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Abstract
The work presented in this master’s thesis revolves around the field of computational
music generation, which is a prominent sub-field of Computational Creativity. The
main motivation for the research conducted throughout this project has been to discover
various computational solutions for music generation, with an emphasis on evolution-
ary approaches, and as such provide contributions within the field of Computational
Creativity. The most substantial part of the work, presented in this thesis, is the imple-
mentation of a system capable of generating melodies based on the emotional expression
and structure of input lyrics. The core element of said system is a multi-objective
evolutionary algorithm that handles the generation of melodies, also making use of sen-
timent analysis and syllabification algorithms for the input lyrics. The implementation
was quantitatively evaluated through a questionnaire, and the most interesting finding
was that the system was deemed useful as an assisting resource for music composition.
The system output can also be considered encouraging, as the aggregated questionnaire
scores suggested that the quality of the generated melodies was on the favourable side
of neutral.

The main contributions of this master’s thesis are the implemented system, as well as
explorations within evolutionary concepts of computational music generation, such as
the testing of various musically grounded fitness approaches. The insights gathered from
the questionnaire can also be deemed a valuable contribution, as it could provide clarity
of people’s expectations regarding the behaviour and quality of automatically generated
music.
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Sammendrag
Arbeidet som blir presentert i denne masteroppgaven dreier seg hovedsakelig om data-
maskinstyrt musikkgenerering, som er en fremtredende gren innenfor datamaskinstyrt
kreativitet. Den viktigste motiverende faktoren for å gjennomføre dette forskningspro-
sjektet har vært å oppdage muligheter for datamaskinstyrt generering av musikk, med
et hovedfokus på evolusjonære løsninger, og på denne måten bidra til videreutviklingen
av feltet datamaskinstyrt kreativitet. Den viktigste delen av det gjennomførte arbeidet i
forbindelse med denne masteroppgaven er implementasjonen av et system som er i stand
til å automatisk generere melodier basert på oppbyggingen av gitte inputtekster, samt
tekstenes følelsesmessige kvaliteter. Hoveddelen av systemet er en evolusjonær algoritme
med fokus på å optimere flere delmål. Denne algoritmen håndterer selve melodigenere-
ringen, mens det i tillegg er brukt andre algoritmer til sentimentanalyse og detektering
av stavelser i inputtekster. Systemimplementasjonen ble kvantitativt evaluert gjennom
en spørreundersøkelse, og det viktigste funnet fra denne var at systemet ble ansett som
potensielt nyttig som en assisterende ressurs ved komponering av musikk. Kvaliteten til
systemets genererte melodier kan også anses som lovende, ettersom de aggregerte resul-
tatene fra spørreundersøkelsen antyder at de evaluerte melodiene har en kvalitet noe
over middels.

De viktigste forskningsbidragene til denne masteroppgaven er det implementerte sys-
temet, i tillegg til utforskning av flere evolusjonære konsepter innen datamaskinstyrt
musikkgenerering, slik som testing av diverse fitnessfunksjoner av musikalsk art. Viktige
funn fra spørreundersøkelsen kan også regnes som viktige bidrag, ettersom de kan hjelpe
med å kartlegge folks forventninger til kvaliteten på automatisk genererert musikk.
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1. Introduction
This master’s thesis presents research conducted within the field of Computational Cre-
ativity, namely by doing an in-depth study of automatic music composition, with an
emphasis on multi-objective evolutionary algorithm approaches. The thesis provides a
literature review of state-of-the-art solutions for automatic music generation, as well as
the development and implementation of a system that generates melodies based on in-
put lyrics, with a core focus on having the melody be fitting of the lyrics. The research
includes a questionnaire for evaluating the system output, as well as a review of different
architectural solutions for the evolutionary design and sentiment analysis.

The following chapter is intended to give the reader a clear and thorough overview
of the project scope of this thesis, as well as introduce the fundamental goal of the
project, give a declaration of the main motivating factors resulting in the given thesis,
and present the research questions and contributions.

1.1. Background and Motivation
The field of Computational Creativity is highly viable and continuously evolving. It com-
bines Computer Science, mainly through the use of Artificial Intelligence technologies,
with different understandings of creativity, aiming to develop software that can emulate
human creativity. This includes systems concerned with generating inherently creative
ideas, as well as systems intended to understand and evaluate creativity. Possibilities
in the development of creative software include all branches of creativity, such as art,
music and poetry, and takes many forms, such as autonomous algorithms for generating
stand-alone creative pieces of art, or supportive programs functioning as collaboration
tools for the human creative process (Colton et al., 2009).

Automatic music generation is a sub-topic within Computational Creativity, that has
been researched for several decades, and numerous solutions have been presented to solve
a variety of sub-problems (Nierhaus, 2009; Rader, 1974), where the first fully computer
generated composition was famously done by Hiller Jr and Isaacson (1957), when they
generated their “Illiac Suite”.

As music generation is a highly relevant topic of Computational Creativity, filled
with endless possibilities, only limited by creative imagination and computer software,
this thesis focuses on research within the topic of computational music generation. The
main goal of the thesis has been to develop a system for generating harmonising melodies,
based on lyrical input, having a strong focus on applying a correct sentiment value fitting
both the lyrical input and the generated melodies. The quality of the system was then
to be evaluated by human users.

1



1. Introduction

With a basis in these topics, the main motivation of this thesis has been to contribute
to the field of Computational Creativity through exploring different possibilities of music
generation, as well as developing a system that could be used as an idea generator for
musicians and songwriters, and as such be a collaboration tool for human creativity.

1.2. Goals and Research Questions
Goal To provide a novel solution for automatically generating melodies fitting the struc-

ture and sentiment of user defined input lyrics

Research question 1 - (RQ1) By using an evolutionary algorithm approach, in what
ways could a melody be automatically generated, as to fit given lyrics, as well as
capture the lyrics’ sentiment?

To provide a satisfying answer to RQ1, it is important to conduct a study of state-of-the-
art techniques within music generation and sentiment analysis. To be able to capture
the sentiment of given lyrics and translate it to a melody, key musical components
associated with given sentiments must be asserted. For RQ1 to be relevant to the main
goal, key elements from the study must be analysed and considered, when developing
the algorithm concerned with melody generation. As the research question specifies
an evolutionary algorithm approach, it is necessary to determine the most prosperous
evolutionary approaches to music generation.

Research question 2 - (RQ2) How good will the quality of the melodies generated by
the system prove to be, when judged in a human context?

Evaluation is an invaluable aspect of Computational Creativity, as large scale testing
and questioning can be highly valuable in determining the quality of generated creativity.
To answer RQ2 it is necessary to establish how a set of humans evaluates the generated
results from the separate parts of the system, such as results from sentiment analysis,
syllabification and the generated melodies. A main component within this research
question is also to determine to what extent the system could be of assistance in human
songwriting and composition tasks.

1.3. Research Method
The main research methods adopted in this project could be said to be both exploratory
and empirical in nature. The initial research into state-of-the-art methods of computa-
tional music generation, covered in the literature review of chapter 3, could be considered
exploratory research.

Experiments conducted in the system development phase, when making architectural
decisions, could be considered a combination of exploratory and empirical research, as
testing was conducted on multiple setups, where selected experiments were conducted

2



1.4. Contributions

as part of exploring previous solutions and problems. The architectural decisions that
were made based on the test results can be described as empirical decisions.

The main evaluation criteria for establishing to what degree the project goal has been
successfully reached are found through empirical research. To accurately evaluate the
finished system implementation, the quality of a set of system generated melodies was
quantitatively evaluated through a questionnaire. Human judges were set to evaluate
the generated melodies based on specific evaluation criteria, described in chapter 5.

1.4. Contributions
This section serves as a brief overview of the main contributions of this master’s thesis.
A further description of the contributions is presented in section 7.2.

1. An implemented system for lyric-based melody generation, following a multi-
objective evolutionary approach, that can serve as an assisting tool in human
composition

2. A review of interesting approaches to evolutionary music generation

3. The results gathered from experiments conducted on different architectural ap-
proaches in the development phase

4. The results gathered from a questionnaire regarding the quality of melodies generated
by the system

1.5. Thesis Structure
The structure of this thesis follows a division into 7 chapters. In addition, the main
matter is succeeded by a bibliography, presenting all cited literature throughout the
thesis, and an appendix providing valuable extra information regarding the melodies gen-
erated as part of this project, as well as additional questionnaire information and results.

Chapter 1 provides a core overview of the background, motivation and the main
goals of the master’s thesis.

Chapter 2 is intended to give a thorough overview of the most important background
information necessary to understand key concepts of the system design and conducted
research throughout the project.

Chapter 3 presents a literature review of state-of-the-art approaches within compu-
tational music generation and lyrical sentiment analysis.

Chapter 4 presents the system architecture of the designed and implemented system
for lyric based melody generation, as part of this project.

Chapter 5 presents the experiments conducted on the system implementation presen-
ted in the previous chapter and the results gathered from the experiments.

3



1. Introduction

Chapter 6 presents a thorough evaluation of the results gathered from the experi-
ments and the questionnaire, as well as a discussion of the degree of accomplishment
regarding the research questions and main goal of the thesis.

Chapter 7 is intended to conclude the results in light of the discussion presented
in the previous chapter, as well as give an overview of the main contributions of the
research and provide an insight into possible future work.

4



2. Background Theory
This chapter is intended to familiarise the reader with the most important terms and
concepts adopted throughout this master’s thesis. Firstly general musical concepts are
covered in section 2.1, then theories in evolutionary algorithms, as well as the main
algorithm used as a baseline for the system architecture in chapter 4, is presented in
section 2.2. The following section 2.3 covers the most important concepts within natural
language processing. Lastly an overview of the main developmental resources is presented
in section 2.4.

2.1. Musical Theory
As to have a useful point of reference for the evolutionary algorithm and melody genera-
tion, it is essential to have a basic understanding of key principles in music theory. The
music theory will be presented with a main focus on conventions in western music. The
main sources of information when authoring this section was the chapter “Introduction
to Music Transcription” from the book Signal Processing Methods for Music Transcrip-
tion (Klapuri, 2006), and the e-book The Joy of Harmony and Composition (Tobey,
2012).

Pitches and Notes A musical pitch is a reference point for a perceptual attribute, that
places a sound on a frequency scale, determined by the sine wave of the sound’s
fundamental frequency. Notes are pitches with predefined values for their funda-
mental frequencies, e.g. the frequency of the note A4 is set to 440Hz, and two
notes in the same scale have a set relationship between them, e.g. calculating the
frequency of a corresponding note an octave higher simply implies doubling the
frequency (A4 = 440Hz, A5 = 880Hz). This does not imply that all instruments
have discrete pitches, i.e. strictly follow note values, and in the use of many instru-
ments, as well as singing, pitches between notes must also be considered as having
musical value.

Scale In western music notation, notes are arranged in different scales within an octave
range, i.e. 12 notes (including sharps/flats). The main notes range from A to G-
sharp/A-flat, with all notes, except E/F and B/C, having a sharp/flat note between
them. The special marking of notes as either flat () or sharp (), varies depending
on musical key and scale. The distance between a note and its immediate neighbour
(possibly sharp/flat) is of a semitone distance, which is the smallest note distance
in regular notation. Different scales are usually a sub-set of the 12 possible notes

5



2. Background Theory

Figure 2.1.: A C scale with a 3/4 time signature. Generated using LilyPond (described
in subsection 2.4.4)

of an octave, e.g. in a regular C major scale, the term octave is used to define
the 8 notes between and including C to C. The C major scale is often used as a
reference point for a scale, as it employs no use of sharp/flat semitones. Figure 2.1
shows a C scale in regular western musical notation. Scales are always looked at
with regards to their starting note, i.e. their tonic note. The scales applied in this
thesis are the major scale, the natural minor scale, and the harmonic minor scale.
These scales all include 8 notes (when the tonic is counted twice), and the naming
of the notes, based on their position in the scale, follows the naming convention in
Table 2.1. The naming convention is derived from Tobey (2012).

Table 2.1.: Scale degrees and naming convention
Scale positions and naming

1st 2nd 3rd 4th 5th 6th 7th
Tonic Supertonic Mediant Subdominant Dominant Submediant Leading tone

Key The concept of musical keys extends the description of scales in the sense that a
musical key is a rule set that defines which notes a specific scale should include.
This depends on the tonic note, which is the fundamental note the scale is based
upon, and whether the scale is fundamentally major or minor.

Rhythm and time signature A simple rhythm consists of relationships between time-
stamps for consecutive pitches (inter-onset intervals) and their duration. A rhythm
is generated by establishing the duration of a beat, i.e. periodic pulses in a given
time-space, which are often counted in beats per minute (bpm) and by deciding
upon the musical measures of a piece. The number of beats between two bar lines
establishes the musical measure and is determined by the top number (divisor)
of the fractions found in musical notation. Figure 2.1 shows the C major scale,
divided into measures, where the measure is 3 beats to a measure. The lower
number (dividend) specifies the length of each beat in fractions of a whole note
(), i.e. if the number is 4, each beat is a quarter note (C) long (1

4 of a whole note),
and because this number is 4 in Figure 2.1, there is room for 3 quarter notes in each
of its measures. The most commonly used time signature is 4

4 , which in some cases,
such as in LilyPond (see subsection 2.4.4) notation, is denoted by a C, rather than
the actual time signature. The C specifies that the time signature is common time.
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The most basic method of defining a note’s duration is by defining its duration
as a fraction relative to a whole note, most often by having a dividend being a
power of 2. In addition, more complicated duration markers may be applied, when
needed. Dotted notes, for example, are notes with an appended dot (.), that have
a duration equal to the un-dotted note duration multiplied by 1.5. Syncopation is
a rhythmical phenomena that occurs when durations are introduced, which moves
the music off-beat, e.g. when notes with durations shorter than the size of the
beat are introduced and as such syncopates the melody, or when a note’s duration
is carried over to a succeeding measure/beat.

Intervals An interval is comprised of two neighbouring notes in a melody and describes
the distance between them.

Consonance & Dissonance Consonance is a term used to describe note distances that
sound pleasant to the human ear. It could be consonance between two simultan-
eously played notes or between notes in an interval. Dissonance is the somewhat
opposite of consonance, meaning that the note distances sound less pleasant, and
could easily be noticed within a melody.

Melody A melody is, in its most basic form, comprised of a series of pitches (notes),
that have a musical value, and follow a rhythmical pattern with inter-onset rela-
tionships, as described in the previous paragraph. A melody may often contain
musical phrases, which are shorter repeatable note patterns, that might help give
the melody character. In a song or composition it might be hard to define where
one melody ends and another one starts, as this is up to interpretation, but melodic
patterns often repeat themselves throughout a piece.

Structure The term structure aims to explain a musical piece from the highest point in
the hierarchy, i.e. divide it into large sub-pieces, such as verse, chorus, bridge, etc.
The different sub-pieces are identified by studying differences in repeating patterns
in the music, and when generating new pieces of music, depending on the musical
genre, it is important to keep song structuring in mind.

Melisma In cases where notes are aligned to lyrics, in e.g. a song or a rhyme, melismas1

are groups of notes that are sung/played over a single syllable. Unless marked
as a melisma, only one note is generally mapped to each syllable in the lyrics. In
notation a melisma is added either by spreading a syllable over multiple notes using
slurs, which are curved lines connecting the notes, or by extending the syllable in
the lyrics with continuous underscores.

Staffs and Clefs A staff is a common, five lined representation of music. Notes are
placed horizontally with respect to time, i.e. notes are sequentially placed from
left to right on the staff, with their vertical placing specifying the note’s pitch. The
clef is the first notation in a staff and specifies how notes are to be placed on the

1https://www.dictionary.com/browse/melisma
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five lines, with regards to their pitch. The clefs used in this project is the treble
clef for melody, and the bass clef for chord notation. For the treble clef, the first
note to touch the lower staff line is D4 (d’ in LilyPond notation), i.e. the second
note from the left in Figure 2.1. For the bass clef, the first note to touch the lower
staff line is F2 (f, in LilyPond notation). An example of bass clef usage can be
seen in Figure 4.3.

Table 2.2.: Chord triad types
Type Example Description Integer distances
Upper-case letter A Signifies a major triad {0, 4, 7}
Upper-case letter with
added plus

A+ Signifies an augmented
major triad

{0, 4, 8}

Lover-case letter a Signifies a minor triad {0, 3, 7}
Lower-case letter with
added degree sign

a◦ Signifies a diminished
minor triad

{0, 3, 6}

Chords and triads When any number of notes are played at the same time, they consti-
tute a chord, i.e. a minimal chord is two notes played simultaneously. A triad is a
three-note chord, usually following a specified set of rules. The main part of which
a chord is made up of is a root (tonic) note, and notes revolving around said note.
The musical chord notations considered in this thesis are major triads, augmen-
ted major triads, minor triads and diminished minor triads. The notation, and
examples are presented in Table 2.2. The main source for the notation is Tobey
(2012). It is worth noting that the integer notation follows absolute note distances,
and not scale distances. In other words the integer distances describe the semitone
distance from a chord’s root note in relation to the notes in the chord, i.e. when
the first number is 0 it signifies that the first note in the chord is the root note,
the 4 signifies that the next note is a major third, etc. The first note describes the
lowest note in the chord, and for the sake of understanding the integer distance
notation, it is important to note that the triad does not have to start on its root
note. The concept behind this is called chord inversions.

Chords and scale degrees Scale degrees are the names of the notes in a given scale and
how they are correlated. By taking major inspiration from concepts mentioned
by Tobey (2012), the defined chord triad types for the given major/minor scale
degrees used in thesis are presented in Table 2.3. The table follows the notation
from Table 2.2, but, as is normal when describing rules for chords with a disregard
for specific notes, have substituted note names with roman numerals, describing
the scale degree of a chord’s root note. The minor scale chord harmonisation rules
are not based on the natural minor scale, but rather the harmonic minor scale.
Tobey (2012) describes this as a commonly occurring concept in harmonisation.
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Table 2.3.: Chord triad types in different scale degrees
Chords in different scale degrees

1st 2nd 3rd 4th 5th 6th 7th
Major I ii iii IV V vi vii◦
Minor i ii◦ III+ iv V VI vii◦

2.2. Evolutionary Algorithms
Evolutionary algorithms (EAs) is a set of algorithms grounded by the general idea of
mimicking natural evolution processes. The main concept of EAs is to emulate how spe-
cies adapt to their environment over time, how the stronger individuals in a population
are able to reproduce and as such shape the evolution of their species (Yu and Gen, 2010,
p. 6).

This section gives a brief introduction of key concepts in evolutionary algorithms, with
a main focus on Genetic Algorithms (GAs), which are EAs that follow a rigorous set
of rules/steps to determine the optimal solution to a problem. The optimal solution is
found iteratively, by continually evaluating the individuals in a population. The main
loop of a genetic algorithm is shown in Figure 2.2. The main sources applied when
authoring this section were Yu and Gen (2010); Whitley (1994); Floreano and Mattiussi
(2008) for the general description, and Branke et al. (2008); Deb et al. (2002) for multi-
objective approaches. The need for much variety in source material spun out from a
tendency in articles on EAs to apply diverse terms and descriptions for similar concepts.

Genotype and phenotype

The genotypes (genes) of GAs are the building stones of the individuals in the GA
population. Genotypes, which can be compared to biological chromosomes, define all
the information and qualities of a phenotype (individual). This information is most often
represented as binary strings. Phenotypes are the individuals that exist within a given
population, and as such, one can say that a population is defined by its phenotypes,
which in turn is defined by their genotypes.

As the first step of a genetic algorithm an initial population must be generated. This
is done by specifying the population size N, and then generate N individuals, most
commonly with randomised genotypes.

Fitness and selection

As shown in Figure 2.2, the second step after a population is generated, the phenotypes
(individuals) must be individually evaluated based on their fitness. The fitness of a
phenotype defines the quality of the phenotype, based on its genes. This is done by
applying at least one fitness function to the phenotypes.

The phenotypes of the population are then ranked by the results given by the fitness
functions, and a set amount of top ranking phenotypes are then selected for reproduction
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Generate an initial
population
(size = N)

Evaluate fitness of
individuals in
population

Best fitted

Select best fitted
individuals

A percentage of individuals

Not mutated
Apply crossover

Offspring

Apply mutation

New population
(size = N)

Least
fittedDiscard

individuals

Intermediate
population

Parents

Figure 2.2.: The main loop of a general Genetic Algorithm

in the next steps. The selected phenotypes are put in an intermediate population. The
least fit individuals are discarded. Offspring is generated by applying Genetic operators
to the intermediate population until the population has a size = N . The intermediate
population is then considered the new population for the next generation.

Genetic operators

The first step in creating offspring is to recombine the genotypes of two parent phen-
otypes, selected for breeding, into a new phenotype. This process is called crossover,
and one or multiple crossover functions decide the rules of how the parent genes are
combined into an offspring. Crossover is the first genetic operator applied in offspring
generation. The chance of a crossover function to be applied is set beforehand. If no
crossover operator is chosen in this step, the offspring will be a clone of one of its parents.

A set, but arbitrary percentage of the offspring generated by the crossover operator
are chosen for mutation. Mutation is, as well as a phenomenon that happens naturally in
evolution, used as a tool for avoiding local maximum solutions to problems by introducing
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random mutations to some of the offspring. The chance of offspring mutating is set by
manual evaluation, and is usually a low number, e.g. 1-10%.

The avoidance of local maximum solutions is a key purpose for genetic operators. With
regards to evolutionary algorithms, a maximum is reached when the individuals in the
population reach a seemingly maximal score for their fitness evaluation. The main goal
for the genetic operators is to strive for the global maximum solution to be found, i.e.
evolving the individuals in the population to reach the maximum fitness scores possible.
A local maximum solution is found when further evolving cannot seem to improve the
fitness scores, although the absolute maximum score has not been reached.

Termination

A genetic algorithm terminates either when one or more optimal phenotypes are found
in the population or after a set number of generations has passed. One could also set
the algorithm to terminate, if there has not been sufficient change in phenotype genes
over the course of multiple generations.

2.2.1. Multi-objective evolutionary algorithms

Evolutionary multi-objective optimisation (EMO) is a well established field of research,
that focuses on evolutionary algorithms solving problems by finding optimal solutions
where the problem space has multiple objectives. This stands in contrast to basic evol-
utionary approaches, which consider one optimised numerical value representing the
fitness of the phenotypes in a population. EMO takes multiple fitness evaluations, ar-
ranged as objectives, into account, and selects the optimal phenotypes by sorting them
into Pareto-optimal fronts. Such fronts are determined by a domination principle, that
iteratively sorts phenotypes into fronts with individuals dominating, i.e. phenotypes that
are more optimal than phenotypes in succeeding fronts (Branke et al., 2008). Another
main principle in sorting the individuals is finding solutions that are diverse enough to
represent the entirety of each front. In addition to the main operators of evolutionary
algorithms selection, crossover and mutation EMO approaches implement an elite pre-
servation operator that prunes the worst solutions of a population at the end of each
iteration.

2.2.2. Non-dominated sorting genetic algorithm II

The non-dominated sorting genetic algorithm II (NSGAII) presented by Deb et al.
(2002), is a widely used genetic algorithm for solving multi-objective problems (Yu and
Gen, 2010; Branke et al., 2008). The algorithm follows the principles presented in sub-
section 2.2.1, and the main flow of the algorithm is displayed in Figure 2.3.

After an initial population (size=2N) is generated, non-dominated sorting based on
multiple objective fitness values is imposed on the population. This follows the domin-
ating principle described in subsection 2.2.1, as the population is sorted into multiple
fronts, where individuals in front 1 dominate individuals in front 2, and so on. From the
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Figure 2.3.: The main loop of the NSGAII algorithm

highest ranking fronts a new population (size=N) is selected, and since the accumulated
size of the fronts is 2N, fronts are chosen for the new population until the size is less
than or equal to N. If the size is less than N, crowding distance sorting is imposed on
the last front not implemented in the new population. The crowding distance sorting
selects the individuals that have the highest distance to other individuals in the front,
and iteratively includes them into the new population until the population size = N.
This is done to ensure that the diversity principle described in subsection 2.2.1 is met.

If a termination criterion for the algorithm is met, the algorithm will terminate at
this point, when the population size = N. Otherwise individuals from the population are
chosen as parents for generating offspring. This is done by iteratively using tournament
sort between two random individuals from the population, until the the offspring popu-
lation is of size = N. A mutation operator function is applied to a predefined percentage
of offspring. To satisfy the elitism principle mentioned in subsection 2.2.1, the offspring
is combined with the parent population, such that the combined population is of size =
2N. This makes sure that elite individuals from earlier generations can survive multiple
algorithm iterations (generations), and as such the best problem solutions are never lost.
As the first step in generating the next generation, the newly combined population is
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sent back to the top of the main loop of the algorithm for evaluation (fitness ranking).
The algorithm follows this pattern iteratively until termination.

2.3. Natural Language Processing
Natural Language Processing (NLP) is a field of Computer Science that focuses on how
computers may analyse, process and/or generate natural language. In NLP the main
focus of research is discovering ways of increasing a computer’s ability to understand
and handle natural language, as well as map it to machine code. As an example, one
could say that the development of database query languages and high-level programming
languages both are early forms of NLP, as they differ from machine code in that their
vocabulary is highly based on simple English language.

Natural Language Processing is also much used in linguistic research, and is an invalu-
able resource when it comes to tasks such as translating between natural languages (e.g.
between English and Norwegian), and in researching historical language development
(Matthews, 2016).

2.3.1. Syllabification

Syllabification is one of many sub-tasks in NLP, and is the task of identifying which
syllables different words in a vocabulary is comprised of. Syllabification, in general, is
an important task in linguistics, but it is also a main component of e.g. speech synthesis
and speech recognition systems (Bartlett et al., 2009). Syllabification is a hard task to
solve accurately, as the lettering for different phonemes might be the same. Phonemes
are the different pronunciation sounds that exist within a language. Even though there is
some debate regarding how a syllable is defined, there is a wide agreement that a syllable
is constructed around a vowel sound (Bartlett et al., 2009). The vowel sound is in vocal
music the main component of a syllable, over which the tone of a note is sung/held.
The main computational forms of syllabification is done either by rule-based or lexicon-
based methods, where rule-based systems focus on general rules as how many consonants
should be applied to a vowel and how words are allowed to start/end. Lexicon-based
systems presume that the word to look up exists in a lexicon, where the syllables or
phonemes of a language are manually annotated.

2.3.2. Sentiment Analysis

Sentiment Analysis (SA) is a sub-concept of NLP that focuses on the computational
study of human emotions towards different entities. SA may be viewed as a classification
problem, where different levels of complexity exist, both in the size of language data to
be classified, as well as the complexity of the language of the data (Medhat et al., 2014).
As an example it would be more straightforward to classify the sentiment of a single
sentence, rather than a poem, which could have a more complicated language structure,
as well as sentiments which cannot explicitly be deduced from the words.
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The two main approaches to sentiment analysis are considered to be machine learning
approaches and lexicon-based approaches. There also exist methods combining features
from both approaches. Machine learning approaches combine an understanding of lin-
guistic features and different machine learning structures and algorithms. Lexicon-based
methods employ either a dictionary or a corpus of words and word-combinations annot-
ated with either single or contextual sentiment values (Medhat et al., 2014).

2.4. Resources
This section introduces the main external resources and libraries used in the development
of the system architecture (chapter 4) of the project.

2.4.1. Natural Language Toolkit (NLTK)

The Natural Language Toolkit (NLTK)2 is a widely used platform for Natural Language
Processing of data in Python3 applications. The platform is a collection of many NLP
resources, such as corpora and lexical resources, as well as scripts for tokenising sentences.
As concrete examples, this project makes use of included resources such as sentence
tokenising by sonority principle, sentiment analysis and a pronunciation dictionary.

2.4.2. CMU Pronouncing Dictionary

The Carnegie Mellon University Pronouncing Dictionary (CMUdict)4 is an open source
pronunciation dictionary containing more than 134,000 American-English words, and
their corresponding pronunciations represented by a set of 39 phonemes. Vowels in
the dictionary are marked with stress-markers (0 - No stress, 1 - Primary stress, 2 -
Secondary stress), that define where the stress of different words lie. CMUdict is easily
accessible through the Natural Language Toolkit. The resource has been used both in
syllabification tasks and stress identification in this project.

2.4.3. Vader

Valence Aware Dictionary and sEntiment Reasoner (VADER) is a sentiment analysis
tool, mainly designed to determine the sentiment of social media posts, presented by
Hutto and Gilbert (2014). The tool makes use of rules and a comprehensive lexicon in
its sentiment analysis. Vader is continuously updated, and has been incorporated into
the Natural Language Toolkit. In spite of being tuned to a social media domain, Vader
performs well in multiple domains (Hutto and Gilbert, 2014), and because it is readily
available and in no need of training data, it has been a valuable resource throughout
this project.

2https://www.nltk.org/
3https://www.python.org/
4http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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The lexicon incorporated by Vader was built from the results of evaluations by ten
human raters. The raters used values ranging from Extremely Negative to Extremely
Positive to rate 9000 token features, where 7500 were later kept as lexical features, tagged
as positive/negative on an intensity scale ranging from -4 to 4. In combination with the
lexical approach, Vader follows five rules, based on word-order sensitive relationships
between terms. The first three rules determine word intensity based on punctuation (e.g.
exclamation points), capitalisation (e.g. in all-caps words) and degree modifiers (e.g.
adjective detection and handling). The last two rules handle negation and contradiction,
such as sentences having a “but” that neutralises the sentence or an “isn’t” negating
token values.

Vader scores sentences and texts based on the lexicon and the rules, and summarises
the word values it considers negative, neutral or positive into an accumulated compound
value, which is normalised between -1 and 1. The suggested thresholds for the compound
value and the general sentiment of a sentence is that compound ≥ 0.05 implies a positive
sentiment and that compound ≤ −0.05 implies a negative sentiment. Otherwise the
sentiment is considered neutral.

2.4.4. LilyPond
LilyPond5 is a music engraving language for computational creation of sheet music,
with the possibility to compile the code into multiple file formats, including PDF, SVG
and MIDI. LilyPond follows a classical musical engraving method, but regardless of
this, it is highly customisable. The output files of the project system are generated
as LilyPond-files, and then compiled and cleaned using the open source graphical user-
interface Frescobaldi6.

All sheet music presented throughout this thesis is generated through the use of Lily-
Pond and Frescobaldi.

5http://lilypond.org/
6https://frescobaldi.org/
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3. Related Work
This chapter is intended to give the reader an overview of related work and common state-
of-the-art approaches within the topic of music in computational creativity. Section 3.1
is intended to give a general overview of the most common state-of-the-art approaches
within computational music generation. Section 3.1.3 explores state-of-the-art methods
in combining textual and musical concepts in generating music.

3.1. Computational music generation

3.1.1. Evolutionary Algorithms

For musical generation, there has been a significant number of solutions applying different
approaches to evolutionary algorithms. One of the most notable approaches can be
found in the works of John Biles’ GenJam project, which he has been continuously
developing over the course of close to three decades (Biles, 1994, 2013). He found that an
evolutionary approach, described thoroughly in section 2.2, would be highly suitable for
musical generation, given its natural ability to search through strange problem spaces and
having few requirements of use (Biles, 1994). While developing the first GenJam system,
Biles found that generating suitable fitness functions for musical genetic algorithms was
a major bottleneck, and after failing to implement an automatic fitness function, he
decided to use a human fitness approach. He would then use himself as a mentor for the
system, and for each new evolution of the population he would rate the solutions with
either “good” or “bad” (Biles, 1994).

Biles continued working on eliminating the fitness bottleneck, and after failing in his
attempt to develop neural-network-based fitness functions, he succeeded in creating a
fitness free AutoGenJam (Biles, 2001). He achieved this goal by having an initial popu-
lation that was randomly gathered from a database of licks, i.e. musical phrases, from
human performances, implementing an intelligent crossover operator for breeding and
functionality for mutating repeated licks to ensure freshness. He argued that AutoGen-
Jam should still be considered a genitive algorithm, even though it did not follow the
norm of using fitness functions (Biles, 2001). As for the state-of-the-art version of Gen-
Jam, both of the previous solutions can be used to interactively improvise jazz music
along with a human counterpart (Biles, 2013).

The concept of fitness in evolutionary art and music is a heavily researched topic,
so much in fact, that Johnson (2012) attempted to classify implementations of fitness
functions into a taxonomy of fitness scope and fitness basis by conducting a survey
considering a substantial number of previous papers in the area. Johnson (2012) also
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suggests future possibilities for bases of fitness functions that have been little considered
in previous works in evolutionary art and music. Their results suggest that even though
Human Interaction is a popular approach for fitness bases, the majority of the approaches
to fitness bases are autonomous. As to circumvent the problem of the fitness bottleneck,
autonomous fitness functions are often grounded in music theory, such as in Wu et al.
(2014), or heuristic rules or machine learning techniques, such as in (Jeong et al., 2017).
Some approaches still involve some human interaction, such as the Corpus or Example
fitness basis. Biles is an advocate of using human interaction as fitness basis. Manaris
et al. (2003) used this technique when evaluating the possibilities of using the Zipf-
Mandelbrot law, which defines a concept of how the occurrence of “words” in various
natural phenomena can be described by a probabilistic model of rapidly decreasing
frequencies, on a 220-piece corpus of various music styles to generate fitness functions
for music generation. Bell (2011) resorted to human interaction as the fitness function,
and used a set of Markov Chains (Gagniuc, 2017) to represent genomes, where the
Markov chains represented the probability of a chord change based on a previous chord.
The findings by Johnson (2012) also suggest that Biles’ approach of completely removing
fitness functions has not, to any broad extent, been adopted by state-of-the-art research.

In recent years one of the most favoured techniques in evolutionary music genera-
tion has been to implement multi-objective optimisation in the algorithms, which is a
concept of obtaining the optimal solution of a problem, when multiple fitness objectives
are simultaneously optimised, and it as a consequence exists a set of equally qualified
solutions and trade-offs (Abraham and Jain, 2005). Jeong and Ahn (2015) developed a
multi-objective generative algorithm, using two fitness functions to deal with a trade-off
between tension and stability in a melody, given some chord progression. To rank the
solutions, an implementation of the Non-dominated Sorting Genetic Algorithm (NSGA-
II), described in subsection 2.2.2 was used, as the approach is stated as a known standard
for multi-objective optimisation problems. The work is further described and extended
by Jeong et al. (2017). Their work served as a baseline for the system implemented in the
Master’s Thesis of Olseng (2016). In his thesis Olseng presents an extensive solution for
co-evolving melodies and harmonies, incorporating a sum of 43 different fitness measures.
The thesis suggests using a four-objective approach, dividing generational sub-tasks for
the melodies and harmonisation into four separate parts to be simultaneously optimised.
His results, supported by a quantitative evaluation, suggest that the approach could
not consistently generate well perceived melodies, and that they were too rhythmically
imperfect. His implementation did though indicate some promise, as it presented the
possibility for co-generation of melodies and harmonisation, as well as having produced
some musical pieces, that were favourably evaluated. In addition to the presentation
found Olseng’s thesis, a rundown version of the system was presented by Olseng and
Gambäck (2018).

To increase the quality of the result, it is not uncommon to adopt other techniques, be-
sides modifying fitness functions, in algorithms for evolutionary music generation. Khal-
ifa and Foster (2006) present a two-stage solution, i.e. a sequential generation process,
where the algorithm initially generates motifs, and in stage II generates phrases based on
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the given motifs. Kramann (2013) proposed to implement a competitive concept in evol-
utionary music generation, by having two separate evolutionary algorithms cooperate in
evolving a piece of piano music, generated over a repeating pattern.

3.1.2. Artificial Neural Networks
The use of Artificial Neural Networks (ANNs), which is a technology in machine learning
concerned with computationally emulating the neural networks found in living organisms,
in regards to computational generation of music, has been a relevant topic in research
since the late 1980s, when Todd (1989) implemented a system for generating simple
melodies using an early model of Recurrent Neural Networks (RNNs). The problem of
music being a temporal concept, i.e. the succession of notes in a melody changes with
the passing of time, was solved by implementing a sequential network model, where
the network had a memory of the previously generated parts of the melody (context),
and updated its melody generation plan continuously based on the previous notes. The
system only possessed the ability to generate melodies with a high similarity to the
limited amount of melodies used for its training.

In recent years the usage of ANNs in music generation has had an upswing, as newer
models and increased computer performance has made ANNs increasingly suitable for
generating more complex music. The networks used usually follow an approach imple-
menting RNNs, as they have proved more fitting, when considering the temporal nature
of music and their long-term dependencies (Colombo et al., 2016; Liang et al., 2017;
Castro, 2019).

Colombo et al. (2017) implement two RNNs, using Gated Recurrent Units (GRUs) as
memory cells, in a system for generating melodies, extending their earlier work (Colombo
et al., 2016). Here one network is trained to concern itself with the probability distribu-
tion of upcoming durations and one with finding the probability distribution of upcoming
pitches. Both networks draw their conclusions based on current durations and notes, as
well as their respective internal states. The model was trained using a corpus of melod-
ies from two different genres, where fixed partitions of 80% and 20% of the corpus were
used as a training set and a validation set, respectively. During each training epoch, the
model was evaluated using the validation set. Melodies were composed by sampling from
the networks. First a duration was sampled, and then used as an additional input to the
pitch network. The previously sampled notes were used as an input for the networks.
Colombo et al. found that their model produced melodies that were close to melodies in
their data set, and that even though the data set contained two distinct musical styles,
the generated melodies were consistent with one of the styles at a time, i.e. the melodies
were not a merger of both styles.

Liang et al. (2017) took the idea of using RNNs in music generation one step further,
and developed a model that generated harmonising melodies with Bach’s chorales as the
data set for training. As opposed to Colombo et al. (2017), Liang et al. (2017) used
Long-Short-Term Memory (LSTM) cells instead of GRUs as their memory cells. In the
article by Chung et al. (2014), they found that LSTMs and GRUs are much preferable
to older recurrent units, but they found no conclusive answers regarding which of them
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was the superior one.
The problem of processing time for deep learning models was explored by Castro

(2019), where a system that could improvise a rhythm and melody in a “call and re-
sponse”, fashion along with a human counterpart was developed and explored, i.e. when
provided with a melody, it could respond with a fitting continuation. The system re-
lied on two RNN models with LSTM memory cells, previously developed by Google
Magenta1. It was found that their model was able to perform without any considerable
delay, and that an audience could not tell that there was a computer model involved in
the improvisations. Some of their problems included some timing issues, as well as prob-
lems with more complex improvisations. They also omitted a previously implemented
rhythm generation network, when it gave dissatisfying results.

3.1.3. Text based melody generation

Generating music based on textual input is not a groundbreaking concept, and multiple
articles have been written concerning the topic. This section will give a brief overview
of some implementations seen within research on keywords and lyrics as input for music
generation.

Harmon (2017) implemented a method concerned with discovering the semantic mean-
ing of an input sequence of keywords and generate ambient music fitting the topics and
content of the keyword input. The music was generated by analysing word relations, and
important concepts, which were then translated into queries, that would return ambient
music piece annotations within web-based sound libraries. The system combined pieces
deemed fit for the given ambience, through several self-critique steps to generate new
pieces of music.

The concept of computational generation of melodies to accompany a lyrical input
have been explored both by Monteith et al. (2012) and Bao et al. (2019). A novel
solution was implemented by Monteith et al. (2012) to generate a melody that would fit
given input lyrics. Their system was grounded in the usage of n-gram2-models to assign
rhythm and notes to the input lyric. Firstly a set of MIDI-files was compiled to detect
useful rhythmical and pitch patterns for desired musical styles, as well as determining
what rhythms and pitches fit with given syllables. An n-gram model was generated to
give an assumption of which notes were most likely to succeed other notes, in different
musical styles. The system firstly generated a rhythm fitting the lyric. Their system
used stress values found for each phoneme of a word, based on their ratings in the
CMUdict (see subsection 2.4.2), and by using an approach similar to one iteration of an
evolutionary algorithm, the best evaluated rhythmical sequence was chosen among 100
randomly generated down-beat annotated rhythms. When the down-beats was assigned,
fitting rhythmical values, such as time signature and note durations, were found by
taking inspiration from the MIDI-files. The pitch values for each line in the generated
songs are chosen by using an n-gram model that assigns note values by a probabilistic

1https://magenta.tensorflow.org/
2https://web.stanford.edu/~jurafsky/slp3/3.pdf
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approach, based on the defined style. Three randomly chosen input notes for the n-
gram model was common for each line of the song, to assure that the melody for each
line was related. Monteith et al. (2012) state that: “the system was able to generate
melodies that received the same average ratings for pleasing melodic lines as the original
melodies”, and that the original melodies only scored slightly better than the generated,
in regards to how well they fitted with the given lyrics.

Bao et al. (2019) implemented an encoder-decoder RNN model, that would take lyrics
as input, as well as a melodic input to provide the model with a context, and generate
a fitting melody for the lyrics. The previously predicted melodies would be used as
context for succeeding melody line generation, as the melody was generated for one line
in the lyrics at a time. Three RNNs were implemented, with GRU memory cells, where
one of the models was concerned with encoding the input lyrics to represent the syllable
values of the lyric, one model was concerned with encoding the context melody note
values, and the last model was concerned with decoding new melody, i.e. predict the
next note values in the melody. Their results suggested that their model performs well,
and produce melodies of high quality, with respect to the given input lyrics.

Another machine learning approach was introduced by Ackerman and Loker (2017),
where a system for generating melodies based on song lyrics was implemented with the
goal of it being a collaborative tool in songwriting. Their implementation was based
on using random forests3 rather than Markov chains for predicting the following notes
using two prediction based models, without any previous musical knowledge. Similar to
the division of the composition task of Bao et al. (2019), the prediction of coming note
durations and pitches was separated into two models. Ackerman and Loker (2017) states
that their model can generate melodies without human input. By the use of multiple
input parameters and the choice of melody corpus, it is though highly tunable by human
interaction. Their results suggested that they were satisfied with the system’s potential
in co-composition.

3.2. Sentiment Analysis

The concept of sentiment analysis, covered in section 2.3, has been subject to much
research. As stated by Xia et al. (2008) the demand of access to both lyrics and songs has
increased, e.g. with the popularity of song access through portable devices. Subsequently
sentiment analysis of song lyrics has become a hot topic in research. Xia et al. mention
song recommendations based on a user’s current mood, as a concrete example of a
technology sprung out of such research. Hu et al. (2009) mention the wish of having
such technology work on small devices as a motivation for their research. Both Xia et al.
and Hu et al. address that previous algorithms in song sentiment detection have mostly
worked by analysing the audio of the song, rather than the lyrics, and argue that analysis
of song lyrics would contribute effectively to the sentiment detection.

3https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
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Xia et al. (2008) based their research on the unsatisfactory results of the Vector Space
Model4 (VSM) in classifying the sentiment of songs. They therefore implemented a
model called Sentiment Vector Space Model (s-VSM), outperforming the VSM. They also
found that s-VSM outperformed both Audio-based and Knowledge-based approaches in
classifying the sentiments of lyrics. The s-VSM extracted sentiment features from the
lyrics and an implementation of the SVM-light algorithm (Joachims, 2002) was used
for the task of classifying the lyrics’ sentiment labels. The s-VSM model was grounded
in a set of rules which only considered the terms of lyrics that had sentiment related
value, as well as the term’s neighbouring modifiers and negations. The strengths of
terms and modifiers were gathered from a dictionary of semantics, and in combination
the sentiments was settled on.

Hu et al. (2009) suggests that the sentiment of a song should not only be considered
by a one-dimensional model, i.e. a negative/positive valence graph, but rather a two-
dimensional model, considering the arousal (i.e. the energy) of a song as well. Similar to
Xia et al. (2008), Hu et al. also used a lexicon of terms with corresponding sentiments to
find the sentiment of a song’s lyrics by evaluating the lyrics sentence by sentence. The
sentence sentiments were then clustered using a Fuzzy-logic5 method. The lexicon also
included words in regards to arousal for the sentence evaluation to consider. Important
findings from Hu et al. (2009) include that lyrics are not necessarily expressing much
in the sense of arousal, as they found that there was more confusion in the arousal
dimension than the valence dimension, and that the sentiment in lyrics is not always
expressed explicitly, meaning that some information of the sentiment of lyrics can only
be found by reading between the lines. Inaccuracies in regards to the workings of their
Natural Language Processing tool may also have affected their results.

4https://link.springer.com/10.1007/978-0-387-39940-9_918
5https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30440-3_234
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4. System Architecture
The following chapter is intended to give the reader a thorough description of the com-
plete architecture of the system developed as a part of this project. The section structure
follows the main data flow of the system from input to output closely. Source code for
the author’s implementation of the system architecture can be found on GitHub1.

4.1. General overview
The architecture presented in this chapter shows the flow and core functionality of an
algorithm implemented to generate a melody with included harmonisation for arbitrary
input lyrics and their corresponding output files, i.e. a PDF-file with the associated
sheet music and a MIDI-file with the associated audio. The main flow of the archi-
tecture follows the five main steps Syllabification (section 4.3) and Sentiment analysis
(section 4.2) of the lyrics, Time signature identification (section 4.4), Music generation
(section 4.5) and Output generation (section 4.6), which are all described in detail in
this chapter. As a supplementing resource, a flow chart for the main architecture is
presented in Figure 4.1. As to significantly improve algorithm run-time, and generate
output of questionnaire friendly sizes, only the first verse of the lyrics is considered in
the syllable and music generating steps of the algorithm. The whole lyrics is considered
in the sentiment analysis step.

4.2. Sentiment analysis
The sentiment analysis part of the architecture is heavily dependent on VADER, de-
scribed in subsection 2.4.3. The first step in the sentiment analysis is to calculate the
valence scores of each line in the lyrics, which is done through storing Vader’s compound
value for each line. Absolute neutral lines, i.e. with a compound value of 0.0, are ignored
in further processing. This was done as absolute neutral values were deemed destructive
in determining valuable lyrical sentiments for the music generation, as it could impair
decisive sentiment results, if many lines are deemed to be absolute neutral.

The thresholds for positive and negative compound values, as described in subsec-
tion 2.4.3, were kept at their existing values, but two new thresholds for extra positive
(compound >= 0.8) and extra negative (compound <= −0.4) were implemented to ap-
ply increased importance to extreme values. For each original compound sentence value
x, Equation 4.1 was applied. Manual evaluation of selected lyrics and their associated

1https://github.com/Barnemat/Masteroppgave
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Lyrics
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of lyrics
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analysis of lyrics

Input file with lyrics

MIDI SVG/PDF

Figure 4.1.: An overview of the main flow of the system architecture

valence scores, derived from the results in the generated data set from Malheiro et al.
(2018) was conducted by the author. The results suggested that the disproportionate
increase for negative values compared with positive values, given by Equation 4.1, was
necessary. The normalised average of the sentence values is then calculated, and the
resulting value is passed on to the main algorithm described in section 4.5.

f(x) =


x ∗ 2 if x ≤ −0.4
x ∗ 1.5 if − 0.4 < x ≤ −0.05
x if 0.05 < x ≤ 0.8
x ∗ 1.25 otherwise

(4.1)
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4.3. Syllable handling

The syllabification processing of lyrics is done in two possible manners, the first is a
hybrid lexical and rule-based approach and the last approach is entirely rule-based. The
first step in the syllabification process is to clean the lyrics, which means that all punc-
tuation except apostrophes in contracted words, such as “don’t”, are removed, and all
words are converted to lowercase letters.

Lexical analysis and phonemes

The first solution is based on the availability of the word in CMUdict (subsection 2.4.2).
If the word is found in the dictionary, the word phonemes are retrieved. The letters of
the word are then associated to their corresponding phonemes. This is done by firstly
detecting the vowels of the word, as syllables mainly revolve around vowel sounds. The
phoneme markings detect if neighbouring vowels should be considered part of the same
syllable, or if they should be separated. When vowels are labeled, the consonants are
associated to a consonant phoneme, and consonants directly neighbouring a vowel are
appended to this vowel’s syllable. If there is a doubt between which syllable a consonant
should be added to, a neighbouring syllable is chosen at random.

Sonority sequencing principle

The second solution is a more basic rule-based backup method that is imposed on words
that have thrown an error in the CMUdict-based solution. This solution is based on
the Sonority Sequencing Principle (SSP), as described by Bartlett et al. (2009). SSP
assumes that words are divided into syllables by firstly assigning “sound loudness” values
to phonemes of the word, then defining different syllables based on the main rule that
sonority values should increase from a syllable’s onset phoneme through to the nucleus,
and subsequently fall off to the coda. Here onset is the first part of a syllable, nucleus
is the middle (vowel) part and the coda is an optional extra part succeeding the nucleus.
Based on the sonority principle, multiple solutions could exist for each word, and it does
not specify how to choose between legal onsets (Bartlett et al., 2009).

The first step of syllabification in this solution is to syllabify a word in accordance to
the SSP, which is done using the SyllableTokenizer tool implemented in NLTK (subsec-
tion 2.4.1). Secondly a set of rules is imposed on the syllable tokenised word, to help in
mitigating errors. Such errors occur as a consequence of SSP not being able to correctly
differ between seemingly equally valid syllabification solutions, such as described in the
previous paragraph. Examples of problems that are mitigated are special cases where
vowels should not have any consonants added to them, word endings which are to be
considered part of a previous syllable, and word endings that should not be considered a
part of the previous syllable. This solution is prone to minor errors, which consequently
is the reason it is considered a backup solution.
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4.4. Time signature identification
The time signature for the algorithm is decided by a simple evaluation of the syllables
generated by the syllabification algorithm, described in section 4.3. The possible time
signatures that may be passed on to the music generation algorithm, presented in sec-
tion 4.5, are limited to either 3

4 or 4
4 . The numerator is the only variable part of the

time signature.
The first step in deciding the time signature is to count the syllables in each line of

the lyrics, adding numbers to ensure that the syllable number is either divisible by 3 or
4. The time signature is then decided by counting the number of lines having a syllable
count divisible by 3 or 4 respectively. The higher number decides the time signature.

4.5. Genetic Algorithm Implementation (NSGAII)
This section covers the main part of the system, i.e. the music generating part. The im-
plemented algorithm is a multi-objective genetic algorithm closely following the descrip-
tion of the non-dominated sorting algorithm (NSGAII), described in subsection 2.2.2.

4.5.1. Genotype and phenotype design
The genotype design for phenotypes (individuals) of the algorithm is based on the fact
that music for given lyrics might be of variable length and composition. Some inspiration
in the genotype design has been taken from Olseng (2016), such as the decision to divide
the genes into separate parts for chords and melody. One for storing the chord sequence
for the music and one for storing the melody. To make the genes easily understandable
for debugging purposes, as well as simplify the output generating process, the note
representation in the music closely follows the syntax of LilyPond (subsection 2.4.4).

As to establish control of the gene pool and its individuals, each individual in a
population is handled by a phenotype class, which holds information about its genotypes,
as well as handling the initialisation of said genotypes.

Representation of melodic genes

The melody genes are represented as a multi-dimensional array of musical beats. Each
beat holds a number of notes, specified by the note’s timing values. Notes could also be
stored in a deeper array dimension within a beat, signifying melismas (multiple notes
that should be sung/played over one syllable). Although notes are stored in beats, the
main handling of notes is done with respect to measures, which are collections of either
three or four beats, depending on the time signature.

Notes are represented as letters corresponding to note pitches, a corresponding octave
marking and a timing value. The note octave is specified by an empty string (for small
octave notes), commas (for octaves lower than the small octave) or apostrophes (for
octaves higher than the small octave). c′ is middle C or C4 in LilyPond notation (2.4.4).
The possible span of notes in the melodic genes are within three octaves, but with g
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a’8. g’16 f’4 e’8

d’16 c’16

b4Beats

Notation

Measure

Melisma

Figure 4.2.: An example of a melody genotype, representing a descending melody in the
A-minor scale that spans one measure.

defined as the minimum note value, hence notes span from g to b”, i.e. the number of
possible notes N = (7 + 17 + 17) + 1 = 42, when both values for sharp/flat notes are
included. The numbers in parentheses correspond to how many notes are included from
each octave, and the succeeding 1 represents the rest value r. The apostrophes appended
to the note b” signify the note’s octave, i.e. a high B value.

A note’s timing is defined by an appended number that may be dotted, i.e. have a
succeeding dot (.). The number defines what fraction of a whole note the note’s duration
is. The possible fractions consist of multiples and divisors of 4 ∈ [1, 16]. This means
that the longest note duration is 1

1 , i.e. a whole note, and that the shortest possible
note duration is 1

16 , i.e. a 16th note. For fractions with a denominator larger than 1 and
lower than 16, notes may have a dot appended to the number. The dot value specifies
that the note timing should be the fraction specified by the number in addition to the
fraction divided by 2. As an example, this would mean that the note c4. has a duration
of 1

4 + 1
8 .

The total number of possible variations a note could be represented by is consequently
n = 42 ∗ 8 = 336.

Notes could technically be distributed at random within the given genetic space, but
the algorithm makes sure that beats are grouped into measures and that a beat has
the size specified by the denominator of the time signature, i.e. 4. This means that
a beat should not have a duration longer than a quarter note (1

4). In cases where
fractions exceed the quarter note limit, possible durations from other beats in the given
measure are either removed or reduced. A measure holds an amount of beats equal to
the nominator of the time signature. The only exception is if in the last measure of the
melody, the maximum number of notes is reached. The measure could then be cut short.
The maximum number of notes in a melody genotype varies based on number of input
syllables given to the algorithm, as well as the number of generated melismas. In an
initial population there is a 15% chance for melisma generation in each beat.

An example of a simple melody genotype is displayed in Figure 4.2. Each layer of
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the figure is meant to symbolise different arrays, i.e. the top layer (measure) contains
sub-arrays (beats), and each beat could have one sub-array containing a melisma. The
melody genotype is set to span one measure, and the dashed arrows illustrate the different
beats needed to fill the measure. The reasoning behind using dashed lines is to signify
that the genes are not represented by measures in the phenotype, and that the concept
of measures is only applied when needed. For the sake of simplicity all beats in the
example are “perfect” beats, i.e. there is no reductions in consecutive beats, as a result
of note durations longer than a quarter note. In the third beat, an example of a melisma,
and how it is divided into a separate array from the rest of the beat, is displayed. The
corresponding musical notation is shown at the far right of the figure. The time signature
is set to be 4

4 .

Representation of chord genes

Chord genes are represented as a one-dimensional array of chord values. One chord
maps to a single measure in the melody, and the number of generated chords is directly
proportional to the number of measures of melody genes generated.

Single chords are represented as a collection of up to four notes, following the same
notation as in melody, but with a combined timing value, as well as a different octave
space. The allowed octave space is two, but the minimum chord note value is set to a,
(great A - great is one octave lower than small), which is in the middle of its octave. The
comma signifies that the note octave is one lower than a. Further the maximum chord
root value is set to a, to ensure that all notes may be chord roots. The main reason
for setting a maximum root note value was to prevent chords interfering to much with
the melody. The absolute maximum note value the last note of a chord may have is f ′,
which happens if an augmented major triad is generated on an a note.

Chords are generated into specific note patterns, designed to help chords conform to a
given key signature. Following a set of triad types, presented in Table 2.2 in section 2.1,
the chord notes are chosen. This means that all chords follow one of the four patterns
defined in Table 2.2, i.e. generated chord triads could be either major triads, augmented
major triads, minor triads and diminished minor triads. Chords are constructed by
following the set integer distances. To generate a C major triad the root note is found
by adding the distance d = 0 to C, the second note is found by adding d = 4 to C
and the last note by adding d = 7 to C. This yields a C major triad (C, E and G).
The chord patterns are chosen to fit with scale degrees and harmonisation concepts in
regards to notes in major/minor scales, and their harmonic value, as previously described
in section 2.1. It is worth noting that even though the melody follows the natural minor
scale, the harmonisation in chords follows the harmonic minor scale.

All chord notes have a fixed position, meaning that the first note is the root, the
second note is regarded as the third, and the third note regarded as the fifth. Chords
also have the possibility to have a fourth note added to it for flavour. This makes it
possible to generate more complicated chords. The flavour note does not follow any
strict patterns, such as for the three first notes, other than relative note type/octave.
This means that all notes are added in ascending order, where each note must be higher

28



4.5. Genetic Algorithm Implementation (NSGAII)

c e g bes 1

Chord genotype Notation

Figure 4.3.: An example of a chord genotype, representing a C7 chord that spans one
measure.

than the previous.
The chord timing is decided solely based on the time signature. As a chord is mapped

to a measure, the timing is set to fit within the measure. For 4
4 time, this means that

all chords have a duration of a whole note. For 3
4 time, all chords have a duration of a

dotted half note.
An example of a minimal chord genotype is shown in Figure 4.3. The chord progression

is set to hold only one chord. For multiple chords, the general pattern would stay the
same. The first four cells are reserved for the chord notes, and the last cell is reserved
for the genotype duration. The fourth cell is omitted for chords without a flavour note.
The corresponding musical notation is shown at the far right of the figure. The time
signature is set to be 4

4 . Notice how the staff clef notation is different from the melody
genotype from Figure 4.2, i.e. the melody use a treble clef and the chords use a bass
clef.

4.5.2. Initialisation

When the algorithm is initialised, the number of syllables in the lyrics and the lyrics’
sentiment value are analysed. The first step taken is to generate a musical key for the
population. The key is chosen semi-randomly, where the letter is random, but the flavour,
i.e. the choice between major and minor, is chosen based on the input sentiment value.
For a sentiment value v > 0, the key will be major, otherwise it will be minor. The
reasoning behind the strict choice of key is that it helps for consistency during testing.
If the system was to be applied to real world problems, it would probably be wise to
choose the key based on a probabilistic approach, especially for values close to zero.

Due to a problem with double flat and double sharp notes, no flat/sharp keys are
generated. This problem occurred as a consequence of scale handling in fitness functions
(subsection 4.5.3), where the algorithm tried to build and handle scales that would
need double flat/sharp notes, for sharp/flat key signatures. As double flat/sharp key
signatures and scales are not covered by the Circle of Fifths, described by Tobey (2012),
there was no initial implementation supporting the concept. The double flat/sharp
problem was deemed of little importance to the main functionality of the algorithm, and
it was consequently bypassed.

An initial population of phenotypes is generated based on the set population size (N).
The melody genes are generated at random. The only constraint for the melody size is
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the number of syllables (s) given by the input. Even though a melisma is a collection of
notes, it is counted as note one in regards to the number of notes in the melody. When
s notes have been generated, the chords are initialised semi-randomly. The root note
and a possible fourth flavour note is generated at random, while the other notes follow
a randomly chosen triad pattern from Table 2.2. The number of generated chords is
proportional to the number of measures generated by the melody.

4.5.3. Objectives and fitness

As mentioned in subsections 2.2.1 and 2.2.2, NSGAII is a multi-objective genetic al-
gorithm, which means that its fitness functions and evaluation are grounded in the
strive for finding an optimal solution that satisfies all objectives. The decision taken
regarding what objectives to implement and which fitness functions to incorporate into
each objective, was arguably the most decisive factor for shaping the melodies. It was
chosen to divide the optimisation task for the three most distinct different parts of the
melody generation, i.e. melodies, chords and lyrics, into different objectives. As such two
completely separate objectives for melody and chord shaping, objective 2 for optimising
the melody and objective 3 for handling the optimisation of the chord progression, was
implemented. Objective 1 is mainly meant as an optimisation of the melody, but with a
serious focus on having the melody revolve around its corresponding chords. Objective
4 handles the optimisation of the melody with a basis in it fitting well with the given
input lyrics.

The main inspiration for objective implementation in this system was Olseng (2016),
and both objective 1 and 2 are heavily influenced by his implementation.

Objective 1 - Melodic measures

The first objective handles the melody on a measure to measure basis, with respect to
the melody line and the corresponding chord. As mentioned in subsection 4.5.1, chords
always last for exactly one measure. This measure approach is heavily inspired by Olseng
(2016) and Wu et al. (2014), which was Olseng’s main inspiration for his corresponding
objective. The main purpose of the objective is to make sure that the melody revolves
around its chords, as well as being well rooted in the key signature. The objective
also ensures that notes are closely related in pitch, i.e. it does not benefit major pitch
distances between notes.

As done by Olseng (2016), notes are classified into three main categories, namely
chord notes, scale notes and non-scale notes. Chord notes are notes in the melody
that also appear in the chord, when the octave is disregarded. Scale notes are the notes
in the melody that are found in the scale specified by the key signature, but are not
already classified as chord notes. The remaining notes are classified as non-scale notes.

Scale notes and non-scale notes are also classified as ornament notes, if they are
directly neighboured by chord notes. This is a simplified solution to the one of Olseng
(2016), where he sub-classified ornament notes into two sub-categories, i.e. passing and
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neighbouring tones. Olseng’s fitness functions concerning the sub-categories were instead
combined into one fitness function (no. 2) in this implementation.

Note intervals are defined as two neighbouring notes [x, y] in the measure, which are
used in Equation 4.2. The equation takes in a number n of intervals and, depending on
the distance in semitones between the notes calculated by |x − y|, where x and y denote
the absolute indices of the notes, yields the negative value of the sum of f(xi, yi) results.
The equation is based on similar equations used by Olseng (2016) and Wu et al. (2014),
in their fitness evaluations.

−
n∑

i=1
f(xi, yi) where f(x, y) =

{
|x − y| − 7 if |x − y| > 7
0 otherwise

(4.2)

The fitness functions of the objective are shown in Table 4.1. They are presented
numerically, with their testing conditions, fitness value impact for when the conditions
are true and a brief description of the fitness function’s purpose. The fitness functions
were either taken directly from Olseng (2016) (no. 5 and 6), modified adaptations of
Olseng’s fitness functions (1 through 4) or novel (no. 7 and 8). The pseudo-function
name num(x) is used to define the number of x.

Table 4.1.: Objective 1 - Fitness functions
No. Condition Cond.

is true
Description

1 num(non-chord notes)
≤ num(chord notes)

+1 Stabilises melody to revolve around
chord

2 num(ornament notes)
< num(scale pitches)

+2 Makes sure ornament notes most of-
ten appear in scale

3 num(non-scale-notes)
< num(ornament notes)

+1 Rewards ornament notes being in
scale

4 First note is root or fifth of
chord

+1 Stabilises melody to start on most
important chord notes

5 num(unres. non-scale notes) −n Punishes measures that have a num-
ber of non-scale notes not resolving
in chord notes

6 num(intervals)
where distance > 7

Eq. 4.2 Stabilises melody to not include
large jumps between notes

7 Measure contains only one
note

-1 Increase probability of measures
containing more than one note, i.e.
contribute to melody progression

8 Flavour note has higher pitch
than first note

-1 If a chord has a 4th flavour note, it
is discouraged for it to have a higher
pitch than the first melody note.

The fitness functions are imposed on each measure in the melody, and the total fitness
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score of a melody is the sum of all values from each measure divided by the number of
measures. The division step is a necessity done to stabilise the fitness values, based on the
ability of phenotypes to have genes that vary in length, as specified in subsection 4.5.1.

Objective 2 - Melodic composition

The second objective is concerned with a global evaluation of the melody, i.e. the melodic
composition, rather than the measure to chord evaluation presented objective 1. The
objective is rooted in 21 fitness functions that normalise numerical values regarding the
melody to fit in the interval [0, 1]. In addition to said fitness functions, the objective
makes use of two melodic punishment functions, that are implemented to punish viola-
tions of important concepts.

The fitness functions of objective 2 are presented in Table 4.2. The main objective
of the fitness functions is to evaluate the entire melodic composition, based on important
musical concepts and boundaries. The functions yield normalised values regarding the
melody, and the values are examined and evaluated to score the phenotypes, based
on a complete analysis of their melodic genotypes. As opposed to the approach in
objective 1, the final fitness score is not re-normalised, based on melody size, as all
return values are already normalised. The fitness functions have deep foundations in
the melodic analysis methods introduced by Towsey et al. (2001), which was also Olseng
(2016)’s main inspiration for his implementation of the corresponding objective. Some
of the concepts from Towsey et al. that were discarded by Olseng are reintroduced
in this implementation. Fitness functions 1 through 16 are all based on Towsey et al.
(2001), whereas only fitness functions 1 to 2 and 5 to 12 were implemented by Olseng
(2016). Some fitness functions have been renamed, but keep similar functionality. Fitness
functions 17 through 21 can be deemed novel fitness functions that were implemented
to discourage the generation of melodies the author deemed unsuited for vocals. The
reasoning behind fitness decisions is further elaborated in subsection 5.2.3.

For the sake of simplicity, some important terms and concepts to better understand
the fitness functions are explained and/or repeated in the following description.

Tonic & Dominant Tonic is a term specifying the first note of the key signature scale.
Dominant is the fifth note of said scale.

Intervals and their dissonance ratings An interval is defined as two neighbouring note
values. Their dissonance ratings are considered in fitness function 4, and follows
the values specified by Towsey et al. (2001). Intervals with a distance of 0, 1, 2, 3,
4, 5, 7, 8, 9 and 12 are defined as having no dissonance, i.e. a value of 0.0. Intervals
with a distance of 10 are defined as having a dissonance value of 0.5 and intervals
with a distance of 6, 11, 13 or higher are defined as having a dissonance rating of
1.0.

Quanta Quanta is a term applied by Towsey et al. (2001) that describes the shortest
possible note duration in the melody, i.e. a quanta is the minimal fraction a note’s
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duration can be. As described in subsection 4.5.1, the minimal duration fraction
is 1

16 in this implementation.

Formula specific information The formulas described in Table 4.2 are presented in a
simplified notation, where num(x) specifies a function counting the number of x
elements and min − max functions specify the min-max values of different data
types, depending on context. The function sum(x) is used instead of the ∑ symbol.

Table 4.2.: Fitness functions for objective 2
No. Simplified formula Target

value
Description

1
num(distinct notes)

num(notes)

Table 4.3 Note variety specifies the note
variety based on the fraction of
distinct notes in the melody.

2

max(notes) − min(notes)
24

0.50 Note range takes the index of
the highest and the lowest note in
the melody, and divides their dif-
ference by the desired range. If
max range is exceeded, 1.0 is re-
turned. 24 is the total distance
of two octaves.

3

num(tonic or dominant quantas)
num(quantas)

Table 4.3 Key focus specifies the fraction
of notes that are either tonic or
dominant.

4

sum(dissonance ratings)
num(intervals)

Table 4.3 Dissonant intervals looks at
the fraction of intervals that
are regarded dissonant, based on
their dissonance values.

5
num(rising intervals)

num(intervals)

Table 4.3 Contour direction defines the
contour direction of most inter-
vals, i.e. if most intervals are as-
cending or descending. A value
of 0.5 means that the amount is
equal.

6

num(same direction intervals)
num(intervals) − 1

Table 4.3 Contour stability finds the
fraction of intervals, which fol-
lowing intervals move in the same
direction.

The table is continued on the next page
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No. Simplified formula Target
value

Description

7

num(diatonic distance intervals)
num(intervals)

Table 4.3 Diatonic step movement spe-
cifies the fraction of intervals
that have a diatonic step dis-
tance. I.e. a distance =
2 between all notes, except
between (B-C) and (E-F), where
the distance = 1.

8
num(notes)

num(quantas)

0.30 Note density is the fraction of
notes in regards to the number of
quantas.

9
num(rests)

num(quantas)

0.15 Rest density is the fraction of
rests in regards to the number of
quantas.

10

num(distinct note durations)
num(possible note durations)

0.70 Rhythmic variety specifies the
fraction of distinct timings that
are used, based on the total num-
ber of possible timings.

11

num(equal notes intervals)
num(intervals)

Table 4.3 Repeated notes specifies the
fraction of intervals that contain
the same two notes.

12

num(equal duration intervals)
num(intervals)

0.20 Repeated rhythms specifies
the fraction of intervals that con-
tain notes with the same dura-
tion.

13

num(3 notes rep. patterns)
num(intervals) − 4

0.10 Repeated notes (patterns of
3) specifies the fraction of times
three consecutive notes are re-
peated by the next three consec-
utive notes, based on the number
of possible three note patterns in
the melody.

The table is continued on the next page
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No. Simplified formula Target
value

Description

14

num(3 durations rep. patterns)
num(intervals) − 4

0.10 Repeated rhythms (patterns
of 3) specifies the fraction of
times three consecutive note dur-
ations are repeated in the next
three consecutive notes, based on
the number of possible three note
patterns in the melody.

15

num(4 notes rep. patterns)
num(intervals) − 5

0.05 Repeated notes (patterns of
4) specifies the fraction of times
four consecutive notes are re-
peated by the next four consec-
utive notes, based on the number
of possible four note patterns in
the melody.

16

num(4 durations rep. patterns)
num(intervals) − 5

0.10 Repeated rhythms (patterns
of 4) specifies the fraction of
times four consecutive note dur-
ations are repeated in the next
four consecutive notes, based on
the number of possible four note
patterns in the melody.

17

num(semitone distance intervals)
num(intervals)

Table 4.3 Semitone steps specifies the
fraction of intervals where the
note distance = 1.

18
num(16th notes)

num(notes)

0.05 16th notes specifies the fraction
of 16th notes in the melody.

19
num(whole notes)

num(notes)

Table 4.3 Whole notes specifies the frac-
tion of whole notes in the
melody.

20

num(four repeated notes)
num(notes) − 4

0.00 Heavily repeated notes spe-
cifies the fraction of notes in pat-
terns of four, where the notes
have a distance of 0.

The table is continued on the next page
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No. Simplified formula Target
value

Description

21 {
1.00 if last note is tonic
0.00 otherwise

1.00 Last note is tonic specifies
whether the melodic composition
ends on a tonic.

Target values are values specifying the most desired outcome of the fitness functions,
described in Table 4.2. The normalised values generated from each fitness function are all
compared with a target value. The comparing method is described in Equation 4.3, and
is the same as used by Olseng (2016) in his Melodic Global Objective. The equation takes
in a fitness evaluation value x that is generated by a fitness function and the associated
target value y, and adds the result to the aggregated sum for all fitness functions. This
means that if a fitness evaluation gives a value equal to the target value, the returned
value is 1. The maximum achievable fitness score for this objective is therefore equal to
the number of fitness functions, listed in Table 4.2, i.e. 21.

f(x, y) = 1 − |x − y| where x, y ∈ [0, 1] (4.3)

An important part of the sentiment based melody generation is handled by dynamic-
ally choosing target values for the fitness functions, based on the input sentiment value.
All fitness functions are given an initial target value, but in some special cases the initial
values are overwritten by a sentiment based target value. For fitness functions that may
have their target value overwritten, their different values are specified in Table 4.3. The
number in the first column specifies the fitness function index in relation to its index in
Table 4.2. The target values are then represented as a one-dimensional array y, which
specifies return values based on the value of a sentiment value x. To get the precise
target value, firstly Equation 4.4 is applied to the values, i.e. g(x, y). The equation
returns the corresponding element from the array y, based on the value of x.

g(x, y) =



y1 if x < −0.75
y2 if − 0.75 ≤ x < −0.5
y3 if − 0.5 ≤ x < −0.1
−1 if − 0.1 ≤ x < 0.1
y4 if 0.1 ≤ x < 0.5
y5 if 0.5 ≤ x < 0.75
y6 otherwise

(4.4)

Equation 4.5 is then applied to the Equation 4.4 output, to get the correct target
value. For Equation 4.5 the input value r is the return value from g(x, y). The input
value v is the initial target value, specified in Table 4.3. The output from Equation 4.5
is considered the actual target value. The equation is meant to return the original target
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value v, if no specific target value is added for the given sentiment value, i.e. v is used
when the corresponding index yi = −1 or the sentiment value is not substantial enough
to invoke special sentiment based values. If the result from Equation 4.4 is −1, then the
original target value is returned.

It is important to note that Equation 4.4 and Equation 4.5 are not exact repres-
entations of the implemented functions, but rather meant to be abstractions to aid in
understanding how the initial target values are only overwritten in specific cases, and
only for specific fitness functions.

f(r, v) =
{

r if 0.0 ≤ r ≤ 1.0
v otherwise

(4.5)

Table 4.3.: Sentiment based target values for selected fitness functions - objective 2
No. Target values f(g(x, y), v) where x = sentiment value
1 y = (0.25 0.30 0.40 − 1 − 1 − 1), v = 0.50
3 y = (−1 − 1 − 1 − 1 0.45 0.50), v = 0.35
4 y = (0.20 0.20 0.15 − 1 − 1 − 1), v = 0.00
5 y = (0.25 0.30 0.40 0.60 0.70 0.75), v = 0.55
6 y = (0.65 − 1 0.55 − 1 0.45 0.40), v = 0.60
7 y = (0.50 0.45 − 1 − 1 − 1 − 1), v = 0.40
11 y = (0.20 0.20 − 1 − 1 − 1 − 1), v = 0.15
17 y = (0.30 0.25 0.20 − 1 − 1 − 1), v = 0.10
19 y = (0.15 0.10 − 1 − 1 − 1 − 1), v = 0.05

Melodic punishment functions are fitness functions exempt from the target value
based approach used by the functions listed in Table 4.2. The main purpose of the
melodic punishment functions is to more severely punish melodies that are violating
important concepts, not thoroughly covered by the minimal impact of each target value
based fitness function. The impact of each target based function decreases based on total
amount of functions, and the two implemented melodic punishment functions cover two
concepts that were deemed to be of importance for generating a melodies intended for
vocals. Reasoning for this is covered in subsection 5.2.3. The specific melodic punishment
functions are listed in Table 4.4. This table follows the same simplified notation used in
Table 4.2.

Objective 3 - Harmony optimisation

The third objective is concerned with evaluating the chord progression of the pheno-
types. The objective is grounded in several fitness functions aiming to generate a varied,
interesting, but key focused chord progression. Similar to the approach described in
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Table 4.4.: Melodic punishment functions - objective 2
No. Simplified formula Description
1 

−
(

num(fitness functions)
4

)
if num(16th notes) > 1

4

−
(

num(fitness functions)
4

)
if num(whole notes) > 1

4

0 otherwise

Large number of ex-
treme notes punishes
melodies where more
than a quarter of the
notes have a duration of
either 1 or 1

16 .

2

−


num(extreme intervals)

num(fitness functions) ∗ 0.01
2


Extreme note inter-
vals punishes melodies
based on the fraction of
intervals containing two
whole notes or two 16th
notes.

objective 2, the fitness functions return normalised values in the interval [0, 1] for eval-
uation. The concept of post-fitness punishment as used in the melodic punishment
functions, presented in Table 4.4, is carried over to this objective as well, in the form
of harmonic punishment functions, presented in Table 4.8. For objective 3 a total of 10
normalising fitness functions and 5 harmonic punishment functions were implemented.

This objective is loosely based on concepts such as chord roots not being in key,
semitone dissonances, unresolved chords and repetition used by Olseng (2016) in his
Harmonization Objective and Harmonic Progression Objective. This objective however
follows a different approach than Olseng, in having normalised values as a basis for
the objective, as well as other structural changes, such as having increased musical
knowledge in the fitness functions. Whereas Olseng used punishment functions as a
basis for his corresponding objectives, this objective uses a combination of normalise-
based and punishment-based functions, where the punishment functions are in minority.

Fitness functions that revolve around normalised observations of phenotypes’ chord
progressions are presented in Table 4.6. The fitness ranking process is highly similar
to the one used in objective 2, where all normalised scores from each fitness function
are summed, before being handled by the punishment functions. This objective has no
regard of the melody genes of phenotypes, and is exclusively handling the evaluation of
chord genes.

As done for objective 2, some important terms and concepts that should be explained
and/or repeated for the sake of better understanding the fitness functions are presen-
ted below. Some tonic-dominant and formula specific information is skipped, as these
concepts were presented in section 4.5.3.
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Table 4.5.: Chord triad types in different scale degrees - copy of Table 2.3
Chords in different scale degrees

1st 2nd 3rd 4th 5th 6th 7th
Major I ii iii IV V vi vii◦
Minor i ii◦ III+ iv V VI vii◦

Triad A triad is a combination of three specific notes, played simultaneously as a chord.
As described in subsection 4.5.1, all chords in this implementation follow specific
patterns. In the fitness ranking in Table 4.6 the word triad specifies only the triad
portion of the chord. Chords might have a fourth flavour note in combination with
the triad. For the ranking and handling of specific root note and triad relationships,
the scale degrees presented in Table 4.5 are used.

Tonic & Dominant Tonic and dominant chords are specified with regards to their root
notes being either tonic or dominant, as well has having their triad qualities match-
ing the scale degrees defined in Table 4.5.

Table 4.6.: Fitness functions for objective 3
No. Simplified formula Target

value
Description

1 ∑
f(xi) where

f(x) =
{

0.5 if chord is tonic
0 otherwise

1.00 Starts/ends on tonic
specifies whether the chord
progression start/ends with
chords containing tonic triads.
For the formula, x is an array
containing the progression’s
starting chord and ending
chord.

2

num(dominant triad chords)
num(chords)

Table 4.7 Dominant triads specifies
the fraction of chords that con-
tains dominant triads.

3

num(resolved dominant chords)
num(dominant chords)

1.00 Resolved dominants spe-
cifies the fraction of chords
containing dominant triads
that resolve into a tonic triad
chord within two measures.

The table is continued on the next page
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No. Simplified formula Target
value

Description

4

num(repeated chord intervals)
num(chord intervals)

Table 4.7 Repeated chords specifies
the fraction of chord intervals
containing the same chord.

5
num(tonic triad chords)

num(chords)

Table 4.7 Tonic triads specifies the
fraction of chords containing
tonic triads.

6
num(distinct chords)

num(chords)

Table 4.7 Distinct chords specifies the
fraction of chords that are dis-
tinct.

7

num(4th flavour note chords)
num(chords)

0.30 4th flavour note specifies
the fraction of chords that
have an extra 4th flavour
note.

8 ∑
f(xi) where

f(x) =
{

0.5 if triad is dominant
0 otherwise

0.00 Starts/ends on dominant
specifies whether the chord
progression start/ends with
chords containing dominant
triads. For the formula, x is
an array containing the pro-
gression’s starting chord and
ending chord.

9

num(tonics with 4th flavour note)
num(tonic triad chords)

0.30 Tonics with flavour spe-
cifies the fraction of tonic
triad chords containing a 4th
flavour note.

10

num(semitone flavour note dist.)
num(4th flavour note chords)

0.00 Semitone flavour disson-
ance specifies the fraction of
chords containing a 4th fla-
vour note, where the flavour
note has a semitone distance
to another note in the chord.

Target values are values specifying the most desired outcome of the fitness functions,
described in Table 4.6. The target value ranking follows the same process as for objective
2. The normalised output from the evaluation functions are compared to target values
by using Equation 4.3.
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As for objective 2, the harmonisation objective also follows a dynamic sentiment based
target value approach, where some fitness functions have variable target values. For said
fitness functions, the same approach as in objective 2 is followed, by first applying
Equation 4.4 and then Equation 4.5 to obtain a target value. All fitness functions with
sentiment based target values for this objective are presented in Table 4.7 in the same
manner as for objective 2.

Table 4.7.: Sentiment based target values for selected fitness functions - objective 3
No. Target values f(g(x, y), v) where x = sentiment value
2 y = (0.20 0.20 − 1 − 1 0.40 0.40), v = 0.30
4 y = (0.30 0.20 0.15 − 1 0.20 0.20), v = 0.10
5 y = (0.60 0.50 0.45 0.50 0.55 0.55), v = 0.40
6 y = (0.35 0.40 0.40 − 1 0.40 − 1), v = 0.50

Harmonic punishment functions are implemented as an addition to the target
value based fitness functions presented in Table 4.6, and follow an approach similar to
the one of melodic punishment functions presented in Table 4.4. The main purpose of
the harmonic punishment functions is to punish chord progressions more heavily than a
normalised valued approach does. This is done for the most important concepts, such as
verifying that chords follow correct scale degrees, chord root notes are found in the given
key signature, etc. The harmonic punishment functions and their simplified formulas are
presented in Table 4.8. The formulas were designed as to punish chord progressions based
on the severity of the violated concepts, but with an intention of not directly disqualifying
phenotypes for minor violations. In other words, punish phenotypes gradually, and
somewhat linearly.

Objective 4 - Lyrics optimisation

The Lyrics optimisation objective is designed to evaluate the extent of which the lyrics
fit the generated melodies of different phenotypes. The fitness functions are implemen-
ted to promote phenotype solutions where the words of the lyrics land on sensible places
in the melody. The reasoning behind the addition of fitness functions 2 through 5 were
subjective evaluations by the author, by evaluating generated melodies and correspond-
ing lyrics, as well as studying lyrical layouts of various song books. All fitness functions
for this objective are presented in Table 4.9.

n∑
i=1

f(xi, yi, y) where f(x, y, z) =


g1(y, z) if x = 1
g2(y, z) if x = 2
g3(y, z) otherwise

(4.6)

The first fitness function is rooted in the lexical stress markers found as parts of
phonemes returned by looking up lyrical words in CMUdict (subsection 2.4.2). The
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Table 4.8.: Harmonic punishment functions - objective 3
No. Simplified formula, y =

num(fitness functions)
Description

1

f(x, y) =


−

(
y

3

)
if x < 0.30

−
(

y

1.5

)
if x < 0.15

0 otherwise

Minimum tonic amount punishes
chord progressions where less than 30%
of the progression contains tonic triad
chords. For the formula, x is the por-
tion of tonic triad chords.

2

f(x, y) =
{

−(x ∗ y) if x < 0.30
0 otherwise

Exceeding chord repetition pun-
ishes chord progressions based on the
product of the number of fitness func-
tions and portion of repeated chords in
the progression. For the formula, x is
the portion of repeated chords.

3

f(x, y) = −(1.5 ∗ y − (x ∗ y ∗ 1.5))

Correct scale degrees punishes
chord progressions where chords do
not follow scale degrees specified by
Table 4.5. For the formula, x is the
portion of chords following set scale de-
grees.

4

f(x, y) = −(2 ∗ y − (x ∗ y ∗ 2))

Roots in key punishes chord progres-
sions where chord roots are not in the
given key. For the formula, x is the
portion of chord roots not in key.

5
f(x, y) = −

(
x ∗ 10 ∗ x

y

) Flavour note in chord key punishes
chord progressions based on the num-
ber of flavour notes that are not in the
key of its associated chord. For the for-
mula, x is the number of chords with
flavour notes not in its key.

intent of the function is to increase fitness scores for phenotypes where syllables have a
correct rhythmical placement in the melody. This means that based on how correctly
note durations fit with stress markers in their corresponding syllable phonemes, the
phenotype fitness score increases. The concept of using phoneme stress markers to
generate suitable syllable rhythms and relationships was also explored by Monteith et al.
(2012), in their lyric to melody implementation.

As the main equation for this fitness function is of a complicated nature, it is mostly
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Table 4.9.: Fitness functions for objective 4
No. Simplified formula Target

value
Description

1

sum(Equation 4.6) for each word
num(words)

1.00 Stress and duration satisfac-
tion returns a normalised value
describing how well syllables of
the lyrics and their stress values
correspond to appropriate note
durations. E.g. primary stress
values should have longer note
duration than a secondary or no
stress value in the same word.

2

num(lines ending measure)
num(lines)

1.00 Lines ending measure spe-
cifies the fraction of lines where
the last syllable also ends a meas-
ure.

3

num(longer note ending lines)
num(lines)

1.00 Longer note line ending spe-
cifies the fraction of lines where
the last syllable of the line has
a longer corresponding note dur-
ation than the previous syllable.

4

num(tonic/dominant ending lines)
num(lines)

0.60 Tonic/dominant line endings
specifies the fraction of lines
where the last syllable ends on a
tonic or dominant note.

5

num(multi-measure syllables)
num(syllables)

0.10 Multi-measure syllables spe-
cifies the fraction of syllables that
span multiple measures.

presented outside of the table view in Table 4.9. The result of the stress and duration
evaluation is calculated by Equation 4.6, where x is an array of stress values associated
to a word in the lyrics, y is an array of the note durations corresponding to each stress
value and n is the size of the arrays. Equation 4.6 makes use of three different supporting
functions g1, g2, g3, presented in Equation 4.7 and Equation 4.8. For all g functions, y is
the note duration corresponding to a phoneme, and z is the total list of durations for a
given phoneme in a word. For each word, the output value is generated by normalising
the aggregated word value by the number of stress values in the word. The total fitness
score generated by this fitness function is the normalised sum of values generated for each
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word and its corresponding note durations in the melody/song. It is important to note
that the functions are only considered to aid in understanding the fitness function, and
therefore have a simplified representation. The handling of occurrences where the word
is not found in the dictionary is for example disregarded in the formula representation.

g1(y, z) =


1.00 if y = max(z)
0.25 if y > min(z)
0 otherwise

and g2(y, z) =


0.50 if y = max(z)
0.25 if y ≥ min(z)
0 otherwise

(4.7)

g3(y, z) =


0.75 if y < max(z) ∧ y = min(z)
0.50 if y < max(z)
0 otherwise

(4.8)

The objective fitness functions are presented in Table 4.9. The fitness ranking principle
is the same as in objective 1 and objective 2, where scores from each fitness function
evaluation are compared to a target value, using Equation 4.3, and aggregated into a total
fitness score. As opposed to the approaches in objective 1 and objective 2, no sentiment
based target values are added, as the sentiment value was deemed irrelevant for the
low-level lyrical evaluation proposed in this objective. It was also deemed unnecessary
to implement punishment functions, such as done in the previous objectives.

4.5.4. Genetic operators
Multiple genetic operators were implemented as to generate and diversify offspring based
on the current population. The reasoning behind the presented approaches, such as
operator probabilities is presented in subsection 5.2.2.

Crossover

The first step in offspring generation is to combine the genes of two phenotypes from
the previous generation. This is handled by the function random measure crossover.
The function combines genes from two phentoypes by firstly separating each phentoype’s
melody genes into measures. Genes for the recombination are chosen with a semi-random
approach. Until the maximum length of one of the phenotypes is reached, a random
number of measures from each phenotype is added to the offspring with a positional
approach. This means that if measure 1 and 2 from the first phenotype is added to
the offspring, then the random number of measures added from the second phenotype
starts off from the third measure index of its melody genes. The next phenotype to add
measures from is chosen at random for each combination iteration, meaning that even
though measures have been added from one phenotype already, the same phenotype
could be chosen for combination in following iterations.

When the maximum length of one of the phenotypes is reached, remaining measures
are added in random increments from one of the two phenotypes at a time, but with a
disregard for the previously defined index positioning approach.

44



4.5. Genetic Algorithm Implementation (NSGAII)

Chords are added based on their corresponding measure, i.e. chords are, by design,
associated with a specific measure.

As an extra input variable for the crossover operator, a possibility for shuffling the
notes in the measures was implemented. This is done as to further diversify the gene
pool, as the combination and recombination of measures is done in large portions, which
could increase the chances of the optimisation algorithm getting stuck at local maximum
solutions. The shuffle function shuffles the notes in a measure by finding random notes
and combinations of notes in beats that have the same duration, and swapping their
places. The probability of the crossover operator utilising the shuffle method is set to a
50% chance.

The function continues the recombination until the melody length l ≥ n number of
syllables in the lyrics. If l > n, the exceeding number of notes are pruned from the
offspring melody. The necessity for the second round of measure recombination and the
following melody pruning is a consequence of the variable genotype sizes of different
phenotypes, as described in subsection 4.5.1.

Mutation

Of the offspring phenotypes generated by the crossover operator, 30% are chosen for
mutation. The reasoning behind such a high mutation possibility was a necessity for
diversifying the offspring, as the offspring tended to have high gene similarity already at
early generations.

The different mutation operators are presented below. For the offspring chosen for
mutation, one mutation operator is applied, but in cases where one operator fails to
apply a mutation, another mutation operator is applied, following the same probabilities.
This happens in special cases, such as e.g. when the operator tries to mutate durations
for a beat that is empty. The probabilities of which operator to apply to an offspring is
specified in the parentheses next to the operator name in the description below.

Mutate random note (5%) The operator finds a random note in the melody and over-
rides it with a new, randomly chosen one within legal bounds. The initial note
duration is kept equal.

Mutate random scale note (25%) This operator finds a random note in the melody
and overrides it with a new, randomly chosen one within legal bounds and within
the scale of the global key signature. The initial note duration is kept equal.

Mutate beat durations (15%) This operator selects a randomly chosen beat, with a
length l > 1, and shuffles the note durations in the beat, i.e. notes stay the same
place in the beat, but swap durations.

Swap random notes (15%) The note swap operator chooses two random notes in the
melody, having an equal duration, and swaps their places.

Mutate random scale chord (20%) This operator chooses a random chord in the chord
progression and overrides it with a new chord. The new chord is generated by
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finding a random root note from the global key signature, and generating its valid
triad chord based on the chord scale degree relationship, described in Table 4.5.
No possibility for a fourth flavour note is implemented by this operator. The
main reasoning for keeping the totally random scale note mutation operator, and
not having a corresponding randomness in chord mutation, was that such chord
changes would drastically punish the phenotype in fitness, which could disqualify
an otherwise well ranked phenotype.

Swap random chords (10%) This operator selects two random chords from the pheno-
type, and swaps their places.

Mutate chord flavour note (10%) This operator adds a fourth flavour note for a chord
of length l < 4, or overrides the flavour note of a chord with a length l = 4. The
chord to modify is randomly chosen from the phenotype chord genes, and the
flavour note is generated at random from the scale of the chord root note. The
root note scale follows a major pattern or a natural minor pattern, which is decided
at random.

4.5.5. Termination
The algorithm is set to terminate after a given number N generations is reached. The
number is set in advance. A possibility for the algorithm to terminate if the number
of Pareto fronts have been of size = 1 for 100 generations was also implemented. This
happens when none of the phenotypes in the population dominates other phenotypes, i.e.
they are all pareto optimal. The concept of pareto fronts is covered in subsection 2.2.1.

4.6. Algorithm output
The algorithm output is generated based on the genes of the phenotypes chosen for
output. In the main implementation, five phenotypes are chosen for output after each
100 generations, as well as when the algorithm terminates. The phenotypes are chosen at
random from the winners of the tournament sort used in choosing parents for offspring,
i.e. they are randomly chosen from the parent population.

For each phenotype a LilyPond (subsection 2.4.4) file is generated. The file contains
all information about the melody and chord genes, as well as the lyrics. The file may
be compiled into multiple formats, but for the main usage of this algorithm, the most
relevant file formats are PDF, SVG and MIDI file compilation. File types are chosen
manually.
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This chapter is intended to give the reader an insight into the conducted experiments
and the results generated as part of the project research. Firstly the experimental plan
of the project is presented in section 5.1, then a description of each conducted experi-
ment and their corresponding results are presented in the following sections, arranged
by experiment topics. Testing of architectural decisions and results are presented in
section 5.2. A questionnaire and the generated results are presented in section 5.3 and
section 5.4.

5.1. Experimental plan
The first part of the experimental plan of the project is concerned with evaluating differ-
ent architectural approaches that were considered during the developmental phase of the
project. This includes reasoning behind architectural decisions such as fitness function
design, genetic operator design and probabilities, as well as an overview of the reasoning
behind the general data structures. The plan also includes testing conducted in trying
to amend the fitness ranking scheme collapse, mentioned by Olseng (2016), that also was
encountered during this project. The plan of testing various architectural approaches is
an important aspect of providing results for RQ1, presented in section 1.2.

The second part of the experimental plan includes a questionnaire sent out to evaluate
the quality of the output generated by the system, as well as give an indication of the
system’s music composition potential. The reasoning for using a questionnaire based
evaluation is to get a more extensive view of the musicality of the generated output,
when evaluated objectively, rather than with subjective evaluations of the system. The
questionnaire evaluation is directly related to generating results for RQ2, presented in
section 1.2.

5.2. Testing of architectural approaches
This section is intended to present testing conducted on various architectural approaches
and problems encountered during the developmental phase of the project, as well as
give an insight into the test results and the decisions made as a consequence of the
results. The testing conducted on architectural approaches could be considered as having
generated qualitative results, as the tests were entirely performed through subjective
observations by the author. A thorough quantitative evaluation of the implemented
system architecture, as a whole, is presented subsequently in section 5.3 and section 5.4.
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5.2.1. General setups
The testing of general setups consists of the evaluation of architectural approaches not
directly concerned with the evolving nature of the system, and is as such comprised of
the testing of initial setups.

Beats vs. measures

Two setups regarding the melodic genotype representation were tested as part of the
project. Firstly the melodic genotype was designed to be initiated and recombined in
the crossover function with a beat to beat approach. This means that the duration of
the combined beats of each measure was not considered in the melody generation, and
that duration limitations were only put on beats, i.e. a beat should have a duration
of a quarter note. When a duration longer than a beat was generated, empty beats
were appended to the given beat, to signify beats covered by the duration. The biggest
problems with this approach became clear as dotted notes were introduced and when
evaluating the placement of whole notes, when notes regularly got irregular durations,
with regards to the regular beat concept. Though generating subjectively interesting
melodies, it introduced major syncopation occurrences in the melodies, i.e. notes did
not consistently appear at rhythmically expected positions in the melody. An example
of said syncopation issues can be seen in Figure 5.1, where introduced whole notes offset
the melody in regards to the chords.

Figure 5.1.: 5 measures generated with beat representation.

Another setup was considered, where the melody genotype, though still represented
as an array of beats, would be more strictly treated with regards to measures. The
initialisation of random durations for each melody genotype would, rather than gener-
ating durations for each beat, generate durations that would fill entire measures. The
crossover operator was also changed to recombining the genes from parent phenotypes
by combining beats of measure size. The desired outcome of these changes was that the
melodies would be less syncopated in nature, as well as increasing the melodic stability.
An example of a melody line generated with a measure based representation is shown in
Figure 5.2, where one can observe that even though there are dotted notes, and some
notes with a longer duration than one beat, the melody is not offset.

The results from the change from beat handling to measure handling showed that the
melodies were much more grounded in the time signature, and that notes appeared at
expected places in the melody to a much larger degree. The change did though present
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Figure 5.2.: 4 measures generated with measure representation.

a new problem in which the crossover operator combined large gene selections from
each parent, such that a large degree of measure repetition occurred regularly. This did
impair the generation of varied music to some extent, and introduced a possibility for the
algorithm to converge on local maximum solutions. This problem is further addressed
in subsection 5.2.2.

Sentiment analysis

To arrive at useful sentiment values for generated melodies, much testing was involved
to improve the sentiment analysis of the input lyrics. As a basis for lyric testing and
having some reference points of appropriate sentiment values, the valence score values
from a data set presented by Malheiro et al. (2018) were used. The main testing method
was manual evaluation of a set of lyrics and their corresponding data set values.

The first approach to sentiment analysis was to test how the unmodified Vader (Hutto
and Gilbert, 2014) algorithm evaluated a set of lyrics. Two approaches were tested,
where the first approach used Vader to get a valence score for the complete lyrics, and
the other used a normalised aggregate of valence scores found for each line in the lyrics.
The solutions showed similarities in their results, but the aggregated sentence value
approach was ultimately decided to be the best of the two, with regards to values from
the data set. An important note in the comparison between data set values and Vader
values is that Vader presents the valence score v ∈ [−1, 1], whereas the data set presents
it as v ∈ [−4, 4].

The results from the first approaches yielded inconsistent results, and attempts were
made to find a solution that could improve the consistency. The approach of having
two extra thresholds for valence score boosts, previously presented in section 4.2, was
implemented. When increasing the importance of the most extreme valence scores, with
an emphasis on the negative scores, the algorithm yielded more promising results.

An example set of results is presented in Table 5.1, where the three solutions are
compared, and the distance to the data set values are calculated by Equation 5.1. The
minimum distance values are marked with bold text for each row.

d =
∣∣∣∣algorithm valence − data set valence

4

∣∣∣∣ (5.1)

The division by 4 is done to get the relative placement of the data score v ∈ [−1, 1].
The songs chosen for the example are in sequential order “Moon Song” by Norah Jones,
“Mother” by John Lennon and “Ode to my family” by The Cranberries. Note that
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different songs might provide differing results, but manual reviews conducted by the
author suggest that the modified sentence value solution provides the most consistent
results.

Table 5.1.: Sentiment result examples
Song Whole text

value
Sentence value Modified sen-

tence value
Data set value,
v = value

4
1 -0.026, d = 0.451 0.007, d = 0.418 0.1, d = 0.325 1.7, v = 0.425
2 -0.057, d = 0.518 -0.001, d = 0.576 -0.1, d = 0.475 -2.3, v = -0.575
3 0.982, d = 1.357 0.200, d = 0.575 0.3, d = 0.675 -1.5, v = -0.375
AVG(d) 0.775 0.523 0.475

5.2.2. Genetic operators
Several approaches to genetic operators were tested, with the main evaluation criteria
being how they avoided generating generic, i.e. overly similar, phenotypes, as well as
avoiding local maximum solutions.

Crossover

As mentioned in the paragraph concerning beats vs. measures in subsection 5.2.1, two
main crossover solutions were implemented, one for recombining genes in beat divided
chunks and one for recombining genes in measure divided chunks. Only the latter will
be considered in this paragraph, as measure recombination was the solution used in the
system architecture, with the reasoning being presented in subsection 5.2.1.

The local maximum problem, described in subsection 5.2.1, was the main concern
when experimenting with the crossover operator. Initial testing of the operator showed
that after an increasing number of generations, the melodic genotype of the phenotypes
suffered from many repeating note patterns, and an alarming number of phenotypes
contained highly similar genes, i.e. a local maximum was likely. As to circumvent this
problem a solution was tested that would attempt to locate two beats in each measure
of the melody, and swap their places. The swap was only to be done if the beats had an
exactly equal duration, which decreased the chances of a swap occurring in all measures.

The probability of a swap occurring during recombination was set by a parameter
passed into the function, before execution. The parameter was set to 50%, which imme-
diately yielded promising results, and the parameter value was hence not changed. With
a 50% chance of beat shuffling within measures the phenotype gene variation showed an
increase, and the exact repetition of measures in a melody decreased.

Mutation

The different mutation operators were chosen based on a subjective evaluation of reason-
able possibilities of melody and chord progression changes, with some inspiration taken
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from Olseng (2016). The operator probabilities were set based on their importance in
avoiding local maximum solutions and a subjective evaluation of their profitability in
regards to music generation.

The tests conducted on the main mutation operator were done as a consequence of a
discovered risk where the genes, most importantly chord genes, showed little evolution
in the succeeding generations after approx. 100 generations, often indicating that a local
maximum solution had been reached. These findings were supported by e.g. discovering
that a large amount of solutions had a significant lack of chords with tonic root notes,
which is inherently undesirable behaviour.

Experiments were then conducted on increasing the probability of offspring mutating.
A higher mutation probability made sure that when a higher number of generations was
reached, phenotypes continued to evolve to e.g. increase their amount of tonic triads,
as the introduction of tonic triad chords to the genes immediately increases the fitness
evaluation score of objective 3. The initial mutation probability was set to 5%, which
was then step-wise upped to the 30% probability used by the system architecture based
on evaluations by the author.

5.2.3. Fitness approaches
The development of suitable fitness functions was a crucial part of the system architecture
design, presented in chapter 4. Multiple fitness approaches were considered for the
architecture, and this subsection presents some of the most important approaches that
were tested.

Punishment vs. normalisation

From the chapter describing the system architecture, one can see that objective 1 follows
a simple punishment/reward system, i.e. the fitness conditions either punish or reward a
phenotype with numerical values, while objective 2 and 3 both follow a ranking scheme
where most of the fitness functions are based on normalised observations of the phenotype
qualities rewarding phenotypes based on a set of target values, but also having extra
punishment functions punishing seemingly bad qualities, which can be considered a
hybrid approach. Objective 4 follows a strictly normalisation based approach, where all
fitness rewards are given based on the target value based quality evaluation.

Objective 1 and 4 were never changed from their setups presented in chapter 4, and
the only testing conducted on these objectives was in regards to which fitness functions
to include, and in objective 4’s case tweaking of the target values. These decisions were
fully based on qualitative evaluations by the author on fitness function importance, in
addition to how well different melodic aspects were covered in other objectives. For
example a normalising fitness function from objective 2 regarding the number of non-
scale notes in the melody was removed, as the concept was deemed well covered by
objective 1.

For objective 2 and 3, two major different fitness approaches were tested. For ob-
jective 2 an approach without the melodic punishment approach, where the number of
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repeated notes and the number of whole and 16th notes was first handled by the tar-
get value based functions, was initially tested. The testing conducted on this approach
yielded unsatisfying results, where the author’s subjective evaluation suggested that the
probability of melodies being generated with unnatural note duration combinations was
too high, and that the number of notes having extreme durations was too high in general,
i.e. the number of whole and 16th notes that could impair the ability to sing along with
the melody was problematic. The proposed change was to implement and move some
of the functionality to punishment functions that would more severely punish melodies
with an irregular number of extreme note durations, and especially punish the repetition
of said notes. Subjective evaluation by the author suggested that the implementation
of the punishment functions showed significant improvements in the melodies, although
some voluntary comments from respondents of the questionnaire described further in
section 5.3 and section 5.4, specifically suggest that the system generated melodies with
rhythmical problems related to extreme note durations.

For objective 3, the first tested fitness approach was a more punishment based system,
similar to the one used by Olseng (2016) in his Harmonization and Harmonic Progression
objectives. This approach also included another objective, i.e. the lyric based objective
4 was not fully implemented and the harmonisation was separated into two separate
objectives, where one followed a one chord at a time evaluation approach and the other
evaluated the progression as a whole. The initial lyric testing was included into the pro-
gression objective. The progression objective followed a hybrid target based normalising
and punishment approach to the one mentioned for objective 2, whereas the one chord
at a time approach was fully punishment based. As for objective 2, the use of a hybrid
approach was added based on subjective evaluations done by the author, suggesting that
the chord progressions had a high likelihood of being generated without being thoroughly
grounded by the tonic of the key signature. The change into using punishment functions
to punish progressions with a too small number of tonic triad chords, as well as punish
progressions with a large degree of repetition, subjectively yielded better results.

The reason for later combining the chord based fitness objectives into one objective
and the separation of the lyric based functions into a separate objective was mainly
based on amending a problem regarding the main ranking scheme, described in detail
in subsection 5.2.4, although it was also desirable to test whether separating the fitness
functions regarding optimisation for lyrics would add to the melodies’ lyrical suitability.
The results from subjective evaluations on separating the lyrical fitness evaluation into a
separate objective indicated that the fitness of lyrics was given more importance in the
evolution process, and that there was a slight increase in melodies evolving to be better
fitting to the input lyrics.

Sentiment based target values

A key element in implementing the target value based fitness functions, as well as having
them react correctly to the given sentiment, was to provide the algorithm with a set of
profitable target values. The target values, as well as what target values to alter based on
the given input sentiment value, were decided entirely based on subjective evaluations by
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the author by multiple testing iterations. Reasoning for the chosen sentiment changeable
target values was general assumptions, such as “sad” music being more dissonant, as well
as containing a higher number of decreasing intervals, and “happy” music being more
consonant. The main sentimental observation done by the author was that the biggest
sentimental difference was seen when changing between major/minor keys, and that the
variable target value approach only served as a minor supplement to the key choice.

5.2.4. Ranking scheme collapse
Olseng (2016) mentioned a problem with the ranking scheme of his system collapsing
when the number of fitness functions increased. The collapse was caused by having
no phenotypes dominating the others, i.e. they were all non-dominated, in regards
to the non-dominated sorting approach adopted by the NSGAII algorithm described
in subsection 2.2.2. This meant that all phenotypes were considered pareto-optimal,
although not necessarily being fully evolved solutions.

A similar collapse was observed in the initial tested implementations of this project,
where the number of pareto fronts would decrease to 1 within approx. 150-250 gener-
ations. The population had not yet evolved into subjectively good melodies, but all
individuals had evolved into melodies following general musical rules, such as revolving
around chords and the key. The main problem observed with the collapse was that only
the crowding distance sorting would choose the parent population, meaning that the
non-dominated sorting had no effect. This effect indicated that it was no guarantee that
individuals chosen for reproduction were the best, and it seemed that further evolving,
at this point, was up to the mutation operators.

Two particular solutions were tested to prevent the algorithm from converging into
one pareto optimal front too soon. Instead of implementing a solution like the one
used by Olseng (2016), where fitness duplicates were eliminated, a restructuring of the
fitness objectives was tested and applied. As such, a solution of removing separate
fitness objectives for chords, mentioned briefly in subsection 5.2.3, was tested. The
core change proposed was to combine two separate chord objectives into one, where the
mainly punishment based objective of handling chords individually in the evaluation was
added into the chord progression objective. The most important fitness functions, such
as the check of valid scale degrees in chords, were added to the harmonic punishment
functions of objective 3, as well as the ones of less importance, such as semi-tone distance
in flavour notes, being added as target value based normalising functions. In addition to
this change, all lyric optimisation functions, previously found in objective 3 (harmonic
progression), were separated into the now used objective 4, as described in chapter 4.
The separation was intended to introduce a more clear aspect of domination within the
phenotypes’ lyrical optimisation, as well as attempting to reduce the number of fitness
functions within each objective.

The results from the change indicated that the algorithm would run for longer until
converging on one pareto optimal front. The generation count would increase to ap-
prox. 300-500 generations until the number of pareto fronts first reached 1. Another
improvement included that even when converging on one pareto front for a number of
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consecutive generations, the algorithm could re-evolve into having multiple pareto fronts
within few generations. This was opposed to the results found before the change, where
the algorithm would rarely recover from converging on one pareto optimal front. During
testing it was also observed that the length of the input lyrics, and consequently the size
of the genotypes, was a key factor in determining the number of generations needed to
converge on pareto optimal solutions.

To further increase converging time, an attempt was made at increasing the population
size N from N = 1000 to N = 1500. The results gathered from this change indicated
that it would increase the converging time to some degree, but the results were not
consistent for all cases (generations). The change was anyhow kept when generating
melodies for the questionnaire, described in section 5.3, as is could be of some help in
increasing the converging time, as well as improve phenotype diversity.

5.3. Questionnaire design

A questionnaire was designed with an intent of generating a quantitative evaluation of
the system’s ability to generate lyric-based melodies. The main goal of the evaluation
was to achieve valuable insights into the quality of the generated output, as well as
getting an indication of the system’s usability in real world music composition tasks.

5.3.1. Algorithm setup and generated melodies

As a preliminary step in the questionnaire design, five melodies for five different input
lyrics were generated by the system described in chapter 4. For each of the generated
melodies, the same input parameters for the system were used. The generation count G
was set to 1000 iterations, and the population size P was set to 1500 individuals. The
input parameters were based on observations done by the author in relation to how the
melodies seemed to evolve over time, as well as results based on the ranking scheme
converging observations mentioned in subsection 5.2.4.

The generated melodies for the questionnaire were chosen from the subjectively best
evolved phenotypes, i.e. the best of five phenotypes was chosen by the author for each of
the input lyrics, when the algorithm terminated. The melodies, as well as the lyric based
input values for the system are presented in Table 5.2. The lyrics are listed in the same
order as they appeared in the questionnaire with their corresponding title. All generated
melodies, their corresponding lyrics and sheet music, as well as selected questionnaire
results are presented in Appendix B. A specific appendix marker is appended to the
corresponding title in Table 5.2. The table also presents the sentiment values, musical
keys and time signatures for each of the different melodies generated by the system. The
question template presented in subsection 5.3.2 was then used as a basis for the questions
regarding each of the generated melodies in the questionnaire.
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Table 5.2.: Melodies generated for questionnaire
No. Title Sentiment

value
Key Time

signature

1 Nellie Dean (B.1) 0.3 G-major 4
4

2 Bridget O’Malley (B.2) 0.1 E-major 3
4

3 Early one morning (B.3) 0.0 G-minor 3
4

4 Henry Martyn (B.4) 0.0 E-minor 4
4

5 Billy Lyons and Stack O’Lee (B.5) -0.4 G-minor 3
4

5.3.2. Questions
The questionnaire was designed with an intent of being readily understandable, without
being designed for a specific target group. The intention was that a participant’s age
and computational or musical background should be of no constraint, when providing
answers for the questionnaire. The questionnaire was inherently anonymous, and only in-
significant personal questions regarding the participants background were asked, namely
questions with respect to the participants’ musical interests and abilities.

The questions for the questionnaire are listed below, accompanied by general descrip-
tions of the questions, as well as a description of the associated evaluation criteria. Aside
from specifically annotated questions, all questions were to be given an answer on a scale
of integers in the interval [−3, 3] with correlating descriptions, presented in Table 5.3.
The questionnaire included no mandatory questions, to lessen the likelihood of parti-
cipants getting stuck or quitting, when finding a question to hard or incomprehensible
to answer. All questions were originally presented in Norwegian, and as such, the list of
questions and score ratings are translations done by the author. The original questions
and score ratings can be found in Appendix A.

Table 5.3.: Score rating scale
Score: Correlated wording
-3 To a much lesser degree
-2 To a lesser degree
-1 To a minor degree
0 Neutral
1 To a certain degree
2 To a greater degree
3 To a much greater degree
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Introduction

The initial questioning, presented below, was intended to get an overview of the parti-
cipants’ previous experience with music and composition, as well as obtain an overview
of their ability in reading the sheet music accompanying each melody. The ability to
differentiate between experienced and less experienced participants was regarded as an
important aspect of evaluating the questionnaire responses, as answers could be highly
dependent on the participants’ experience levels.

1. Do you listen to music often?

2. Do you ever compose music?

3. Do you know how to read sheet music?

Questions regarding melodies

The below presented question template was used for each melody generated as part of the
questionnaire, and was arguably the most integral part of the quantitative evaluation
process. Along with the question set, the participants were presented with a video
containing the melody gathered from a MIDI-file, as well as the corresponding sheet
music for the generated melodies. The first question in the template was intended to
determine to what degree the participants were able to be objective in their melody
evaluation. If they had heard the actual song and corresponding melody previously, it
could have impacted their evaluation of the generated melody. For each melody the
participants were able to leave an extra textual comment about the melody. This ability
was added as to bring clarity into the participants’ reasoning behind their answers, and
hence improve the author’s ability to analyse and understand the data provided by the
questionnaire. A description was linked to each of the questions regarding melody and
lyrics, shown for each question below. The main evaluation criteria covered by the
questions are presented in the description following the question template.

1. Objectivity
a) Have you heard the original song before? (yes - no - don’t know)

2. Melody:
a) Is the melody musically pleasing?

• Does the music follow musical rules/norms?
• Do you think the melody is pleasant to listen to?

b) Is the melody interesting?
• Do you think the melody demonstrates interesting qualities, or is it bor-

ing/meaningless?
c) Does the musical structure make sense?
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• An overall impression of the melody.
• Does the melody have a natural progression, or does the melody e.g. show

sudden/unnatural changes?

3. Lyrics and melody:
a) Does the melody leave a fitting emotional impression (sentiment), based on

the lyrics?
• Are the lyrics sad or happy? Does the melody reflect this?

b) Do the words and syllables fit with their appointed notes?
• Are there any unnatural differences between the rhythm and the notes in

regards to words and syllables?

4. Voluntary comment

Musically pleasing This metric is intended to clarify to what extent the generated
melody is musically pleasing. It is concerned with determining whether the melod-
ies follows musical norms/rules, such as keeping well within the defined key signa-
ture. The metric of musical pleasantness is also used to cover whether the melody
sounds pleasing to the listener in general, i.e. not having large interval spans, as
well as a minimal number of meaningless dissonant notes.

Interesting melody The interesting melody metric is concerned with the evaluation of
the melody with regards to its interesting qualities. The metric is intended to
detect whether the generated melodies are considered boring and uninteresting,
and differs from the above general musicality metric, as a melody could be pleasing,
or rather not displeasing, but simultaneously be less interesting. The metric could
give valuable input with regards to the general quality of the system, as well as
give an indication about the melodies’ inherent creative qualities.

Structural integrity This metric is concerned with detecting whether the melodies are
assembled by consistent parts, i.e. detecting whether the different parts of a melody
have a correlation and do not seem to appear at random. The metric could be
valuable in determining the degree to which the system is able to generate coherent
melodies.

Sentiment correctness The sentiment correctness metric is solely concerned with eval-
uating the extent of it being a clear correlation between the lyrics provided for the
melody generation and the generated melody. It gives an indication of how well
the system is able to impose sentiment analysis on the lyrics, and then properly
benefit from the analysis in the generation phase.

Syllable correctness The syllable correctness metric is adopted to clarify whether the
input lyrics properly and naturally aligns with the generated melody. The metric
could return valuable input with regards to the rhythm generation, as well as
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Figure 5.3.: A chart showing the distribution of respondent music experience

serve as an evaluation metric of the impact the implementation of fitness objective
4 (Lyrics optimisation) has had on the system.

Overall impression

The last set of questions was intended to bring clarity into the system’s overall melody
generation potential. The questions are concerned with determining to what extent
the system could be used in composition tasks. The participants received no specific
information regarding the run-time of the algorithm when generating the melodies, and
hence the below questions were designed to be answered with only the music/lyric aspect
of the melodies in mind.

1. Could the system work well for composing on its own?

2. Could the system work well as assistance during composing?

5.4. Questionnaire results

The questionnaire was answered by a total of 42 participants, where most of them
answered all the questions listed in the questionnaire, except for question 4, “Voluntary
comment”, which were answered by 3-12 participants for each melody. The extreme
minimum number of answers for each of the remaining questions was 37.
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Figure 5.4.: A chart showing the distribution of respondents having heard the original
songs of the lyrics (blue: yes, red: no, orange: not sure)

Introduction

The distribution of previous musical experience for the questionnaire participants is
shown in Figure 5.3. The distribution shows that a vast majority of the participants
listen to music often, but only a minor fraction of the participants answered that they
regularly compose music on their own. More than 50% of the participants states that
they have some ability in reading sheet music, with a third of the participants stating a
high sheet music reading ability.

Questions regarding melodies

The results from the questions regarding the generated melodies are presented in Fig-
ure 5.4, Table 5.4 and Table 5.5.

The aggregated average value of the distribution of the participants previous know-
ledge of the original songs, of which the input lyrics are sourced from, is presented in
Figure 5.4. The chart was generated by summing the answers of question 1 a), regarding
objectivity, for each melody and compute the answer fractions. A percentage description
of the combined answer fractions for each specific melody is presented in Appendix B.

In Table 5.4 results regarding the different aspects of the melodies are presented. The
different aspects are Melody, which is comprised of the three questions regarding the
melody and Lyrics and melody, which is comprised of the two questions regarding the
lyrics and melody, presented in the questionnaire template. The Melody aspect is related
to the evaluation metrics Musically pleasing, Interesting melody and Structural integrity.
The Lyrics and melody aspect is related to the evaluation metrics Sentiment correctness
and Syllable correctness. The total values from all melody questions are shown in the
last column of the table.

For each column the AVG value is the average scoring of the questions of the given
aspect, and SD is the average standard deviation result for the corresponding questions.
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Figure 5.5.: A chart showing the average response for each question by melody

The melody order is the same as shown in Table 5.2. The value of each number can be
decoded by using the value sheet presented in Table 5.3. A more detailed overview of
the AVG and SD results for each question is presented for each melody in Appendix B.

Table 5.4.: Questionnaire results - melodies and lyrics
Melody

(AVG/SD)
Lyrics and

melody
(AVG/SD)

Total
(AVG/SD)

Melody 1 0.4 / 1.2 -0.1 / 1.3 0.2 / 1.3
Melody 2 -0.4 / 1.4 -0.5 / 1.3 -0.4 / 1.4
Melody 3 0.4 / 1.4 0.2 / 1.5 0.3 / 1.4
Melody 4 0.6 / 1.2 -0.1 / 1.5 0.3 / 1.3
Melody 5 0.6 / 1.4 0.2 / 1.5 0.4 / 1.4

As a supplement to the values presented in Table 5.4, the average result value for
each melody specific question is presented for each melody in Figure 5.5. The standard
deviation metric is ignored for this chart, but can be found for each question and corres-
ponding melody in Appendix B. The chart presents the results for the given melodies
in the interval [−1, 1], where the value follows the rating scale presented in Table 5.3.

The aggregated average results (AVG) for each question regarding the generated
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melodies in the questionnaire, along with the standard deviations (SD), are presented
in Table 5.5. The table presents the overall tendencies in the participants’ answering,
and the overall system scoring within the given question aspects. The questions are
presented in row 1 by their questionnaire template question symbol. The total value,
presented in the last column, is the total average value for all melody questions for all
melodies, giving an overall score for all system generated melodies. The value of each
number can be decoded by using the value sheet presented in Table 5.3.

Table 5.5.: Questionnaire results - aggregated for all generated melodies
2. a) 2. b) 2. c) 3 a) 3 b) Total

AVG 0.5 0.3 0.1 0.2 -0.3 0.2
SD 1.3 1.4 1.4 1.4 1.4 1.4

The results presented in Table 5.4 and Table 5.5 show that the aggregated scoring of
the melodies tend to revolve around the value Neutral, as defined in Table 5.3. For all
melodies except Melody 2 - Bridget O’Malley, the values are on the favourable, i.e. pos-
itive, side of neutral. The question based, rather than category based, representation of
the results in subsection 5.3.2 supports the claim that Melody 2 is an anomaly compared
with the results for the other melodies. The results presented in the chart also show how
the last question regarding syllable correctness consistently is the lowest scoring metric,
except for Melody 2, where the structural integrity metric scores lowest. The results
also suggest that the musical pleasantness and the degree of how interesting the melody
is, are not highly correlated. Except for the results regarding Melody 2, the structural
integrity is the most consistent metric.

Table 5.6.: Questionnaire results - Composition potential
Standalone

composition tool
Assistance

composition tool
AVG -0.1 1.1
SD 1.4 1.2

Overall impression

The distribution of the responses to the questions regarding the overall impression of
the system’s potential as a composition tool is shown in Figure 5.6. From the chart
there is a clear increase in respondents seeing a potential in the use of the system as
a composition assistance tool, rather than a standalone composition tool. Table 5.6
presents the average value and standard deviation for the overall impression questions.
The average respondent results show that the average response is Neutral, but on the
negative side, for the systems potential as a standalone composition tool, and that the
average response in regards to the assisting potential of the system is To a certain degree,
following the values presented in Table 5.3.
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Figure 5.6.: A chart showing how respondents deem the composing qualities of the sys-
tem
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The following chapter is intended to give the reader an overview of the conducted re-
search, and presents a comprehensive evaluation (section 6.1) of the implemented system
architecture, presented in chapter 4, in light of the experiments and results provided by
chapter 5. Following the evaluation of conducted experiments, a thorough discussion of
how the results and evaluation relate to the research questions and the main goal of the
project, presented in section 1.2, is performed. The discussion describes the extent to
which the main goal has been met, as well as the extent to which the research questions
can be answered, by drawing lines between the results and evaluation of the implemented
system and the literature review presented in chapter 3.

6.1. Evaluation
This section is intended to give the reader an insight into the evaluation conducted on
the implemented system, based on the results and experiments presented in chapter 5.

6.1.1. Evaluating genotype design and genetic operators
As mentioned in subsection 4.5.1 and subsection 5.2.1, the genotype design was, after
a subjective evaluation, grounded in a beat representation for note genes, where the
beats were handled as measures during initialisation and crossover phases, as well as in
fitness objective 1. The transition from having a strict beat representation to the hybrid
method of abstracting beats into measures clearly showed that more stable melodies
were generated, but since it established problems with not having a varied recombination
(crossover), it can not be said to have produced unambiguously profitable results. The
implementation of the swap possibility in the crossover functions improved the gene
variation, but as mentioned in subsection 5.2.2, there was a clear similarity in the genes
of many of the phenotypes in later generations, suggesting that the crossover operators
could have been more diverse in their recombination. The inclusion of a global beat
swap crossover operator, recombining single beats from the whole melody, rather than
within measures, as is the case with the current swap parameter, could perhaps have
generated increasingly better results.

As the number of mutation operators has been high, it has been difficult to properly
evaluate their separate impacts, with regards to avoiding local maximum solutions, but
from the gathered results, it is though reasonable to claim that their combined effect has
been positive. The increase from a 5% chance of offspring mutation to 30%, proved a
valuable change, as it increased the diversification of genes. It is a clear possibility that
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some of the observed effects of the less diversifying crossover operator were mitigated by
the increase in mutation probability.

The complicated nature of the genotype and genetic operator design may have in-
creased the chance of the occurrence of developmental errors. One such discovered, but
unmitigated error is connected to the fact that even though it should be no possibility
of major syncopation, such as having no note on the first beat of a measure, with the
current design, the phenomenon is still observable in some phenotypes for some runs
of the algorithm. The source of the error has not been determined, but could have a
relation to the pruning of notes at the end of genotypes where notes exceed the syllable
count during recombination, or another process of beat/measure handling. A possible
reason for not uncovering the error could be that the genotype and crossover design are
too complex. The handling of phenotypes with variable genotype lengths, such as in
this implementation, is unusual in general genetic algorithm approaches. For a general
genetic algorithm, genotypes usually have a fixed length and a binary representation to
circumvent such problems (Whitley, 1994; Yu and Gen, 2010). A less complicated geno-
type design could be to reintroduce a numerical approach, such as done by Olseng (2016),
or to circumvent the implemented beat representation, and rather employ a measure by
measure representation.

6.1.2. Evaluating fitness approaches
The most important findings from the fitness function experiments presented in subsec-
tion 5.2.3 suggest that the combination of using target value based descriptive fitness
functions, in tandem with a set of punishment functions for the most decisive factors,
functioned better than a purely punishment based or target value based approach. Even
though the separation of lyric specific optimisation into a fourth objective did subjectively
yield better results, the results and comments uncovered in the questionnaire, further
described in subsection 6.1.4, suggest that the system still struggles to correctly optimise
the melody for the input lyrics. A more strict focus on stress value to rhythm satisfac-
tion, in the objective regarding lyrical optimisation could possibly have helped amending
this problem. The nature of the stress satisfaction fitness function might have been too
forgiving in its rhythm/stress evaluation, hence being too insignificant in the evolution.
A strict initialisation of the melody rhythms, following a similar approach to the one
used by Monteith et al. (2012), for each phenotype in the initial population could have
improved the relationship between lyrics and melodies from an early generation stage,
but it could be argued that such a solution would counteract the evolutionary principle
of the system design.

A possible problem with the fitness function implementation is that the total number of
fitness functions (including punishment functions) in the system architecture is 51, which
for the largest objectives could have decreased the impact of the various musical concepts.
The observation of this effect was the main reason for the introduction of melodic and
harmonic punishment functions for the subjectively most important concepts. Further
evaluation of which target based fitness functions to convert into punishment functions,
as well as a consecutive reduction in the total number of fitness functions, could have
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increased the quality of generated melodies.
The introduction of variable target values in the system design, with regards to the

input sentiment value, generated some subjectively interesting results, but the results
from the sentiment based target value testing are far from conclusive, as it is reasonable
to assume that the most decisive factor in the melodic sentiment was whether the key was
major or minor, rather than the sentiment based target values. To properly measure the
effect of the sentiment based target value implementation is troublesome, as there is no
specific way to differentiate between regularly generated melodies and melodies generated
with sentiment based target values, as there is an inherently high randomness factor
involved in the evolutionary nature of the system. There is though a high possibility
that the implementation of variable target values has had a positive effect, as the values
are specifically tuned for corresponding sentiment values. Further evaluation of the
system’s sentiment approaches is presented in subsection 6.1.4 and subsection 6.1.5.

6.1.3. Evaluating ranking scheme collapse solution

From the results presented in subsection 5.2.4 there is a clear indication that the change
to a single objective for optimising harmonisation, as well as separating the optimisation
of the melodies’ fitness with regards to input lyrics into a separate objective, served as
a solution to the mentioned ranking scheme collapse. From Olseng (2016) it is unclear
exactly what is meant by collapse, i.e. at what number of generations the ranking
scheme started to converge to one pareto optimal front. The assumption used in this
thesis is that the collapse is meant to be a quick (i.e. within 100-200 generations) and
unrecoverable converging of the algorithm into one pareto front.

With the solution presented by this implementation, the NSGAII algorithm can run
for 1000 iterations, i.e. the main number of iterations supplied to the algorithm for the
melodies generated for the questionnaire, without definitively converging to one pareto
optimal front. In other words, the algorithm quickly (within approx. 100-200 iterations)
begin to rank phenotypes into two separate pareto fronts, rather than a higher number of
fronts, and after a varying amount of time it might converge to one pareto optimal front.
An important aspect here is that even when having converged to one pareto optimal
front, the algorithm may re-converge back into having two pareto fronts within a few
iterations, indicating that the ranking scheme has not collapsed.

The solution can indeed be deemed successful, though having only two pareto fronts
might also be considered sub-optimal, as a high number of phenotypes in the parent
population would still have to be chosen based on crowding distance sorting.

6.1.4. Evaluating questionnaire results

This subsection is intended to evaluate the questionnaire results presented in section 5.4,
with regards to the different aspects of system and questions, as well as discuss the
quality of the generated results.
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Participants

The wast majority of participants in the questionnaire stated that they often listen to
music, but that they rarely compose music themselves. About half of the participants
stated that they had some ability in reading sheet music. This gives the indication that
most participants have a strong interest in music in general, but that few have been
involved in the technical aspects behind musical composing. The sheet music metric
gives an indication that at most half of the participants have been adequately able to
follow the melody and the accompanied lyrics.

There was no intended main target group for the questionnaire participants, but as
a consequence of the questionnaire being distributed through various social media plat-
forms, having a direct connection to the author, there is good reason to suppose that the
main demographic of the participants is people within the age range of 20-35 years, with
a higher education level. It is also worth mentioning that since the questionnaire was
distributed with a personal connection to the author, there is a possible bias within the
participant demographic. People with a closer relationship to the author have probably
had a greater motivation for participating in the questionnaire, rather than people with
a more peripheral relationship. The anonymous nature of the questionnaire can though
not guarantee such a distribution of the participants.

The main impact the suggested participant demographic might have had on the ques-
tionnaire results could be that the participant’s responses might have been influenced by
them having a more sympathetic bias towards the questions. It is though worth noting
that the participants were given an explicit notice to answer each question as honestly
and elaborately as they could.

As the total number of participants for the questionnaire was 42, one could argue
that the number of participants has been too low to draw definitive conclusions from
the data. Regardless, the results have provided valuable insights, and given indications
of the system’s potential.

Melodic quality

Looking at the average results for each melody, the first main observation is that the
metrics regarding melody have scores revolving around Neutral. For all melodies, except
melody 2, the Musically pleasing metric scores highest, and could be considered the
only metric touching the To a certain degree scoring value presented in Table A.1. The
melodies could be said to rank slightly lower regarding the metric Interesting melody,
where only melody 4 and 5 have values slightly closer to the To a certain degree value than
Neutral. The metric Structural integrity is for all melodies except melody 3, the lowest
scoring metric, but for all melodies, except melody 2, still revolving around Neutral.
For the metrics regarding melodic quality, the standard deviation varies from 1.2 to 1.4,
which indicates that the responses, for the most part, have varied from To a minor degree
to the value To a certain degree.

In general, there is a clear indication that the generated melodies are more musically
pleasant than interesting, and that the melodies are more interesting than the degree of
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maintaining structural integrity. Melody 2 clearly deviates from the remaining melodies,
in having all metrics on the negative side of Neutral. The main conclusion one can draw
from this is that the system cannot guarantee steady melodic qualities, but that the
most likely outcome is generating melodies with melodic qualities on the positive side of
Neutral. Having the melodic qualities revolve around Neutral indicates that the system,
though not able to generate consistent, high quality music, can generate average ranking
melodies. The fact that the generated music’s melodic quality is average can definitely
be deemed as a good result, as it shows that the system can generate melodies without
drastic violations of musical concepts.

Lyrical relation to melodies

The average results from the questions regarding the metrics Sentiment correctness and
Syllable correctness, both describing the relation between the melody and the given input
lyrics, revolves around Neutral, but the metric Syllable correctness consistently scores
lower than Sentiment correctness. For all melodies Syllable correctness is the lowest
scoring metric, whereas the Sentiment correctness metric is more volatile, but has a
score rating close to Neutral, except for melody 3, where the rating is closer to the value
To a certain degree. The only melody achieving a positive value for Syllable correctness is
melody 5, and for all other melodies the value moves towards To a minor degree, though
keeping within the Neutral bounds for all melodies, except melody 2. For the metrics
regarding the melodic relationship to the input lyrics, the standard deviation varies from
1.3 to 1.5, which is slightly larger than the standard deviation for the melodic quality
metrics. The indication is still that most responses have varied from To a minor degree
to To a certain degree.

There is a clear indication that the generated melodies have more properly matched
the lyrical sentiment, rather than correctly fitting the lyrics’ words and syllables. As
for the metrics regarding melodic qualities, melody 2 deviates from the other melodies
with regards to the lyrics/melody relationship. It is though interesting to note that
the Syllable correctness metric has the smallest deviation from the results of melody 2
compared with the other melodies. Another important note with regards to the Syllable
correctness metric is that a substantially higher number of respondents answered the
questions regarding how well the lyrics fitted with the appointed notes than the number
of participants specifying having a high competence in reading sheet music. This may
have impaired their ability to provide high quality answers to the melodies’ relation to
the lyrics, and could therefore be considered a source of inconsistencies in the results.

The main conclusions to draw from the results is that there is a variation in how well
the sentiment analysis has impacted the melody generation, and that the impact has
neither been strong nor weak, as the values revolve around Neutral. This indicates that
the system to some extent has been able to generate melodies with a correct emotional
expression. The conclusion to draw from the results, with regards to Syllable correctness,
is that the system is generally worse in generating well fitting melodies for the input lyrics
than for providing melodies that satisfy the other metrics. The system does though not
generate bad melodies with regards to the melody/lyrics relation, as the result values
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still fit within Neutral bounds.

Insights from voluntary comments

Many participants chose to leave voluntary comments as part of their responses, but
with a decreasing answer frequency for later melodies. The comments could give valu-
able insights into the participants’ reasoning behind their responses, as well as give an
indication of possible margins of error within the different question categories (melodic
quality and melodic/lyrical relation). This could give valuable input in regards to uncov-
ering possible misunderstandings, as well as indicate whether the posed questions were
ambiguous to some degree.

As for the general elaboration the participants have given through the voluntary com-
ments, most state problems with a correct connection between the lyrics and the melody
as the biggest topic of concern, with a varying degree of severity for different melodies,
which supports the findings discussed in section 6.1.4. One participant did e.g. state that
a repeating pattern in the lyrics, probably would have some sort of repeating melodic
connection. Multiple responses specifically stated that the words and syllables did not fit
well with the note pitches and rhythms, as well as them having difficulties with singing
along with the melodies. In addition the most prominent melodic problem had to do
with the structural integrity. It was e.g. stated that the rhythmical complexity was too
high, and that the note duration span was too large. For the last melody though, one
participant stated that he was almost able to sing along with the melody, indicating
some disagreements between respondents with regards to the severity of the problems
with the rhythm/lyrics relation.

One respondent stated that it was hard to decide to what extent the melody was
fitting to the lyrics, as there was no vocal track added for the melody, which could be
a possible source of errors with regards to the Syllable correctness metric, since many
respondents stated having less of an ability in following sheet music. The lack of a
vocal track, and a possibly too vague problem description, may have been a source of
misunderstandings of the main intention of the questionnaire. One respondent stated
that the melody might have functioned better with a warmer piano sound, which is a
musical concept not intended to be of any significance for either the questionnaire or the
system scope. Another respondent indicated difficulties in determining what sentiment
the lyrics posed, which consequently made it difficult to answer whether the melody
fitted the lyrics’ sentiment or not.

The only clear conclusion one can draw from the voluntary comments is that the
system has had some issues with regards to making the melody fit well structurally
with the lyrics, as it was mentioned by multiple participants. The remaining discussed
concepts, derived from the voluntary comments, are too vague in nature, and have
been mentioned by too few participants to give unambiguous results. The comments
do though indicate that some misinterpretations of the questionnaire and the posed
questions have occurred.
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Overall impression

The results from the questions regarding the system’s potential as a musical composing
tool show that the average response in regards to the system’s potential as a standalone
tool in music generation is Neutral, but with a standard deviation of 1.4 and the spread
seen in Figure 5.6, there is a clear indication that the respondents have been divided in
their opinions regarding the potential. The standard deviation decreases to 1.2 for the
question regarding the system potential as an assisting tool in musical composing. In
addition the average goes up to the value To a certain degree, with the largest response
group of 16

41 stating that the system To a greater degree could be of assistance in music
composing.

From the neutral average and large spread in responses, no definitive conclusion re-
garding the system’s standalone composing potential can be drawn, though having the
value revolve around neutral can be regarded as promising. On the other hand there
is a more clear conclusion to be drawn regarding the system’s potential as an assisting
tool. There is a clear indication from the results that, in the eyes of the respondents,
the system can be of assistance in musical composing tasks.

6.1.5. Evaluating sentiment analysis approach

The results gathered, regarding the tested sentiment analysis approaches from subsec-
tion 5.2.1, show that the modified sentence value approach generated the best results,
but with an average distance of 0.475 in an interval [-1, 1] it has a close to 25% deviation
from the valence score provided by the test data set. This deviation clearly indicates
that the sentiment values were not highly accurate with regards to the data set values.

As Vader is a tool inherently designed to decide the sentiment in a social media context
(Hutto and Gilbert, 2014), there is a clear possibility that the decision to use the tool
has had less of an accurate impact on the sentiment analysis of lyrics, than could have
been the case with different approaches. The decision of not including more lyrics for
the initial testing and tweaking of parameters for the modified sentence value solution
of the implemented approach might have negatively impacted the possible results, i.e. it
might have been a contributing factor to the 25% deviation from the data set valence
score evaluation.

Supposing a perfect translation of the sentiment value found by Vader into the gen-
erated melodies, the results from the questionnaire do however indicate that sentiment
value has been helpful with regards to generating melodies with correct emotional ex-
pressions.

6.2. Discussion

The following section provides a discussion of the research questions, presented in sec-
tion 1.2, and discusses the answers found in regards to each question. Lastly a discussion
of the degree to which the main goal of the project has been achieved is provided.
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6.2.1. Research question 1 (RQ1)

By using an evolutionary algorithm approach, in what ways could a melody
be automatically generated, as to fit given lyrics, as well as capture the
lyrics’ sentiment?

The most important aspect in providing a satisfactory answer to research question 1 has
been to explore multiple solutions and technologies to problems regarding computational
music generation, which has been done by conducting a preliminary literature review,
presented in chapter 3. The chapter presented two of the most prominent technologies
within state-of-the-art research of computational music generation in detail, as well as
providing an in-depth overview of research within music generation based on textual
inputs. A brief overview of previous solutions of sentiment analysis of music, both in
audio and lyrics analysing, was also provided.

As the research question states that the approach should be evolutionary, more weight
has been applied to evolutionary approaches of music generation, but other solutions,
such as artificial neural network approaches and lyrical approaches not relying on evol-
utionary methods, were explored as to provide further ideas, as well as give a thorough
overview of the field of research.

Regarding evolutionary algorithm approaches, the most discussed topics in the re-
search revolve around how to handle the “fitness bottleneck”, mentioned by Biles (2001).
As stated by Johnson (2012), the most prominent approaches within this area are human
based and autonomous fitness functions, where human fitness functions, though having
a higher quality of the evaluation, are much more ineffective. With regards to fitness
functions in music generation, a solution proposed by Biles (2001) was to remove fitness
functions, and rather focus on well tuned genetic operators. This seems to have had little
effect on further research, and most research within evolutionary approaches to music
generation are based on the use of autonomous fitness functions. One commonly used
approach to autonomous fitness functions for music generation revolves around incorpor-
ating musical concepts, which was a highly adopted approach by the system design of
this thesis, as all implemented fitness functions have a direct musical evaluation basis,
except for the fitness functions regarding lyrics. Approaches regarding implementing
artificial neural network (ANN) designs for fitness functions were also considered for the
system design, but were deemed too complicated for the task at hand. The concept of
using ANNs as bases for fitness is further discussed in section 7.3.

A clear indication from the literature review was that a highly popular approach in
state-of-the-art evolutionary algorithms designs has been to make use of multi-objective
optimisation techniques, where many of the most often adopted designs are based on
the NSGAII algorithm proposed by Deb et al. (2002). Both Jeong and Ahn (2015) and
Olseng (2016) have used this algorithm in music generation tasks. It did also serve as
the core design of the evolutionary approach in this project.

The concept of including lyrics in melody generation had been explored by some
earlier research, but no similar research combining it with an evolutionary approach,
as well as including the sentiment was discovered by the author in the literature review
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phase of the project, and therefore the exploration of possibly usable techniques for lyric-
based melody generation includes various solutions and problems within both sentiment
analysis of lyrics and generating melodies fitting of input lyrics.

The most profitable concept discovered by the author, with regards to implementing
lyric-based fitness functions for an evolutionary approach, was to use an approach close
to the one used by Monteith et al. (2012), which focused on determining stress values
of syllables in words. Their results were described as scoring highly in pleasantness for
melodies, as well as scoring nearly as well as the actual melody of the input lyrics with
the generated melodies. The solution implemented by Monteith et al. (2012) was though,
more strict regarding the text to rhythm translation, and based on the results from the
system implementation of lyrical fitness, described in subsection 6.1.2, it is clear that
the rhythm of the melody could have been evaluated more strictly with regards to the
lyrics.

Multiple approaches to sentiment analysis of song lyrics were reviewed and considered
as possible solutions that could be adopted for ensuring that the generated melodies
were fitting of the lyrical sentiment. Even though the data set used for testing included
scores for an arousal metric for sentiment (Malheiro et al., 2018), the observations made
by Hu et al. (2009) state that lyrics are not necessarily expressing enough in relation to
arousal for it to be a valuable metric. As such there was a higher motivation for testing
the tool Vader, described in subsection 6.1.5, which only considers the valence sentiment
scores of input text.

For the translation of a given sentiment value to the melody, key concepts would be
to determine the musical components most influenced by sentiment. A review of musical
background theory, as well as subjective testing found that key changes between major
and minor had the biggest impact, but that concepts such as the relationship between
dissonance and consonance in the melody, as well as the contour, i.e. number of rising
v.s. falling intervals are also valuable in determining the sentiment of a melody. The
fact that the implemented sentiment analysis methods and the translation of the senti-
ment scores into the melody provided neutral results, described in subsection 6.1.5 and
subsection 6.1.4, could indicate that other measures, both with regard to the sentiment
analysis tool and what melodic aspects influence the emotional expression of a melody,
could have been utilised.

The evaluations provided in subsection 6.1.1, subsection 6.1.2 and subsection 6.1.3
all present different tests, concepts and solutions for the implemented multi-objective
evolutionary algorithm approach in this project. The evaluations all provide valuable
insights with regards to research question 1.

To conclude on one distinct answer to research question 1 is hard, and likely not
desirable, as the possibilities are seemingly endless within the topic, and as such this
discussion can only serve as a set of proposals and insights with regards to lyric-based
evolutionary music generation.
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6.2.2. Research question 2 (RQ2)

How good will the quality of the melodies generated by the system prove to
be, when judged in a human context?

It was seen as a necessity for thoroughly evaluating the system quality, and as such give
a satisfactory answer to research question 2, to design a questionnaire where participants
could subjectively evaluate the quality of the generated melodies, based on metrics de-
scribed in section 5.3. A thorough evaluation of the questionnaire results can be found
in subsection 6.1.4, and as such this section will serve as a concluding factor for the dif-
ferent aspects uncovered by the evaluation by bringing the answers within the different
categories together.

The general melodic evaluation done by the human judges show that the system is
able to generate melodies that are both pleasant and interesting, but that there are no
definitive high quality musical aspects for all generated melodies. The overall structure
of the melodies is judged to have made sense to the degree of being slightly more favour-
able than neutral. The sentiment of the lyrics and their translation into melodies have
similarly been judged to score slightly higher than neutral, and even being considered as
to a certain degree leaving a fitting emotional impression for one of the melodies. As the
mentioned values, i.e. Neutral and To a certain degree, are both average values, the res-
ults are definitely encouraging. The most clearly lowest ranking metric of the generated
melodies has to do with the degree of how well they fit their given input lyrics. Even
though the rankings could still be considered neutral, there is a clear indication that the
biggest struggle of the system has been to properly align rhythms (note durations) to
syllables with various stress values.

The arguably most interesting aspect from the quantitative results, gathered from
the questionnaire, has to do with the fact that a majority of the respondents deem the
system as a possibly valuable resource in musical composing. There is a clear tendency
among the respondents that the system’s ability to function as a standalone musical
composition tool is lower than that of it being an assisting resource, but the average
value of its standalone potential still revolves around Neutral.

As to give a brief conclusion for research question 2, the quality of the generated
melodies has proven to revolve around Neutral, with the quality being high enough for
the system to be a potentially useful resource in music composition.

6.2.3. Goal

To provide a novel solution for automatically generating melodies fitting
the structure and sentiment of user defined input lyrics

The main goal of this project can be said to have been reached, as a novel solution has
been proposed for generating melodies based on input lyrics. The system implemented,
by taking the findings of the literature review from chapter 3 into account, has definitively
been able to generate melodies with a certain quality to them, but with the average values
for most musical metrics revolving around Neutral, there has been some disagreement
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between respondents regarding the quality of the output.
Backed by the findings of research question 2 and the evaluation presented in sub-

section 6.1.4, there are clear indications that the goal of generating melodies fitting the
structure of the lyrics is the aspect the system has struggled the most with. Results for
other evaluation metrics suggest that there has not been a bad quality over generated
melodies, and that the melodies in some cases have been fitting of the emotional senti-
ment of the lyrics. In general, the highest scoring metric for the melodies has been in
regards to its pleasantness, which has the only average value that can be considered as
being To a certain degree, rather than Neutral.

Even though the results show that the average answer values mostly revolve around
neutral, the system can be regarded as promising, especially because of being deemed
suitable as a resource for musical composition, but also because it has generated melodies
on the favourable side of neutral. The wish of providing a tool that could collaborate
in human creativity was specifically listed as an important motivation for the project in
section 1.1, and the results show a clear indication that said goal has been reached.

73





7. Conclusion and Future Work
This chapter is intended to bring the work conducted as part of this master’s thesis to a
conclusion, as well as present the main contributions of the research in section 7.2. The
main conclusion is presented in section 7.1. Possibilities of future work are presented in
section 7.3.

7.1. Conclusion

The core element of this master’s thesis has been to present the design and implement-
ation of a system capable of automatically generating melodies based on given input
lyrics, as well as research conducted on the system and computational music generation
in general. A key aspect within the mapping of a melody to lyrics has been to analyse
the inherent sentiment of the input lyrics, as well as providing fitness functions for im-
proving the lyrical suitability for the melody based on stress values of words and their
placement. Much of the design decisions were grounded in a literature review conducted
within the field of computational music generation, with a main focus on evolutionary
approaches.

The main developmental phase consisted of testing of various architectural solutions,
and the results from these experiments were important factors in deciding upon the most
profitable fitness functions, design of genetic operators and system flow. The experiments
also included testing within sentiment analysis, as to find a suitable method in evaluating
the emotional expression of input lyrics.

The most important part of the system evaluation has been to distribute a question-
naire concerned with evaluating the musical potential of the system. A total of five
melodies with different input lyrics, and hence different sentiment values, time signa-
tures and musical keys, was used a basis for the questionnaire, and from the opinions of
42 participants, valuable information was gathered about the system’s abilities within
automatic music generation.

The quantitative results from the questionnaire suggested that the system was able to
generate melodies of average (neutral) quality. In general, the highest scoring metrics
for the melodies were within pleasantness and the degree of how interesting the melodies
were. The system was able to give proper emotional impressions to the melody based on
the input lyrics to some extent, but struggled the most with aligning a well functioning
rhythm to words and syllables in the lyrics. The most important finding from the
questionnaire was that a majority of the participants saw the system as a potentially
valuable assisting resource in musical composition tasks.
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7. Conclusion and Future Work

As the generated melodies have been deemed as having a slightly better than neutral
quality, the system can definitely be regarded as having generated encouraging results,
and as the system has been regarded as having potential as a collaboration tool for
musical composition, the goal of thesis has been reached.

7.2. Contributions

From the research results, and the findings from the evaluation and discussion of the
conducted work, the most important contributions for further research provided by this
master’s thesis are presented below.

A system for lyric-based melody generation The perhaps most important contribu-
tion of this master’s thesis is the implementation of a multi-objective evolutionary
algorithm based system capable of generating melodies based on input lyrics and
capture the sentiment of said lyrics. The developed system has been deemed cap-
able to be of assistance in human composition of music. Further research within
evolutionary melody generation, especially with lyrical input, could profit from a
study of the implemented system.

Review of approaches to evolutionary music generation The review of interesting ap-
proaches within evolutionary music generation can be deemed an important contri-
bution, as the results could help with further research. This contribution includes
the literature review presented in chapter 3, but most importantly the discussion
of the findings in regard to RQ1 (subsection 6.2.1), which provide an overview
of the most important aspects of the considered and adopted approaches for this
project.

Results from architectural experiments An important contribution of this thesis is the
results gathered from the experiments conducted during the development phase of
the project. These results include the research conducted within the design of mu-
sically grounded genotypes, genetic operators, fitness functions and how sentiment
values can be used in variable fitness evaluation, as well as the proposed solution
to the problem with a non-dominated sorting ranking scheme collapse. The results
can all contribute as valuable background material when developing or researching
similar systems.

Results from the questionnaire The quantitative evaluation of the system, through the
questionnaire, can also be considered a significant contribution, as it provides in-
sight into the quality of the output generated by the system, as well as providing
insight into people’s expectations of automatically generated music. The insights
could serve as a valuable input for the design of a similar system, or further im-
provement on the system design presented in this master’s thesis.
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7.3. Future Work

7.3. Future Work
The arguably most important aspect of further work, in regards to the results gathered
from the system evaluation, would be to improve on how the melodies are evolving to
fit the given input lyrics. Possible solutions to this include to adopt fitness functions
stricter in their evaluation than the ones in the current system design or to separate the
rhythm generation from the main music evolution loop entirely. A rhythm generation
process separated from the main loop could e.g. follow the n-gram approach used by
Monteith et al. (2012). Another possibility could be to implement a novel two-stage
solution comprised of having a lyric-based rhythm generation evolutionary algorithm as
the first generation stage, and then generating a melody based on the rhythm generated
from stage 1 with an architecture based on the system implemented in this project, but
with updates to fitness objectives and functions. A two-stage evolutionary approach for
music generation has been explored earlier by e.g. Khalifa and Foster (2006), mentioned
in subsection 3.1.1.

An interesting possibility for further work could also be to incorporate artificial neural
network techniques for different aspects of the evolutionary algorithm, and possibly
within sentiment analysis. As explored by Mitrano et al. (2017), where the fitness of
a genetic algorithm was judged by a recurrent neural network, the idea of replacing
fitness functions with a neural network approach could provide interesting results. This
could be tested for several of the implemented fitness objectives, but a total redesign
of the system would probably be more effective than attempting to replace the fitness
functions of all objectives in the current design. Another interesting possibility for
future work could be to replace Vader as the basis for sentiment analysis with a neural
network approach. A model such as BERT, proposed by Devlin et al. (2019), which is
a state-of-the-art model for natural language processing, could prove useful for the task
of sentiment classification.

Another interesting aspect of further work could be to extend the system into also
automatically generating the input lyrics for the system. Lyrics could e.g. be gener-
ated using an artificial neural network approach. Navarro et al. (2020) did for example
combine their novel melody generating Markov model based system with a previously
developed system, called Tra-La-Lyrics (Oliveira, 2015), for automatically generating
lyrics, such as to get a complete song writing pipeline. They stated that their overall
results were positive.
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A. Questionnaire - Norwegian
This appendix presents the untranslated versions of the scoring scale and the questions
used in the questionnaire.

A.1. Untranslated scoring scale
The participants of the questionnaire rated most of the questions using the scoring scale
presented in Table A.1.

Table A.1.: Score rating scale in Norwegian
Score: Correlated wording
-3 I svært liten grad
-2 I liten grad
-1 I ganske liten grad
0 Nøytral
1 Til en viss grad
2 I større grad
3 I svært stor grad

A.2. Untranslated questions
The Norwegian, untranslated questions and the included question descriptions used in
the questionnaire is presented in the description below, which is separated following the
same pattern as used in section 5.3.

• Musikkerfaring
1. Hører du ofte på musikk?
2. Lager du egen musikk?
3. Kan du å lese noter?

• Melodier
1. Har du hørt den originale sangen før? (ja - nei - vet ikke)
2. Melodi

a) Er melodien musikalsk?
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b) Er melodien interresant?
c) Henger musikken sammen (gir oppbyggingen mening)?

3. Tekst og melodi
a) Gir melodien et følelsesmessig riktig intrykk med tanke på teksten?
b) Passer ordene og stavelsene til sine gitte noter?

4. Ekstra kommentarer

• Helhetsinntrykk - Anser du et slikt system som potensielt nyttig i forbindelse med
sangkomponering?

1. Kunne det fungert godt til å komponere på egenhånd?
2. Kunne det fungert godt som støtte innen komponering?

Beskrivelse for spørsmål om melodi
• 2. a) Er melodien musikalsk? - (Synes du den følger musikalske regler/normer?

Synes du den er behagelig å høre på?)

• 2. b) Er melodien interessant? - (Synes du melodien har interessante trekk, eller
er den kjedelig/innholdsløs?)

• 2. c) Henger musikken sammen? - (Helhetlig inntrykk av melodien. Har melodien
en naturlig progresjon, eller har melodien for eks. brå/unaturlige forandringer?)

Beskrivelse for spørsmål om tekst og melodi
• 3. a) Gir melodien et følelsesmessig riktig intrykk med tanke på teksten? - (Er

teksten trist eller glad? Bærer melodien preg av dette?)

• 3. b) Passer ordene og stavelsene til sine gitte noter? - (Er det unaturlige takt-
eller noteforskjeller mellom ord eller stavelser? Kan hoppes over, dersom man har
vansker med å følge med på tekst/noter)
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B. Generated melodies
The source of each melody’s lyrics is added as footnotes to the section headings. For all
melodies a figure containing the corresponding sheet music is presented. Following the
sheet music is a table containing questionnaire results regarding the melodic qualities
of the given melody. For all questionnaire results, AVG is the average of all answer
values for a given question and SD is the standard deviation of the answer population
of each given question. The questions are organised by their question annotations from
subsection 5.3.2 and section A.2. For each melody, a few of the voluntary comments
have been selected from each melody question. All comments have been translated from
Norwegian to English by the author, and some have been cropped because of a large
size. Note that the translations might not be subjectively accurate. The percentage of
participants having previous knowledge of the song the different lyrics have been taken
from is also listed for each melody.

The melody presentation starts on the next page.
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B. Generated melodies

B.1. Melody 1 - Nellie Dean1

WhereNel lie Dean we used toan oldThere’s by the streammill

flowthey Seemwaters as to murmurand dream

5

sit AndthelieNel Dean

lovesi re i you Nel lie Deansweet and low You’re

9

demy heart’s

Figure B.1.: Generated melody for Nellie Dean

Table B.1.: Questionnaire results - melody 1
2. a) 2. b) 2. c) 3. a) 3. b) Total

AVG 0.9 0.2 0.2 0.4 -0.5 0.2
SD 1.1 1.3 1.3 1.3 1.3 1.3

Previous knowledge of song: Yes: 2.33%, No: 81%, Not sure: 16.66%

Selected comments from questionnaire

• The melody works OK, and sounds good. Works well on sentiment. The places
where the lyrics are dense, the notes in the melody becomes unnatural. (...)

• (...) The long notes can be in the middle of a sentence, and then a new sentence
might jump to next too abruptly, without pause or that the note is held.

• The lyrics follows the notes badly, such that a sentence is concluded and another
begins between two notes with a short duration. It seems somewhat untidy, and
it happens on multiple occasions throughout the song.

1https://en.wikisource.org/wiki/Nellie_Dean
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B.2. Melody 2 - Bridget O’Malley

B.2. Melody 2 - Bridget O’Malley2

ken Withmyheart sha a lesspehobrid get’MalleyOh ’ve leftyou

wonders admiofthe ra tionso la i’dtion

5

de you It’sknowtohave

errevwhehauntme goifacequiet tahas

9

your yourAnd willtybeauken

Figure B.2.: Generated melody for Bridget O’Malley

Table B.2.: Questionnaire results - melody 2
2. a) 2. b) 2. c) 3. a) 3. b) Total

AVG -0.4 -0.1 -0.7 -0.3 -0.6 -0.4
SD 1.4 1.6 1.4 1.4 1.3 1.4

Previous knowledge of song: Yes: 9.5%, No: 78.6%, Not sure: 11.9%

Selected comments from questionnaire

• (...) I can’t quite sing the lyrics to the melody

• This one is less tidy, especially in the ending. Many misses with regards to syllables.
The sentiment works relatively well (...).

• The notes fit with the syllables on nearly everything (...) I regard it as almost
catchy until the last three measures. There everything gets strange (...)

2https://en.wikisource.org/wiki/Bridget_O%27Malley
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B. Generated melodies

B.3. Melody 3 - Early one morning3

insingmaidIsingri aheard leythe valmorone ningEarl y sunwasasjust the

youcould auseHowme sopoor denmaidon’tOh de

6

lowbe nev leaveermeceive oh

Figure B.3.: Generated melody for Early one morning

Table B.3.: Questionnaire results - melody 3
2. a) 2. b) 2. c) 3. a) 3. b) Total

AVG 0.5 0.3 0.4 0.8 -0.4 0.3
SD 1.4 1.3 1.4 1.4 1.5 1.4

Previous knowledge of song: Yes: 7.5%, No: 80%, Not sure: 12.5%

Selected comments from questionnaire

• Naturally weighted syllables in the lyrics occurs less frequently on weighted beats
in the measures in this song than the previous. (...)

• The biggest problems are that less important words in the middle of phrases gets
long note durations, and the last word does not get it. (...) The melody is generally
hard to follow, although the note order makes some sense. Would have to practice
hard to be able to sing this myself.

3https://en.wikisource.org/wiki/Early_One_Morning_(Anonymous)
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B.4. Melody 4 - Henry Martyn

B.4. Melody 4 - Henry Martyn4

mer ryscotscotland In landtherewerewerethreebrothersThere mer ryin

which of them should gothree And

4

did cast lotsthey

all on theer salt seaShould go should

6

turn robbgo And

Figure B.4.: Generated melody for Henry Martyn

Table B.4.: Questionnaire results - melody 4
2. a) 2. b) 2. c) 3. a) 3. b) Total

AVG 1.0 0.6 0.3 0.1 -0.3 0.3
SD 1.1 1.2 1.3 1.5 1.4 1.3

Previous knowledge of song: Yes: 5%, No: 82.5%, Not sure: 12.5%

Selected comments from questionnaire

• This one is quite good on syllables, but does not fit with regards to sentiment (...)

• (...) There is a somewhat better relation between lyrics and syllables (...) From a
human I would expect that the repetition in the lyrics was highlighted to a larger
extent in the rhythm and melody. All in all one of the more singable melodies.

4https://en.wikisource.org/wiki/Child%27s_Ballads/250
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B. Generated melodies

B.5. Melody 5 - Billy Lyons and Stack O’Lee5

friday nighta leeo’Stackremember oneI september on

your eymonyouwhenCrying lose tolearn loselylyBil ons

5

and fightgreathada

Figure B.5.: Generated melody for Billy Lyons and Stack O’Lee

Table B.5.: Questionnaire results - melody 5
2. a) 2. b) 2. c) 3. a) 3. b) Total

AVG 0.8 0.6 0.4 0.2 0.1 0.4
SD 1.4 1.4 1.3 1.5 1.6 1.4

Previous knowledge of song: Yes: 7.7%, No: 82%, Not sure: 10.3%

Selected comments from questionnaire

• I can almost sing along. Only a couple of places could I have needed a breather.

• Like the other songs, a somewhat unnatural rhythm. A bit complicated syncopa-
tion (...)

• Mostly good, but some notes feel a bit “off”, mostly because of cancelling the flats.
(...) Seems like it has been hard to understand which words were related, when
the melody was generated (...)

5https://en.wikisource.org/wiki/Billy_Lyons_and_Stack_O%27_Lee
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