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Abstract

Weight lifting is an effective and popular way to gain the benefits from strength
training, but comes at a high risk of injuries for newcomers. Every lifter has their
own set of challenges when improving their technique and their feedback needs to
reflect this.

With the recent developments in human pose estimation this thesis aims at examine
how this technology can be used as a tool to give valuable feedback on weight lifting
technique. This task involves the detection of specific technique related issues with
high association with risk of injury for common exercises.

This thesis propose an analytical approach through developing a feedback system
where the exercise and filming perspective are automatically detected, before the
associated technique aspects are tested for. Dynamic time warping is used for the
action recognition process, while vector calculations are performed on the human
pose estimation data to test for issues related to weight lifting technique. Also, an
overall overview of selected existing human pose estimation systems is presented and
evaluated.

We demonstrate that this method is effective in detecting technique related issues
for multiple users, exercises and technique issues. The result showed considerable
scores for subjects facing the camera, while subject with their side to the camera was
challenging to analyze. The results indicate that human pose estimation is maturing
and produces viable results when analyzing weight lifting technique, although a
bigger dataset may be needed to confirm these findings. Granting that this is an
interesting application that undoubtedly would gain from further research.





Sammendrag

Vektløfting er en populær og effektiv form for styrketrening, men denne metoden
kommer ogs̊a med høy risiko for skade blant nye løftere. Hver person har ulike
utfordringer n̊ar de skal forbedre løfte-teknikken sin og det er viktig at de f̊ar
tilbakemeldinger som reflekterer dette.

Med stor utvikling innenfor human pose estimation de siste årene, har denne avhan-
dlingen som m̊al å undersøke hvordan denne teknologien kan bli brukt for å gi verdi-
full tilbakemelding til brukeren om deres vektløfting teknikk. Dette er en oppgave
som innebærer å detektere spesefikke feil ved teknikken som har en tett sammenheng
med risiko for skade.

Denne avhandlingen presenterer en ny analytisk tilnerming via et utviklet tilbakemeld-
ingssystem der øvelse og vinkel for filming blir automatisk detektert, før de tilhørende
teknikkaspektene blir testet for. Dynamic time warping blir brukt for å gjenkjenne
øvelsen, mens vektorkalkulasjoner blir utført p̊a human pose estimation dataen for
å teste for de ulike problemene relatert til løfteteknikk.

Vi demonstrerer at denne metoden er effektiv for å detektere teknikk-realterte feil
for flere brukere, øvelser og teknikkaspekter. Resultatet viste gode tall for personer
plassert rett fremfor kameraet, mens brukere med siden sin mot kameraet viste seg
å være vanskligere å analysere. Resultatet indikerer at human pose estimation har
blitt nøyaktig nok til å produsere gode resultater for å detektere feil ved løfteteknikk,
selv om et større datasett muligens er nødvendig for å bekrefte disse funnene. Det er
uansett klart at dette er et interessant bruksomr̊adet for teknologien som vil gagne
mye av videre undersøkelse.
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Chapter 1
Introduction

Human pose estimation is a highly focused research field in the computer vision
community and have a variety of use cases ranging from robotics to human action
recognition. With the technology of 2D pose estimation coming a long way and cam-
era phones in every adults pocket, the table is set for a more widespread application
of the technology. Likewise, technology has long been embraced as an important
part of analyses in the context of sports and weight lifting [1]. This thesis aims at
using human pose estimation to analyse technical aspects of weight lifting and give
feedback to increase performance and decrease the risk of injuries.

1.1 Motivation

Training and physical activity have long been seen as an important factor to mini-
mize the risk of chronic diseases and premature death as well as providing mental
health benefits [2, 3]. However, sports and weightlifting activities also comes with a
great risk of injuries, as a result from improper execution and poor technique [4, 5].
This could be due to muscle fatigue, using too much weight or lack of proper tech-
nique training and understanding. Compound exercises such as squat and deadlift
are among the most injury-prone, due to the heavy weight involved and high load
on muscles and joints, and will therefore be the focus point of this thesis.

Fitness centers are now placed in every major city and smaller towns and is widely
available for the general population. According to SSB, the percentage of Norwe-
gians over 16 years old performing strength training at least once the last twelve
months increased from 30% to 46% between 2007 and 2019 [6]. Meaning that almost
half of the adult population have been doing some kind of strength training over
the last year. This is beneficial to society considering the benefits strength train-
ing provides. However, it creates a demand for newcomers needing to learn proper
weightlifting technique. Watching a video on how to perform a squat or read an
article about deadlifting is helpful in understanding the movements, though to truly
rule out errors in technique, feedback and practice is necessary. This includes either
having a network of people with experience in weightlifting or paying for a personal
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CHAPTER 1. INTRODUCTION

trainer. Even then, there is no guarantee that the person giving you feedback truly
understand how to lift properly and what pitfalls to avoid to stay healthy.

Figure 1.1: Example Squat Figure 1.2: Example Deadlift

Weightlifting is also considered an important measure against overweight, being the
second most popular physical activity among Norwegians [6]. Internationally find-
ings from the World Health Organization shows that 39% of the global population
is overweight (bmi ≥ 25) which is almost twice as mush as in 1975 [7]. A tool that
can assist the users in correctly lifting technique can hopefully boost confidence of
the execution and not only prevent injuries but can also be used as a motivator to
start lifting. Building confidence in the movement the user is performing, will also
hopefully make it easier to work out in public gyms and crowded places.

With the improvements in the field of deep learning, pose estimation results have
improved substantially over the past ten years [8]. State-of-the-art technologies are
now able to accurately detect a persons joints, even in complicated situations such
as sporting activities and weightlifting.

The use of smartphones is increasing every year, and most of these smartphones in-
clude a RGB camera. Further, alternatives like RGB-D cameras or multiple camera
angels are either to expensive or hard to configure correctly for most users. This
makes it practical to use 2D human pose estimation models which use RGB images
as input. With a few instructions anyone can film themselves weightlifting [9], thus
improving their technique without the need to interact with anything other than
their phone. This can be a great tool for introverts and people with social anxiety
as well as being a much cheaper solution than paying for a personal trainer.

1.2 Thesis Goal

The content validity index protocol developed by Sjöberg et al. [10] was developed
to cover aspects of technique considered to be associated with risk in weightlifting,

3



CHAPTER 1. INTRODUCTION

both acute and by overuse. If these aspects can be detected and communicated
automatically with the help of human pose estimation, action recognition, vector
calculations and a standard RGB camera, people could get an accessible and easy-
to-use tool to guide them in an injury-free training experience.

To achieve this goal we will use three existing state-of-the-art 2D human pose esti-
mation technologies. OpenPose [11], AlphaPose [12] and WrnchAI [13].

It is important to note that this thesis aims at detecting technique aspects in
weightlifting associated with risk and not necessarily perfecting the execution on
a given weightlifting exercise. The absence of a detected risk does not mean the
technique are not flawed, but that the risk for injuries is minimized in regard to
aspects chosen from the protocols.

Research Question: To which extent can 2D human pose estimation be used
as a tool to give valuable feedback on weight training technique to minimize risk of
injuries?

In order to try and answer this question, the following main tasks were set:

• Gain insight in different state-of-the-art approaches for human pose estimation
and pick several candidates to evaluate on.

• Explore aspects of technique in weightlifting considered to have a high risk
of injury and pick the best features with respect to technique variations and
body composition to evaluate on.

• Produce exercise videos where the chosen technique aspects are present as well
as videos where none technique aspects are present. Then generate datasets
to be used for testing and evaluation by running the videos on the human pose
estimation systems.

• Develop a system to detect which exercise is being performed by the subject
and from which angle the video is filmed, so that technique aspects from that
particular exercise and view can be automatically tested for.

• Develop universal formulas with a high likelihood of detecting technique as-
pects associated with risk for the common user.

• Analyze the findings and compare the different pose estimators against each
other. Evaluate the systems ability to recognize filming angle and exercise, as
well as its ability to detect individual technique errors.

The reminder of this thesis will go through related work in Chapter 2, the system
and its implementations in Chapter 3, evaluation methods and results in Chapter 4,
discussion of findings and limitations in Chapter 5 and conclusion and future work
in Chapter 6.
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Chapter 2
Related Work

Finding state-of-the-art candidates that are able to produce a high accuracy pose
estimation output is important to give us correct data points to perform calculations
on, and thus lays the foundation for our work. Equally important is it to do research
that covers weightlifting patterns and associated risk, so that the calculations can
give feedback that is meaningful to the user. For this reason, a deep dive into both
fields is necessary to answer the research question precisely.

This chapter will first go through the realm of human pose estimation and look
at central concepts, its development and innovations, state-of-the art systems and
important dataset for training and evaluation. It will then take a look at action and
gesture recognition and related technologies within both areas. Then it will look at
weight training, its benefits, injury epidemiology and technique aspects related to
risk of injury. Lastly it will present applications of technology in sports and weight
training. In particular, visual computing and human pose estimation applications.

2.1 Human Pose Estimation

Human pose estimation is a computer vision task that detects and track the location
of human joints and pose of a person from an image or a video. This is most com-
monly done by locating the subject, then detecting keypoints and finally connecting
them to the corrosponding subjects limbs, though the order of these steps vary.
Keypoints represent major joints in the human body that are useful when describ-
ing an action or pose. These keypoints play an important role in understanding the
activity being done by the individual. They also play an important role in mapping
human body expression over to applications such as robotics or animation.

A human pose estimation system may produce either (x,y) coordinates for a two-
dimensional representation or an additional coordinate, z to make the representation
three-dimensional. Though 3D keypoints are more favorable, they are also more
computationally and infrastructure demanding in the form of multiple or more ad-
vanced cameras. 3D pose estimation is also difficult due to the fact that datasets used
for training and testing is built using motion capture systems, which are suitable
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only in a controlled indoor environment, therefore not suitable for wild applications.
Nevertheless, one can estimate 3D coordinates using a single RGB camera [14, 15,
16, 17], though the keypoint accuracy will suffer greatly compared to 2D solutions,
with a mean euclidean distance error ranging from 40mm to over 100mm. This
paper will focus only on (x,y) coordinates as it is the most reliable way to generate
accurate keypoint coordinates using only a single RGB camera.

Human bodies are innately hard to locate and perform pose estimation on for several
reasons. One is that the human body is dynamic, and we may perform a variety of
poses that a model will have to take into account. Humans also express themselves
very differently by what type of clothes they wear. This may have a considerable
effect on the performance of human pose estimation models by making it harder to
pinpoint keypoints to their corresponding non-visible joints. Also, lighting, which
generally affects computer vision problems, may lessen the accuracy of the keypoints
produced. Out in the ”wild”, unconstrained background contexts produce more
unpredictable results than in an indoor controlled environment.

Human pose estimation models may also be categorized into single or multi pose es-
timation models. Multi pose estimation is considerably more difficult as it demands
the system to detect and differentiate every human. Overlapping of each individual
may also lead to false keypoints.

The human body is dynamic and may express itself in many different ways, this
makes human pose estimation very useful as input data for applications such as
animation [18], gaming, robotics [19] and augmented reality [20].

Body movements can be hard to understand and human pose estimation may be
used as tool to understand how and why we move the way we do. In sports it is
crucial to analyze how we move in order to improve our techniques and avoid injury.
Multi human pose estimation is a useful tool to generate data that can be analyzed
in team sports [21, 22, 23].

2.1.1 Human Pose Estimation Methods

Methods for estimating keypoint location on a 2D image has changed drastically
over the last decades. Conventional methods have long been proven useful, but have
since the past decade been outperformed by methods incorporating deep learning
methods. A brief overview of the most important conventional and modern methods
are laid out in the following subsections.

Conventional Methods

Human pose estimation is an important research area in computer vision showing
great potential in several applications. Pictorial structures, developed by Fishclet
and Elschlager [24] led to the first major breakthroughs in articulating human pose
estimation using RBG images. This framework is based on a statistical model of
objects, that enable recognition of the objects and their connected counterparts.
This applies very nicely to human pose estimation, with joints being the objects in
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mind. Though this method showed promising results, the main flaw was that images
were not used as part of the pose model itself.

Deep Learning

One of the major hurdles in computer vision tasks is the variety of angles and
scenes that an image consists of. The results produced by classical methods varies
greatly from image to image, making them poor at adapting to new environments.
Deep learning has shown to outperform all previous state-of-the-art methods in
computer vision. Humans have a talent for recognizing and extracting information
from images, by using supervised machine learning and deep neural networks one
can mimic human brain to do the same.

Top-down vs Bottom-up

Two popular approaches to multi pose estimation using deep neural networks are
top-down [25, 26, 27, 28, 29] and bottom-up [11, 30, 31, 32, 33]. The top-down
approach essentially bottles down to performing object detection to find a bounding
box containing a person in an image, followed by estimating the pose in each of
these boxes. While being a viable solution, it suffers from poor performance due
to the need of running pose estimation for every person found in the image. The
performance is directly correlated with the number of people in the scene, thus
lowering the systems performance. Also, if the object detection step fails, it will run
bad results through the pipeline. Since top-down approaches makes use of an object
detector, one can choose a huge variety of existing object detection models such as
YOLOv3 [34] and SSD [35] or create a new one such as HRNet [27]. This makes the
top-down approach flexible by letting developers tune the speed and accuracy of their
pose estimation models to their needs. The other approach, bottom-up, consists of
identifying and localizing all the key points in an image and then connecting them
into the individual. Starting with the smallest cases and combining them into a
general representation of the human pose.

Encoder-Decoder Architecture

Most deep learning architecture for 2D human pose estimation start with an encoder
that uses RGB images as input and extracts features using multiple convolutions.
Some neural network models, such as mask-RCNN [25], use an encode-decoder ar-
chitecture, where the output from the encoder is directly fed into a decoder. Which
then produces a heatmap that represent the probability of where the keypoints may
be located. The exact keypoints may then be located by selecting the keypoints from
the heatmap with the highest likelihood of being the correct one. The downside to
this approach is that it may result in a low-resolution output, which in turn is used
to create the high-resolution representational keypoints [27]. Using higher resolution
images as input may alleviate the problem, but will hurt the performance.
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2.1.2 Datasets & Keypoints

There exists several datasets that are used in training and evaluation of human
pose estimation systems. Some of them vary in terms of number of keypoints and
what they correspond to in the human body. This section will briefly mention a few
important datasets.

COCO [36], short for Common objects in context, is a large dataset of labeled
objects, first presented in a paper in 2014 and used to aid computer recognition
systems in training and testing. The dataset has been an important driver for
evaluating computer vision systems and a motivating base for competition among
professionals and hobbyists. The researchers proposed that in order to build systems
that solve computer vision tasks and be effective out in the wild, the training images
needed to represent a diverse background context.

One major flaw with the COCO human keypoint dataset, is that it lacks sufficient
keypoints for the feet. Without foot coordinates, it is hard to say how the subjects
interact with the floor. An estimation has to be made in the case of collision de-
tection with the floor or other applications has to be applied, which are often prone
to errors. With the release of OpenPose, they included annotated foot keypoints,
which were a subset of the COCO dataset, consisting of 14K images from the train-
ing set and 545 images from the validation set. This lead to a total of 25 keypoints
produced by OpenPose and has showed to improve the overall performance of the
system.

Instead of detecting keypoints that correspond to human limbs, a research team
presented a study in 2018 [37], along with their dense pose estimation system, a
dataset of annotated pixels that correspond to the 3D surface of that individual.
This dataset consists of 50K COCO images that are manually annotated to describe
the image-to-surface data. The dataset enables a more accurate mapping of RGB
pixels to a semantic 3D object representation.

Until 2017, most pose estimation dataset did not include tracking of multiple people
over video. This made it hard to evaluate the tracking capabilities of human pose
estimation systems. In a paper published in 2017 a dataset named PoseTrack [38]
was proposed that contained over 150,000 annotated poses including tracking. By
using the VATIC Tool [39] the research team was able to effectively annotate a total
of 15 keypoints for each visible individual in each image.

2.1.3 Human Pose Estimation Systems

The realm of human pose estimation is constantly in motion and new technologies
are introduced every year. Ranging from realtime bottom-up models to commercial
closed source and dense pose estimation systems. Thus making it one of the most
interesting computer vision fields, with a jungle of technologies to explore. Here we
will present a few handpicked state-of-the-art options for human pose estimation.
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DeepPose

In 2014, Alexander Toshev and Christian Szegedy, published a paper on DeepPose, a
solution to pose estimation using deep neural networks [8]. This model achieved top
results on several datasets, such as FLIC, Buffy and LSP. The paper was in many
ways a turning point for solving the pose estimation problem and outperformed
many more classical approaches.

OpenPose

OpenPose, developed in 2017 by Zhe Cao et al. [11] was the first open source
realtime bottom-up multi pose estimation that uses both body and foot detector.
They later in 2019 made improvements to the model which lead to an increase in
accuracy at a shorter runtime. However, their license restricts the use of their code
in sports activities and any commercially use without paying a royalty fee.

HRNet

Several existing human pose estimation models try to apply the output to a high
resolution representation, despite the fact that output being produced by a high
to low resolution network. A study done in 2019 showed that preserving the high
resolution representation throughout the model will result in much more accurate
keypoints [27]. The pose estimation method presented in the paper is a top-down
model that achieved the highest score on the COCO test-dev dataset at the time of
publication.

WrnchAI

WrnchAI [40] is a commercialized human pose estimation tool that achieves some
higher precision than OpenPose for small images, but at triple speed [13]. It’s closed
source thereby isolating future improvements to accuracy, speed and availability to
WrnchAI employees themselves. WrnchAI also tries to predict key point for occluded
parts of the body which can be to great help when one part of the body covers the
other.

AlphaPose

AlphaPose [29] is an open source top-down based multi-person pose estimation sys-
tem. When it was introduced in a paper from 2016 the researchers proposed that
top-down methods suffer from imperfect human boundary box detection leading
to redundant boxes and inaccurate bounding box coordinates. This in turn leads
to keypoint locations that are inaccurate. To address this innate problem with
top-down approaches the research team developed a regional multi-person pose es-
timation (RMPE) framework to increase the accuracy of keypoints by limiting the
bounding box error.
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DensePose

DensePose, developed by Güler, Rıza Alp and Neverova, tries to map ”all human
pixels of an RGB image to the 3D surface of the human body.” [37]. Along with it,
they introduced the DensePose-COCO with 50k COCO images manually mapped to
the surface of the 3D model. They present a DensePose-RCNN, a variant of Mask-
RCNN where each pixel is first mapped to a specific body part before deciding
on what part of the 2D plane of that body part the pixel corresponds to. This
technology provides promising results for tasks in future applications like graphics
and augmented reality.

2.2 Action & Gesture Recognition

Human activities can be divided into the four following sub categories based on
complexity and keypoints active in the movement: gesture, action, interaction and
group activities [41]. The first two only take into account movements done by a
single person and is the basis for two important and interesting fields in computer
vision, human action recognition and human gesture recognition. The tasks involves
recognising actions or movements based on a series of observations and has been
successfully applied to applications such as surveillance, animation, gaming and
sign language translation. The distinction between the two is usually in how much
of the body they track. Gesture recognition is only concerned with some specific
parts of the body like the face or hand whereas action recognition usually tracks the
whole body at all times. However, the two applications have many similarities and
can be researched together or achieved using similar approaches [42, 43].

2.2.1 Action Recognition Approaches

Human action recognition or activity recognition are used interchangeably in the
community and refer to the same task. The task of detecting an activity based on
data from one or more sensors. These sensors can be cameras, wearable sensors or
sensors in the environment itself. The traditional classification is to distinguish be-
tween sensor-based activity recognition and vision-based activity recognition. Where
the latter only uses a camera to capture the information about movements, the first
can use other forms of sensors to capture the action as well. Models can be built
using two methods and are therefore often divided into data-driven and knowledge-
driven activity recognition as well [44].

Sensor Based

Hussain, Sheng and Zhang divide the sensor-based approach into three distinct
sub-fields wearable, object-tagged and dense sensing in their survey of sensor based
approaches [45]. Here object-tagged refer to a device bound sensor and dense sensing
to a device free or environment sensor. The latter being a popular research area
in recent years for its device free approach, where RFID is often seen as a popular
choice of technology.
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Vision Based

Vision based approaches using only a camera as sensor provides exciting opportuni-
ties in areas such as surveillance, human–computer interaction and security. But this
approach also comes with its own set of real life challenges caused by uncontrolled
environments. Low quality data, inter-class similarity and intra-class variability,
low quality videos, camera motions and insufficient data are some challenges vision
based action recognition faces [46].

The task of classifying between actions can be achieved by using multiple methods.
Template-based approaches where extracted data gets compared to existing tem-
plates is a common procedure to measure the similarity. Template matching and
dynamic time warping (DTW) are two popular examples of this. Generative models
such as hidden markov models (HMM) and dynamic bayesian network, or discrim-
inative models such as supported vector machines (SVMs) and conditional random
fields (CRFs) are common alternative choice of implementation. Lastly, deep learn-
ing architectures have emerged as a popular choice where especially convolutional
neural network (CNNs) have showed promising results [47].

2.2.2 Gesture Recognition Approaches

Gesture Recognition is the task of recognizing expressions of motion from distinct
body parts, usually the arm, hand, face or head. The application of this technol-
ogy has been popular in areas such as sign language translation, robotics, virtual
reality and surveillance [48]. However, the task are challenging for a number of
reasons including different environmental surroundings such as lightning diversity
and complex background and diverse training data resulting in small or insufficient
data sets [49, 50]. The area is mainly divided into two gesture recognition sys-
tem, device-based and vision-based. The vision-based approach has emerged as the
most popular choice, with big developments in visual computing and deep learning
technologies the last decades.

Vision Based

This method, as with vision-based action recognition, concern itself with recognising
movement patterns based only on data from a camera as sensor, either as a single
image or an image sequence. Multiple approaches have been used for achieving
vision-based gesture recognition. Model based approaches like kinematic models,
view based, low level feature based and template based approaches such as dynamic
time warping are some of the most popular approaches [50, 51].

2.2.3 Dynamic Time Warping

A popular method used in both action and gesture recognition are the template-
based method dynamic time warping. This is a distance function for time series
with possibly different progress rates. The goal is to find the optimal alignment
of two time series and the method can be used for measuring similarity or doing
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classifications on datasets. This method is popular in speech recognition, but has
also been applied to applications such as robotics and data mining [52].

The method has a quadratic time complexity, limiting its performance on smaller
datasets. However, FastDTW [53] is an approximation of the dynamic time warping
method which present an approach with linear time and space complexity. The
method avoids the brute force dynamic programming approach and finds a near
optimal warping path between two time series.

As mentioned, dynamic time warping has been a popular tool in action and ges-
ture recognition. Recognising simple actions using pose estimation [54], applying
dynamic time warping with skeleton data for gesture recognition [55] and a differ-
ential evolution approach to optimize weights in dynamic time warping [56] have all
yielded good results. Schneider et al. presented a method that uses dynamic time
warping on RGB image sequences. The processing pipeline included normalization,
smoothing and dimension selection, along with dynamic time warping and pose es-
timation to classify gestures [57]. The method showed promising result when used
i collaboration with a k-nearest neighbour classifier.

2.3 Weight Training and Injuries

To effectively detect weightlifting errors it is important to understand what a proper
technique consists of. Human bodies in regards to body composition and function-
ality may vary greatly from person to person. There is also a disagreement in what
defines a proper posture when lifting, due to the difficulty in measuring the biome-
chanics. This makes it an interesting topic to investigate, but also harder to gather
valuable information when there is much disagreement among experts in the field.

One aspect however, has a major agreement in the training community. Which are
the many health benefits that training and physical activity provides. In a study
by Darren E.R. Warburton et al. they evaluated current literature and found a
clear correlation between physical activity and reduced risk of chronic diseases and
premature death [2]. Another literature review by Frank Penedo and Jason Dahn
showed much of the same physiological results, but also found that training provides
higher quality of life and better mood states [3]. One especially interesting finding
from Darren E.R. Warburton et al. is that the groups that have the most to gain
from physical activity are the ones that are the least fit. Hence, also has the least
experience with training and are in need of learning proper technique and form when
they start lifiting.

Strength training in particular has showed to have a clear effect on muscle size re-
gardless of gender or age [58]. And thus indicates that strength training is beneficial
for the general population including all ages and genders. A review performed by
Rebecca Seguin and Miriam E. Nelson looked at previous work done on strength
training for older adults. The results showed major strength gains, fewer injury
related falls, better endurance and even higher bone density [59]. Work has even
been done on strength training for children and adolescents and demonstrates that
also young athletes gain advantages from performing strength training without any
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higher risk than older athletes [60, 61]. This may contributes to more new people,
both young and old, with a desire to begin their weight training journey.

But the hard truth is that strength training, although its many benefits, does not
come without any risk. The injury rates may be low compared to other sports
similar to American football or boxing, but a review of the epidemiology of injuries
in weight training shows that injuries also occur regularly in different weight lifting
activities [5]. Mark E Lavallee and Tucker Balam take this further and shows all
injuries, both acute and by overuse, related to different weight lifting approaches
[62]. Improper movements of joints, loss of form with heavy weight and wrongful
repeated placed stress on tissue are all seen as a recurrently causes for injuries.
Strains, tendinitis, and sprains were found to be the most common types of injuries.

The risk of injuries was found to be highest when free weights were involved and
used aggressively, even though injuries also occurred when using weight machines
[63]. This makes it interesting to look at common free weight exercises, such as
squat and deadlift, where heavy weights also are involved. The community agrees
that good coaching on correct technique is the most important factor to minimize
the risk of injuries.

In 2018 an article on evaluating lifting technique in the powerlifting squat and
deadlift using content validity index and reliability was published [10]. The paper
consists of powerlifting experts doing a review of literature and reaching a consensus
of lifting risks in regards to deadlifting and squatting. The aspects where then
rated related to risk of injury and given given a content validity index score. The
final result where 17 aspects of the squat technique and 10 aspects of the deadlift
technique with a high association with risk of injuries. They state the following on
the protocols created:

”The protocols, formed in this study, will provide evidence-based recommendations on
safe lifting technique for coaches and strength practitioners’ to use to make relevant
assessments and instructions.”

This provides a great basis for selecting aspects related to risk of injuries to evaluate
on. By using features that are heavily agreed on, the solution will have support for
its findings and all recommendations on technique changes will likely have a positive
effect on the risk of injuries for the athlete.

2.4 Pose Estimation in Exercise Activities

Technological assistance is becoming a popular tool in sport activities and strength
training to analyze athletes performance, technique and movements in different sit-
uations. Human pose estimation with its ability to track human joints and limbs
have a lot of potential to gather useful information about athletes and to provide
feedback on their performance. With the prediction accuracy of pose estimation in
continuously development, the possible applications of the technology have become
many.

Applying deep learning to improve performance in the fitness industry is nothing

13



CHAPTER 2. RELATED WORK

new. Artificial intelligence has already been applied to give analytic feedback on
performance in sport like basketball [64]. Human pose estimation has also been
used to identify correct movements of a given exercise using OpenPose, machine
learning and vector geometry [65]. This proved that promising results are possible
when using common pose estimation models with few or none tweaks.

The option of using motion capture suits is another way to yield accurate results,
making it easier to evaluate weight lifting technique. Unfortunately these suits cost
at least 2495$ [66], making them inaccessible to use as an evaluation tool for the
general public.

2.4.1 RGBD Camera Applications

The first camera application used to analyze training activities was the use of depth
cameras to track and analyze body movements. The Microsoft Kinect consisting of
a RGB camera and a depth sensor was a popular choice because of its consumer
friendly technology and price tag. A study done by Š. Obdržálek et al. measured
the accuracy of the Kinect pose estimation in coaching of elderly [67]. They com-
pared the technology to more expensive motion capture systems and presented the
Microsoft Kinect as a low cost alternative. The Kinect was found to be useful in
given scenarios, but the variability of the implementation was high, thus making
it more helpful in assessing general movement trends than precisely estimate body
positions.

Other research done by Joe Sarsfield et al. showed similar results [68]. Their goal
was to assess if the Microsoft Kinect could be used as a supervision technology in
rehabilitation applications. They found the technology to be mostly inadequate for
this application, due to variable performance. Problems with jitter and inaccurate
tracking made it hard to assess correctly. Even a silhouette-based approach has
been tested [69], but also here was the error rate too high to actually give valuable
feedback to the users.

A system using topological skeleton generation to assist self-training [70], later de-
velop further as a yoga-training system [71] showed promising result using the Kinect
camera. The latter research was able to use posture analyzing to provide posture
rectification instructions to the users for twelve different yoga poses. Showing that
this might be a way to implement feedback in self-training systems.

2.4.2 RGB Camera Applications

Recent research has seen some promising application of human pose estimation to
assess in training and provide relevant feedback to the user. In 2019 H. Xie, A.
Watatani and K. Miyata used a normal web camera to give visual feedback on
core training [72]. OpenPose was used in combination with human mesh recovery
methods to create a 3D model of the user. The given model was compared to
a SMPL target pose model and feedback was then given to the user based on the
comparison. The solution was found to be helpful for the users to effectively perform
correct core training.
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Another study from 2019 by Jiaqi Zou et al. aimed at creating a full fitness trainer
system that also give feedback to the user based on human pose estimation tech-
nologies [73]. The system recognize the movement the user is doing and compares
it with a standardized action to give correction feedback to the user. The solution
was found to have good influence on accuracy of the movement, thus making the
users exercise movements better.

In a study from 2018 a team of researchers presented GymCam [74], a software
that uses images from a training studio to recognize which exercise the subjects in
the image are performing and how many repetitions. The software proved to be
promising by detecting up to 17 exercise types with an accuracy of about 80.6%.

Other approaches involving human pose estimation in combination with vector ge-
ometry has been proposed. Pose Trainer [65] by Steven Chen and Richard Yang
suggested a solution where movement of skeleton points either indicated wrongful
movements or correct performance of four movements: biceps curl, front raise, shoul-
der shrug and shoulder press. The solution showed good precision at detecting error
for most exercises and present a promising angle to investigate further.

2.5 Opportunities in the Research Field

The substantial improvements made to Human Pose Estimation systems over the
last decade creates interesting opportunities in new and beneficial applications. It
is important to find the human pose estimation systems that best solve a specific
problem, in this thesis, detecting weight lifting aspects. Comparing human pose
estimation systems will help other researchers and developers make more informed
choices when building their applications.

The fitness industry has barely scratched the surface with regards to what might
be possible using data output from computer vision. Software such as GymCam
and Pose Trainer demonstrate that computer vision and human pose estimation
systems may be valuable in giving users feedback. By creating a system that reaps
the benefits of pose estimation systems, one is able to give valuable feedback to
the user. Researching weight lifting feedback systems that uses video as input can
therefore help answer if this technology is mature enough to be used in the fitness
domain.

Further, the main research topic in this area has been on Human Pose Estimation
accompanied with depth cameras or multiple sensors to get information on the three-
dimensional plane. Other human pose estimation research have even used different
techniques to transform the two-dimensional pose information into a 3D model.
Thus leaving much room to investigate how 2D human pose estimation alone, can
be used to assess and analyze movement patterns in fitness and weight training.

In addition, much of the research only distinguishes between correct and incorrect
executions of an exercise or movement. Not taking into account exactly what the
subject is doing wrong or which technique aspects that makes the technique suffer.
Knowing what the subject is doing wrong is an important aspect to be able to give
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valuable feedback to the user. As well as giving them information that they can
actually use to improve their technique and minimize risk of injuries.
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Chapter 3
Methodology

This chapter will first go through the system architecture and present all the unique
components that make up the system thereby familiarizing the reader with the
system as a whole.

Then, a discussion of the research done early on to pick favorable human pose
estimation systems, strength exercises and technique aspects is presented. These
sections will first discuss the decisions made when selecting human pose estimation
systems, why the chosen candidates were picked and what makes these candidates
interesting. Then a necessary prerequisite about weight training in general and the
reasoning behind exercise and technique selections will be proposed.

After introducing an overview of the system and related prerequisites for human pose
estimation and strength exercises, the thesis continues by presenting the solution
itself. First the video generation method and its resulting dataset is described. Then
finally, each of the subsystems are described in great detail in their own section. This
includes, pose estimation extraction tasks, action recognition and technique analysis.
All related methods and implementations for each of the subsystem will be presented
and discussed extensively.

3.1 System Architecture

The system as a whole takes an exercise video from the user as input and outputs a
table of detected technique issues for the given video. However, before the final result
is presented to the user, the data has to be processed by multiple components within
the system. The overall process will be presented shortly before each component
will be described further in their own separate subsection.

The input video is first passed on to the Pose Extraction System(3.1.1) where
it is processed by either OpenPose, AlphaPose or WrnchAI. For this thesis each
video is run through all of the systems to compare their individually ability to
detect technique issues in weight training. The data from the unique human pose
estimation systems are then processed and passed on to the document database.
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Then the Action Recognition System(3.1.2) extract the keypoints from the
database and run them through the classification algorithm to detect the performed
exercise and filming angle. The exercise is classified by using dynamic time warping
along with a k-nearest neighbour algorithm. The result of the classification is then
stored back to the document database with a reference to the related keypoint
dataset. Lastly the Technique Evaluation System(3.1.3) retrieve all related
data from the database and run specific vector calculations based on the predicted
exercise and detection angle. The resulting technique analysis is then stored in the
database and is ready to be presented to the user along with the detected exercise
and filming angle. An overview of the full system architecture is shown in Figure
3.1. The data flow between different sub-systems is presented in subsection 3.1.4.

Pose Extraction 
System
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Technique
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Data
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User

User Feedback

Video
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Figure 3.1: System Architecture

3.1.1 Pose Extraction System

The input to this part of the system is an raw unprocessed and unfiltered exercise
video. The preconditions for the input video and the video format is described in
great detail in Section 3.4. The exercise video is first processed by the three imple-
mented human pose estimation systems OpenPose, AlphaPose and WrnchAI. The
resulting dataset is then stripped of unnecessary data, transformed to an universal
format and filtered for inaccurate estimations. The resulting keypoints are then
indexed and stored in the database. The pipeline for the Pose Extraction Sys-
tem is shown in Figure 3.2. The subsystem implementation and all its details are
described thoroughly in Section 3.5.
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Figure 3.2: Pose Extraction System: Pipeline

3.1.2 Action Recognition System

This system start by extracting all processed keypoints from the document database.
Further each keypoint is processed as a time series to detect both the filming angle
and the performed exercise. Data normalization and noise filtering is applied, before
the filming angle and exercise detection are performed separately. A dynamic time
warping algorithm is used to compare similarity between time series and classify
each sequence using a k-nearest neighbors algorithm. The pipeline for the Action
Recognition System is shown in Figure 3.3. Detailed information about the
implementation and technologies used are presented later on in Section 3.6.
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Figure 3.3: Action Recognition System: Pipeline

3.1.3 Technique Evaluation System

This system initially extracts both the processed keypoints and the related prediction
of exercise and detection angle generated from the previously presented systems.
Then it selects a subset of relevant vector formulas based on the predicted exercise
and filming angle. All selected vector formulas is then calculated to detect if any
technique issues is present in the given pose estimation dataset. The output is a
list containing all detected technique issues for the dataset. If none are detected,
an empty list is returned. The pipeline for the Technique Evaluation System
is shown in Figure 3.4. A complete explanation of the systems and vector formulas
are presented in Section 3.7.
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Figure 3.4: Technique Evaluation System: Pipeline

3.1.4 System Data Flow

The document database is the link between the different components within the sys-
tem and is responsible for information flow across distinct sub-systems. Extracted
keypoints are initially rendered from the Pose Extraction System and stored
in the document database. The Action Recognition System then extract the
keypoints and use them to predict the angle the keypoints are filmed from and the
exercise they represent. This information is then stored to the document database
with a reference to the related dataset already stored. Consecutively the Tech-
nique Evaluation System extracts both the keypoint information from the Pose
Extraction System and the predictions from the Action Recognition System
to evaluate for different technique aspects on dataset. The overview of data flow
between different sub-systems and the document database is shown in Figure 3.5.
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Figure 3.5: System Data Flow

3.1.5 Implemented Technologies & Libraries

In creation of these systems, multiple libraries were used and different technologies
implemented. The most important ones are described briefly below. All technologies
related to human pose estimation will be presented in Section 3.2.

MongoDB

MongoDB is a document-based database that is suitable for storing JSON data [75].
It provides an expressive query language that enables fast and efficient queries. Due
the large amount of data generated by each pose estimation system MongoDB was
a fitting choice.
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Docker

Docker is a virtualization software on the OS-level that makes it easier to create,
deploy and run applications [76]. This makes it more convenient for other developers
to contribute to the project both now and in the future, regardless of their operating
system or system configuration.

Matplotlib

Matplotlib is a library for creating visualization of data mainly through graphs
[77]. This enables users to understand their data from an overview. In this project
the graphs were valuable in understanding and detecting patterns between different
lifting aspects.

Statsmodels

Statsmodels is a python library with many classes and functions for a diverse number
of statistical models [78]. This was a valuable tool when working with time series
data in the action recognition process.

NumPy

NumPy is a popular library for handling and processing arrays in Python [79]. The
library is fast, efficient and has good support for different dimensional arrays. Thus,
being a essential tool when working with big arrays and matrices like human pose
estimation data.

3.2 Pose Estimation System Selection

To be able to answer the research question precisely, the first major decision to be
taken was the selection of human pose estimation candidates to be used for the
solution. With new candidates presented every year, the options are many and the
features to consider even more. Speed, accuracy, body models and availability are
all important aspects to consider when picking pose estimation systems and will be
discussed further in this section.

Research into the realm of human pose estimation revealed some clear state-of-
the-art candidates. Some being well tested and applied in multiple research and
others with less exploration. But all stating to be among the best pose estimation
technologies available. Here we will shortly introduce the main prospects and their
preeminent benefits.

• DensePose: Published by Facebook in 2019 and aims at mapping all human
pixels from a RBG Image to a 3D model. Unique of its kind and provides
opportunities never examined before. Open source.
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• OpenPose: Released as an open-source project in 2017. Since then, it has
become the most popular human pose estimation library available. Big com-
munity, great documentation and well tested.

• HRNet: A recent project released in 2019 that maintains a high resolution
representation and has so far outperformed all existing models on keypoint
detection earlier tested on the COCO dataset.

• WrnchAI: Is the only closed source software on the list. However, third
party testing against OpenPose revealed more than 2x faster processing speed,
significantly smaller model sizes and lower GPU RAM requirement.

• AlphaPose: open-source software released in 2018 and receiving further de-
veloping in 2020. Scores remarkably better than OpenPose for several tests on
the COCO and MPII datasets.

3.2.1 Accuracy

Accuracy is the highest priority when it comes to choosing a model that fulfills
the research question of this study. Without data that realistically and correctly
captures the core movement of the exercise, the evaluation will be ineffective. This
solution will only use a single RGB camera which limits us to 2D models.

Out of all the pose estimation systems presented here, HRNet maintains the highest
AP with a score of about 77.0% [27] on the COCO test-dev dataset [36]. In com-
parison, OpenPose scores 61.8% on the same dataset. Considering that OpenPose
won the 2016 COCO keypoint challenge, this signifies a substantial improvement
in accuracy for pose estimation systems. AlphaPose has also demonstrated a high
score in accuracy with a 73.3 mean average precision [80] on the COCO dataset.
The real accuracy score of WrnchAI is unknown as it has never been published, but
they claim to achieve the same accuracy as OpenPose [13].

3.2.2 Speed

At the time of writing, the extraction of keypoints is done offline, and not in realtime.
The purpose of this is to reap the benefits of models that yield the highest precision.
It is also unnecessary to give realtime feedback on the exercise as it is safer to assess
the technique and form errors when not performing the exercise. Due to this, speed
will not be considered as an important factor, unless the speed is unreasonably low
to the user. The speed of pose estimation systems do not contribute to answering
our research question.

3.2.3 Keypoint Information

To fully understand each exercise movement, it is necessary to have as many well
placed keypoints on the body as possible. Feet for example play an important role
in understanding how well the squat and deadlift are performed, considering that
the weight is always pulling you towards the ground. Each human pose estimation
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system may vary on which keypoints they have and how many they are trained to
detect. This plays an important role in choosing the most optimal system as it
determines which flaws the solution can detect.

DensePose outputs 2D keypoints that can be mapped to a 3D model. This surface
data might be useful for detecting bad technique such as rounding of lower or upper
back by calculating the curvature of the back. Applying this data to other technique
errors, there are several keypoints for each limb to choose from, making it hard to
define when the error starts. This makes the DensePose system suboptimal for
detecting flaws in weightlifting.

The COCO keypoints dataset consists of 17 keypoints in total for each human,
though this does not include keypoint labels on feet. HRNet and AlphaPose have
primarily been tested on this dataset and it’s not known how they work on the 25
keypoint dataset from OpenPose. Based on the data generated from WrnchAI it
does include one extra keypoint on each tip of the feet. The OpenPose solution
by default provide the most number of keypoints by including an additional 8 key
points from the feet adding up to 25 keypoints in total. This makes OpenPose the
best choice in regards to keypoint information.

It is important to note that while OpenPose detects the most keypoints it is still
possible to train the other human pose estimation models to also detect the same.
However, in this paper we will not customize or remodel any of the systems.

3.2.4 Availability

To effectively create a reliable and useful application around these human pose
estimation systems, it is decisive that these systems are accessible and easy to inte-
grate. Our five pose estimation system candidates can be categorized as open-source
or closed-source. WrnchAI is closed source, which makes it inaccessible to retrain
this model on other datasets that might include more keypoints. This also hinders
any developer from adding or removing any neural layers to the model to tweak
the performance. When using WrnchAI the application will be dependent on the
developers and WrnchAI company existing.

WrnchAI does introduce simplicity by enabling the processing of RGB images on
the cloud through an API. This simplifies the application development substan-
tially by removing the task of integrating code tightly coupled. This permits simple
smartphone apps connected to the internet to process their videos in a matter of
minutes.

3.2.5 Conclusion

We have chosen three remaining pose estimation system candidates that will pro-
duce our 2D keypoints. These are AlphaPose, WrnchAI and OpenPose. The
reason for choosing AlphaPose is that it achieves the second highest AP among the
candidates while scoring high on availability and documentation. HRNet scores the
highest but lacks sufficient documentation and speed to build a reliable application
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Figure 3.6: WrnchAI: Deadlift Example Figure 3.7: OpenPose: Squat Example

on top of it. WrnchAI represents the closed source solution out of our candidates,
which makes it interesting to explore. DensePose introduces complexity due to the
number of keypoints, therefore it will not be used for this application. OpenPose
scores the lowest in terms of accuracy, but this human pose estimation system in-
cludes a foot dataset, which might be necessary in order to the technique errors
outside the scope of this thesis.

3.3 Exercise and Technique Selection

This section will present which strength exercises that will be used for the evaluation
and further, which technique aspects to consider for each selected exercise. The
importance of this choice can not be understated. The exercise selection lays the
foundation for the systems usability and usefulness by picking the most common
movements with the highest probability of risk of injury. In addition, the technique
aspect chosen for each given exercise, determines both the risk of causing an serious
injury and to what degree the system has an ability to detect it. Thus making
the topic and discussion around it just as important as the human pose estimation
selection problem.

The given selection problem can be stated precisely as two separate questions:

• Which exercises are most popular in the weight training community and si-
multaneously has the highest risk of injuries?

• Which technique aspect for each selected exercise has the highest association
with risk of injuries and has a high probability to be detected using 2D human
pose estimation?
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3.3.1 Exercise Selection

There exists hundreds of different strength exercises involving both strength train-
ing machines and free weights, all with different complexity, popularity, movement
pattern and weight involved. Here we will go through the decision processes in detail
and the train of thought that lead to the selected exercises.

As discussed in Chapter 2, the occurrence of injuries is higher when free weights
are involved and can help to narrow the exercises scope somehow by removing ma-
chine related exercises. It is worth mentioning that some strength training machine
exercises like the leg, chest and shoulder press could be interesting to investigate
due to the heavy weight involved. However, since the epidemiology clearly shows a
higher prevalence of injuries using free weights, machine exercises were discarded as
candidates.

Further, the comparison between compound exercises and isolation exercises helps
to reduce the pool of relevant exercises even further. Compound exercises are multi-
joint movements working several muscle groups at the same time, where isolation
exercises only work one muscle at a time, such as the biceps curl and leg extension.
This group of exercises usually have a strict movement pattern, reducing the number
of possible errors to perform. These exercises also involve lighter weights than
compound movements, reducing the risk of injuries. For this reason, compound
movements are much more intriguing to investigate. By moving multiple joints
concurrently, the complexity of the movement increases and incorrect motions will
occur more easily, giving compound exercise a higher probability of injuries.

However, increased complexity also makes the exercises harder to perform for the
general population, and thus make the exercise less applied among athletes. An
example are powerlifting movements like the clean and jerk or snatch which repre-
sent some of the most complex exercises out there. For this reason, they are only
performed by a small selection of skilled athletes. These exercises have a high oc-
currence of injuries, but the complexity makes them both hard to analyze and less
popular to the general population. For this reason these exercises, regardless of the
injury rate, were also discarded while more popular movements were assessed.

The popularity of an exercise is an important factor to consider to correctly select
movements the general public will benefit from. By selecting exercises recommended
to all ages and genders and with a wide user base, the solution could benefit as many
people performing weight training as possible. Recommendations from athletes,
personal trainers and experts usually includes the likes of squat, deadlift, bench
press, shoulder press and hip thrust as essential to your training routine. Since
these movements are compound exercises as well as being popular, they fulfill both
the popularity and injury prone requirement.

After discussing the few remaining candidates, two widely applied and extensively
recommended compound exercises, namely The Squat and The Deadlift were
selected.
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The Squat

The squat is a compound multi-joint exercise involving all the large lower body
muscles in addition to the core. The exercise is performed using a weighted barbell
placed on the upper part of the back. The starting position is standing with feet
placed at shoulder width slightly pointing outwards and the weight comfortably
placed on the back. From here the athlete creates tension by tucking the bar between
their arms and the upper back and bracing the core. Then the athlete starts the
descent by driving their hip backwards and moving the knees over the toes. The
bottom positions is reached when the femur is parallel with the floor. From here
you start to move the weight back up by pressing trough the feet using the lower
body muscles, keeping the core tight. The weight should be moved as vertically as
possible in both directions and be at the center of gravity at all times during the
movement. The back should be straight and the feet stable to avoid injury. The
starting position and in action position for the squat is shown in Figure 3.8 and 3.9.

Figure 3.8: Squat: Starting Position Figure 3.9: Squat: In Action Position

The Deadlift

The deadlift is a multi-joint compound exercise working the shoulder girdle all the
way down to the major lower body muscles such as the gluteus maximus, hamstring
and quadriceps. However, the main activation for the exercise is in the core, with
the abdominals and lower back muscles used for stabilization. The movement is
performed using a barbell placed on the floor in front of the athlete. The starting
position is with the feet at shoulder width and the bar placed over the center of
the foot. The athlete is gripping the bar at shoulder width, with the hip and ankle
joints bent so the back and pelvis is kept straight. From here the athlete takes
slack out of the bar by activating the lower body muscles, embracing the core and
contracting the upper back muscles. Then they push through their feet moving
the hip and upper body at the same pace so the bar travels straight up. The top
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position is reached when the athlete is standing upright with the bar in their hands
at hip height. From here the bar is lowered back to the staring position resting on
the ground in front of the athlete. The bar should be at the center of gravity at
all times during the movement and travel as horizontally and close to the body ass
possible. The back and pelvis should be kept straight throughout the exercise to
avoid injuries. The starting and in action position for the deadlift is shown in Figure
3.10 and 3.11.

Figure 3.10: Deadlift: Starting Position Figure 3.11: Deadlift: In Action Position

3.3.2 Technique Selection

Performing an exercise correctly is a difficult task and often requires guidance from
professionals, movement pattern understanding, sufficient mobility and many hours
of drilling. Many users neglect one or more of these these issues which causes the
technique to suffer and in consequence increases the risk of injury. There are many
different technique aspects to consider so we will look at two main factors when
assessing witch issues to focus on: the risk of injury the technique issue present
and the probability of detecting this risk using human pose estimation and vector
calculations.

As mentioned in Related Work, Sjöberg et al. developed two protocols [10] one
for the squat and one for the deadlift where aspects of lifting technique and their
associated risk were presented. All 27 aspects presented in the article were hand-
picked by experts and has an high agreement among powerlifters on their risk of
injury and will therefore be the basis for discussion in this section. This gives us a
pool of injury prone technique aspects to pick from when considering which issues
it is possible to detect.

Detecting risk of injury using only selected keypoints of joints requires accurate
pose estimations and deviations large enough to detect. Luckily, aspects with the
highest injury risk often are the aspect with highest deviation from regular movement
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patterns. For this reason, many of the selected issues presented in the previously
mentioned protocols are more likely to be detected. At least in the extreme to high
deviation cases.

However, some cases where the deviation from the optimal pattern is small, it is
hard to detect errors due to inaccuracy of the pose estimation and variation between
trailing frames. Also variation resulting from holding the camera makes some issues
hard to detect. Example could be one knee travelling slightly more forward than
the other or the foot loosing contact with the floor at some point during the lift.
Other cases that could be hard to detect is due to the simplicity of the human pose
models. Cases when rounding of back and shoulders, twisting of hips and pelvis
movement occurs are hard to detect without multiple keypoints located at the back
and not only at the shoulders and hips.

By assessing the different technique aspects presented by the protocols and filtering
away technique issues a two-dimensional representation will have major problems
detecting, 9 errors are left. These are evaluated to be detectable only using human
pose estimation and vector calculations. The technique aspects are presented in
Table 3.1 together with the associated exercise and the view that the issue will be
filmed from.

Table 3.1: Selected Technique Aspects

Number Exercise Technique Aspect Detection View

1.1 Squat The knee travel inside of
the foot seen from the
front.

Front

1.2 Squat The feet are pointed
inward-toward on an-
other.

Front

1.3 Squat Overextension of the knee
in the lock-out phase.

Side

1.4 Squat Asymmetrical rotation of
the hips.

Front

1.5 Squat Moving center of pressure
to the sides as seen from
the front.

Front

2.1 Deadlift The knee travel inside of
the foot seen from the
front.

Front

2.2 Deadlift Asymmetrical rotation of
the hips.

Front

28



CHAPTER 3. METHODOLOGY

Table 3.1: Selected Technique Aspects

Number Exercise Technique Aspect Detection View

2.3 Deadlift Excessive arching of the
lower back in the lockout
of the lift instead of/in ad-
dition to hip straighten-
ing.

Side

2.4 Deadlift Lifting with flexion in the
elbow.

Front

3.4 Video Generation

This section will present the data foundation for the system. It will go through
how the exercise videos were generated and different technique aspects provoked in
order to get a video foundation that covers all technique issues, as well as correct
execution of the exercise. Different subjects were used to cover for body variations
and multiple filming angles were adopted to cover different technique aspects.

3.4.1 Prerequisites for Filming

Before starting the filming process, it was necessary to create a few rules to set
the foundation for the video generation process. The results were the following
requirements described more thoroughly later on:

• Four subjects should be used to cover for body variations. Two male and two
female athletes.

• Each subject should perform all of the technical aspects listed, for both exer-
cises and filming angle.

• Each subject should do each technique issue at two severity degrees. Moderate
and high.

• Each subject should do one correctly performed video of each exercise from
each of the specified angles.

• No other person than the athlete doing the exercise should be visible in video.

• Standard weightlifting bar and weight plates should be used to make the videos
as close to reality as possible.

• Subject should evenly divide lifting in shoes and shoeless to cover for different
equipment used.
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The first requirement ensures that the model created can detect a wider range of
body composition and is not fitted to one specific athlete. A small set of athlete
that involves both genders will not cover all possible differences between athletes,
but will cover enough variations to give the model some flexibility. Thus proving
that the model can detect cases in the given scope in addition to related cases where
the variations are somehow similar.
The second requirement gives us a sample set of technique issues to test the proposed
vector formulas on. This further helps to cover for variations for each technique
aspect by having diverse execution and variation from regular movement pattern.

The third requirement deals with how clearly or excessive the technique issues should
be performed when an issue is provoked on purpose. An exercise with a distinct
technique issue present would be easier for a system to detect, since it is further
from the general movement pattern of an optimal execution. However, movement
patterns that are too far away from a correct execution are less likely to occur on a
regular basis, and thus will not be as useful to detect for most users. On the other
hand, the bigger the deviation from an optimal pattern is, the higher the chances
are for an serious injury to occur. For this reason we adopt two degrees of severity
when performing an technique aspect: moderate and high.

All athletes also performed a correct movement of each exercise from the two spec-
ified angles. This is to generate a subset of correctly performed exercises that can
be evaluated on the same basis as the the rest of the videos. The main purpose of
this is to disclose false positives resulting of inaccurate vector calculations. As well
as having a base set for reference, that should not report for any technique issues
by the system.

Another prerequisite for the video generation was that the only person visible in
the frame should be the one performing the exercise. This choice is not due to
possibility but rather simplicity, since all the selected pose estimation systems have
multi-person detection. However, ensuring that only one person is visible makes the
data processing easier as well as making the pose estimation faster and the resulting
dataset smaller.

The last requirements deals with the equipment used by the athlete during the video
generation. Making sure to use standardized bars and weight lifting plates provide
videos with the same equipment found in most training centers. The standardized
weight lifting plates is also of such size that they cover some parts of the subject
performing the exercise. It is important to see how the human pose estimation
systems respond and behave under these circumstances, since most athletes perform
these exercises using weighted barbells. The footwear requirement is simply to test
if different footwear result in different outcome from the pose estimation. This is
important because athletes perform exercises with everything from lifting shoes to
barefoot.
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3.4.2 The Filming

The filming process itself was performed at a regular crowded gym with a standard
mobile phone camera, so that the preconditions would the same as for possible end-
users. A big focus point for the filming was to hit the desired angles as close as
possible and to hold the camera steady to avoid to much inaccuracy due to camera
movement.

The two angles to be used during filming were taken from a front and a side view.
Together this covers all technique issues presented in Table 3.1 and are described
below:

• The Front View: Is straight in front of the subject with the athlete in the
center of the screen. The whole person should be visible with some space on
all edges for good measure.

• The Side View: Is on the right side of the subject and the whole athlete should
be visible at the center of the screen. The angle should be such that the right
side of the athletes body covers their left side.

Figure 3.12: Filming Angle: Front Figure 3.13: Filming Angle: Side

Each video clip is a short snippet where the subject perform the given exercise with
or without some technique aspect present from one angle at a time. The video clip
begin with the user in the starting position and end when the athlete is back at the
starting position after performing one repetition of the exercise.
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As mentioned earlier each technique aspect was filmed twice, with two degrees of
severity; moderate and high. This choice was made to test the solution on different
clarity to see to what extent it would able to detect errors performed by the subjects.

All the videos of the correct exercise execution were performed as precisely as possi-
ble and followed the description of the exercises from Section 3.3.1. The videos are
without any of the technique issues presented in Table 3.1 earlier on.

3.4.3 Technique Provoking

To gather video samples of each single technique aspect it was necessary to provoke
technique issues on purpose, to generate a sample set of each technique aspect. Here
we will discuss how each aspect was provoked and to what degree it was done to
clearly demonstrate that a technique issue was present. In Table 3.2, the technique
aspects are described together with the execution for the different severity degrees.
The numbering of entries in Table 3.2 corresponds to their associated column in
Table 3.1, where each of the technique aspects were presented.

Table 3.2: Technique Execution

Number Technique Aspect Moderate Severity High Severity

1.1 The knee travel in-
side of the foot seen
from the front.

At least one knee
travel inside the foot
with about five cen-
timeters.

Both knees travel in-
side the foot and
end up close to each
other.

1.2 The feet are pointed
inward-toward on
another.

The feet are pointing
slightly inward with
about 10 degrees.

The feet are pointing
inward with more
than 20 degrees.

1.3 Overextension of the
knee in the lock-out
phase.

The knees are locked
out all the way and
the the joint is some-
what overextended.

The knees are locked
out as much as the
subject are able to,
the joint is overex-
tended and the
weight are pushed
backwards through
the knees.

1.4 Asymmetrical rota-
tion of the hips.

The hips are slightly
rotated such that
the center of the hips
are closer to one foot
than the other.

The hips are clearly
rotated such that
the torso is pointing
to one of the sides.
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Table 3.2: Technique Execution

Number Technique Aspect Moderate Severity High Severity

1.5 Moving center of
pressure to the sides
as seen from the
front.

The hips moves
closer to one leg
without rotating
the hips shifting
the pressure slightly
more to one leg.

The hips moves
closer to one leg
without rotating
the hips shifting the
pressure mostly to
be on one of the
legs.

2.1 The knee travel in-
side of the foot seen
from the front.

At least one knee
travel inside the foot
with about five cen-
timeters.

Both knees travel in-
side the foot and
end up close to each
other.

2.2 Asymmetrical rota-
tion of the hips.

The hips are slightly
rotated such that
the center of the hips
are closer to one foot
than the other.

The hips are clearly
rotated such that
the torso is pointing
to one of the sides.

2.3 Excessive arching of
the lower back in the
lockout of the lift in-
stead of/in addition
to hip straightening.

Lower back is arched
at the top of the
lift and the upper
body is slightly be-
hind the lower body
seen from the side.

Lower back is arched
at the top of the
lift and the upper
body is clearly be-
hind the lower body
seen from the side.

2.4 Lifting with flexion
in the elbow.

Elbows are bent
with about 10 de-
grees in the elbow
joint at some point
during the lift.

Elbows are bent
with more than 20
degrees in the elbow
joint during the
whole lift.

Deviations

The execution of each technique aspect was followed as closely as described in table
3.2, however some subjects had problems performing some of the technique issues
due to poor mobility and body composition restrictions.

The problem we encountered the most during the video generation process had to
deal with aspect number 1.3. Two out of four subjects were incapable of overex-
tending their knee in the lock out phase more than barely visible to the human eye.
Because of this, only two videos were generated with the high severity instance for
this aspect. The medium severity for the same aspect have videos for three out of
four subject, even though the aspect is barely visible for some of the athletes.
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One of the subject also had to perform the exercises without a regular weight lifting
bar and standardized weight plates due to reduced access to public gyms. Instead
a broomstick with some smaller radius than a regular lifting bar was used without
any plates. It is not expected to affect the movement of the subject in any way since
all technique aspects can be perform similarly with any regular stick. In addition to
this, the other three subjects will unveil any possible issues related to weight plates
covering the body. Which is the main reason behind using regular weight lifting bar
and plates.

3.4.4 Resulting Video Foundation

The final video foundation consist of videos from four different subjects, two male
and two female. All together there are 86 video snippets, whereas 16 are correct
execution of the exercise, while the remanding videos have some technique aspect
present. A detailed description of the data foundation and its composition are
described below, so that it is clear what data was used to evaluate the solution.

The video foundation has the following composition:

• Eight video snippets of correct execution of the squat and eight correctly
executions of the deadlift. The execution was performed by four different
subjects. One snippets from each angle for both exercises per subject.

• 86 video snippets where some technique aspects from Table 3.1 are present. 18
snippets for each of the four subjects, one for each severity degree. Resulting
in 8 video snippets of each technique aspect, four for each severity degree.

Specifications

Length: Videos ranging from 4 seconds to 10 seconds in length.

Quality: The videos were filmed in either 4k with 60 frames per second or in
1080x1920 pixels with 30 frames per second. All raw, unprocessed and un-
filtered.

Size: The size of the videos is between 53 megabytes and 9 megabytes.

3.5 Pose Extraction System

This section will describe the Pose Extraction System in detail. Firstly, the human
pose estimation implementation will be presented. This will describe what param-
eters and flags that were used to tune the human pose estimation system to get as
high accuracy as possible on the dataset.

Thereafter will the data manipulation tasks performed on the human pose estimation
output data be discussed. The section will go through what was done to filter

34



CHAPTER 3. METHODOLOGY

away imprecise estimations, how the data was transformed to be used with the
same system and how the dataset was reduced to increase its simplicity and size.
The three main data manipulation techniques performed on the dataset were data
stripping, data transformation and data filtering and were performed in the order
they are presented.

The final output data format to be used as input to the Action Recognition System
and the Technique Evaluation System will also be described in detail at the end of
this section.

3.5.1 Human Pose Estimation Implementation

The speed and accuracy of existing 2D human pose estimation models vary according
to the parameters that are set when training and performing inference on images.
We have decided to focus on obtaining the highest accuracy possible and have chosen
the parameters accordingly.

1. AlphaPose: AlphaPose being a top-down method needs an object detector,
where we have chosen YOLOV3 due to speed and high accuracy, as well as
using AlphaPose’ own pose estimation model called FastPose (DUC) built
using ResNet152 deep learning model. Trained on the COCO dataset, this
model achieves an AP of 73.3 on this dataset, making it the most precise pose
estimation system used in our solution. The –flip parameter is also turned on
to maximize accuracy.

2. OpenPose: OpenPose uses a bottom-up approach and thus have no need for
object detectors. Due to lack of hardware power the parameters used for this
model are kept at default to avoid running out of memory and keep speed at
the highest. This makes OpenPose the fastest at performing inference on the
images.

3. WrnchAI: WrnchAI is closed source but has a few parameters that one can
turn on and off. We chose to keep head and hands keypoints off because it is
not necessary for our calculations. Other parameters such as 3D points and
annotated media are turned off as well.

All the generated videos were processed by each of the human pose estimation
systems, giving three different pose estimations for each video. This resulted in
three different datasets, with three different data formats, since each on the systems
handled and stored keypoint data differently. The next job required by the system is
therefore to manipulate this data such that both the Action Recognition System and
the Technique Evaluation System receive the same data, in one predefined format.

3.5.2 Data Stripping

The first order of business was to strip the files of unnecessary data to speed up the
processing and keep the format minimal. The dataset reduction is a fundamental
task in data processing to shrink the data load to the minimal to get rid of redun-
dant data. This process was done to all the output material from the human pose
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estimation systems.

All of the human pose estimation systems being used are multi-person systems
with the ability to detect several people in every frame. However, a prerequisite
for the solution is that no more than one person should be visible in the frame at
any moment. For this reason one can extract all information from the first person
detected and disregard any multi-person information that is present in the data
bundle. Some of the human pose estimation systems also provides data related to
3D estimation, which can be discarded all together since our system only focuses on
2D pose estimation. There is also a lot of metadata involving body model, frame
rate, video details and bounding boxes not relevant to our solution. By removing all
of the data mention above, one is left with only the most fundamental data. This
includes the relative estimations for each keypoint and their associated confidence
score.

3.5.3 Data Transformation

Second task at hand was to transform the data from the human pose estimation
systems into the same format, for the Action Recognition System and Technique
Evaluation System to receive. The main reason for this was to make sure that the
output format from different human pose estimation system would be on the same
predefined format and thus could be used on the same system without any discrep-
ancies. This work involves simple data transformations tasks and is important to
ensure consistency in the data. By doing so, the output data can be executed on
the same program and easily be compared to one another.

The human pose estimation systems incorporates three different kind of body models
to track human joints and limbs, all with a different set of keypoints. The different
body models for OpenPose, AlphaPose and WrnchAi is showed below in Figure 3.14,
3.15 and 3.16 respectively.

The main transformation task was to remodel the output dataset from the different
human pose estimation system so that they follow a common body model for the
whole solution. This is important so that all input data to the vector calculation
program is identical in structure and the same formulas can be used for all human
pose estimation system. The OpenPose body model which is an extension of the
COCO model, is a superset for the other two models. This means that all keypoints
found in the AlphaPose and WrnchAI models, also are a part of the OpenPose
model. This makes it practical to use the OpenPose model as a base and transform
the rest of the data to this format.

This transformation was performed by shifting the numbering for all common key-
point to match the numbering seen in the OpenPose model. An example of a com-
mon keypoint is the right knee keypoint in both the OpenPose and the AlphaPose
model. The numbering however, is different and the keypoints will be at different
positions in the data sequence and therefore need to be swapped around to match
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Figure 3.14: Keypoints:
OpenPose

Figure 3.15: Keypoints:
AlphaPose

Figure 3.16: Keypoints:
WrnchAI

the data sequence of the OpenPose body model. This process also requires the pos-
sibility for keypoints not present in the subset to be null. For example will the tuples
for keypoint 19, 20, 21, 22, 23 and 24 all be null for all instances of the AlphaPose
model after the transformation to the OpenPose model base. This is because these
keypoints does not exist on the AlphaPose model at all.

Further, OpenPose produces a single json-file with keypoint for each single frame of
the video while AlphaPose and wrnchAi outputs a single json-file with data from
each frame merged. For this discrepancy the single file implementation was found to
be the best solution when each video should be processed as a whole and result in a
single output file. Another option is to treat each video as a stream of keypoints from
each frame was discussed. This alternative would require a non-optimal splitting of
both the AlphaPose and the WrnchAI dataset and reduce the simplicity of the data
input to the other systems. The choice was thus disregarded and a single input and
a single output file was settled as the format for each video.

3.5.4 Data Filtering

The final and considerably most important data processing task to be performed
on the material was the data filtering. This process filter away data points with
low probability to be accurate. This is done by removing points expected to be
inaccurate by the human pose estimation systems itself as well as filter away trailing
points with unnatural high variability. This process is absolutely crucial for the
accuracy of the solution. By removing probable inaccurate estimated points, the
chance of detecting technique issues that do not exists decreases as well. Thus being
one of the most important steps to avoid false positives.

All the three human pose estimation system provide a confidence score of how likely
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each estimation are to be correct along with the data points. The simplest and
most effective way of filtering to remove inaccurate estimations was to disregard
keypoints with a low confidence score. Since the videos are captured in a controlled
environment with only one person visible in the center of the screen they are more
likely to estimate well. But to safe guard against completely wrong estimations
especially from the side view, a confidence score threshold was decided on. All
confidence scores with lower than 70% probability were discarded and not used in
the final solution for the action recognition and technique evaluation tasks. The
choice of 70% was to make sure most keypoints would pass through the filter but
at the same time filter away some estimated points with insecurity. The dataset
contains keypoints for every frame of the video and is therefore detailed enough to
detect technique aspects even if keypoints for some frames are disregarded.

However, all rules have exceptions. Some calculations required a confidence score
threshold up to 90% due to noise that might cause false positives and were therefore
adjusted accordingly. The side view keypoints had a significantly lower confidence
score average than the rest of the data. For this reason, it was necessary to lower
the confidence score threshold down to 60% for all videos produced with a filming
angle from the side..

Due to innate inaccuracies in human pose estimation systems and computer vision
systems in general it is necessary to filter out keypoints that scored high on prob-
ability but had too great of a distance difference from the previous frame. These
inaccuracies may occur due to noise in filming or other distortions and may trig-
ger a false positive in our results. To avoid this inaccurate data, we filter out the
keypoints that highly deviate from points close to itself.

3.5.5 Final Input Format

After going through the data processing pipeline just presented, all data from the
different human pose estimation systems had the minimal format listed below. This
is the format for all data passed on to the Action Recognition System and the
Technique Evaluation System and is therefore the final format that will be used
with the rest of the system.

The data is formatted into a dictionary where the key is the keypoint name, and
the value contains the x coordinate, y coordinate or the probability of it being true.
The index of this array is treated as our frame and if a value is missing it is filled in
as a null. An example of the format is shown in Listing 1.

x : X coordinate normalized to the range [0,1]

y : Y coordinate normalized to the range [0,1]

s : Confidence score in the range [0,1]
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1 {

2 "kneeR_x": [x1, x2, ... ],

3 "kneeR_y": [y1, y2, ... ],

4 "kneeR_s": [s1, s2, ... ],

5 "heelL_x": null,

6 ...

7 }

Listing 1: Data Format: Input to Vector Calculation Program

3.6 Action Recognition System

This section will present the Action Recognition part of the system, which detect
the angle and performed exercise for a given video. It will first go through the
data preprocessing steps like normalization and noise filtering performed on the
time series. Then it will describe the implementation of action recognition and how
dynamic time warping and k-nearest neighbors were implemented to detect exercise
and filming angle.

3.6.1 Data Preprocessing

This part of the system treated each dataset as time series data, where the key-
point positions over time are used to capture the relationship between frames. The
data imported to this component is a direct result of human pose estimation sys-
tems which have a varying degree of accuracy and noise. In addition, each dataset
is different as a result of body variations and the subjects position to the frame.
Therefore, noise filtering and normalization were performed as a preprocessing step
to make the time series comparable to one another.

Normalization

The keypoints retrieved from the human pose estimation systems were normalized
image coordinates. This means that the keypoints are dependent on the subjects
position relative to the camera. To account for this problem we had to achieve
translational invariance before passing the data on to the classifier. The way this
was achieved was to make the neck keypoint center of the coordinate system. This
was done by subtracting the neck (x,y) pair from all other keypoint coordinates in
the dataset. For data models that did not contain a neck ke point, the center point
of the shoulders were simply used instead.

An optimal solution would also try to achieve scale invariance. However, this would
require making the distance between the left and the right shoulder 1 by dividing
all other keypoints by this distance. But the distance between the shoulders is not
the actual distance but rather an 2D projection onto the image plane. This makes
it prone to failures when the subject’s body is not facing directly towards front of
the camera as with the side view detection. For this reason it was not possible to
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achieve scale invariance for all data in the dataset. The benefit of using the shoulders
on a front viewing angle is that the shoulder distance remains relatively constant
throughout the videos.

Noise Filtering

Another issue with the dataset retrieved from the human pose estimation system
is its natural noisiness. When comparing two time series, the optimal result would
be that two time series for the same exercise would have the same curve over time,
without any noise that lead to inaccurate predictions. To achieve this, we applied
the LOESS (Locally Weighted Scatterplot Smoothing) filter. It works by taking
each data point and derive a better estimate for it by taking the weighted average
of neighbouring points. The closest neighbouring points will have a higher weight
and thus have more effect on the average. This method smooth out the data and
extract the general concept of the movement pattern of each body part for a given
exercise, making the exercises easier to compare to one another.

3.6.2 Time Series Analysis

The ultimate goal for the Action Recognition System was to detect both the given
exercise and the filming angle for a given set of time series. To achieve this, dynamic
time warping (DTW) was applied as a method to measure similarity between to
time series of different length. It is a non-linear alignment strategy using dynamic
programming that account for phase shift in the data.

However, the fact that the solution uses multiple filming angles complicates the
situation when the keypoints are coordinates relative to the image itself. A keypoint
moving on the x-axis seen from the front can not be compared to the same keypoint
moving on the x-axis seen from the side. This is because the two keypoints moves on
different planes of each other, which actually gives three different planes to consider
when evaluating the data.

For this reason a simple, yet effective angle detection algorithm was implemented
that could detect the filming angel before dynamic time warping was used to detect
the exercise independently for each case. The formula takes the distance between
the shoulders on the x-axis as the only attribute and then classify the filming angle
as either front or side view, based on the distance between the left and the right
shoulder. Recall that the keypoints are image coordinates and the x-axis maps to
different planes of reality for each of the filming angles. Thus making the shoulders
appear close together on the side view, while being naturally far apart on the front
view, even when the subject’s pose is the same. The shoulders are static keypoints
and cannot move further apart or closer together such as feet or hands. In addition,
they are naturally further apart than other static keypoints like hips or ears, thus
making them the best single feature to detect the given angle of a video.
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Dynamic Time Warping

After detecting the correct angle, the dynamic time warping algorithm was used
to compare the similarity between time series to classify the given exercise. More
precisely, fastDTW, an approximate Dynamic Time Warping algorithm with linear
time and space complexity was applied. This technique essentially aligns two time
series by iterative warping the time axis to find an optimal alignment. The Euclidean
distance function was used to find the distance between x[i] and y[j]. Two different
approaches to distance matching are shown i Figure 3.17 and 3.18.

Figure 3.17: Euclidean Distance
Matching

Figure 3.18: Dynamic Time Warping
Matching

For the dynamic time warping to be effective, it is necessary to select input data that
accurately describes the pattern in hand. Out of the seventeen available keypoints,
the left shoulder y-axis was chosen as it is always visible in both exercises and
viewing angles. It is also a keypoint that describes the behavior of the movements
accurately as when performing squats the shoulders are always lower than deadlift
at mid-exercise.

This approach makes for a more scalable solution, so that more exercises can be
added to the solution later on without much tweaking. A much simpler solution in-
volving measuring the hand position in proposition with the shoulders was discussed.
This would probably classify very well since the hand position is very different for
the exercises. However, this would create trouble when new exercises like bench
press is involved and would require new and more separating formulas for each new
exercise added.

K-Nearest Neighbour

For the classification problem a 1-nearest neighbour approach was used to classify
the exercise as either a squat or a deadlift, based on the similarity score provided by
fastDTW. For this solution one single base was selected for each exercise, so that all
new classifications only need a minimum number of comparisons when calculated.
This decision makes the solution both faster and more scalable if more exercises
gets added later on. In addition, by choosing only a single base, the solution gets
tested against multiple body composition, which provides a clearer picture of how
the solution will perform on a bigger dataset with more subjects.

The base representing each exercise was a correct performance of the given exercise,
since most flaws only deviated so much from a correct execution, while two different
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flaws can be far apart from each other. Next up was to decide which person represent
the general movement pattern the best. This was done by comparing the similarity
between all correct executions of a given exercise with dynamic time warping. By
doing so, the exercise that is closest to all other correct execution of the same exercise
are chosen. For this case, the same person was considered to be closest to all the
other subject for both views and both exercises.

All other videos of a given exercise in the dataset were then executed on the 1-
Nearest Neighbour algorithm to find the single closest match.

3.7 Technique Evaluation System

This section will present the Technique Evaluation System in its entirety. The system
takes the input from the two previously presented systems and outputs a table where
all the different technique aspects is either present or absent for a given video or
data sequence. The section itself will first present the data model and keypoints
used to present a basis for talking about formulas. Consequently it will present all
formulas used to calculated and evaluate each technique aspect.

3.7.1 Data Model and Keypoints

The data model used in the solution is an extension of the COCO body model that
includes three extra keypoints for each foot and contains 25 keypoints all together.
Because some datasets have been transformed into this model from less detailed
models, a total of 8 keypoints have the possibility of containing the value null in
the cases where the data for a given keypoint does not exist. An overview of each
index and their associated body part is found in Table 3.3. The table also showcase
which keypoints that has the possibility of being null.

Index Joint Null Index Joint Null
0 Nose Not null 13 LKnee Not null
1 Neck null 14 LAnkle Not null
2 Rshoulder Not null 15 REye Not null
3 RElbow Not null 16 LEye Not null
4 RWrist Not null 17 REar Not null
5 LShoulder Not null 18 LEar Not null
6 LElbow Not null 19 LBigToe null
7 LWrist Not null 20 LSmallToe null
8 MidHip null 21 LHeel null
9 RHip Not null 22 RBigToe null
10 RKnee Not null 23 RSmallToe null
11 RAnkle Not null 24 RHeel null
12 LHip Not null

Table 3.3: Body Model: Index Table
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3.7.2 Calculations

All vector formulas developed and used for the calculation will be presented along
with each technique aspect from Table 3.1 in its own subsection. The subsection
will also contain the associated description of the technique issue and the given
detection view. Thereafter the method for calculation will be discussed to showcase
what was done to uniquely detect a given technique aspect and justify the choices
made when developing the formula. All sections will also have two related plots,
showing the time series for different keypoints over time. One for a correct execution
of the exercise and one where the technique aspect is present. This is done to better
visualize how the formula separate the two instances from each other.

3.7.3 Squat: Inward Knee

Description: The knee travel inside of the foot seen from the front.

Detection View: Front View.

The relative height of the subject was used as a measure of the progress of the
exercise repetition. For this, the neck keypoints were used as a representation of the
person relative height at a given frame. The low values in relative height indicate
that the person is standing stationary, while the peak is in the middle of the exercise,
when the subject is at the bottom position. At the non-stationary part of the exercise
the knees should be outside the ankles, as seen in Figure 3.19. However, cases where
the knees do not cross the ankles on the x-axis, thus indicating that the knees are
inside of the ankles, as seen in Figure 3.20 can occur. This is a clear indication of a
technical issue with inward knees and an error flag will therefore be raised.

As mentioned, it is natural for the knees to be on the inside of the ankles at the start
and end of the exercise when the subject is standing stationary or starting/ending
their descent/ascent. That is why it is important to compare the keypoints position
to one another in relation to the relative height of the user at that specific frame.

One tricky aspect with this technique issue is that inward knees do not always
result in both knees caving in, which is why we check for these patterns for both
knees independently. One knee might go inward at the start of the movement, long
before what is good practice, indicating an inward knee. This aspect is captured by
comparing how many frames one of the knees stays crossed over its corresponding
ankle compared to same numbers for the other knee.

3.7.4 Squat: Inward Feet

Description: The feet are pointed inward-toward on another.

Detection View: Front View.

Inward feet is a much simpler problem to detect than inward knees, since it limits
the user from pushing their knees outside their ankles on the x-axis anatomically.
This results in the knees never getting outside of the ankles. On time series, this is
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Figure 3.19: Time Series: Squat - Cor-
rect

Figure 3.20: Time Series: Squat - In-
ward Knees

shown by the knee keypoints never crossing the paths of their related ankle keypoint,
as shown in Figure 3.22. A correct execution of the squat, where the knee keypoints
crosses their respective ankle keypoint is shown in Figure 3.21. An easy check for
this was sufficient to detect the lifting aspect. This removes the need to compare
feet keypoints, which are only available on the BODY-25 model and OpenPose.

Some inward feet instances are very subtle, making the knees pass the ankles on
the x-axis ever so slightly. Because of this, a threshold was added to the calculation
that limits how close the knees can be throughout the repetition without triggering
a detected inward feet result. This limit was set so that it triggered most instances
of inward knee without getting false positives on the correct executed movements.

Figure 3.21: Time Series: Squat - Cor-
rect

Figure 3.22: Time Series: Squat - In-
ward feet

3.7.5 Squat: Overextension Knees

Description: Overextension of the knee in the lock-out phase.

Detection View: Side View.

The starting and end stance should be the same when performing a squat. Knee
keypoint behind the ankle keypoints indicate an overextension of the knees in the
lock-out phase, which put a lot of pressure on the knee joint. A straightforward
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method was implemented to try to catch some of the cases. The method compared
the first and last frames of the movement to detect differences in the distance between
ankles and knees. If the knee keypoints were further behind the ankles in the lock-
out phase than in the starting stance, this indicated an overextension in the knees
as seen in Figure 3.24. Figure 3.23 shows a correct execution of the same exercise.

The keypoints suffered from extremely noise data, as a result of the filming being
done from the side. This lead to the decision of a simpler approach for detection
this issue. As seen in the time series visualization, it is even hard to recognise this
as being the same exercise.

Figure 3.23: Time Series: Squat - Cor-
rect

Figure 3.24: Time Series: Squat -
Overextension Knees

3.7.6 Squat: Hip Rotation

Description: Asymmetrical rotation of the hips.

Detection View: Front View.

Rotation is difficult to estimate through coordinates on a 2D plane. Thus, an as-
sumption made was that the elbows remain at a relatively constant distance from
each other and any major shortening of this distance is an indication of rotation
of the subject. This is a reasonable assumption to make when elbows do not move
considerably, or not at all on the x-axis for a correct performed squat. Thus a short-
ening of the distance would indicate that the person has rotated, making the squat
asymmetrical.

The distance between the elbows along with the height is shown for a correct per-
formed squat in Figure 3.25 and for a squat with asymmetrical hip rotation in Figure
3.26. The subject relative height is shown to demonstrate the subjects position when
the rotation occur. However, the shortening in distance between elbows is subtle and
hard to track, which which makes this method prone to errors and false positives.

3.7.7 Squat: Hip Shift

Description: Moving center of pressure to the sides as seen from the front.
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Figure 3.25: Time Series: Squat - Cor-
rect

Figure 3.26: Time Series: Squat - Hip
Rotation

Detection View: Front View.

Shifting of the hips has the clear aspect that the hips move to either the right or left
on the x-axis seen from the front. In a correct performance of the squat, the hips
should move as little as possible. A pattern that is observed when the hips shifts
to one side, is that the distance between hips and ankle keypoints for the same side
changes as well. The hips moves closer to the ankle for one of the sides, whereas the
the hip moves farther away from the ankle for the other side.

This can be seen in Figure 3.28, and is a clear indication that the center of pressure
has moved closer to one leg than the other. A correct performance of the squat,
where the distance between hips and ankle keypoints remains much more constant
can be seen in Figure 3.27. In this method a threshold value is used to compare
how the max and minimum distance of ankles and hips differ from each other. If
the difference is large enough, as seen in the hip shift example, it will trigger a hip
shift flag.

Figure 3.27: Time Series: Squat - Cor-
rect

Figure 3.28: Time Series: Squat - Hip
Shift

3.7.8 Deadlift: Inward Knees

Description: The knee travel inside of the foot seen from the front.

Detection View: Front View.
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For a regular deadlift it is normal for the knees to be very close to the ankles
on the x-axis, making this pattern much harder to detect than the squat inward
knees problem. The approach are to look at the knee keypoints’ movement at the
bottom of the exercise movement. This is the hardest part of the lift and where
the body compensate by shifting the knees towards one another if the technique is
poor. Though if one of the knees suddenly shifts in the x-axis, then it might suggest
an inward knee problem. This inward shift is measured by comparing the distance
between ankles and knee keypoints for both legs.

As with the inward knee problem for squat, each knee are tested independently to
detect instances where one knee moves considerably in comparison to the other.

Figure 3.29 shows the time series for a correct execution of the deadlift, while Figure
3.30 shows the time series for a deadlift with inward knees.

Figure 3.29: Time Series: Deadlift -
Correct

Figure 3.30: Time Series: Deadlift -
Inward Knees

3.7.9 Deadlift: Hip Rotation

Description: Asymmetrical rotation of the hips.

Detection View: Front View.

Many of the same aspects as with hip rotation in a squat applies to deadlift as well.
It is hard to detect a rotation on a 2D plane with the given data. But we can still
track the absolute distance between left and right sides of the body and use this
to measure rotation the same way as with hip rotation for squat. In this case the
distance between shoulders and opposite hips were used to infer a rotation of the
subject. Shoulders and hip keypoints had an overall higher confidence score from
the pose estimation systems, making them a better choice than elbows or wrists. In
addition shoulder distance had a value of zero after the normalization and could not
be used as a single measure of rotation.

The distance from one of the shoulders and the opposite hip will shorten while the
opposite pair will lengthen when rotating the hips, as seen in Figure 3.32, thus
indicating a detected issue. A correct movement of the same exercise is shown in
Figure 3.31.
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Figure 3.31: Time Series: Deadlift -
Correct

Figure 3.32: Time Series: Deadlift -
Hip Rotation

3.7.10 Deadlift: Arching Lower Back

Description: Excessive arching of the lower back in the lockout of the lift instead
of/in addition to hip straightening.

Detection View: Front View.

Arching of the back may be detected by tracking if the shoulders pass the hips or
ankles on the x-axis at the peak height of the deadlift. The difficulty here is that
tracking of the shoulders, hips or ankles from the side provides keypoints with a very
low average confidence score. This is leading to spikes and other noise in the time
series graphs. Because of the low confidence scores, the confidence score threshold
was lowered to avoid getting a substantial amount of errors.

This method uses a simple calculation that compares the first and the last frames
of a video. The distance between the shoulder keypoints and the ankle keypoints
on the x-axis is first measured. Then if the right shoulder is closer to the ankles
in the last frames of the repetition in comparison with the first frames, a technique
issue is detected. If the keypoints are detected correctly, this will indicate a severely
arching of the lower back as seen in Figure 3.34. A correct execution of the deadlift
without arching in the lower back is shown in Figure 3.33.

Figure 3.33: Time Series: Deadlift -
Correct

Figure 3.34: Time Series: Deadlift -
Arching Lower Back
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3.7.11 Deadlift: Elbow Flexion

Description: Lifting with flexion in the elbow.

Detection View: Front View.

An elbow flexion might happen in any part of a deadlift repetition, since the arms
should be straight the entire duration of the repetition. The elbows and wrist
keypoints should therefore not move in any significant amount on the x-axis seen
from the front.

The method that was used, compared the difference between maximum and mini-
mum distance in elbow keypoints to track any significant change in distance through-
out the repetition. A big change in the distance indicate a flexion in the elbow as
shown in Figure 3.36. An execution of the deadlift without elbow flexion is shown
in Figure 3.35.

Figure 3.35: Time Series: Deadlift -
Correct

Figure 3.36: Time Series: Deadlift -
Elbow Flexion
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Chapter 4
Evaluation & Results

This chapter will present the evaluation matrices and evaluation dataset for the sys-
tem along with the data result for the Action Recognition System and the Technique
Evaluation System independently.

First the quantitative and qualitative evaluation metricises are presented separately
before the dataset used for evaluation are described. Then the results of each sub-
system is presented one at a time.

For the Action Recognition System, the data for angle and exercise detection will be
presented separately, before the output result for the Technique Evaluation System
will be introduced, one technique aspect at a time. Lastly, the result for different
human pose estimation systems will be displayed in relation to one another.

4.1 Data Quality Assessment

This section will present the data analyzation methods used on the output data
to evaluate the systems data quality. Here we will look at both quantitative and
qualitative methods to analyze the data quality. The quantitative methods involves
calculating precision and recall to measure percentage of correct estimations as well
as percentage of technique issues actually found by the system. The qualitative
analyses engage in talks with an expert to ensure the technique aspect in the video
foundation is correct and to compare the findings with a qualitative review of the
same videos. At the end of the section, the evaluation dataset used for the quanti-
tative data assessment will be presented.

4.1.1 Quantitative Data Analysis

The quantitative data analysis will be the main quality assessment activity for eval-
uating the systems overall ability to correctly identify technique issues related to
risk of injury. Here we define a true technique issue (ground truth) to be the one
we have categorized in our videos. The formulas calculated here are based on the
videos of the subjects created in this thesis.
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Figure 4.1: Precision and Recall

Recall

Number of retrieved true technique errors

Number of true technique errors

The goal of this system is to catch as many true form technique errors as possible and
is geared towards inexperienced lifters. Finding these errors is crucial to accurately
give feedback on the exercise movement. A high recall leads to a higher number
of found technique errors, and a low recall will lead to a lower number of found
technique errors. One can adjust this by changing how much data that is being filter
during the input and evaluation phase. Though increasing the recall will inevitably
decrease the accuracy as we gain more and more hits on technique errors. A balance
here is needed, as too many false positives will lead to the user being confused and
focusing on improving aspects that do not need improvement. By tuning down the
filtering of the data, one might get a high recall score, but also risk gaining too
many false positives. Adjusting the recall to low, by filtering out many datapoints
from our input, one risk receiving too few true positives, leading the user to never
receive knowledge on their critical flaws in their movements.

Precision

Number of retrieved true technique errors

Number of retrieved technique errors

As mentioned earlier, since our system is focused on inexperienced lifters with above
average errors in their techniques, precision will be a lower priority than recall. An
experienced lifter might have few errors in their lifting making it harder to pinpoint
these. While an inexperienced lifter might have several errors that are important to
address, and will be less affected by a lower precision. Though a too low precision
will lead to a system that is unreliable and useless in its task, it will be kept at a
minimum to avoid this. Filtering more data will lead to a higher precision, but as
mentioned, also lead to a lower recall score.
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F1 Score

2 ∗ Precision ∗ Recall

Precision + Recall

F1 Score, also called F-measure uses precision and recall to calculate the combined
accuracy of the two. The value ranges from 0 to 1, where 1 being a perfect score
and 0 being the worst. It is often used as a measure to find a good balance between
recall and precision.

Accuracy

Number of true technique errors

All technique errors

Accuracy is a measure of how well the system performs overall when making a
correct prediction. An important note on this measure is that a high score will not
inevitably lead to a valuable system. If the system never finds technique errors and
the chance of a user performing a technique error is low, then it will score high,
but at the same time never catch situations where a fault has occurred. This would
lead to the system being useless while scoring high at accuracy. Since this will be
used on inexperienced lifters the number of technique errors will be above average
making the accuracy measure relevant.

True vs. False and Positive vs. Negative

To discuss and evaluate the predicted results in regards to actual results we will
use the terminologies true positive, false positive, true negative and false
negative as represented in Figure 4.1.

For this solution, a true positive would mean that the system has correctly pre-
dicted a technique error for a video containing the actual technique error. In other
words, the system detect a technique error on a video containing the technique error.

A false positive implies that the system predicted a technique issue in a video,
when the video did not actual have this technique issue present. Thus, a correct
execution of an exercise is predicted as a technique error.

A true negative would occur if a video without any technique issue present is
predicted as having no technique issues present. Meaning that a correct execution
of an exercise would be predicted as a correct execution.

A false negative would be if the system predicts a video containing a technique
issue to be without the technique issue. In other words, a technique error video
would be predicted as a correct execution of the exercise.

For this feedback system, the true positive and false positive are the most critical
instances. This is because the systems concern themselves with predicting technique
aspect present in a video and are not actually predicting which technique aspects
that are absent. Thus making the two predictive terms more relevant.
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4.1.2 Qualitative Data Analysis

The qualitative data analysis is used as a supporting mean to ensure the reliability
and correctness of the system. By involving an expert with experience within the
field to evaluate the video foundation, the quality assessment gets an extra layer of
validity. It is hard to pinpoint the flaws in the exercises, and experts represent the
very best validators. The main reason for this process is to assure that the video
foundation used in the evaluation is a correct representation of the desired technique
aspect. This process assures that a video of a given technique aspect detected to be
an issue represents an actual technique issue with a risk of injury in real life.

This quality assessment was performed by presenting an expert with two videos of
each technique aspect and a list of all technique issues listed in Table 3.1. The
videos were picked randomly from among the four suspects and severity degrees.
The expert was then asked to mark off for all technique issues noticeable in a given
video. The results were first compared to what technique issue the video originally
was meant to show. With the goal of detecting any videos that did not capture the
technique aspect properly. Later, the same list was evaluated against the output
from the vector calculation system to evaluate the detection ability of the system.
An example question from the questionnaire form presented to the expert is shown
in Figure 4.2.

Figure 4.2: Screenshot: Questionnaire Form

4.1.3 Evaluation Dataset

All data result tables presented in the second part of this section will have a unique
row for each human pose estimation system, as well as a row for the accumulation
of all scores across different systems. Each row will have a precision, recall, F1
and accuracy score as described in Section 4.1.1. In addition there will be an error
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score, representing cases where the confident score of the pose estimation system is
too low. Thus filtering away points such that the calculation can not be completed
properly and the program returns an error instead. The error cases are neglected
when calculating for the four other metrics.

The evaluation dataset consisted of keypoint data generated from all three pose
estimation systems using all 82 videos. For each view and each exercise there is one
corresponding video of correct execution of the videos for each user. However, as
mention, not all the users were able to deliberately perform a squat with a knee
extension, leading to only 5 videos created in this category. The total number of
files being used in this evaluation is 252, for each pose estimation system this is 82
files.
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Table 4.1: Evaluation Dataset

Pose Estimator Exercise View Flaw Videos

WrnchAI Squat Front Correct 4
OpenPose Squat Front Correct 4
AlphaPose Squat Front Correct 4
WrnchAI Squat Front Inward Knees 8
OpenPose Squat Front Inward Knees 8
AlphaPose Squat Front Inward Knees 8
WrnchAI Squat Front Inward Feet 8
OpenPose Squat Front Inward Feet 8
AlphaPose Squat Front Inward Feet 8
WrnchAI Squat Front Hip Shift 8
OpenPose Squat Front Hip Shift 8
AlphaPose Squat Front Hip Shift 8
WrnchAI Squat Front Hip Rotation 8
OpenPose Squat Front Hip Rotation 8
AlphaPose Squat Front Hip Rotation 8
WrnchAI Deadlift Front Correct 4
OpenPose Deadlift Front Correct 4
AlphaPose Deadlift Front Correct 4
WrnchAI Deadlift Front Inward Knees 8
OpenPose Deadlift Front Inward Knees 8
AlphaPose Deadlift Front Inward Knees 8
WrnchAI Deadlift Front Elbow Flex 8
OpenPose Deadlift Front Elbow Flex 8
AlphaPose Deadlift Front Elbow Flex 8
WrnchAI Deadlift Front Hip Rotation 7
OpenPose Deadlift Front Hip Rotation 7
AlphaPose Deadlift Front Hip Rotation 7
WrnchAI Squat Side Correct 4
OpenPose Squat Side Correct 4
AlphaPose Squat Side Correct 4
WrnchAI Squat Side Knee Exten-

sion
5

OpenPose Squat Side Knee Exten-
sion

5

AlphaPose Squat Side Knee Exten-
sion

5

WrnchAI Deadlift Side Correct 4
OpenPose Deadlift Side Correct 4
AlphaPose Deadlift Side Correct 4
WrnchAI Deadlift Side Arch 8
OpenPose Deadlift Side Arch 8
AlphaPose Deadlift Side Arch 8
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4.2 Action Recognition System

The goal of the Action Recognition System was to accurately predict the filming
angle and performed exercise. This consisted of the two sub-tasks, angle detection
and exercise detection. The result of each one are presented independently in its
own section.

4.2.1 Angle Detection

The implemented angle detection algorithm showed great result on the test data,
with a perfect classification of filming angle for all videos. This gives a precision
and recall score of 1.0 and 0 errors across all human pose estimation systems. The
total number of videos tested on the system were 252.

Table 4.2: Result: Angle Detection

Estimator Prec. Rec. F1 Acc. Errors

Avg/Total 1.00 1.00 1.00 1.00 0
AlphaPose 1.00 1.00 1.00 1.00 0
OpenPose 1.00 1.00 1.00 1.00 0
WrnchAI 1.00 1.00 1.00 1.00 0

4.2.2 Exercise Detection

After determining the viewing angle, the exercise detection algorithm was used to
determine what vector calculations to use on the video. The exercise detection was
able to detect all true deadlifts, but also predicted 5 false positives, where videos of
a squat were wrongfully predicted to be deadlifts. These were squats filmed from the
side view, which inherently consisted of keypoints with fairly low confidence scores.
The rest of the 247 files were predicted correctly, resulting in a fairly high accuracy.
OpenPose was the only candidate with correct predictions for all of the 84 videos.

Table 4.3: Result: Exercise Detection - Squat

Estimator Prec. Rec. F1 Acc.

Avg/Total 0.96 1.00 0.98 0.98
AlphaPose 0.98 1.00 0.99 0.99
OpenPose 1.00 1.00 1.00 1.00
WrnchAI 0.91 1.00 0.95 0.95
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Table 4.4: Result: Exercise Detection - Deadlift

Estimator Prec. Rec. F1 Acc.

Avg/Total 1.00 0.96 0.98 0.98
AlphaPose 1.00 0.98 0.99 0.99
OpenPose 1.00 1.00 1.00 1.00
WrnchAI 1.00 0.91 0.95 0.95

4.3 Technique Evaluation System

The goal of the Technique Evaluation System was to correctly detect individual
technique errors for a given exercise video. This was done across 2 exercises and 9
technique aspects in total. Here the data for each technique issue will be presented
individually in its own section. The high scores on many of the technique issues in
this section may be partially due to the size of the evaluation dataset.

4.3.1 Squat: Inward Knees

The dataset used for evaluating this technique issue contained all correct front
squats, inward feet for the squat and inward knees for the squat. The reason for
adding inward feet to the evaluation dataset as well, is that all generated videos of
inward knees also contain inward knees by default. Thus providing a bigger dataset
to evaluate on, which is favorable.

This detection method scored higher on precision than recall, meaning that most of
the returned cases represent an actual inward knee problem. However, some of the
lower recall scores indicates that not all cases of inward knees were correctly classified
as a technique issue. The overall score of this technique detection algorithm were
high for most metrics, implying that this technique issue may be possible to detect
for general cases.

Table 4.5: Result: Squat - Inward Knees

Estimator Prec. Rec. F1 Acc. Errors

AlphaPose 1.00 0.87 0.93 0.90 0
OpenPose 1.00 0.83 0.90 0.86 5
WrnchAI 0.94 1.00 0.97 0.95 0

Avg/Total 0.98 0.91 0.94 0.91 5
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4.3.2 Squat: Inward Feet

The dataset used for evaluating this technique issue contained all correct front squats
and inward feet videos for the squat.

The detection method scored high on both precision and recall giving a high F1 score
for all human pose estimation systems. A few videos tested on OpenPose resulted
in an error, while the other two systems had no errors at all. The overall score for
this detection algorithm were among the best, indicating that this were one of the
easier technique aspects to detect using this method.

Table 4.6: Result: Squat - Inward Feet

Estimator Prec. Rec. F1 Acc. Errors

AlphaPose 1.00 1.00 1.00 1.00 0
OpenPose 1.00 0.83 0.90 0.89 3
WrnchAI 0.89 1.00 0.94 0.92 0

Avg/Total 0.95 0.95 0.95 0.93 3

4.3.3 Squat: Hip Rotation

The dataset used for evaluating this technique issue contained all correct front squats
and hip rotation videos for the squat.

Rotation is difficult to track using points on a 2D plane, but one can gain some
results by comparing the distance between the elbows as done here. The problem
with this technique aspect is that it is very subtle thus making it hard to differentiate
between the inaccuracy in the output of the pose estimation systems and the ground
truth movement. The high score in recall and lower in precision suggests that the
threshold is too low, and that the system detects hip rotation even in videos that
do not contain any technique issues.

Table 4.7: Result: Squat - Hip Rotation

Estimator Prec. Rec. F1 Acc. Errors

AlphaPose 0.86 0.75 0.80 0.75 0
OpenPose 0.70 1.00 0.82 0.70 2
WrnchAI 0.75 1.00 0.86 0.80 2

Avg/Total 0.76 0.90 0.83 0.75 4
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4.3.4 Squat: Hip Shift

The dataset used for evaluating this technique issue contained all correct front squats
and hip shift videos for the squat.

The hip shift results were promising, and all the pose estimation methods seemed
to be consistent with the results. In addition only one error were generated from
OpenPose. Some higher score in recall than precision indicates that the system is
providing some false positives, while detecting most of the true technique errors.

However, a flaw in one of the subjects correct execution of the squat was detected
during evaluation. The calculation method uses the ankles of the user as a measure
of where the hips move, but this assumes that the ankles are remained stationary.
One of the users move their ankle position while performing the exercise, which
throws off the calculation, producing an extra false positive in all the estimators for
this technique aspect.

Table 4.8: Result: Squat - Hip Shift

Estimator Prec. Rec. F1 Acc. Errors

AlphaPose 0.89 1.00 0.94 0.92 0
OpenPose 0.88 0.88 0.88 0.81 1
WrnchAI 0.89 1.00 0.94 0.92 0

Avg/Total 0.88 0.96 0.92 0.89 1

4.3.5 Squat: Overextension of the Knees

The dataset used for evaluating this technique issue contained all correct front squats
and overextension of the knee videos for the squat.

Overextension of the knees seems to be a hard problem to detect. Very low precision
scores and some higher recall scores indicate that too many videos are reported as
a detected technique issue. The somewhat high recall score may be due the small
dataset, making it easy to return all videos as a detected technique aspect along
with several false positives.

Table 4.9: Result: Squat - Knee Extention

Estimator Prec. Rec. F1 Acc. Errors

AlphaPose 0.55 1.00 0.71 0.56 0
OpenPose 0.57 0.80 0.67 0.56 0
WrnchAI 0.50 0.8 0.62 0.44 0

Avg/Total 0.54 0.86 0.67 0.52 0
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4.3.6 Deadlift: Elbow Flex

The dataset used for evaluating this technique issue contained all correct deadlifts
and elbow flex videos for the deadlift.

The elbows are difficult keypoints to track for the human pose estimation systems, as
reflected by the high number of errors produced by OpenPose and overall. Though
when detected, the evaluation system detects this lifting aspect with very high suc-
cess. The precision is prefect, meaning that only true technique errors get returned.
In addition, the system detect almost all the actual technique issues, except some
videos for the AlphaPose estimator, as shown by the high recall scores.

Table 4.10: Result: Deadlift - Elbow Flex

Estimator Prec. Rec. F1 Acc. Errors

AlphaPose 1.00 0.88 0.93 0.92 0
OpenPose 1.00 1.00 1.00 1.00 11
WrnchAI 1.00 1.00 1.00 1.00 3

Avg/Total 1.00 0.93 0.97 0.96 14

4.3.7 Deadlift: Inward Knees

The dataset used for evaluating this technique issue contained all correct deadlifts
and inward knees videos for the deadlift.

Inward knees for the deadlift also showed promising results with all true technique
errors detected, as shown by an overall recall score of 1. The precision score is
also rather good, but the some lower numbers indicates that the system detect a
few correct execution as an inward knee issue, resulting in false positives. Since
both ankles and knees were being used with a minimum confidence score of 0.7, the
system also returned a relatively high amount of errors.

Table 4.11: Result: Deadlift - Inward Knees

Estimator Prec. Rec. F1 Acc. Errors

AlphaPose 0.80 1.00 0.89 0.83 0
OpenPose 0.86 1.00 0.93 0.89 3
WrnchAI 1.00 1.00 1.00 1.00 3

Avg/Total 0.87 1.00 0.93 0.9 6
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4.3.8 Deadlift: Hip Rotation

The dataset used for evaluating this technique issue contained all correct deadlifts
and hip rotation videos for the deadlift.

This method showed very variable result based on the human pose estimation system
used. WrnchAI scored very good overall, while the two other systems had moderate
to low scores. The recall score is overall good, but as mentioned earlier this may be
due to the small dataset which in turn results to many detected technique issues.
The same can be said to be the reason for the some lower precision score as well. In
addition, the system resulted in a couple of errors.

Table 4.12: Result: Deadlift - Hip Rotation

Estimator Prec. Rec. F1 Acc. Errors

AlphaPose 0.86 0.86 0.86 0.82 0
OpenPose 0.57 0.80 0.67 0.50 3
WrnchAI 1.00 1.00 1.00 1.00 2

Avg/Total 0.79 0.88 0.83 0.79 5

4.3.9 Deadlift: Arching Lower Back

The dataset used for evaluating this technique issue contained all correct deadlifts
and arching of lower back videos for the deadlift.

Detecting arching of the lower back returned undoubtedly the poorest results of the
evaluation system. A simple check for arching seems to be insufficient in detecting
an arch. Especially AlphaPose had problems with this method, scoring terribly for
both precision and recall. The other two systems did a better job for both precision
and recall, but are still no able to detect the technique issue correctly, showed by
the low F1 and accuracy scores.

Table 4.13: Result: Deadlift - Arching Lower Back

Estimator Prec. Rec. F1 Acc. Errors

AlphaPose 0.25 0.13 0.17 0.17 0
OpenPose 0.60 0.38 0.47 0.42 0
WrnchAI 0.75 0.38 0.50 0.50 0

Avg/Total 0.54 0.29 0.38 0.36 0
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4.3.10 System Comparison

The system performed very differently depending on the filming angle of the pro-
cessed video. Front view, generated very good result for most metrics, while side
view showed sub-par performance.

In addition, the human pose estimation systems also performed differently even
though they used the same data and formulas. WrnchAI had the best results, with
AlphaPose close behind. OpenPose, while showing good results, had the lowest
scores out of the three systems.

Front View

All of the pose estimation systems performed good with an average precision, recall,
F1 and accuracy score around 0.9 for front view videos. One thing to note, is the
amount of errors generated while performing the calculations. These are probably
due to the high confidence scores used for the front view detection.

Table 4.14: Result: Estimator Comparison - Front

Estimator Prec. Rec. F1 Acc. Errors

AlphaPose 0.91 0.91 0.91 0.88 0
OpenPose 0.86 0.91 0.87 0.81 28
WrnchAI 0.92 1.00 0.96 0.94 10

Avg/Total 0.89 0.93 0.91 0.88 38

Side View

On the side view videos, all of the pose estimation systems resulted in sub-par per-
formance with average scores around 0.5 for most metrics. No errors were observed
while checking for technique aspects using side view keypoints, this may partially
be due to the lowered confidence threshold that was necessary to be able to run
the files. The lowered confidence threshold may also have played a role in the poor
results that were obtained.

Table 4.15: Result: Estimator Comparison - Side

Estimator Prec. Rec. F1 Acc. Errors

AlphaPose 0.40 0.56 0.47 0.36 0
OpenPose 0.59 0.59 0.59 0.49 0
WrnchAI 0.62 0.59 0.60 0.47 0

Avg/Total 0.54 0.58 0.56 0.44 0
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Overall

While OpenPose and AlphaPose have similar results with regards to precision, recall,
F1 and accuracy score, AlphaPose produced points with high confidence scores,
resulting in zero evaluation errors. WrnchAI had a higher score overall than the
other two systems, while producing ten errors.

Table 4.16: Result: Estimator Comparison

Estimator Prec. Rec. F1 Acc. Errors

AlphaPose 0.80 0.83 0.82 0.76 0
OpenPose 0.80 0.84 0.81 0.74 28
WrnchAI 0.86 0.91 0.87 0.84 10

Avg/Total 0.82 0.86 0.83 0.78 38

4.4 Qualitative Results

The qualitative results show that an expert is able to detect most technique aspects
on the sample video dataset, with only three incorrect predictions. All incorrect
prediction were technique aspects from the side view, which correlates well with the
results from the feedback system developed.

All incorrect predictions from the experts were false negatives, meaning that the
expert predicted that the video did not contain any technique issues while the video
actually were meant to indicate a technique issue. This has skewed the result for
the evaluation on side view somehow, by trying to detect technique issues in videos,
that according to the expert, actually is not there.

The rest of the videos in the sample set were predicted correctly. The sample set,
prediction and result are presented in Figure 4.17.

Table 4.17: Qualitative Results

Exercise Angle Technique As-
pect

Predicted Result

Squat Front Correct Correct True
Squat Front Inward Knees Inward Knees True
Squat Front Inward Knees Inward Knees True
Squat Front Inward Feet Inward Feet True
Squat Front Inward Feet Inward Feet True
Squat Front Hip Shift Hip Shift True
Squat Front Hip Shift Hip Shift True
Squat Front Hip Rotation Hip Rotation True
Squat Front Hip Rotation Hip Rotation True
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Table 4.17: Qualitative Results

Deadlift Front Correct Correct True
Deadlift Front Inward Knees Inward Knees True
Deadlift Front Inward Knees Inward Knees True
Deadlift Front Elbow Flex Elbow Flex True
Deadlift Front Elbow Flex Elbow Flex True
Deadlift Front Hip Rotation Hip Rotation True
Deadlift Front Hip Rotation Hip Rotation True
Squat Side Correct Correct True
Squat Side Knee-extension Correct False
Squat Side Knee-extension Correct False
Deadlift Side Correct Correct True
Deadlift Side Arch Correct False
Deadlift Side Arch Arch True

4.5 Comparison to the State-of-the-Art

To see how the system actually performs and how the technology can be applied to
the technique evaluation application, it is important the view the research in light of
similar research in the same area. For this application, the Pose Trainer developed by
Steven Chen and Richard Yang were the closest with regards to evaluation method
approach and end goal. Thus, setting the bar for research with similar approaches
in the same area.

When comparing the two solutions, it is important to measure them according to
multiple factors such as end result of the system, dataset used for evaluation and
technique detection approach.

Exercises

Pose Trainer uses a total of four exercise, namely bicep curl, front raise, shoulder
shrug and shoulder press. For these movements, only the arms and shoulders are
involved in performing the exercise, giving a smaller subset of relevant keypoints.
In addition these exercise are considered to be isolation exercises, meaning that one
muscle group is used to push or pull the weight. This makes the exercises easier
to perform, and thus decreases the number of technique issues that naturally occur
while lifting.

In comparison, this solution only uses two exercises. However, these exercises are
compound exercise were the whole body is part of the movement and more muscles
are used on each repetition. These are also very technical movements that are harder
for the user to learn, making them very prone to injuries. Because of this, this thesis
needed to track the whole body continuously and look for multiple issues at the same
time.
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Dataset

Pose Trainer used a dataset of 112 videos in total, divided between the four exer-
cises evaluated. This gave an average of 28 videos per each exercise. The dataset
were based on two different male subjects executing each exercise. All human pose
estimation data were generated by running all videos on OpenPose.

For this solution, a total of 84 videos were created, giving an average of 42 videos
for each of the two exercises. The dataset are based on four different subjects
executing each movement, two male and two female. All videos were processed by
three different human pose estimation systems, namely OpenPose, AlphaPose and
WrnchAI. This process tripled the amount of output data.

Detection Method

Pose Trainer used two different approaches to evaluate the technique, one heuristic-
based and one machine learning based approach. The two methods were used inde-
pendently of each other. The heuristic-based method used vector geometry to eval-
uate the exercise, while the machine learning approach used dynamic time warping.
For detecting viewing angle, Pose Trainer compares the visibility of the individual
keypoints to determine whether it was being filmed from the side or front.

Our approach only used a single vector geometric approach to evaluate the exer-
cise movement. However, a dynamic time warping approach was also applied a to
automatically detect both the exercise and viewing angle. It also focused on spe-
cific technique related issues and tested for each one independently to get a better
understanding of what the user is doing wrong.

Results

While using the same metrics to evaluate the results, Pose Trainer presented the
data with regards to correct or incorrect execution of the movements as shown in
Table 4.18. While this thesis present the result for each given technique aspect
separately, Which in turn makes the results challenging to compare to one another.

Pose Trainer achieved good results using their machine learning approach, with
front raise being correctly detected as either correct or incorrect for all exercises.
The other exercises also showed good results with a F1 score around the 0.8 mark.
This data however, is only the result of the machine learning approach. As for the
geometric algorithm used, none of the results were mentioned except for the bicep
curl detector which was able to detect 80% of the bad executions.

The bicep curl, front rise and shoulder press were all detected from a side view
perspective, and gave considerable higher scores than the side view evaluation in
this thesis. This reveals that dynamic time warping may be a better choice for this
scenario.

However, comparing the front view results, this thesis had a F1 score of around 0.9
based on the pose estimator used. Indicating that it can detect unique technique
aspect just as good, if not better than the machine learning approach used by Pose
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Trainer. In addition, the OpenPose result for this thesis had an average F1 score of
0.82, which is close to the average score of Pose Trainer, which also uses OpenPose
for the pose estimation task. Though, this does not take into account the amount
of errors generated by the OpenPose approach, at about 28 errors.

Both Pose Trainer and this system were 100% accurate when detecting viewing angle
of the film despite using different a approach for detection.

Table 4.18: Pose Trainer: Machine Learning Results

Exercise Prec. Rec. F1 Videos

Bicep Curl:

Correct 0.80 1.00 0.89 4
Incorrect 1.00 0.67 0.80 3
Avg/Total 0.89 0.86 0.85 7

Front Raise:

Correct 1.00 1.00 1.00 6
Incorrect 1.00 1.00 1.00 6
Avg/Total 1.00 1.00 1.00 12

Shoulder
Shrug:

Correct 1.00 0.75 0.86 8
Incorrect 0.71 1.00 0.83 5
Avg/Total 0.89 0.85 0.85 13

Shoulder Press:

Correct 0.67 0.86 0.75 7
Incorrect 0.83 0.62 0.71 8
Avg/Total 0.89 0.73 0.73 15
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Chapter 5
Discussion

This chapter will discuss the different results and limitations of the system and its
associated components. Each sub-system will first be discussed individually before
the system as a whole will be reviewed.

Thesis Goal

The development of Human Pose Estimation has come a long way and the table is
now set for a more widespread application of the technology in the sport and fitness
industry. That is why the goal of this thesis was to explore the opportunities in one
of these areas by answering the following question:

RQ: To which extent can 2D Human Pose Estimation be used as a tool to give
valuable feedback on weight training technique to minimize risk of injuries?

In addition to gaining insight into different Human Pose Estimation Systems and
researching risk related to weight training, two physical systems were decided on
to try answering the research question. A Action Recognition System with the goal
of automatically detecting the exercise and filming angle of a video, such that the
technique aspects related to the given exercise and filming angle can be automatically
tested for. And a Technique Evaluation System with the goal of detecting technique
aspects with a high association to risk of injury. Thereby informing the users when
they are performing an exercise in such manner that they risk injuring them self.

5.1 Action Recognition System

This system had two main objectives: detect the angle that the video was filmed
from and detect the exercise performed in the video. Both were equally important
to correctly classify which sub-set of technique aspects that should be tested for on
the specific video.
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5.1.1 Angle Detection

To be able to give feedback on weight training technique, it is crucial to know which
angle the exercise is being filmed from. This is the first decisive step in analyzing the
exercise videos, a wrong angle prediction would lead to wrong results throughout the
rest of the system. By using a distance vector between both shoulders the system
was able to accurately predict all viewing angles without any error. The distance
between the shoulders of a person is very consistent, independent of what movement
the user is doing. This suggests that larger datasets of the same composition of front
and side viewing angles will achieve similar results.

Limitations

The angle detector has not been tested for angles that are not necessarily categorized
as being strictly front or side. The system cannot rule out angles that are not
supported by the vector calculations.

Since the system is using the average non-normalized distance between the shoulders,
any movement that involves excessive rotations of the user will increase the likelihood
of false predictions. The squat and the deadlift restricts the user from rotating
excessively, but other complex exercises might prove to be challenging.

Since the shoulders are not normalized for this detection method, a person very far
away from the camera doing a front viewing exercise, will possibly have a perceived
shoulder distance small enough to be predicted by the system as being filmed from
the side. The average shoulder distance was compared against a constant threshold
value, which is independent of how much space the user is taking up from the image.

5.1.2 Exercise Detection

Knowing that all the angle detection tests were successful, the next crucial step in
the system was to detect what exercise the user was performing. The system is able
to detect all deadlifts as deadlifts, meaning that when the user was performing a
deadlift the system was sure to predict this correctly. The same could be said for
squats filmed from a front viewing angle. The right shoulder y-axis used as input
for the Dynamic Time Warping algorithm seemed to be a good choice for these two
types of exercises. Though the system struggled to predict the side viewing angles
for the squat.

The errors made from predicting side viewing squats as deadlifts creates an uncer-
tainty for this exercise category. An error at this stage of the system leads to wrong
vector calculations and from there wrong user feedback. This challenges the research
question this thesis is reaching to answer, can this system give valuable feedback to
the user? Only 4-5 out of 82 videos per user were taken from the side angle, making
the results questionable as if the system is able to accurately detect the exercise
from a side view perspective.
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Limitations

The right shoulder y-axis was used as input for the Dynamic Time Warping algo-
rithm and is not necessarily expandable to other exercises. In some exercises the
user does not move their shoulders on the y-axis, such as a shoulder press or a bicep
curl. This suggests that larger changes to the exercise detection are needed to ac-
commodate for other exercises. As a result, using additional keypoints to deal with
the added complexity in other exercises is needed.

As with angle detection, the system was unable to rule out exercises that are not
strictly a deadlift or a squat, leading to a wrong evaluation. The Exercise Detection
system expected either a squat or a deadlift and would categorize the video in either
of those two independent of what the user is doing in the video.

5.2 Technique Evaluation System

The goal of this part of the system was to detect technique aspects and wrong lifting
forms while already knowing the keypoints, viewing angle and exercise at hand. This
is where the accuracy of the Pose Estimation systems would strongly determine how
well one is able to correctly predict the technique aspects that are apparent in a
video.

5.2.1 Technique Detection

Hip Rotation was hard to detect, as rotation leads to a shorter difference in the
length on x-axis. It might also make it harder for the pose estimators to detect
the keypoints when the shoulders go more out of the camera view. Despite of this,
the method used was able to detect this technique aspect to a noticeable degree.
Comparing this to the results from hip shift, which were much more accurate and
fewer errors, it may strengthen the suspicion that rotation is a movement that is
innately hard to detect on a two-dimensional plane.

Inward feet and inward knees had one of the most promising results, with the method
for detecting inward knees being rather complex for the squat, but simpler for the
inward knees deadlift and inward feet squat. These promising results observed from
inward knees were surprising as there were several patterns for this technique aspect,
as mentioned in the section Squat: Inward Knee. Inward feet had a very specific
pattern, making it easier to detect. Though, due to some noise in the keypoint data,
the results were not perfect while using OpenPose and WrnchAI. The consistent
pattern between the ankles and knees suggests that this method will be successful
in detecting inward feet in larger dataset with an accuracy analogous to the accuracy
of these findings.

The elbow flex also had a rather simple method of calculating keypoint distances on
the x-axis. This simple method lead to very good results, perfect using WrnchAI and
OpenPose, with AlphaPose close behind. The overall precision was 1.00, meaning
that all detected elbow flex were true. As with the inward feet, having a simple
method while scoring high suggests that the results are scalable to larger datasets.
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Overextension of the knees and arch were the hardest to detect, indicated by the low
results shown in Figure 4.9 and 4.13. Both of these technique aspects were filmed
from a side view, making the side view results the worst in the evaluation. The
technique detection was unable to give any valuable feedback on whether the user
was performing a squat with overextension of the knees or arching of the lower back
on a deadlift. Several of the users had difficulties in provoking an overextension,
leading to a lower dataset, but there is doubt whether this impacted the overall
performance of the method. Considering that the expert that evaluated samples of
the videos had most trouble with detecting the side viewing technique aspects, it
might suggest that a more precise and complex equipment is needed here.

Overall the technique detectors were able to detect the front view exercise technique
aspects with significant results, while the side view technique aspects were less suc-
cessful. This is undoubtedly related to the Human Pose Estimators differences in
accuracy for the two angles. Poor accuracy for the side view translated into uncer-
tainty in the time series and complex calculations. While high accuracy from the
front perspective gave clear patterns and easier partition of correct and incorrect
dataset.

Limitations

The dataset had a correct/flawed file ratio of about 1 2 meaning that there were
about two times more videos with a technique aspect than with a correct execution
for the exercise. This means that if the methods detected all videos to contain the
technique aspect, then precision would default to 0.66 and recall to 1.00, which may
partially explain the very positive results. There might also have been some bias
from the researchers while instructing the users to initiate an exercise with a specific
technique aspect, leading to a dataset that does not capture keypoint patterns that
occur with other untested users.

Some technique aspects inherit other technique aspects, such as inward feet resulting
in inward knees as well. The system does not take into account that a hip shift or hip
rotation might for also include inward knees. This increases the complexity of the
system, but it necessary to really explain the movement in its entirety. Often, more
technique aspect are prominent while performing an exercise, due to low flexibility
or too heavy weights.

The side view keypoints were very inaccurate, making it tough to see any patterns
in the movement from a visual standpoint on the time series graphs. This also led
to difficulties when creating methods for the side view data, since there were few
similarities between the graphs. The keypoint data for side view, also had large
enough value spikes to trigger any threshold value that were set for the movement,
making it even harder to pinpoint patterns in the data.

The methods used frame count as an index for the threshold values, a better metric
would may be to use the length as a percentage of the video. A user might perform
the exercise quite fast, or use a camera that has a high frames per second count,
thereby leading to more false results. Although, the data tested on also had a high
diversity in frames per second, showing that this metric is applicable as well.
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5.2.2 Human Pose Estimation System

From the preliminary studies it was known that AlphaPose had the highest mean av-
erage precision out of the candidates, and that OpenPose and WrnchAI had similar
scores. AlphaPose had zero errors when detecting technique aspects, which was con-
tributed by the high precision and high confidence score in the keypoints. WrnchAI
had about 10 errors, with 8 of them coming from the deadlift exercise. OpenPose
had surprisingly 28 errors, and was the most unstable out of all the candidates.

Overall, WrnchAI scored the highest on accuracy, but with more errors than Alpha-
Pose, which scored the second highest. Focusing on the front view scores shown in
Table 4.14, the difference between WrnchAI and AlphaPose shortens, though Wrn-
chAI was able to detect all the relevant technique aspects with a recall of 1.00. Con-
sidering that the keypoints from the side view were far from optimal, the front view
scores might suggest a better comparison of the Human Pose Estimators. OpenPose
had the lowest accuracy out of all the candidates, but still showed noticeable result.

When determining which Pose Estimation System that performed best at detection
technique aspects it is important to take both the number of errors, recall and
precision into consideration. WrnchAI had a perfect recall score on the front viewing
exercises and a high precision with a score of 0.92, but due to the high error count,
it would not do well in a real life scenario unless the confidence threshold was
lowered, thus lowering the evaluation scores. With an error percentage of 34%
and the lowest scores on the evaluation dataset, OpenPose proved to be the worst
candidate. The errors generated from OpenPose could be mitigated by lowering the
confidence threshold, but this would further worsen the accuracy score. Having zero
errors and second highest precision score, AlphaPose seems to be the most reliable
Human Pose Estimation system to generate keypoints that gives the most accurate
feedback to the user.

Limitations

The errors, as mentioned in the methodology section, were a result of too low confi-
dence score leading to inaccurate calculations. Even though the confidence thresh-
olds were the same for every pose estimation system, some lead to more errors than
others. The confidence output of every system might be using a different scale,
meaning that a confidence score of 0.9 on AlphaPose might not be the same as a 0.9
score on WrnchAI. This might also explain the higher scores on WrnchAI, as they
may be stricter on what a confidence score of 0.9 is, leading too more errors under
calculation. It would be interesting to see if AlphaPose and WrnchAI had similar
results if the confidence threshold was lowered for WrnchAI, thereby removing the
errors.

The dataset consisted of a very narrow userbase, consisting only of healthy young
individuals with some amateur lifting experience. This might discriminate towards
users with physical disabilities or body types that largely diverge from the dataset
generated in this thesis. Also, due to most training facilities being closed in 2020
as a result of the global COVID-19 pandemic, filming of some users performing the
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exercises had to be done in less realistic scenarios. This may have partially impacted
the performance of the Human Pose Estimators.

5.3 General Discussion

There are a few things that could of been done differently too better evaluate the
system. Considering that there are a lot of methods being tested, the dataset would
benefit from being considerably larger, by adding more users and even more videos,
to better answer the research question of this thesis. Fortunately the results still
seem to point towards a satisfactory conclusion. Also regarding the goal of thesis, if
users are to use this software, there needs to be an acceptance in the market. Would
anyone film themselves and serve the video to the application? An assumption has
been made that the answer is yes, but further research into this topic is needed to
accurately answer this question. Lastly, keypoints on a 2-dimensional video seems
to give valuable information on whether or not the user is performing their exercises
with correct form. Though an important aspect of weight lifting is also knowing
which muscles to engage, not only if the person is using a correct form. A correct
form may increase the likelihood that the correct muscles are being used, but this
can only be tracked by other more sophisticated hardware or through user feedback.

The findings indicate that 2D Human Pose Estimation may be successful in giving
feedback on weight training technique to minimize risk of injuries from a front view-
ing angle on healthy individuals. Further research and improvement to the technique
detection is needed to better answer if the success of front view is transferable to
side viewing angles. The favorable results from the Pose Trainer on side viewing
angles might also suggest that dynamic time warping is a better choice for these
types of technique aspects. Exercises that require rotation seem to be harder to de-
tect, but the system is able to generate partially successful results here. Comparing
these findings to the Pose Trainer, the system at hand seems to generate similar
results, yet with a larger dataset and more precise feedback on more complex ex-
ercises. This research extends what has been done in Pose Trainer and confidently
shows how well simple techniques used with 2D Human Pose Estimation keypoints
can give feedback on weight lifting form.
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Conclusion & Future Work

This research aimed at using Human Pose Estimation to capture and detect specific
technique related issues in weight training. By testing multiple Human Pose Esti-
mation systems on a small set of users, the thesis has shown that the technology
can be applied to create a working fitness technique evaluation system for multiple
users, exercises and technique issues.

The research clearly illustrates that Pose Estimation technology can be accurate
enough to detect technique issues in weight lifting, but it also raises the question
about its possibility to detect issues only visible from the side. The inaccuracy of
the Pose Estimation tools on side view videos impacts the rest of the solution to
perform significantly better on videos seen from the front than the side.

While the small user set limits the generalizability of the results, this approach
provides new insight by testing the same solution for different body compositions
and multiple pose extraction systems. Proving that variations can be accounted for
and generalized such that inferences about weight lifting technique can be performed
correctly.

Earlier work in the area has mainly focused on depth cameras or multiple sensors
to gain information in the three-dimensional space. This thesis explored the two-
dimensional space by only using a single RGB camera to capture the pose of the
subject. This resulted in a more accessibility service, that theoretically requires no
more than a mobile camera of the users themselves.

This thesis also separates from earlier work by detecting specific technique issues
instead of exclusively distinguishing between correct and incorrect execution of an
exercise. By attacking the problem in this manner you have more information on
precisely what the user are doing wrong during an exercise. Thus giving yourself
the opportunity to provide the user with feedback on what they have to change in
order to fix their form for that exercise. This is an important aspect to minimize
the risk of injury, which this system is all about.
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Future Work

Based on these conclusions, practitioners should consider testing the same approach
on a bigger user set, with higher variability between experience and body composi-
tion to confirm the findings of this thesis. An approach where the users themselves
film and provide footage for testing could reveal issues not observed in a controlled
environment, as well as help maximize the diversity in the dataset. Further work
should also include adding to the exercise and technique pool to explore the trans-
ferability of the solution to other exercises.

Since the specific technique issues are known, it is possible to build on the solution
to provide specific feedback for improvement to the user. This could simply be the
detected aspect or more detailed information as which knee moves inward or which
way the hips rotate. A description on how to improve the technique issue could also
be presented as feedback, provided the domain knowledge is present.

Another improvement is to use the relative height of the person in time series to
track the subjects movements during an exercise. By doing so, the start and stop
position of a repetition can be automatically defined and repetitions counted. This
dismisses the need to manually define the start and end position of a movement.

The improvements mention above are not only interesting topics for further research,
but added all together, they have the opportunity to form a complete application
with interface, technique evaluation and feedback to the user. An application to
guide the users towards an injury free lifting experience, all with the Human Pose
Estimation Assisted Fitness Technique Evaluation System at the core of the appli-
cation.
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Appendix A
Source Code

A.1 Pose Extraction System

Some code snippets demonstrating dataformat and keypoint information stored in
the database.

A.2 Technique Evaluation System

All formulas produced in connection with the Technique Evaluation System to in-
dividually detect a given technique aspect.
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APPENDIX A. SOURCE CODE

1 points.append({

2 'file': exercise.split('.')[0],

3 'user': user,

4 'degree': degree,

5 'estimator': 'alphapose',

6 'view': exercise.split('.')[0].split('_')[2],

7 'exercise': exercise.split('.')[0].split('_')[1],

8 'flaw': exercise.split('.')[0].split('_')[3],

9 'keypoints': {

10 'nose_y' : nose_y,

11 'nose_x' : nose_x,

12 'nose_s' : nose_s,

13 'eyeL_y' : eyeL_y,

14 'eyeL_x' : eyeL_x,

15 'eyeL_s' : eyeL_s,

16 'eyeR_y' : eyeR_y,

17 'eyeR_x' : eyeR_x,

18 'eyeR_s' : eyeR_s,

19 'earL_y' : earL_y,

20 'earL_x' : earL_x,

21 'earL_s' : earL_s,

22 'earR_y' : earR_y,

23 'earR_x' : earR_x,

24 'earR_s' : earR_s,

25 'wristL_y' : wristL_y,

26 'wristL_x' : wristL_x,

27 'wristL_s' : wristL_s,

28 'wristR_y' : wristR_y,

29 'wristR_x' : wristR_x,

30 'wristR_s' : wristR_s,

31 'shoulderL_y': shoulderL_y,

32 'shoulderL_x': shoulderL_x,

33 'shoulderL_s': shoulderL_s,

34 'shoulderR_y': shoulderR_y,

35 'shoulderR_x': shoulderR_x,

36 'shoulderR_s':shoulderR_s,

37 'elbowL_y': elbowL_y,

38 'elbowL_x': elbowL_x,

39 'elbowL_s': elbowL_s,

40 'elbowR_y': elbowR_y,

41 'elbowR_x': elbowR_x,

42 'elbowR_s': elbowR_s,

43 'kneeL_y': kneeL_y,

44 'kneeL_x': kneeL_x,

45 'kneeL_s': kneeL_s,

46 'kneeR_y': kneeR_y,

47 'kneeR_x': kneeR_x,

48 'kneeR_s': kneeR_s,

49 ...

Listing 2: Source Code: Squat - Inward Knees
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APPENDIX A. SOURCE CODE

1 ...

2 'hipL_y': hipL_y,

3 'hipL_x': hipL_x,

4 'hipL_s': hipL_s,

5 'hipR_y': hipR_y,

6 'hipR_x': hipR_x,

7 'hipR_s': hipR_s,

8 'ankleL_y': ankleL_y,

9 'ankleL_x': ankleL_x,

10 'ankleL_s': ankleL_s,

11 'ankleR_y': ankleR_y,

12 'ankleR_x': ankleR_x,

13 'ankleR_s': ankleR_s,

14 'neck_x': neck_x,

15 'neck_y': neck_y

16 }})

Listing 3: Source Code: Squat - Inward Knees
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APPENDIX A. SOURCE CODE

1 maxR = 0

2 maxL = 0

3 start_pos = True

4 one_knee_over_time = 0

5 if (len(neck) == 0):

6 minh = maxh = 0

7 minh = neck[1]

8 maxh = (neck[1] - minh)

9 for i in range(len(kneesL)):

10 distanceR = abs(kneesL[i] - ankleL[i])

11 distanceL = abs(kneesR[i] - ankleR[i])

12 height = (neck[i] - minh)

13 if maxR < distanceR:

14 maxR = distanceR

15 if maxL < distanceL:

16 maxL = distanceL

17 if maxh < height:

18 maxh = height

19 # Knees outside ankles

20 if start_pos and ((kneesL[i] > ankleL[i])

21 and (kneesR[i] < ankleR[i])):

22 start_pos = False

23 # One knee goes over ankle long before the other

24 elif (not start_pos)

25 and (kneesL[i] < ankleL[i] and kneesR[i] < ankleR[i]

26 or kneesR[i] > ankleR[i] and kneesL[i] > ankleL[i]):

27 if one_knee_over_time < 15:

28 one_knee_over_time = one_knee_over_time + 1

29 else:

30 print('knee over ankle too long')

31 return 'InwardKnees'

32 # Knees go in before starting height

33 elif (not start_pos and ((kneesL[i] < ankleL[i])

34 and (kneesR[i] > ankleR[i]))):

35 if (height > maxh*0.7):

36 print('knees behind ankles too early')

37 return 'InwardKnees'

38 # Knees never go outside ankles

39 if start_pos:

40 print('knees never outside ankle')

41 return 'InwardKnees'

42 if maxR < 0.2 or maxL < 0.2:

43 print('Knees too near ankles')

44 return 'InwardKnees'

45 return 'Correct'

Listing 4: Source Code: Squat - Inward Knees
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APPENDIX A. SOURCE CODE

1 start_pos = True

2 maxR = 0

3 maxL = 0

4 for i in range(len(kneesL)):

5 distanceR = abs(kneesL[i] - ankleL[i])

6 distanceL = abs(kneesR[i] - ankleR[i])

7

8 if maxR < distanceR:

9 maxR = distanceR

10 if maxL < distanceL:

11 maxL = distanceL

12 # Knees outside ankles

13 if start_pos and ((kneesL[i] > ankleL[i])

14 and (kneesR[i] < ankleR[i])):

15 start_pos = False

16 if start_pos:

17 print('knees never outside ankle')

18 return 'InwardFeet'

19 if maxR < 0.15 or maxL < 0.15:

20 print('Knees too near ankles')

21 return 'InwardFeet'

22 return 'Correct'

Listing 5: Source Code: Squat - Inward Feet
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APPENDIX A. SOURCE CODE

1 start_pos = True

2 maxL = elbows[1]

3 minL = elbows[1]

4 minH = neck[1]

5 maxH = neck[1]

6 index = 0

7 # Does not accommadate for different holding positions

8 # Shoulder scaling fixes person size problem.

9 # Unstable values makes for innacurate

10 # Joachim holds the bar very close,

11 # making it hard to predict

12 for i in range(len(elbows)):

13 if maxL < elbows[i]:

14 maxL = elbows[i]

15 if minL > elbows[i]:

16 minL = elbows[i]

17 if maxH < neck[i]:

18 maxH = neck[i]

19 index = i

20 if minH > neck[i]:

21 minH = neck[i]

22 if ((minL < t)):

23 return 'HipRotation'

24 return 'Correct'

Listing 6: Source Code: Squat - Hip Rotation
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APPENDIX A. SOURCE CODE

1 maxL = kneesL[1]

2 minL = kneesL[1]

3 maxR = kneesR[1]

4 minR = kneesR[1]

5 # Distance from hip and ankle shortens

6 # during lowest height depending on which side that shifts

7 for i in range(len(kneesL)):

8 if maxL < kneesL[i]:

9 maxL = kneesL[i]

10 if minL > kneesL[i]:

11 minL = kneesL[i]

12 if maxR < kneesR[i]:

13 maxR = kneesR[i]

14 if minR > kneesR[i]:

15 minR = kneesR[i]

16 if ((maxL*t > minL) or (maxR*t > minR)):

17 return 'HipShift'

18 return 'Correct'

Listing 7: Source Code: Squat - Hip Shift

1 maxR = 0

2 maxL = 0

3 knee_inward = False

4 for i in range(len(kneesL)):

5 if (kneesL[i] < ankleL[i] or kneesR[i] > ankleR[i]):

6 distanceR = abs(kneesL[i] - ankleL[i])

7 distanceL = abs(kneesR[i] - ankleR[i])

8 knee_inward = True

9 if maxR < distanceR:

10 maxR = distanceR

11 if maxL < distanceL:

12 maxL = distanceL

13 # Normal to see inwardknee in deadlift, but no excessively.

14 # Inward knee over threshold

15 if knee_inward and maxR > t or maxL > t:

16 return 'InwardKnees'

17 return 'Correct'

Listing 8: Source Code: Deadlift - Inward Knees
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APPENDIX A. SOURCE CODE

1 maxLD = shouldersL[1]

2 minLD = shouldersL[1]

3 maxRD = shouldersR[1]

4 minRD = shouldersR[1]

5 for i in range(len(shouldersL)):

6 if maxLD < shouldersL[i]:

7 maxLD = shouldersL[i]

8 if maxRD < shouldersR[i]:

9 maxRD = shouldersR[i]

10 # Need to accommodate for starting width held

11 if (abs(minRD - maxRD) > t or abs(minLD - maxLD) > t):

12 return 'HipRotation'

13 return 'Correct'

Listing 9: Source Code: Deadlift - Hip Rotation

1 if (shouldersL[0] < shouldersL[-1]):

2 return 'Arch'

3 return 'Correct

Listing 10: Source Code: Deadlift - Arching Lower Back

1 start_pos = True

2 maxD = shouldersL[1]

3 minD = shouldersL[1]

4 for i in range(len(shouldersL)):

5 if maxD < shoulders[i]:

6 maxD = shoulders[i]

7 if minD > shoulders[i]:

8 minD = shoulders[i]

9 if (abs(minD - maxD) > t):

10 return 'ElbowFlex'

11 return 'Correct'

Listing 11: Source Code: Deadlift - Elbow Flexion

1 if not(shouldersL[1] - shouldersL[-1] > t

2 or shouldersR[1] - shouldersR[-1] > t):

3 return 'KneeExtention

Listing 12: Source Code: Deadlift - Knee Extension
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