
N
avjot Singh

D
eep Active Learning for Autonom

ous Perception

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Navjot Singh

Deep Active Learning for Autonomous
Perception

Master’s thesis in Computer Science

Supervisor: Frank Lindseth, Håkon Hukkelås

June 2020

Deep Active Learning for
Autonomous Perception

Master’s Thesis in Computer Science

Navjot Singh

Artificial Intelligence Group

Department of Computer and Information Science
Faculty of Information Technology, Mathematics and

Electrical Engineering

Supervisor: Frank Lindseth
Co-Supervisor: H̊akon Hukkel̊as

Spring 2020

Abstract

Traditional supervised learning requires significant amounts of labeled train-
ing data to achieve satisfactory results. As autonomous perception systems
collect continuous data, the labeling process becomes expensive and time-
consuming. Active learning is a specialized semi-supervised learning strategy
that allows a machine learning model to achieve high performance using less
training data, thereby minimizing the cost of manual annotation.

In this thesis, we explore active learning in an autonomous domain, and
propose a novel deep active learning framework for object detection and
instance-based segmentation that comprises various active learning strate-
gies. We review prominent active learning approaches, study their perfor-
mances in the aforementioned computer vision tasks, and perform several
experiments using state-of-the-art R-CNN-based models for datasets in the
self-driving domain.

The goal of active learning is to let a machine learning model choose its
own training data that helps it perform better. Using a query strategy, the
model can measure the informativeness of an unlabeled sample based on its
prediction uncertainty. The underlying theory is that by adding informative
samples that are not represented in the current training data, the model
will significantly improve. For a large set of training data and a well-trained
model, these samples could represent highly unusual scenarios (i.e., a horse
walking in the middle of a highway).

Our empirical experiments on a number of datasets reflect that active
learning reduces the amount of training data required. We observe that
early exploration with instance-rich training sets leads to good performance
(i.e., active learning strategies using sum as aggregation technique), and that
false positives can have a negative impact if not dealt with appropriately,
especially for active learning strategies using average as aggregation tech-
nique. Furthermore, we perform a qualitative evaluation using autonomous
driving data collected from Trondheim, illustrating that active learning can
help in selecting more complex scenarios to annotate.

Encouraging findings indicate that active learning can be beneficial in a
machine learning pipeline for autonomous perception to minimize the anno-
tation job. Our efforts can be seen as an important first step for contributing
in the active learning domain.

i

Sammendrag

Tradisjonell veiledet læring krever betydelige mengder med annotert tren-
ingsdata for å oppn̊a tilfredsstillende resultater. Ettersom autonome persep-
sjonssystemer samler inn data kontinuerlig blir annoteringsprosessen meget
kostbar og tidkrevende. Aktiv læring er en spesialisert semi-veiledet lærings-
strategi som gjør det mulig for en maskinlæringsmodell å oppn̊a høy ytelse
med mindre treningsdata, og minimerer dermed kostnadene for manuell an-
notering.

I denne oppgaven utforsker vi aktiv læring innenfor autonom persepsjon,
og foresl̊ar et nytt dypt aktivt lærings rammeverk for objektdeteksjon og
instans-basert segmentering som omfatter ulike aktive lærings strategier. Vi
gjennomg̊ar fremtredende metoder innen aktiv læring, studerer deres ytelse
i de sistnevnte datasyn oppgavene og utfører flere eksperimenter ved å bruke
avanserte R-CNN-baserte modeller for datasett i det selvkjørende domenet.

Målet med aktiv læring er å la en maskinlæringsmodell velge sine egne
treningsdata som hjelper den i å yte bedre. Ved hjelp av en spørrestrategi
kan modellen m̊ale informativiteten til et ikke-annotert datapunkt basert
p̊a dens prediksjonsusikkerhet. Den underliggende teorien er at ved å legge
til informative datapunkter som ikke er representert i eksisterende trenings-
data, vil modellen forbedre seg betydelig. For et stort sett med treningsdata
og en godt trent modell kan disse datapunktene representere svært uvanlige
scenarier (f.eks.. en hest som g̊ar midt p̊a en motorvei).

V̊are empiriske eksperimenter p̊a en rekke datasett viser at aktiv læring
reduserer mengden treningsdata som kreves. Vi observerer at tidlig ut-
forskning med instanse-rike treningssett fører til god ytelse (dvs. aktiv
læringsstrategier som bruker sum som aggregeringsteknikk), og at falske pos-
itive prediksjoner kan ha en negativ innvirkning hvis de ikke blir behandlet
p̊a riktig m̊ate, spesielt p̊a aktiv læringsstrategier som bruker gjennomsnitt
som aggregeringsteknikk. Videre utfører vi en kvalitativ evaluering av au-
tonome kjøredata samlet inn fra Trondheim, og illustrerer at aktiv læring
kan være til hjelp med å velge mer komplekse scenarier for annotering.

Oppmuntrende funn indikerer at aktiv læring kan være fordelaktig i en
maskinlærings prosess for autonom persepsjon for å minimere annoterings
innsatsen. V̊art arbeid kan sees p̊a som et viktig første skritt for å bidra til
det aktive læringsdomenet.

ii

Preface

In this master thesis, I explore the specialized semi-supervised learning strat-
egy Active Learning in an autonomous perception setting. This thesis is a
part of an M.Sc. in Computer Science at Norwegian University of Science
and Technology, and has been carried out within the NTNU Autonomous
Perception Lab (NAPLab). I would like to express my sincere appreciation
to my supervisors, Frank Lindseth and H̊akon Hukkel̊as, for their continu-
ous support and excellent guidance throughout this thesis, and for giving
me this opportunity. Without them, I would not have been able to complete
this thesis. I also wish to thank my mom, dad, and brother for all their love,
encouragement, and moral support.

iii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Aim . 2

1.3 Research Questions (RQs) . 3

1.4 Contributions . 3

1.5 Outline . 4

2 Background Theory 5

2.1 Computer Vision Tasks . 5

2.1.1 Image Classification 5

2.1.2 Object Detection . 6

2.1.3 Image Segmentation 7

2.2 Active Learning . 9

2.2.1 Query Scenarios . 10

2.2.2 Query Strategy Frameworks 11

2.2.3 Query Strategies . 12

2.2.4 Sample Selection . 14

2.2.5 Known Weaknesses in AL 15

2.2.6 Additional Techniques that can be used with AL . . . 16

2.3 Datasets . 18

2.3.1 MNIST . 18

2.3.2 CIFAR-10 . 18

2.3.3 YYMNIST . 19

2.3.4 Apollo Synthetic Dataset 19

2.3.5 Waymo Open Dataset v1.0 21

2.3.6 NAPLab’s Raw Dataset (NAP-Set) 21

3 Related Work 23

3.1 Active Learning for Image classification 23

3.1.1 Multi-Class AL for Image Classification 24

3.1.2 AL in Imbalanced Data Classification 25

3.2 Active Learning for Object Detection 27

3.2.1 Deep AL for Object Detection 27

iv

CONTENTS v

3.2.2 Localization-Aware AL for Object Detection 28

3.2.3 AL for Deep Object Detection 30

3.3 Active Learning for Segmentation 31

3.3.1 Uncertainty-aware Instance Segmentation using Dropout
Sampling . 31

3.3.2 AL for Road Segmentation using CNN 33

4 Methodology 35

4.1 AL Framework . 35

4.2 AL Strategies . 38

4.2.1 Learners . 38

4.3 Experiment Structure . 41

4.3.1 Active Learning Process 41

4.3.2 Evaluation Details . 42

5 Experiments and Results 43

5.1 EXP 1 - Simple Active Learning 45

5.1.1 Problem Description 45

5.1.2 Dataset . 45

5.1.3 Setup . 45

5.1.4 Results . 46

5.1.5 EXP 1.1 - More Active Learning Iterations 48

5.1.6 EXP 1.2 - Using the CIFAR-10 Dataset 49

5.2 EXP 2 - AL with Object Detection 52

5.2.1 Problem Description 52

5.2.2 Dataset . 52

5.2.3 Setup . 52

5.2.4 Results . 53

5.2.5 EXP 2.1 - Using All Margin Learners 55

5.3 EXP 3 - Synthetic Self-Driving Dataset 57

5.3.1 Problem Description 57

5.3.2 Dataset . 57

5.3.3 Setup . 58

5.3.4 Results . 59

5.3.5 EXP 3.1 - Spectrum vs No-Spectrum 65

5.3.6 EXP 3.2 - Using an Unbalanced Initial Set 67

5.4 EXP 4 - QbC Framework . 69

5.4.1 Problem Description 69

5.4.2 Dataset . 69

5.4.3 Setup . 69

5.4.4 Results . 70

5.5 EXP 5 - Real-Life Self-Driving Dataset 74

5.5.1 Problem Description 74

5.5.2 Dataset . 74

vi CONTENTS

5.5.3 Setup . 74
5.5.4 Results . 74
5.5.5 EXP 5.1 - Ensuring Data Diversity 76
5.5.6 EXP 5.2 - Using Early Stopping 82

5.6 EXP 6 - Informative Samples 85
5.6.1 Problem Description 85
5.6.2 Dataset . 85
5.6.3 Setup . 85
5.6.4 Results . 86

6 Discussion 91
6.1 Major Findings . 91
6.2 Softmax Uncertainty . 94
6.3 Bounding Box vs. Mask Uncertainty 94
6.4 Initial Training Set . 95
6.5 Time and Annotation Cost 96
6.6 Research Questions (RQs) . 96
6.7 Limitations . 99
6.8 Reflection . 99

7 Conclusion and Future Work 101
7.1 Future Work . 102

7.1.1 AL Pipeline . 102
7.1.2 Instance-Based Segmentation 104
7.1.3 White-Box Query Strategies 104
7.1.4 Representativeness . 104
7.1.5 Balanced Training Sets 104
7.1.6 Using Probabilistic Networks to Measure Uncertainty 104

A AL Framework 115
A.1 AL Framework Architecture 115
A.2 Setup . 116
A.3 Detection Evaluation Metrics 116

B Query Strategy Algorithms 117

C Issues 121
C.1 Matterport’s Mask R-CNN Implementation 121
C.2 Apollo Synthetic Dataset . 121

List of Figures

2.1 The Faster R-CNN Network 6

2.2 Object Detection and Segmentation Examples 8

2.3 The Mask R-CNN Architecture 9

2.4 Pool-Based Active Learning Cycle 11

2.5 MNIST Samples . 18

2.6 CIFAR-10 Samples . 19

2.7 YYMNIST Sample . 19

2.8 Apollo Synthetic Dataset Folder Structure 20

2.9 Apollo Dataset Sample with Segmented Ground Truth 20

2.10 Waymo Dataset Samples with Object Ground Truth 21

2.11 NAP-Set Samples . 22

3.1 Entropy as Poor Estimate . 25

3.2 AL in Imbalanced Data Classification 26

3.3 Localization Tightness and Stability Uncertainty 29

3.4 Samples Selected by Aggregation Techniques 30

3.5 Uncertainty Aware Instance Segmentation 32

4.1 AL Framework Workflow . 36

4.2 Training Data Cycle . 42

5.1 EXP 1 - MNIST - AL with Image Classification - Results . . 46

5.2 EXP 1 - MNIST - ENT Top Hard/Easy Images 47

5.3 EXP 1 - MNIST - BVSB Top Hard/Easy Images 47

5.4 EXP 1 - MNIST - Number of Class Instances from ALI 50 . . 48

5.5 EXP 1.1 - MNIST - Long Run Results 49

5.6 EXP 1.2 - CIFAR-10 - AL with Image Classification - Results 50

5.7 EXP 1.2 - CIFAR-10 - Number of Class Instances 50

5.8 EXP 1.2 - CIFAR-10 - ENT Top 10 Hard/Easy Images 51

5.9 EXP 1.2 - CIFAR-10 - BVSB Top 10 Hard/Easy Images . . . 51

5.10 EXP 2 - YYMNIST - AL with Object Detection - Results . . 53

5.11 EXP 2 - YYMNIST - MAXENT Top 5 Hard/Easy Images . . 54

5.12 EXP 2 - YYMNIST - SUMENT Top 5 Hard/Easy Images . . 54

5.13 EXP 2 - YYMNIST - AVGENT Top 5 Hard/Easy Images . . 54

vii

viii LIST OF FIGURES

5.14 EXP 2.1 - YYMNIST - AL with Object Detection - All Mar-
gin Learners Results . 55

5.15 EXP 2 & 2.1 - YYMNIST - Number of Class Instances 56
5.16 EXP 3 - Apollo - AL with Object Detection - Results 60
5.17 EXP 3 - Apollo - Number of Class Instances each ALI 61
5.18 EXP 3 - Apollo - SUMENT Top 10 Hard/Easy Images 62
5.19 EXP 3 - Apollo - MAXENT Top 10 Hard/Easy Images . . . 63
5.20 EXP 3 - Apollo - AVGENT Top 10 Hard/Easy Images 64
5.21 EXP 3.1 - Apollo - Spectrum vs. No-Spectrum - Results . . . 66
5.22 EXP 3.1 - Apollo - Spectrum vs. No-Spectrum - Number of

Class Instances each ALI . 66
5.23 EXP 3.2 - Apollo - Unbalanced Initial Set - Results 68
5.24 EXP 3.2 - Apollo - Unbalanced Initial Set - Change in AP

over time per Class . 68
5.25 EXP 4 - Apollo - AL with Object Detection and Instance-

Based Segmentation - Results BBOX 71
5.26 EXP 4 - Apollo - AL with Object Detection and Instance-

Based Segmentation - Results MASK 71
5.27 EXP 4 - Apollo - AL with Object Detection and Instance-

Based Segmentation - Number of Class Instances each ALI . 72
5.28 EXP 4 - Apollo - DROPOUT scoring examples 72
5.29 EXP 5 - Waymo - AL with Object Detection - Results 75
5.30 EXP 5 - Waymo - Number of Class Instances each ALI . . . 76
5.31 EXP 5 - Waymo - SUMENT Top 10 Hard/Easy Images . . . 77
5.32 EXP 5 - Waymo - MAXENT Top 10 Hard/Easy Images . . . 78
5.33 EXP 5 - Waymo - AVGENT Top 10 Hard/Easy Images . . . 79
5.34 EXP 5.1 - Waymo - AL with Object Detection - Results . . . 81
5.35 EXP 5.1 - Waymo - Number of Class Instances each ALI . . 81
5.36 EXP 5.2 - YYMNIST - AL with Early Stopping - Results . . 83
5.37 EXP 5.2 - Apollo - AL with Early Stopping - Results 83
5.38 EXP 5.2 - Waymo - AL with Early Stopping - Results 84
5.39 EXP 5.2 - Waymo - AL with Early Stopping and Data Diver-

sity - Results . 84
5.40 EXP 6 - NAP-Set - Top 10 Hard/Easy Images - DROPOUT 87
5.41 EXP 6 - NAP-Set - Top 5 Hard/Easy Images - SUMENT and

MAXENT . 88
5.42 EXP 6 - NAP-Set - Top 5 Hard/Easy Images - AVGENT . . 89

6.1 Bbox Uncertainty vs. Mask Uncertainty 95

7.1 AL Pipeline . 103

A.1 AL Framework Architecture 115

List of Tables

2.1 Apollo Synthetic Dataset Classes 20

5.1 EXP 2 - YYMNIST - AL with Object Detection - Learners
Comparison . 53

5.2 EXP 2.1 - YYMNIST - AL with Object Detection - Learners
Comparison . 56

5.3 EXP 3 - Apollo - Dataset Distribution 57
5.4 EXP 3 - Apollo - Thing Classes 57
5.5 EXP 3 - Apollo - AL with Object Detection - Learners Com-

parison . 60
5.6 EXP 3.2 - Apollo - Unbalanced Class Distribution 67
5.7 EXP 5 - Waymo - AL with Object Detection - Learners Com-

parison . 75
5.8 EXP 5.2 - Total Iterations . 85

ix

Acronyms

AL Active Learning. 2–5, 9–11, 14–18, 23–33, 35, 36, 41–43, 45, 49, 50, 52,
53, 55, 57, 58, 60, 66, 68, 69, 71, 72, 74, 75, 81–86, 91–104

ALI Active Learning Iteration. 2, 3, 17, 36–39, 41, 42, 94, 95, 99

AV Autonomous Vehicle. 1, 2

BvSB Best-versus-Second-Best. 13, 24, 25, 30, 38

CIFAR Canadian Institute For Advanced Research. vii, 5, 18, 19, 43, 49–
51, 74

CNN Convolutional Neural Network. 1, 5, 23, 24, 33, 45

COCO Common Objects in Context. 6, 52, 69, 116

CV Computer Vision. 1, 3–5, 18, 23, 35, 38, 41, 98, 102

DARPA Defense Advanced Research Projects Agency. 1

FCN Fully Convolutional Network. 6, 7, 31, 70

FPN Feature Pyramid Network. 9

IoU Intersection over Union. 28, 29, 31, 32, 116

MNIST Modified National Institute of Standards and Technology. vii, 5,
23, 43, 45–49, 52, 58, 74

QbC Query by Committee. 12–14, 23, 27, 32, 33, 35, 44, 69, 70, 93

ROI Region Of Interest. 7–9

RPN Region Proposal Network. 6, 28, 29, 121

SSD Single Shot Multibox Detector. 6, 27, 28, 121

x

Acronyms xi

SVM Support Vector Machine. 23–27, 104

YOLO You Only Look Once. 6

xii Acronyms

Chapter 1

Introduction

In this chapter, the reader is given a short introduction to the background
and motivation behind this thesis. In addition, our goals and contributions
are presented, followed by an outline which describes the thesis structure.

1.1 Motivation

We have come a long way with the development of autonomous driving in
the past years. One of the most significant milestones achieved was in 1987,
when a vision-guided Mercedes-Benz van (VaMoRs) managed to reach a
speed of 96 km/h in a non-traffic highway using dynamic vision techniques
(Dickmanns, [14]). In 1989, the DARPA funded Autonomous Land Driven
Vehicle (ALV) project, with the help of Computer Vision (CV) and other
sensor technologies (e.g., LiDAR), managed to demonstrate the first off-road
navigation in USA (Pomerleau, [60]). Today, we have several companies
working with bleeding-edge state-of-the-art technologies for object detection,
image segmentation, and advanced perception; in order to reach the common
goal of making the first fully Autonomous Vehicle (AV).

Most of today’s autonomous perception systems include various types
of Convolutional Neural Networks (CNNs). CNNs are well suited for un-
derstanding, analyzing, and classifying visual imagery (O’Shea et al. [55]).
Deep convolutional neural networks are being used for a large variety of CV
tasks, but require a significant amount of labeled data to achieve satisfactory
results. However, acquiring labeled data for all CV tasks is extremely expen-
sive and time-consuming as it is often done by an expert human annotator.
Making a label that classifies whether an image is of a car or pedestrian is
easy. Drawing bounding boxes or classifying each pixel to a class in an image
(i.e., segmenting), taken in an urban city environment, containing multiple
objects, is much harder.

AVs generate large volumes of data, and annotating this can become a
large bottleneck. Data is collected using multiple sensors, such as cameras,

1

2 1.2. AIM

LiDARs and RADARs, in just a couple of hours. Challenges arise when
we have to deal with terabytes of data coming in every day, that has to be
cleaned, processed, annotated, labeled, and stored in various ways for later
use. With the help of a well-structured data pipeline, several techniques can
be used to remove unnecessary, noisy, and corrupted data (Fridman et al.
[19]), and to ensure that the data is consistent and synchronized during the
process of sensor fusion. In a typical pipeline, data processing techniques
are often fully automated. However, the annotation process is still done
manually and has a high cost.

Active Learning (AL) is a specialized semi-supervised strategy that aims
to minimize the annotation effort and maximize the usage of ”highly useful”
learning data (Settles, [68]). ”Useful” data contain lots of new information
that may be beneficial for the learner’s understanding. AL gives the learner
a chance to choose its own training data, where the goal is to achieve high
performance using less data. This strategy has received much attention in
the past recent years and fits well in scenarios where data is easy to obtain
but expensive to label (Settles, [68]).

1.2 Aim

The goal of this thesis is to identify if AL can be used to achieve at least
the same model performance using a smaller, carefully assembled dataset
compared to using all of the data available. Furthermore, we will evaluate
if AL can be used in a setting of autonomous driving by exploring and
reviewing relevant AL approaches.

This thesis was requested by the NTNU Autonomous Perception Lab
(NAPLab) to certify whether the field of AL is applicable for future devel-
opment and worth focusing on in their current autonomous setting. NAPLab
was started in 2018 and is a research group at the Norwegian University of
Science and Technology (NTNU), which aims to research and develop state-
of-the-art models for Autonomous Vehicles (AVs). Our contributions can
be seen as an important starting point, since AL is an unexplored topic for
NAPLab that needs to be investigated further.

To evaluate AL, we will implement a pool-based AL Framework to per-
form object detection and instance-based segmentation tasks. We aim to
use this framework with Detectron2 (Wu et al. [82]) on the Apollo Syn-
thetic dataset [74], and preferably on a real-life dataset (e.g., Waymo Open
[80]). This will be done in an iterative fashion by implementing simpler
frameworks using less complex models and datasets to verify and support
subsequent implementations.

Various AL query strategies will be evaluated based on their performance
and compared to a baseline method. We will be using the general procedure
of AL as follows: A model is trained for a number of Active Learning Itera-

CHAPTER 1. INTRODUCTION 3

tions (ALIs) using each query strategy. During each ALI, the trained model
queries a set of unlabeled samples. Each sample is given an informativeness
score that is measured by a query strategy. This score tells us how certain
or uncertain a model is about a sample. If a model is uncertain about a
sample, it considers the sample as being highly informative. A set of highly
informative samples is added to the existing training set, and the model is
then re-trained in the following ALI.

1.3 Research Questions (RQs)

The overall goal is to implement an AL Framework that we can use to explore
and apply AL, and to evaluate the performance of this strategy in various
CV tasks using a number of self-driving datasets. To investigate this, we
will do an evaluation by looking into the following research questions:

RQ1: Can we use AL to achieve better or similar performance with less
labeled data as opposed to utilizing the entire dataset? If so, how
much time and resources can be saved in collecting, annotating data,
and training in the setting of autonomous perception?

RQ2: Does there exist an optimal query strategy that can be used for either
object detection and/or segmentation in the setting of autonomous
perception?

RQ3: Does AL perform differently depending on the CV task, or is there
a similar performance pattern? Does it work well with instance-based
segmentation?

1.4 Contributions

In this thesis, we propose a novel AL Framework that contains various
AL strategies to be used in object detection and instance-based segmen-
tation. The framework uses Detectron2’s implementation of the state-of-
the-art Faster R-CNN and Mask R-CNN models (Wu et al. [82]).

Other Contributions

• We present, evaluate, and implement various AL strategies to see if
they are applicable for object detection, and instance-based segmen-
tation related to autonomous driving.

• We implement dropout layers, early stopping hooks, and evaluation
hooks in Detectron2, as Detectron2 is a relatively new library that
does not include this functionality out of the box.

4 1.5. OUTLINE

• We implement an algorithm for data diversification that uses the sim-
ilarity metric LPIPS [86].

• We present an AL Pipeline for our AL Framework and explain how it
can be used in an autonomous setting as future work.

• We make self-driving datasets, such as Apollo Synthetic, Waymo Open,
and NAPLab’s raw data compatible with Detectron2 so they can be
used for future work.

• As for the near future, we have ambitions to publish a paper on the
work presented in this thesis.

1.5 Outline

This thesis is organized as follows:

Chapter 2: Background Theory looks into relevant theory related to
CV tasks, state-of-the-art models, AL, and datasets.

Chapter 3: Related Work gives a brief overview of some related work
in the field of AL; AL in image classification, object detection, and
segmentation.

Chapter 4: Methodology presents our AL Framework, the various AL
strategies being used, and the structure of our experiments.

Chapter 5: Experiments and Results presents the results of the vari-
ous experiments conducted using different AL strategies in our itera-
tive development.

Chapter 6: Discussion discusses our major findings and the RQs.

Chapter 7: Conclusion and Future Work concludes and reflects this
thesis, proposes an AL pipeline and presents new ideas for future de-
velopment.

Chapter 2

Background Theory

This chapter gives the reader a brief introduction to the relevant theory for
this thesis. It is assumed that the reader has the necessary prior knowledge
about Deep Neural Networks and Convolutional Neural Networks. We will
start by presenting the evolution of common Computer Vision (CV) tasks for
autonomous vehicles, including some of their current state-of-the-art models.
Furthermore, we will explain the specialized semi-supervised strategy Active
Learning (AL), how it is implemented in machine learning and how it can
benefit from techniques such as early stopping, data augmentation, and data
diversification. Finally, we will list relevant datasets that are used in the
CV field and this thesis.

2.1 Computer Vision Tasks

We will specifically focus on image classification, object detection, and
instance-based segmentation, due to their vast usage in autonomous per-
ception.

2.1.1 Image Classification

Image classification is the task of classifying an object in an image to a spe-
cific class. For instance, a CNN can be built and trained to classify whether
an image is of a vehicle or a pedestrian. It is possible to classify multiple
objects in an image. However, the output will only consist of classifications,
and will say nothing about the localization of each object.

There exists several datasets that are used to train classification mod-
els, one of the most popular being CIFAR-10/100 [43], ImageNet [13], and
MNIST [44]. State-of-the-art classification models (e.g., ResNet [30]) excels
at this task, often outperforming humans.

5

6 2.1. COMPUTER VISION TASKS

2.1.2 Object Detection

Object detection is a combination of localization and classification, where
the goal is to detect objects by classifying them as a class and localizing
their positions. The output is typically a set of bounding boxes with corre-
sponding classifications and probabilities of how certain the predictions are.
Figure 2.2a illustrates a typical object detection output.

The task of object detection has gained traction in recent years, with
large-scale labeled datasets being a key driving force. PASCAL VOC [17]
was a key factor for early deep learning models, and recently, challenging
datasets, such as COCO [48] and ImageNet [13], has further driven the field.

Object detection models are often categorized into two models; real-time
detection (e.g., Single Shot Multibox Detector (SSD) [49], You Only Look
Once (YOLO) [63]), and more expensive models. In this thesis, we will not
limit ourselves by computation time; therefore, we will focus on the R-CNN
branch of models.

Faster R-CNN

Faster R-CNN (Ren et al. [64]) is an object detection network based on
R-CNN [26] and Fast R-CNN [25]. In short, the network takes an image
as input and outputs a bounding box and class prediction for each detected
object in that image.

Figure 2.1: An illustration of the Faster R-CNN network. Figure source:
Ren et al. [64]

An image is given as input to a Fully Convolutional Network (FCN)
that outputs a feature map of the image. This feature map is used by a
Region Proposal Network (RPN) to find areas that might contain objects,
and this is done in a sliding-window fashion. For each window, k number of
anchor boxes are generated. For each anchor box, two outputs are given; an

CHAPTER 2. BACKGROUND THEORY 7

objectness score in the form of a binary class label that tells whether there
is an object in this anchor or not, and an initial proposal of the bounding
box for the object. Multiple Region Of Interests (ROIs) are proposed using
these outputs.

ROI proposals are used by the ROI pooling layer along with the feature
maps from the FCN. ROI pooling crops each proposal to make it contain
a single object. These proposals are then fed into a classifier that finally
classifies the object and refines the initial bounding box proposal.

2.1.3 Image Segmentation

The task of image segmentation is to analyze an image and split it into
multiple segments that represent different object classes. This is done in
a pixel-wise manner, where we label each pixel as a specific class. It can,
therefore, be seen as a simplification of the image, which is easier to under-
stand and faster to analyze for later processing. This technique can help us
detect and easily distinguish different types of objects in an image.

When an image is split into segments, each segment can be classified as
either a thing class or a stuff class [10]. Following the definitions by Caesar
et al. [10]:

Thing Classes are defined as having characteristic shapes, characteristic
sizes, identifiable parts, and being countable.

Stuff Classes are defined as being amorphous, variable in size, having non-
identifiable parts, non-countable, and highly textured.

The three methods semantic segmentation, instance-based segmentation,
and panoptic segmentation, use these classes differently.

In Semantic Segmentation, the task is to classify each pixel as a
specific class. The image is split into different segments at a pixel level
based on their class, and these segments are grouped. For instance, an
image containing five overlapping vehicles will be classified as a single thing
class segment, as illustrated in Figure 2.2b.

Instance-Based Segmentation is a combination of semantic segmen-
tation and object detection. Here, we care about each instance of a class
object. Let us say we have an image containing three overlapping vehicles.
As mentioned earlier, a semantic segmentation will classify them as a single
stuff class. Instance-based segmentation will make sure that it outputs and
differentiates each vehicle as a single segment, making it a thing class, as
seen in Figure 2.2c. Instance-based segmentation does not look into stuff
classes. Networks such as Mask R-CNN [31] and YOLOACT [7] can perform
this task.

Panoptic Segmentation unifies semantic segmentation and instance-
based segmentation [42]. Each pixel in an image is classified as either a

8 2.1. COMPUTER VISION TASKS

thing class or a stuff class; see Figure 2.2d. Since stuff classes are difficult
to quantify, they are not split into instances, unlike thing classes.

(a) Object Detection (b) Semantic Segmentation

(c) Instance-Based Segmentation (d) Panoptic Segmentation

Figure 2.2: Example outputs from object detection and segmentation
tasks.
[2.2a] Each detected object has a bounding box, including its predicted class
and probability.
[2.2b] Each pixel is assigned to a segment, including its predicted class and
probability.
[2.2c] Each detected instance of an object class has its unique segment,
including its predicted class and probability.
[2.2d] Each pixel is assigned to a segment having its own instance, including
its predicted class and probability.

Mask R-CNN

Mask R-CNN (He et al. [31]) is a framework that can perform object
instance-based segmentation, and is an extension of Faster R-CNN [64].
This is done by adding a new branch that can predict segmentation masks
on each Region Of Interest, where the predicted object mask is generated
in parallel with the bounding box generation.

Mask R-CNN replaces RoI-pooling with RoI-align, to combat the issue
of misaligned region proposals. This misalignment was not acceptable since
the segmentation layers required a pixel-level specificity. They resolved this
issue by transforming the ROI pooling into ROI align that avoids rounding

CHAPTER 2. BACKGROUND THEORY 9

on these regions. The backbone was improved by using a Feature Pyramid
Network (FPN) [47], which increased the speed and accuracy.

Figure 2.3: An illustration of the Mask R-CNN architecture. Figure
source: He et al. [31]

In parallel to the original Faster R-CNN classifier and bounding box
regressor, soft masks are generated for each ROI. The soft masks contain
float numbers, which makes them more detailed. They are later converted
into binary masks that give us the final segmentations.

Detectron2

Detectron2 is FAIR’s (Facebook Artificial Intelligence Research) latest open-
source research platform that contains state-of-the-art algorithms that can
perform object detection and segmentation (Wu et al. [82]). This platform
includes models such as Faster R-CNN, Mask R-CNN, Cascade R-CNN,
Panoptic FPN, TensorMask, and DensePose. Specifically, we will focus on
the platform’s implementation of Faster R-CNN and Mask R-CNN.

2.2 Active Learning

Active Learning (AL) is a semi-supervised learning strategy that aims to
train a machine learning model to achieve high performance using less but
”highly informative” training data. From a model’s perspective, informative
data is data that the model is uncertain about and struggles to predict; AL
introduces various techniques that can measure a model’s prediction uncer-
tainty. In AL, a machine learning model is given the opportunity to select
its own training data that helps it perform better (Settles, [68]). By letting
the model select a set of highly informative datapoints, its understanding of
the current environment might improve (Settles, [68]). More importantly,
by using less training data, AL reduces the cost of manual annotation.

In this section, we will present the different parts of an AL Framework,
following Settles [68], which includes multiple Query Scenarios, Query Strat-
egy Frameworks, Query Strategies, and Sample Selection Strategies. In ad-
dition, we will present some weaknesses in AL and how techniques such as
early stopping, data augmentation, and data diversification tackles these.

10 2.2. ACTIVE LEARNING

Throughout this thesis, a machine learning model that is being trained
using AL is defined as a ”learner.”

2.2.1 Query Scenarios

A query scenario can be referred to as a sampling technique. It presents a
specific way for a learner to ask an annotator for labels on highly informative
samples (Settles, [68]). Every time a highly informative sample is queried, it
is added to the training set, which is used to train the learner. There exist
mainly three sampling techniques:

• Membership Query Synthesis: The learner can either ask for la-
bels of an unlabeled sample, or generate a new sample from the under-
lying natural distribution of the data, which has to be then labeled by
an annotator. For instance, if the dataset contains images of vehicles,
the learner has to generate an image that resembles a vehicle. An
underlying natural distribution of this data has to be guaranteed to
ensure that the learner can generate an understandable sample, which
helps the annotator to annotate the sample successfully.

• Stream-Based Selective Sampling: The learner expects an unla-
beled set of samples that it can inspect. Each sample is selected one at
a time from the unlabeled set, and the learner decides whether or not
to ask for the label of that sample. This gives the learner a choice to
reject samples with already known labels or to query labels of samples
being highly informative. Each sample is queried or discarded based
on a threshold, and finding a good threshold is crucial for this scenario
to work. This technique can become computationally heavy since the
learner has to be trained each time a single sample gets selected.

• Pool-Based Sampling: The learner expects an unlabeled set of sam-
ples that it can inspect. All samples are selected from the unlabeled
set to measure their informativeness, but only a small set of highly in-
formative samples gets queried to be labeled by an annotator. Finding
an adequate size of samples to be queried can become a challenging
task. A drawback with this technique is that a learner has to inspect
the whole unlabeled set after each training to select a set of highly
informative samples. However, there exist techniques that can cope
with this issue (Ertekin et al. [16]), which will be covered in Chapter
3. An illustration of this sampling technique is shown in Figure 2.4.

Since we will be working with complex deep neural networks, a pool-
based sampler is highly favored compared to a stream-based. Training a
network repeatedly by adding only a single sample at a time is not feasible,
as this can become computationally heavy and time-consuming. Therefore,

CHAPTER 2. BACKGROUND THEORY 11

Figure 2.4: A representation of a pool-based AL cycle. The learner selects
a small set of highly informative samples from the unlabeled set for the
annotator to label. The labeled samples are then added to a training set,
which the learner is trained with. This figure is based on Settles [68].

using pool-based sampling, batches of highly informative samples are added
to the training set instead.

2.2.2 Query Strategy Frameworks

A query strategy framework is used to acquire some sort of informativeness
measurement from unlabeled samples (Settles, [68]). To be clear, a query
scenario only defines the way of querying labels of samples by either gener-
ating them, selecting one at a time, or as a batch (e.g., membership query
synthesis, stream-based, or pool-based). Samples are queried based on their
informativeness that is measured by this framework. There exist several
query strategy frameworks:

Uncertainty Sampling

Uncertainty sampling is the most used and simplest framework (Settles,
[68]). Here, a single learner is used to query labels of samples which it is
uncertain of how to label. Since its uncertainty comes from the prediction
uncertainty, a probabilistic learning model is required by the framework.

For instance, let us say we have a set of unlabeled samples. Using pool-
based sampling, the learner runs inference over the entire unlabeled set of
samples. The prediction results are then used by a query strategy to measure
the informativeness score of each sample. These scores give the learner a
clue on which set of highly informative samples to query.

Query-by-Committee (QbC)

A committee of learners is used to query labels of samples which they dis-
agree the most (Settles, [68]). For instance, let us say we have a set of
unlabeled samples. Using pool-based sampling, a committee of learners is

12 2.2. ACTIVE LEARNING

used to run inference over the entire unlabeled set of samples. Their predic-
tion results are compared. If their results vary, it is a sign of disagreement,
and the samples of which they disagree the most are considered to be highly
informative.

Training a committee of learners can be computationally heavy and time-
consuming. When using deep learning models, this framework can be simpli-
fied to virtually resemble a committee with the help of dropout layers (Gal
et al. [20]). By using these layers on a single model, we can run inference
multiple times over each sample and measure the variations in predictions
to measure uncertainty (Morrison et al. [54]). Having a different output
during each inference shows high uncertainty.

Other Frameworks

Other existing frameworks (Settles, [68]) are listed below with increasing
complexity:

• Expected Model Change: Selecting samples that would impact
and influence the current learner greatly if we knew their labels. An
example framework is ”expected gradient length,” where samples that
would change the gradient the most are queried.

• Expected Error Reduction: Selecting samples that would give a
minimal expected future error, or that would reduce the total number
of incorrect predictions in the future.

• Variance Reduction: Selecting samples that would give a minimal
output variance.

• Density-Weighted Methods: Selecting samples that the learner is
uncertain about, but make sure that they are representative of the
underlying distribution of the data.

Most of these frameworks are computationally heavy and complex. There-
fore, they are not looked very much into in detail. For object detection (i.e.,
Faster R-CNN), we will be mainly focusing on using a traditional uncer-
tainty sampling framework, as it is easy to use, has a low compute time
which balances out the computationally heavy R-CNN model, and fits well
with a setting for object detection, which uses probability distribution over
classes to measure uncertainty. In addition, for both object detection and
instance-based segmentation (i.e., Mask R-CNN), we will be using a virtual
QbC framework for measuring uncertainty.

2.2.3 Query Strategies

A Query Strategy is used by a Query Strategy Framework, such as Uncer-
tainty Sampling, to measure the informativeness of a sample. Keep in mind

CHAPTER 2. BACKGROUND THEORY 13

that most of these strategies are mainly related to probabilistic learning
models, and require having a probability distribution over all classes (i.e.,
the output in the form of a softmax vector), which is what we will be us-
ing. Several query strategies exist, but the most common are the ones listed
below:

• Random Sampling (R): The learner selects samples that are ran-
domly selected from the unlabeled set.

• Least Confidence Sampling (LC): The learner queries samples
which it is least confident about.

xLC = argmax
x

(1− P (ŷ|x)) (2.1)

x is a sample and ŷ is the highest predicted class probability of that
sample. Samples with the least confidence on its most probable label
are selected.

• Margin Sampling (M): The learner selects samples based on their
class probability margins.

xM = argmin
x

P (ŷ1|x)− P (ŷ2|x) (2.2)

This strategy looks at the highest probable class label and the second-
highest probable class label (i.e., ŷ1 and ŷ2, respectively) for each
sample. The margin between these two labels is then calculated, where
smaller margins indicate high informativeness. Joshi et al. [36] propose
this margin sampling measure, which they refer to as the Best-versus-
Second-Best (BvSB) approach.

• Entropy Sampling (E): The learner selects samples that give the
highest entropy.

xE = argmax
x

∑
i

P (yi|x) logP (yi|x) (2.3)

i ranges over all class probabilities of the sample x. Higher entropy
score shows higher informativeness between class labels.

The listed Query Strategies can be used with a QbC Framework, assum-
ing that a probability distribution over all classes can be obtained. This can
be done by simply comparing the informativeness of each sample from each
learner and measure their variation; the higher their variation, the higher
their disagreement.

For instance, let us say we have a committee of learners that are used for
detecting a single object in an image. If each learner outputs a softmax vec-
tor having different predicted class probabilities, it is a sign of disagreement,
and the image is considered to be highly informative.

14 2.2. ACTIVE LEARNING

Other query strategies for QbC, such as measuring segmentation uncer-
tainty using pixel-probability and dropout, are explained in detail under
Section 3.3.

Strategy Aggregation

The query strategies mentioned earlier are highly generalized and work well
for image classification, where each image is fed into a neural network that
outputs a softmax vector containing the required class probabilities. Since
our focus is on object detection and segmentation, an approach is needed
to measure the informativeness of the entire image based on the informa-
tiveness of every detection in that image. This can be achieved by using
aggregation techniques. Roy et al. [66] and Brust et al. [9] apply similar
techniques in their approaches. For instance, in object detection, an image
can be scored by aggregating the measured informativeness of all detections.
In segmentation, an image can be scored by aggregating the measured in-
formativeness of all segments. Since each detection in an image is given an
informativeness score, the scores can be aggregated in different ways:

• Sum (SUM): Taking the sum of all detection scores in an image and
setting it as the image score.

ImageQSSUM
=

n∑
i=1

xQSi (2.4)

Here, QS is the chosen query strategy, n is the total number of scored
detections in an image and xQSi is the score of the current detection
i.

• Maximum (MAX): Taking the maximum detection score in an im-
age and setting it as the image score.

ImageQSMAX
= max

i
xQSi (2.5)

• Average (AVG): Taking the average of all detection scores in an
image and setting it as the image score.

ImageQSAV G
= (

n∑
i=1

xQSi)/n (2.6)

2.2.4 Sample Selection

During the AL cycle (Figure 2.4), the learner has to select which samples
to query based on their informativeness. Samples can be selected in several
ways, but the most common way is to select the top k samples having the

CHAPTER 2. BACKGROUND THEORY 15

highest informativeness. Other selection methods may select samples from
the whole informativeness spectrum.

Roy et al. [66] uses a method that they call ”n bins formulation.” Scored
samples are split into batches with size m. In each batch, the score space
is divided into n bins. m/n samples with the highest informativeness are
selected from the top n − 1 bins, and m/n from the last bin having the
lowest informativeness. They use this method to cope with the exploration
vs. exploitation dilemma by getting the best of both, which is explained in
more detail in Section 2.2.6.

2.2.5 Known Weaknesses in AL

In most scenarios, when using AL, a model has to be trained on a never-
before-seen dataset. Due to the iterative nature of AL, the model is trained
with an increasing training set. Here, the distribution of classes can have a
huge impact on the model’s performance. Some weaknesses are listed below:

• Not Understanding the Underlying Distribution: If the train-
ing set does not contain enough information about the underlying dis-
tribution of the whole dataset, a model can struggle to understand the
data. This can result in poor performance and may delay the learning
process.

• Class Bias: Some sample methods tend to collect more samples from
the majority classes than the minority classes. This can over-time
lead to an unbalanced training set. Thereby making the model more
biased. Ertekin et al. [16] explores this issue in the context of image
classification, and their results show that this does indeed impact the
prediction performance.

• Complex and Noisy Samples: Several studies [35, 36] work with
binary classification. An assumption can be made that the data is sep-
arable for binary classification by finding a threshold. The goal is to
collect highly informative samples near this threshold that represent
the underlying distribution of the data. However, some of these sam-
ples can be highly complex. They can cause the training to converge
wrongly, and the model’s confidence in the underlying distribution can
be misplaced.

Trade-offs need to be considered when choosing the right combination
of AL strategies (e.g., query scenarios, query frameworks, query strategies,
aggregation strategies), as this can have a significant impact on the AL
Framework’s complexity and cost.

16 2.2. ACTIVE LEARNING

2.2.6 Additional Techniques that can be used with AL

Various techniques that can be beneficial to be used with AL have been
proposed:

Exploration and Exploitation

The exploration vs. exploitation trade-off can be a difficult problem to cope
with. The optimal goal is to acquire more knowledge and gain maximum
reward at the same time. The learner has to either explore new unknown
problems to gain greater rewards, or to exploit the current situation and
make the best out of it.

In AL, this is a known dilemma, since the learner starts with little to no
knowledge about the data (Bondu et al. [8]). For instance, doing exploration
initially, will be crucial to explore the feature space and classes in the dataset.
When the network has gained enough knowledge, it can start exploiting.
During exploitation, the network can fine-tune itself and make itself even
more capable of classifying correctly, based on what it already knows.

Bondu et al. [8] investigates the exploration vs. exploitation dilemma,
and illustrate this issue with two extreme cases; An active learner who only
exploits can become very specialized in one area, but can fail to understand
the whole data space. An active learner who only explores can miss the focus
on important data, which might be beneficial for the model’s performance.
They present three common approaches to tackle this problem:

• Use of multiple strategies by, for instance, switching between a
random sampler, which is good at exploring, and other uncertainty
sampling methods that can be used for exploiting.

• Pre-clustering data by only choosing cluster centroids as highly in-
formative candidates that are a part of the same class, if possible.

• Use of similarity measure by ensuring that the data is diverse.

Data Diversity

Data diversity is important and can have a positive impact on a model’s
performance (Gong et al. [27]). In AL, the goal is to achieve high accuracy
using less training data. This data has to be diverse since the learner prefers
samples that are more useful and less redundant. It prevents the model
from becoming biased towards a specific class or a set of classes. Having a
carefully selected, highly informative, and diverse initial training set would
be a perfect scenario as this could give us a good performing model early in
the AL process.

CHAPTER 2. BACKGROUND THEORY 17

Image Similarity

There exist several open self-driving datasets, and most of them contain a
set of video sequences having thousands of frames. There is always a chance
that these sequences might contain duplicates or highly similar frames, which
can become a problem. The usage of a similarity measure was proposed by
Bondu et al. [8] to tackle the exploration vs. exploitation dilemma as well
as ensuring data diversity.

To give an example, let us say we are training a model using AL. During
each ALI, the model has to query useful samples to be labeled. Assume that
this set of samples contains a set of frames from a video sequence. If the
learner finds an object in a frame that it is highly uncertain of, there is a
high chance that this object might appear in the surrounding frames. The
learner might ask the oracle to label a set of highly similar frames due to
its uncertainty. This does not lead to data diversity. The following metrics
can be used to prevent the overuse of similar images:

• Structural Similarity Index (SSIM) (Wang et al. [88]). It extracts
structural information from an image and can be used to compare
images.

• Learned Perceptual Image Patch Similarity (LPIPS). Zhang et al. [86]
uses deep neural network activations as a perceptual similarity metric.

Transfer Learning

Transfer learning gives us the ability to use a previously trained model as a
starting point [57]. A model that is developed to perform a specific task in
a domain of interest can be used in another similar domain. Kale et al. [37]
presents how transfer learning can be used to accelerate AL, by initializing
an active learner using transfer learning, and training it with labeled data
from similar tasks to cope with the cold start problem.

Early Stopping

Early stopping is a simple tool that prevents a model from overfitting [61].
Ertekin et al. [16] improve their results with early stopping in a class im-
balance problem using AL.

Dropout and Monte Carlo Dropout

Dropout is a tool that is applied during training to prevent a model from
overfitting and to increase its robustness [72].

Gal et al. [20] proposes Monte Carlo dropout (MC dropout) to measure
the uncertainty of a model. MC dropout applies dropout during both train-
ing and inference. By running inference over samples multiple times using

18 2.3. DATASETS

MC Dropout, they are able to measure the difference in predictions. High
difference is a sign of high model uncertainty.

Data Augmentation

Data augmentation can be used to expand the dataset artificially by aug-
menting images to make new samples [70]. This technique has been widely
used in various CV tasks and when working with limited data resources,
which is a common scenario in AL. Augmenting data can, in some scenarios,
increase the performance of a deep learning model and prevent overfitting
[59].

2.3 Datasets

Datasets play a fundamental role in machine learning. Having a rich and
balanced set containing lots of high-quality labeled data is desired. This
section gives a quick introduction to the different datasets that are used
with various CV tasks and with AL. The reasons behind our dataset choices
are explained in more detail under each experiment in Chapter 5.

2.3.1 MNIST

MNIST is an accessible ”hello world” database built for image classification
tasks. It contains a total of 70 000 grayscale images of handwritten digits
ranging from 0 to 9, and is a subset of a more extensive database called
National Institute of Standards and Technology (NIST) [1].

Figure 2.5: Samples from the MNIST dataset. Digits 7, 2, 1, 0 and 4 (left
to right).

Each image is already pre-processed and cropped to an equal size of
28x28, having a single digit centered to fill the image. The training and test
sets are split into 60 000 and 10 000 images, respectively.

2.3.2 CIFAR-10

CIFAR-10 contains 60 000 tiny colored images of size 32 x 32. The training
and test sets are split into 50 000 and 10 000 images, respectively.

Each image can contain an object from one of the ten non-overlapping
classes; automobile, cat, horse, deer, ship, horse, bird, truck, dog, and frog.
This dataset is used for image classification.

CHAPTER 2. BACKGROUND THEORY 19

Figure 2.6: Samples from the CIFAR-10 dataset containing the following
classes: automobile, cat, horse, deer, ship, horse, bird, truck, dog and frog

2.3.3 YYMNIST

Yun Yang [85] made a dataset that he called YYMNIST (Yun Yang MNIST)
to do experiments quickly on object detection without using challenging
datasets, such as ImageNet and COCO. YYMNIST is made out of MNIST
and can be used for both classification (e.g., YYMNIST includes MNIST)
and object detection tasks.

Figure 2.7: A sample from the YYMNIST dataset containing the following
digits from left to right: 2, 9, 3, 6, 1, 7, 5, 2, 6 and 8

The GitHub repo [85] contains a script that can be used to generate
a dataset containing n number of images. Each generated image of size
416x416 contains 1 to k number of digits. The digits are randomly placed,
not rotated, non-overlapping, and in different sizes.

2.3.4 Apollo Synthetic Dataset

The Apollo synthetic dataset is a synthetic photo-realistic dataset that can
be used for autonomous driving [74]. It provides 273 000 distinct full HD
(1980x1080) video frames with high variations in weather, time of day, qual-
ity of road surface, traffic, and obstacles. These frames are collected from
different areas, such as urban, downtown, residential, highway, and indoor
parking garage. Different types of ground truth data are provided, such as
2D/3D object data, semantic and instance-based segmentation data, depth
data, and 3D lane line data.

Looking at Figure 2.8, we can see that the dataset is structured hierarchi-
cally, starting with data type and followed by time, weather, road quality,
pedestrians, traffic barriers, areas, and then finally the traffic data in its
proper format depending on the data type (e.g., .jpg, .png, .txt).

20 2.3. DATASETS

Figure 2.8: This is the folder structure, represented in a hierarchical fash-
ion, of the Apollo Synthetic Dataset.

(a) 1920x1080 .jpg - RGB Image (b) 1920x1080 .png - Segmentation GT

Figure 2.9: A scene taken from the Apollo Synthetic dataset including its
segmented ground truth.

Thing Classes Obj GT Seg GT Instance Stuff Classes Obj GT Seg GT Instance

Sedan 3 3 3 Road 7 3 7

SUV 3 3 3 LaneMarking 7 3 7

Hatchback 3 3 3 TrafficSign 7 3 7

Van 3 3 3 TrafficLight 7 3 7

PickupTruck 3 3 3 Sidewalk 7 3 7

Truck 3 3 3 GuardRail 7 3 7

Bus 3 3 3 Sky 7 3 7

Cyclist 3 3 3 Terrain 7 3 7

Motorcyclist 3 3 3 Pole 7 3 7

Pedestrian 3 3 3 StreetLight 7 3 7

TrafficCone 3 3 7 Building 7 3 7

Barricade 3 3 7 Vegetation 7 3 7

Table 2.1: A list of thing and stuff classes that are in the Apollo Synthetic
Dataset. The list shows the types of ground truths that are available for
each class: ”Object Ground Truth” (Obj GT) in the form of a bounding
box, ”Segmentation Ground Truth” (Seg GT) in the form of an image with
pixel-wise segments and ”Instance” whether the pixel-wise segments of this
class are instance separable.

The dataset contains a total of 24 classes; 12 stuff classes and 12 thing
classes. Table 2.1 gives a full overview of each class and its available ground
truth for 2D bounding box, semantic segmentation and instance-based seg-
mentation.

CHAPTER 2. BACKGROUND THEORY 21

2.3.5 Waymo Open Dataset v1.0

Waymo, Google’s self-driving car project, released an open driving dataset in
August 2019 [80] [73]. At the time of writing this thesis, the dataset consists
of thousand 20 second video segments. These include LIDAR and camera
sensor data with labeled 2D/3D bounding boxes. From this dataset, only
48 video segments contain 2D bounding box annotations of three classes,
vehicle, pedestrian, and cyclist. Each video segment contains a stream of
approximately 200 full HD 1920x1080 frames from three cameras (e.g., front,
front left, and front right). This gives us a dataset size of 29 154 samples.

New versions have been published since then: v1.0 (Aug 2019 Initial
release), v1.1 (Feb 2020 Added more camera labels), and v1.2 (Mar 2020
Added new domains and test set).

Figure 2.10: Samples from Waymo Open taken from three different cam-
eras (e.g., front left, front, and front right, respectively) including their
object ground truths.

2.3.6 NAPLab’s Raw Dataset (NAP-Set)

NAPLab collects data from different parts of the Trondheim area. This set
contains 97 737 1280x960 images that vary in time of day and weather.

22 2.3. DATASETS

Figure 2.11: Samples from the NAP-Set

Chapter 3

Related Work

Active Learning (AL) has been studied for several years and has attracted
much attention recently. Most of the earlier approaches have primarily been
based on image classification [36, 16, 35, 50, 15, 32, 40, 46, 79, 21, 67]. How-
ever, in recent years some attention has grown towards using this strategy
for object detection [66, 39, 9, 62, 6, 3, 4, 77, 84, 65], and, to our knowledge,
a few works have also been done related to segmentation [71, 76, 51, 83, 78].

This chapter gives the reader a brief introduction to relevant research
within AL, and is split into three sections: Active Learning for Image Clas-
sification, Object Detection, and Segmentation. Each section gives a broad
overview of the AL approaches that have been proposed within each of these
CV fields. The overview is then followed by a thorough explanation of rele-
vant papers that our work is based on and inspired by.

3.1 Active Learning for Image classification

Much of the interest has been towards AL in image classification for binary
classification (Jain et al. [35]) and the usage of uncertainty sampling, which
selects the most informative samples.

Jain et al. [35] introduces a probabilistic variant of K-nearest neighbor
that can be used with AL in multi-class scenarios. Long et al. [50] proposes
a Gaussian Process classifier for multi-class visual recognition with multiple
annotators. They use reinforcement learning to select informative samples
as well as high-quality annotators, that examines the explore vs. exploit
trade-off. Ducoffe et al. [15] presents a pool-based AL strategy using a QbC
framework and batch-wise dropout to train a CNN on MNIST and USPS
[75]. Holub et al. [32] uses a minimum expected entropy approach that
selects highly informative samples that give the highest expected informa-
tion gain. They demonstrate this on SVMs, Nearest Neighbour, and Kernel
Nearest Neighbour classifiers. Kapoor et al. [40] provides a probabilistic
discriminative approach for object categorization based on a Gaussian Pro-

23

24 3.1. ACTIVE LEARNING FOR IMAGE CLASSIFICATION

cess regression method using a Pyramid Match Kernel. An AL strategy
uses uncertainty estimates that are provided by the Gaussian Process. Li
et al. [46] proposes an AL approach where they combine a ”most uncer-
tainty” measure with an ”information density” measure, using an adaptive
combination framework, to collect highly informative samples. Wang et al.
[79] proposes a cost-effective AL Framework that can build a classifier with
optimal feature representation. They update their model by progressively
selecting a minority of informative samples and a majority of pseudo-labeled
high confidence samples. Their approach outperforms other methods with
classification accuracy, and decreases the manual human annotation effort.
Gal et al. [21] develops an AL Framework for high dimensional data using
Bayesian convolutional networks. Sener et al. [67] state that many of the
AL heuristics in the literature are not effective with CNNs in batch setting.
To solve this, they define AL as a core-set selection problem, where the goal
is to find a small subset of samples from a large dataset that can be used
to learn a model, to make it competitive to a model learned with the whole
dataset.

3.1.1 Multi-Class AL for Image Classification

A pool-based multi-class AL approach, with a focus on uncertainty sampling,
is proposed by Joshi et al. [36]. Their goal is to train a model with AL and
to make it perform well using less data. Classification problems require large
amounts of labeled training data to achieve high accuracy; AL wants to deal
with this bottleneck.

They propose a margin-based uncertainty measure called Best-versus-
Second-Best (BvSB). For each classified image, the margin between the best
class probability and the second-best class probability is used as an infor-
mativeness measure to score the whole image. They state that BvSB can
handle large amounts of classes and data since it is easy to compute and
works without knowing the number of classes.

A Support Vector Machine (SVM) is used as the classifier, and its perfor-
mance is used as evaluation. Initially, they train the classifier using a small
training set containing randomly selected labeled samples. It is trained for
several iterations, and during each iteration, the model selects samples from
the unlabeled set based on their informativeness score, which is calculated
using a specific query strategy that relies on a probability estimate from the
classifier. They use pairwise coupling [81] as the method to estimate these
multi-class probabilities. The samples with the highest informativeness are
then labeled and added to the training set. A comparison of three different
query strategies (e.g., baseline random sampler, entropy, and BvSB) is done
on letter and digit recognition, object recognition on the Caltech-101 [45]
dataset, and scene categorization.

Their results demonstrate that the number of training samples needed is

CHAPTER 3. RELATED WORK 25

reduced using uncertainty sampling compared to random sampling, and that
BvSB performs better than entropy by selecting more useful samples. The
authors state that BvSB sampling is as good as random sampling based
on the exploration of new classes, and performs much better because of
its fast exploration. Entropy-based sampling performs poorly on this, and
on a large number of classes. It can be a poor estimate of classification
uncertainty since other unimportant classes can influence its measure (See
Figures 3.1).

Figure 3.1: Joshi et al. [36] illustrates how entropy can be a poor estimate
when measuring uncertainty. In the left figure, the classifier is highly un-
certain between classes 4 and 5, and in the right figure, it is highly certain
about class 4. However, in the right image the sample is still given a higher
entropy score, since entropy is influenced by unimportant classes. Figures
are from source: Joshi et al. [36].

Their margin sampling method will be part of our early iterative de-
velopment. We will be using and validating BvSB on both image classifi-
cation and, with various aggregation techniques, on object detection. We
will achieve this by using the probability distribution over all classes (i.e.,
softmax vector) of each prediction.

3.1.2 AL in Imbalanced Data Classification

Ertekin et al. [16] looks into the class imbalance problem that makes the
classification algorithms perform poorly. In addition, they propose an effec-
tive method to select informative samples and show that early stopping can
be beneficial in AL.

A simple two-class SVM is used for the classification problem, and with
the help of a hyperplane as a decision boundary, the margin between the
classes is maximized. Each sample’s distance to this hyperplane is measured
as its informativeness score; the closer it is, the higher the informativeness
(See Figure 3.2a). Samples that are closer to the hyperplane from both
classes are picked, giving a more balanced set (See Figure 3.2b).

26 3.1. ACTIVE LEARNING FOR IMAGE CLASSIFICATION

(a) AL with SVM (b) Less imbalanced data within margin

Figure 3.2: Figure 3.2a illustrates how informative samples (red circle)
close to the hyperplane (solid line) are selected, and how labeled samples
(dashed circles) create support vectors (dashed lines). Figure 3.2b shows
how less imbalanced data are selected within the margin. Figures are from
source: Ertekin et al. [16].

Problems can occur if ”class imbalance” exists in a dataset. It is nec-
essary to make sure that the AL model does not get biased towards the
majority class and also make sure that the model understands the essence
of the minority class. Class imbalance is when a class A has a significantly
low number of instances in a dataset compared to a class B having a lot
(Ertekin et al. [16]). They show that Active Learning (AL) can tackle this
problem by picking fewer samples from the majority class or picking more
samples from the minority class when needed.

The authors do not search the entire dataset for informative samples as
in classical AL. A faster sample selection method is proposed where they
pick highly informative samples from a smaller set of randomly selected
unlabeled samples. This saved time and becomes easier to compute when
working with large datasets.

Their results show that by changing the class ratios, AL handles class
imbalance better than a random learner and is less affected. They find that
early stopping increases the active learner’s performance as well.

We will be using complex models for object detection and segmentation.
Due to the time constraints and the complexity of these models, the proposed
selection method by Ertekin et al. [16] will be used in this thesis, and we
will be implementing early stopping to see if this can be beneficial for our
AL Framework. Our focus is not on preventing class imbalance; however,
we will be performing an experiment to see how different query strategies
handle this issue.

CHAPTER 3. RELATED WORK 27

3.2 Active Learning for Object Detection

In recent years there has been growing interest in using AL with object
detection. Most works still focus on uncertainty based strategies using pool-
based sampling.

Qu et al. [62] proposes an uncertainty based AL approach that looks
at objects having low confidence scores and their regression uncertainty to
declare outliers. In addition, they propose two extra weights to overcome
the difficulties with class imbalance and differences in the amount of objects
in images. Bietti [6] uses a linear SVM classifier for object detection on
satellite images, by selecting samples that lay close to the decision boundary
(i.e., simple margin method), and rely on crowd-sourcing to collect labels.
Abramson et al. [3] uses AdaBoost [18] with AL to detect pedestrians from
a moving car. Aghdam et al. [4] proposes a new way to score images
at pixel-level to rank highly informative images that have more potential
to increase the detection accuracy. Pixel-scores are aggregated to image-
scores. Their approach works well on videos by avoiding redundant frames.
Vijayanarasimhan et al. [77] presents a live learning approach, where the
object detection refines its models by requesting crowd-sourced annotations
from the web. Possible relevant images are gathered based on the user’s
text input. Yao et al. [84] proposes an object annotation method where the
user can interactively provide annotations using the Hough Forest [22] as
an object detector. Roy et al. [65] uses a version space reduction approach
in the ”difference of features” space and proposes different margin sampling
approaches for SVMs.

3.2.1 Deep AL for Object Detection

Roy et al. [66] implement different AL strategies in both a black-box and
white-box setting using the object detection network Single Shot Multibox
Detector (SSD) [49]. In addition, they present an effective explore vs. exploit
framework to achieve the best of both techniques, as discussed in Section
2.2.4.

The terms black-box and white-box gives us an indication of the type of
model we are working with. In a black-box context, the model is unknown,
and we can only infer based on its input and corresponding output. On the
other hand, for a white-box model, the underlying architecture is known
and easily understood. Put into perspective with AL, the authors make a
similar assumption.

A white-box method that uses a QbC approach, is explicitly proposed
for the SSD network to query informative samples. They do this by adding
a set of convolutional layers on top of the multiple feature layers that makes
the committee. The prediction disagreement between these layers calculates
the informativeness of each prediction based on their class probabilities, and

28 3.2. ACTIVE LEARNING FOR OBJECT DETECTION

offset to each default box in each cell.

The black-box methods are used as the baseline for comparison, and
consist of various uncertainty based sampling techniques such as Minmax,
Maximum Entropy, and Sum Entropy. Each sampling technique looks at the
prediction probabilities for each detection in an image. Minmax selects a
detection having the highest class probability and sets it as the image score.
Images having the lowest class probability scores are selected. Maximum
Entropy and Sum Entropy calculates the entropy of each detection and sets
the highest entropy and sum of entropy as the image score, respectively.

A model is initially trained using 10% of the PASCAL-VOC dataset, and
is used as a starting point for the active learners. Each black-box and the
white-box method is then re-trained by adding batches of actively selected
samples.

Their results show that a specific version of their white-box method,
which uses class probabilities to calculate the image margin, outperforms
the other white-box methods. All their white-box methods outperform the
black-box baseline methods. In the baseline methods, Sum Entropy per-
forms better than Maximum Entropy due to its way of selecting images with
more objects. They state that their results improve by adding exploitation.

Their proposed approach was part of our early research when working
with AL. Our primary takeaways were the two black-box query strategies,
maximum entropy and sum entropy. It is worth to mention that some time
was put into reproducing their results using the white-box method with SSD.
However, due to insufficient documentation and some unanswered questions,
this attempt was put on ice. Nevertheless, their explanation of these black-
box methods strengthened our initial understanding of how query strategies
can be implemented in object detection using aggregations.

3.2.2 Localization-Aware AL for Object Detection

Kao et al. [39] presents two metrics that measure the prediction localiza-
tion uncertainty, ”localization tightness,” and ”localization stability.” The
former measures the overlapping ratio between the region proposal and the
final prediction (refined from the proposal), and the latter measures the vari-
ation of object location when noise corrupts the input images. Two object
detectors use these metrics; Faster R-CNN uses both, and SSD uses only
”localization stability.”

Prediction uncertainty is measured using both classification and local-
ization uncertainty. For each bounding box in an image, the classification
uncertainty is denoted as 1 − max(softmax vector) (i.e., one minus the
highest class probability). The classification uncertainty of an image is the
highest bounding box uncertainty from all detections in that image.

Localization tightness is measured by calculating the Intersection over
Union (IoU) between the region proposal, given by a Region Proposal Net-

CHAPTER 3. RELATED WORK 29

work (RPN) or selective search, and the refined bounding box (See Figure
3.3a). The authors argue that this is a reasonable estimate as, if a region
proposal does not need refinement, it has a high certainty that there exists
an object instance; otherwise, it does not. Images with inconsistency be-
tween classification and localization are seen as highly uncertain, and are
selected.

Localization stability is measured by giving the object detector a set of
images with increasing noise; inference is run multiple times with the same
image set (See Figure 3.3b). If the results vary, the image might be highly
informative to be labeled. The uncertainty is measured by calculating the
IoU between the original bounding box prediction, of an image with no
noise, and a set of corresponding predicted bounding boxes, from images
with varying amounts of noise.

(a) Localization Tightness

(b) Localization Stability

Figure 3.3: Figure 3.3a illustrates how localization tightness is measured
by calculating the IoU between the region proposal and the refined bound-
ing box. Figure 3.3b illustrates how localization stability is measured by
calculating the change in predictions by taking the IoU between the pre-
dicted boxes (green) and the reference box (dashed red) with increasing
noise. Figures are from source: Kao et al. [39].

They run experiments using various combinations of their metrics local-
ization tightness (LT), localization stability (LS), and classification uncer-
tainty (C). Their results demonstrate that LT and LS has a positive impact
on AL and perform better than only using C, and that they achieve a similar
accuracy using less labeled data.

We attempted to implement their localization measures using Matter-
port’s Mask R-CNN framework [2]. Unfortunately, this measure was not
used, due to framework issues and the change to the up-to-date platform
Detectron2 (See Appendix C.1 for more info). However, a similar approach
of calculating the IoU between predictions (e.g., bounding boxes and masks)
was implemented alongside the dropout technique proposed by Morrison et
al. [54] for segmentation, which is explained in Section 3.3.1.

30 3.2. ACTIVE LEARNING FOR OBJECT DETECTION

3.2.3 AL for Deep Object Detection

Brust et al. [9] combines AL on object detection with incremental learn-
ing that enables continuous exploration. In this scenario, new data and
classes are added to the dataset over time. Furthermore, they propose var-
ious aggregation metrics and query strategies for object detection models,
and present an approach to better handle class imbalances under sample
selection.

As a query strategy, they propose 1-vs-2, which is a margin sampler. 1-
vs-2 measures the margin between the highest and the second-highest class
probability, similar to BvSB (Joshi et al. [36]), and expects an output of class
probabilities for each detection (e.g., softmax vector). In order to aggregate
the scores from detections, they propose the aggregation techniques sum,
average, and maximum (Section 2.2.3 explains these in detail).

The class imbalance problem is tackled by weighting instances in an
image and selecting those who are predicted as a minority class that is un-
derrepresented in the training set compared to majority classes. For each
instance, this metric is multiplied with the margin metric 1-vs-2 before ag-
gregation.

Two experiments are conducted using a random learner as the baseline,
and on the PASCAL VOC 2012 dataset. First, by using AL on object
detection with continuous exploration, and then, by including their proposed
weighting metric, which prevents class imbalance.

Figure 3.4: Brust et al. [9] presents selected samples from using the aggre-
gation techniques sum, average, and maximum, including a weight metric.
Figure source: Brust et al. [9].

They state that by adding new classes and new samples to the training
set causes minimal loss to what the learner already knows, and their results
demonstrate that incremental learning works. In addition, all aggregation
techniques are able to perform better than the random learner. Sum is
the best performing, due to its way of selecting samples containing more

CHAPTER 3. RELATED WORK 31

instances. Maximum and average performs similarly due to most samples
containing a single object. As for using the weighting metric, they notice
a performance improvement for each active learner, especially for sum that
selects instance-rich samples that might contain rare instances. Figure 3.4
shows the selected samples.

Our experiments will be using the aggregation techniques sum, maxi-
mum, and average, but in combination with different query strategies. We
will be examining their results to see if we notice any similar performance
patterns using these aggregation techniques.

3.3 Active Learning for Segmentation

To our knowledge, there has not been much interest in using AL with seg-
mentation as compared to object detection and image classification.

Vezhnevets et al. [76] proposes an ”expected change”-based AL ap-
proach for semantic segmentation using a pairwise Conditional Random
Field. Mackowiak et al. [51] proposes a cost-effective AL Framework for
multi-class semantic segmentation. The authors want to find a minimal
set of highly informative samples while minimizing the human annotation
effort. Yang et al. [83] presents an AL Framework for FCN that reduces
the annotation effort by giving suggestions on annotation areas that will be
most effective. Vijayanarasimhan et al. [78] presents an AL Framework that
can predict the effort and information gain trade-off. This framework ranks
unlabeled and partially labeled data based on how much they are worth to
select informative samples.

3.3.1 Uncertainty-aware Instance Segmentation using Dropout
Sampling

Morrison et al. [54] addresses the task of instance-based segmentation
by looking at both spatial and semantic uncertainty of a prediction using
dropout sampling. Their goal was not to perform AL using this uncertainty
measure or to make an AL Framework. However, their proposed approach
might be highly useful in order to measure the informativeness of segmen-
tations.

By adding dropout layers to the fully-connected layers of Mask R-CNN,
they run inference over the same image multiple times in order to measure
the segmentation uncertainty based on predictions. This approach can be
seen as a committee of models where their disagreement is measured.

Inference is run over an image 16 times, and the predictions are grouped,
using a Basic Sequential Algorithmic Scheme [53], into observations based
on their mask IoU (See Figure 3.5). Each observation in an image con-
tains a set of predictions that include softmax vectors, bounding boxes, and

32 3.3. ACTIVE LEARNING FOR SEGMENTATION

segmentation masks. A mean of the predictions is calculated for each ob-
servation.

Semantic uncertainty is measured as the highest class probability of the
mean softmax of each observation. Spatial uncertainty is measured as the
mean IoU between the mean mask and every other mask in each observation.
A third appearance-measure is calculated by counting the number of times
a prediction appears out of 16 inferences. The three uncertainty measures
are combined in order to get a weighted hybrid uncertainty score for a single
observation.

Figure 3.5: Morrison et al. [54] illustrates how semantic and spatial uncer-
tainty is measured by running inference over images 16 times with dropout
layers. Top: The segment is classified as a dog or cat inconsistently (i.e.,
high semantic uncertainty). The segment mask is consistent (i.e., low spa-
tial uncertainty). Mid: The segment is classified as a giraffe consistently
(low spatial uncertainty). The segment mask is inconsistent (high spatial
uncertainty). Bottom: The segment has both high semantic and spatial
uncertainty. Figure source: Morrison et al. [54]

To be clear, the authors do not evaluate their approach using AL with
any baseline. It is, therefore, hard to say if this method works well in this
setting. They evaluate their approach by using a pairwise Probability-based
Detection Quality metric (PDQ) [29]. This metric computes a PDQ score
based on spatial and semantic probabilities. They perform a grid search
on their uncertainty metrics to find good thresholds. Highly informative
detections that are below these thresholds are neglected as they might be
false positives. Since PDQ is affected by false positives, removing these
improved their evaluation scores.

We will be using a similar query strategy with a QbC framework, which

CHAPTER 3. RELATED WORK 33

will be heavily based on their method. In addition, we will add an extra
measure that considers the spatial uncertainty of the predicted bounding
boxes. Furthermore, we will evaluate the query strategy’s performance and
compare it to other query strategies. We will not be focusing on finding op-
timal thresholds to neglect false positives, as these will be chosen arbitrarily.

3.3.2 AL for Road Segmentation using CNN

Sörsäter [71] proposes a QbC AL approach using Monte Carlo dropout to
perform semantic segmentation on roads. Monte Carlo dropout is used to
measure a model’s uncertainty similar to Gal et al. [20]. The authors use
Venoeer’s custom ENet [58] as their CNN and their own dataset, which
contains 54 000 images having the three segment classes road, lane and
void.

Query strategies such as least confident, margin sampling, entropy, and
Monte Carlo dropout are being used and compared with a baseline random
learner. Their Monte Carlo dropout approach runs inference over every
sample N time, and collect the predictions; however, the uncertainty is
calculated differently compared to Morrison et al. [54].

Image uncertainty is calculated in a pixel-wise manner by measuring the
uncertainty of each pixel prediction using their softmax vector, and aggregat-
ing each pixel uncertainty by taking the mean over all pixels uncertainties.

Their results demonstrate that all query strategies perform better than
the baseline random learner, and that the entropy learner is the best per-
forming. However, the dropout learner does not perform any better than
the entropy learner.

Our focus will be on implementing the technique mentioned by Morrison
et al. [54] and not the techniques presented in this paper. We will rather
make an indirect comparison to examine how a query strategy using dropout
performs. However, we believe the work presented in this paper is worth
mentioning as it is highly relevant in an autonomous setting.

34 3.3. ACTIVE LEARNING FOR SEGMENTATION

Chapter 4

Methodology

In this chapter, we will start by presenting the Active Learning Framework
(AL Framework). Furthermore, we will list the AL query strategies and
aggregation techniques for each CV task. Finally, we present the experiment
structure, AL process, and evaluation details followed by the experimental
setup.

Our AL Framework is considered as a black-box problem that only relies
on the inputs and outputs and is developed iteratively. Therefore, some
implementation choices are made based on findings from previous research
and experiments, while others are purely made from try and fail approaches.
These will be briefly justified in this chapter and in more detail throughout
Chapter 5. Our focus is on exploring and reviewing AL approaches to find a
small set of highly informative training samples; therefore, we do not focus
on training and model optimization to achieve the ”best” possible model.

4.1 AL Framework

We aim to apply AL on both object detection and segmentation in an au-
tonomous setting. Therefore, we need a good foundation of high-performance
state-of-the-art models. The object detection library Detectron2 [82] is a
good fit, due to its broad usage, state-of-the-art results, and well-documented
open-source code. It has all the necessary state-of-the-art models (e.g.,
Faster R-CNN and Mask R-CNN), while being fast, stable, highly customiz-
able, and up-to-date.

We implement a modular pool-based AL Framework to be used with
Detectron2 [82]. The framework is mainly an uncertainty based framework,
but it has the ability to resemble a QbC framework virtually. An uncertainty
sampling framework can be seen as a black-box problem that focuses on
using black-box query strategies. An advantage of using these strategies is
that they measure the sample informativeness by considering the model’s
inputs and outputs. Thereby making them highly generalizable for other

35

36 4.1. AL FRAMEWORK

architectures of choice and easily usable for further development. For further
details about the architecture of the AL Framework and to download our
code, see Appendix A.1.

Our AL Framework can use new models and datasets as long as they are
implemented following Detectron2’s documentation, and uncertainty based
query strategies can easily be added and implemented as long as they handle
the expected input and give an expected output.

The AL Framework runs an experiment using all the provided learners
in a sequential fashion where each learner is run for a number of Active
Learning Iterations (ALIs). A single ALI consists of: initialization and
configuration, training, evaluation, inference and prediction, logging, and
clean-up. Figure 4.1 illustrates the workflow of our AL Framework.

Figure 4.1: This figure illustrates the AL Framework workflow. A user
provides a config-file and initializes the framework. Initially, samples are
selected randomly, labeled, and added to the training set; labels of samples
are obtained from a dataset and not manually annotated. Then, a model
is fully trained, evaluated on a test set, and used with AL to select a new
set of highly informative samples that are added to the training set. This
process is repeated for a number of ALIs.

The user can provide a configuration file to run a custom experiment. The
following list is part of our contributions and gives a quick overview of the
supported functionality:

• Active Learning: The user can provide the number of Active Learn-
ing Iterations to be run, the number of samples to be selected each
Active Learning Iteration, a list of query strategies to be used, size of
the initial training, validation (used with early stopping), and test set,

CHAPTER 4. METHODOLOGY 37

and the number of samples to be selected during inference from the
unlabeled set.

• Whole Spectrum: The user can choose whether samples should be
selected from the whole informativeness spectrum or only from the top
of the spectrum (e.g., top highly informative samples). If the whole
uncertainty spectrum is selected, the user has to provide a sample
ratio, which sets the thresholds.

• Early Stopping: The user can activate early stopping, by providing
parameters such as patience, delta, and the evaluation period. With
early stopping, the model is trained for much longer, and early stop-
ping is initiated based on the Average Precision on the validation set.

• Data Diversity: The user can ensure data diversity. Highly similar
samples are removed from the scored sample set using the similarity
metric LPIPS (Zhang et al. [86]).

• Model and Weights: The user can select the type of model to be
used (e.g., Faster R-CNN or Mask R-CNN) and what weights to be
loaded from Detectron2’s model zoo, or from a previous experiment.

• Dataset and Outputs: The user can provide which dataset to be
used and the output directory for the experiment results and logs.
Currently supported datasets: YYMNIST, Apollo Synthetic, Waymo
Open and Raw-NAPLab.

The AL Framework logs and saves several values during each ALI that is
used for comparison and illustrative purposes in Chapter 5:

• Performance values on the test set following COCO’s detection evalu-
ation metrics [11]. See Appendix A.3 for more details.

• Total instance count of the training set, and for each class.

• Top 10 samples with high and low informativeness.

Changes to Detectron2

Detectron2 is a fairly new but stable object detection platform that was re-
leased in late 2019 and is still being frequently updated. Some functionality
is still to be implemented and is not included out of the box. The following
functionality is added to make Detectron2 compatible with our framework:

• During inference, prediction scores in the form of a softmax vector are
obtained from each detection in a sample.

• A custom head using dropout layers is added, which is used by the
query strategy DROPOUT during inference.

38 4.2. AL STRATEGIES

• A custom training logic loop is implemented to be used with early
stopping and evaluation on the validation set.

• A general DatasetEvaluator is implemented and used for model eval-
uation on the supported datasets.

• A custom DataLoader is implemented for each supported dataset.

4.2 AL Strategies

We implement several query strategies for each CV task (e.g., image classifi-
cation, object detection, and instance-based segmentation) during our itera-
tive development. Our proposed query strategies and aggregation techniques
are inherited from proposals and findings in previous work and research.

This section introduces our learners, which either use a query strategy
alone, or combine it with an aggregation technique (i.e., a learner using
Sum as aggregation technique and Entropy as query strategy is defined as a
Sum-Entropy learner). Throughout this chapter and the following chapters,
we will use unique abbreviations for each learner (e.g., Sum-Entropy learner
(SUMENT)).

4.2.1 Learners

Baseline Learner

• Random (RAND) - A learner that selects samples randomly from
the unlabeled set. All experiments use this learner as baseline for
comparison.

Using a pool-based sampling technique, the learner has to search through the
whole unlabeled set to find informative samples. As this process is repeated
for every ALI, it can become computationally intensive if the unlabeled set
is large. We use the faster sample selection method proposed by Ertekin et
al. [16]. Our learners use this method to search through a smaller set of
randomly selected samples from the unlabeled set, to then find informative
samples.

The following learners require a probability distribution over all classes
in the form of a softmax vector (i.e., prediction probabilities should sum up
to one):

Image Classification Learners

Since an image consists of a single detection, aggregation techniques are not
needed to score the entire image. We use the query strategy Best-versus-
Second-Best (BvSB) proposed by Joshi et al. [36].

CHAPTER 4. METHODOLOGY 39

• Entropy (ENT) - Calculates the entropy of the softmax vector and
sets it as the image score. Images having a high entropy score have
high informativeness and represent high uncertainty with respect to
the model.

• Best-vs-Second-Best (BVSB) [36] - Calculates the margin between
the best prediction and the second-best prediction in the softmax vec-
tor and sets 1 − margin as the image score. Images having a high
score have high informativeness and represent high uncertainty with
respect to the model.

The learners ENT and BVSB give a score between 0 and 1. However, for
ENT, a score closer to 1 indicates high informativeness, while for BVSB, a
score closer to 0 indicates high informativeness. For implementation pur-
poses, using ENT, each detection in an image is scored as (score1, score2, ...,
scoreN), while using BVSB, each detection is scored as (1-score1, 1-score2,
..., 1-scoreN). By doing so, both learners will indicate high informativeness
if their scores get closer to 1, and both learners will be able to use the
aggregation techniques presented in the following sub-section.

Object Detection Learners

Since an image can contain multiple detections with different scores, aggre-
gation techniques are needed to score the entire image. We use the aggre-
gation techniques presented by Brust et al. [9].

• Sum (SUM) - Takes the sum of all scores. Prefers images containing
many informative detections.

• Maximum (MAX) - Takes the maximum of all scores. Prefers im-
ages containing a single highly informative detection, and is not af-
fected by the number of detections.

• Average (AVG) - Takes the average of all score. Can prefer images
containing many informative samples as much as images containing a
single informative sample.

Images having no detections are not given an image score and are not
counted as informative samples. We assume that this might be a case earlier
in the ALIs. However, over time, the learners get better at detecting objects.
Our focus is on giving the learner what it is uncertain of with respect to
what it detects.

Each query strategy is generalized and expects a specific input to give the
desired output. The input should contain a set of n images {img1, ..., imgn}
where each image should contain a set of m detections {d1, ..., dm}. If the
reader is curious, pseudo-codes of these learners are provided in Appendix
B.

40 4.2. AL STRATEGIES

• Sum Entropy (SUMENT) - Calculates the entropy of the softmax
vector and sets it as the score for each detection in an image. The
sum of detection scores in an image will be set as the image score.

• Max Entropy (MAXENT) - Similar calculation as SUMENT, but
the highest scoring detection in an image will be set as the image
score.

• Average Entropy (AVGENT) - Similar calculation as SUMENT,
but the average of the detection scores in an image will be set as
the image score.

• Sum of Best-vs-Second-Best (SUMBVSB) - Calculates the mar-
gin between the best prediction and the second-best prediction in the
softmax vector and sets 1 −margin as score for each detection in an
image. The sum of detection scores in an image will be set as the
image score.

• Max of Best-vs-Second-Best (MAXBVSB) - Similar calculation
as SUMBVSB, but the highest scoring detection in an image will
be set as the image score.

• Average of Best-vs-Second-Best (AVGBVSB) - Similar calcu-
lation as SUMBVSB, but the average of the detection scores in
an image will be set as the image score.

Instance-Based Segmentation Learners

Aggregation techniques are needed to score an image that might contain mul-
tiple segments. Here, we only use the aggregation technique Sum (SUM)
with the Dropout (DROPOUT) learner.

This query strategy expects a specific input to give the desired output.
Since inference is run over the same image set k times using dropout, the
input set should contain n images {img1, ..., imgn} having k prediction sets
each. Each prediction set in each image imgn should contain a set of m
detections {d1, ..., dm}.

• Dropout (DROPOUT) - By following Morrison’s et al. [54] un-
certainty measuring method, we add dropout layers in the final lay-
ers of the model and use these only during inference (e.g., Monte
Carlo dropout). We run inference over the same image multiple times
and generate object observations by adding overlapping detections to-
gether. For each observation, we calculate the mean softmax, mean
bbox and mean mask, and use these values to calculate the seman-
tic uncertainty, spatial bounding box uncertainty, spatial mask uncer-
tainty, and number of appearances of each detection out of number of

CHAPTER 4. METHODOLOGY 41

inferences (See Section 3.3.1 for details). Take notice, we add a fourth
uncertainty (i.e., spatial bounding box uncertainty), since we believe
that the disagreement in bounding box prediction should be accounted
for to get an overall uncertainty.

The informativeness of an image is calculated as the sum of detec-
tion scores, where each detection is given a final weighted uncer-
tainty score as semantic uncertainty ∗ spatial bbox uncertainty ∗
spatial mask uncertainty ∗ appearances (e.g., appearances - number
of appearances out of number of inferences). The informativeness score
can vary between 0 and 1 for each detection; detections having a final
score under a threshold are ignored as they often consist of false pos-
itives, as stated by Morrison et al. [54]. This threshold can be used
with the various uncertainty metrics. We use a threshold of 0.2 on the
final weighted uncertainty score (i.e., detections having a lower score
than 0.2 are ignored). A pseudo-code of this algorithm is provided in
Appendix B.

4.3 Experiment Structure

As part of our implementation plan, and in order to implement a general
AL Framework that fits our purpose, we examine four vital components.
This structure is important to reflect upon and can be used as a guide for
creating a good foundation to perform AL experiments:

Computer Vision Task: Choose a CV task that you want to work with
(e.g., Image Classification, Object Detection, Segmentation).

Model: Select or build an applicable model that can be trained to perform
these tasks.

Dataset: Find or assemble a relevant dataset that fits the chosen task.

Active Learning Strategy: Build an active learning strategy by choosing
a type of query scenario, query strategy framework, types of query
strategies, and aggregation techniques.

4.3.1 Active Learning Process

Each experiment follow a general AL flow, which lasts for a number of Active
Learning Iterations (ALIs). Initially, samples are selected randomly from an
unlabeled set to create an initial training set and to train an initial model.
The learners then use this initial model as a starting point. During each
ALI, a learner selects a new set of informative samples from the unlabeled
set, adds it to its training set, does a full training, and evaluates itself on a
test set. A learner is not trained from scratch each ALI; it uses the weights

42 4.3. EXPERIMENT STRUCTURE

from a previous ALI. Figure 4.2 gives a simple illustration of how data grows
during the AL process.

Figure 4.2: This figure illustrates how training data grows during each
Active Learning Iteration using Pool-Based Sampling

4.3.2 Evaluation Details

Each experiment goes through the same evaluation process. A set of active
learners are compared to a baseline random learner to see if they can reach
a similar performance using a smaller but highly informative training set.

For image classification, the performance is measured as the prediction
accuracy on a test set. For object detection and segmentation, our im-
plemented DatasetEvaluator uses Detectron2’s default evaluations process,
which returns several Average Precision (AP) metrics. Here, the perfor-
mance is measured as AP50 on a test set (See Appendix A.3 for more de-
tails).

The performance of the learners can vary a lot based on the initial set.
Therefore, we run some experiments for a maximum of three times, using
different initial training sets, to make sure the results are reliable and to get
an average. This is only done on experiments that are less computationally
heavy. The averaged results for each learner are shown in a graph as the
performance over training set size. We measure a learner’s performance on
a test set after each ALI.

Chapter 5

Experiments and Results

This chapter presents the experiments, results of the experiments, and dis-
cusses the results if needed. As part of our iterative development, do-
ing smaller experiments helps us understand Active Learning (AL), and
is needed to build a good foundation. Therefore, findings and results from
one experiment impacts the subsequent experiments. Keep in mind that
we set the experiments realistically up in order to imitate a real-world sce-
nario, which includes limited data resources, unevenly distributed data, and
limited time.

We present each experiment by giving a problem description, followed
by a technical description of the dataset, the experimental setup, and the
AL setup. In addition, we explain extra functionality, if added. Finally, we
present and discuss the results.

Experiments Overview

Each experiment uses a pool-based sampling technique, a RAND learner
as baseline for comparison, and can consist of multiple sub-experiments.
We follow the four components explained in Section 4.3 to structure each
experiment. The experiments are listed below with increasing complexity:

EXP 1 A Simple ”Hello World”-Experiment with AL

CV Task: Image Classification AL Strategy:
Model: Simple CNN, modAL Uncertainty Based Framework
Dataset: MNIST Query Strategies: ENT, BVSB

Sub-Experiments

EXP 1.1 More ALIs Identical Setup as EXP 1

EXP 1.2 Using CIFAR-10 Different from EXP 1
Dataset: CIFAR-10

43

44

EXP 2 Using a Complex Framework

CV Task: Object Detection AL Strategy:
Model: Faster R-CNN, Detectron2 Uncertainty Based Framework
Dataset: YYMNIST Query Strategies:

MAXENT, SUMENT, AVGENT

Sub-Experiments

EXP 2.1 All Margin Learners Different from EXP 2
Query Strategies: SUMENT,
MAXBVSB, SUMBVSB, AVGBVSB

EXP 3 Using a Synthetic Self-Driving Dataset

CV Task: Object Detection AL Strategy:
Model: Faster R-CNN, Detectron2 Uncertainty Based Framework
Dataset: Apollo Synthetic Query Strategies:

MAXENT, SUMENT, AVGENT

Sub-Experiments

EXP 3.1 Spectrum vs. Different from EXP 3
No-Spectrum Query Strategies:

MAXENT, SUMENT, AVGENT

EXP 3.2 Unbalanced Different from EXP 3
Initial Set Query Strategies: MAXENT,

SUMENT, MAXBVSB, SUMBVSB

EXP 4 Using a QbC Framework

CV Task: Object Detection AL Strategy:
Instance-Based Segmentation QbC Framework

Model: Mask R-CNN, Detectron2 Query Strategies: MAXENT,
Dataset: Apollo Synthetic SUMENT, SUMBVSB, DROPOUT

EXP 5 Moving towards a Real-Life Dataset

CV Task: Object Detection AL Strategy:
Uncertainty Based Framework

Model: Faster R-CNN, Detectron2 Query Strategies:
Dataset: Waymo Open MAXENT, SUMENT,

AVGENT, MAXBVSB, SUMBVSB

Sub-Experiments

EXP 5.1 Ensuring Data Diversity Different from EXP 5
Query Strategies: MAXENT,
SUMENT, MAXBVSB, SUMBVSB

EXP 5.2 Introducing Early Stopping Different from EXP 5
Query Strategies:
MAXENT, SUMENT

EXP 6 Finding Informative Samples

CV Task: Object Detection AL Strategy:
Uncertainty Based Framework

Model: Faster R-CNN, Detectron2 Query Strategies: DROPOUT,
Dataset: NAPLab’s Raw Data MAXENT, SUMENT, AVGENT

CHAPTER 5. EXPERIMENTS AND RESULTS 45

5.1 EXP 1 - Simple Active Learning

A Simple ”Hello World”-Experiment with AL
Task: Image Classification
Model: Keras’ Simple CNN with modAL
Dataset: MNIST

5.1.1 Problem Description

To understand the fundamentals of AL, we implement an AL Framework
using modAL [12] to quickly validate the usage of this strategy, and to gain
useful information and insight on how we can later proceed towards more
complex frameworks. ModAL [12] is a modular active learning framework
for python3. We use a simple CNN from Keras [41] on the MNIST dataset
[44] to perform image classification. Keras’ model can achieve an accuracy
of 99.25% when trained on the entire dataset for 12 epochs. We train the
CNN from scratch for a number of ALIs using the learners RAND, ENT,
and BVSB (Joshi et al. [36]).

5.1.2 Dataset

We use MNIST and split it into a training, test, and unlabeled set. The
initial training set is balanced and contains two images from each digit,
giving it a size of 20 images. The test set contains 10 000 images and is
fixed throughout the whole experiment. The remaining images virtually
create an unlabeled set of 59 980 images.

5.1.3 Setup

We use the AL Framework modAL [12], which is highly modifiable and al-
lows us to create an AL workflow quickly. We implement and add the learn-
ers, RAND, ENT, and BVSB, to the framework. RAND selects n samples
randomly. ENT and BVSB select 2000 random samples from the unlabeled
set (i.e., fast selection method as stated in Section 4.2.1), run inference over
them, calculate their informativeness based on their predictions, and return
a set of n top samples having the highest informativeness score.

ALIs

We repeat this process for 50 ALIs. During each ALI, we train a model for
50 epochs using a learning rate of 0.001. We initially train a model using the
balanced training set, which contains 20 images. Then, we use the initial
model as a starting point to train the learners RAND, ENT, and BVSB
sequentially. Each learner adds a set of 10 images to its training set based
on their informativeness score.

46 5.1. EXP 1 - SIMPLE ACTIVE LEARNING

5.1.4 Results

We run the experiment three times using different initial sets to get an
average. Figure 5.1 shows the average test accuracy for each learner.

All learners are able to quickly reach an accuracy of 85% within the
14 first ALIs. The best-performing learner is BVSB, followed by ENT.
The baseline RAND learner reaches its top accuracy of 93.29% using 520
randomly selected training samples (ALI 50). ENT having a top accuracy
of 96.21% reaches the same accuracy as RAND using 290 training samples
(ALI 27). However, BVSB having the top accuracy of 97.11%, reaches the
same accuracy as RAND using only 240 training samples (ALI 20). The
active learners BVSB and ENT outperform the baseline RAND learner by
a good margin.

Selected images are saved during each ALI for ENT and BVSB, and are
shown in Figure 5.2 and 5.3, respectively. We notice a clear difference in
hard and easy images selected by both active learners.

Figure 5.1: Performance results from EXP 1 using AL with Image Classi-
fication on MNIST. The accuracy is calculated using the test set of 10,000
samples, and averaged over three independent runs from ALI 1 to 50.

CHAPTER 5. EXPERIMENTS AND RESULTS 47

(a) Digits 9, 4, 5, 7, 2, 7, 4, 9, 8 and 7 (b) Digits 7, 5, 7, 6, 7, 3, 7, 7, 7 and 7

Figure 5.2: Images selected by ENT, from the MNIST dataset, at ALI 48.
Left: Top 10 hard images with high informativeness scores. Right: Top 10
easy images with low informativeness scores.

(a) Digits 3, 4, 2, 6, 9, 3, 4, 5, 8 and 1 (b) Digits 3, 5, 8, 8, 2, 2, 2, 3, 8 and 8

Figure 5.3: Images selected by BVSB, from the MNIST dataset, at ALI
48. Left: Top 10 hard images with high informativeness scores. Right:
Top 10 easy images with low informativeness scores.

This particular experiment confirms that the active learners can perform
better than a baseline learner, and can reach a higher accuracy using a
smaller training set. We obtain promising results that are comparable with
the performance patterns seen in Joshi et al. [36]. The performance graph
shows that BVSB starts to select informative samples early in the ALIs
compared to ENT, which is why it reaches a high accuracy faster than both
ENT and RAND. ENT struggles to reach a higher accuracy than RAND
in the first few ALIs; this is mostly due to it not having understood the
underlying structure of the data by favoring samples from specific classes.
Joshi et al. [36] states that entropy-based selection is poor at exploring
compared to BVSB and RAND, as explained in Section 3.1.1.

From the first run, we compare the class distribution of each learner by
counting the number of instances from each class in the training set. Figure
5.4 shows the class distribution from ALI 50. RAND ends up with a more
balanced distribution compared to the active learners who focus on selecting
more instances of digits that they are most uncertain of (e.g., digit 8 and
9).

48 5.1. EXP 1 - SIMPLE ACTIVE LEARNING

Figure 5.4: This plot illustrates the number of class instances (digits 0-9)
in training set for each learner at ALI 50.

5.1.5 EXP 1.1 - More Active Learning Iterations

We rerun the experiment to test if the learners achieve similar performance
if we train them for a more extended period with an increasing training set.
The total number of ALIs is increased from 50 to 200, thereby increasing
the training set size.

Previously, the baseline RAND learner achieves an accuracy of 93.29%
at ALI 50 using 520 samples. By looking at Figure 5.5, we see that RAND
is struggling to reach an accuracy above 97% while ENT and BVSB are
getting closer to 99%. BVSB manages to reach this using only 3.26% of the
samples from the entire MNIST training set (1960 samples). We observe
that ENT and BVSB starts to reach a similar accuracy after 100 ALIs. It
is hard to say whether RAND will reach their accuracy if it is trained long
enough.

CHAPTER 5. EXPERIMENTS AND RESULTS 49

Figure 5.5: Performance results from EXP 1.1 by running AL with Im-
age Classification on MNIST, for a longer period of time. The accuracy is
calculated using the test set of 10,000 samples, from a single run, and from
ALI 1 to 200.

5.1.6 EXP 1.2 - Using the CIFAR-10 Dataset

We rerun the experiment using the dataset CIFAR-10, due to it being more
complex than MNIST. Some changes are made to the setup from EXP 1: We
use a different CNN for this task, we increase the epochs to 150, decrease
the batch size to 64, increase the initial set size to 500 samples, increase
the number of ALIs to 100 and we let the learners add 250 samples to the
training set each ALI.

We run this sub-experiment three times and take the average test accu-
racy of each learner. The results are shown in Figure 5.6. All learners reach
an accuracy of 70% within the first 30 ALIs using 8000 samples. In the
subsequent ALIs, both active learners outperform RAND. RAND reaches
an accuracy of 78% using 25 250 samples (ALI 99), ENT and BVSB reaches
the same accuracy using 19 750 samples (ALI 77). We observe that the
performance is highly identical during all ALIs for the active learners ENT
and BVSB.

The selected samples from ALI 100 can be seen in Figure 5.8 and 5.9 for
ENT and BVSB, respectively. Looking at these samples, we see that both
learners are able to differentiate hard from easy samples.

We see a matching performance pattern as in EXP 1. Both active learn-
ers perform better than RAND; however, the difference in performance is
small between ENT and BVSB.

As in EXP 1, we compare the class distribution of each learner. Since
the learners select 250 samples during each ALI, it is easier to illustrate

50 5.1. EXP 1 - SIMPLE ACTIVE LEARNING

Figure 5.6: Performance results from EXP 1.2 by running AL with Image
Classification on CIFAR-10. The accuracy is calculated using the test set
of 10,000 samples, and averaged over three independent runs from ALI 1 to
50.

their preferred classes. Figure 5.7 presents how the class distribution of
each learner changes over time from ALI 1 to 3, and what they end up with
at ALI 100. We observe that BVSB is very balanced in selecting compared
to ENT, which is more unbalanced and aggressive at collecting samples
from specific classes. BVSB simulates a random selection similar to RAND
by selecting highly informative samples, which makes it good at exploring
(Joshi et al. [36]).

Figure 5.7: These plots illustrate how the number of class instances in the
training sets change over time for each learner, from ALI 1, 2, 3, and 100.

CHAPTER 5. EXPERIMENTS AND RESULTS 51

(a) Classes: bird, cat, ship, bird, horse,
cat, cat, truck, dog and airplane

(b) Classes: auto, frog, ship, horse, auto,
ship, truck, ship, ship and ship

Figure 5.8: Images selected by ENT, from the CIFAR-10 dataset, at ALI
100. Left: Top 10 hard images with high informativeness scores. Right:
Top 10 easy images with low informativeness scores.

(a) Classes: frog, ship, deer, deer, cat,
deer, truck, dog, horse and deer

(b) Classes: bird, frog, auto, auto, horse,
auto, frog, frog, auto and ship

Figure 5.9: Images selected by BVSB, from the CIFAR-10 dataset, at ALI
100. Left: Top 10 hard images with high informativeness scores. Right:
Top 10 easy images with low informativeness scores.

52 5.2. EXP 2 - AL WITH OBJECT DETECTION

5.2 EXP 2 - AL with Object Detection

Using a more Complex Framework
Task: Object Detection
Model: Detectron2’s Faster R-CNN
Dataset: YYMNIST

5.2.1 Problem Description

The previous experiments focus on image classification, and our next step is
to use AL with object detection. We base this on Detectron2’s Faster R-CNN
[82], due to its broad usage, state-of-the-art results, and well-documented
open-source code. As mentioned in Section 2.2.3, there are mainly three
aggregation techniques; we use the multi-detection entropy learners MAX-
ENT, SUMENT, and AVGENT. We use entropy as this is a popular metric
used in AL.

5.2.2 Dataset

Since we already got promising results in EXP 1 using MNIST, we choose an
object detection version of the dataset called YYMNIST [85]. We generate
a set of 10 000 images and split it into a training, test, and unlabeled set.
The initial training set consists of 32 randomly selected images, the test set
contains 1000 randomly selected images and has a fixed size throughout the
whole experiment, and the remaining images virtually create an unlabeled
set of 8968 images.

5.2.3 Setup

We implement and use our own AL Framework, as described in Section
4.1. We use Detectron2’s COCO-pretrained Faster R-CNN model [82] to
train on object detection. RAND selects n samples randomly. MAXENT,
SUMENT, and AVGENT select 2000 random samples from the unlabeled
set, run inference over them, and return top n highly informative samples.

ALIs

We follow Detectron2’s training configuration on a toy dataset with minor
changes and train the model for 300 iterations during the initial ALI. In all
the following ALIs, each learner is trained for 100 iterations. We repeat this
process for 50 ALIs and follow the AL process as in EXP 1. We initially train
a model using the 32 randomly selected images. Then, we use the initial
model as a starting point for the learners RAND, MAXENT, SUMENT, and
AVGENT. Each learner adds a set of 16 images to the training set based on
their informativeness score.

CHAPTER 5. EXPERIMENTS AND RESULTS 53

5.2.4 Results

A learner’s performance can vary based on the initial set. We run the
experiment three times using different initial training sets to get an average.

The performances can be seen in Figure 5.10, and Table 5.1 compares the
performances reached by the active learners to the baseline RAND learner.
The highest AP50 for MAXENT is 97.07 with 784 samples, for AVGENT, it
is 96.98 using 816 samples, and for SUMENT, it is 97.45 using 816 samples.

During each ALI, MAXENT, SUMENT, and AVGENT select images
having high and low informativeness. A comparison of these images can be
seen in Figure 5.11, 5.12, and 5.13, respectively.

Figure 5.10: Performance results from EXP 2 using AL with Object De-
tection on YYMNIST. The performance is measured on a test set of 2000
samples, and averaged over three independent runs from ALI 10 to 50. Each
run takes approx. 14 hours.

RAND AVGENT MAXENT SUMENT

AP50 96.52 96.62 96.53 96.53
Training Samples 800 656 608 512
ALI 48 39 36 30

Table 5.1: Comparison of learners from EXP 2 using YYMNIST. This
table presents the training samples and ALI of each active learner (dotted
lines) when it reaches the same maximum performance as RAND (yellow
dashed line) in Figure 5.10.

The results from this experiment presents the effects of using aggrega-
tion techniques when AL is applied on object detection. We notice that
SUMENT tends to collect samples containing more instances compared to

54 5.2. EXP 2 - AL WITH OBJECT DETECTION

Figure 5.11: Top 5 hard images with high informativeness scores (top row)
and top 5 easy images with low informativeness scores (bottom row); using
MAXENT on the YYMNIST dataset.

Figure 5.12: Top 5 hard images with high informativeness scores (top row)
and top 5 easy images with low informativeness scores (bottom row); using
SUMENT on the YYMNIST dataset.

Figure 5.13: Top 5 hard images with high informativeness scores (top row)
and top 5 easy images with low informativeness scores (bottom row); using
AVGENT on the YYMNIST dataset.

CHAPTER 5. EXPERIMENTS AND RESULTS 55

the other learners. We confirm this by counting the instances in the final
training set for each learner, and notice that SUMENT has a higher instance
count. This can be seen in Figure 5.15a. In addition, we observe that AV-
GENT performs as MAXENT but better than RAND, even by having a
lower instance count in the training set. Using an instance-rich training set
does not necessarily lead to better performance. A lot of this behavior might
be based on how the AVGENT learner scores images. Image A containing
10 detections can have the same average score as Image B containing a single
detection. Figure 5.13 illustrates this behavior; AVGENT does not select
images based only on high instance count as SUMENT.

5.2.5 EXP 2.1 - Using All Margin Learners

We rerun the experiment by introducing three new margin learners; max-
imum BvSB (MAXBVSB), sum BvSB (SUMBVSB), and average BvSB
(AVGBVSB). We use the best-performing learner SUMENT for compari-
son.

In Figure 5.14, we observe that the margin learners perform better than
the baseline RAND learner. However, there is not much difference in per-
formance between the entropy and margin learners. More noticeably, the
SUM learners (SUMENT and SUMBVSB) perform better than the AVG
and MAX learners. Table 5.2 compares the performances reached by the
active learners to the baseline RAND learner.

Figure 5.14: Performance results from EXP 2.1 using AL with Object
Detection on YYMNIST. The performance is measured on a test set of 2000
samples, from a single run, and from ALI 10 to 50. Each run takes approx.
18 hours.

The margin learners MAXBVSB, SUMBVSB, and AVGBVSB, are not

56 5.2. EXP 2 - AL WITH OBJECT DETECTION

RAND MAXBVSB AVGBVSB SUMENT SUMBVSB

AP50 96.65 96.70 96.69 96.74 96.70
Training Samples 784 720 704 544 528
ALI 47 43 42 32 31

Table 5.2: Comparison of learners from EXP 2.1 using YYMNIST. This
table presents the training samples and ALI of each active learner (dotted
lines) when it reaches the same maximum performance as RAND (yellow
dashed line) in Figure 5.14.

performing any better than the entropy learners as in EXP 1. We notice that
a learner’s performance is still highly affected by the aggregation techniques.
As seen in Figure 5.15b, SUM still tends to select samples containing more
instances than MAX and AVG.

(a) EXP 2 - Averaged total instances in
training set each ALI from three runs

(b) EXP 2.1 - Total instances in training
set each ALI from a singe run

Figure 5.15: These graphs show the number of class instances that are
added to the training set during each ALI for each learner. Here, we see
that the aggregation technique SUM favors images containing large number
of instances, and that AVG selects images containing few instances.

CHAPTER 5. EXPERIMENTS AND RESULTS 57

5.3 EXP 3 - Synthetic Self-Driving Dataset

Using a Synthetic Self-Driving Dataset
Task: Object Detection
Model: Detectron2’s Faster R-CNN
Dataset: Apollo Synthetic
Extras: Choosing samples from the entire informativeness spectrum

5.3.1 Problem Description

As part of our goal, we want to apply AL in a setting of autonomous driving
for both object detection and instance-based segmentation. At the time of
writing this thesis, the self-driving dataset Apollo Synthetic [74] is the right
candidate that fits these tasks.

We gained much insight from EXP 2 in how each learner behaves using
various aggregation techniques with object detection. To take our develop-
ment a step further, we use the photo-realistic dataset with Faster R-CNN,
and as in EXP 2, we use the learners MAXENT, SUMENT, and AVGENT
for comparison.

5.3.2 Dataset

The Apollo Synthetic dataset has a well-organized folder structure, as de-
scribed in Section 2.3.4. We extract RGB images, object ground truth
files, and segmentation ground truth images from the dataset. After pre-
processing, we end up with a random distribution of images shown in Table
5.3. Since this is an object detection task, we use all available thing classes
in the Apollo Synthetic Dataset, as shown in Table 5.4.

Sets Size Percent

Initial Training Set 2 000 9.4%
Test Set 3 000 14.1%
Unlabeled Set 16 244 76.5%
Processed Dataset 21 244 100.0%

Table 5.3: Sizes of each set used for training and testing

Thing Classes

Sedan Hatchback PickupTruck Bus Motorcyclist
SUV Van Truck Cyclist Pedestrian

Table 5.4: The 10 thing classes that are used from the Apollo Dataset for
EXP 3

58 5.3. EXP 3 - SYNTHETIC SELF-DRIVING DATASET

Images are obtained from clear weather conditions, high road surface
quality, and outdoor areas. Images containing no object ground truth are
discarded. The dataset is structured hierarchically.

When working with real-life sensor systems, most of the collected sensor
data is saved as a stream of synchronized data. We transform the hierar-
chical structure into a stream-based structure, thus ensuring simplicity and
scalability to new incoming data (See Appendix C.2 for more details). The
dataset is reduced by 30% after processing the images due to dataset issues,
giving us 21 244 images from originally 30 240.

5.3.3 Setup

We continue using our AL Framework with Detectron2’s Faster R-CNN
model for object detection, and implement a custom DataLoader to convert
the Apollo Synthetic dataset into the correct Detectron2-format. RAND
selects n samples randomly. For the active learners, we use a faster sam-
pling selection method where MAXENT, SUMENT, and AVGENT select
5000 random samples from the unlabeled set, run inference over them, and
return n informative samples from the entire informativeness spectrum (i.e.,
Spectrum). Spectrum is explained in more detail below.

ALIs

We use the configuration from EXP 2, but with some slight changes. We
train the model for 2500 iterations during the initial ALI. In all the following
ALIs, each learner is trained for 500 iterations. We increase the number of
iterations due to the complexity of the data.

The AL process is repeated for 50 ALIs. An initial model is trained with
2000 randomly selected images from the initial training set. The trained
model is then used as a starting point for the learners. During each ALI,
the model is evaluated using the test set, and 250 new images are added to
the training set based on their informativeness score.

Added Functionality - Spectrum

As explained in Section 2.2.6, the exploration vs. exploitation trade-off is
a known dilemma in AL [8]. In the previous experiments, we use a highly
explorative sampling method. Samples having the highest informativeness
are selected to be labeled by an oracle.

When working with pre-processed datasets such as MNIST and YYM-
NIST, there exists little to no noise that makes the objects easily distinguish-
able from the background. However, objects in photo-realistic samples can
be hard to detect due to the complexity surrounding them. There is always
a chance that explorative methods might select outliers, while exploitative

CHAPTER 5. EXPERIMENTS AND RESULTS 59

methods might select similar samples [66]. An active learner would prefer
to both explore new data and exploit what it already knows.

We tackle this problem by introducing a slightly different sample selec-
tion method from what is proposed by Roy et al. [66]. We want to analyze
how using the whole informativeness Spectrum vs. No-Spectrum impacts a
learner’s performance, as explained in Section 2.2.4. We refer to ”Spectrum”
as both exploring and exploiting by selecting samples with high, medium,
and low informativeness scores. ”No-Spectrum” is referred to as only ex-
ploring by selecting top k samples having the highest informativeness. In
this experiment, we use the Spectrum method. A comparison between using
Spectrum and No-Spectrum is presented in EXP 3.1.

We sort the informativeness scores that are obtained after inference, from
highest to lowest, and collect the top 150 samples with high informativeness,
bottom 25 with low informativeness, and 75 randomly with medium infor-
mativeness. This creates a set of 250 samples that is added to the training
set by each active learner. The learner gets the chance to explore with the
highly informative samples, and exploit with the less informative samples.
This distribution (e.g., 150 high, 75 mid, 25 low) is favoring exploration,
since we believe it might be beneficial for a learner to explore as early as
possible. Nevertheless, we do not focus on tweaking this distribution as this
is out of our scope.

5.3.4 Results

We run the experiment three times with different initial training sets to get
an average. Figure 5.16 presents the average AP50 for each learner. Keep
in mind, the results from the ten first ALIs are not shown in this figure
due to their instability, as the learners might not have gained substantial
knowledge about the data yet.

Both active learners are able to perform better than RAND using fewer
samples, and we notice a matching performance pattern as in EXP 2. Table
5.5 compares the active learners with the baseline RAND learner.

Figure 5.18a contains ten images that are scored by SUMENT as highly
informative. Most contain clusters of overlapping instances, instances that
are positioned in the distance, and instances that are either hidden behind
other objects or placed in dark areas. Images with low informativeness are
shown in Figure 5.18b. These images often contain large, clearly visible,
and easily detectable instances. MAXENT selects images containing a sin-
gle, highly informative instance regardless of the number of total instances
(Figure 5.19). AVGENT selects images containing few instances, and is not
affected by the number of instances. An image containing a single highly
informative instance can be scored equally as an image containing multiple
highly informative instances since it only considers the average (Figure 5.20.

The performance results indicate that having an instance-rich training

60 5.3. EXP 3 - SYNTHETIC SELF-DRIVING DATASET

Figure 5.16: Performance results from EXP 3 using AL with Object De-
tection on Apollo Synthetic. The performance is measured on a test set of
3000 samples, and averaged over three independent runs from ALI 10 to 50.
Each run takes approx. 2.5 days to complete.

RAND AVGENT MAXENT SUMENT

AP50 57.52 57.71 57.74 57.52
Training Samples 14500 14250 12250 10250
ALI 50 49 41 33

Table 5.5: Comparison of learners from EXP 3 using Apollo. This table
presents the training samples and ALI of each active learner (dotted lines)
when it reaches the same maximum performance as RAND (yellow dashed
line) in Figure 5.16.

set can be beneficial for an active learner, and that the aggregation technique
SUM fulfills this requirement. The number of instances in the training
set gives a performance boost and works in an active learner’s favor in
exploring new data. Figure 5.17 shows the training set instance count for
each learner. Take notice that the instance count of the training sets for
SUMENT, MAXENT, and AVGENT starts to meet at the end. Since our
dataset contains 21 244 images, the training sets will start to match over
time as more samples are added (i.e., the unlabeled set gets exhausted).

We further investigate why AVGENT performs poorly. In EXP 2, the
YYMNIST dataset contains no ”empty” images; there is always a digit.
Apollo, however, can contain images having no true classes. As seen in
Figure 5.20a, AVGENT tends to select images containing few or no true
classes. If the average entropy score of an image containing multiple true
positives is a bit lower than the average entropy score of an image containing

CHAPTER 5. EXPERIMENTS AND RESULTS 61

a single false positive, the latter is selected. AVGENT performs better
than the RAND learner at the end of the ALIs since the unlabeled set is
exhausted, as mentioned earlier; this can be seen in Figure 5.17.

In regards to our proposed selection method, a more direct comparison
is needed to see if Spectrum makes the learners perform better than using
No-Spectrum.

Figure 5.17: This graph shows the number of class instances that are
added to the training set during each ALI for each learner. This illustrates
that SUMENT favors images containing large number of instances. The
values are averaged over three runs.

62 5.3. EXP 3 - SYNTHETIC SELF-DRIVING DATASET

(a) Top 10 hard images with high informativeness using SUMENT

(b) Top 10 easy images with low informativeness using SUMENT

Figure 5.18: Scoring results on ALI 23 from using SUMENT on Apollo
Synthetic.

CHAPTER 5. EXPERIMENTS AND RESULTS 63

(a) Top 10 hard images with high informativeness using MAXENT

(b) Top 10 easy images with low informativeness using MAXENT

Figure 5.19: Scoring results on ALI 23 from using MAXENT on Apollo
Synthetic.

64 5.3. EXP 3 - SYNTHETIC SELF-DRIVING DATASET

(a) Top 10 hard images with high informativeness using AVGENT

(b) Top 10 easy images with low informativeness using AVGENT

Figure 5.20: Scoring results on ALI 23 from using AVGENT on Apollo
Synthetic.

CHAPTER 5. EXPERIMENTS AND RESULTS 65

5.3.5 EXP 3.1 - Spectrum vs No-Spectrum

We investigate the usage of the new sampling technique further by rerunning
the experiment with three learners who use Spectrum and three learners who
use the traditional selection method No-Spectrum. We compare the active
learners MAXENT, SUMENT, and AVGENT. All learners use the same
initially trained model as a starting point.

As seen in Figure 5.21, surprisingly, SUMENT benefits the most from
using No-Spectrum, by only choosing highly informative images containing
lots of instances. As we know from our earlier experiments, SUMENT gives
images containing very few (sometimes one) easily detectable objects, a low
informativeness score. Using Spectrum, images like these are selected from
the low informativeness spectrum. Using No-Spectrum images are only se-
lected from the high informativeness spectrum, and the learners end up with
a training set containing images with lots of instances. MAXENT performs
better using No-Spectrum, but the difference is not as big compared to SU-
MENT. As expected, AVGENT is not affected by this, since it does not
take into consideration the number of instances in an image. In addition,
AVGENT performs worse than RAND in the earlier ALIs; its performance
improves when the training sets start to match at the end, as explained
in EXP 3 results. Figure 5.22 illustrates this behavior by presenting the
instance count of the training set for each learner using Spectrum and No-
Spectrum.

66 5.3. EXP 3 - SYNTHETIC SELF-DRIVING DATASET

Figure 5.21: Performance results from EXP 3.1 using AL with the selec-
tion methods Spectrum (solid lines) and No-Spectrum (dashed lines). The
performance is measured on a test set of 2000 samples. The values are of
two runs from ALI 10 to 50. Each run takes approx. 3 days to complete.

Figure 5.22: This graph shows the number of class instances that are
added to the training set during each ALI for each learner using the selection
methods Spectrum (solid lines) and No-Spectrum (dashed lines).

CHAPTER 5. EXPERIMENTS AND RESULTS 67

5.3.6 EXP 3.2 - Using an Unbalanced Initial Set

We perform a new experiment to examine how our learners behave when
they are given an unbalanced initial model, which is trained using a highly
unbalanced initial training set, as a starting point. The initial model is
trained with 2000 images having the class distribution in Table 5.6. In
this experiment, we use No-Spectrum and compare the entropy learners
(e.g., SUMENT, MAXENT) with the margin learners (e.g., SUMBVSB,
MAXBVSB).

Unbalanced Initial Class Distribution

Sedan - 759 Hatchback - 1 PickupTruck - 0 Cyclist - 0 Bus - 0
SUV - 1325 Pedestrian - 1 Motorcyclist - 0 Truck - 0 Van - 6

Table 5.6: We use an initial training set having the following unbalanced
class distribution for EXP 3.2

As shown in Figure 5.23, SUMBVSB and MAXBVSB are able to perform
slightly better than SUMENT and MAXENT in the early ALIs, respectively.
We further analyze their performance by examining how their Average Pre-
cision for each class changes over time during these ALIs. Our focus is on
rare classes such as Bus and Truck. The AP for each class is collected from
ALI 0, 2, 4, 6, 8, 10 and 50, and the values are plotted for each learner in
Figure 5.24. We notice that the margin learners detect these rare classes
quicker than the other learners, since their APs for Bus and Truck increases
early in the ALIs. As stated by Joshi et al. [36], BVSB is a fast explorer.

68 5.3. EXP 3 - SYNTHETIC SELF-DRIVING DATASET

Figure 5.23: Results from EXP 3.2 using AL with an unbalanced initial
model. The values are from a single run from ALI 1 to 50. The BVSB
learners handles class imbalance better than the ENT learners early in the
ALIs. This run takes approx. 3 days to complete.

Figure 5.24: Expt 3.2 - Plots that illustrate how Average Precision (AP)
increases over time, for each class, for multiple ALIs, and for each learner.
SUMBVSB and MAXBVSB detect the classes Bus and Truck quicker than
the other learners, which gives them a higher AP earlier in the ALIs.

CHAPTER 5. EXPERIMENTS AND RESULTS 69

5.4 EXP 4 - QbC Framework

Using a more Complex Model
Task: Object Detection and Instance-Based Segmentation
Model: Detectron2’s Mask R-CNN
Dataset: Apollo Synthetic

5.4.1 Problem Description

Our next step is to apply AL on instance-based segmentation. Relevant AL
approaches have been using Monte Carlo dropout to measure uncertainty
in segmentation tasks (e.g., Sörsäter et al. [71]). In this experiment, we
implement a QbC Framework using dropout layers following the approach
proposed by Morrison et al. [54]. We examine if this type of framework can
discover highly informative samples better than a simple Uncertainty Based
framework. Measuring the informativeness of a sample using dropout layers
appears to be a valuable approach that helps us understand a model’s un-
certainty and to improve its performance substantially. We use Detectron2’s
implementation of Mask R-CNN for this task, and the learners MAXENT,
SUMENT, SUMBVSB, and DROPOUT for comparison.

5.4.2 Dataset

We continue using the Apollo Synthetic Dataset, as it contains ground truth
data for instance-based segmentation. We use the same random set distri-
bution and the pre-processed version of the dataset from EXP 3 having all
thing classes. See Section 5.3.2 for details.

5.4.3 Setup

We implement and add the required functionality, such as a new DataLoader,
a new training loop, and Dropout Layers, to our AL Framework so it can sup-
port and create a QbC Framework. We use Detectron2’s COCO-pretrained
Mask R-CNN Model for object detection and instance-based segmentation
[82]. We use the two query strategy frameworks QbC and Uncertainty Based
with the sample selection method No-Spectrum. No-Spectrum is used since
it improves the performance of the learners, as seen in EXP 3.1.

For the QbC Framework, we use the learner DROPOUT. DROPOUT
only selects 750 samples randomly from the unlabeled set, due to it being
computationally heavy when it is running inference over a sample multiple
times. This learner and the QbC Framework is explained in more detail in
Section 5.4.3.

For the Uncertainty Based Framework, we use the learners MAXENT,
SUMENT, and SUMBVSB. To make it fair and to make the results com-
parable with DROPOUT, the learners select 750 random samples each ALI

70 5.4. EXP 4 - QBC FRAMEWORK

from the unlabeled set, instead of 5000 in earlier experiments. The learners
then run inference over the samples, calculate their informativeness based
on their predictions, and return the top k samples having the highest infor-
mativeness score.

ALIs

We modify the configuration from EXP 3 by training the initial model in
the initial ALI for 3000 iterations. In all the following ALIs, each learner is
trained for 750 iterations. The number of iterations is increased due to the
complexity of the model.

The AL process is repeated for 50 ALIs. We train the initial model with
the initial training set having 2000 randomly selected images and use it as
a starting point for the learners. During each ALI, each learner is evaluated
on a test set, and 250 new images are added to the training set based on
their informativeness score.

Added Functionality - Dropout Layers

Section 2.2.2 explains how a committee of learners can be used to find infor-
mative samples. Instead of using multiple learners, which can be computa-
tionally heavy, we implement a QbC Framework that creates this committee
virtually by using dropout layers. These layers are added to the Fully Con-
volutional Network in Mask R-CNN, as proposed by Morrison et al. [54].
Using Monte Carlo dropout, we can run inference over the same set of images
multiple times to measure the uncertainty.

We implement the learner DROPOUT following Morrison’s et al. [54]
approach. DROPOUT runs inference over the same set of images 5 times
and measures informativeness based on the difference in predictions (e.g.,
semantic, spatial mask, and spatial bbox uncertainty). Its behavior has been
explained in more detail under Section 4.2.1. During the earlier experiments,
SUM had the best overall performance and is a good technique for finding
instance-rich images; therefore, DROPOUT uses SUM as an aggregation
technique.

5.4.4 Results

We run this experiment only once due to its complexity and the computa-
tionally heavy QbC Framework. Running once takes approximately 1 week.
The AP50 of bounding boxes for each learner is shown in Figure 5.25, and
for masks is shown in Figure 5.26. We see that all learners perform better
than the baseline RAND learner, and SUMENT performs slightly better
than MAXENT. However, the computationally heavy learner DROPOUT,
did not perform any better than the uncertainty based learners. Figure 5.27
presents the total instances in the training set for each ALI for each learner.

CHAPTER 5. EXPERIMENTS AND RESULTS 71

Figure 5.25: Results from EXP 4 using AL with Object Detection and
Instance-Based Segmentation on Apollo Synthetic. The values are from a
single run from ALI 10 to 50. AP50 is given for the bounding boxes. This
run takes approx. 1 week to complete.

Figure 5.26: Results from EXP 4 using AL with Object Detection and
Instance-Based Segmentation on Apollo Synthetic. The values are from a
single run from ALI 10 to 50. AP50 is given for the masks. This run takes
approx. 1 week to complete.

72 5.4. EXP 4 - QBC FRAMEWORK

Figure 5.27: This graph shows the number of class instances that are added
to the training set during each ALI for each learner in EXP 4. DROPOUT
ends up with a overall more instance-rich training set.

Figure 5.28: Scored observations from EXP 4 using AL with Object De-
tection and Instance-Based Segmentation on the Apollo Synthetic Dataset.
Illustrates how uncertainty is measured using DROPOUT (Morrison et al.
[54]). Top Left: A Sedan is given a high final weighted score, which results
in low informativeness. Top Right and Bottom Left: A Sedan and a
SUV are given final weighted scores based on the different uncertainty mea-
sures. Bottom Right: A Sedan is given a low final weighted score mostly
due to few appearances, which results in high informativeness.

CHAPTER 5. EXPERIMENTS AND RESULTS 73

As explained in Section 3.3.1, each observation in an image contains
a group of predictions that include softmax vectors, bounding boxes, and
segmentation masks. Figure 5.28 presents four observations that are given
an uncertainty score using DROPOUT and how their values are calculated.
An observation’s uncertainty is measured using four uncertainty measures
based on the predictions. If we run inference over an image five times, we
expect that the same instance is predicted an equal amount of times by the
model (i.e., 5 out of 5 gives an appearance score of 1). We penalize if the
appearances are too many or too few (i.e., 6 out of 5 or 4 out of 5). Semantic,
spatial mask, and spatial bounding box uncertainties are calculated as well
(See Appendix B for pseudo code).

Morrison et al. [54] performs a grid search across these uncertainty
metrics to find good thresholds, as explained in Section 3.3.1 and 4.2.1.
If the uncertainty measures are below these, the number of false positives
increases, if above the number of true positives decreases. They state that
it is necessary to find optimal thresholds, as doing so increases their overall
performance.

We are able to successfully implement their method, and we observe that
the DROPOUT learner is able to find informative samples as its performance
is similar to the other active learners. However, we believe its performance
can be further improved by tweaking and optimizing these thresholds on the
various uncertainty measures. In addition, our results can not be directly
compared with Morrison’s et al. [54], since they do not provide any com-
parisons with a baseline. Currently, we prefer the simpler uncertainty-based
learners due to them being less computationally heavier than DROPOUT.

74 5.5. EXP 5 - REAL-LIFE SELF-DRIVING DATASET

5.5 EXP 5 - Real-Life Self-Driving Dataset

Moving towards a Real-Life Dataset
Task: Object Detection
Model: Detectron2’s Faster R-CNN
Dataset: Waymo Open
Extras: Using the similarity metric LPIPS [86] to ensure data diversity.

5.5.1 Problem Description

In the preceding experiments, we apply AL using various toy datasets such
as MNIST, CIFAR-10, and YYMNIST, as well as a synthetic self-driving
dataset from Apollo. In this experiment, we explore how AL behaves in
a realistic autonomous setting using a real-life dataset from Waymo. De-
tectron2’s Faster R-CNN is used for this task, and the learners MAXENT,
SUMENT, MAXBVSB, and SUMBVSB are used for comparison.

5.5.2 Dataset

We use Waymo Open v1.0 as our dataset, as explained in Section 2.3.5. We
use a similar random set distribution as in EXP 3; initial training set of size
2000, test set of size 3000, and unlabeled set of size 24 154.

5.5.3 Setup

We use the AL Framework with Detectron2’s Faster R-CNN, and implement
a new custom DataLoader for the Waymo Open dataset. All learners use the
No-Spectrum selection method by selecting 5000 random samples from the
unlabeled set, run inference over them, and return top n highly informative
samples.

ALIs

We use the configuration from EXP 3. The initial model is trained for 2500
iterations during the initial ALI. In all the following ALIs, each learner is
trained for 500 iterations.

The AL process is repeated for 50 ALIs. An initial model is trained with
the initial training set having 2000 randomly selected images and is used as
a starting point for the learners. During each ALI, we evaluate each learner
on a test set, and 250 highly informative images are added to the training
set.

5.5.4 Results

This experiment is run twice, the average AP50 of each learner is presented
in Figure 5.29 illustrates the performances of each learner, and Table 5.7

CHAPTER 5. EXPERIMENTS AND RESULTS 75

compares the performances reached by the active learners to the baseline
RAND learner. The results are highly different from what we observe in
the earlier experiments. MAXENT has the best overall performance, the
margin learners (e.g., SUMBVSB and MAXBVSB) perform slightly better
than RAND early in the ALIs, but are able to increase their performance
margin later at the end. AVGENT performs the worst out of all active
learners, and we see a similar issue as discussed in EXP 3 Section 5.3.4; it
is highly sensitive in collecting images containing false positives.

Figure 5.29: Results from EXP 5 using AL with Object Detection on
Waymo Open. The values are from a single run from ALI 10 to 50.

RAND AVGENT SUMBVSB MAXBVSB SUMENT MAXENT

AP50 65.05 65.02 65.12 65.17 65.08 65.13
Training Samples 13250 12000 11000 10750 10250 9250
ALI 45 40 36 35 33 29

Table 5.7: Comparison of learners from EXP 5 using Waymo. This table
presents the training samples and ALI of each active learner (dotted lines)
when it reaches the same maximum performance as RAND (yellow dashed
line) in Figure 5.29.

By looking at the scored images from SUMENT, MAXENT, and AV-
GENT (Figure 5.31, 5.32, and 5.33, respectively), we notice that some are
highly similar. We examine this further by looking into their set of infor-
mative samples.

Waymo Open contains video segments that are not pre-processed and
diverse. If we select a frame from one of these segments, the surrounding
frames will be very similar. The learners are affected by this. If a frame is
given a high informativeness score, a surrounding frame will likely be given

76 5.5. EXP 5 - REAL-LIFE SELF-DRIVING DATASET

Figure 5.30: This graph shows the number of class instances that are
added to the training set during each ALI for each learner in EXP 5.

the same score. In other words, there is a high chance that similar images
are selected for labeling during each ALI; this does not lead to data diversity,
as previously explained in Section 2.2.6.

Added Functionality - LPIPS

We tackle this problem by adding new functionality, which ensures data
diversity, to see if the performance can be improved. After inference, n
images are given an informativeness score and are sorted in decreasing order.
We introduce an algorithm that uses the LPIPS metric (Zhang et al. [86])
for comparing images. We start by comparing the first highly informative
image with m subsequent images using LPIPS as metric. The reasoning
behind comparing the m closest images is to reduce computational cost.
In addition, an image having high informativeness might not be similar to
an image having low informativeness. Images having an LPIPS score lower
than 0.4 are marked and ignored, as they are highly similar (e.g., 0.0 similar,
1.0 different). We repeat this process by comparing the next ”unmarked”
highly informative image with its following images. This is done until we
have obtained a diverse set of 250 highly informative images. The similarity
score of each image pair is saved for later reuse and is not computed multiple
times as this is a time-consuming task.

5.5.5 EXP 5.1 - Ensuring Data Diversity

We rerun the experiment using the LPIPS metric (Zhang et al. [86]) to
investigate if selecting a diverse set of highly informative samples lead to
better performance. We follow the same setup as in EXP 5. By ensuring

CHAPTER 5. EXPERIMENTS AND RESULTS 77

(a) Top 10 hard images with high informativeness using SUMENT

(b) Top 10 easy images with low informativeness using SUMENT

Figure 5.31: Scoring results on ALI 23 from using SUMENT on the Waymo
Open dataset.

78 5.5. EXP 5 - REAL-LIFE SELF-DRIVING DATASET

(a) Top 10 hard images with high informativeness using MAXENT

(b) Top 10 easy images with low informativeness using MAXENT

Figure 5.32: Scoring results on ALI 23 from using MAXENT on the
Waymo Open dataset.

CHAPTER 5. EXPERIMENTS AND RESULTS 79

(a) Top 10 hard images with high informativeness using AVGENT

(b) Top 10 easy images with low informativeness using AVGENT

Figure 5.33: Scoring results on ALI 23 from using AVGENT on the Waymo
Open dataset.

80 5.5. EXP 5 - REAL-LIFE SELF-DRIVING DATASET

data diversity, we observe that the performance of MAXENT and MAXB-
VSB is drastically reduced early in the ALIs, SUMENT has a slight increase
in performance, and the BVSB learners are not affected.

Based on our results, the MAX learners perform better by not using
diverse samples. On this dataset, it might be that a model prefers multiple
highly similar samples containing a single highly informative instance to
become more certain; the model might want to exploit more than explore.

It is worth mentioning that the average runtime of the ENT learners
is much longer compared to the BVSB learners; 3 days 13 hours and 1
day 10 hours, respectively. If our similarity algorithm receives a sorted set
containing many similar images, it will take longer to create a diverse set.
On the other hand, if the set contains few similar images, it will finish faster.
In this experiment, the ENT learners fit the former case, while the BVSB
learners the latter, since the ENT learners select more similar samples than
the BVSB learners. Figure 5.35 illustrates the instance count in the training
set each ALI for each learner. We observe that the total instance count of
the ENT learners is reduced; this is more clear on SUMENT.

The algorithm removes similar samples with similar scores successfully
from a list of informative samples to make it diverse. It is very time-
consuming at first since we have to compare all image pairs; however, it gets
faster over time since we save values, and it only compares image pairs from
the same camera, since the dataset consists of images from three cameras.
Nevertheless, a more robust technique is needed to create diverse datasets.

As a final note, by doing this experiment, we point out the weaknesses
and challenges that may arise from using real-life video segments that con-
tain multiple similar images, and how this can affect the performance.

CHAPTER 5. EXPERIMENTS AND RESULTS 81

Figure 5.34: Results from EXP 5.1 using AL with Object Detection on
the Waymo Open Dataset, with diverse training sets. The values are from
a single run from ALI 5 to 50. This experiment takes approximately 9 days
to run.

Figure 5.35: This graph shows the number of class instances that are
added to the training set during each ALI for each learner. This is for EXP
5.1 that uses diverse training sets.

82 5.5. EXP 5 - REAL-LIFE SELF-DRIVING DATASET

5.5.6 EXP 5.2 - Using Early Stopping

During our earlier experiments, we train each learner for a fixed number of
iterations. This number is either set based on Detectron2’s documentation
for toy datasets, or manually tweaked after some initial test runs. Therefore,
it is hard to tell if a learner is trained for too little or too long. We tackle this
optimization problem by introducing early stopping in our AL Framework.

We rerun EXP 2, 3, and 4 using early stopping with No-Spectrum. The
AL process is as follows. Initially, 2000 and 50 samples are randomly selected
to create training and validation sets, respectively. The model is evaluated
on the validation set every 100th iteration. For early stopping, we use 4 as
patience and 0.005 as delta to monitor the difference in AP on the validation
set. If the AP does not improve, early stopping is initiated. The initial model
is then used as a starting point for the other learners. For each learner and
during each ALI, highly informative samples are added to both the training
and validation set. The training and evaluation processes are repeated using
early stopping, and the experiments are run for 25 ALIs. We use the learners
RAND, MAXENT, and SUMENT for comparison.

We are able to increase the performance using early stopping. However,
at first, we observe a weakness by adding 250 highly informative samples
each ALI to the training set, and 50 highly informative to the validation set,
as mentioned earlier. Since highly informative samples are being added to
the validation set, they are not used for training. The validation set will end
up with collecting large amounts of informative samples for evaluation only,
and these will never be used for training. After rerunning the experiment
but by adding fewer highly informative samples to the validation set, the
performance is increased as expected.

Figure 5.36, 5.37 and 5.38 shows a comparison of the performances for
EXP 2, 3, 4, and 5.1 with and without early stopping, respectively. The
results demonstrate that the learners have been training for too little, and
by introducing early stopping their performances improve significantly on a
smaller training set. Table 5.8 shows for how many iterations each learner
is trained in total, with and without early stopping, for each run (e.g.,
YYMNIST, Apollo, Waymo), and from ALI 0 to 25. We believe that by
tweaking the early stopping parameters, the performance can be further
improved.

CHAPTER 5. EXPERIMENTS AND RESULTS 83

Figure 5.36: Results from EXP 5.2 using AL and Early Stopping with
Object Detection on YYMNIST Dataset. The values are from a run with
early stopping (ALI 1 to 25), which is compared to EXP 2 (ALI 1 to 50).

Figure 5.37: Results from EXP 5.2 using AL and Early Stopping with
Object Detection on APOLLO Dataset. The values are from a run with
early stopping (ALI 1 to 25), which is compared to EXP 3 (ALI 1 to 50).

84 5.5. EXP 5 - REAL-LIFE SELF-DRIVING DATASET

Figure 5.38: Results from EXP 5.2 using AL and Early Stopping with
Object Detection on Waymo Open Dataset. The values are from a run with
early stopping (ALI 1 to 25), which is compared to EXP 4 (ALI 1 to 50).

Figure 5.39: Results from EXP 5.2 using AL, Early Stopping and Data
Diversity, with Object Detection on Waymo Open Dataset. The values are
from a run with early stopping (ALI 1 to 25), which is compared to EXP
5.1 (ALI 1 to 50).

CHAPTER 5. EXPERIMENTS AND RESULTS 85

Total Iterations Init RAND MAXENT SUMENT

YYMNIST - Without ES 300 2500 2500 2500
YYMNIST - With ES 1800 17300 18200 18100

Apollo - Without ES 2500 12500 12500 12500
Apollo - With ES 2300 17500 17800 18100

Waymo - Without ES 2500 12500 12500 12500
Waymo - With ES 3800 28100 27600 24200

Table 5.8: This table shows the total iterations with and without Early
Stopping (ES) for the initial set, and the learners. For each learner, itera-
tions are summed from ALI 1 up to ALI 25. Here, we clearly see that the
learners need more training, since their performances are improved using
early stopping; however, it takes more time.

5.6 EXP 6 - Informative Samples

Finding informative samples in NAPLab’s raw dataset
Task: Object Detection
Model: Detectron2’s Faster R-CNN
Dataset: NAPLab Raw Data (NAP-Set)

5.6.1 Problem Description

As presented by Kale et al. [37], AL can be accelerated, by initializing
it with transfer learning. Our goal is to find an initial set of informative
samples from a never-before-seen dataset using transfer learning. For this
experiment, we use two different models that are previously trained on self-
driving datasets, to search for informative images on NAPLab’s raw traffic
data (NAP-Set). As the first model (Model-A), we use the best performing
MAXENT model from ALI 50 in EXP 5, which is trained on Waymo Open
using Faster R-CNN. As the second model (Model-B), we use one from
Detectron2’s model zoo that is trained on CityScapes using Mask R-CNN
[82]. Keep in mind, Model-B is trained using the entire CityScapes dataset,
while Model-A is trained using 50% of the Waymo Open dataset in EXP 5.
Model-A uses the learners SUMENT, MAXENT, and AVGENT. Model-B
uses all learners as Model-A, including DROPOUT.

5.6.2 Dataset

We use a small set of raw traffic data collected by NAPLab (NAP-Set).

5.6.3 Setup

All learners except DROPOUT select 5000 images from the NAP-Set, run
inference over them, and measure their informativeness. DROPOUT selects

86 5.6. EXP 6 - INFORMATIVE SAMPLES

2000 images, runs inference over them 5 times, and measures their informa-
tiveness.

5.6.4 Results

Figure 5.41a and 5.41b shows hard and easy images selected by the two mod-
els using SUMENT. We observe that Model-B is able to select images that
are more instance-rich and complex compared to Model-A. This is mostly
due to Model-B being trained for longer on a full dataset, while Model-A
being trained for less using AL in EXP 5. Other factors might be that both
models are trained on different datasets. Model-A on Waymo Open, which
contains images from the USA. Model-B on CityScapes, which contains im-
ages from Germany; Germany has a more similar city structure as Norway.
We notice that Model-B, gives images containing high density and overlap-
ping objects high informativeness, while images with low informativeness
often contain few objects. Figure 5.41c and 5.41d shows hard and easy im-
ages selected by the two models using MAXENT, and Figure 5.42 by using
AVGENT.

Figure 5.40 shows hard and easy images selected by Model-B using
DROPOUT. We observe that Model-B using the DROPOUT learner col-
lects even more instance-rich images compared to it using SUMENT. In
DROPOUT, the uncertainty of predictions is measured using both the bound-
ing box and the masks.

The important point to make here, is that transfer learning can be ben-
eficial to obtain an informative initial set, presuming we have a good model
trained on the same data domain, and to accelerate AL (Kale et al. [37]).
Samples with high informativeness can be sent to a human for manual an-
notation, while samples with low informativeness can be used for assisted
annotation to speed up the annotation process.

CHAPTER 5. EXPERIMENTS AND RESULTS 87

(a) Top 10 hard images - Model-B using DROPOUT

(b) Top 10 easy images - Model-B using DROPOUT

Figure 5.40: Images selected from the NAP-Set by only using Model-B:
Fully trained CityScapes model from Detectron2 (Mask R-CNN). 5.40a:
Top 10 hard images starting with the hardest. 5.40b: Top 10 easy images
starting with easiest.

88 5.6. EXP 6 - INFORMATIVE SAMPLES

(a) Top 5 hard/easy images - Model-A using SUMENT

(b) Top 5 hard/easy images - Model-B using SUMENT

(c) Top 5 hard/easy images - Model-A using MAXENT

(d) Top 5 hard/easy images - Model-B using MAXENT

Figure 5.41: Images selected from the NAP-Set. Model-A: Best perform-
ing MAXENT learner from ALI 50 in EXP 5 (Faster R-CNN). Model-B:
Fully trained CityScapes model from Detectron2 (Mask R-CNN). Top row
in each subfigure: Top 5 hard images starting with the hardest. Bottom
row in each subfigure: Top 5 easy images starting with easiest.

CHAPTER 5. EXPERIMENTS AND RESULTS 89

(a) Top 5 hard/easy images - Model-A using AVGENT

(b) Top 5 hard/easy images - Model-B using AVGENT

Figure 5.42: Images selected from the NAP-Set. Model-A: Best perform-
ing MAXENT learner from ALI 50 in EXP 5 (Faster R-CNN). Model-B:
Fully trained CityScapes model from Detectron2 (Mask R-CNN). Top row
in each subfigure: Top 5 hard images starting with the hardest. Bottom
row in each subfigure: Top 5 easy images starting with easiest.

90 5.6. EXP 6 - INFORMATIVE SAMPLES

Chapter 6

Discussion

In this chapter, we discuss our major findings gained using the different
Active Learning (AL) strategies. Furthermore, we shortly discuss impor-
tant factors and limitations that need to be considered when applying AL.
Finally, we address the Research Questions (RQs) listed in Section 1.3, fol-
lowed by the limitations of our thesis.

Our goal is to identify if AL can be used to achieve high performance
using a smaller, highly informative training set. By iteratively conducting
experiments with increasing complexity, and in parallel implementing an AL
Framework, we make interesting discoveries on how various AL strategies
behave and perform.

6.1 Major Findings

Our results show that the active learners can perform better than the base-
line RAND learner using less labeled training data. However, we observe
that the number of total class instances in the training set has a great im-
pact on a learner’s performance. This is where the aggregation technique
SUM stands out, as it is known to select images containing many highly
informative instances. The aggregation technique AVG, behaves differently,
it selects images containing fewer instances. There are, nevertheless, draw-
backs with these types of aggregation techniques as they are highly sensitive
to false positives.

False Positives

The number of false positives predicted by a learner can be profoundly
affected by the complexity of the dataset. In our experiments, we are using
a toy, a synthetic, and a real-life dataset (e.g., YYMNIST, Apollo Synthetic,
Waymo Open, respectively).

By picking an arbitrary image from YYMNIST, we see that there are al-
ways non-overlapping digits placed randomly on top of a white background.

91

92 6.1. MAJOR FINDINGS

This minimizes the chance of predicting false positives. For an image taken
from Apollo, the complexity increases drastically, the images are no longer
as consistent, and can be highly diverse.

For an image taken from a real-life dataset, the complexity is even higher,
as there might contain high amounts of noise and unimportant data, and
it might even contain classes of no interest or no instances at all. In such
circumstances, the number of false positives can increase considerably.

As our results present, we see a similar performance trend in the pre-
processed toy and synthetic datasets. However, applying AL on a real-life
dataset gives different results. SUMENT has the best performance in most
experiments, but the negative impact of including false negatives can be
seen in EXP 5, where it performs poorly compared to the other learners.
AVGENT has the worst overall performance as it tends to score images
containing a single, low confidence, false positive, as highly informative. In
addition, most of the images selected by AVGENT contain few true pos-
itives, as discussed in Section 5.3.4. This weakness can be improved by
increasing the prediction confidence threshold used under testing to discard
low confidence detections that might be false positives (e.g., we are using
0.5, and Detectron2 uses 0.7 as default).

The aggregation techniques sum, maximum, and average are presented
by Brust et al. [9]. In their approach, sum is best-performing, while maxi-
mum and average achieve similar performance. Our learners SUMENT and
MAXENT reflect their results; however, AVGENT does not. This is due to
the usage of different datasets. They use PASCAL VOC, where all images
contain at least one object, while we use datasets containing images having
no objects.

Instance-Rich Samples

We notice that the object detection learners end up with varying numbers
of total instances in their training sets. One interesting fact, in EXP 2
(Section 5.2.4), AVG still manages to perform better than RAND, and gets
a similar performance as MAX (similar to what is found by Brust et al.
[9]), while having the lowest total instance count. Here, we use the dataset
YYMNIST, which contains samples having at least one object. The SUM
learners, having the highest instance-count, benefit from selecting images
containing many objects, as most of these might be highly informative. In
addition, these might contain hard-to-detect and rare objects that result
in diverse scenarios in the context of autonomous perception. Brust et al.
[9] use these aggregation techniques with margin learners (e.g., 1-vs-2), and
observe a similar behaviour in their approach (Section 3.2.3).

CHAPTER 6. DISCUSSION 93

Exploration vs. Exploitation

Selecting a set of samples containing many informative instances can be
seen as an explorative method for the learners (i.e., using SUM). However,
as we explained in Section 2.2.6, there are trade-offs between exploring and
exploiting. We introduce two techniques to evaluate this in two different
experiments. Keep in mind that these results can not be compared directly
due to the usage of different datasets (e.g., synthetic, real-life).

In EXP 3.1 (Section 5.3.5), we propose the selection methods Spectrum
and No-Spectrum. As we evaluate each active learner using a different ag-
gregation technique, we discover that SUM does not benefit from using Spec-
trum, and that AVG and MAX learners are not affected.

In EXP 5.1 (Section 5.5.5), we propose a technique to select diverse sam-
ples that are highly informative. Diversifying training samples can be seen
as a way of exploring. Using a real-life dataset containing video segments
(e.g., Waymo Open) gives multiple frames that are highly similar. If a frame
is scored as highly informative, there is a chance that the surrounding frames
will be given a similar score. If so, the learner will select similar images, and
become somewhat exploitative, as no new information is gained. The per-
formance of MAX learners is reduced drastically by using diverse training
samples. It might be that these learners want to exploit more when using
this particular dataset than explore.

The explore vs. exploit trade-off has to be investigated further, as our
proposed methods result in different performances depending on the dataset
(e.g., synthetic, real-life). Nevertheless, our results demonstrate that highly
explorative learners achieve better performance by selecting instance-rich
samples early in the AL process; hence, SUM learners using No-Spectrum.

Instance-Based Segmentation - Strategy Complexity

Complex AL strategies can be hard to tune, computationally expensive, and
might not lead to high performing learners compared to simpler AL strate-
gies. To our knowledge, few strategies are proposed to measure uncertainty
on instance-based segmentation (e.g., Sörsäter et al. [71] and Morrison’s
et al. [54]), thereby making it difficult to compare the results. We follow
Morrison’s et al. [54] approach by introducing an additional uncertainty
measure and implement a QbC Framework. Even though the results are
not as promising, it is worth discussing the complexity of this framework;
it has to run inference on the same set of images multiple times. When
creating an AL strategy, there is a trade-off between the complexity and
time-consumption, and its ability to output a high performing learner. In
other words, if an AL strategy is computationally expensive, and gives a
worse performing learner compared to a computationally light strategy, we
believe, it may not be worth using. Nevertheless, as mentioned in EXP 4

94 6.2. SOFTMAX UNCERTAINTY

(Section 5.4.4), their approach needs to be further optimized.

Early Stopping

Using early stopping with AL gives a huge performance boost, as demon-
strated in EXP 5.2 (Section 5.5.6). We do not focus on optimizing early
stopping; however, there is still a question left. How should samples be
added to the validation set each ALI? In EXP 5.2, we only add a small set
of highly informative samples to the validation set. Other ways can be to add
a random set of samples, or by adding a set containing samples with both
low, medium, and high informativeness. An optimal case would perhaps be
to have a validation set that represents the underlying data structure in the
best possible way (e.g., being class balanced).

6.2 Softmax Uncertainty

Our work is based on measuring uncertainty using softmax vectors, as this
is the output we obtain from the models (e.g., Faster R-CNN and Mask
R-CNN) in Detectron2. However, using the probability distribution over all
classes might not be a good uncertainty measure.

Gast et al. [23] explores how uncertainty can be measured in neural net-
works in the context of probabilistic deep networks. They further discuss the
weakness of a softmax vector, as it only predicts which class is highly certain
in relation to other classes and not the uncertainty of the network itself. In
addition, they mention that softmax uncertainty is not well-calibrated and
that this drawback is known in deep learning papers [5, 20, 28]. An image
containing an unknown class can still be predicted as a known class with
high probability (Bendale et al. [5]). A model can predict a class with high
probability having a high softmax output, but still be highly uncertain (Gal
et al. [20]).

6.3 Bounding Box vs. Mask Uncertainty

In most experiments, we measure the uncertainty based on softmax vectors
only. In EXP 4, we use dropout layers to run inference over images multiple
times, and to measure the uncertainty on predictions, we end up with a set
of multiple bounding boxes and masks for each prediction. As explained
in Section 3.3.1 and 4.2.1, overlapping predictions are grouped into obser-
vations, and later used to measure spatial bounding box and spatial mask
uncertainty. Morrison et al. [54] does not use bounding boxes to measure
uncertainty. They state that a set of masks is advantageous when combining
detections compared to bounding boxes, as the set of masks much likely will

CHAPTER 6. DISCUSSION 95

represent the same object, in scenarios where we are introduced to tightly
grouped or irregularly shaped objects. We illustrate this in Figure 6.1.

(a) (b) (c)

Figure 6.1: We run inference over a single image 10 times from Apollo
Synthetic, using the trained DROPOUT learner from ALI 50 in EXP 4. A
set of overlapping masks are more likely to represent an object compared to
a set of bounding boxes (Morrison et al. [54]). Figure 6.1a: The ground
truth of this image. Figure 6.1b: All predicted bounding boxes after 10
inferences put on the same image. Figure 6.1c: All predicted masks after
10 inferences put on the same image.

Since the domain of self-driving datasets is highly complex, we are fre-
quently introduced to images containing multiple overlapping objects. Bound-
ing boxes do not give as much information about the objects as masks or
segments, which contain vasts amounts of information used to obtain good
scene understanding [42]. Whether uncertainty should be measured using
only bounding boxes (Kao et al. [39]), only masks (Morrison et al. [54]), or
both has to be further investigated.

6.4 Initial Training Set

The final performance of a learner is heavily affected by the samples selected
in the initial training set. In our image classification experiments, we use a
balanced initial set containing an equal amount of samples from each class.
In the later experiments, we follow typical AL (i.e., initially selecting samples
randomly from the unlabeled set) to create an initial training set. We believe
that creating a good initial training set is essential to take advantage of AL
fully.

In an AL setting, limited time and annotation resources can affect the
initial training set’s size. For instance, an easy approach to create this set, is
to select 2000 samples randomly from the unlabeled set and annotate, which
is what we do. A more favorable approach would be to extract a set of 1000
samples that is diverse, instance-rich, and has little class imbalances. Kang
et al. [38] reaches high accuracy using AL in text classification, by cluster-
ing samples and selecting those being closest to the centroids as the initial
training set. Nonetheless, making this initial set can become a challenging

96 6.5. TIME AND ANNOTATION COST

task in an autonomous real-life setting related to object detection. The im-
age similarity metric LPIPS (Zhang et al. [86]) might be a good candidate
for selecting similar images in the context of traffic scenarios.

6.5 Time and Annotation Cost

Since data is often manually annotated by an expert, it is considered as
a bottleneck in the annotation process. Raw sensor data can be easy to
obtain, but costly and time-consuming to process and annotate.

AL reduces the annotation job, since a human annotator ends up anno-
tating a smaller set of informative samples, instead of annotating the entire
available dataset. However, the cost of annotating an informative sample
itself can vary. For instance, we notice that learners using SUM tend to
select images containing multiple instances. For learners using MAX, this
number can be less. Annotating informative images selected by SUM might
take more time than an image selected by MAX.

Settles et al. [69] presents an empirical study that investigates the anno-
tation cost of AL in a real setting. They conclude that the annotation cost
is not constant for all instances in an image and that it can vary depending
on the human annotator. Furthermore, they state that the annotation time
can increase if the informative samples are difficult, and they argue that the
annotation cost has to be incorporated in an AL process to truly reduce the
labeling cost. As presented in Section 3.3, the approach proposed by Mack-
owiak et al. [51] is such an example. They minimize the manual annotation
effort even further in semantic segmentation by giving the annotator highly
informative regions in an image to annotate.

6.6 Research Questions (RQs)

RQ1: Can we use AL to achieve better or similar performance with less
labeled data as opposed to utilizing the entire dataset? If so, how
much time and resources can be saved in collecting, annotating data,
and training in the setting of autonomous perception?

Our results demonstrate that most active learners can achieve a better over-
all performance than the baseline learner. In addition, most active learners
can reach the same maximum performance as the baseline learner using a
smaller training set.

When it comes to time and resource savings, AL primarily affects the
annotation process by minimizing the time needed to annotate. In this the-
sis, we do not manually annotate samples, as the data is already labeled.
Therefore, we do not get the chance to monitor the manual annotation pro-
cess itself. Still, our experiments indicate that a small amount of annotated

CHAPTER 6. DISCUSSION 97

training data can achieve satisfactory performance, thereby save time used
for annotation. For instance, in an autonomous perception setting, we have
a large amount of sequential data coming in from multiple cameras. Some
sub-segments contains highly similar images, (e.g., when the vehicle is stand-
ing on a red light or is parked), or images with little information (e.g., when
camera sensors are blocked by other vehicles or objects). In these scenarios,
a human annotator can focus on manually annotating highly informative
images given by the learner. Furthermore, images given low informative-
ness often contain confident detections. These detections can be used for
assisted annotation in parallel to manual annotation and thereby speed up
the annotation process.

Even though the annotation time is minimized by only annotating a
small informative set, it does not necessarily mean that the annotation time
on the samples themselves is reduced, as explained in Section 6.5. In EXP
6 (Section 5.6.4), we simulate a scenario to obtain informative samples from
a never-before-seen dataset using transfer learning, and observe that the
highly informative samples selected by DROPOUT and SUMENT can be-
come difficult to label, as they are instance-rich, compared to MAXENT
and AVGENT. Nevertheless, we explain that an advantage would be to use
predictions from the model for assisted labeling.

In traditional supervised training, a model is often trained once on a
labeled dataset, while in AL, the model is repeatedly trained with an in-
creasing training set. In some scenarios, AL can make a model reach high
accuracy faster than traditional learning. In addition, based on our results,
we see that the active learners can achieve the same performance as the
baseline learner much quicker. There is a trade-off between costly human
labor (e.g., manual annotating) and cheap processing power (e.g., model
training) that has to be considered. For instance, traditionally, humans will
use a lot of time to annotate data, then train a model on the entire dataset.
With AL, this is done in a loop. Humans will use little time in annotating
a small set of data, then train the model without using the entire dataset.
Here, we see that the overall training time (i.e., processing power) using
AL might be higher, and that the total annotation time (i.e., human labor)
might be lower than traditional supervised learning.

AL does not directly affect the time saved in data collection. However,
a model’s uncertainty based on what it already knows about specific classes
or scenarios, can be monitored and used to filter away incoming data, which
may be noisy and unnecessary. It can instead be used to collect data that is
more relevant and informative, thereby reduce the resources needed to hold
large amounts of unimportant data.

98 6.6. RESEARCH QUESTIONS (RQS)

RQ2: Does there exist an optimal query strategy that can be used for either
object detection and/or segmentation in the setting of autonomous
perception?

We implement multiple query strategies combined with various aggregation
techniques to examine their behaviors when used with different CV tasks
and datasets.

Our findings indicate that the strategies using SUM as the aggregation
technique benefit from selecting more instance-rich images. In most exper-
iments, except EXP 5, SUMENT has the highest performance compared
to the other learners. In addition, it benefits from using No-Spectrum as
a selection method, as explained in EXP 3.1. EXP 4 is on instance-based
segmentation. DROPOUT performs better than the baseline, but its compu-
tational expensiveness does not reflect its performance; see RQ3 for further
details.

It is important to mention that since we are working with black-box
methods, finding and combining an optimal query strategy can be seen as
a guesstimate. We simply select one, try it out, and try to understand how
it behaves. As demonstrated by the experimental results, the performance
change drastically when we use a real-life dataset compared to a synthetic
and pre-processed dataset (Section 6.1).

We believe that having a query strategy that is able to collect highly
informative images containing multiple objects is highly beneficial to be used
in training, as demonstrated by our results. In addition, other techniques
such as data diversity and sample selection methods might be beneficial to
use with a query strategy.

A more extensive evaluation is needed to answer this question in more
detail, and we can not conclude that there exists a specific query strategy
that stands out for all tasks or that fits well in an autonomous setting. A
combination of strategies to switch between may be useful for exploring and
exploiting when needed, as presented by Bondu et al. [8]; for instance, early
exploration and then later exploitation.

RQ3: Does AL perform differently depending on the CV task, or is there
a similar performance pattern? Does it work well with instance-based
segmentation?

The performance pattern is very similar on most experiments. However,
strategies measure uncertainty differently depending on the CV task, and
we notice that the complexity of the dataset has a higher impact on the
performance, as explained in Section 6.1.

If AL works well with instance-based segmentation is hard to say. How-
ever, in EXP 4 (Section 5.4.4), DROPOUT is demonstrated to work for
this task, as it performs better than the baseline learner and is compara-
ble to the other learners. We calculate uncertainty using various metrics;

CHAPTER 6. DISCUSSION 99

spatial mask uncertainty, spatial bounding box uncertainty, and semantic
uncertainty. Due to the computationally heavy nature of DROPOUT, it is
hard to recommend this strategy, as this does not reflect its performance.
We believe that Morrison’s et al. [54] approach has to be optimized using
thresholds to neglect false positives, as explained in Section 3.3.1.

We can not conclude if AL works well with instance-based segmenta-
tion based on our results, since the performance during the early ALIs is
heavily influenced by the usage of the correct aggregation strategy. Using
DROPOUT might play a bigger role much later in the ALIs, or in combi-
nation with transfer learning (Section 5.6.4). Due to time constraints, this
was set to be for future work.

6.7 Limitations

Our thesis clearly has some limitations. However, we believe our work could
be a good starting point for further studies and development in NAPLab
using Active Learning.

As a reminder, we do not focus on training and model optimization to
achieve the ”best” possible model. In our earlier experiments, the models
might not have been given enough training time to understand the initial
training set fully, or they might have been trained for too long. However,
in EXP 5.2, this was confirmed by using early stopping; the learners needed
more training.

We did not have the chance to try out all strategy combinations or
different batch sizes, as this is a hard metric to tune. Most of our decisions
are trial and error; some values are arbitrarily chosen, other values, decisions,
and implementation choices are based on what worked in previous research
approaches.

6.8 Reflection

Early in this thesis, the focus was on getting a broad overview of the field
of AL, to then narrow it down into a specific problem. Later, the time went
into performing smaller experiments, testing, debugging, and implementing
the AL Framework.

Running active learning experiments took time, as the models had to be
trained for multiple iterations. Tons of time was spent in training models
for weeks, and then re-training due to unexpected errors or optimization
purposes. A lot of time went into implementing the AL Framework, making
it modular and scalable for future use; doing so accelerated my ability to
perform new experiments and add new functionality.

If I were to work with this thesis again, I would have followed the same
path as where I am now but reached it much quicker. With regard to

100 6.8. REFLECTION

the knowledge I currently have, I would have been able to conduct more
experiments and further investigate the usage of AL in the autonomous do-
main. Relevant experiments would have been: initial training using a more
informative training set than selecting samples randomly, further investi-
gating the explore vs. exploit trade-off by combining the proposed methods
Spectrum and Data Diversity, further improving early stopping, and further
optimizing the uncertainty measures for instance-based segmentation.

As a final note, I hope the work done in this thesis opens up possibilities
for NAPLab for further research.

Chapter 7

Conclusion and Future Work

In this thesis, we explore Active Learning (AL) and evaluate its effectiveness
on object detection, and instance-based segmentation in an autonomous
domain. We propose a novel pool-based AL Framework that applies this
strategy using state-of-the-art Faster-R-CNN and Mask R-CNN models on
autonomous driving datasets such as Apollo Synthetic, Waymo Open, and
data collected from Trondheim. Our results demonstrate that active learning
outperforms the random selection baseline by selecting highly informative
samples for training. Furthermore, these results indicate that AL reduces
the amount of training data required and minimizes the annotation job.

Our AL Framework is modular and can be configured to run custom
experiments. It includes various uncertainty-based active learners that are
trained and compared to a baseline random-selection learner. Other inter-
esting findings indicate that learners using SUM as aggregation technique
have increased performance as they select instance-rich samples, learners
using AVG have decreased performance when introduced to false positives,
and transfer learning can be used to create an informative initial training
set. In addition to these findings, we evaluate how different selection meth-
ods, unbalanced initial sets, data diversity, and early stopping affects the
performance of AL.

NAPLab has a goal to develop and research state-of-the-art models using
data from complex nordic environments. AL would be beneficial in such a
scenario to quickly create labeled and information-rich datasets to make
their models even more robust. We believe our contributions open up new
possibilities for NAPLab to employ AL as a part of their future pipeline.

101

102 7.1. FUTURE WORK

7.1 Future Work

Even though the results presented in this thesis are interesting and moti-
vating, it is still considered as a starting point, and further evaluation is
needed. As for the near future, we have ambitions to publish our work as a
paper and have already started our preparations.

We will now briefly discuss some techniques and ideas that might be
worth looking into as future work.

7.1.1 AL Pipeline

We suggest a novel machine learning pipeline, which fits our AL Framework,
to be used in an autonomous setting as future work. There does not exist
a specific set of steps in a pipeline that must be followed. Various pipelines
are made for different purposes, and the structure can vary depending on
the specific needs. The steps of our proposed pipeline are as follows (See
Figure 7.1 for an illustration):

1. Collect Sensor Data: Collect raw data using the various sensors
(e.g., Camera, LIDAR, RADAR) that are located on a vehicle. Syn-
chronize, compress, and organize the raw data in a meaningful way
directly on the vehicle.

2. Clean Raw Sensor Data: Remove noisy, corrupted, duplicate, and
unnecessary data in order to save storage space. Ensure data consis-
tency and create a dataset.

3. Data Anonymization: Send the data through an anonymization
process (e.g., DeepPrivacy (Hukkel̊as et al. [34])). If possible, perform
this directly on the vehicle to ensure GDPR compliance.

4. Secure Data Transportation: Move the data from the vehicle to a
server in a secure way using encryption.

5. Extract Data: Extract a small set of randomly selected samples from
the fully pre-processed unlabeled set.

6. Annotate Data: Start annotating the obtained set manually to cre-
ate an initial training set. Speed up the annotation process by using
popular CV annotation tools such as CVAT [56] or VoTT [52].

7. Initiate AL: Initiate the AL process using the initial training set with
the AL Framework to obtain a new set of highly informative sam-
ples. The framework is responsible for training, saving, and evaluat-
ing models. Samples having high informativeness should be manually
annotated. Samples having low informativeness indicate high model
confidence, and can, therefore, be automatically annotated using their

CHAPTER 7. CONCLUSION AND FUTURE WORK 103

predictions, with human supervision and quality control. Samples with
medium informativeness can be ignored. Repeat Steps 6 and 7 until a
stopping criteria has been reached.

8. Deploy and Monitor Model: Deploy the fully trained model after
AL and monitor it to save performance logs.

Co-Operative Learning

With co-operative learning, both a model and a human annotator can be
used for annotating samples. Over time, a model using AL will become bet-
ter at differentiating between samples with high and low informativeness.
Samples having low informativeness contain detections with low informa-
tiveness. These detections can either be used to automatically annotate
images or give annotation suggestions that can be approved by a human
annotator for quality assurance. Doing so can save more time in annotating
and make the labeling process even faster. For instance, by providing a user
interface, the annotator can be given highly informative images one by one
to label, and highly certain images to edit and verify.

Figure 7.1: A simple illustration of our proposed AL pipeline. Raw sensor
data is collected from a vehicle, processed and anonymized (e.g., DeepPri-
vacy [34]). An initial random set of samples are annotated using a annota-
tion tool (e.g., CVAT [56]), and the active learning loop is initiated. When
a model has been fully trained with AL, it is deployed to a vehicle.

104 7.1. FUTURE WORK

7.1.2 Instance-Based Segmentation

To our knowledge, few approaches have been applying AL on instance-based
segmentation. Our attempt with using the proposed method by Morrison et
al. [54], gave promising results. However, this method could not be directly
compared to any relevant work. Nevertheless, we believe this method can
be further improved.

7.1.3 White-Box Query Strategies

A white-box query strategy can be used to make more complex measure-
ments by considering other metrics than just the output of the model. How-
ever, this requires that you understand the model’s architecture. Using
a white-box query strategy had a better overall performance compared to
black-box query strategies, as seen in Roy et al. [66]. Kao et al. [39]
measures the localization tightness based on the IoU between the regional
proposal and the refined bounding box in Faster R-CNN; thus, it can be
seen as a white-box method. Recently, Zhang et al. [87] proposes Mask-
Refined R-CNN, which improves the segmentation accuracy compared to
Mask R-CNN. They present a refinement framework that is the core of their
proposed algorithm. A similar white-box approach could be to measure the
uncertainty based on the mask refinement; the more refinement needed, the
higher uncertainty of the model.

7.1.4 Representativeness

When selecting informative samples, several measurements can be made,
Huang et al. [33] combines both the informativeness and representativeness
of a sample. Representativeness measured if samples represent the input
pattern of unlabeled data well (Huang et al. [33]). Their work is based
on binary classification, but claim that it can be developed for multi-class
problems. In addition., they mention other works that use similarity metrics
to find representative samples.

7.1.5 Balanced Training Sets

Methods can be added to prevent unbalanced training sets. Brust et al. [9]
counts minority and majority classes to make sure there is a balance when
selecting new, highly informative samples. Ertekin et al. [16] selects equal
amounts of highly informative samples from each class that are closer to the
hyperplane. Their proposal is heavily based on SVMs.

7.1.6 Using Probabilistic Networks to Measure Uncertainty

AL is tightly coupled to measuring the uncertainty of a model. Gast’s et
al. [24] approach is not directly related to AL, but they measure the uncer-

CHAPTER 7. CONCLUSION AND FUTURE WORK 105

tainty of a network using a lightweight probabilistic deep neural network.
They replace the output layers with probabilistic output layers, and the in-
termediate activations by distributions. Measuring the uncertainty based
on a model’s predictions using softmax might not be a good measure, as
explained in Section 6.2.

106 7.1. FUTURE WORK

Bibliography

[1] A. Kramida et al. NIST Atomic Spectra Database (ver. 5.7.1), [On-
line]. Available: https://physics.nist.gov/asd [2017, April 9]. Na-
tional Institute of Standards and Technology, Gaithersburg, MD. 2019.

[2] Waleed Abdulla. Mask R-CNN for object detection and instance seg-
mentation on Keras and TensorFlow. https://github.com/matterport/
Mask_RCNN. 2017.

[3] Yotam Abramson and Yoav Freund. “Active learning for visual object
detection”. In: UCSD Technical Report (Jan. 2006).

[4] Hamed H. Aghdam et al. Active Learning for Deep Detection Neural
Networks. 2019. arXiv: 1911.09168 [cs.CV].

[5] Abhijit Bendale and Terrance Boult. Towards Open Set Deep Net-
works. 2015. arXiv: 1511.06233 [cs.CV].

[6] Alberto Bietti. Active Learning for Object Detection on Satellite Im-
ages. 2012.

[7] Daniel Bolya et al. YOLACT: Real-time Instance Segmentation. 2019.
arXiv: 1904.02689 [cs.CV].

[8] A. Bondu, V. Lemaire, and M. Boullé. “Exploration vs. exploitation
in active learning : A Bayesian approach”. In: The 2010 International
Joint Conference on Neural Networks (IJCNN). July 2010, pp. 1–7.
doi: 10.1109/IJCNN.2010.5596815.

[9] Clemens-Alexander Brust, Christoph Käding, and Joachim Denzler.
Active Learning for Deep Object Detection. 2018. arXiv: 1809.09875
[cs.CV].

[10] H. Caesar, J. Uijlings, and V. Ferrari. “COCO-Stuff: Thing and Stuff
Classes in Context”. In: 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). June 2018, pp. 1209–1218.
doi: 10.1109/CVPR.2018.00132.

[11] Common Objects in Context (COCO), Detection evaluation metrics.
url: http://cocodataset.org/#detection-eval.

107

https://github.com/matterport/Mask_RCNN
https://github.com/matterport/Mask_RCNN
https://arxiv.org/abs/1911.09168
https://arxiv.org/abs/1511.06233
https://arxiv.org/abs/1904.02689
https://doi.org/10.1109/IJCNN.2010.5596815
https://arxiv.org/abs/1809.09875
https://arxiv.org/abs/1809.09875
https://doi.org/10.1109/CVPR.2018.00132
http://cocodataset.org/#detection-eval

108 BIBLIOGRAPHY

[12] Tivadar Danka and Peter Horvath. “modAL: A modular active learn-
ing framework for Python”. In: GitHub repository (2018). available
on arXiv at https://arxiv.org/abs/1805.00979, and GitHub at
https://github.com/modAL- python/modAL. arXiv: 1805.00979

[cs.LG].

[13] J. Deng et al. “ImageNet: A large-scale hierarchical image database”.
In: 2009 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). June 2009, pp. 248–255. doi: 10.1109/CVPR.2009.
5206848.

[14] E. D. Dickmanns. “The development of machine vision for road ve-
hicles in the last decade”. In: Intelligent Vehicle Symposium, 2002.
IEEE. Vol. 1. 2002, 268–281 vol.1.

[15] Melanie Ducoffe and Frederic Precioso. “Active learning strategy for
CNN combining batchwise Dropout and Query-By-Committee”. In:
ES2017-122 ESANN. 2017.

[16] Seyda Ertekin et al. “Learning on the Border: Active Learning in Im-
balanced Data Classification”. In: Proceedings of the Sixteenth ACM
Conference on Conference on Information and Knowledge Manage-
ment. CIKM ’07. Lisbon, Portugal: Association for Computing Ma-
chinery, 2007, pp. 127–136. isbn: 9781595938039. doi: 10.1145/1321440.
1321461. url: https://doi.org/10.1145/1321440.1321461.

[17] Mark Everingham et al. “The Pascal Visual Object Classes Challenge:
A Retrospective”. In: International Journal of Computer Vision 111.1
(2015), pp. 98–136. issn: 1573-1405. doi: 10.1007/s11263- 014-

0733-5. url: https://doi.org/10.1007/s11263-014-0733-5.

[18] Yoav Freund and Robert E. Schapire. “A desicion-theoretic general-
ization of on-line learning and an application to boosting”. In: Com-
putational Learning Theory. Ed. by Paul Vitányi. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1995, pp. 23–37. isbn: 978-3-540-49195-8.

[19] L. Fridman et al. “MIT Advanced Vehicle Technology Study: Large-
Scale Naturalistic Driving Study of Driver Behavior and Interaction
With Automation”. In: IEEE Access 7 (2019), pp. 102021–102038.
issn: 2169-3536. doi: 10.1109/ACCESS.2019.2926040.

[20] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian Approxi-
mation: Representing Model Uncertainty in Deep Learning. 2015. arXiv:
1506.02142 [stat.ML].

[21] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep Bayesian
Active Learning with Image Data. 2017. arXiv: 1703.02910 [cs.LG].

[22] J. Gall et al. “Hough Forests for Object Detection, Tracking, and
Action Recognition”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 33.11 (2011), pp. 2188–2202.

https://arxiv.org/abs/1805.00979
https://github.com/modAL-python/modAL
https://arxiv.org/abs/1805.00979
https://arxiv.org/abs/1805.00979
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1145/1321440.1321461
https://doi.org/10.1145/1321440.1321461
https://doi.org/10.1145/1321440.1321461
https://doi.org/10.1007/s11263-014-0733-5
https://doi.org/10.1007/s11263-014-0733-5
https://doi.org/10.1007/s11263-014-0733-5
https://doi.org/10.1109/ACCESS.2019.2926040
https://arxiv.org/abs/1506.02142
https://arxiv.org/abs/1703.02910

BIBLIOGRAPHY 109

[23] J. Gast and S. Roth. “Lightweight Probabilistic Deep Networks”. In:
2018 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. 2018, pp. 3369–3378.

[24] Jochen Gast and Stefan Roth. Lightweight Probabilistic Deep Net-
works. 2018. arXiv: 1805.11327 [cs.CV].

[25] R. Girshick. “Fast R-CNN”. In: 2015 IEEE International Conference
on Computer Vision (ICCV). 2015, pp. 1440–1448.

[26] Ross Girshick et al. Rich feature hierarchies for accurate object detec-
tion and semantic segmentation. 2013. arXiv: 1311.2524 [cs.CV].

[27] Z. Gong, P. Zhong, and W. Hu. “Diversity in Machine Learning”. In:
IEEE Access 7 (2019), pp. 64323–64350. issn: 2169-3536. doi: 10.

1109/ACCESS.2019.2917620.

[28] Chuan Guo et al. On Calibration of Modern Neural Networks. 2017.
arXiv: 1706.04599 [cs.LG].

[29] David Hall et al. Probabilistic Object Detection: Definition and Eval-
uation. 2018. arXiv: 1811.10800 [cs.CV].

[30] K. He et al. “Deep Residual Learning for Image Recognition”. In:
2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). June 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90.

[31] K. He et al. “Mask R-CNN”. In: 2017 IEEE International Conference
on Computer Vision (ICCV). Oct. 2017, pp. 2980–2988. doi: 10 .

1109/ICCV.2017.322.

[32] A. Holub, P. Perona, and M. C. Burl. “Entropy-based active learning
for object recognition”. In: 2008 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition Workshops. June 2008,
pp. 1–8. doi: 10.1109/CVPRW.2008.4563068.

[33] S. Huang, R. Jin, and Z. Zhou. “Active Learning by Querying Informa-
tive and Representative Examples”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 36.10 (2014), pp. 1936–1949.

[34] H̊akon Hukkel̊as, Rudolf Mester, and Frank Lindseth. DeepPrivacy: A
Generative Adversarial Network for Face Anonymization. 2019. arXiv:
1909.04538 [cs.CV].

[35] P. Jain and A. Kapoor. “Active learning for large multi-class prob-
lems”. In: 2009 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2009, pp. 762–769.

[36] A. J. Joshi, F. Porikli, and N. Papanikolopoulos. “Multi-class active
learning for image classification”. In: 2009 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). June 2009, pp. 2372–
2379. doi: 10.1109/CVPR.2009.5206627.

https://arxiv.org/abs/1805.11327
https://arxiv.org/abs/1311.2524
https://doi.org/10.1109/ACCESS.2019.2917620
https://doi.org/10.1109/ACCESS.2019.2917620
https://arxiv.org/abs/1706.04599
https://arxiv.org/abs/1811.10800
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/CVPRW.2008.4563068
https://arxiv.org/abs/1909.04538
https://doi.org/10.1109/CVPR.2009.5206627

110 BIBLIOGRAPHY

[37] D. Kale and Y. Liu. “Accelerating Active Learning with Transfer
Learning”. In: 2013 IEEE 13th International Conference on Data Min-
ing. 2013, pp. 1085–1090.

[38] Jaeho Kang, Kwang Ryel Ryu, and Hyuk-Chul Kwon. “Using Cluster-
Based Sampling to Select Initial Training Set for Active Learning in
Text Classification”. In: Advances in Knowledge Discovery and Data
Mining. Ed. by Honghua Dai, Ramakrishnan Srikant, and Chengqi
Zhang. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 384–
388. isbn: 978-3-540-24775-3.

[39] Chieh-Chi Kao et al. “Localization-Aware Active Learning for Object
Detection”. In: ACCV. 2018. arXiv: 1801.05124 [cs.CV].

[40] Ashish Kapoor et al. “Gaussian Processes for Object Categorization”.
In: International Journal of Computer Vision 88.2 (2010), pp. 169–
188. issn: 1573-1405. doi: 10 . 1007 / s11263 - 009 - 0268 - 3. url:
https://doi.org/10.1007/s11263-009-0268-3.

[41] Keras-Team. MNIST CNN - Example. https://github.com/keras-
team/keras/blob/master/examples/mnist_cnn.py. 2019.

[42] A. Kirillov et al. “Panoptic Segmentation”. In: 2019 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR). June
2019, pp. 9396–9405. doi: 10.1109/CVPR.2019.00963.

[43] Alex Krizhevsky. “Learning Multiple Layers of Features from Tiny
Images”. In: University of Toronto (2009).

[44] Yann LeCun and Corinna Cortes. MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/. 2010. url: http://yann.
lecun.com/exdb/mnist/.

[45] Fei-Fei Li, Marco Andreetto, and Marc ’Aurelio Ranzato. “Caltech101
Image Dataset”. In: (2003). url: http://www.vision.caltech.edu/
Image_Datasets/Caltech101/.

[46] X. Li and Y. Guo. “Adaptive Active Learning for Image Classifica-
tion”. In: 2013 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). June 2013, pp. 859–866. doi: 10.1109/CVPR.
2013.116.

[47] T. Lin et al. “Feature Pyramid Networks for Object Detection”. In:
2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). July 2017, pp. 936–944. doi: 10.1109/CVPR.2017.106.

[48] Tsung-Yi Lin et al. Microsoft COCO: Common Objects in Context.
2014. arXiv: 1405.0312 [cs.CV].

https://arxiv.org/abs/1801.05124
https://doi.org/10.1007/s11263-009-0268-3
https://doi.org/10.1007/s11263-009-0268-3
https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py
https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py
https://doi.org/10.1109/CVPR.2019.00963
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
https://doi.org/10.1109/CVPR.2013.116
https://doi.org/10.1109/CVPR.2013.116
https://doi.org/10.1109/CVPR.2017.106
https://arxiv.org/abs/1405.0312

BIBLIOGRAPHY 111

[49] Wei Liu et al. “SSD: Single Shot MultiBox Detector”. In: Lecture Notes
in Computer Science (2016), pp. 21–37. issn: 1611-3349. doi: 10.

1007/978-3-319-46448-0_2. url: http://dx.doi.org/10.1007/
978-3-319-46448-0_2.

[50] C. Long and G. Hua. “Multi-class Multi-annotator Active Learning
with Robust Gaussian Process for Visual Recognition”. In: 2015 IEEE
International Conference on Computer Vision (ICCV). Dec. 2015,
pp. 2839–2847. doi: 10.1109/ICCV.2015.325.

[51] Radek Mackowiak et al. CEREALS - Cost-Effective REgion-based Ac-
tive Learning for Semantic Segmentation. Oct. 2018.

[52] Microsoft. microsoft/VoTT. https://github.com/microsoft/VoTT.
May 2020.

[53] D. Miller et al. “Evaluating Merging Strategies for Sampling-based
Uncertainty Techniques in Object Detection”. In: 2019 International
Conference on Robotics and Automation (ICRA). 2019, pp. 2348–2354.

[54] Doug Morrison, Anton Milan, and Epameinondas Antonakos. “Uncertainty-
aware Instance Segmentation using Dropout Sampling”. In: Computer
Vision and Pattern Recognition (CVPR). 2019.

[55] Keiron O’Shea and Ryan Nash. An Introduction to Convolutional Neu-
ral Networks. 2015. arXiv: 1511.08458 [cs.NE].

[56] Opencv. opencv/cvat. https://github.com/opencv/cvat. May 2020.

[57] S. J. Pan and Q. Yang. “A Survey on Transfer Learning”. In: IEEE
Transactions on Knowledge and Data Engineering 22.10 (Oct. 2010),
pp. 1345–1359. issn: 2326-3865. doi: 10.1109/TKDE.2009.191.

[58] Adam Paszke et al. ENet: A Deep Neural Network Architecture for
Real-Time Semantic Segmentation. 2016. arXiv: 1606.02147 [cs.CV].

[59] Luis Perez and Jason Wang. The Effectiveness of Data Augmentation
in Image Classification using Deep Learning. 2017. arXiv: 1712.04621
[cs.CV].

[60] Dean A. Pomerleau. “ALVINN: An Autonomous Land Vehicle in a
Neural Network”. In: Advances in Neural Information Processing Sys-
tems 1. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1989, pp. 305–313. isbn: 1558600159.

[61] Lutz Prechelt. “Early Stopping-But When?” In: Neural Networks:
Tricks of the Trade, This Book is an Outgrowth of a 1996 NIPS
Workshop. Berlin, Heidelberg: Springer-Verlag, 1998, pp. 55–69. isbn:
3540653112.

[62] Zhenshen Qu et al. Deep Active Learning for Remote Sensing Object
Detection. 2020. arXiv: 2003.08793 [cs.CV].

https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1109/ICCV.2015.325
https://github.com/microsoft/VoTT
https://arxiv.org/abs/1511.08458
https://github.com/opencv/cvat
https://doi.org/10.1109/TKDE.2009.191
https://arxiv.org/abs/1606.02147
https://arxiv.org/abs/1712.04621
https://arxiv.org/abs/1712.04621
https://arxiv.org/abs/2003.08793

112 BIBLIOGRAPHY

[63] Joseph Redmon and Ali Farhadi. “YOLOv3: An Incremental Improve-
ment”. In: ArXiv abs/1804.02767 (2018).

[64] S. Ren et al. “Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 39.6 (June 2017), pp. 1137–1149.
issn: 1939-3539. doi: 10.1109/TPAMI.2016.2577031.

[65] Soumya Roy, Vinay P. Namboodiri, and Arijit Biswas. Active learn-
ing with version spaces for object detection. 2016. arXiv: 1611.07285
[cs.CV].

[66] Soumya Roy, Asim Unmesh, and Vinay P. Namboodiri. “Deep active
learning for object detection”. In: British Machine Vision Conference
(BMVC). 2018.

[67] Ozan Sener and Silvio Savarese. Active Learning for Convolutional
Neural Networks: A Core-Set Approach. 2017. arXiv: 1708 . 00489

[stat.ML].

[68] B. Settles. Active Learning Literature Survey. Computer Sciences Tech-
nical Report 1648. University of Wisconsin–Madison, 2009.

[69] B. Settles, M. Craven, and L. Friedland. “Active Learning with Real
Annotation Costs”. In: Proceedings of the NIPS Workshop on Cost-
Sensitive Learning. 2008.

[70] Connor Shorten and Taghi M. Khoshgoftaar. “A survey on Image Data
Augmentation for Deep Learning”. In: Journal of Big Data 6.1 (July
2019), p. 60. issn: 2196-1115. doi: 10.1186/s40537-019-0197-0.
url: https://doi.org/10.1186/s40537-019-0197-0.

[71] Michael Sörsäter. Active Learning for Road Segmentation using Con-
volutional Neural Networks. Master’s thesis. Linköping University, 2018.

[72] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural
Networks from Overfitting”. In: J. Mach. Learn. Res. 15.1 (Jan. 2014),
pp. 1929–1958. issn: 1532-4435.

[73] Pei Sun et al. Scalability in Perception for Autonomous Driving: Waymo
Open Dataset. 2019. arXiv: 1912.04838 [cs.CV].

[74] Baidu Apollo team. Apollo Synthetic - Photo-Realistic Dataset for Au-
tonomous Driving. http://apollo.auto/synthetic.html. 2019.

[75] Ub. USPS dataset. https://www.kaggle.com/bistaumanga/usps-
dataset. Apr. 2018.

[76] A. Vezhnevets, J. M. Buhmann, and V. Ferrari. “Active learning for
semantic segmentation with expected change”. In: 2012 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). June
2012, pp. 3162–3169. doi: 10.1109/CVPR.2012.6248050.

https://doi.org/10.1109/TPAMI.2016.2577031
https://arxiv.org/abs/1611.07285
https://arxiv.org/abs/1611.07285
https://arxiv.org/abs/1708.00489
https://arxiv.org/abs/1708.00489
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
https://arxiv.org/abs/1912.04838
http://apollo.auto/synthetic.html
https://www.kaggle.com/bistaumanga/usps-dataset
https://www.kaggle.com/bistaumanga/usps-dataset
https://doi.org/10.1109/CVPR.2012.6248050

BIBLIOGRAPHY 113

[77] S. Vijayanarasimhan and K. Grauman. “Large-scale live active learn-
ing: Training object detectors with crawled data and crowds”. In:
CVPR 2011. 2011, pp. 1449–1456.

[78] Sudheendra Vijayanarasimhan and Kristen Grauman. “Cost-Sensitive
Active Visual Category Learning”. In: International Journal of Com-
puter Vision 91 (2010), pp. 24–44.

[79] K. Wang et al. “Cost-Effective Active Learning for Deep Image Clas-
sification”. In: IEEE Transactions on Circuits and Systems for Video
Technology 27.12 (Dec. 2017), pp. 2591–2600. issn: 1558-2205. doi:
10.1109/TCSVT.2016.2589879.

[80] Waymo Open Dataset: An autonomous driving dataset. https://www.
waymo.com/open. 2019.

[81] Ting-Fan Wu, Chih-Jen Lin, and Ruby C. Weng. “Probability Es-
timates for Multi-Class Classification by Pairwise Coupling”. In: J.
Mach. Learn. Res. 5 (Dec. 2004), pp. 975–1005. issn: 1532-4435.

[82] Yuxin Wu et al. Detectron2. https://github.com/facebookresearch/
detectron2. 2019.

[83] Lin Yang et al. Suggestive Annotation: A Deep Active Learning Frame-
work for Biomedical Image Segmentation. 2017. arXiv: 1706.04737
[cs.CV].

[84] A. Yao et al. “Interactive object detection”. In: 2012 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR). 2012,
pp. 3242–3249.

[85] YunYang1994. YYMNIST - A MNIST Dataset for Object Detection.
https://github.com/YunYang1994/yymnist. 2019.

[86] Richard Zhang et al. “The Unreasonable Effectiveness of Deep Fea-
tures as a Perceptual Metric”. In: CVPR. 2018.

[87] Yiqing Zhang et al. “Mask-Refined R-CNN: A Network for Refining
Object Details in Instance Segmentation”. eng. In: Sensors (Basel,
Switzerland) 20.4 (Feb. 2020). s20041010[PII], p. 1010. issn: 1424-
8220. doi: 10.3390/s20041010. url: https://doi.org/10.3390/
s20041010.

[88] Zhou Wang et al. “Image quality assessment: from error visibility
to structural similarity”. In: IEEE Transactions on Image Process-
ing 13.4 (Apr. 2004), pp. 600–612. issn: 1941-0042. doi: 10.1109/
TIP.2003.819861.

https://doi.org/10.1109/TCSVT.2016.2589879
https://www.waymo.com/open
https://www.waymo.com/open
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://arxiv.org/abs/1706.04737
https://arxiv.org/abs/1706.04737
https://github.com/YunYang1994/yymnist
https://doi.org/10.3390/s20041010
https://doi.org/10.3390/s20041010
https://doi.org/10.3390/s20041010
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861

114 BIBLIOGRAPHY

Appendix A

AL Framework

A.1 AL Framework Architecture

Figure A.1: This figure illustrates the architecture of the AL Framework.
The user provides a configuration file from the configs folder to learn.py to
run experiments. The AL engine uses Detectron2, and contains training
and predictions loops. The AL engine uses different Query Strategies and
DataLoaders to perform experiments. All logs and outputs are saved in the
run folder. Other utility functions are accessed from utils.py. A Perceptual
Similarity tool is used for data diversity. The code of this AL Framework
can be downloaded from Google Drive.

115

https://drive.google.com/file/d/1N9-gJq63KGTSaCFOZuS9fi7-M4kTJP7g/view?usp=sharing

116 A.2. SETUP

A.2 Setup

Software: We use Detectron2 as the object detection and instance seg-
mentation framework. In EXP 1, we use ModAL, which is a modular
active learning framework for Python3. We use Google Colab quick
testing and debugging purposes.

Hardware: We use two Tesla V100 GPU’s located on the NAP Server with
32 GB RAM each.

Models used from Detectron2’s model zoo [82]:

• COCO-pretrained R50-FPN 3x schedule Faster R-CNN Model for Ob-
ject Detection (Model ID: 137849458)

• COCO-pretrained R50 FPN 3x schedule Mask R-CNN Model for Ob-
ject Detection and Instance-Based Segmentation (Model ID: 137849600)

A.3 Detection Evaluation Metrics

To evaluate the different learners on a test set, we a DatsetEvaluator from
Detectron2. The DatasetEvaluator follows the detection evaluation metrics
used by COCO [11]. We present the list of metrics given as output from the
DatasetEvaluator below. Keep in mind, we only use AP50 to compare the
performances of each learner.
Description of each metric. See COCO’s website for more details.

• AP - Average Precision at IoU=.50:.05:.95

• AP50 - Average Precision at IoU=.50

• AP75 - Average Precision at IoU=.75

• APs - Average Precision for small objects: area ¡ 322

• APm - Average Precision for medium objects: 322 ¡ area ¡ 962

• APl - Average Precision for large objects: area ¿ 962

• AP-<class> - Average Precision for each class at IoU=.50:.05:.95

http://cocodataset.org/#detection-eval

Appendix B

Query Strategy Algorithms

Algorithm 1: Learners: SUMENT, MAXENT, and AVGENT

Input: images, k
Output: image scores[:k]
image scores = [];
for each image in images do

detection scores = [];
for each detection in image do

filename = detection[”filename”];
softmax = detection[”softmax”];
Calculate entropy of softmax;
entropy = Entropy(softmax);
detection scores.append(entropy);

end
Use the chosen aggregation technique;
image score = MAX(detection scores);
image score = SUM(detection scores);
image score = AVG(detection scores);
image scores.append([filename, image score]);

end
Highest scores first;
return sorted(image scores)[:k];

117

118

Algorithm 2: Learners: SUMBVSB, MAXBVSB, and AVGBVSB

Input: images, k
Output: image scores[:k]
image scores = [];
for each image in images do

detection scores = [];
for each detection in image do

filename = detection[”filename”];
softmax = detection[”softmax”];
Get the best and second-best probability;
best prob = MAX(softmax);
second best prob = SECONDMAX(softmax);
margin = best prob - second best prob;
detection scores.append(1-margin);

end
Use the chosen aggregation technique;
image score = MAX(detection scores);
image score = SUM(detection scores);
image score = AVG(detection scores);
image scores.append([filename, image score]);

end
Highest scores first;
return sorted(image scores)[:k];

APPENDIX B. QUERY STRATEGY ALGORITHMS 119

Algorithm 3: Active Learner: DROPOUT

Input: images, k
Output: image scores[:k]
image scores = [];
for each image set in images do

observations = {};
threshold = 0.4;
image set contains the inference run over the same image i
times using dropout;

for each image in image set do
groups = {};
for each detection in image do

Create groups of detections having IOU > threshold;
end
Add each group to observations;

end
sum uncertainty = 0;
for each observation in observations do

mean softmax = mean(observation.softmaxes);
mean bbox = mean(observation.bboxes);
mean mask = mean(observation.masks);
mask IOUs = IOU(mean mask, observation.masks);
bbox IOUs = IOU(mean bbox, observation.bboxes);
u sem = max(mean softmax) - second max(mean softmax);
u spl mask = mean(mask IOUs);
u spl bbox = mean(bbox IOUs);
u n = detection appearance out of i inferences;
sum uncertainty +=
1.0-(u sem*u spl mask*u spl bbox*u n);

end
image scores.append([filename, sum uncertainty]);

end
Highest scores first;
return sorted(image scores)[:k];

120

Appendix C

Issues

This is a more detailed explanation of the various issues we encountered:

C.1 Matterport’s Mask R-CNN Implementation

• As mentioned in Section 3.2.1, we started with Single Shot Multibox
Detector (SSD) for object detection, and Matterport’s Mask R-CNN
[2] for both object detection and segmentation. While still trying to
solve these issues, the PyTorch library Detectron2 [82] was released.
Due to time constraints and persisting problems (See the next point
for details), we decided to use our framework with Detectron2 instead.
In addition, other projects in NAPLab are using this framework too,
which makes our AL Framework compatible to be used for future work.

• The values from the RPN layers were giving a highly fluctuating loss on
the validation sets. This did not just happen on the Apollo Synthetic
dataset but also the already existing sample sets. We tried to solve this
issue but with no success. These highly fluctuating losses made our
results unreliable and gave high variation in average precision values.
If we compare this with Detectron2, Detectron2 was much more stable.

C.2 Apollo Synthetic Dataset

• Each ”Traffic XYZ” folder contains files with id-names 0 to N (000000.jpg,
000001.jpg). This gave us multiple files having the same ID. We trans-
formed the hierarchical structure into stream-based and gave each im-
age a unique ID. The following four folders were made: RGB - .jpg
files, SEG - segmented .png files, ENC - encodings for each SEG file
.txt and OBJ - object ground truth files .txt.

• The instance segmentation encoding files from image 0030220.jpg to
image 0030229.jpg (possibly more) contains the same color encodings

121

122 C.2. APOLLO SYNTHETIC DATASET

(a) Segmented Ground Truth (b) SUV and Sedan as a single segment

for both the Sedan and SUV classes. This encoding does not make
them unique, since the segment of an SUV has the same color as a
Sedan. Figure C.1b shows that two different class instances are seen
as one due to the matching color. To explain the process: The color
encoding for each class instance is used to generate a binary mask,
which represents that instance; in order to differentiate class instances
in an image, each color encoding is required to be unique. Since this
requirement is not met in some images, instances from different classes
get grouped. This issue was resolved by removing these images that
had duplicate color encodings.

• Some images have ground truths of non-existing objects.

N
avjot Singh

D
eep Active Learning for Autonom

ous Perception

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Navjot Singh

Deep Active Learning for Autonomous
Perception

Master’s thesis in Computer Science

Supervisor: Frank Lindseth, Håkon Hukkelås

June 2020

	Introduction
	Motivation
	Aim
	Research Questions (RQs)
	Contributions
	Outline

	Background Theory
	Computer Vision Tasks
	Image Classification
	Object Detection
	Image Segmentation

	Active Learning
	Query Scenarios
	Query Strategy Frameworks
	Query Strategies
	Sample Selection
	Known Weaknesses in AL
	Additional Techniques that can be used with AL

	Datasets
	MNIST
	CIFAR-10
	YYMNIST
	Apollo Synthetic Dataset
	Waymo Open Dataset v1.0
	NAPLab's Raw Dataset (NAP-Set)

	Related Work
	Active Learning for Image classification
	Multi-Class AL for Image Classification
	AL in Imbalanced Data Classification

	Active Learning for Object Detection
	Deep AL for Object Detection
	Localization-Aware AL for Object Detection
	AL for Deep Object Detection

	Active Learning for Segmentation
	Uncertainty-aware Instance Segmentation using Dropout Sampling
	AL for Road Segmentation using CNN

	Methodology
	AL Framework
	AL Strategies
	Learners

	Experiment Structure
	Active Learning Process
	Evaluation Details

	Experiments and Results
	EXP 1 - Simple Active Learning
	Problem Description
	Dataset
	Setup
	Results
	EXP 1.1 - More Active Learning Iterations
	EXP 1.2 - Using the CIFAR-10 Dataset

	EXP 2 - AL with Object Detection
	Problem Description
	Dataset
	Setup
	Results
	EXP 2.1 - Using All Margin Learners

	EXP 3 - Synthetic Self-Driving Dataset
	Problem Description
	Dataset
	Setup
	Results
	EXP 3.1 - Spectrum vs No-Spectrum
	EXP 3.2 - Using an Unbalanced Initial Set

	EXP 4 - QbC Framework
	Problem Description
	Dataset
	Setup
	Results

	EXP 5 - Real-Life Self-Driving Dataset
	Problem Description
	Dataset
	Setup
	Results
	EXP 5.1 - Ensuring Data Diversity
	EXP 5.2 - Using Early Stopping

	EXP 6 - Informative Samples
	Problem Description
	Dataset
	Setup
	Results

	Discussion
	Major Findings
	Softmax Uncertainty
	Bounding Box vs. Mask Uncertainty
	Initial Training Set
	Time and Annotation Cost
	Research Questions (RQs)
	Limitations
	Reflection

	Conclusion and Future Work
	Future Work
	AL Pipeline
	Instance-Based Segmentation
	White-Box Query Strategies
	Representativeness
	Balanced Training Sets
	Using Probabilistic Networks to Measure Uncertainty

	AL Framework
	AL Framework Architecture
	Setup
	Detection Evaluation Metrics

	Query Strategy Algorithms
	Issues
	Matterport's Mask R-CNN Implementation
	Apollo Synthetic Dataset

