
Cam
illa Tøftum

 Ranner
Large-scale Agile Softw

are D
evelopm

ent

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Camilla Tøftum Ranner

Large-scale Agile Software
Development

An Exploratory Case Study of Changes In Agile
Practices and Its Effects on Inter-team Coordination

Master’s thesis in Informatics

Supervisor: Torgeir Dingsøyr, IDI

June 2020

Camilla Tøftum Ranner

Large-scale Agile Software
Development

An Exploratory Case Study of Changes In Agile
Practices and Its Effects on Inter-team Coordination

Master’s thesis in Informatics
Supervisor: Torgeir Dingsøyr, IDI
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Agile methodologies were initially created for smaller single-team projects. However, in later

years, agile methodologies have also been applied to larger software development projects.

This has caused large-scale agile software development projects to face multiple challenges,

with inter-team coordination as one of the most prominent challenges. As large-scale agile

development projects are becoming more common, and there is found to be a lack of research

related to inter-team coordination within this field, this thesis aims to explore this topic

further. The stated research question for this thesis is "How is inter-team coordination

affected by change of agile methodology in a large-scale agile software development project?".

An exploratory case study was chosen as research strategy, where the investigated case

was a large-scale agile software development project within a public Scandinavian welfare

organization. The project was divided into three phases, where the working methodology

changed throughout the project from a "water-scrum-fall" approach in the first phase to

working with autonomous and cross-functional teams, and continuous deliveries in the last

phase.

The results from this case study is based upon 37 interviews and documentation from the

investigated project. The interviews were conducted by researchers from SINTEF, University

of Oslo, and the thesis author, in the period of December 2017 to February 2020. The

results were analyzed by using a theoretical framework on coordination modes by Ven et al.

(1976), and used to compare how the coordination modes were affected by the change of agile

methodology.

The findings showed that within the first phase, group mode of coordination were mostly

used, followed by personal mode and then impersonal mode. In the last phase it was found

to be a large increase in the use of personal mode, a decrease of scheduled meetings and an

increase of unscheduled meetings within group mode, while impersonal mode decreased.

There was found a lack of similar research that could substantiate the findings from

the last project phase in this case. It is recommended that more research is conducted

on inter-team coordination in projects with autonomous- and cross-functional teams, and

continuous deliveries.

i

Sammendrag

Smidige metodikker ble opprinnelig laget for mindre IT-prosjekter bestående av ett team.

I de senere årene har smidige metodikker også blitt brukt på prosjekter i stor skala. Dette

har forårsaket store smidige prosjekter til å møte på flere utfordringer, hvor koordinering

mellom team er en av de største utfordringene. Da storskala smidige IT-prosjekter blir

stadig mer vanlig, og det er funnet manglende forskning på koordinering mellom team i en

slik kontekst, vil denne masteroppgaven se nærmere på dette temaet. Forskningsspørsmålet

for denne masteroppgaven er «Hvordan er koordinering mellom team påvirket av endring

i smidig metodikk i et storskala IT-prosjekt?». En eksplorativ casestudie ble valgt som

forskningsstrategi, hvor det valgte caset var et storskala smidig IT-prosjekt i en offentlig

skandinavisk velferdsorganisasjon. Prosjektet ble delt opp i tre faser, hvor arbeidsmetodikken

endret seg gjennom prosjektet, fra en «water-scrum-fall» metodikk i den første fasen, til å

jobbe med autonome og kryssfunksjojelle team, med kontinuerlige leveranser i den siste fasen.

Resultatene fra denne casestudien er basert på 37 intervjuer og dokumentasjon fra prosjektet.

Intervjuene ble gjennomført av forskere fra SINTEF, Universitetet i Oslo, og forfatteren av

denne masteroppgaven, i perioden desember 2017 til februar 2020. Resultatene ble analysert

ved å bruke en teoretisk modell rundt koordineringsmoduser av Ven et al. (1976), og ble

brukt til å sammenligne hvordan kvordineringsmodusene ble påvirket av endring av smidig

metodikk. Resultatene viste at i den første fasen, var gruppemodus mest brukt, fulgt av

personlig modus, og deretter upersonlig modus. I den siste fasen var det en stor økning i

bruken av personlig modus, en nedgang i bruk av planlagte møter og en økning i spontane

møter innenfor gruppemodus, og upersonlig modus hadde en nedgang i bruk.Det ble funnet

manglende forskning som kan støtte opp om funnene i den siste prosjektfasen av caset. Det

anbefales å gjennomføre mer forskning på koordinering mellom team i IT-prosjekter med

autonome, kryssfunksjonelle team og kontinuerlige leveranser.

iii

Acknowledgements

I would like to thank my supervisor, Torgeir Dingsøyr, for guidance and support throughout

the work with this thesis. He has given me valuable advice and feedback on the content

and structure of this thesis. Torgeir provided me with data collected by him and fellow

researchers in regards to the investigated case. Without having access to this data, it would

not have been possible to conduct this case study within the time scope of this thesis. He

also invited me to take part in a guest lecture on coordination with Diane Strode at SINTEF

in Trondheim, and a seminar on agile management at Storebrand’s office in Lysaker. Both

events were very educational and motivational for my work with this thesis. Torgeir is an

engaged, knowledgeable and professional supervisor, that I would highly recommend to future

graduate students from the Department of Computer Science at NTNU.

I would also like to thank my family and friends for help with proofreading, and for

support and encouragement throughout this process.

Camilla Tøftum Ranner

Trondheim, 1 June 2020

ii

CONTENTS

Contents

Abstract i

Sammendrag iii

Acknowledgements ii

Contents iii

List of Figures vi

List of Tables vii

1 Introduction 1

1.1 Motivation. 1

1.2 Research Question . 2

1.3 Target Audience . 2

1.4 Thesis Structure . 3

2 Theory 4

2.1 Software Development Methodologies . 4

2.2 Plan-driven Software Development . 5

2.2.1 Waterfall . 5

2.3 Agile Software Development . 8

2.3.1 Scrum. 10

2.3.2 Autonomous and cross-functional teams . 14

2.4 Large-scale Agile Development . 16

2.4.1 Definition of Large-scale Agile Projects . 16

2.4.2 Scaled Agile Framework (SAFe) . 17

2.4.3 Scrum of Scrums. 20

2.4.4 Challenges . 21

iii

CONTENTS

2.5 Coordination . 24

2.5.1 Introduction to coordination . 24

2.5.2 Related research on coordination within large-scale agile software

development projects . 27

2.6 Determinants of Coordination Modes by Ven et al. (1976) . 29

2.6.1 Impersonal mode . 30

2.6.2 Personal mode . 30

2.6.3 Group mode. 31

2.6.4 Determinant factors for coordination modes. 31

3 Research Methods 35

3.1 Literature review. 35

3.1.1 Keywords . 35

3.1.2 Databases . 36

3.1.3 Search strategy . 36

3.2 Research strategy . 37

3.2.1 Case study . 38

3.3 Data collection . 39

3.3.1 Interviews . 39

3.3.2 Documentation . 43

3.4 Data analysis . 43

3.5 Evaluation . 43

3.5.1 Literature review . 43

3.5.2 Case study . 45

3.5.3 Research ethics . 47

4 Case 48

4.1 Background . 48

4.2 Project organization . 49

4.3 "Water-scrum-fall" methodology . 51

iv

4.4 Project summary . 52

5 Results 54

5.1 Impersonal mode. 54

5.2 Personal mode . 60

5.3 Group mode . 62

5.4 Determinant factors for coordination modes . 66

6 Discussion 73

6.1 Impersonal mode. 73

6.2 Personal mode . 74

6.3 Group mode . 75

6.4 Comparison with findings by Dietrich et al. (2013) . 76

6.5 Comparison with the hypotheses by Ven et al. (1976) . 77

6.6 Limitations . 78

7 Conclusion 79

7.1 What was found? . 79

7.2 How is inter-team coordination affected by the change of agile methodology? . . 80

7.3 What is the contribution of this thesis? . 81

7.4 Future work . 81

Bibliography 83

Appendix A 90

Appendix B 92

LIST OF FIGURES

List of Figures
1 The waterfall model . 6

2 Worldwide Internet usage from 1990 - 2005 International

Telecommunication Union and database (2019). 8

3 Percentage of projects using iterative or agile methods 2002 - 2017 (Viechnicki

and Kelkar, 2017). 10

4 Illustration of the Scrum Framework. Adapted from Sutherland and Schwaber

(2017). 11

5 Illustration of full SAFe 4.6 (c© Scaled Agile, Inc., 2019b) . 18

6 Illustration of the SAFe structure . 19

7 Illustration of the Scrum of Scrums structure . 20

8 Illustration of EAT structured with five Scrum of Scrum of Scrums (Sutherland

and Scrum Inc., 2019). 22

9 Types of dependencies. Adapted from Zlotkin, cited in Malone et al. (1999). . . 26

10 Coordination model for agile development projects (Strode et al., 2012, p.1230) 29

11 Illustration of the research process (Oates, 2006, p. 33), with highlights on

the chosen strategy for this thesis. 38

12 Illustration of the project timeline. 49

13 Illustration of the project organization in Phase 1, November 2017 50

14 Illustration of the project organization in Phase 3, September 2018 51

15 Phases of the "water-scrum-fall" methodology . 51

vi

LIST OF TABLES

List of Tables
1 Overview of thesis structure . 3

2 Advantages and disadvantages of the waterfall model . 7

3 Advantages and disadvantages of Scrum . 14

4 A taxonomy of scale of agile software development projects (Dingsøyr et al.,

2014, p. 4). 17

5 Coordination mechanisms for impersonal mode by Dietrich et al. (2013).. 30

6 Coordination mechanisms for personal mode by Dietrich et al. (2013). 31

7 Coordination mechanisms for group mode by Dietrich et al. (2013). 32

8 Hypotheses on how task uncertainty, task interdependence and unit size may

affect the different coordination modes by Ven et al. (1976). 33

9 Key words used for literature search.. 36

10 Databases used for literature search. 36

11 Number of interviews per role . 42

12 Coordination mechanisms found for impersonal mode . 54

13 Coordination mechanisms found for impersonal mode . 60

14 Coordination mechanisms found for group mode . 62

15 Most used coordination modes for Phase 1 and Phase 2. 80

vii

1 INTRODUCTION

1 Introduction
This section provides motivation behind writing this thesis and the stated research question.

It also presents an overview of the thesis structure. Finally, this section describes whom the

intended audience for this thesis is.

1.1 Motivation

The digitalization of our society is increasing rapidly. Software development projects are

often faced with the need to adjust to changes quickly to keep up with the demands from

the customers. Traditional methodologies, such as Waterfall, are based upon thoroughly

planning of the whole project process and setting all the requirements, before doing any

development. If there is a need for change in requirements midways, the planning and

requirement process needs to start over. This cause traditional methodologies to not be

suited for projects that are prone to changes. As a response to this, agile methodologies

were created. The Agile Manifesto was published in 2001 by a group of software developers

(Beck et al., 2001). The manifesto contains core values that creates the foundation for agile

methodologies. Based on the manifesto the focus of agile development should be on people

rather than processes and documentation, it encourages close collaboration with customers,

and one should be able to adapt to changes. Thus, agile methodologies are fit to meet the

demands of rapid changes. The most common agile methodology today is Scrum (VersionOne,

2019). Agile methodologies such as Scrum were developed with one team in mind, but

recent years there has been an increase in the use of agile methodologies for large-scale agile

software development projects. Large-scale scale is defined by two or more teams (Dingsøyr

et al., 2014). There are variations of agile methodologies created for large-scale development

projects, where Scaled Agile Framework and Scrum of Scrums are the most popular ones

(VersionOne, 2019). Scaling agile has however been debated as agile principles was initially

created for single teams, and there are multiple challenges related to large-scale agile projects.

Coordination in multi-team environments is found to be one of the more prominent challenges

(Dikert et al., 2016). The academic field of large-scale agile development is quite a new field,

1

1 INTRODUCTION

and there has not been conducted much research on coordination challenges within this topic

yet. There has been some research conducted on the area of coordination challenges in

regards to agile development projects (Strode, 2016; Stray et al., 2019), but these do not

study multi-team projects. As large-scale agile development becomes more common, there

is an increased need for understanding the challenges such projects are faced with. Based

on this, the chosen topic for this thesis will be inter-team coordination for large-scale agile

software development projects.

1.2 Research Question

This thesis investigates a case where a large-scale agile software development project has

gone from a "water-scrum-fall" methodology to working with autonomous, cross-functional

teams, with continuous deliveries. By investigating this case, one can compare the differences

in inter-team coordination, and see how coordination has been affected by this change of

methodology. Thus, the research question for this thesis will be:

How is inter-team coordination affected by change of agile methodology

in a large-scale agile software development project?

1.3 Target Audience

This thesis explores inter-team coordination in regards to large-scale agile software

development, and could be found interesting for practitioners within agile software

development. As the investigated project in this thesis transition from one agile methodology

to another, the findings of this thesis can be insightful for project managers that consider to

go through a similar transition for their project. Section 7.4 provides suggestions for future

research based on the contribution of this thesis, which can be interesting for researchers and

students within this field of topic.

2

1 INTRODUCTION

1.4 Thesis Structure

Table 1 gives an overview of the thesis structure, with descriptions of each chapter.

Table 1: Overview of thesis structure

3

2 THEORY

2 Theory

This section presents theory on different software development methodologies. First the

concept of software development methodologies will be introduced. Then, examples on

popular methodologies are given to provide insight on how software development is practiced.

Furthermore, this section will look into the area of large-scale projects in regards to agile

development, with associated challenges and examples on frameworks. Finally, coordination

theory will be covered and related to large-scale agile software development.

2.1 Software Development Methodologies

A software development methodology consists of a set of processes and activities that will

contribute to the creation of a software product (Sommerville, 2011, p. 28). Sommerville

describes four activities that must be included when developing a software product:

1. Software specification

Functionality and requirements must be specified.

2. Software design and implementation

Functionality must be implemented to fulfill the requirements.

3. Software validation

Testing must be done to ensure it satisfies the requirements.

4. Software evolution

Software might need changes and further development to meet the customer needs.

How these activities are structured and performed will depend on what methodology is being

used. Using a software development methodology is important as it helps planning and

structuring the project and its activities in such a way that will increase effectiveness of the

team and reduce costs. Software development processes can mainly be divided into two types

of approaches: plan-driven, also known as traditional development, and agile development.

4

2 THEORY

A hybrid approach is also common, which is a combination of agile methodologies and/or

plan-driven methodologies (Vijayasarathy and Butler, 2015).

2.2 Plan-driven Software Development

Plan-driven software development refers to development methodologies where all process

activities are planned in advance (Sommerville, 2011, p. 29).

2.2.1 Waterfall

The waterfall method was one of the first traditional ways of approaching a software

development process. The stages of the waterfall model was introduced by Royce in 1970

(Royce, 1970), but the term "waterfall" was first used by T. E. Bell and T. A. Thayer in

1976 (Bell and Thayer, 1976).

Figure 1 shows an illustration of the waterfall model. The model consists of five stages,

that are performed in a linear-sequentially order:

1. Defining requirements

Understanding and documenting the needs in terms of the design and functionality of

the product.

2. System design

Specifying the technical software and hardware design.

3. Implementation

Coding the system, based on requirements and plans from the previous steps.

4. Testing

Testing the system to uncover problems and mistakes .

5. Maintenance

Deploying the system, and keep it maintained and upgraded.

5

2 THEORY

Figure 1: The waterfall model

Each step should be finished before you proceed to the next. If you discover problems

during the project or experience failure at the end of the project, you can go back and start

the process once more. This was also suggested by Royce (1970), who stated that the cycle

should be repeated twice. A strict linear process without repeating any steps would be risky

and increase the chances of failure. By going back and repeating the process, one could

rule out critical mistakes before delivering the final product to the customer. As goals and

requirements are clearly defined early on in the project, one can not simply make changes in

the middle of the project or go back to only redo the previous step. One would need to go

back to the first step and redo the whole process.

6

2 THEORY

On the other hand, doing the whole process a second time does not guarantee the system

will be perfect. In The Mythical Man Moth (Brooks, 1975) Brooks states that the first

system almost always needs to be redone, but he also introduced the risk of "second system

syndrome". The second system syndrome describes how a second version of a system might

get over-engineered and include excessive functionality. This is due to increased confidence

and ambitions, and the architects may want to improve the first system more than what is

necessary. The waterfall model’s inflexibility is one of its main weaknesses and this makes it

not suitable for projects that are vulnerable to changes. Table 2 shows an overview of the

advantages and disadvantages of the waterfall model.

Table 2: Advantages and disadvantages of the waterfall model

Advantages Disadvantages

• Simple to understand due to its clearly

defined steps

• Suits smaller projects where the

requirements are easy to define

• Projects are well documented

• Heavy planning makes it easier to

calculate costs and set deadlines

• Inflexible. Not possible to change

requirements in the middle of the project.

• Little customer involvement during the

project may cause the customer to be less

satisfied with the end product.

• Higher risk of failure, as problems often

are discovered during testing late on in the

project.

• Risk of encountering "the second system

syndrome"

A survey from 2015 shows that 32% of the 153 respondents used waterfall as software

development methodology for their project, which indicates that it is still a much used

methodology (Vijayasarathy and Butler, 2015).

7

2 THEORY

2.3 Agile Software Development

During the 1980s and 1990s computers became more common, and the introduction of World

Wide Web to the public in 1993 made big changes to the economy (J. Highsmith, 2000). This

caused an increased demand on software products. Figure 2 shows how the internet usage

grew rapidly during the mid 90s .

Figure 2: Worldwide Internet usage from 1990 - 2005 International Telecommunication Union

and database (2019).

Plan-driven software development was time consuming and inflexible, and by the time

the software products were finished, the demands had changed and the projects often either

failed or lead to dissatisfied customers. Highsmith stated "In our Information Age economy, a

company’s ability to set the pace, to create change, lies in its ability to develop software. In a

world of constant change, traditional rigorous software development methods are insufficient

for success."(Highsmith, 2002, p. 2).

In order to keep up with the changing demands from the customers, more lightweight

approaches to software development became common. Kent Beck developed extreme

programming (XP) during the late 1990s, and published his book "Extreme Programming

Explained: Embrace Change" on the methodology in October 1999 (Beck, 1999). As the

8

2 THEORY

title suggests, one should start embracing change, which is in big contrast to the traditional

plan-driven development. XP focuses on being highly flexible and making it easier to make

changes to requirements by having short development iterations, a lot of customer interaction,

and frequent deliveries.

The high failure rates and the struggle with keeping up with the rapid changes when

using plan-driven development caused great frustration among developers. As a reaction

towards this, Manifesto for Agile Software Development was published in 2001 by a team of

software developers, including Kent Beck and Jim Highsmith(Beck et al., 2001). The agile

manifesto is a result of the participants experiences and thoughts upon how to approach

software development and how to solve the problems with plan-driven methodologies.

The agile manifesto contains four core values of agile software development:

1. Individuals and interactions over processes and tools

2. Working software over comprehensive documentation

3. Customer collaboration over contract negotiation

4. Responding to change over following a plan

These values creates the basis for all agile methodologies. Agile development is about

being able to adapt to changes by having small iterations and frequent contact with the

customer. It also focuses on the people who are involved in the projects, and the collaboration

between them.

Findings by Deloitte Center for Government Insights presented by Viechnicki and Kelkar

(2017), includes over 3000 respondents from US federal IT projects, and shows how the

usage of agile and iterative methods has developed over the years. Figure 3 shows that

agile and iterative methods has had an immense growth the last years, and the usage was in

2017 around 80%. Deloitte have combined data from four different sources, but they do not

present how these data were extracted, nor how these sources conducted their research. One

can therefore not state that these data are completely reliable, but due to the large number

of respondents, it might indicate a trend.

9

2 THEORY

Figure 3: Percentage of projects using iterative or agile methods 2002 - 2017 (Viechnicki and

Kelkar, 2017).

2.3.1 Scrum

Scrum is an agile software development framework that has roots back to 1986 when the

term was first used (Takeuchi and Nonaka, 1986). It was then described as a new approach

to product development with focus on speed and flexibility. The name "Scrum" originates

from rugby, where each team forms together and push against the opposing team, trying

to gain possession over the ball (Dictionary.cambridge.org, 2019). Just as in rugby, Scrum

teams in software development are self-organizing and work together in a fast forward and

flexible way to reach their goal.

Jeff Sutherland used Takeuchin and Nonaka’s concept of Scrum as a basis when he

formulated the early versions of the framework for software development teams in 1993 at

Easel Corporation (Sutherland, 2001b). Together with Ken Schwaber, they co-developed

Scrum throughout the 1990s. Some years later, Schwaber and Beedle (2001), wrote the first

book on Scrum called Agile Software Development with Scrum, which contains information

on what Scrum is, why it works, and how to practice it. Schwaber and Beedle was also

involved in the creation of the Agile Manifesto from the same year.

10

2 THEORY

As of 2019, Jeff Sutherland and Ken Schwaber are still working with Scrum, and together

they have written the Scrum Guide, which offers a thorough guide to Scrum. Sutherland

and Schwaber defines Scrum as "A framework within which people can address complex

adaptive problems, while productively and creatively delivering products of the highest

possible value." (Sutherland and Schwaber, 2017, p.3). Figure 4 shows an illustrated overview

of the framework.

Figure 4: Illustration of the Scrum Framework. Adapted from Sutherland and Schwaber

(2017).

Scrum was made for small teams, where each part of the team has a defined role. A Scrum

team has a Scrum master, a product owner, and a development team. The Scrum master’s

job is to make sure the team understand and follows the processes and activities that comes

with the Scrum framework. The product owner is responsible for the product backlog and

makes sure that the team creates a product of high value that meets the requirements. The

development team are responsible for creating a product that meets the requirements. The

development team is self-organized and may consist of people with different specializations,

depending on what qualifications the team needs to meet the requirements.

Scrum consist of five main events with set time frames. The events are designed to let

the team plan and discuss what they are working on, and make room for adaptions. The five

11

2 THEORY

main events are:

1. The Sprint

A sprint is a period of time, set to maximum one month or less, where implementation

takes place. The other events will also take place during a sprint.

2. Sprint Planning

Sprint planning happens at the beginning of a sprint and lasts maximum eight hours.

The team will discuss the product backlog and decide on which tasks that should be

a part of the sprint. How they will work and how they will achieve their goal for the

sprint will also be decided during sprint planning.

3. Daily Scrum

Daily scrum, often called stand up, is a daily event that lasts maximum 15 minutes.

The team members share what they have done the last 24 hours, and discuss what they

will work on up until the next meeting.

4. Sprint review

Sprint review is conducted at the end of each sprint and last maximum four hours. For

this meeting, key stakeholders, the product owner and the rest of the Scrum team are

present. They discuss what requirements has been met and possible changes that may

be done to the product backlog. They also review the product’s market value, project

budget and timeline. The result of this meeting will work as a basis for the next sprint

planning meeting.

5. Sprint retrospective

Sprint retrospective meeting lasts maximum three hours, and is held after the sprint

review. The Scrum team inspect themselves and how the current sprint has been.

They discuss what has worked well and what could have been better, in regards to

tools, processes and how they work together as a team. The team creates a plan for

what can be improved and how they will solve it. The purpose of this is to enhance

how they work and avoid doing the same mistakes as earlier during the next sprint.

12

2 THEORY

As seen in Figure 4 there are three artifacts that is an important part of a Scrum process.

These are: product backlog, sprint backlog, and increment. The product backlog describes

all planned functionality and requirements for the product. The sprint backlog contains

requirements and tasks from the product backlog that are planned to be completed during

the current sprint. The increment is a result of all tasks and requirements that has been

fulfilled during the sprint, and this part of the product must be considered to be finished

and usable. All team members must agree on what is considered to be finished. Having

transparency, with clear definitions of different events and artifacts is important as it helps

the team have common understanding and expectations of the whole process and the decisions

being made.

The 13th Annual State of Agile Report(VersionOne, 2019), shows the current state of agile

development and is based on a survey with 1319 respondents, where most respondents are

located in North-America and Europe. The report shows that 54% percent of the respondents’

organizations use Scrum as their agile software development approach. This indicates that

Scrum is currently the most popular framework for agile software development. Despite its

popularity, a case study indicates that one may also face issues when using Scrum (Cho, 2008).

The study mention that even though Scrum is supposed to have frequent contact with the

customer, this is not always the case when practiced in real-life. The teams struggle to keep

in touch with the customer as often as they would like, because the customers often are too

busy to talk with them. Another challenge mentioned in the study is that some people find

the framework to be too rigid. The teams sometimes experienced that the required meetings

and events was not always beneficial and felt like a waste of time. One should rather have

meetings based on the complexity of the project, and when the teams feel it is necessary. An

overview of advantages and disadvantages of using Scrum is presented in Table 3.

13

2 THEORY

Table 3: Advantages and disadvantages of Scrum

Advantages Disadvantages

• Working iterative and incremental with

frequent customer interaction makes Scrum

very flexible and one could easily adapt to

changes

• Frequent deliveries with working

software after each sprint

• Focus on transparency and open

information flow between team members

• Planned events that enhance

communication and collaboration among

team members

• Not as simple to understand and

implement as Waterfall, and requires skilled

project managers

• Scrum is best suited for small teams.

Scaling Scrum can get too complex.

• Due to its flexibility it can be difficult to

set a final project deadline

• Scrum projects are vulnerable to scope

creep

2.3.2 Autonomous and cross-functional teams

As stated in the Agile Manifesto, "The best architectures, requirements, and designs

emerge from self-organizing teams." (Beck et al., 2001). Agile teams should therefore be

self-organized, also known as autonomous. This means giving freedom to the teams to decide

how they organize and practice their work to reach their goals. Autonomy can increase

satisfaction and motivation among team members, and increase productivity (van Mierlo

et al., 2006). As the teams are self-organized, project managers can spend less time on

management at team level. Thus, there are many advantages with using autonomous teams.

However, it is also found some challenges in regards to autonomous teams within

agile software development. Moe et al. (2010) have found multiple challenges related to

autonomous teams, both in regards to the surrounding organization as an external factor that

affects the team, but also within the team itself. On team-level, "individual commitment",

"individual leadership", and "failure to learn" were considered as challenges. Individual

14

2 THEORY

commitment is related to how team members may focus on individual goals within their

field of specialization, rather than pursuing the team goals. Individual leadership looks at

how the teams handle decision making. Within autonomous teams, individuals may take

charge and make decisions without informing team members, which could lead to mistrust.

Shared leadership was found to be difficult, and it can be challenging to decide who should

take part the different decisions. Failure to learn is about the teams ability to progress

and improve themselves. Stray et al. (2018a) also present challenges related to autonomous

teams. One of the challenges mentioned was that autonomous teams may struggle with too

many dependencies to others.

Within the practice of Scrum it is also encouraged to use cross-functional teams. This

means including roles across different fields of expertise from the organization. By doing this

the teams have the knowledge they need to perform tasks without the need to rely on people

outside the team. By using cross-functional teams, the team members will be able to see

the project from different perspectives, gain an understanding of each others knowledge, and

also be a part of tasks outside their field of specialization (Hoda et al., 2012). Relationships

that contains shared knowledge, shared goals and mutual respect is said to be important for

coordination. When such relationships develop within the teams, it strengthens the team

and creates a foundation for good collaboration (Gittell, 2006).

Combining the use of autonomous and cross-functional teams may therefore reduce the

need for coordination with people outside the teams, as all necessary domain knowledge can

be found within the teams.

15

2 THEORY

2.4 Large-scale Agile Development

Agile development were initially used by smaller software development projects consisting of

single teams. The Scrum Guide recommends the development team size to be no less than

three members, and maximum nine members. Having more than nine members would be

complex and require too much coordination (Sutherland and Schwaber, 2017, p.7). As early

as 2003 it was not recommended to scale agile projects (Reifer et al., 2003), and Dybå and

Dingsøyr (2009) mention that introducing agile methods to large and complex projects can

be difficult.

Despite multiple sources discourage scaling agile projects, agile methods has become more

common for larger and more complex projects. A reason for this may be the successful results

that agile development has provided for smaller teams, which have inspired further use of

agile approaches (Dingsøyr and Moe, 2014). Another contributing factor is the increasing

digitalization in our society and a rapidly growing market for digital technology (Dingsøyr

et al., 2019). This creates a need for both small and large software development projects to

be flexible and able to adapt to changes at a fast pace.

2.4.1 Definition of Large-scale Agile Projects

There is no official definition for what a large software development project is, but it is

suggested to be measured by the number of people involved in the project, number of lines of

code, and the duration of the project (Rolland et al., 2016). In the article What is Large in

Large-Scale? A Taxonomy of Scale for Agile Software Development (Dingsøyr et al., 2014)

the authors identify three types of projects, based on the numbers of teams involved and

their coordination approaches.

16

2 THEORY

Table 4: A taxonomy of scale of agile software development projects (Dingsøyr et al., 2014,

p. 4).

Level Number of teams
Coordination

approaches

Small 1 Coordinating the team can

be done using agile practices

such as daily meetings,

common planning, review

and retrospective meetings.

Large-scale 2-9 Coordination of teams can

be achieved in a new forum

such as a Scrum of Scrums

forum

Very large-scale 10+ Several forums are needed

for coordination, such as

multiple Scrum of Scrums.

The taxonomy is presented in Table 4, and from this taxonomy one can define a large

project as a project with two or more teams. Thus, a large-scale agile software development

project can be defined as a software development project involving two or more teams, that

use agile methods for their project. This will be used as the definition for a large-scale agile

software development project throughout this thesis.

2.4.2 Scaled Agile Framework (SAFe)

Scaled Agile Framework (SAFe) was first introduced in 2011 as "Agile Enterprise Big Picture"

(Leffingwell, 2011). It was a framework that described how enterprises can implement agile

17

2 THEORY

and lean practices on three different levels: portfolio level, program level and team level.

Since 2011 the framework has developed and it has been released multiple versions. As

of November 2019, the latest version was released in October 2018 and is known as "Scaled

Agile Framework (SAFe) 4.6". This version includes principles from Lean, DevOps and Agile

practices.

SAFe has four core values they describe as the key to its effectiveness: alignment, built-in

quality, transparency and program execution (c© Scaled Agile, Inc., 2019a).

Values and principles, along with a SAFe Program Consultant, an implementation

roadmap, and a Lean-Agile- mindset and leadership, creates the foundation for the SAFe

framework. Figure 5 shows an illustration of full SAFe 4.6.

Figure 5: Illustration of full SAFe 4.6 (c© Scaled Agile, Inc., 2019b)

Full SAFe includes all levels of SAFe: team level, program level, large solution level and

18

2 THEORY

portfolio level. Each level consists of different processes, artifacts and roles. It is structured

in a hierarchical system. A simplified view of the structure is illustrated in Figure 6.

Figure 6: Illustration of the SAFe structure

Team level:

On the bottom you find team level. Team level consists of multiple smaller teams that

practice agile methods such as Scrum, XP or Kanban.

Program level:

The program level manage all teams on team level. Multiple teams combined forms a

program. This level has different roles that helps facilitate a program: release train engineer,

system architect for the entire program, product management, business owners. This is also

called Essential SAFe, and is the simplest configuration of SAFe.

Large Solution level:

Large Solution consists of multiple programs combined. To manage these programs you

need: Solution Train Engineer, Solution Architect, Solution Management, Customer.

Portfolio level:

The Portfolio level consists of either a Program or a Large Solution. The roles for this level

are: EPIC owners, Enterprise Architect, Lean Portfolio Management.

From the 13th Annual State of Agile Report(VersionOne, 2019), 30% of the respondents

mentioned they have been using SAFe. This makes SAFe currently the most used method

19

2 THEORY

for scaling agile.

2.4.3 Scrum of Scrums

Scrum of Scrums(SoS) was originally defined by Jeff Sutherland when introduced to IDX

Systems, a large healthcare software company, in 1996 (Sutherland, 2001a). Jeff Sutherland

and Scrum Inc. provides a guide, The Scrum At Scale R© Guide, which describes SoS and its

associated roles and events (Sutherland and Scrum Inc., 2019). SoS is an approach to use

Scrum at scale. When more than one Scrum team is needed for a project, one can use SoS for

collaboration and to coordinate work among the teams. When using SoS, a representative

from each team meet up, and together they form a SoS team. For even larger projects, one

can also expand the Scrum of Scrums to involve more than one Scrum of Scrums. This will

create a Scrum of Scrum of Scrums. The SoS structure is illustrated in Figure 7.

Figure 7: Illustration of the Scrum of Scrums structure

The SoS team meet once a day and have their own stand-up meeting, after each Scrum

team have finished their daily stand-up meeting. This way the teams can be up to date on

20

2 THEORY

each others work.

The SoS team have multiple roles associated with the team to distribute the different

responsibilities. Each SoS team has a SoS Master, Product Owner Team, and a Chief Product

Owner. The SoS Master is responsible for making sure that each Scrum team has a progress

and deliver a working increment at the end of each sprint. The Product Owner Team manages

a backlog that aligns and prioritizes all the tasks from each teams’ backlog. They also define

when an increment is considered done, and resolve dependencies among the teams. When

having a Scrum of Scrum of Scrums structure, there are also multiple Product Owner Teams.

The Chief Product Owner is responsible to manage the Product Owner Teams. The Chief

Product Owner have the same tasks as a Product Owner, but is responsible for the project

as a whole. If there is only used a SoS structure, there is no need for a Chief Product Owner,

as the Product Owner can fulfill this role.

When having multiple Scrum of Scrum of Scrums in an organization, an Executive Action

Team (EAT) is responsible for coordinating all teams and making sure they implement agile

values and Scrum correctly. The EAT is also considered a Scrum team, and has a Scrum

Master, Product Owner and a backlog. How an EAT team with five groups of Scrum of

Scrum of Scrums is structured is illustrated in Figure 8.

The 13th Annual State of Agile Report shows that Scrum of Scrums is being used by 16%

of the respondents VersionOne (2019). Scrum of Scrums is currently being the second most

used approach for scaling agile, after SAFe.

2.4.4 Challenges

Agile methods were initially meant for smaller projects, but they do not take into account the

challenges that one may face when trying to scale agile methods. A recent study by Jørgensen

(2019) looked into the performance of large-scale agile projects, compared to smaller agile

projects and non-agile projects. Jørgensen found that only 7% of the large agile projects were

categorized as successful, and that the success factor decreased with the increase of project

size. This indicates that there are challenges that may be difficult to solve when working

with large-scale agile software development projects.

21

2 THEORY

Figure 8: Illustration of EAT structured with five Scrum of Scrum of Scrums (Sutherland

and Scrum Inc., 2019).

As software development projects often involves cooperating with stakeholders outside

the development team, it is interesting to look at how large-scale agile methods are being

approached by organizations and not only by the development teams alone. A study

conducted by Dikert et al. (2016) found multiple challenges in regards to large-scale agile

transformations in organizations. This study include companies that only focus on software

development, but also parts of non-software development organizations that develop software.

The most prominent challenges, which was mentioned by more than 30% of the investigated

projects, are:

• Agile difficult to implement

• Integrating non-development functions

• Change Resistance

• Requirements engineering challenges

• Hierachical management and organizational boundaries

• Lack of investment

22

2 THEORY

• Coordination challenges in multi-team environment

In the article Implementing Large-Scale Agile Frameworks: Challenges and

Recommendations by Conboy and Carroll (2019), they identify nine challenges connected

to large-scale agile transformations in organizations:

• Defining concepts and terms

• Comparing and contrasting frameworks

• Readiness and appetite for change

• Balancing organizational structure and frameworks

• Top-down versus bottom-up implementation

• Overemphasis on 100% framework adherence over value

• Lack of evidence-based use

• Maintaining developer autonomy

• Misalignment between customer processes and frameworks

One of the challenges mentioned by both studies is that agile is difficult to implement,

and that it is hard to define concepts and terms. Conboy and Carroll (2019) describe

that when frameworks such as SAFe and Spotify are applied, they may work well for basic

implementations, but misunderstandings and difficulties are faced when the frameworks are

being adapted to fit different contexts. In general there is a lack of guidance, and vague

explanations make room for misunderstandings.

Another challenge mentioned by both of the studies is the openness to change. Team

members may be skeptical to change if they do not see any visible benefits or if the manager

do not set clear goals for its purpose. Managers can be hesitant to change if the agile

transformation process starts bottom-up within a development team and the manager is not

being included in the process. Agile methods can cause changes to management roles, and

if agile methods and the possible outcomes are not understood properly by managers, they

may be unsure of how it will affect their role and are not be willing to pursue these changes

23

2 THEORY

any further (Dikert et al., 2016). Conboy and Carroll (2019) describe that managers may not

be willing to adopt different frameworks to their practices. Adopting frameworks does not

necessarily guarantee that it will work well and that changes will happen. Some organizations

that tried to introduce different frameworks experienced frustration among the teams, and

some teams would not adapt to these changes in their work at all.

From these studies one can see that multiple organizations are working with agile

transformations. Many challenges are faced at a management level, and often related to

the difficulties in understanding agile approaches and the willingness to adapt to this.

For large-scale software development projects specifically, it is interesting to look at one

of the challenges mentioned by Dikert: coordination challenges in multi-team environment.

Dikert et al. (2016) describe this field as prominent and difficult, and it includes multiple

challenges. As coordination problems is seen as a prominent area of challenge for large-scale

agile development projects, it will be investigated further in part 2.5 of this thesis.

2.5 Coordination

Coordination is a part of any work that involves collaboration. The field has been researched

from different perspectives. All elements from an organizational level, down to task level

can form dependencies, which creates coordination challenges. In order to solve these

dependencies, different coordination mechanisms can be used.

As presented in section 2.4.4 there are multiple challenges in regards to large-scale agile

software development specifically. This subsection will cover coordination theory and provide

context for further investigation of inter-team coordination in large-scale agile development

projects.

2.5.1 Introduction to coordination

Thomas W. Malone identified the need for coordination theory to be used for human

organizational matters, as well as for developing computer systems for coordinating activities

(Malone, 1988). Malone defined coordination as "the additional information processing

performed when multiple, connected actors pursue goals that a single actor pursuing the same

24

2 THEORY

goals would not perform" (Malone, 1988, p. 5). To be able to perform coordination, one would

need two or more actors that perform tasks in order to reach a goal. In 1994 Thomas Malone

and Kevin Crowston simplified the definition to be "Coordination is managing dependencies"

(Malone et al., 1994, p. 90).

A dependency is when something relies on something else for support (Merriam-Webster,

2019). Accordingly, an actor is simply depended on something else to be able to take further

action. To be able to identify the different kinds of dependencies, one has to consider what

roles and elements are involved in a dependency, and how these elements are connected.

Crowston (1994) created a taxonomy to identify the characteristics of a dependency. This

taxonomy is based on the elements found in the framework created by Malone and Crowston

(Malone et al., 1994). These elements are: goals, activities, actors and resources. For the

taxonomy, Crowston(1994) further divided these elements into two groups: resources and

tasks. Actors and resources are both considered resources, while activities and goals are

considered tasks. Actors try to reach a goal by doing activities, and these activities either

create- or are in need of resources to be performed. Thus, dependencies are formed as a

result of the interactions and relations among these elements. The taxonomy shows how

tasks and resources can be depended on each other, either with a single dependency or

multiple dependencies among them. Dependencies or interdependencies can also exist within

tasks or within resources, but this has not been covered by this taxonomy.

In order to manage these dependencies, one has to identify what kind of dependencies

exists. There has been identified three types of dependencies (Zlotkin, cited in Malone et al.

(1999)):

• Flow dependencies: activity uses resources that was produced by another activity

• Sharing dependencies: multiple activities use the same resource

• Fit dependencies: multiple activities produce a resource together

These are the types of dependencies that emerge between activities and resources, and

are illustrated in Figure 9.

25

2 THEORY

Figure 9: Types of dependencies. Adapted from Zlotkin, cited in Malone et al. (1999).

Dependencies must however not be mistaken for being the same as an interdependency.

An interdependency is defined as when multiple organizations, or in this context- actors,

need to consider each others needs to reach their goals (Litwak and Hylton, 1962). Thus, an

interdependency can be seen as a more complex form of a dependency. While a dependency

is a one-way relation, an interdependency is a mutual relation. Thompson (1967) describes

three kinds of interdependencies that arises when teams are working on separate parts of

a project or organization, but towards a common goal: pooled interdependencies, sequential

interdependencies, and reciprocal interdependencies. Pooled interdependencies can be seen

as an indirect interdependency. It arises when a common goal of a project or organization

relies on the contribution of all involved teams, but the teams do not need to work directly

with each other to reach the goal. If one team fails with their contribution, the project or the

organization will also fail. Sequential interdependencies are like pooled interdependencies, but

there is a direct interdependency between the involved teams. Reciprocal interdependencies

is the most complex form of interdependence. The output of each team, will become input

for the other teams, which makes for a tight coupling between the teams. Different kinds

of interdependencies creates a need for different kinds of coordination mechanisms. For

pooled interdependencies, rules and standardization is recommended, as there is little or no

communication involved. Sequential interdependencies are more dynamic and needs more

plans and schedules, along with some communication. Reciprocal interdependencies are in

need of more communication and mutual adjustment. This implies that the more complex

26

2 THEORY

the interdependency is, the more coordination mechanisms needs to be present.

2.5.2 Related research on coordination within large-scale agile software

development projects

Coordination in large-scale projects is necessary both among the teams, and between the

team and the surrounding organization (Dingsøyr and Moe, 2014). As mentioned in section

2.4.4, coordination of teams in large-scale agile projects is considered a prominent challenge.

Dikert et al. (2016) found that using agile methods worked well within the teams,

but collaboration with other teams and the surrounding organization was difficult, and

dependencies were difficult to manage. This may be due to how agile methods pay more

attention to activities and interactions inside a team, rather than the interactions between a

team and its environment. Dikert et al. (2016) also found challenges in regards to autonomous

teams. Autonomous teams gives the individual teams a lot of freedom in terms of deciding

how they want to work. Dikert et al. (2016) found that some teams became too independent

and focused only on their own goals and did not take the other teams and the organization into

account. As each team set their own Sprint duration, it caused delays. Challenges in regards

to autonomous teams has also been discussed by Stray et al. (2018b). Autonomous teams

struggle with not having clear goals, lack of coaching, distrust within the team, variations

in norms, and dependencies to others. When these challenges are faced at a large-scale, the

dependencies also increase. Stray et al. (2018b) states that the complexity of coordination

within and outside autonomous teams increase exponentially.

Another challenge discovered by Dikert et al. (2016) was to achieve technical consistency.

It was reported difficulties in integrating the parts from the different teams into the system.

Together with coding dependencies and different coding styles, the architecture became more

fragile. The difference in the ways the teams worked also created mistrust between the

teams. The coordination problems were attempted solved by trying to reduce dependencies

across teams, but these dependencies were naturally a part of the project and could not be

resolved. Traditional approaches caused increased workload and reduced flexibility for the

teams. Scrum-of-Scrums reportedly worked for some teams, but not scaled to a global level.

27

2 THEORY

A study by Paasivaara and Lassenius (2014) supports the fact that Scrum-of-Scrums may

not work when scaled too large.

In addition, "Different approaches emerge in a multi-team environment" was mentioned in

21% of the investigated projects. Different agile implementations within the teams makes it

harder to relocate people and cause friction within the teams. Traditional methods and agile

methods were also practiced at the same time among the teams, making collaboration difficult

throughout the organization (Dikert et al., 2016). Such inconsistency in agile approaches

among the teams could create interdependencies and hinder coordination.

Based on the challenges already mentioned, a need for further research into inter-team

coordination and how related challenges should be solved, is recognized as a necessity. In

Towards principles of large-scale agile development (Dingsøyr and Moe, 2014), inter-team

coordination is also mentioned as a topic of high priority on the research agenda.

To be able to understand and solve the coordination challenges in large-scale agile

development projects, one needs to identify dependencies that arise in such an environment.

Strode (2016) has conducted research specifically in regards to coordination in agile software

development projects, and has created a taxonomy to identify dependencies that occur within

such an environment. It must be noted that this taxonomy is not created for large-scale

projects, but Strode (2016) presented this as an area of possible future studies. Stray

et al. (2019) used this taxonomy for their case study on how dependencies are managed in

large-scale agile projects. They were able to identify dependencies and related coordination

mechanisms, and found the taxonomy useful. This suggests that the taxonomy by Strode

(2016) may be a better choice when identifying dependencies in large-scale agile projects,

than using the taxonomy by Malone et al. (1999). The dependencies presented in Malone

et al. (1999) is not made specifically for software development projects, and may be a too

strict approach for an agile environment.

Strode et al. (2012) has created a theoretical model to see how different strategies

affects coordination effectiveness. The model propose three different coordination strategies:

synchronization, structure, and boundary spanning. Each strategy consists of different

coordination mechanisms for dependency management, and will result in either implicit

28

2 THEORY

coordination effectiveness or explicit coordination effectiveness. The model is illustrated

in Figure 10.

Figure 10: Coordination model for agile development projects (Strode et al., 2012, p.1230)

The model can also be used in combination with the taxonomy to link dependencies in

agile development projects with coordination strategies (Strode, 2016, p. 34). However,

the model by Strode et al. (2012) focus on coordination with one team involved and the

interactions within the team, and does not consider inter-team coordination.

2.6 Determinants of Coordination Modes by Ven et al.
(1976)

Ven et al. (1976) looks at coordination mechanisms from an organizational perspective, but

on team level, which makes the theory suited when studying inter-team coordination. The

article presents three modes that are used to coordinate activities: impersonal mode, personal

29

2 THEORY

mode, and group mode. These coordination modes draws similarities to the interdependencies

identified by Thompson (1967). The study further presents factors that determines when one,

or a combination of different modes are used.

2.6.1 Impersonal mode

Impersonal mode is coordination by plans, schedules, rules, formal policies and procedures,

and standardized information (Ven et al., 1976). It can also include the use of technical

tools. Impersonal mode requires little communication outside these activities (Boos et al.,

2011). The use of coordination modes for inter-team coordination in multi-team projects has

been researched by Dietrich et al. (2013). The study identified coordination mechanisms for

each coordination mode. Coordination mechanisms found for impersonal mode is presented

in Table 5.

Table 5: Coordination mechanisms for impersonal mode by Dietrich et al. (2013).

Coordination mechanisms for impersonal mode

• Process documentation and information in intranet

• Use of documents

• IT tool to follow execution process

• Reporting system

• Project plan as integrative map

• Functionality reports and testing documents

• Common database

• Sales plans

• Schedules

2.6.2 Personal mode

Personal coordination mode relies heavily on communication and in-person feedback. The

communication happens through either a vertical- or horizontal channel. A vertical

30

2 THEORY

communication channel is hierarchical with communication happening between a manager

or supervisor and a sub-ordinated person. Horizontal communication can be seen as

non-hierarchical and happens among team members who is on the same ordinated level.

Examples of personal coordination mode mechanisms found by Dietrich et al. (2013) are

shown in Table 6.

Table 6: Coordination mechanisms for personal mode by Dietrich et al. (2013).

Coordination mechanisms for personal mode

• Direct contacts face-to-face or by phone

• Direct contacts via email

• Use of same resources in several teams

• Project manager’s participation in teams’ work

• External consultant as liaison, facilitators as liaisons

• Meeting between function head and team leaders (individually)

2.6.3 Group mode

Within group mode of coordination, mutual adjustments through meetings are used

as coordination mechanisms. Meetings can be divided into two types: scheduled and

unscheduled. Scheduled are meetings that are planned in advance and part of a routine,

while unscheduled meetings are meetings that are not planned in advance. Unscheduled

meetings are typically informal and unprepared, and are being held whenever work-problems

suddenly arise. Dietrich et al. (2013) found that this is the most common mode for large-scale

projects. Identified coordination mechanisms for group mode is presented in Table 7.

2.6.4 Determinant factors for coordination modes

Ven et al. (1976) found that the use of the different coordination modes depends on three

factors: task uncertainty, task interdependency, and unit size. Task uncertainty can be

measured as the complexity of the tasks, how time consuming the tasks are, and how easy

31

2 THEORY

Table 7: Coordination mechanisms for group mode by Dietrich et al. (2013).

Coordination mechanisms for group mode

• Weekly status review meetings

• Coordination group meetings

• Inter-team meetings (informal)

• Management board meetings

• Information sharing through colocation (open space office)

• Facilitator network meeting

• Kick off meetings

• Delivery approval workshops

• Quality group meetings

• Discussion group meeting (debriefing)

• External network meetings

it is to predict the outcome of the tasks. The paper suggests that as task uncertainty

increase, impersonal coordination mode becomes less suitable, as more complex tasks often

requires more communication and collaboration. Task interdependency is measured by how

dependent tasks are upon one another and the degree of how easy one can split the tasks

into independent tasks. As mentioned in 2.5.1, one can find a hierarchical structure among

the types of interdependencies. Ven et al. (1976) refers to Thompson (1967) and points

out that such a hierarchy also seem to exist among coordination modes and determinant

factors. Thus, increased task interdependency creates for a greater need of communication

and mutual adjustment. Unit size is defined by the number of people in a work unit. In

the context of large-scale agile development, unit size will refer to the number of people in

each team. Unit size may affect coordination in multiple ways. Research has found that

increased unit size cause decreased group cohesion and sub-groups are likely to form, each

member participate less, impersonal and mechanical methods are used to spread information,

complexity in demands increase, and the leadership styles become more directive (Ven et al.,

32

2 THEORY

1976).

Based on these factors, Ven et al. (1976) presented three hypotheses on how they may

affect coordination modes:

Table 8: Hypotheses on how task uncertainty, task interdependence and unit size may affect

the different coordination modes by Ven et al. (1976).

Task uncertainty Task interdependence Unit size

Increases in the degree

of task uncertainty for

an organizational unit is

associated with

1. a lower use of the

impersonal

coordination mode

2. a greater use of the

personal coordination

mode

3. a significantly greater

use of the group

coordination mode

Increases in work flow

interdependence from

independent to sequential

to reciprocal to team

arrangements will be

associated with

1. small increases in use

of impersonal

coordination

mechanisms

2. moderate increases in

use of personal

coordination

mechanisms

3. large increases in use

of group coordination

mechanisms

An increase in work unit size

is associated with

1. a decrease in use of

group coordination

2. an increase in use of

personal coordination

3. a significant increase

in use of impersonal

coordination

mechanisms

33

2 THEORY

These hypotheses suggests that a higher level of task uncertainty, task interdependency,

and unit size, either decrease or increase the needs for coordination mechanisms within the

different coordination modes. Applying these hypotheses to a large-scale agile development

project, can help with mapping the challenges and needs related to inter-team coordination

in such projects.

34

3 RESEARCH METHODS

3 Research Methods
This chapter will contain information on the research methodologies used for this thesis.

Part 3.1 will present how the literature review was conducted and how it formed the research

questions. Part 3.2 will explain the choice of research strategy, along with a presentation of

the case selected for this thesis. Part 3.3 will elaborate the data generation methods and how

data were collected for this thesis. The choice of data analysis method will also be explained.

Lastly, an evaluation on the research methods will be presented.

The research process consists of steps and components that needs to present in order to

conduct research. Figure 11 shows an illustration of the research process.

3.1 Literature review

A literature review is conducted at the beginning of a research process to gain information

about a field (Oates, 2006). When getting to know a field, one can find information that is

interesting to investigate further, or find areas that has not been researched yet. This creates

the foundation for formulating a research question. Doing a literature review can also help

supporting the researcher’s claims (Oates, 2006).

3.1.1 Keywords

To find relevant literature, it is important to define key words that the literature should

contain. The decided field of topic for this thesis is large-scale agile development, therefore

key words related to this topic were chosen. After it was decided to further investigate

inter-team coordination in large-scale agile development projects, key words related to this

were added to the table. An overview of these key words is presented in Table 9.

35

3 RESEARCH METHODS

Table 9: Key words used for literature search.

Key words

Software development, agile, agile methods, scrum, large-scale, scaled agile framework,

scaling agile, coordination, inter-team coordination, coordination among teams

3.1.2 Databases

When searching for literature, online academic databases were used. Table 10 shows an

overview of the databases.

Table 10: Databases used for literature search.

Databases

• IEEE Xplore

• Scopus

• Science Direct

• Web of Science

• ACM Digital Library

3.1.3 Search strategy

The search strategy used for finding literature in this thesis started out as a systematic

database search to gain as many results as possible. The keywords presented in Table 9

were either used separately or combined by using AND and OR operators. To find sources

that contains the exact terms, key words were used with double quotation marks, for example

"large-scale agile development". This would make sure the databases retrieve results that only

contain that exact term. When a source was decided to be included in the thesis, a snowball

strategy was used. The snowball strategy is based upon using a source to find new sources.

Each paper was examined using forward snowballing and backward snowballing. Backward

snowballing is to examine the reference list of a paper by looking at titles, publishers and

36

3 RESEARCH METHODS

authors, while forward snowballing is to examine the citations of a paper (Wohlin, 2014).

These processes are done back and forth until all papers are either included or excluded.

3.2 Research strategy

When doing research, one has to choose a strategy on how it will be conducted. As illustrated

in Figure 11, there are six common strategies: survey, design and creating, experiment, case

study, action research and ethnography (Oates, 2006).

Survey: Surveys are used when gathering large amounts of data, in a structured

way. The data can be used to create statistics.

Design and creation: Design and creation is used when the researcher are creating

IT artifacts, such as models, methods, concepts or a full working system.

Experiment: Experiments try to either falsify or verify hypotheses, by measuring

the "before" and "after", and compare the results to see how a test has affected the

measures.

Case study: Case studies investigate an instance of a topic, and aims to give an

in-depth understanding of the selected topic.

Action research: Action research are not necessarily focused on textual theories

and models, but rather problems connected to real-life situations. When conducting

action research one plan the actions and perform them in real-life situations, and

reflect on the outcome.

Ethnography: Ethnography research are used when studying cultures and groups

of people. The research is often conducted by doing interviews and observations of

people in their environment, to get an detailed insight

37

3 RESEARCH METHODS

Figure 11: Illustration of the research process (Oates, 2006, p. 33), with highlights on the

chosen strategy for this thesis.

3.2.1 Case study

A case study is used when conducting in-depth research of an instance of a topic (Oates,

2006). Case studies study connections and relations within the chosen case, and how these

relations affect each other. A case study is also performed in the natural environment of the

case, and not in an artificial setting. Both qualitative and quantitative data can be used,

thus multiple data collection methods are applicable for this research strategy. There are

three different types of case studies: exploratory, descriptive, and explanatory.

An exploratory case study are used when the a topic lacks preliminary research and one

aims to acquire more insight into the topic. This type of case study try to uncover what is

going on and how things happen. The results from an exploratory case study creates a basis

for future research and helps define new hypotheses or research questions. A descriptive case

study is used to generate descriptive information about a specific topic. It does not address

casual relationships. This type of case study simply provides more knowledge or information

38

3 RESEARCH METHODS

about a topic, and can not necessarily be used to develop a research question. An explanatory

case study aims to explain why things happen, by finding connections among multiple factors

and comparing the results to different findings.

This thesis aims to get an in-depth insight into the topic of large-scale agile development

projects with focus on inter-team coordination, and contribute as basis for future research.

Studying a real-life large-scale agile development project can provide the information needed

to gain insight on this topic. Runeson and Höst (2009) also states that using a case study as

research strategy is well suited for software engineering research, as one can achieve a deep

understanding of the studied topic. Therefore, an exploratory case study has been chosen as

research strategy.

3.3 Data collection

Data collection is used to gather information for research purpose. The collected data

can either be qualitative or quantitative (Oates, 2006). Qualitative data is data that

consists of descriptions, sounds, images, videos. Quantitative data is data based on

numbers and can easily be measured. There are four common data collection methods:

interviews, observations, questionnaires, and documents. When gathering quantitative data,

questionnaires are the most suited as it allows to ask close-ended questions or use multiple

choice, which can easily be generated into numbers and analyzed. Interviews, observations,

and documents are suited methods when gathering qualitative data, as these methods do not

produce numeric data and are good for exploration and getting in-depth information on a

topic. The different collection methods can also be combined to obtain different perspectives

and more details.

3.3.1 Interviews

An interview is a planned conversation with the purpose of gathering information on a specific

topic (Oates, 2006). In a research context, the researcher is responsible for conducting and

leading the interview. The interviewee should be informed about the topic of conversation,

the purpose of the research, and agree on that the information gained will be used for research.

39

3 RESEARCH METHODS

If the interview is planned to be recorded, the interviewee must also be informed about this,

and agree to being recorded. Interviews are good for obtaining in-depth information, and is

therefore a much used data generation method for case studies (Oates, 2006). There are three

types of interviews: structured, semi-structured, and unstructured (Oates, 2006). Structured

interviews are planned in advance, and uses ordered identical questions for each interviewee.

Such interviews are effective and a good way to get clear answers to your questions, but

lacks flexibility and one might miss out on in-depth information. Semi-structured interviews

are planned in advance, with prepared topics and questions, but allows for changing the

structure, reformulate existing questions or add new questions during the interview. This

type of interview is more flexible, and lets the interviewee speak more freely about the topic.

This is good for collecting more in-depth information, and at the same time making sure that

your planned topics and questions are covered. When conducting unstructured interviews, a

topic is introduced and the interviewee gets to talk freely about the topic. It is not planned

in advance and questions arise depending on the where the conversation heads off. In such

interviews one can get more insight into the interviewee’s feelings and thoughts, which can

broaden the perspective of the topic. On the other hand, it can be time consuming and the

interviewee might share information that is not relevant.

For this thesis a semi-structured interview was chosen. This is due to the need for

exploration on the topic and gathering in-depth information. With limited time for each

interview, as well as specific topics the interviewer wanted to cover, it was necessary to have

some structure.

The interviews used as data for this thesis was conducted by the thesis author and by

researchers from SINTEF and the University of Oslo. Master’s theses have a limited time

scope to conduct data collection, but the case study in this thesis is based on information

collected through a period of three years. Being able to combine data collected by the

thesis author with data collected by researchers at SINTEF and the University of Oslo

strengthens this case study. It could have strengthen this case study more if one were able

to do observations in addition to interviews. However this was not manageable for this case

study, as the investigated project was finished before this case study was conducted.

40

3 RESEARCH METHODS

The first interview round consisted of 13 interviews that were held in December 2017.

The second interview round consisted of 10 interviews conducted in January 2019. The

last round of interviews were held in the period of November 2019 to February 2020, and

consisted of 14 interviews. The thesis author was present during the interviews in November

2019 and January 2020, and also took part of the transcribing afterwards. The interviews

held in February 2020 were conducted by the thesis author with the purpose of gathering

information specifically related to inter-team coordination and more details on the last project

phase. Table 11 shows an overview of the number of interviews in each round, mapped to

the interviewee’s project role.

In total, 37 interviews were conducted, which were transcribed into a total of 507 pages.

To gain a correct and detailed image of the whole project, people with different roles and

distributed among as many teams as possible were chosen as interviewees. All interviews has

been transcribed and anonymized, as well as password protected and stored on an encrypted

disk. The interview guides can be found in Appendix A and Appendix B.

41

3 RESEARCH METHODS

Table 11: Number of interviews per role

42

3 RESEARCH METHODS

3.3.2 Documentation

In addition to interviews, documentation has been used as a source of data for this thesis. The

documentation consisted of project descriptions, plans and reports received from informants

that has been involved in the investigated project. The documentation has been used to gain

insight about the project and to describe the case as it is presented in section 4.

3.4 Data analysis

Based on the collected data, a case study database was created. This is also encouraged by

Yin (2009), as a way of increasing reliability and maintaining a chain of evidence. This will be

further elaborated in section 3.5.2. The database was created by using QSR International’s

NVivo 12, which is a qualitative analysis software tool. Transcribed interviews were imported

into the software and then thoroughly examined to find relevant information. The interviews

was then coded into nodes represented by different themes. Quotes and information on a

specific topic were found by looking through information that has been connected to the

nodes. By doing this one can easily process the data into useful information. Furthermore,

the information extracted from NVivo was applied to the theoretical model of coordination

modes by Ven et al. (1976).

3.5 Evaluation

This part will contain an evaluation of the validity and reliability in regards to how the

research for this thesis has been conducted.

3.5.1 Literature review

The literature review conducted in this thesis is based upon multiple- and different types

of sources, such as journal articles, books, websites and conference papers. The sources has

been found by using academic databases such as IEEE Xplore, Scopus, Science Direct, Web of

Science, and ACM Digital Library. These are databases that contain academic publications,

and are reliable choices for finding literature.

43

3 RESEARCH METHODS

When choosing sources, the thesis author considered what type of source to include in the

thesis. Journal articles are considered to be a reliable type of source, as most journal articles

has been through a peer review. This means that it has been read and evaluated by other

academics, and it has to be of high quality in order to be published into a journal. Most of

the sources used in this thesis are journal articles.

Books can be considered to be reliable sources, but it must be noted that not all books

may be peer reviewed. Some of the books used in this thesis are published by Springer

and SAGE, which use peer reviews for their publications and are considered to be scientific

publishers.

Conference papers are often not as detailed as journal articles, as they are to be presented

in a conference. Most conference papers within the field of software engineering are peer

reviewed before being published, which strengthens the reliability for conference papers

within this field.

Websites may not be a reliable source, as they can be easily changed. It is therefore

important to note in the references the date the website was accessed. If the information

found on a website gets edited, the reader will know that the edit has happened after the

website was cited. Websites are not much used in this thesis, but has been used when finding

definitions of single words, and to get information about Scrum and agile development. The

Agile Manifesto was first published by the original authors on its own website, and the Scrum

Guide is also originally provided through a website. As these can be considered to be the

original source of information, it was decided to be reliable enough to be used for this thesis.

One of the sources used in this thesis is from the Deloitte’s company website. Deloitte had

conducted a survey that shows the use of agile methods from 2002 - 2017. The website does

not provide detailed information on how the study was conducted and may not be a reliable

source. This was also mentioned in section 2.3. This is also supported by Stavru (2014),

who has criticized industrial surveys on agile methodologies. Stavru (2014) found that such

surveys often lack details on research methods, and evaluation of the study’s validity and

reliability.

This thesis have also used literature from practitioners, such as Kent Beck, Ken Schwaber,

44

3 RESEARCH METHODS

and Jim Highsmith. Practitioners are not researchers, and focus on providing information to

other practitioners within the field. Thus, they are not bound to deliver literature by the same

standards as researchers. Therefore one should be critical towards using such literature to

support your own work. However practitioners have real-life experiences and might provide

valuable insight. The practitioners cited in this thesis are well-known practitioners and

frequently cited within the field of software engineering, and were therefore included in this

thesis.

When choosing sources, the thesis author also looked at the number of citations and

tried to find the articles with the most citations. A lot of citations means that a lot of

people has found the article useful and reliable. However the author has also considered less

cited articles. Some articles are quite newly published and therefore may not have as much

citations yet. In addition, the topic of large-scale agile development is not much investigated

yet, which can cause the number of citations to be low.

3.5.2 Case study

Yin (2009) describes four tests that can be used to evaluate the quality of a case study:

construct validity, internal validity, external validity and reliability.

Construct validity

The purpose of this test is to test whether the chosen measurements covers the investigated

topic. Thus, one need to choose the right measurements to gain relevant data and to correct

represent the investigated case. To ensure construct validity, two steps should be covered

(Yin, 2009, p. 42):

1. define neighborhood change in terms of specific concepts (and relate them to the original

objectives of the study) and

2. identify operational measures that match the concepts (preferably citing published

studies that make the same matches).

45

3 RESEARCH METHODS

In addition one can increase the construct validity by using multiple sources of evidence,

creating a chain of evidence, and to have key informants review the draft case study report

(Yin, 2009). For this thesis, research question have been defined, and a literature review has

been conducted to support findings and claims based on the case study. When collecting

data, interviews and documents has been used as sources of evidence. A chain of evidence

has been maintained as the findings presented in section 5 can be found in the case study

database, and the information found in the database is based upon interview guides used

during data collection.

Internal validity

Internal validity is a concern in explanatory case studies, when one is analyzing relationships

among events and try to explain how and why something has occurred (Yin, 2009). As an

exploratory case study has been conducted for this thesis, internal validity has not been

concerned.

External validity

External validity covers the issue whether the research findings can be generalized and

applied to other similar cases, or if it is only limited to your case (Yin, 2009). Using theory

is stated as one of the tactics to increase external validity (Yin, 2009). For this thesis, a

theoretical model by Ven et al. (1976) has been used.

Reliability

The purpose of reliability is to reduce inaccuracy and bias in a study. To achieve reliability,

one has to document how the research has been conducted, so other researchers are able

to repeat the case. This can be achieved by documenting the case study process and by

creating a case study database (Yin, 2009). For this thesis, the case study process has been

explained in section 3, and collected data was stored in a case study database.

46

3 RESEARCH METHODS

3.5.3 Research ethics

All interview participants have received an information letter. This letter provides

information about the research project and their participation. The participants are informed

that they are allowed to withdraw from the study.

All participants have been anonymized and no sensitive data has been collected. Only

information about the participant’s roles and team names has been collected. This was done

to get an overview of the project structure and to connect different perspectives to different

roles. This may increase the understanding of the information provided by the interviewee.

47

4 CASE

4 Case
This section describes the investigated project that is used as case for this thesis. It provides

background information, a presentation of the project organization, and information about

how the project progressed, in chronological order, throughout the different phases.

4.1 Background

The investigated project was a part of a modernization process of the IT systems within a

large Scandinavian welfare organization that provides public services. The IT systems dated

as far back as the 1970s, making the administrative procedures and services provided by

the organization cumbersome and time consuming, both for employees and end users. As a

part of the modernization process, it was decided to create a software solution to automate

the administrative procedures and make the system mostly self-serviced for the users. This

process would be called the Modernization Programme. In 2011 it was decided to divide the

Modernization Programme into three projects: Project A, Project B, and Project C. Project

A started in 2012, but was deemed a failure after less than a year as a result of ambition levels

set too high, the complexity became larger than predicted, and the project management and

project organization were insufficient. About 31 million euro were calculated to be lost, and

the failure gained great media attention. The Modernization Programme was shut down,

and the three projects had to be replanned. Project A started over and was finished in

2016. Project B, which is investigated in this case study, therefore faced a lot of pressure on

succeeding. The organization has about 19 000 employees and the services related to Project

B have about 140 000 end users. Project B was estimated to cost about 90 million euro,

which puts an emphasis on the size of this project.

Project B was divided into three phases: Phase 1, Phase 2, and Phase 3. In addition there

was a preparation phase prior to phase 1, and an ongoing maintenance phase after phase 3

was finished. The preparation phase lasted from October 2016 to February 2017. Phase 1

started in February 2017 and lasted until December 2017. Phase 2 started in September 2017

and finished in November 2018. Phase 3 started in September 2018 and was finished in June

48

4 CASE

2019. Figure 12 shows an illustration of the project timeline. Throughout the project the

methodology has gone from working by a "water-scrum-fall" methodology, then a bi-modal

phase, while the last part of the project was characterized by agile methods, cross-functional

autonomous teams and continuous deliveries. Such big changes in working method within a

large IT project is not common, which makes it a highly interesting case to study in regards

to large-scale agile development.

Figure 12: Illustration of the project timeline

4.2 Project organization

Along with staff from the welfare organization, two external contractors were hired. One

contractor was hired to work with development, while the other contractor was hired to

work on the business part of the project. The project started off with one development

team and expanded to two teams during Phase 1. By the end of this phase and during the

start of Phase 2, the number of teams increased to five. Each team had 9-10 members and

consisted of a Scrum master, 1-2 architects, 1-2 testers, and 5-6 developers. An illustration

of the organizational project structure at the time is illustrated in Figure 13. In Phase 3, the

numbers of teams increased to 10. At this point the teams became cross-functional and the

business roles should also be present within the teams, which increased the team size as well.

The teams now consisted of a business advisor, product owner, domain expert, functional

49

4 CASE

architect, tech lead, 4-5 developers, tester, and a UX designer. The organizational project

structure for Phase 3 is illustrated in Figure 14.

Figure 13: Illustration of the project organization in Phase 1, November 2017

50

4 CASE

Figure 14: Illustration of the project organization in Phase 3, September 2018

4.3 "Water-scrum-fall" methodology

The "water-scrum-fall" methodology used by the investigated project was created by the

welfare organization itself and is based upon PRINCE2. The methodology consists of 6 main

phases, illustrated in Figure 15. While the first three phases lean towards a more plan-driven

way of working, the constructing phase is influenced by agile methods. Work is being done

in iterations, and the teams use activities and events from the Scrum methodology.

Figure 15: Phases of the "water-scrum-fall" methodology

51

4 CASE

4.4 Project summary

The first phase aimed to produce the first automated version of a small administration

procedure. This was a less complex delivery, and the solution was successfully delivered

as planned in December 2017. This phase worked by the "water-scrum-fall" methodology

presented in section 4.3.

Phase 2 started in September 2017 with five teams, with the purpose of creating a solution

for automating a larger administration procedure. This was a far more complex solution as it

would affect executive officers and supervisors from the welfare organization, employers and

end users. In addition, the system had to fulfill laws and regulations set by the government.

A lot of the software developed in this phase was also planned to be re-used for similar future

projects within the welfare organization. The working methodology at the beginning of Phase

2 was still the "water-scrum fall" methodology, but the plan-driven way of working was more

distinct and present than the agile methods. A lot of time was spent on documentation,

planning, handovers and impact assessment, which also created a higher level of dependencies

in the project. At the same time, progression and value creation was low. It was decided to

put together a cross-functional team, Team X, that would work with a low-risk part of the

project, and they were allowed to work as agile as they wanted to. This made the project

bi-modal - a parallel of teams where one part of the teams worked by the old methodology,

while the new team worked by a high level of agility and autonomy.

Team X started to deliver value, and other project participants also wished for a higher

level of agility in the rest of the project. After a year, the project manager put together a

new team, Team Y, consisting of people from both the IT part and the business part of the

project. This team was given the task to advise the project manager on how to proceed with

the project. Team Y suggested to completely change the working methodology and start

working with agile, cross-functional- and autonomous teams, with continuous deliveries. It

was a big risk to take, as there were 200 people involved in the project and only four months

left until one of the most important deliveries.

The project manager decided to follow up on the advice, and the working methodology

52

4 CASE

and project structure were changed. Middle management and administration were cut down,

while new cross-functional autonomous teams were formed in Phase 3. The project went

from having quarterly deliveries to daily valuable deliveries. The project was successfully

finished in June 2019, and also received a digitalization award.

53

5 RESULTS

5 Results
This section presents findings from the case study by using the coordination model by Ven

et al. (1976). Thus, the findings will be divided into three categories: impersonal mode,

personal mode, and group mode. Determinant factors for coordination modes will also

be considered. The aim is to uncover the use of different coordination mechanisms used

throughout the investigated project, and see how the change in agile methodology affected

inter-team coordination. Due to overlapping phases in the investigated project, it has been

decided to merge the three original phases into two phases. The first project phase and the

second project phase, as they were described in section 4, will be referred to as Phase 1 from

now on. The third project phase, as described in section 4, will now be referred to as Phase

2. By comparing these two phases, one can see how the use of coordination mechanisms

changed and how it affected inter-team coordination.

5.1 Impersonal mode

Coordination mechanisms found for impersonal mode is presented in table 12.

Table 12: Coordination mechanisms found for impersonal mode

Phase 1 Phase 2

• Documentation and planning

• Jira

• Working area

• Whiteboard

• Documentation and planning

• Jira

• GitHub

• Working area

• Whiteboard

Documentation and planning

Confluence was used as wiki for the project, and all information and documentation was

added there. Confluence is defined as: ".. a collaboration wiki tool used to help teams to

54

5 RESULTS

collaborate and share knowledge efficiently" (c© Atlassian, Inc., 2020a). This tool helped the

teams get an overview of the project and to find necessary information.

Confluence was used for information and documentation sharing for both Phase 1 and

Phase 2. However, the documentation quantity was somewhat reduced for Phase 2, as

they were working more agile, with autonomous teams, rather than spending time on

documentation. When asked about the biggest challenge from Phase 1, one of the technical

architects responded:

"We spend too much time and energy on solution descriptions. Team architects spend

too much time on solution descriptions, rather than communicating with the team." . . .

"They (Customer) have a lot of requirements for the solution descriptions. They use their

own methodology ("water-scrum-fall"), and that requires a lot of documentation for each

solution description. Not necessarily documentation that are being used by the teams as one

would like to. You are not free to do what is best for the team. You have to follow their

methodology, and not being able to change things on the go is a challenge." - Technical

architect

In Phase 2, it was stated to be a lot less documentation and planning, and more

freedom to prioritize what to do at the moment:

"..Earlier it was a lot of documentation, such as solution descriptions and a lot of

planning ahead. After changing working methodology it is a lot less documentation and we

work on smaller fragments of the solution." - Scrum master

"We documented a lot in the first phase, both solution descriptions, estimates and

everything. That is something we have moved away from. . . We were more dependent on

planning in the beginning of the project, but later it became more important to look at what

is necessary right now, which lowers the risk, so one could do what is most important at the

moment." - Technical architect

55

5 RESULTS

Jira

Jira is a project management tool used for software development projects (c© Atlassian, Inc.,

2020b). In the investigated project, Jira was used to manage tasks, user stories and issues.

Jira was used in both Phase 1 and Phase 2.

During Phase 1, the work with tasks, user stories and impact assessment were clearly

divided into Phase 1 and Phase 2 of the "water-scrum-fall"-process, and then added to Jira.

Requirements and user stories were detailed, but the lack of communication among the people

working in the different phases of the "water-scrum-fall" methodology caused handovers and

misunderstandings with the developers.

In Phase 2, this somewhat changed. As the working methodology had changed, it was no

longer important to follow the "water-scrum-fall"-process as rigidly as earlier. In addition,

user stories and requirements became less detailed. Jira was still being used, but as a result

of the change in working methodology, the information added to Jira was less detailed. This

gave developers more freedom to work as they preferred and to add functionality they found

necessary.

In the beginning dependencies was documented only in Confluence, and not in Jira.

"One of the challenges regarding dependencies is that it has only been documented in

Confluence and not in Jira, which is our common working tool. This has caused the

dependencies among user stories to become less clear." - Construction manager

As this was found to be a problem, they started to add dependencies to Jira as well.

When asked if all dependencies are now found in Jira, the construction manager said:

"I don’t know if this has been fully completed yet, but the instructions should be clear. You

have functional dependencies and technical dependencies, and the technical dependencies are

the most difficult to reduce, especially in other teams." - Construction manager

In addition to using a regular whiteboard, Jira was also used as a board to manage

56

5 RESULTS

tasks and give team members an overview over current prioritized tasks.

"We agree within the team that Jira is master, that it must be updated, and then I

try to make sure that the whiteboard is updated as well. One needs to take into account

that if someone has to work from home or other places, they would also have access to the

updated status." - Scrum master

Thus, Jira was mostly used for the same reasons during both phases, but the information

added to Jira in Phase 2 was less detailed. In addition, dependencies was also added to Jira

in Phase 2.

GitHub

One of the new tools that were introduced in Phase 2 was GitHub. GitHub is a software

development platform that is used for hosting and reviewing code, task management and

version control. It allows you to easily collaborate with others on software development.

"So much has changed the last year. All code was stored internally earlier, but is

now moved to GitHub, so everything is public now. It was a big transition in how you

worked, with technology, coding and stuff. Now you deploy everyday, rather than once in a

while. You have to be a bit more careful about mistakes, but since you deploy everyday you

get more freedom as well. A small mistake can be fixed quick." - Front end developer

Whiteboard

Physical whiteboards were used for both phases. Each team had their own whiteboard at

their location. This was used within the teams to keep track of important focus points and

tasks during each iteration, and was used during meeting sessions such as daily stand ups

and retrospective meetings.

".. after retrospectives, we have added focus points on our whiteboard, just a few

57

5 RESULTS

points to focus on throughout the iteration. We would remind ourselves during stand ups to

focus on these points" - Scrum master

It was found that architects also use whiteboards during meeting sessions with other

architects. When asked about how the architects use whiteboards, the response was:

"We use them all the time. During work meetings we sketch stuff on the whiteboard

all the time. We often add input to the board, and then discuss it. It could be on the board,

or we show something we’ve written down earlier". - Technical architect

There were not found any changes in the use of whiteboards from Phase 1 to Phase

2.

Working area

Working area has been an important factor for successful coordination throughout both

phases in the investigated project. In the early beginning of the project, some teams were

located on the fifth floor, while other teams were located on the fourth floor. The teams

located on the same floor worked on the same part of the solution. However they still had

the need to communicate with the other teams to make sure the different parts became

integrated with each other. This was found to be troublesome, and one of the developers

emphasized the importance of co-location as coordination mechanism:

"There has never been any big issues for me with coordination. However it was quite

problematic in the beginning. We were located in fifth floor, and then the self-service teams

were located in fourth floor. Then there were some technical decisions being made that

could be difficult to understand for outsiders. This made communication between us and the

self-service teams less efficient. However, it was not a problem for me personally. But the

backend developers probably found it annoying. The communication wasn’t 100%. Maybe the

most important part of coordination is co-location and short physical distances. You know who

58

5 RESULTS

you talk to. That seems to be the key factor to successful coordination." - Front end developer

Teams that have the most dependencies among each other are placed close to each other.

There has however been issues with too little space, causing the need to move some people

to other locations:

"We are currently using the whole part over there, so that is the best we could get,

definitely. But we have moved a lot, and that has not been. . . But right now we have no

space left. One more, and there are no more space left. We don’t have one single available

chair right now. It is completely full. Two new people arrived yesterday, and we had to give

one chair away. So we moved one of the managers. That is how it is." - Technical architect

One of the problems throughout Phase 1 was handovers that caused delays and were

pushed into the next iteration. To better the collaboration among teams and to solve

the handovers more quickly, it was decided to move functional architects closer to the

construction teams:

"There is this classic problem with handovers. It has been too many of them, and at

the same time, the project is quite dynamic. Our contract is an agile one, so we have plenty

of room to collaborate closer with each other. We are not set to live with these handovers.

So the handovers is pushed into the next iteration. So we co-located some of the functional

people together with us.." - Main technical architect

"This caused less formal meetings and more ongoing cooperation" - Main technical

architect

"We sit together with the construction teams, and the functional architects is now

working closer to them as well. They didn’t do that earlier." - Main technical architect

59

5 RESULTS

5.2 Personal mode

Coordination mechanisms found for personal mode is presented in table 13.

Table 13: Coordination mechanisms found for impersonal mode

Phase 1 Phase 2

• Instant messaging

• HipChat

• Skype

• One-on-one conversations

• Instant messaging

• Slack

• One-on-one conversations

Instant messaging

Instant messaging played a big role throughout the whole project. It was being used for

both as a quick way to get in touch with people, either to discuss problems, to inform about

new information regarding the project, or to socialize. It was being used for both vertical

and horizontal communication. Managers could use instant messaging to reach the teams

and provide them with information, and anyone could directly contact the managers. This

caused the hierarchy to become less prominent. In addition anyone across the different

teams could also contact each other.

"We used HipChat in the beginning. Or Skype. And you could just contact people

whenever it was necessary. We had channels where you could share information. It wasn’t

a total divide between the teams and the managers. You could basically talk to whomever

you’d like." - Front end developer 1

When asked about when they changed communication tool, the response was:

"It was at the time we started with continuous deliveries. We had an increased need

to talk to people outside our own teams as well at the time. And then Slack was the preferred

tool." - Technical architect

60

5 RESULTS

This shows it was an increasing need to communicate among teams when changing

working methodology. One of the other reasons for the change of tool was due to more

people were familiar with Slack and preferred it over HipChat. When asked about what

Slack was used for, the responses were:

"In the beginning Slack was a casual announcement place. It was used for simple and

informal information such as "if you are working overtime, you can order pizza here..",

and then there were news about the project, and if there were new test data everyone needed

to be informed about. But over time it has become more discussions, like "This doesn’t

work very well, what should we do here?", and then some would come and help out with

a solution. It went from being not that much used, to much more used." - Front end developer

From these findings, one can see that instant messaging has been a part of the project from

the beginning, but that it has gradually become a more important tool for collaboration and

solving issues across teams, especially after the change of working methodology.

One-on-one conversations

One-on-one conversations were frequently used during the whole project. Such conversations

happened between team members across different teams, but also between managers and

team members. These conversations were either used to solve problems, or to transfer

general information. During Phase 1, each team had their own Scrum master. The Scrum

master was usually the one to do one-on-one conversations with managers and other teams,

and transfer information between their team and the others.

"Throughout the first phase and parts of the last phase, it was only the Scrum masters

that communicated with the others. While the rest of the team had focus within their own

team. But I guess it depends on each person a bit too. I usually just go and ask anyone

if I need something. But on a general basis, there were some hierarchy." - Frontend developer

61

5 RESULTS

"I think that in the beginning, the communication happened more on a management

level, and that the Scrum master talked with the other teams, while the teams just worked

with their assigned tasks. But right now I feel like everyone can talk to anyone, when it is

necessary." - Technical architect

In Phase 2, the amount of managers were reduced and the teams no longer operated

with a designated Scrum master. This caused the communication to be less vertical and

more horizontal. In addition, the communication between the teams increased, because the

barrier to talk to each other was lowered.

5.3 Group mode

Table 14: Coordination mechanisms found for group mode

Phase 1 Phase 2

• Planning meetings

• Scrum-of-scrums

• Stand up meetings

• Retrospective

• Demo meetings

• Technical architecture forum

• Functional architecture forum

• Tester forum

• Status meetings

• Technical review

• Ad hoc meetings

• Stand up meetings

• Status meetings

• Focus meetings

• Functional architecture forum

• Ad hoc meetings

From Table 14 one can see that group mode of coordination has been an important

62

5 RESULTS

coordination mode in this project. A lot of group coordination mechanisms have been

reduced from Phase 1 to Phase 2, due to the change of working methodology. Most of

the meetings that were being used in Phase 1, were scheduled meetings that followed the

working methodology. Most of the meetings that did not follow the working methodology

from Phase 1, were continued to be used in Phase 2.

Planning meetings were held at the beginning of each sprint, and all teams attended

these meetings. These meetings were used to present the tasks and requirements for the

upcoming sprint, as well as dependencies among the teams. These were replaced with

quarterly focus meetings to discuss on a superficial level what should be focused on for the

next quarter, rather than every third week.

Scrum-of-scrums, retrospective, demo and technical reviews were a part of the

"water-scrum-fall" methodology used in Phase 1, and were therefore not a part of

Phase 2. However stand up meetings, which was also a part of the methodology used in

Phase 1, was also mentioned to be used by some of the teams in Phase 2.

In Phase 1 it was also common to have meetings (forums) among the different roles.

Testers met on a regular basis to discuss testing problems, and technical architects met to

discuss technical dependencies and problems with the solution, and functional architects met

to discuss requirements and progress. The developers did not have any dedicated forums,

other than being a part of the technical reviews. Meetings to handle dependencies happened

mostly among the functional architects and product owners. From Phase 1, the functional

roles had "functional forums". This was originally removed when the project entered Phase

2, but it was re-introduced as it was found necessary for these roles to have an arena to

discuss dependencies among the teams.

"After Christmas we stopped with the functional forum, and we managed without it

for 5 weeks, but then it was re-introduced in February." - Product owner

63

5 RESULTS

Stand up meetings

Stand up meetings were used on a daily basis during Phase 1. The meetings were held

within each team and lead by the Scrum master. It was used as a short status meeting to

present what each person within a team was currently working on, and what they would

do next, and short discussions on the current status. In Phase 2, each team decided how

they wanted to work and there was no requirement to do daily stand ups. As the teams had

no designated Scrum master anymore, there was no one to lead the meetings either, unless

someone took the initiative to do it. Due to this, stand ups were being held less frequently.

It was found that it was typically held twice a week, but that it might not be as efficient

as it used to be in Phase 1, and that stand up meetings might not even be necessary when

working with continuous deliveries:

"We’ve got stand up meetings two times a week, but there have been wishes to instead

focus on the daily production. Stand-up is a bit of a problem-area now. It is closely tied to

how Scrum works, but when you start working differently... the stand up meetings lately

haven’t been very good. They used to be, but now it is a bit weird. Now we have short stand

ups, and then we try to talk a bit more once a week. It is a social thing, but at the same

time you shouldn’t get too sidetracked, so it is a bit like... who is going to lead the stand up,

when you don’t have a scrum master? We tried to let the testers lead for a while, but the

meetings got too focused on test. I am not sure that it is right to have traditional stand up

meetings, when you work this way."

- Scrum master / Teach lead

Status meetings

It was found that it was necessary to have frequent status meetings as a common arena for

all the teams. Weekly status meetings among functional architects were used in Phase 1 to

discuss the requirements, along with status and progress.

After changing to cross-functional autonomous teams in Phase 2, it was no common arena

for all the teams to meet and discuss the current status among the teams.

64

5 RESULTS

"It is something we are struggling with now. We are so many teams, and we are large

teams, and now the layer that facilitates scheduled communication among the teams are

removed. It was removed as soon as we changed to Phase 2. But we can see that error flow

and defects that are discovered among the teams. To report a total status on what we miss

is very difficult. I think they removed too much of that layer." - Scrum master

Due to the struggles with being updated on other teams status and progress, weekly

status meetings were reintroduced.

"Lately we have started with Monday meetings. People on the outside struggles to

understand the current status. We have a large solution, with a lot of bugs. And to

coordinate all the teams outside the project, they are not interested in the eight teams

working autonomous and doing things differently from each other. They want things to be

predictable, with reports and current statuses. We struggle with communication outwards." -

Scrum master

Functional architects from the teams and product owners were present at these meetings,

and discussed current status on functionality and what is currently being delivered to keep

everyone updated and increase the communication flow.

Ad hoc meetings

Ad hoc meetings were used in both Phase 1 and Phase 2, but the use increased significally

in Phase 2. Due to the decrease in scheduled meetings, people rather used ad hoc meetings

whenever it was needed. Ad hoc meetings were often used among people with the same

roles across the teams, so they would discuss problems that were relevant for their role. In

addition ad hoc meetings were held within the teams, typically among the developers to

keep each other updated on what they are working on or to solve issues that arose. If two

teams had dependencies among each other, a representative, typically product owners or

functional architects, from one of the teams would go and speak to the other team. Thus,

65

5 RESULTS

the functional roles experienced a larger increase in ad hoc meetings. Whenever technical

problems arose, developers could also go and speak to other teams. The barrier for doing

this was low and communication was more informal and much less influenced by hierarchy

during Phase 2. This was also one of the factors for an increase in ad hoc meetings.

5.4 Determinant factors for coordination modes

Task uncertainty

Task uncertainty was considered to be low during both phases of the project, but somewhat

increased during Phase 2. In Phase 1, the requirements were very detailed, which caused

the teams to have a clear view on what should be done. In addition there was a high use of

group mode, and frequent use of meetings caused everyone to be updated on current status

and changes.

When asking one of the developers if they ever experienced task uncertainty, they

responded:

"No, not really. We got handed the tasks at the beginning of a sprint, but it was the

team’s decision to decide how to do it and prioritize it. It was quite ok. It was worse with

tasks that didn’t seem too difficult to begin with, but was discovered to be quite hard to solve.

They could easily last one or two sprints, and if it lasted too long you had to take some time

to think about what to do with the task." - Frontend developer

When asked whether the teams experienced any task uncertainty, one of the technical

architects responded that lack of detailed tasks caused an increase in task uncertainty among

the teams.

"We think we described things a bit too detailed. The teams got used to getting very

detailed descriptions, which was unfortunate. Whenever they got another task that wasn’t as

detailed, they got a bit helpless." - Technical architect

66

5 RESULTS

One can see that there are different opinions on task uncertainty. This may be connected to

the roles and how they experience task uncertainty, which could be interesting to investigate

further. However the technical architects had a good overview of the project progress, and

the architect’s statement suggests that it might be an increased task uncertainty among

the teams during Phase 2, as requirements were less detailed. In general, tasks could be

found in Jira, and any issues related to task uncertainty was easily solved by coordination

mechanisms found in personal mode and group mode. Thus, task uncertainty was not

considered a big issue for the investigated case. It showed however an increase in both

personal and group coordination mode.

Task interdependencies

There was a larger degree of task interdependencies during Phase 1. Each team had a very

large and detailed set of tasks to work on, that should be finished within the set sprint. This

was found to be a problem during Phase 1, as the dependencies among teams caused delays

and could push tasks into new sprints. Dependencies among teams were presented during

planning meetings, and could also be found on Jira.

"In Phase 1 there were dependencies among the teams because you were dependent on

user stories being finished. But at the start of every new sprint we got an overview over

which user stories had dependencies to each other. And if there were user stories that caused

dependencies across teams, we had to prioritize the stories that other teams were dependent

on." - Front end developer 2

After changing to continuous deliveries in Phase 2, the amount of dependencies decreased,

but it was now the teams’ responsibility to keep track of dependencies and create relations

across the teams.

The tasks also became smaller in Phase 2, which contributed to the decrease in

dependencies. Functional architects were encouraged to cut down on user stories, which

67

5 RESULTS

they managed, but they did encounter some problems with this in regards to technical

dependencies.

"Yes, we managed to cut down on user stories. They almost disappeared, and it became

a more ad hoc way to describe user stories. But I think the developers still worked by the

water-scrum-fall process. It can still be difficult to break down user stories into smaller

stories, while there are still technical dependencies. So we deliver large batches with stories,

but there are 5 Jira-issues instead. I think it happens quite frequently. But I see a big

difference in the teams that has gotten new functionality and the teams that works with old

functionality. When we created the new team structure, two main projects were also created,

"improvements" and "common functionality". And "common functionality" they got new

products and could work in an entirely different way. They started with a concept and could

have smaller user stories and deliver iterative and get feedback, while we had this old huge

part to consider, and it was put together in such a way that creating a smaller story was

challenging, according to a tech lead." - Product owner

Technical dependencies were still a problem, but this was mostly related to the older

parts of the system, and was difficult to avoid.

In general, dividing the project into smaller pieces decreased the dependencies among

the teams.

"The need for coordination did not disappear, but. . . I have an impression of that

the arenas you used for communication disappears a bit. Maybe the need for it disappeared

too. We tried to split the project in smaller pieces too, so every team got responsible for their

own piece, which decrease the need for coordination." - Technical architect

"It used to be a lot of dependencies. There are less now." - Product owner

However difficulties were found in regards to prioritizations. In Phase 2, each team

68

5 RESULTS

decided how they wanted to work and prioritize tasks, and this could affect dependencies to

other teams:

"The problem now is that, you’ve got a team that has a lot to do, and then we have

dependencies to what they are doing. Our tasks may not be a priority to them. That is

something we struggle with daily" - Technical architect

The most important coordination modes in regards to task interdependencies for Phase 1

was found to be impersonal mode and group mode. Dependencies could be found on Jira

and were always available to the teams. As well as group mode of coordination, due to the

planning meeting where all the dependencies were presented.

For Phase 2, there were less dependencies, and no longer any planning meetings where

all the teams were present. Group mode decreased due to this, but it was still important for

functional roles to have meetings to discuss dependencies. It was also found that whenever

teams had to collaborate or resolve problems, they would mostly use personal coordination

mode, and communication were influenced by informal ad-hoc conversations.

Work unit size

During Phase 1, the teams usually consisted of developers, a Scrum master, and a tester.

At this time the teams did not have all domain knowledge within the teams, as functional

architects and technical architects acted more as associated members of the teams and did

not spend much time with the teams on a daily basis.

Team size increased in Phase 2. As the teams became cross-functional and autonomous,

functional roles and technical architects became more present and got a more fixed position

within the teams. This was to ensure that all teams had necessary domain knowledge within

the teams, and could work independently without being to dependent on people outside the

teams.

When asked whether team size changed during the project, one of the project managers

answered:

69

5 RESULTS

"Yes, it changed a bit. We used to have 7-8 people per team. We had a group of

people who had the role ‘functional architect’. They were responsible for the solution

description. But each and one of them had a spot within a team. So they were kind of

associated members of a team. They spent many of their weeks to be in meetings and speak

to others with the same role and interacted with the customer. They did not only deliver a

document to Confluence, they brought their mind into their team. To own it. So we had

something corresponding for the testers. We had one tester per team. Which also had their

own test community. A kind of virtual test team. But included them, we were about 9 people

per team. And then the team size increased when we created the cross-functional teams." -

Project manager

"Pretty flexible team sizes. It was probably some variations among the teams, but we

were 8 people. Maybe not that many. We were quite a small team, and at some point we

were 16-17." - Front end developer

The increase of team size did not seem to have a positive effect on the teams in

terms of efficiency and communication within the teams, and it was difficult for people to

keep track on a detailed level what other people were working on. One could see what tasks

other people were assigned to on Jira, but they did not know the details of their work.

"The problem with large teams is that it is pretty hard to get an overview on what

people are working on. You’ve only got a certain amount of capacity left to try to understand

what people are doing. So the more people there are in a team, the more it gets like "ok,

those two over there are doing something, but I don’t know what, but that’s ok". You get a

division within the team. Or not a division, but more like a "silo of sources", which it is

called. There is not a huge understanding on what people are doing, and you also loose some

of that sense of group cohesion. So that is the problem with larger teams. I think you can do

well with quite large teams, but you need to have clear tasks. Thing can escalate quite quick,

70

5 RESULTS

and maybe one will see that it is better to split into two or three teams, if you notice there

are too little communication among the groups within the team." - Front end developer

"A functioning team should have a good atmosphere, socially or just that communication

feels fine, and that often is a result of people working closely together and have something

in common. And when you no longer have that, you loose a bit contact." - Front end developer

"There are more cooperation within a smaller team. Because you usually work with the

same tasks. When you are a larger team, there are more tasks, and the tasks may be more

diverse. So you end up working with different thing within the team." - Front end developer 2

"Yes, you’ve got Jira boards. You can see what people are working on, but it doesn’t

tell you that much. Even if you can see that they are working on something, I don’t know

what it is or what need that task cover, and it has got nothing to do with me. So you know

what they are working on, but at the same time you don’t." - Front end developer

"I prefer to work in smaller teams, 4-5 people. I think that is more effective. You

can work close with each other, and the person next to you always know what you are

working on. That will not happen in a team of 10 people." - Technical architect

It was also found that teams were rotated once in a while and people could switch to

new teams.

"Yes, we rotated about 1-2 times a year maybe. Not everyone changed teams, but we

did experiment to see who worked well together. It was depended on what knowledge they

had. Sometimes a team perhaps needed more people on front end." - Technical architect

This caused that the barriers to go and talk to people on other teams were lowered

whenever people knew each other. This caused the use of personal coordination mode to

71

5 RESULTS

increase. Rotation on team members among the teams would therefore have a positive effect

on communication and enable personal coordination mode.

"People switching teams did not cause any big changes, except that it could improve

communication. It is much easier to go and speak to someone you used to be on a team

with, rather than someone you have never spoken with. But as time went by you get to know

pretty much everyone. So communication improved over time. Easier to talk to people, and

you also know more about the product and domain." - Front end developer

"I think it helped that. . . since teams were changed in Phase 2, but we knew a lot of

people from Phase 1, so we knew who to ask whenever issues arose. We knew each other,

and that makes it easier to cooperate." - Front end developer 2

72

6 DISCUSSION

6 Discussion
This section discuss the findings presented in section 5, with the aim to reach a conclusion

for the stated research question in section 1.2. The results are discussed in regards to the

theoretical framework by Ven et al. (1976) and scientific literature on the topic of large-scale

agile software development. This section will also provide limitations for this study.

6.1 Impersonal mode

With the impersonal mode of coordination, the findings showed that most of the same

coordination mechanisms were present during both phases, however it was being used less in

the second phase.

The methodology used in Phase 1 was a "water-scrum-fall"-methodology. It was said

to be agile as they worked in sprints and used roles, events and artifacts from the Scrum

methodology. However the great use of impersonal coordination mechanisms does not fit

the agile principles (Beck et al., 2001). The investigated project relied heavily on detailed

planning and documentation during the first phase. This made it difficult for the teams to

work as agile as they would like, as they were restrained by detailed plans and requirements.

Jira and Confluence were important tools for the impersonal mode, as plans, documentation

and dependencies could be found here.

Working area was found to be an important coordination mechanism throughout both

Phase 1 and 2. The teams in the investigated project were co-located within the same

building, and mostly at the same floor, but there were times when some of the teams were

placed at a different floor. This made the communication among the teams less efficient, and

hindered coordination. Co-location worked as an enabler for personal coordination mode

and group mode, and was seen as a necessity for successful coordination. The use of physical

whiteboards was also used for coordination, and co-location would be a prerequisite for this

coordination mechanism to work.

Being co-located in agile software development projects is also encouraged by Beck (1999),

and the findings by Dingsøyr and Lindsjørn (2013), who indicates that co-location foster

73

6 DISCUSSION

team performance. Research done by Strode et al. (2012) also considers co-location as an

important factor for agile software development. However these studies only consider how

being co-located affects a team within itself. The findings from the case study conducted in

this thesis suggests that co-location is also highly important for coordination among teams

in a multi-team environment.

In Phase 2 the same coordination mechanisms from Phase 1 were still used, but with

one more added coordination mechanism: GitHub. With more impersonal coordination

mechanisms present in Phase 2, it could seem that this may cause an increase in the

impersonal mode, but the results showed the opposite. How the coordination mechanisms

were used is an important factor to consider here. As the teams became autonomous with

continuous deliveries, detailed planning and documentation decreased significantly in Phase

2. This caused Jira and Confluence to be less used as coordination mechanisms. Thus,

the use of impersonal coordination mechanisms has decreased as a result of changing agile

working methodology.

6.2 Personal mode

Personal coordination mode was found to increase in use from Phase 1 to Phase 2. Personal

coordination mechanisms were used by teams who had dependencies to each other or to

solve issues that suddenly arose. Instant messaging was frequently used as it was an easy

and informal way to get in touch with people outside your own team, however this was

mostly used to discuss smaller technical issues. To discuss problems related to dependencies,

communication among teams typically went as one-on-one conversations through the Scrum

masters during Phase 1. As the communication was influenced by the hierarchy it can be

characterized as vertical communication.

During Phase 2 the use of personal coordination mode increased significantly. Due to the

decrease in hierarchy, communication no longer went through Scrum masters. This lowered

to barrier for the teams to reach out to each other and caused the communication to become

mostly horizontal. Communication among the teams was also found to be more efficient due

to this.

74

6 DISCUSSION

Kraut and Streeter (1995) also puts an emphasis on the importance of informal

communication. They states that formal communication may not be sufficient to deal with

uncertainty, and that informal communication is valuable for dealing with task uncertainty.

The findings from Kraut and Streeter (1995) also shows that discussions with peers were

found more valuable than group meetings or discussions with a boss. This is consistent with

the findings in this thesis. Informal communication was important throughout the whole

project, but especially for Phase 2, as there was a decrease in formal communication arenas

such as scheduled meetings.

Another aspect that may have caused an increase in personal coordination mode is trust.

This was stated by interviewees in this case study. Interviewees mentioned that it was much

easier to talk to people they already knew. Trust increased throughout the project, as people

got to know each other more. The importance of trust for coordination is substantiated by

Osifo (2013) who has studied coordination, and summarizes findings from multiple studies

related to coordination and trust. Trust can be seen as a factor for success, while the lack

of it can cause failure (Smith & Schwegler, cited in Osifo (2013)). As personal coordination

mechanisms is considered to be the most important for Phase 2, trust can be considered to

be one of the factors contributing to successful use of personal coordination mechanisms.

As mentioned in section 6.1, co-location was also found to be a necessary contributing

factor for the use of personal coordination mode. Without the teams being co-located

the personal coordination mode would be much less prominent. The change of agile

methodology had a clear effect on the large increase of personal coordination mode, as

personal coordination mode was found to be more important than both group mode and

impersonal mode for Phase 2.

6.3 Group mode

Group meetings were found to be the most used coordination mechanisms for Phase 1. Phase

1 used scheduled meetings that came with the use of the "water-scrum-fall" methodology.

As the methodology changed, most the scheduled meetings were dropped. During Phase 2

it was found, however, that having some meetings were a necessity. Functional roles were

75

6 DISCUSSION

often responsible for coordinating tasks and discussing dependency issues across the teams.

Due to this, functional roles saw the need to re-introduce their meetings. In addition there

was an increase in unscheduled meetings. A study by Dingsøyr et al. (2018) also found an

increase in unscheduled meetings over time, as needs change over time. This is supported

by Jarzabkowski et al. (2012), who also states that coordination mechanisms are dynamic

practices. In addition, horizontal informal communication is found more useful in uncertain

situations, rather than following hierarchy and rules (Argote, Ching et al., Crowston, as cited

in Jarzabkowski et al. (2012)). The increase in task uncertainty for Phase 2 may therefore

be a factor for the increased use of ad hoc meetings.

The findings from this case study suggests that it is necessary to use meetings as

an arena for discussing dependencies among teams, and that relying on impersonal and

personal coordination mechanisms alone is not sufficient. The number of group coordination

mechanisms decreased for Phase 2, but the use of meetings were still necessary and scheduled

meetings were rather replaced with ad hoc meetings whenever needed.

6.4 Comparison with findings by Dietrich et al. (2013)

Dietrich et al. (2013) have investigated inter-team coordination in multi-team projects, where

case F can be considered to be the most similar to the case investigated in this thesis. We

do not know the working methodology of the investigated case by Dietrich et al. (2013),

but the number of people involved and the complexity of the project draws similarities to

Phase 1 in the investigated project used for this thesis. This may indicate a correlation

between the project size and -structure, and the use of coordination modes. The findings

by Dietrich et al. (2013) showed that the use of impersonal coordination mechanisms and

personal coordination mechanisms were found to be used at the same amount, while group

mode was the most used.

In this thesis the use of group mode was also found to be the most important for Phase

1. Group coordination mechanisms, with focus on scheduled meetings, were frequently used

throughout Phase 1 and played an important role for coordination. The use of impersonal

coordination mechanisms and personal coordination mechanisms were both found to be

76

6 DISCUSSION

important for Phase 1. The use of impersonal coordination mechanisms such as planning

and documentation through Jira and Confluence were necessary at the beginning of the

project and at the beginning of every sprint. Issues that occurred in the middle of a sprint,

were mostly handled by personal coordination mechanisms. While impersonal mode was

most used in the beginning of each sprint, personal coordination mode was used on a daily

basis. Therefore, one can consider personal mode to be more important than impersonal

mode for this phase.

6.5 Comparison with the hypotheses by Ven et al. (1976)

Ven et al. (1976) proposed three hypotheses on how task uncertainty, task interdependence

and unit size may affect coordination modes, as presented in section 2.6.4. For task

uncertainty, Ven et al. (1976) stated that an increase in task uncertainty is associated with

a lower use of impersonal mode, a greater use of personal mode and a significantly greater

use of group mode. The findings from the case used in this thesis, indicates that an increase

in task uncertainty caused a lower use of impersonal mode, with a significant increase in

personal mode. For group mode, the number of group coordination mechanisms decreased,

but it was found an increase in ad hoc meetings. Based on Ven et al. (1976) an increase in

task interdependencies is expected to cause a small increase in impersonal mode, moderate

increase in personal mode, and a large increase in group mode. For this case, it was found to

be a larger degree of task interdependencies in Phase 1. Group coordination mechanisms

were frequently used for coordination related to task interdependencies, while personal

coordination mechanisms were used to solve issues as they appeared. Task descriptions and

overview over dependencies among the teams could be found on Confluence and Jira. As a

result, impersonal mode was also used, but the findings indicates that the use of group mode

and personal mode were more significant. For increase in work unit size, Ven et al. (1976)

expected a decrease in group mode, an increase in personal mode, and a significant increase

in impersonal mode. This is not consistent with the findings from this study. Phase 2 had

an increased work unit size, but it was not found any increase in impersonal coordination

mechanisms. It was however found a significant increase in personal mode and the use of ad

77

6 DISCUSSION

hoc meetings within group mode.

6.6 Limitations

This thesis has used a theoretical model by Ven et al. (1976) as a basis for the analysis.

This was argued to be a fitting choice for analyzing the case study, and worked well for its

intended purpose. However, the use of only one model will only show results given from this

point of view. Using multiple other models as a basis for the analysis would give a broader

perspective and one could compare the results from using the different models, which could

strengthen or weaken the findings.

As large-scale agile development is still a new research field, and particularly with focus

on inter-team coordination, there is not found to be any research that study a case similar

to the one used for this thesis. There were found some similarities between Phase 1 for this

case study and findings by Dietrich et al. (2013) and (Dingsøyr et al., 2018), but it was found

no studies on inter-team coordination with a similar methodology as used for Phase 2. This

made it challenging to find related studies that could substantiate the findings.

78

7 CONCLUSION

7 Conclusion
The aim of this thesis has been to answer the research question "How is inter-team

coordination affected by the change of agile methodology?". First, the topic of large-scale

agile software development and coordination theory was investigated through a literature

study. Through a case study on a large-scale agile project it was identified how inter-team

coordination is affected by the change of working methodology. The results were analyzed by

using a theoretical model on coordination modes by Ven et al. (1976). The model describes

three different coordination modes, that each coordination mechanism can fit into: impersonal

mode, personal mode and group mode. The results were also discussed in regards to related

scientific literature.

7.1 What was found?

The investigated case was a large-scale agile project within a public Scandinavian

organization. The project started out by using a "water-scrum-fall" methodology, and

changed working methodology along the way. They dropped all Scrum roles, artifacts

and meetings, and began to work more agile with cross-functional, autonomous teams and

continuous deliveries. Phase 1 is used as term to describe the period before the change in

working methodology, while Phase 2 is used as term to describe the period after the change.

It was found that for Phase 1 the most used coordination modes, in prioritized order,

were group mode, personal mode, and impersonal mode. For Phase 2, the most used

coordination modes in prioritized order were personal mode, group mode and impersonal

mode, as illustrated in Table 15.

79

7 CONCLUSION

Table 15: Most used coordination modes for Phase 1 and Phase 2

Phase 1 Phase 2

1. Group mode

2. Personal mode

3. Impersonal mode

1. Personal mode

2. Group mode

3. Impersonal mode

7.2 How is inter-team coordination affected by the
change of agile methodology?

The change in agile methodology caused a great increase in Personal coordination

mechanisms. Although most scheduled meetings disappeared in Phase 2, the use of ad hoc

meetings increased. The lowered use in impersonal coordination mechanisms, forced teams

to collaborate more and it was necessary to communicate with each other across the teams.

The communication become more horizontal and was more effective, as there was no longer

any need to communicate through a Scrum master. Co-location was found to be important

for Phase 1, but even more important for Phase 2, as it works as an enabler for personal

mode and group mode.

As a conclusion to the stated research question one could see that the change of agile

methodology caused a decrease in impersonal coordination mode, while group mode of

coordination became less prominent and relied more on ad hoc meetings rather than scheduled

meetings. Personal coordination mode experienced a large increase, which required that the

coordination mode is enabled by the use of co-location, and less hierarchy to increase the

horizontal communication.

80

7 CONCLUSION

7.3 What is the contribution of this thesis?

This thesis has investigated a large-scale agile software development project, that has changed

working methodology from a "water-scrum-fall" methodology to high agility, autonomous and

cross functional teams with continuous deliveries. It has not been found any other research

that has studied the coordination mechanisms within a large-scale agile project that has

gone through such a transition. Thus, this thesis provides an increased understanding on

how inter-team coordination changes over time as a result of changes in agile practices. In

addition the use of the theoretical framework by Ven et al. (1976) has not previously been

used for comparing the change in use of coordination mechanisms. This thesis uses this

framework to identify these changes, and points out how the change in agile methodology

affects coordination mechanisms. This thesis could be found interesting for project managers

considering to proceed with such a transition in their project. As inter-team coordination is

considered to be a prominent challenge for multi-team projects, it is interesting for project

managers to look at what coordination mechanisms are present when a large-scale agile

project succeeds with such a transition.

Students and researchers within the field could also find this thesis useful. The findings

creates a basis for further research, and there was discovered a lack of research on the

field of inter-team coordination for large-scale scale agile development projects that could

substantiate the findings of this thesis. Suggestions of further research will be provided in

section 7.4.

7.4 Future work

Based on the findings from this thesis, it is recommended to conduct further research on the

field of large-scale agile development with focus on inter-team coordination. The findings

indicates that there were differences in how the roles coordinated with each other. It would

therefore be interesting to not only look at teams as an entity, but also focus on how different

roles among the teams coordinate with each other.

More case studies on how inter-team coordination is affected by change of agile

81

7 CONCLUSION

methodology should also be conducted, as there was found a lack of research on this topic. In

particular, studies on how coordination is affected by the use of autonomous, cross-functional

teams with continuous deliveries should be done. Multiple studies can help substantiate each

other and increase the validity. Conducting a similar case study with the use of different

coordination theories would also provide more perspective on the topic.

82

Bibliography
Beck, K., 1999. Extreme Programming Explained: Embrace Change. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,

Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.C.,

Mellor, S., Schwaber, K., Sutherland, J., Thomas, D., 2001. Manifesto for Agile Software

Development. Retrieved October 16, 2019, from http://www.agilemanifesto.org/.

Bell, T.E., Thayer, T.A., 1976. Software Requirements: Are They Really a Problem? ICSE

’76 Proceedings of the 2nd international conference on Software engineering , 61–68.

Boos, M., Kolbe, M., Kappeler, P., Ellwart, T., 2011. Coordination in Human and Primate

Groups. Springer-Verlag, Berlin, Heidelberg. doi:10.1007/978-3-642-15355-6.

Brooks, F.P.J., 1975. The Mythical Man-Moth. Addison-Wesley.

Cho, J., 2008. Issues and Challenges of Agile Software Development With Scrum. Issues in

Information Systems .

Conboy, K., Carroll, N., 2019. Implementing large-scale agile frameworks: Challenges and

recommendations. IEEE Software , 44–50doi:10.1109/MS.2018.2884865.

Crowston, K., 1994. A Taxonomy of Organizational Dependencies and Coordination

Mechanisms. Working Paper Series. MIT Center for Coordination Science.

Dictionary.cambridge.org, 2019. SCRUM: meaning in the Cambridge English Dictionary.

Retrieved November 11th, 2019, from

https://dictionary.cambridge.org/dictionary/english/scrum.

Dietrich, P., Kujala, J., Artto, K., 2013. Inter-team coordination patterns and outcomes in

multi-team projects. Project Management Journal 44. doi:10.1002/pmj.21377.

83

http://www.agilemanifesto.org/
http://dx.doi.org/10.1007/978-3-642-15355-6
http://dx.doi.org/10.1109/MS.2018.2884865
https://dictionary.cambridge.org/dictionary/english/scrum
http://dx.doi.org/10.1002/pmj.21377

Dikert, K., Paasivaara, M., Lassenius, C., 2016. Challenges and success factors for large-scale

agile transformations: A systematic literature review. Journal of Systems and Software

119, 87–108. doi:10.1016/j.jss.2016.06.013.

Dingsøyr, T., Falessi, D., Power, K., 2019. Agile development at scale: The next frontier.

IEEE Software 36, 30–38. doi:10.1109/MS.2018.2884884.

Dingsøyr, T., Fægri, T., Itkonen, J., 2014. What is large in large-scale? a taxonomy of scale

for agile software development. doi:10.1007/978-3-319-13835-0_20.

Dingsøyr, T., Lindsjørn, Y., 2013. Team performance in agile development teams: Findings

from 18 focus groups , 46–60.

Dingsøyr, T., Moe, N., 2014. Towards principles of large-scale agile development: A

summary of the workshop at xp2014 and a revised research agenda. doi:10.1007/

978-3-319-14358-3_1.

Dingsøyr, T., Moe, N.B., Seim, E.A., 2018. Coordinating knowledge work in multiteam

programs: Findings from a large-scale agile development program. Project Management

Journal 49, 64–77. doi:10.1177/8756972818798980.

Dybå, T., Dingsøyr, T., 2009. What do we know about agile software development? Software,

IEEE 26, 6 – 9. doi:10.1109/MS.2009.145.

Gittell, J., 2006. Relational coordination: Coordinating work through relationships of shared

goals, shared knowledge and mutual respect. Relational Perspectives in Organizational

Studies: A Research Companion , 74–94.

Highsmith, J., 2002. Agile Software Development Ecosystems. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA.

Hoda, R., Noble, J., Marshall, S., 2012. Developing a grounded theory to explain the

practices of self-organizing agile teams. Empirical Softw. Engg. 17, 609–639. doi:10.

1007/s10664-011-9161-0.

84

http://dx.doi.org/10.1016/j.jss.2016.06.013
http://dx.doi.org/10.1109/MS.2018.2884884
http://dx.doi.org/10.1007/978-3-319-13835-0_20
http://dx.doi.org/10.1007/978-3-319-14358-3_1
http://dx.doi.org/10.1007/978-3-319-14358-3_1
http://dx.doi.org/10.1177/8756972818798980
http://dx.doi.org/10.1109/MS.2009.145
http://dx.doi.org/10.1007/s10664-011-9161-0
http://dx.doi.org/10.1007/s10664-011-9161-0

International Telecommunication Union, W.T.D.R., database, 2019. Individuals using the

internet (% of population). Retrieved October 16, 2019, from

https://data.worldbank.org/indicator/it.net.user.zs?end=2005&start=1990&

view=chart.

J. Highsmith, K. Orr, A.C., 2000. Extreme programming. E-Business Application Delivery ,

4–17.

Jarzabkowski, P.A., Lê, J.K., Feldman, M.S., 2012. Toward a theory of coordinating:

Creating coordinating mechanisms in practice. Organization Science 23, 907–927. doi:10.

1287/orsc.1110.0693.

Jørgensen, M., 2019. Relationships between project size, agile practices, and successful

software development: Results and analysis. IEEE Software 36, 39–43. doi:10.1109/

MS.2018.2884863.

Kraut, R.E., Streeter, L.A., 1995. Coordination in software development. Commun. ACM 38,

69–81. URL: https://doi.org/10.1145/203330.203345, doi:10.1145/203330.203345.

Leffingwell, D., 2011. Agile Software Requirements: Lean Requirements Practices for Teams,

Programs, and the Enterprise. 1st ed., Addison-Wesley Professional.

Litwak, E., Hylton, L.F., 1962. Interorganizational analysis: A hypothesis on co-ordinating

agencies. Administrative Science Quarterly 6, 395–420.

Malone, T., 1988. What is coordination theory? Massachusetts Institute of Technology

(MIT), Sloan School of Management, Working papers .

Malone, T., Crowston, K., Lee, J., Pentland, B., Dellarocas, C., Wyner, G., Quimby, J.,

Osborn, C., Bernstein, A., Herman, G., Klein, M., O’Donnell, E., 1999. Tools for inventing

organizations: Toward a handbook of organizational processes. Former Departments,

Centers, Institutes and Projects 45. doi:10.1287/mnsc.45.3.425.

85

https://data.worldbank.org/indicator/it.net.user.zs?end=2005&start=1990&view=chart
https://data.worldbank.org/indicator/it.net.user.zs?end=2005&start=1990&view=chart
http://dx.doi.org/10.1287/orsc.1110.0693
http://dx.doi.org/10.1287/orsc.1110.0693
http://dx.doi.org/10.1109/MS.2018.2884863
http://dx.doi.org/10.1109/MS.2018.2884863
https://doi.org/10.1145/203330.203345
http://dx.doi.org/10.1145/203330.203345
http://dx.doi.org/10.1287/mnsc.45.3.425

Malone, T.W., Malone, T.W., Crowston, K., 1994. The interdisciplinary study of

coordination. ACM Comput. Surv. 26, 87–119. URL: http://doi.acm.org/10.1145/

174666.174668, doi:10.1145/174666.174668.

Merriam-Webster, 2019. Dependency. Retrieved December 6th, 2019, from

https://www.merriam-webster.com/dictionary/dependency.

van Mierlo, H., Rutte, C.G., Vermunt, J.K., Kompier, M.A.J., Doorewaard, J.A.M.C., 2006.

Individual autonomy in work teams: The role of team autonomy, self-efficacy, and social

support. European Journal of Work and Organizational Psychology 15, 281–299. doi:10.

1080/13594320500412249.

Moe, N., Dingsøyr, T., Dybå, T., 2010. Overcoming barriers to self-management in software

teams. Software, IEEE 26, 20 – 26. doi:10.1109/MS.2009.182.

Oates, B.J., 2006. Researching Information Systems and Computing. Sage Publications Ltd.

Osifo, C., 2013. The effects of coordination on organizational performance: An intra and

inter perspective. Asian Journal of Business and Management 01.

Reifer, D., Maurer, F., Erdogmus, H., 2003. Scaling agile methods. Software, IEEE 20, 12 –

14. doi:10.1109/MS.2003.1207448.

Rolland, K., Fitzgerald, B., Dingsøyr, T., Stol, K.J., 2016. Problematizing agile in the

large: Alternative assumptions for large-scale agile development completed research paper

doi:10.13140/RG.2.2.27795.07207.

Royce, W.W., 1970. Managing the Development of Large Software Systems. The proceedings

of the WESCON , 328–339.

Runeson, P., Höst, M., 2009. Guidelines for conducting and reporting case study research

in software engineering. Empirical Software Engineering 14, 131–164. doi:10.1007/

s10664-008-9102-8.

86

http://doi.acm.org/10.1145/174666.174668
http://doi.acm.org/10.1145/174666.174668
http://dx.doi.org/10.1145/174666.174668
https://www.merriam-webster.com/dictionary/dependency
http://dx.doi.org/10.1080/13594320500412249
http://dx.doi.org/10.1080/13594320500412249
http://dx.doi.org/10.1109/MS.2009.182
http://dx.doi.org/10.1109/MS.2003.1207448
http://dx.doi.org/10.13140/RG.2.2.27795.07207
http://dx.doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1007/s10664-008-9102-8

Schwaber, K., Beedle, M., 2001. Agile Software Development with Scrum. 1st ed., Prentice

Hall PTR, Upper Saddle River, NJ, USA.

Sommerville, I., 2011. Software Engineering. 9 ed., Addison-Wesley.

Stavru, S., 2014. A critical examination of recent industrial surveys on agile method usage.

Journal of Systems and Software 94, 87 – 97. doi:https://doi.org/10.1016/j.jss.

2014.03.041.

Stray, V., Moe, N., Hoda, R., 2018a. Autonomous agile teams: Challenges and future

directions for research. doi:10.1145/3234152.3234182.

Stray, V., Moe, N., Hoda, R., 2018b. Autonomous agile teams: Challenges and future

directions for research doi:10.1145/3234152.3234182.

Stray, V., Moe, N.B., Aasheim, A., 2019. Dependency management in large-scale agile: A

case study of devops teams .

Strode, D., Huff, S., Hope, B., Link, S., 2012. Coordination in co-located agile software

development projects. Journal of Systems and Software 85, 1222–1238. doi:10.1016/j.

jss.2012.02.017.

Strode, D.E., 2016. A dependency taxonomy for agile software development projects.

Information Systems Frontiers 18, 23–46. doi:10.1007/s10796-015-9574-1.

Sutherland, J., 2001a. Agile can scale: Inventing and reinventing scrum in five companies

14, 5–11.

Sutherland, J., 2001b. Inventing and Reinventing SCRUM in Five Companies .

Sutherland, J., Schwaber, K., 2017. The Scrum Guide. Retrieved October 22, 2019, from

https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf.

Sutherland, J., Scrum Inc., 2019. The Scrum At Scale R© Guide. Retrieved November 13,

2019, from

https://www.scrumatscale.com/scrum-at-scale-guide-read-online/.

87

http://dx.doi.org/https://doi.org/10.1016/j.jss.2014.03.041
http://dx.doi.org/https://doi.org/10.1016/j.jss.2014.03.041
http://dx.doi.org/10.1145/3234152.3234182
http://dx.doi.org/10.1145/3234152.3234182
http://dx.doi.org/10.1016/j.jss.2012.02.017
http://dx.doi.org/10.1016/j.jss.2012.02.017
http://dx.doi.org/10.1007/s10796-015-9574-1
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
https://www.scrumatscale.com/scrum-at-scale-guide-read-online/

Takeuchi, H., Nonaka, I., 1986. The New New Product Development Game. Harvard Business

Review .

Thompson, J.D., 1967. Organizations in action; social science bases of administrative theory.

McGraw-Hill.

Ven, A., Delbecq, A., Koenig, J., 1976. Determinants of coordination modes within

organizations. American Sociological Review 41. doi:10.2307/2094477.

VersionOne, C., 2019. The 13th Annual State of Agile Report.

Viechnicki, P., Kelkar, M., 2017. Agile by the numbers. Retrieved October 18, 2019, from

https://www2.deloitte.com/us/en/insights/industry/public-sector/

agile-in-government-by-the-numbers.html.

Vijayasarathy, L., Butler, C., 2015. Choice of Software Development Methodologies - Do

Project, Team and Organizational Characteristics Matter? IEEE Software 1, 86–94.

doi:10.1109/MS.2015.26.

Wohlin, C., 2014. Guidelines for snowballing in systematic literature studies and a

replication in software engineering URL: https://doi.org/10.1145/2601248.2601268,

doi:10.1145/2601248.2601268.

Yin, R.K., 2009. Case study research: design and methods. Sage.

c© Atlassian, Inc., 2020a. Confluence: Features functions. Retrieved March 13th, 2020,

from

https://confluence.atlassian.com/confeval/confluence-evaluator-resources/

confluence-features-functions.

c© Atlassian, Inc., 2020b. Jira | issue project tracking software | atlassian. Retrieved March

13th, 2020, from

https://www.atlassian.com/software/jira.

88

http://dx.doi.org/10.2307/2094477
https://www2.deloitte.com/us/en/insights/industry/public-sector/agile-in-government-by-the-numbers.html
https://www2.deloitte.com/us/en/insights/industry/public-sector/agile-in-government-by-the-numbers.html
http://dx.doi.org/10.1109/MS.2015.26
https://doi.org/10.1145/2601248.2601268
http://dx.doi.org/10.1145/2601248.2601268
https://confluence.atlassian.com/confeval/confluence-evaluator-resources/confluence-features-functions
https://confluence.atlassian.com/confeval/confluence-evaluator-resources/confluence-features-functions
https://www.atlassian.com/software/jira

c© Scaled Agile, Inc., 2019a. Core Values - Scaled Agile Framework. Retrieved November 11,

2019, from

https://v46.scaledagileframework.com/safe-core-values/.

c© Scaled Agile, Inc., 2019b. Scaled Agile Framework - SAFe for Lean Enterprises. Retrieved

November 11, 2019, from

https://v46.scaledagileframework.com/.

89

https://v46.scaledagileframework.com/safe-core-values/
https://v46.scaledagileframework.com/

Appendix A

Interview guide: An investigation on large-scale agile software development

Inter-team coordination

Project beginning - Context:

• Project elaboration

• Anything different compared to other projects you’ve participated in?

• Physical environment: Office workspace, whiteboards, meeting locations

• Comparison with other projects

Your role:

• What was your role, and what did you do?

• Responsibilities?

• Have you had this role or similar roles before? What was it like here compared to other

experiences?

• Challenges?

• With your role, who else do you need to work closely with or take into account?

• Has it been any changes so far? Any larger events that influenced the way you worked?

• How did you experience the work within your team?

Team coordination:

• In which contexts were coordination among teams necessary?

Solutions description - construction - test

90

• Which dependencies do you have to other teams? (examples?)

Dependencies among requirements / technical dependencies?

• How did you manage the dependencies?

• Which arenas did you use for team coordination?

• How do you think the inter-team coordination worked out?

• Changes that happen through time? (from formal to informal)

• Changes in how the teams were organized - How did you experience this?

• Coordination towards other participants?

• Dependencies to other projects/systems/processes within the customer organization.

• Examples on how you solved dependencies?

• What is important to handle such dependencies?

91

Appendix B

Interview guide

February 2020

Introduction:

• What was your role in the project?

• When did you became a part of the project?

Dependencies:

• What was the dependencies among the teams like throughout the different project

phases? Examples?

• Did you keep track of dependencies? How?

• Who was responsible for making sure that responsibilities were solved?

• How did you solve dependencies? Which arenas did you use?

• Did new arenas occur during the last phase? Did you re-introduce any arenas that were

used earlier in the project?

• Could the dependencies be solved in another way? Examples?

• Is there any way of coordinating that you think worked particularly well or did not

work? Why?

• Was there any dependencies that you were not able to predict?

• What was the use of documentation and planning like during the first phase, versus

the last phase?

Communication:

92

• How did the teams communicate throughout the different phases? Was there any

changes?

• How was the use of Slack? Was there any other tools that were used for communication?

What type of communication were the different tools used for?

• How was the use of group meetings? What kind of scheduled meetings were used? How

often were they held?

• How was the use of unscheduled meetings?

• Did the use of meetings change throughout the project? How was it during the first

phase, versus the last phase?

• Who participated in the different meetings?

• Were there any meetings where all the teams were gathered?

• Whenever only one person from the team attended meetings, what type of role did they

have?

• What do you think of the use of group meetings in general, and how did it affect

coordination?

• Did you ever experience uncertainty regarding tasks, how they should be done or

prioritized? What did you do if you experienced such uncertainty?

Teams:

• How was the team sizes during the first phase, versus the last phase? Did the team

size change?

• Did people get replaced a lot? If so, was this new people from outside the project, or

did people switch among the teams? How did this affect the team?

• Was there any changes in roles within the teams?

93

• Whenever team size increased, how did this affect the team?

• How did office workspace and location affect coordination?

Final thoughts

• Is there anything else we should discuss? Anything you would like to add in regards to

coordination?

94

Cam
illa Tøftum

 Ranner
Large-scale Agile Softw

are D
evelopm

ent

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Camilla Tøftum Ranner

Large-scale Agile Software
Development

An Exploratory Case Study of Changes In Agile
Practices and Its Effects on Inter-team Coordination

Master’s thesis in Informatics

Supervisor: Torgeir Dingsøyr, IDI

June 2020

	Abstract
	Sammendrag
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Research Question
	Target Audience
	Thesis Structure

	Theory
	Software Development Methodologies
	Plan-driven Software Development
	Waterfall

	Agile Software Development
	Scrum
	Autonomous and cross-functional teams

	Large-scale Agile Development
	Definition of Large-scale Agile Projects
	Scaled Agile Framework (SAFe)
	Scrum of Scrums
	Challenges

	Coordination
	Introduction to coordination
	Related research on coordination within large-scale agile software development projects

	Determinants of Coordination Modes by 41
	Impersonal mode
	Personal mode
	Group mode
	Determinant factors for coordination modes

	Research Methods
	Literature review
	Keywords
	Databases
	Search strategy

	Research strategy
	Case study

	Data collection
	Interviews
	Documentation

	Data analysis
	Evaluation
	Literature review
	Case study
	Research ethics

	Case
	Background
	Project organization
	"Water-scrum-fall" methodology
	Project summary

	Results
	Impersonal mode
	Personal mode
	Group mode
	Determinant factors for coordination modes

	Discussion
	Impersonal mode
	Personal mode
	Group mode
	Comparison with findings by 43
	Comparison with the hypotheses by 41
	Limitations

	Conclusion
	What was found?
	How is inter-team coordination affected by the change of agile methodology?
	What is the contribution of this thesis?
	Future work

	Bibliography
	Appendix A
	Appendix B

