author’s knowledge, there are no recent publications which specialize
in only two viewpoints, front and side, as multi-viewpoint methods generalize to deal with
viewpoints from arbitrary angles.

Different 3D face reconstruction methods have been suggested. Many partly depend on
a reference 3DMM or the mean shape of the 3DMM to predict a face through regressing
3DMM parameters instead of vertex coordinates [23][33]. The Volumetric Regression
Network (VRN) [34] introduced a straightforward way to map input image pixels to a full
3D facial structure unrestricted from any face model space. The paper defines a complex
network structure which predicts voxel data. The Position map Regression Network(PRN)
[1] builds on the idea of mapping input data unrestricted from model space and predicts
Position maps from input images.

Since late 2018 some papers have been able to beat the PRN on certain test datasets.
One of these papers is [32]. Instead of directly predicting representations of 3D face
vertices, the authors implement a complex network which learns on the Image-level loss
such as skin estimation loss and the Perception-level loss for deeper features of the face.
The paper also proposes a multi-image confidence score system which outperforms basic
shape averaging. This type of multi-network approach to fit different aspect of a face;
depth, shape, lightning and texture has been used in several recent papers [29][35].

Taking into account that this thesis proposes a method that builds on the PRN approach
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we will now go through the main contributions made with PRN.

3.1.1 PRN

The work in [1] proposes a method that both reconstructs 3D facial structure and provides
dense alignment from a single picture. The proposed method is still performing good
compared to recent papers1. The method utilizes a PRN to predict UV Position maps, as
described in section 2.8.1, to represent a 3D facial structure with alignment information.
Predicting a Position map is advantageous as the spatial adjacency information among
points is preserved. Also predicting each point would require a fully connected layer
connected to each point, which would result in a big number of network parameters. The
PRN is light-weight and spends only 9.8ms to process an image to generate a UV Position
map on a modern GPU [1].

Network architecture

PRN utilizes an encoder-decoder network, and predicts a Position map from unconstrained
2D images. An encoder-decoder network extracts features from an image input and decode
the features found into a goal output, typically of the same size as the input. The Encoder
part of PRN consists of one convolutional layer followed by 10 residual blocks which
reduce the input image into 512 feature maps. The decoder network contains 17 transposed
convolutional layers 2.1.5 to generate the predicted position output. The resulting network
structure can be found in figure 3.1.

Figure 3.1: Network architecture of PRN, left is the input image, and right is an illustration of the predicted
Position map

Loss function

The loss function for PRN measures the mean squared error (MSE) between ground the
truth Position map and the predicted Position map with a weight mask to increase the

1https://paperswithcode.com/sota/3d-face-reconstruction-on-florence
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importance of features in central regions of the face. The weight mask is visualized in
figure 3.2 with these weights: (subregion1 : subregion2 : subregion3 : subregion4) =
(16:4:3:0). The Loss function is defined in equation 3.1 where the Pos(u,v) denotes the
predicted Position map and Ps(u,v) denotes the ground truth Position map with the weight
mask W (u,v).

Loss = ∑ ||Pos(u,v)−Ps(u,v)|| ·W (u,v) (3.1)

Figure 3.2: colored texture map with the training weights. Subregion1 = 68 keypoints, Subregion2 = (purple,
red, green), Subregion3 = face, Subregion4 = neck.

3.2 Datasets

Producing 3D models with corresponding images is a challenging and costly task. In this
section two relevant 3D facial reconstruction datasets are introduced.

3.2.1 300W (-LP)

The 300 Faces in-the-wild challenge dataset (300W) [36] was created for a facial landmark
localization challenge in 2013. The 300W dataset includes the datasets AFW, LFPW,
HELEN, IBUG and XM2VTS [36] with a standardized keypoint annotation as shown in
figure 3.4. There are more than 3500 individuals photographed in the 300W dataset.

One of the limitations, except from its size, is the lack of extreme yaw angled poses in
the dataset. The dataset lacks faces with yaw angles in the [45◦, 90◦] range. The 300W-
LP (LP = Large Pose) dataset [37] is an extension of the 300W dataset and addressed
the lack of annotated training data with yaw angles in the [45◦, 90◦] range. The authors
fitted the faces in 300W with BFM parameters and rotated the fitted faces with yaw angles
up to 90◦ in k steps, with k typically in the [10,15] range. One rotating example can
be found in figure 3.3. The resulting dataset is called 300W-LP and contain image and
corresponding 3DMM parameters as described in BFM. The 300W-LP dataset consists of
122,450 image samples and serves as a good source for training data with respect to 3D
face reconstruction. One issue with 300W-LP is that the BFM parameters are fitted based
on only 68 keypoints. As a result the fitted 3D face mesh is not entirely accurate.
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Figure 3.3: 300W-LP dataset, yaw angle rotated k number of times

Figure 3.4: Keypoint annotation in 300W-LP.

3.2.2 Test datasets for 3D face reconstruction

The MICC Florence dataset [38] consists of high-resolution 3D facial scans, images and
HD videos of 53 people. It is commonly used as a test dataset for 3D face reconstruction
methods. The dataset contains accurate and complete 3D models of faces and is used as a
metric of comparison between 3D reconstruction solutions2. Sample faces can be seen in
figure 3.5.

Figure 3.5: Example faces from the Florence dataset

2https://paperswithcode.com/sota/3d-face-reconstruction-on-florence
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Chapter 4

Methodology

This chapter explains the implementation of our pipeline for reconstructing 3D facial
meshes from front and side images. The main component of the proposed pipeline is
the CNN. The CNN is fed a concatenated image matrix and predicts the corresponding
Position map. Both real and synthetic training data is used to train the network. The data
generation process, CNN implementation and CNN training are covered in this chapter.

Front

Side

Concatenated images

CNN position map

3D face mesh

Aligned 3D face mesh

Figure 4.1: The proposed 3D facial reconstruction pipeline.

4.1 Proposed Pipeline

The proposed pipeline builds on the PRN implementation [1] and is outlined in figure 4.1.
The pipeline is built around a CNN which is fed front and side images and produces a Po-
sition map. The input images are simply concatenated before being fed into the network
as visualized in figure 4.1. The network then predicts a position map. The network imple-
mentation is explained in section 4.3. Using the predicted Position map, the 3D vertices
are extracted and reconstructed into a facial mesh using the face3d1 library.

1https://github.com/YadiraF/face3d
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4.2 Training Data Generation

In order to train our network we need to generate training data. The input data of our
network are two images, one facing the front, and one facing the left or right. The network
predicts a Position map which maps the face mesh vertices to one of the input images,
in our case the front facing image. The training data pairs for our network contain two
images of a face as input, and one Position map as ground truth. To generate training
dataset pairs we use the 300W-LP dataset and synthetic data from FaceGen. The 300W-
LP dataset contains images with Basel Face Model (BFM) parameters defining the shape,
expression and pose. From these parameters the 3D face mesh and UV Position map can be
generated using the Face3d library. With FaceGen we synthetically generate renderings of
random faces and their corresponding 3D face mesh. We then generate the Position maps
for the generated images by applying the rendering transformation to a corresponding 3D
face mesh which is rendered into a UV Position map. By using the 300W-LP dataset and
FaceGen we generate more than 60K data pairs to train our CNN.

4.2.1 Front and Side Face Definition

We define a front facing image as an image of a face with a yaw angle in the [−45◦,45◦]
range, and a side face image as an image of a face with a yaw angle not in this range. We
limit the range of face yaw angles for side angles to be in the [−100◦,−45◦] and [45◦,100◦]
ranges as large portions of the face are occluded at any greater yaw angle.
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4.2.2 300W-LP Dataset

To generate data pairs from the 300W-LP dataset we generate and transform the vertices
as defined in the BFM parameters and keypoint information each image is accompanied
by. The BFM parameters are used to generate a 3D facial mesh using the mesh topology
layout defined in the Face3d library. Using the provided keypoint information we crop
the face and save the cropping transformation parameters. This cropping transformation is
then applied to the generated 3D facial mesh vertices to align the mesh to the new cropped
image. With the transformed vertices the Position map is rendered in UV space. The
pipeline is largely similar to the implementation in [1] and is visualized in figure 4.2. The
python implementation of this pipeline is found in Appendix A.1.

300W-LP parameters

Pose          1x7
Expression      29x1
Shape        199x1
Keypoints      68x1

Image from 300W-LP

Crop with keypoints

2.

Apply cropping
transformation

2.

Generate vertices
& transform

1.

Copy

1.

Position map

Cropped image

Render position map
in UV space

3.

Copy

3.

Figure 4.2: The 300W-LP training data generation pipeline. We first generate the vertices and transform them to
the correct pose using the Face3d library(1.). We then crop the image and the generated vertices according to the
given keypoints(2.). Finally we render the Position map in UV space(3.).
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4.2.3 Synthetic Face Generation with FaceGen

To generate random faces from FaceGen we create and use a shell script. The script is
found in listing 4.1. The script takes a numeric input for how many faces it should create.
For each iteration a random face is generated using the fg3 random run command. The
face mesh and texture map for this face is then constructed using fg3 construct. The
rendering settings for the face mesh is altered through _fg_generate_settings.py.
This Python program changes the rendering parameters in three FaceGen XML files
(front[.xml], right[.xml], left[.xml]). The program sets the yaw, pitch, roll, scale
and translation of the face to predetermined ranges. These .xml files are then passed to the
fg3 render command producing renderings of the face with randomized front, left and
right sided poses. A SSM with the same vertex layout as BFM is utilized to create a 3D
mesh in a .obj file format. Finally the shell script moves the images, 3D mesh and render
settings to a target folder.

1 for i in $(seq "$1")
2 do
3 num=$( printf ’%05d’ $i )
4 echo "generating face "$num
5 python _fg_generate_settings.py
6 fg3 random run _random_settings base_ 1
7 fg3 construct Head/Headhires base_0000.fg base_mesh
8 fg3 render front -s front
9 fg3 render left -s left

10 fg3 render right -s right
11 mkdir ${num}
12 fg3 -s construct BFM/BFM base_0000.fg base_mesh
13 fg3 -s triexport ${num}/${num}.obj base_mesh.tri
14 mv front.png ${num}/${num}_front.png
15 mv left.png ${num}/${num}_left.png
16 mv right.png ${num}/${num}_right.png
17 mv front.xml ${num}/${num}_front.xml
18 mv front_cam.xml ${num}/${num}_front_cam.xml
19 mv left.xml ${num}/${num}_left.xml
20 mv left_cam.xml ${num}/${num}_left_cam.xml
21 mv right.xml ${num}/${num}_right.xml
22 mv right_cam.xml ${num}/${num}_right_cam.xml
23 rm base_mesh *.* base_0000 *.* *_pose.xml
24 done

Listing 4.1: Shell script for generating random faces using the FaceGen SDK
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Constructing 3D Facial Meshes From FaceGen

The 300W-LP 3D facial meshes are generated using a mesh topology layout as described in
the Face3d library. The FaceGen 3D facial meshes need to be converted to the same mesh
topology layout. The out-of-the-box Statistical Shape Models (SSMs) from FaceGen are
only able to generate meshes with approximately 5000 vertices. The mesh topology layout
is also different than the topology layout in the Face3d library. To create FaceGen facial
meshes with the same mesh topology the FaceGen mesh integration tools2 can be utilized.
Fitting the base BFM shape’s 3D facial mesh to a FaceGen SSM generates a SSM with
the same fixed mesh topology as the input BFM facial mesh. Passing this SSM, together
with any FaceGen face, to fg3 construct then generates a 3D mesh with the Face3d
topology layout. The construction of the BFM mesh is done in line 12 in the shell script
in listing 4.1.

BFM base shape

Generated FaceGen Face

fg3 construct

FaceGen SSM

FaceGen Face with BFM vertices

Figure 4.3: Generating 3D facial meshes with a mesh topology layout as describe din face3d.

4.2.4 Output from Synthetic Data Generation

We use the script to generate 10K faces, each face is accompanied with one 3D mesh and
rendering of the face from the front, the left and the right as well as the pose settings for
each rendering. The faces are rendered with different yaw, pitch and roll angles for the
front, left and side face images. The angle ranges are described in figure 4.4. Example
outputs are showcased in figure 4.5.

2https://facegen.com/dl/sdk/doc/manual/meshintegration.html
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[-9°, 9°]pitch: [-9°, 9°]roll:

[-100°, -67.5°]yaw left

[67.5°, 100°]yaw right:

[-14°, 14°]yaw front

Non-rotated image

Figure 4.4: A FaceGen face with the different yaw, pitch and roll angle ranges.

Figure 4.5: Example renderings of FaceGen faces rendered with the pose angles described in figure 4.4.
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4.2.5 FaceGen Dataset

To generate training data pairs for the network a Position map for the rendered synthetic
facial images needs to be constructed. This is done in two steps. First, the the synthetic 3D
facial mesh is transformed to the viewport coordinate system (VCS) corresponding with
the facial image rendering settings. Then the vertices are rendered to UV space similarly
to the pipeline in section 4.2.2. The training data generation pipeline for FaceGen data is
outlined in figure 4.6. With the 10K FaceGen faces we produce 20K training data pairs.

x
y
z
w

= MV IEWPORT
CSS→VCS ·MPERSP

ECS→CSS ·MWCS→ECS ·Xw (4.1)

VCS Face Transformation

To generate the 3D facial mesh vertex image coordinates for each synthetic facial im-
age the rendering settings from FaceGen are applied the accompanying 3D face mesh.
FaceGen provides the scale, translation, rotation and frustum parameters in the rendering
settings. The scale, translation and rotation are applied to the 3D mesh through matrix
multiplication. To take the vertices from ECS to CSS an extended viewing transformation
is applied as defined in equation 2.8, and to take the vertices from CSS to VCS we apply a
viewport transformation as described in equation 2.9. A vertex point Xw = [xw,yw,zw,1]T

in the mesh is converted into VCS using the equation 4.1. Where the MWCS→ECS matrix
transform defines a scaling, rotation and translation transformation.

Copy

Position map

Transform vertices

1.

Render position map
in UV space

2.

Image from FaceGen

FaceGen parameters

Vertices      53215x3
Rotation    3x1
Translation    3x1
Frustum        6x1

BFM vertices

Image from FaceGen

Figure 4.6: The FaceGen training data generation pipeline. A position map is generated for a facial image using
the corresponding FaceGen parameters.
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4.2.6 Applying Random Background Images

To further improve generalization we apply random background images to the FaceGen
images. Inspired by the face generator in [18] a random texture is chosen from the De-
scribable Texture Database [39] and added to a FaceGen image. Example faces with ran-
dom texture backgrounds are shown in figure 4.7. The python implementation is found in
appendix A.2.

Figure 4.7: FaceGen images with random texture as background
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4.3 CNN Implementation

To predict Position maps from input images we implement a new CNN with Keras3. We
use the original PRN implementation as a starting point when deciding our network archi-
tecture. We make some adjustments to allow a concatenated 256x256x6 image input as
well as replacing the ResNet modules with inverted residuals described in section 4.8. We
train the network on the synthetic data generated by FaceGen before training it with data
from the 300W-LP dataset.

conv block

inverted residual blocks

conv block

transposed convolutional layers

256x256x6 256x256x3

Figure 4.8: Our proposed CNN architecture

4.3.1 Input and Output

The size of the two input images are 256x256x3 for the height, width and color channels
respectively. This is the same as the size used in the PRN implementation. As we, in this
thesis, will use front and side facial images instead of one, we concatenate the images,
expanding the original image color channel dimensions resulting in an image matrix of
size 256x256x6 as visualized in the second step of the pipeline in figure 4.1. The Position
map is of size 256x256x3, the same as in PRN, which means that the Position map is
capable of containing 256∗256 = 65536 vertices, this is enough to define a 3D face mesh
of great accuracy [1].

4.3.2 Network Architecture

We employ an encoder-decorder network structure to map the input image to the output
Position map. The encoder part of our network consists of 1 convolutional layer, followed
by 4 inverted residual layers and finally 1 convolutional layer. The inverted residual layers
are internally repeated 1-4 times. The decoder part of our network consists of 17 trans-
posed convolutional layers. The network layers are listed in table 4.1. The network has a
total of 11,791,273 parameters and is 154MB.

We choose the MobileNetV2 inverted residual blocks instead of ResNet blocks as the
MobileNetV2 architecture is newer, lightweight and performs better in image processing

3https://keras.io/
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tasks [5]. The Inverted residual blocks were also easy to implement as there are several
implementations available45.

We set the filter sizes of each layer to reduce the 256x256x6 input to 8x8x512 feature
maps similar to PRN. The kernel size for the inverted residual blocks are 3, while the
kernel size for the transposed convolutional layers are 4. We use zero-padding and ReLU
as activation function for 16 layers of our decoder network and Sigmoid for the final one.

We use the Adam optimizer with the same loss function and weight mask as in the
original network implementation as described in section 3.1.1. The batch size is set as 16
and we find the best learning rates and learning halving rates empirically for each training
step.

Input Layer kernel stride output

256 x 256 x 6 Convolution 3 2 128 x 128 x 32
128 x 128 x 32 Inverted Residual 3 - 64 x 64 x 96

64 x 64 x 96 Inverted Residual 3 - 32 x 32 x 144
32 x 32 x 144 Inverted Residual 3 - 16 x 16 x 192
16 x 16 x 192 Inverted Residual 3 - 8 x 8 x 576
8 x 8 x 576 Convolution 3 2 8 x 8 x 512
8 x 8 x 512 Transposed Convolution 4 1 8 x 8 x 512
8 x 8 x 512 Transposed Convolution 4 2 16 x 16 x 256

16 x 16 x 256 Transposed Convolution 4 1 16 x 16 x 256
16 x 16 x 256 Transposed Convolution 4 1 16 x 16 x 256
16 x 16 x 256 Transposed Convolution 4 2 32 x 32 x 128
32 x 32 x 128 Transposed Convolution 4 1 32 x 32 x 128
32 x 32 x 128 Transposed Convolution 4 1 32 x 32 x 128
32 x 32 x 128 Transposed Convolution 4 2 64 x 64 x 64
64 x 64 x 64 Transposed Convolution 4 1 64 x 64 x 64
64 x 64 x 64 Transposed Convolution 4 1 64 x 64 x 64
64 x 64 x 64 Transposed Convolution 4 2 128 x 128 x 32

128 x 128 x 32 Transposed Convolution 4 1 128 x 128 x 32
128 x 128 x 32 Transposed Convolution 4 2 256 x 256 x 16
256 x 256 x 16 Transposed Convolution 4 1 256 x 256 x 16
256 x 256 x 16 Transposed Convolution 4 1 256 x 256 x 3
256 x 256 x 3 Transposed Convolution 4 1 256 x 256 x 3
256 x 256 x 3 Transposed Convolution 4 1 256 x 256 x 3

Table 4.1: Table listing all layers in the CNN implementation. The thin line separates the encoder and decoder
network parks, but the network is not in any way split up.

4https://github.com/d-li14/mobilenetv2.pytorch
5https://github.com/xiaochus/MobileNetV2
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4.3.3 Training on synthetic data

We train the network on the 20000 synthetic data pairs generated in section 4.2. We split
the training data pairs in a training and validation part for training evaluation. The data
pairs are shuffled before each epoch to randomize the batches. The training data is aug-
mented before training by rotation, color shifting and image dropout as described in section
2.3. The rotation is set to be in the [−45◦,45◦] range, the random color channel scale is
between 0.9 to 1.2. We train the network with an initial learning rate of 0.0001. The learn-
ing rate is halved every 5 epochs. After each epoch we calculate the loss on the validation
data. If the validation loss has not decreased in 10 epochs, the learning is suspended. The
python implementation of the training code is found in appendix A.3. We train the net-
work on a computer with Intel Core i7-8700K CPU and a Nvidia RTX 2080Ti GPU. The
validation loss is plotted in figure 4.9.

Figure 4.9: Validation loss over synthetic data training Figure 4.10: Validation loss over transfer training
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4.3.4 Transfer Learning with 300W-LP data

To train the network on "real" data we restore the model weights from the model trained in
the previous section. We generate training data pairs from the 300W-LP dataset using the
front and side definition earlier. For each 300W-LP face we select all images with a face
yaw pose within the [−45◦,45◦] range. We pair each of these front facing images with one
image of the same face with a jaw pose within the [−100◦,−45◦] and [45◦,100◦] ranges.
These images are then augmented the same way as the synthetic data before being fed into
the network. We set the initial learning rate to 0.00001 and train the network. The learning
rate is halved every 5 epochs. The validation loss is plotted in figure 4.10.
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Chapter 5

Evaluation

We intend to evaluate the ability of our synthetically trained and transfer trained networks
to reconstruct 3D facial meshes from front and side images. We assess our networks using
data from the MICC Florence dataset. This chapter presents the evaluation dataset, the
evaluation pipeline and the performance results for our networks. The performance of our
networks is also compared to the performance of the network in [1] (PRN). Our network
also produces a dense facial alignment on the input image, but we will not evaluate the
network’s facial alignment performance as it falls outside the scope of this thesis.

5.1 Evaluation dataset

We use the MICC Florence dataset as the evaluation dataset. The dataset consists of 2D
images, videos and high-resolution 3D scans of 53 subjects. The images, videos and 3D
meshes for each face are stored in separate folders. Each subject is scanned from multiple
angles. For our evaluation the frontal scans are used. More specifically the .obj file and
the corresponding texture data from the Model/frontal1/obj folder for each subject is
used. Some of the subjects have facial hair, which is included in the 3D scan. The 3D faces
used to train the proposed network and PRN do not have facial hair which will increase
the error for subjects with facial hair. As the facial hair error is similar for both PRN and
the proposed method these subjects are not excluded.

5.2 Evaluation pipeline

We render a front and side facing image from the MICC Florence dataset, predict the cor-
responding Position map and evaluate the output facial mesh. The images are rendered
from extracted .obj files in MeshLab1 with orthographic projection. After generating a 3D

1http://www.meshlab.net/
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facial mesh from the predicted Position map we fit the predicted 3D facial mesh to the
ground truth 3D mesh provided in the MICC Florence dataset. We align the meshes using
an implementation of the ICP algorithm2. If necessary, an initial alignment is passed to
the algorithm. The ICP implementation outputs the rotation matrix and translation ver-
tex as a homogeneous transformation matrix which maps a point set X to a point set P.
After applying this transformation matrix to the predicted 3D face mesh we calculate the
evaluation metric of the network.

5.3 Evaluation Metric

The goal of the evaluation metric is to evaluate the networks ability to reconstruct a 3D
facial meshes. The evaluation metric measures the difference between two facial meshes.
We employ the normalized mean error (NME) of the euclidean distance between the points
of the predicted and ground truth 3D mesh to be the evaluation metric. The error function
is defined in equation 5.1. ||(pi−qi)||2 denotes the euclidean distance between two points,
and d denotes the normalization factor. The normalization factor is set to be the bounding
box size of the predicted 3D facial mesh.

NME =
1
N

N

∑
i=1

||(pi−qi)||2
d

(5.1)

2https://github.com/ClayFlannigan/icp
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5.4 Performance of the Synthetically Trained Network

First, the performance of our synthetically trained network is evaluated. We run 20 ran-
domly selected faces from the MICC Florence dataset through the evaluation pipeline
using our network from section 4.3.3. We visualize the results by utilizing a Cumula-
tive Error Distribution (CED) curve. The mean NME is presented in table 5.1. Figure
5.1 shows the CED curve for the 20 images from the MICC Florence dataset. Figure 5.2
shows two exemplary predicted 3D facial meshes together with the ground truth meshes.

Figure 5.1: CEDs for synthetically trained network and PRN.

Mean NME
PRN 0.0134

Our network 0.0164

Table 5.1: Performance com-
parison between our syntetically
trained network and PRN by
looking at the mean NME.

Figure 5.2: Two example 3D facial meshes from the MICC Florence dataset paired with the reconstructed 3D
facial mesh made by the synthetically trained network. There are two data pairs where the left image is the
ground truth face, and the right image is the reconstructed 3D facial mesh.

The CED curve in figure 5.1 and mean NME in table 5.1 shows that the synthetically
trained network performs worse than PRN on the MICC Florence dataset. The NME is
consistently higher. By looking at the two examplary outputs of the networks in figure 5.3
the shortcomings of the synthetically trained network become apparent. The reconstructed
mesh has an asymmetrical face shape compared to the ground truth facial mesh and there
are few visual similarities. There are also artefacts along the top seam edge of the mesh.

A likely explanation for the networks inability to reconstruct convincing 3D meshes
is the fundamental difference in the network’s training data and the MICC Florence test
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data. Example images from the test dataset and FaceGen are shown in figure 5.3. The lack
of realistic hair, expressions, accessories and skin texture likely reduces the generalization
of the synthetically trained network. The facial asymmetry observed in figure 5.2 could
be a result of overfitting. If the synthetic training data consistently contains faces with a
narrow jaw shape the network could be unable to generate output meshes with wide jaws.
Lastly the artefacts in the reconstructed facial mesh are likely the result of a mechanism
connected to the generated weight mask used to calculate the loss function. The artefacts
occur at the outermost vertices covered by the weight mask described in section 3.1.1. The
same artefacts are also found to some degree in the reconstructed meshes from PRN.

Using realistic hair and expressions when rendering synthetic data from FaceGen will
likely improve the generalization of the synthetically trained network. A possible solution
to the artefact problem could be a modified weight mask with increased or decreased
weights at the seam edge vertices.

Figure 5.3: Random images from MICC Florence and FaceGen datasets. The two images on the left are from
MICC Florence and the two images on the right are from FaceGen.
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5.5 Performance of the Transfer Trained Network

To evaluate the transfer trained network described in section 4.3.4 we again run the eval-
uation pipeline using the same 20 faces that was used in the previous section. The CED
curves for our transfer trained network and PRN is plotted in figure 5.4. The mean NME is
presented in table 5.2. Figure 5.5 shows the constructed 3D facial meshes from 3 example
faces using both the transfer trained network and PRN.

Figure 5.4: CED for transfer trained network and PRN

Mean NME
PRN 0.0134

Our network 0.0074

Table 5.2: Performance comparison between our transfer trained network and PRN by looking at the mean NME.
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Input images

Our network’s 
output

Ground truth 
facial mesh

PRN output

Figure 5.5: Example reconstructed meshes using three faces from the MICC Florence dataset. The top row shows
the input images for the networks. PRN uses a single front facing image as input, while our network is fed both
the front and side images. The transfer trained network output is shown in the second row, the ground truth facial
mesh in the third row and the PRN output in the fourth row.

The CED curve in figure 5.4 and mean NME in table 5.2 shows that our transfer trained
network is able to reconstruct more accurate 3D facial meshes than PRN. More than 80%
of the reconstructed faces using the transfer trained network have a NME lower than 0.01,
while approximately 40% of the faces reconstructed using PRN have a NME lower than
0.01.

When examining the exemplary reconstructed 3D facial meshes in figure 5.5 the dif-
ference is not as clear. By comparing the transfer trained networks output with the ground
truth facial mesh we see only some similarities. The most distinct facial features are not
accurately reconstructed. The reconstructed meshes using our network are more similar to
the meshes reconstructed using PRN. There are some differences between our network and
PRN around the nose and jawline. The PRN reconstructs similar noses for all the example
faces, while our network is able to reconstruct slightly more varied nose shapes. The dif-
ference is clearest in the rightmost face in figure 5.5. The artefact problems found in the
synthetically trained network has largely disappeared. Both networks also predict faces
without facial hair. The lack of facial hair is a result of the training data as the synthetic
and 300W-LP dataset provide 3D faces without facial hair as ground truth.

The reconstructed faces are largely similar to each other, but are ultimately unable to
accurately reconstruct distinct facial structures. One probable explanation for the similar-
ities between our network’s and PRN’s reconstructed 3D facial mesh is the training data
foundation. The transfer trained network is trained on data from the 300W-LP dataset.
The ground truth faces in 300W-LP are generated from 68 2D keypoints using a CNN as
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described in section 3.2.1. By training a network on 300W-LP we risk simply predicting
the output of the CNN used to generate the 300W-LP faces. This might also explain the in-
ability for our network to further utilize the additional side image input to greatly improve
the performance of our network.

5.6 Potential Sources of Error

5.6.1 MICC Florence Dataset

The evaluation pipeline utilizes the MICC Florence dataset to test the reconstructed 3D
facial meshes on ground truth facial meshes. There is a racial bias in the test dataset as all
subjects in the dataset are white. This bias might increase or decrease the performance of
our proposed network on the MICC Florence dataset. The bias should however affect both
our network and PRN similarly as both networks are trained on 300W-LP.

The images used as input when evaluating the proposed network were produced by
rendering 3D facial meshes using a mesh processing software. Increasing the number
of images by rendering each 3D facial mesh mulitple times at multiple angles as imple-
mented in [1] provides more test data. The process of rendering and aligning the ground
truth meshes is however time-consuming and was therefore not implemented in this thesis.
Ultimately, renderings from 20 MICC Florence faces should give a sufficient foundation
for evaluation and comparison between our networks and PRN.

5.6.2 ICP alignment

The evaluation pipeline utilizes ICP to align a reconstructed 3D facial mesh to a ground
truth mesh for evaluation. The ICP requires an initial alignment to align two point sets
correctly. By saving the initial alignment parameters for each face reconstructed using
PRN to the correct ground truth 3D facial mesh this source for error is largely minimized.
As PRN and our network produces 3D facial meshes with vertices in the same value range,
the initial alignment is valid for both meshes. If a reconstructed facial mesh is not similar
enough to the ground truth mesh the face will however not be correctly fitted. This fitting
error is difficult to avoid, but with the initial alignment most faces are fitted correctly. Most
of the reconstructed faces using the synthetically trained network and some of the faces
with the highest NME in figure 5.4 probably suffers from bad facial alignment. As the
initial alignment parameters was found using PRN any ICP fitting disadvantage should be
similar for PRN and our networks.
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5.7 Discussion

As seen in figure 5.6 the performance for our synthetically trained network is worse than
PRN. Using the synthetically trained network weights as initial weights and using two im-
ages instead of one resulted in our transfer trained network performing better than PRN.
Increasing the quality of our synthetic dataset should not only boost the performance of
our synthetic dataset, but also further increase the performance of the transfer trained net-
work. By applying realistic hair, expression and skin texture a synthetically trained net-
work should be able to generalize better.

In the 3D facial reconstruction field the lack of accurately labeled training data in-
creases the importance of synthetic data. Labeling 2D images with corresponding 3D
faces is time consuming and difficult. The 300W-LP uses a CNN to create 3D faces using
an input 2D images and 68 keypoints. While this simple approach of generating labeled
training data produces many data pairs quickly, it is not entirely accurate. The similarity
between the transfer trained networks output and the PRN output is likely a result of the
data labeling CNN in 300W-LP. With synthetically generated data the ground truth 3D
facial mesh is always accurate.

To generate synthetic training data we have utilized FaceGen. FaceGen provides pow-
erful tools to easily generate 3D faces. However, the output from a simple FaceGen SAM
without expression, hair and detailed skin texture is not good enough to train a generalized
network. A natural extension of the work in this thesis would be to improve the photo
realism of the proposed synthetic data generation pipeline output. Additionally, increasing
the amount of data, both real and synthetic, should result in an increased performance of
our method.

Figure 5.6: CEDs for our networks and PRN.
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Chapter 6

Conclusion and future work

6.1 Conclusion

In this thesis we have proposed and evaluated a new method which reconstructs a 3D
facial mesh from front and side images using a CNN. The CNN builds on the network
proposed in [1] and achieves a lower mean NME on the MICC Florence dataset. Using a
concatenated image matrix as input, the network predicts a position map from which a 3D
facial mesh is generated. The network is trained on the synthetic data generated using our
proposed synthetic data generation pipeline and data from 300W-LP.

6.2 Further Work

To further improve the performance of our proposed method we recommend several im-
provements.

6.2.1 Network Architecture

The network architecture is largely inspired by the original implementation in [1]. Further
experimenting with the network architecture, different hyper parameters and regularization
techniques can further improve the generalization of the network and reduce the number
of parameters. Especially the decoder part of our network, which currently only consist of
transposed convolutional layers, should be optimized. Changing the number of layers, or
replacing them could lead to an performance boost.

As optimizing the network architecture might be difficult without understanding the
underlying encoder-encoder architecture. The utilization of visualization tools to gain a
deeper understanding of the encoder-decoder network is also useful when moving forward.
With a better understanding of the underlying network selecting the appropriate hyper
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parameters for an increase in network performance should be easier.
As we in this thesis has proposed a new CNN architecture and a synthetic data genera-

tion pipeline a single-image input CNN version should be made. Hopefully a single-input
version of our proposed method is able to perform better than PRN and other proposed
solutions.

6.2.2 Training Data

One main issue addressed in this thesis is the lack of accurately labeled training data for the
3D facial reconstruction problem. One improvement would be to utilize accurate training
datasets. Another improvement would be to further increase the realism of the proposed
synthetic data generation pipeline. Through adding hair, facial expressions, skin texture
and head accessories to the training data images the network should be able to generalize
better on real world data. FaceGen provides the tools for adding these modifications to
synthetic face renderings. Implementing these modifications to the synthetic data genera-
tion pipeline is the natural next step to improve the performance of our proposed method.
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Appendix A

Code

A.1 300W-LP Data Generation

1 def run_posmap_300W_LP(bfm , uv_coords , image_path , mat_path , save_folder ,
2 uv_h =256, uv_w =256, image_h =256, image_w =256):
3

4 # load image and fitted parameters
5 image_name = image_path.strip ().split(’/’)[-1]
6 image = io.imread(image_path) / 255.
7 h, w, c = image.shape
8 info = sio.loadmat(mat_path)
9 pose_para = info[’Pose_Para ’].T.astype(np.float32)

10 shape_para = info[’Shape_Para ’]. astype(np.float32)
11 exp_para = info[’Exp_Para ’]. astype(np.float32)
12

13 # generate mesh from shape and expression parameters
14 vertices = bfm.generate_vertices(shape_para , exp_para)
15

16 # transform mesh to VCC by applying scale , rotation and transformation
17 s = pose_para[-1, 0]
18 angles = pose_para [:3, 0]
19 t = pose_para [3:6, 0]
20 transformed_vertices = bfm.transform_3ddfa(vertices , s, angles , t)
21 projected_vertices = transformed_vertices.copy() # orthographic projection
22 image_vertices = projected_vertices.copy()
23 image_vertices [:, 1] = h - image_vertices [:, 1] - 1
24

25 # crop image with key points
26 kpt = image_vertices[bfm.kpt_ind , :]. astype(np.int32)
27 left = np.min(kpt[:, 0])
28 right = np.max(kpt[:, 0])
29 top = np.min(kpt[:, 1])
30 bottom = np.max(kpt[:, 1])
31 center = np.array([right - (right - left) / 2.0,
32 bottom - (bottom - top) / 2.0])
33 old_size = (right - left + bottom - top) / 2
34 size = int(old_size * 1.5)
35

36 # randomize the cropping size
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37 marg = old_size * 0.1
38 t_x = np.random.rand() * marg * 2 - marg
39 t_y = np.random.rand() * marg * 2 - marg
40 center [0] = center [0] + t_x
41 center [1] = center [1] + t_y
42 size = size * (np.random.rand() * 0.2 + 0.9)
43

44 # crop and record the transform parameters
45 src_pts = np.array ([[ center [0] - size / 2, center [1] - size / 2],
46 [center [0] - size / 2, center [1] + size / 2],
47 [center [0] + size / 2, center [1] - size / 2]])
48 DST_PTS = np.array ([[0, 0],
49 [0, image_h - 1],
50 [image_w - 1, 0]])
51 tform = skimage.transform.estimate_transform(’similarity ’, src_pts , DST_PTS)
52 cropped_image = skimage.transform.warp(image , tform.inverse , output_shape =(

image_h , image_w))
53

54 # transform face position(image vertices) along with 2d facial image
55 position = image_vertices.copy()
56 position[:, 2] = 1
57 position = np.dot(position , tform.params.T)
58 position[:, 2] = image_vertices [:, 2] * tform.params[0, 0] # scale z
59 position[:, 2] = position[:, 2] - np.min(position[:, 2]) # translate z
60

61 # uv position map: render position in uv space
62 uv_position_map = mesh.render.render_colors(uv_coords , bfm.full_triangles ,

position , uv_h , uv_w , c=3)
63 uv_position_map = uv_position_map.astype(np.float16)
64

65 # save files
66 io.imsave(’{}/{}’.format(save_folder , image_name),
67 np.squeeze(cropped_image))
68 np.save(’{}/{} ’.format(save_folder , image_name.replace(’jpg’, ’npy’)),
69 uv_position_map)

Listing A.1: Python implementation of 300W-LP dataset generation pipeline
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A.2 Random Texture Background

1 def apply_random_background(image):
2 dtd_path = ’../ Data/dtd/images ’ # texture dataset
3 random_dir_path = get_random_subfolder(dtd_path) # random category
4 random_img_path = get_random_subfolder(random_dir_path , is_image = True) #

random image within category
5

6 bg_img = io.imread(random_img_path)
7 if (bg_img.shape [0] < 256 or bg_img.shape [1] < 256): # should not happen
8 return image # return image without background image
9 image_with_bg = image [: ,: ,:3]. copy()

10 cropped_bg_img = bg_img [:256 ,:256 ,:3]. copy() # only use the top left 256 x256
pixels

11 background_mask = np.array(image_with_bg <= [0,0,0]) # if rgb values are 0,
background should be shown

12 image_with_bg[background_mask] = cropped_bg_img[background_mask]
13

14 return image_with_bg

Listing A.2: Python implementation of applying random texture background

47



A.3 Training Code

1 def main(args):
2 os.environ[’CUDA_VISIBLE_DEVICES ’] = args.gpu
3 batch_size = args.batch_size
4 epochs = args.epochs
5 train_data_file = args.train_data_file
6 learning_rate = args.learning_rate
7 epoch_limit = 10
8 model_path = args.model_path
9 resume_model_path = args.resume_model_path

10 resume_model = args.resume
11

12 # set tensorflow session GPU usage
13 config = tf.ConfigProto ()
14 config.gpu_options.allow_growth = True
15 sess = tf.Session(config=config)
16 set_session(sess)
17

18 # set model saving dir
19 save_dir = args.checkpoint
20 if not os.path.exists(save_dir):
21 os.makedirs(save_dir)
22

23 # initialize TrainData class
24 data = TrainData(train_data_file , weight_mask_path = ’../ Data/uv -data/

uv_mask_final.png’, pre_path = ’’)
25

26 # set model to train on
27 if resume_model:
28 model = keras.models.load_model(resume_model_path)
29 else:
30 if args.model == ’mobilenet ’:
31 model = MobileNetv2_PRN ((256 ,256 ,6), args.alpha_mobilenet)
32 elif args.model == ’prnet’:
33 network = resfcn256_keras ()
34 model = network.model
35 else:
36 raise NotImplementedError
37

38 # set model optimizer and compile
39 adam = optimizers.Adam(learning_rate = learning_rate)
40 model.compile(optimizer = adam ,
41 loss = ’mean_squared_error ’,
42 metrics = [’accuracy ’])
43

44 # initialize logging
45 print("\n\nstarting training ... \n\n")
46 time_now = datetime.now().strftime("%Y_%m_%d_%H_%M_%S")
47 fp_log = open("training_logs/log_" + time_now + ".txt","w")
48

49 # calculate number of iterations on training and validation iterations
50 num_train_iterations = int(math.ceil (1.0* data.num_training_data/batch_size))
51 num_validation_iterations = int(math.ceil (1.0* data.num_validation_data/

batch_size))
52

53 #initialize early stopping variables
54 epoch_val_losses = [9.999]
55 times_not_saved = 0
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56

57 for epoch in range(epochs):
58 reset_train_metrics = True
59 model_saved = False
60 np.random.shuffle(data.training_data)
61 data.set_augmentation(rotate = True , channel_scale = True , dropout =

True)
62

63 # train network on training data
64 for iters in range(num_train_iterations):
65 batch = data(batch_size , data.training_index , data.num_training_data

, data.training_data)
66 data.training_index = data.get_updated_index(data.training_index ,

batch_size , data.num_training_data)
67 if iters != 0:
68 reset_train_metrics = False
69 metrics = model.train_on_batch(x = np.array(batch [0]), y = np.array(

batch [1]), reset_metrics=reset_train_metrics , class_weight = data.
weight_mask)

70 stdout.flush ()
71 stdout.write(’\riters :%d/%d epoch:%d,loss:%f,accuracy :%f’%(iters +

1, num_train_iterations , epoch , metrics [0], metrics [1]))
72

73 # calculate validation loss
74 stdout.write(’\n\rcalculating validation loss ...’)
75 reset_val_metrics = True
76 data.set_augmentation(rotate = False , channel_scale = False , dropout =

False)
77 for iters in range(num_validation_iterations):
78 batch = data(batch_size , data.validation_index , data.

num_validation_data , data.validation_data)
79 data.validation_index = data.get_updated_index(data.validation_index

, batch_size , data.num_validation_data)
80 if iters != 0:
81 reset_val_metrics = False
82 val_metrics = model.test_on_batch(x = np.array(batch [0]), y = np.

array(batch [1]), reset_metrics = reset_val_metrics)
83

84 # early stopping
85 if val_metrics [0] < min(epoch_val_losses):
86 epoch_val_losses.append(val_metrics [0])
87 model.save(model_path)
88 model_saved = True
89 times_not_saved = 0
90 else:
91 times_not_saved += 1
92 if times_not_saved > epoch_limit:
93 break
94

95 stdout.flush ()
96 stdout.write(’\nvalidation loss:%f validation accuracy :%f \n’%(

val_metrics [0], val_metrics [1]))
97 fp_log.writelines(’[%s] epoch:%d learning rate:%f validation loss:%f,

validation accuracy :%f, saved :%s\n’%( datetime.now().strftime("%Y_%m_%d_%H_%
M_%S"), epoch , learning_rate , val_metrics [0], val_metrics [1], model_saved))

98

99 # cut the learning rate in half every 5/10/3 epochs
100 if ((epoch != 0) and (epoch %5 == 0)):
101 learning_rate = learning_rate / 2
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102

103 fp_log.close ()

Listing A.3: Python implementation of training code using Keras
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Appendix B

Installation Manual

This appendix outlines the installation manual to run a demo of our proposed method. The
installation manual and code is available at GitHub.

B.1 Prerequisites

The following libraries need to be install in order to run the code. We also provide a script
to install these libraries using the Anaconda1 package manager.

Python 3.6
Skimage
Scipy
keras-gpu
dlib
opencv2

1https://anaconda.org/
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B.1.1 Anaconda as package manager

We recommend using the Anaconda package manager to install the required libraries. The
following Anaconda environment was able to run demo.py on a Windows computer with
GTX 1070 GPU.

conda create –name face-recon python=3.6
conda activate face-recon
conda install -c anaconda scipy
conda install -c anaconda scikit-image
conda install -c conda-forge dlib
conda install -c conda-forge opencv
conda install -c anaconda keras-gpu

B.2 Usage

1. Clone the repository.
git clone https://github.com/olalium/face-reconstruction
cd face-reconstruction

2. Clone the ICP repository to face-reconstruction folder.
git clone https://github.com/ClayFlannigan/icp

3. Clone face3d repository to face-reconstruction folder.
git clone https://github.com/YadiraF/face3d

4. Download trained model and shape predictor for keypoints.
Navigate to the ned-data folder
cd Data/net-data
add these models:

Shape predictor
Trained CNN

5. Run the demo
cd ../..
python demo.py

The demo generates 3D faces for the the image pairs in the test_images folder.
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