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Abstract

This thesis looks at methods for using keywords for search in RDF data, with the goal of
finding what aspects are needed for accuracy and speed. To accomplish this, previous
methods for keyword search will be explored, and then extended to incorporate both
spatial and temporal searches.

Experiments using breadth first traversal on different data types, and different conditions
for exploration is used to gather data. The data is divided into spatial, temporal, and
spatiotemporal data, taken from the YAGO data set. Using three different conditions
for traversal, data is gathered to find what aspects of a search is needed for fast and
accurate execution.

From the results, it is clear that the speed and accuracy both depend on the number
of vertices visited during traversal. By reducing the amount of edges followed through
predicate pruning, and reducing the number of vertices visited with filtering, the speed
of a search is increased.

This thesis has found that existing methods for RDF graph search can be extended to
introduce spatiotemporal keyword search. More sophisticated methods can be used to
increase speed and accuracy, and such methods can be implemented on existing data
sets and structures.



Sammendrag

Denne oppgaven tar for seg metoder for ngkkelord sgk i RDF data, med mal om & finne
hvilke aspekter som er ngdvendig for & kunne gjennomfgre sgk med hgy ngyaktighet og
hastighet. For & oppna dette vil tidligere metoder bli utforsket og utvidet til & inkludere
sgk bade i tid og sted.

Oppgaven bruker bredde forst sgk pa forskjellige data, og med forskjellige vilkar for a
innhente data. Dataen er delt inn i tid, sted, og tid og steds data, hentet fra YAGO
datasettet. Med tre forskjellige vilkar for traversering av grafen vil data bli innhentet for
a finne aspekter som kreves for hurtige og ngyaktige sgk.

Resultatene viser at bade ngyaktighet og hurtighet avhenger av hvor mange noder blir
besgkt under traversering. Ved & minske antall noder og kanter som blir fulgt gjennom
fjerning og filtrering vil hastigheten pa sgk gke.

Oppgaven viser at eksisterende metoder for sgk i RDF grafer kan utvides til & inneholde
spk i tids- og stedsdata. Ved a bruke mer sofistikerte metoder kan ngyaktighet og hurtighet
videre forbedres, og slike metoder kan implementeres pa eksisterende grafer.
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1 Introduction

In computer science, graphs are structures used for representing relationships between
objects. Most information is related to other pieces of information and by using these
inherent relations a graph can be created. By ordering information in a graph structure it
can considered a “knowledge graph”. When creating knowledge graphs a standard called
“Resource Description Framework” (RDF) is commonly used. RDF was created to be a
common machine-readable standard for use on the web. In RDF data is stored as triples,
where a triple has the structure “subject-predicate-object”. Comparing this structure
to other graphs, the subject and object is the same as vertices in the graph, and the
predicate is a directed edge. In addition to forming the relation between the two vertices,
the predicate also holds a type of relation. This makes it possible to apply reason to the
data set and derive new information from what is already there. An example of the RDF
structure can be seen in figure 1.1, with Trondheim as the central vertex, connected to
spatial and temporal data, and displaying a place hierarchy.

<Norway>

A

Predicate
<isLocatedIn>

"53.14611" Predicate
Medegrees> <hasLatitude=

Subject
<Trondheim=>

'y =wasCreatedOnDate>

"7.99472" Predicate
Magegrees> <hasLongitude=
Predicate
<isLocatedin>

<Munkholmen=

Figure 1.1: Trondheim with spatiotemporal data

There are a few projects using RDF as an information storage system. Some of the
more well-known are DBPedia [5], YAGO [22], and Creative Commons. Both DBPedia
and YAGO consist of a large linked data set, while Creative Commons use RDF for
embedding licenses. YAGO and DBPedia contain spatial and temporal data, making
both suited for applications related to time and space. Because RDF is machine readable



1 Introduction

this data is suited for use in many different aspects of computer science, but it requires
knowledge of the underlying structure of the data. By creating methods that allows for
more human accessible information from RDF data, the format can be used without a
deep understanding of the graph and makes it possible to create applications with utility.

Storing large graph structures requires specialized storage methods. With RDF a
commonly used storage method is the triple storage. There have also been created special
databases for graphs. Comparing such graph storage to relational storage, graph storage
generally outperforms relational storage on structural queries, but not on data queries
[25]. Structural queries reference the graph structure, or the relationships in the data,
while data queries look for specific data. When creating a graph database, an indexing
system can also be added. Such a system is Neo4j' that use Apache Lucene? for indexing.

When using graphs as a form of storage, the vertices hold data, and the edges can be given
an extra property describing the relation. Combining such data storage with common
traversal methods for graphs results in an efficient extraction model for relational data.
Some common traversal methods include breadth first search, where all neighboring
vertices are discovered before moving on to the children of the currently discovered
vertices. This contrasts to depth first search, where the children of a vertex are visited
as they are discovered. In this thesis methods for efficient keyword search on spatial and
temporal data will be explored.

1.1 Background and motivation

Most of the information on the web is unstructured, or semi-structured data. Using
metadata and automated processes to create structures can help both humans and
computers to find new uses for this information. Making the information in RDF more
accessible can creating new applications and makes it possible to create more utility
from existing data sets. To be able to get more utility out of RDF, it needs to be more
accessible for humans. As more data is generated, there are also more relations between
the data. Exploring these relations can be done by using RDF or other graphs, but for a
regular person this can be difficult. By showing that fast and accurate keyword search of
spatiotemporal RDF graphs is possible new utilities can be created.

1.2 Goals and research questions

Goal This thesis has the goal of researching methods for spatiotemporal keyword searches
on large RDF graphs, and finding aspects needs to be considered for speed and
accuracy.

"https://neodj.com/
2https://lucene.apache.org/



1.3 Research method

Accomplishing this goal proves that RDF graphs can be used as a tool for structuring
spatial and temporal data. There is a lot of data that can be placed at one or more real
locations, either directly, or indirectly. By using RDF graphs, it is possible to model how
different places are connected through data, and how different pieces data can be related
to real places. This is also extended to time, meaning that RDF graphs can model how
time relates to other data.

Research question 1 How can spatiotemporal data be integrated into existing keyword
query methods for RDF data?

Extending existing methods for searching RDF data can make it simpler to search
spatiotemporal data. By combining methods for temporal and spatial search, methods
for spatiotemporal search should be possible to research.

Research question 2 What methods can be used to achieve greater speed and accuracy
for searches on RDF data?

An important aspect of any search is speed and accuracy. Since searching in graphs
usually entails some form of traversal, the methods of traversal, as well as factors that
affect speed and accuracy will be researched.

Research question 3 How do spatial and temporal RDF query methods differ from other
query methods?

Comparing spatial, temporal and spatiotemporal searches can tell how spatiotemporal
data differs in RDF graphs. This is important so that optimized methods can be
developed.

1.3 Research method

This thesis will build on previous keyword search approaches for RDF graphs and
determine what methods can be expanded to incorporate spatiotemporal queries. A
method for spatiotemporal search will be created, and methods for improvement will
be tested, with the goal of finding what aspects of the search method have most effect
for speed and accuracy. Comparing spatial, temporal, and spatiotemporal searches
using time and accuracy as metrics, will give insight into how the data differs, and how
searching can be optimized.






2 Related work

Keyword search on RDF graphs, and methods for traversal have been researched before.
This research forms the basis when extending search to include spatiotemporal data.

2.1 RDF graphs

In 1999 the World Wide Web Consortium (W3C) introduced the “Resource Description
Framework Model and Syntax Specification” [2]. Here the first definitions of RDF were
described. This was an XML based syntax designed to provide interoperability between
applications on the web, in a machine-readable format. By providing information in a
machine-readable fashion, the creation of automated processes should be easier to create,
and by using a common standard, the same automated processes could read any page
containing RDF data.

The data model of RDF can be compared to object-oriented data. RDF consists of
objects, literals, and the connection between them [6]. The objects can have literals
connected to them, indicating some form of data, and the objects can be connected to
each other. Connections are called predicates and form the relation between an object
and literal data or form the relation between two objects. This forms a graph structure,
where the objects and literals are vertices, and the predicates are edges.

Modeling RDF as a graph creates a directed graph [16]. In this model the predicates
define a direction between the two objects. Such a model is called a triple, consisting
of a “Subject predicate object” structure [6]. Here the subject is the start vertex, the
predicate defines a direction, and the object denotes the end vertex.

2.2 Keyword search on graphs

Keyword search on RDF graphs often follows a set of common strategies, that usually
involves graph traversal. One method is to find vertices containing one or more keyword,
then following the edges from the vertices to explore the graph and find subgraphs where
the combined vertices contain as many keywords as possible while also spreading as little
as possible. BLINKS [12] propose such a method, in combination with indexing and cost
balancing for expanding clusters of accessed vertices. A similar approach is used by the
authors in [8] where each vertex has an associated document containing terms from the
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triple. When querying the keywords are matched with these documents using an inverted
index, creating lists based on the matching keywords, and a subgraph is constructed by
joining matches from different lists.

Another strategy for keyword search in RDF graphs is to infer triples from the query.
One such query system is used in AquaLog [14]. This method processes the input into a
triple based representation, based on a linguistic model, and then further processes the
triplets into what they call “query triples.” Creating structured queries through inference
is also done in [24]. Here the query is first used to find vertices containing some part
of the query, then the graph is explored to find a connection between the vertices. The
result is a series of subgraphs with vertices that each contain part of the query. Each
of the subgraphs are in turn used to create a conjunctive query with edges mapped to
predicates, and vertices to subjects or objects.

Ranking and scoring the results of a search is also needed for evaluating the different
methods and algorithms. A common element for ranking the results is to look at the
span of the subgraphs or trees returned from the search. The shorter distance between
all vertices, the more accurate a result should be. Of the above mentioned papers, three
[12, 8, 24] use some form of minimum spanning tree or graph when scoring or ranking
the results. In addition to the minimum spanning graph, the results can be ranked by
other factors.

BLINKS add a scoring system where shared vertices are counted multiple time, once for
each vertex connected to it. This is done to score trees with vertices close to the root
higher than vertices further away, even if the further vertices have many shared edges.
The contents of the vertices are also scored based on an IR style TF/IDF method. In
paper [8] the minimum subgraphs are ranked by a probabilistic model, and a language
model. The probabilistic model scores a result based on the average probability for
a term to occur in a triple in the subgraph. In addition, the language model is used
to score some keywords higher based on what part of the triple they are found in and
patterns formed from triples. This triple scoring is done by weighting words based on the
structure of the triples they are found in, so keywords that occur more often in predicates
are scored higher if they are found in a predicate. The final paper, [24], adds popularity,
and keyword matching to the minimum spanning graph. Popularity is calculated based
on how many edges a vertex has, so that the more connected a vertex is, the less cost a
path through that vertex has. The keyword matching score is based on keyword matches
in a vertex but is also weighted based on syntactic and semantic similarity, which is in
turn done by using WordNet data.

2.3 Spatial search on RDF graphs

Spatial data is stored as literals connected to an entity, using predicates describing latitude
or longitude. Any place vertex must have both latitude, longitude literals. Additionally,
in YAGO places can use the “isLocatedIn” predicate [13], to establish a connection to a
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place with latitude and longitude. In such a case, the connected vertex can have more
detailed coordinates, but it is not a requirement. This predicate also creates a hierarchy
for places in the graph, as seen in figure 1.1.

Keyword searching and ranking spatial RDF graphs is quite similar to regular RDF
keyword searching. Paper [21] outlines methods that incorporates spatial data into the
search. These methods is similar to some of those previously mentioned here [24, 8]. The
most substantial difference is the use of R-trees to index the spatial dimension of the
graph. This is done so that a subgraph can be rooted both at a real point in the world,
and vertices in the graph close to the real-world point. The root is used as a starting
point when traversing the graph, and like the previous methods, the goal is to find a
minimum subgraph. Subgraphs are ranked based on how close the root vertex is to the
selected point, the size of the tree, and how well the result tree fits the query words.

2.4 Temporal search on RDF graphs

Using the syntax specification for RDF [1] it is possible to declare dates as literals.
Using such literals, dates and times can be connected to any vertex using a user defined
predicate. A user defined predicate is any predicate created for a graph that is not part
of any standard. This makes it easy to add time and date data to any graph, but some
problems arise [23]. When adding time with user defined predicates, semantics can be
lost. A predicate such as “borneOnDate” denotes a start date for a human but cannot
be used as a start date for other concepts. It is possible to remedy this by attaching a
concept such as “startDate” to the predicate, but this has the drawback of complicating
the structure. Adding time as literals also means that the specific time is only connected
to one vertex. This is a problem if a subgraph is temporal. It is a possibility to add
predicates from all vertices in the subgraph to the date, but this has the drawback of
creating many extra predicates.

Using literals for temporal data can be called “time labeling”. Another method for adding
time to RDF graphs is using snapshots, called “versioning”. This method maintains the
state of the graph at a given time. Such a model will create multiple versions of the
graph to be able to model time. A versioned graph will be more difficult to traverse and
query than one using literals [11].

Temporal data comes in two different forms, time points, and time intervals. Time
points is modeled using a single literal. Combining two literal time points, [a, b] makes
it possible to create a time interval, where a < b. Here the vertices a and b is usually
defined by the xsd datatype date or dateTime [23].

Using query languages such as SPARQL it is possible to query time labels. In temporal
queries, time labels can be queried directly, and filtered for use in a time interval query.






3 Background theory

In this chapter, the theory for building search methods are explored. General graph
theory is introduced, with algorithms for traversal of graphs. Different structures used in
RDF graphs are discussed, and the technology used for traversal and search are explored.

3.1 Graph theory

Graphs are mathematical structures modeling relationships between objects, and the
study of these structures is called graph theory. A graph consists of vertices, sometime
called nodes, and connected by edges, G(V, E). A graph can take on different shapes,
giving the graph special properties. By giving the edges a direction, the graph can
take on further properties. In computer science the relationships in graphs make them
suited for applications in many different fields, such as data mining, image segmentation,
networking and more [20].

A graph where the edges have a direction is called a directed graph as seen in figure 3.1.
Here the vertices are connected to each other, with an arrow displaying the direction.
An example of an undirected graph can be seen in figure 3.2. In both types of graphs, a
vertex can have multiple edges. Graphs can contain cycles, meaning that vertices are
connected to each other so that it is possible to follow edges in such a way that it leads
back to the initial vertex. An example of such a cyclic graph can be seen in figure 3.3.
Acyclic graphs have an inherent topological ordering. This ordering makes it easy to find
properties in the graph, such as the shortest path between two vertices.

3.1.1 Graph traversal

When traversing a graph, two methods are commonly used, breadth first and depth first.
Both traversal methods need a starting point. If there is no natural starting point or root,
any vertex in the graph can be selected. Breadth first traversal use a queue containing

Figure 3.1: Simple Directed graph.
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Eo E1

Figure 3.2: Example of non-directed graph.

Wy < Vo

Figure 3.3: Directed graph with a cycle.

vertices in the order they are discovered. From the start vertex, all connected vertices are
added do the queue, then the first vertex in the queue is visited, and explored. Vertices
connected to the current node is added to the back of the queue, so that the oldest
discovered node is the next to be visited. In contrast a depth first search will add newly
discovered vertices to the front, so that the newly discovered vertex will be visited next.

Both traversal methods can be used on directed and undirected graphs. On an undirected
graph, any vertex discovered can be added to the list of vertices to visit. In a directed
graph, only vertices connected by an edge with a direction going from the current vertex,
and to another vertex will be followed. Both traversal types can have a termination
condition, so that the traversal will stop before traversing the entire graph.

Algorithm 1 and 2 are very similar. Both algorithms explore an entire graph from a root
vertex R and returns a list of vertices in the order they are traversed. The main difference
between breadth first and depth first is how the next vertex to visit is selected. If we use
the graph in figure 3.4 as an example, we can see that the vertices are numbered 0 to 6,
and the graph have one cycle. Using breadth first the result is a list with the vertices in
order from 0 to 1, the paths selected is seen in figure 3.5. Using depth first traversal, the
order and paths are different, as seen in figure 3.6. The order in depth first would be 0,
2, 6,5, 1,4, 3, assuming the left most vertex is the first to be added.

Building on the breadth first traversal, it is possible to create an algorithm for finding a
minimum spanning tree. In algorithm 3 this is done, while also adding a termination
condition. The algorithm terminates when a set of terms have been discovered in the
graph and returns the minimum spanning tree contains all the terms. This algorithm
assumes the vertices are objects containing a list of connected nodes.

10



3.1 Graph theory

Algorithm 1: Breadth first traversal exploring entire graph

Result: List of vertices in the order traversed
Start vertex V;.;
Array Q Add(V;);
List [;
while Q # 0 do
v = Q GetFirstElement();
if v not discovered then
v setDiscovered;
n = GetAllConnected Vertices(v);
Q Add(n);
[ Add(v);
end

end
return [;

Algorithm 2: Depth First traversal exploring entire graph

Result: List of vertices in the order traversed
Start vertex V;;
Array S Add(V;);
List [;
while S # () do
v = S GetLastElement();
if v not discovered then
v setDiscovered;
n = GetAllConnected Vertices(v);
S Add(n);
1 Add(v);
end

end
return [;

11
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12

Figure 3.4: Graph with one cycle

Figure 3.5: Breadth first traversal of graph 3.4

Figure 3.6: Depth first traversal of graph 3.4



3.2 RDF, ontologies, and knowledge graphs

Algorithm 3: Minimum spanning tree with breadth first search

Result: Minimum tree containgin terms 7,
Root vertex V,;
Terms T;
Array Q Add(V;);
Minimum tree My;
MatchedTerms T,;
while Q # () do
v = GetFirstElement(Q);
M,; Add(v);
if v GetTerms C T, then
‘ Ty, Add(v GetTerms NT);
end
if T, =T, then
‘ Break;
end
n = GetNeighbors(v);
Q Add(n);
end
return M;

3.2 RDF, ontologies, and knowledge graphs

Knowledge base, ontology and knowledge graph are terms with multiple definitions, and
are often used interchangeably. The definitions here are used to clarify what they mean
in this thesis and is not a definitive definition.

3.2.1 Ontology

Ontologies contain representations, conceptualization, relations, categorization, and
formal naming of data [4]. Ontologies allows for semantic modeling of knowledge. Here
knowledge is data that is not ordered in a strict structure. Using ontologies allows data
to be better structured, and reason about the semi-structured data. Ontologies also
have its own language, called the “web ontology language” or OWL. This language was
created to standardize ontologies.

Using the structure of ontologies makes it possible interpret natural language [3]. Here the
ontology gives meaning to the words, based on the classes and relations in the ontology.
Building on the meaning given to words from the ontology, it is possible for a computer
to infer meaning from a sentence or set of words.

13
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3.2.2 RDF as knowledge graphs

Structuring an ontology using a framework like RDF creates a knowledge graph. There
is no clear definition on exactly what constitutes a knowledge graph. A broad definition
of knowledge graph is “A knowledge graph acquires and integrates information into an
ontology and applies a reasoner to derive new knowledge” [7]. This definition encompasses
multiple technologies. Another definition using RDF graphs as a bases is “We define a
Knowledge Graph as an RDF graph. An RDF graph consists of a set of RDF triples
where each RDF triple (s, p, 0) is an ordered set of the following RDF terms: a subject s
€ U U B, a predicate p € U, and an object U U B L. An RDF term is either a URI u €
U, a blank node b € B, or a literal 1 € L” [9]. This latter definition is how knowledge is
structured in the data used in this thesis.

Using RDF as a format when modeling knowledge makes it possible to create structured
content from semi-structured knowledge. This structure makes knowledge usable for
computers, where it previously would have been difficult to extract accurate and exact
knowledge. This information can then be presented in a human readable fashion, or it
can be used in other fields, like artificial intelligence.

When structuring knowledge from other content it is divided into small packets of
information, where one such packet represents a single fact. In RDF facts are represented
as triples. Each triple has a subject that the fact is describing. These subjects are called
entities, and a single entity can have any number of facts. Entities are linked together
through facts, forming the graph. When linking entities, both vertices must be URISs.

In the RDF graph each triple consists of a subject, object, and a predicate. Some entities
can be present in multiple languages, or there can be different names for a single entity.
This creates a special case, where a single entity can be described by multiple subjects.
In such cases, the subject identifies an entity, alias for the entity, or other variation of an
entity, and the subject can then have relations to main vertex describing the entity.

Predicates are always a URI. URIs used for predicates differ from the ones used for
subjects and objects in that predicates are connected to specific types. A type is an
identifier used to describe what the relation between the subject and object represents.
Predicates can also be treated as a subject in a triple, which is used to give special
properties, types, and classes to predicates.

Objects have the widest range of possible entries. Like subjects and predicates, objects
can be URIs. Object URIs can be entity identifiers like subjects, they can be class
identifiers, they can contain some data and a data type, or they can be blank. Blank
vertices are vertices without any data or connections other than connections pointing to
the blank vertex. Literals are vertices containing an atomic value. Atomic values can be
defined by the user, so that literals can hold virtually any type of data. A literal can
only have edges from other vertices, just like blank vertices.

14
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3.2.3 Existing knowledge graphs and ontologies

Currently two of the largest open knowledge graphs are YAGO and DBPedia. Both these
projects use information from Wikipedia to create the graph but differ in the ontology
used to build the graphs. Yago also includes data from WordNet and GeoNames to
accurately assign entities to classes. Both projects use RDF triples to create a knowledge
graph.

YAGO

YAGO is an acronym for Yet Another Great Ontology and is the main data source in
this thesis. The project describes itself as a knowledge base [22] and an ontology [15],
but is often described as a knowledge graph by others. In this paper YAGO is described
as a knowledge graph. YAGO use automated information extraction from Wikipedia to
create its knowledge graph. This graph is supplemented with data from WordNet, and
GeoNames.

An example of YAGO entities can be seen in figure 3.8. From this example we can see
that Elvis acted in Flaming Star on the 20th of December 1960. We can also see that
Bobby Darin and Elvis is connected through the lifetime achievement award, and that
Bobby Darin was borne in New York. New York also have coordinates connected to the
node, rooting the vertex to a real place, but this is not present in the figure. In this
example, only a small portion of the edges and vertices connected to the entities are
displayed.

YAGO uses vertices for storing both spatial and temporal data. For temporal ver-
tices unique predicates [22] are introduced. Temporal vertices use the “xsd:date” and
“xsd:dateTime” data types. Both types follow the ISO 8601 format, YYYY-MM-DD,
and introduces # as a wildcard symbol. A fact can only hold a single time point and
uses yagoDate as an extension of the xsd types [22]. In a date fact, the object holds the
date information, and the predicate describes a connection between subject and date. In
figure 3.7 we can see the triple “Nidaros_ Cathedral wasCreatedOnDate 1300-##-##".
In this example the predicate wasCreatedOn is used to describe a relation between the
subject and a date.

To describe a time span two facts are required. One of the facts describes a start date,
and the second an end date. Since an entity can have multiple date facts connected, all
date predicates are also assigned to a class. Start dates are assigned to a predicate with
a type that has a “creation” class, such as “StartedOnDate”. End dates are assigned to
“destruction” type predicates. This makes it possible to deduce a time span for a given
subject and predicate combination [22].

Yago only contains permanent spatial data for entities on earth. This means that entities
like cities, buildings, rivers and mountains are given a spatial dimension. In addition,
events, people, groups and artifacts can be given a spatial dimension by relating the
entity to a specific place. Using this transitive relation to the spatial fact, many entities
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Figure 3.7: Nidaros cathedral as a subject in YAGO!

can be related to a single spatial fact. All spatial facts must have a predicate that fall
under the yagoGeoEntity class, and all objects used in a fact with a yagoGeoEntity must
have a relation containing both “hasLatitude” and “hasLongitude”.

DBPedia

DBPedia is a crowd sourced knowledge graph using Wikimedia data?. This differs from
YAGO, which is automated. Like YAGO, DBPedia use RDF for linking facts and entities,
both contain facts in multiple languages, and have spatial and temporal data. With open
data, and quarriable using SPARQL the data is easily available for anyone. DBPedia
have multiple domains for spatial data, based on what type of spatial data it is. This
includes coordinates, addresses, elevation, and many more, all creating a rich taxonomy.

3.2.4 Uses for knowledge graphs

One common use of knowledge graphs is to create an info box in search engines with
data related to the search input. This information is a compact set of facts that tries to
fit the search query. Because of the graph structure of knowledge graphs the information
in the info box can be adapted to the query by choosing the predicates and related facts
closest related to the query. This makes it possible to create a set of information that
can give the user a quick overview of the information retrieved by the query.

Knowledge graphs are also used in machine learning [17]. Here models are trained on
large knowledge graphs, and then used to predict new facts. When predicting new

"https://gate.d5.mpi-inf.mpg.de/webyago3spotlx/SvgBrowser?entityIn=%3CNidaros_ Cathe-
dral%3E&codeln=eng
2https://wiki.dbpedia.org/about
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Figure 3.8: Connections in Yago around Elvis
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facts, the model predicts new edges in the graph between existing vertices. Another use
of knowledge graphs is IBM Watson [10]. This project used many different knowledge
graphs, among them YAGO and DBPedia, to beat humans in the game Jeopardy. Watson
combined artificial intelligence, and natural language processing with the knowledge
graphs to be able to accomplish this. Knowledge graphs have also been used to create
recommendation systems [18]. By combining data describing musical and sound items
with links and entities from DBPedia and WordNet the recommendation system could
use the graph to find new items that would be recommended.

3.2.5 Jena

Apache Jena is a framework for working with semantic web and linked data like RDF.
The framework contains tools for SPARQL querying, a query language made specifically
for RDF graphs. Jena also contains REST-style SPARQL endpoints making the RDF
data easily accessible. Using the existing standards makes it easy to use existing data
sets, such as YAGO or DBPedia, and build utility on top of that data using some of the
tools Jena provides.

Jena provides a persistent triple storage solution called TDB3. This storage contains
tables for vertices called node table, indexing of triples, and a prefix table. The node
table stores the representation of RDF “terms”, where terms are any vertex, excluding
some literals. Excluded literals are the xsd:decimal, xsd:integer, xsd:dateTime, xsd:date,
and xsd:boolean types. Each vertex is stored with an ID used when data is loaded, and
when querying constant terms. Node to ID mappings are stored as a B+ tree, while
the ID to node mappings are stored as a sequential access file. Triples are stored in the
triple table as a tuple containing three node IDs. The prefix table is used for supporting
mappings that are used mainly for serialization of triples. Queries in Jena are run using
ARQ, a SPARQL supported query engine.

3https://jena.apache.org/documentation/tdb/architecture.html
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In this chapter the implementation of search and traversal is described, along with
a method for ranking results. When building a system for keyword search, the first
implementations created for this thesis was based on previously created systems. This
early method was based on [21] and the method was also used as the base for adding a
temporal dimension to the search.

4.1 Search

Each search will return a subgraph, based in a root. This forms a tree structure that can
be described as follows:

Result tree Result r for a given query with tokens Ty, on an RDF' graph G(V, E), where
the result forms a minimum spanning tree My(V’, E’), V' contains a set of tokens
T;, M; is rooted in a place vertex, so that V' C V, £’ C E, and Ty C T,

All results from a query is given as a minimum spanning tree. This tree is call a Result
Tree. A query can have multiple result trees, where each result tree is rooted in a unique
place vertex, and each tree contains at least one query word.

A root vertex can be described as:

Root Starting point of a BFS traversal, and the vertex all other vertices are connect to
i a result tree.

A spatiotemporal root is like any other root, but with an addition:

Spatiotemporal root Any root R where the spatial input Iy and temporal input I; overlaps,
so that R € I, N I;.

One basic method of finding a match for keywords is using a breadth first search (BFS)
[12, 21]. For each keyword in the query the algorithm will find all vertices that contain
the keyword. From that set of vertices, the BFS finds the first vertex that can connect
all the vertices in the set. When this vertex is found, the whole subgraph is returned as
a result.

Using BFS starting on keyword vertices works for keyword search, but not necessarily
when searching for spatial or temporal data. When adding spatial or temporal vertices to
the search, these can be used as a root and a starting point for traversal. When a search
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initiates, a place or time vertex existing in the graph needs to be selected. For spatial
search, all places connected with the “isLocatedIn” predicate will be used as roots when
searching. This ensures that the roots are geographically located within the selected
place. For temporal searches all vertices containing the queried time or within the time
span is used as roots. From the root vertices the search will traverse the graph looking
for vertices matching the keywords or query terms, and when all terms are found, that
tree is the best match for the start root. After all roots are searched, the trees are given
a score based on how well they fit the query.

The first part of the search is to find a set of root vertices used as the starting point
for traversal. This is done using SPARQL to query specific data in the graph matching
the input place or the input time. The neighbors of the roots can be connected by any
predicate in the first developed algorithm, but as explain in section 4.3 selecting specific
predicates can greatly increase speed by limiting the number of vertices visited. The BFS
algorithm described in algorithm 4 is used on each of the possible roots, stopping when
the distance from the root exceeds a threshold, or the distance from the root exceeds
the currently shallowest tree that contains all query terms. The reason for limiting the
distance from root is to ensure at least a partial hit within a reasonable time. Limiting
the distance from root to the current shallowest tree is done because a tree with a greater
distance from root will be scored lower.

When traversing the graph an object is created for each vertex visited. This object is
used to keep track of the pseudo hierarchy in the graph created during traversal. All
objects contain information on the distance from the root, matched query terms, and
relation to parent, if any. In addition, root objects contain a list of all vertices in the tree
with at least one query term match. If a child vertex is found within multiple trees, a new
object will be created representing the vertex for each tree. This creates some objects
that are nearly identical, but with different relations and possible different distance.

When a vertex object is created, a document with terms is created for that vertex. This
document is used to calculate score, and to match a vertex with the query terms. A
document is created from the last part of a Yago URI, after the last slash. Each URI is
further split on each underscore, creating a list of terms.

After traversing the main graph, we have found all trees containing at least one query
term. These trees may contain many vertices which hit the same terms. Before ranking
the trees, the minimum spanning tree needs to be found. The minimum spanning tree is
found using a greedy algorithm that iterates through all vertices in the tree, then keeping
the vertices containing the most terms, at the lowest distance. The minimum tree will
contain as many terms as possible, each term will only be found in one vertex and the
tree will be as shallow as possible.

In the graph traversal implementation, a threshold for maximum distance from root is set.
This threshold is updated if all query terms are found within the tree. The traversal will
still check the rest of the queued items, even if all query terms are found. This is done
because some might be a better match than what is already added. The vertices found
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during traversal is added to a list of vertices, and each vertex have a link to the parent,
where the parent is the current vertex and the children are the vertices discoverable from
the parent.

Algorithm 4: GetFullResultTree(V;, t, T})

Result: Set containing all vertices with at least one keyword within threshold
Array Q Add(V;);
Threshold t;
Set Ry;
while Q # 0 do
v = GetFirstElement(Q);
if GetDistance(v) > t then
‘ continue;
end
foreach Term T € T;; do
if T € v then
‘ V, AddMatchChild(v);
end

end

if T, =V, AllMatchedTerms() then
‘ t = GetDistance(v);

end

n = GetConnected Vertices(v);

foreach Child ¢ € n do
‘ ¢ AddParentNode(v);

end

Q Add(n);

R; Add(v);

end

return R;

4.2 Ranking

All result trees are given a score based on how well they fit the query. This score is called
accuracy and is made up of two parts. The first part is how well a vertex fits the query
terms, and the other is how far it is removed from the root. In algorithm 5 a minimum
tree is created by discarding all nodes except those with the most query term hits, at
the shortest distance from root. If multiple vertices are found at the same distance and
with the same number of hits, the first to be added is used in the tree. By using the
connection to the parent vertex, a minimum tree is reconstructed from the best vertices.

Accuracy: Score given to a minimum spanning tree based on a result tree. Score is based
on the number of vertices in the minimum tree, vertex distance D, from root, query
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q, and number of query words hit h so that F, = (hi/|q| : 1 € ) and %

To find the accuracy, a set containing the best vertices is first extracted from the result
tree. To extract these vertices, the algorithm 5 is used.

Algorithm 5: FindMinimumTree(R;)

Result: A set of vertices best fitting the query input
ResultTree Ry;

MinimumTree M; Add(R:[0]);

foreach Vertex r € R; do

if r hits = () then
‘ continue;

end

foreach Vertex m € M; do

if r hits = m hits N\ r distance > m distance then
‘ Break;

end

if r hits = m hits N\ r distance = m distance then
‘ Continue;
end
if r hits # m hits V r distance < m distance then
m RemoveCommonWords(r hits);
M; Add(r);
end
if m hits = () then
‘ M; Remove(m);
end

end

end
return M;

4.3 Pruning

When using the BFS search method, all possible spatial vertices within the input place
will be explored. This is expensive and many of the vertices will be irrelevant. Pruning
the potential place vertices will reduce the number of subgraphs traversed and will in
turn reduce the overall time used to find results for the query.

4.3.1 Predicate selection

When traversing the graph, a lot of unnecessary predicates are followed, resulting in
many extra vertices added to the search. Specifying a set of predicates that contain
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the relevant information can greatly increase the speed of the algorithm and keep the
memory requirements a lot lower. When selecting predicates for traversal the information
retrieved must be related to the input. Because of this, all predicates that may contain
spatial or temporal data should be kept, based on the type of query.

When using the entirety of the Yago data set, most vertices are highly connected. Many
of the links in the graph are from predicates such as “linksTo” or “redirectedFrom”. These
predicates create a highly connected graph and ensures a hit within a few vertices of the
start. The same predicates will also often add the same vertices multiple times, create
circular graphs, and take up unnecessary CPU power and memory.

When pruning predicates there are two methods that are possible to implement. The
first method will remove the predicates that contain little or no new information, such as
“linksTo” or “redirectedFrom” mentioned above. This will keep the graph connected, and
keeps the predicates containing more useful information. Another method of pruning
is to create a predefined list of predicates to be followed. This can drastically reduce
the connections in the graph, but the results will only contain information relevant to
the query. When preselecting predicates there is a much greater chance of not finding a
match for a query. In addition, a lot of metadata could be lost if the metadata predicates
are not added to the list of predicates to be explored.

4.3.2 Place hierarchy

In YAGO places form a hierarchy by using the “isLocatedIn” predicate. This predicate
can be used to find places that is as detailed or more detailed than the input place
selected by moving down the hierarchy. To find the best possible matches for a spatial
query, only places located within the selected input, or the input itself should be used
as roots. This means that places of similar or smaller expanse should be allowed to be
queried, e.g. a query of Boston can return the entirety of Boston, or within Boston.
Massachusetts has multiple predicates linking it to Boston but should not be queried
because the information returned would be less detailed than the input.
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5 Experiments and results

In this chapter the planning, setup, and results from experiments are presented. The
results use time and accuracy as metrics, and is used to evaluate how different traversal
criteria, and datasets affect a search.

5.1 Experimental plan

The goal of the experiments is to gather data for comparison of data types searched and
criteria for vertices to follow. When comparing, speed and accuracy will be the metrics
used. In total, nine different searches will be conducted, one using spatial data for input
and roots, one using temporal data for input and roots, and one combining the two,
using spatiotemporal data for input and roots. For each of these vertex types, there will
also be different criteria for how the graph will be explored. The first method follows
all predicates, excluding connections to types and classes, and will have a max distance
of two. The second method follows the same predicates as the first but has the max
distance set to one. Finally, a criterion for following only predicates from vertices with
at least one keyword match is used.

When comparing the methods, the goal is to see how reducing the amount of data search
will affect speed and accuracy of the search, and how differences in distance and edges
followed differs based on the starting data.

5.1.1 Time

When timing the algorithm, two different times is measured, time for each search, and
time used for traversing and ranking a single root. In addition to these, avg. vertices
visited for each root will also be used. Taking the average of these over a large input set
should generate an appropriate result. Both time metrics measure how fast results are
found, so the results should be similar if the input data does not contain a high number
of highly connected vertices.

The timing of the algorithm should be the same as any breath first search, ©(V + E) so
that the best case is visiting only the first vertex, and the worst case is traversing the
entire graph.
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5.1.2 Scoring and ranking

Each subgraph is given a score. This score will be used to see how pruning, and difference
in predicates can lead to differences in the result tree. Two metrics for accuracy will be
used, avg. accuracy for each result and avg. highest accuracy for each query.

5.2 Experimental setup

All experiments was run on a single laptop with the specifications listed in table 5.1. The
code is written in Java, using openJDK 11.0.7 and building with Gradle 6.0. For triple
store, Jena tdb storage was used, using version 3.14.0 of Jena.

Table 5.1: Platform used for experiments
OS Ubuntu 19.10 x86 64
Host 20KGSON400 ThinkPad X1 Carbon 6th
Kernel 5.3.0-46-generic
CPU Intel i5-8350U (8) @ 3.600GHz
Memory 15760MiB

5.2.1 Data set

All of the data used is from YAGO. YAGO was selected for the large open data set, rich
taxonomy, and for the spatial and temporal parts of the ontology. There are several data
sets available for download, divided into categories. For running experiments data from
taxonomy, core, and GeoNames were selected. From the taxonomy category, all data sets
where used. This data describes class structure, entities, and defines relationships.

From the core category all data was also used. The core contains most of the data used
in the graph. This includes dates, relationships between nodes, literals, and labels. Most
of the vertices and edges used in the experiment comes from this category, but this data
can be further structured using some of the data from other categories.

GeoNames contains data and structure for geographical vertices. These vertices have
a hierarchical structure based on places being located within other places. In addition,
the data contains literals for coordinates, alternative names and links for neighbors. In
addition, the category contains additional classes and types specific for the geographical
vertices.

Before the data could be loaded into a store, some preprocessing was necessary. This
includes replacing non-Unicode character, and replacing spaces with underscore in URIs.
In addition, the data from YAGO contained some illegal characters for Jena, such as
double quoted URIs and illegal escape sequences. There were also some unterminated
TTL lines. All the data was run through a sed script to ensure correctly formatted data
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for Jena. After formatting the data correctly, a persistent TDB storage was created using
TDBIloader from Jena.

5.2.2 Queries

When selecting words for the queries, all nodes in the graph was scanned to count
word frequency. This list was sorted based on number of occurrences, stop words and
numbers were removed. From this shortened list, the top 150 words were chosen, based
on vocabulary size needed to meet more than half of nodes [19, 26]. From this list of 150
words, a final set of 10 words was chosen at random. It is worth noting that all words
are from the name of a vertex, so the list of words does not reflect natural language.

When selecting places, a set of 7 places were manually chosen. This choice was made to
ensure places from different parts of the world, and difference in population and language.
With these differences, root vertices found should have variation in edges, differences in
keyword vertices discovered, and paths discovered for shared keyword vertices.

Date selection for temporal search was done manually. This selection included a combi-
nation of non-significant dates, and significant dates. The selection was made to have a
high probability of finding hits and ensure that the vertices have variation in the amount
of edges.

5.2.3 Combining data and queries

When running the experiments, the same set of query words was used for all runs. For
each type of data, spatial, temporal, and spatiotemporal, the query words were combined
in five groups containing two words, and four groups containing four words. Variation in
the amount of words used would affect both the chance of hitting keyword vertices, and
the score of the trees discovered.

5.2.4 Max. distance and following edges

For each of the data types a total of three different exploration methods was used. One
with a max. distance of 1 from the root node, one with a max. distance of 2, and one
where only edges leading to a keyword vertex would be explored further. Using a max.
depth of 2 would serve as a base line for the comparison. The two other methods were
used to see how much distance from the root would affect the accuracy, and if optimal
graphs could be found even with a severe limitation put on the search.
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5.3 Experimental results

5.3.1 Code profiling and external impact

Because the platform used to run the experiments was a laptop, there are external
factors that affect the result. One such factor is the CPU of the laptop overheating and
throttling, meaning it does not run at top speed, and instead moves between a high and
low speed in intervals. This can clearly be seen in figure 5.1, where the CPU throttles
between ~20% and ~32% with the high value lasting for about 20 seconds, and the lower
values for just under a minute. The figure displays three runs of the algorithm, the first
two being warmup runs, and the third is a profile run. During the initiation of each run
there is a spike in CPU usage almost reaching 70%. CPU usage is also split in to two
categories, where blue is system load, and green is process load. During the warmup, the
process load is low, and is slightly increased during the profiling.

Memory usage and garbage collection will also affect the performance. In figure 5.2 and
5.3 the memory usage is low, and there is less garbage collection. Compare this to the
runs with a distance of two, where garbage collection is done often. It is also worth
noting that the algorithm runs on two threads, with a further four used for 10. Most 10
operations are from reading vertices from the triple store.

100 min 200 min 300 min 400 min 500 min

GC Activity

uuuuu

CPU Load

J | ) s 1 L 1 L i !

Figure 5.1: Code profile of spatial data using distance 2.
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Figure 5.3: Code profile of spatial data following vertices with hits
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5.3.2 Effect of distance from root

When traversing a graph, the number of vertices visited will heavily impact the time used.
When the max. distance of the search increase, the number of vertices visited will grow
with the number of roots discovered times the distance from the root. Looking at table
5.2 we see that the amount of roots found for a query is the most significant factor for
the speed and amount of vertices visited. Since there only is three data points, no broad
conclusion can be drawn, but in figure 5.4 a trend can be seen, and all points line up well.
This indicates a linear increase of vertices visited, where the slope is based on the amount
of edges the vertices have and the depth from the root vertex. Comparing this to the
more detailed graph 5.5 we can see that the time used for a query still follows a linear
increase. Using a distance of 2, the time varies more than the other two methods, but the
timings appear to increase linearly based on the number of roots discovered. In graph
5.5 all the different data types are added, and since both temporal, and spatiotemporal
queries have fewer roots per query, most of the data points are clustered in the lower end
of the graph. All three data sets contain one point for each query with at least one root,
totaling 388 points for each traversal method.

From the results it is clear that increasing the distance traveled from the root have the
most significant impact on both speed and accuracy. When the distance is increased
many more vertices are visited, so that the chance of finding a keyword match is increased.
Visiting more vertices will also take significantly more time. From figure 5.5 it is also
clear that the amount of roots discovered for a query will make a significant difference.
This difference is further amplified when the distance is higher. Even though the increase
in time is linear, the slope is much steeper for traversals with higher distance, resulting
in significant time increases.

5.3.3 Effect of following specific edges

In table 5.4 we see that very few vertices with a keyword are directly connected to other
vertices with a keyword. This makes the search results similar to the results in table 5.3.
The most noticeable difference is the number of vertices visited. Even with a greater
max. depth, the search only following edges from vertices with keyword hits still visits
fewer vertices. Visiting fewer vertices increase the speed of the search, something that is
evident from graph 5.6.

5.3.4 Differences between data types

In table 5.3 we can see how many connections the average root have. Because the max.
distance is set to 1, the average vertices per root is the same as average connections
per root. Temporal data have the highest number of edges, followed by spatiotemporal
vertices. This indicates that vertices that contain temporal data generally are more
connected that spatial vertices. The difference in roots discovered can be attributed to
the input data.
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Table 5.2: Follow all edges, max. distance 2

Traversal following all edges max. distance 2
Result type Temporal data Spatial data Spatial and tem-
poral data
Avg.  time per || 27679 166 479 1842
query (ms)
Avg. roots per || 192 1527 10
query
Avg. vertices per || 3097 3684 4843
root
Avg. vertices vis- || 594 683 5626 989 49719
ited per query
Avg. accuracy per || 0.075 0.077 0.066
result
Avg. top accuracy || 0.231 0.280 0.108
per query
Query miss (no || 24/63 (38.1%) 6/63 (10.5%) 357/441 (81.0%)
keywords found)

109

e Max. distance 2
e Max. distance 1
LS| o 8.78 - x +1,336.64 lin. Regression
——8.78 - x + 1,336.64 lin. Regression

Time in ms.
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|
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Figure 5.4: Linear regression for time and roots
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Table 5.3: Follow all edges, max. depth 1

Traversal following all edges max. distance 1

Result type

Temporal data

Spatial data

Spatial and tem-

poral data
Avg.  time per || 4111 14 618 467
query (ms)
Avg. roots per || 192 1527 10
query
Avg. vertices per || 450 257 335
root
Avg. vertices vis- || 86479 391914 3446
ited per query
Avg. accuracy per || 0.231 0.232 0.174
result
Avg. top accuracy || 0.313 0.349 0.215

per query
Query miss (no
keywords found)

35/63 (55.5%)

20/63 (31.7%)

415/441 (94.1%)

Table 5.4: Follow only edges from node hits

Traversal following edges with keyword match vertex

Result type

Temporal data

Spatial data

Spatial and tem-

poral data
Avg.  time per || 3033 466 367
query (ms)
Avg. roots per || 192 1527 10
query
Avg. vertices per || 1.02 1.03 1.02
root
Avg. vertices vis- || 197 1569 11
ited per query
Avg. accuracy per || 0.231 0.232 0.174
result
Avg. top accuracy || 0.313 0.349 0.215

per query
Query miss (no
keywords found)

35/63 (55.5%)

20/63 (31.7%)

415/441 (94.1%)
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Figure 5.6: Avg. time used for each data type and traversal criteria per query in ms.
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6 Discussion and limitations

In this chapter the methods implemented, and how these methods can be changed or
extended to improve speed and accuracy are explored.

6.1 Discussion

Using traditional methods for graph traversal it is possible to implement keyword search
on RDF graphs. One such method is the use of BFS to find a minimum spanning
subgraph containing the query words. Using spatial vertices as a root for the subgraph,
creating a minimum spanning tree, it is possible to retrieve spatial data from such a
keyword search. The same method is used when searching for spatial data as with other
keyword searches, with the key difference being to root the BFS in a spatial vertex.

This BFS method can be implemented with a temporal dimension instead of spatial.
When changing the data type of the root from spatial to temporal, the traversal method
stays the same, but the root used is matched with temporal input instead of spatial input.
The result tree for a temporal search can be ranked using the same methods as used for
spatial search.

Combining spatial and temporal data makes spatiotemporal search possible. These
searches will be rooted in a vertex containing spatial and temporal data matching the
input, as defined by “Spatiotemporal root” in chapter 4.1. Because the root needs to
contain both the spatial and the temporal input, the subset of vertices containing this
will be small. This makes spatiotemporal searches quick to execute, but the accuracy
and hit rate will be low. A method that could be implemented to increase the hit rate
of these searches would be to change the criteria for one of the two dimensions. The
search could be rooted in either space or time, and then look for the other dimension as
a special case while traversing.

6.1.1 Spatial and temporal vertices as special cases

Spatiotemporal searches rooted only in time could be accomplished by discarding all
result trees that are does not contain a vertex inside the queried location. To discover
vertices inside a location the “isLocatedIn” predicate would be followed. Using this
predicate to move upwards in the hierarchy the predicate creates while looking for the
queried location will determine if the discovered vertex is located inside the queried
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location. A maximum distance of three should be used when following this predicate, as
this will traverse the hierarchy up to at least country level, and possibly up to the earth
vertex. Since we are looking for a specific vertex, and only looking at the vertices above
in the hierarchy this will not add more than three extra visited vertices for each vertex
connected with the isLocatedIn predicate. This will not increase the time used by any
significant margin compared to the regular temporal search but will increase the hit rate
of spatiotemporal search.

Rooting spatiotemporal search in a spatial vertex and treating the temporal dimension
as a special case can be done with three different methods. Two of the methods is
accomplished by looking at the predicate, and the third checks the type of literals. When
using the predicate to determine if the connected vertex is temporal, the predicate can
either be checked against a predetermined list of temporal predicates, or the range of
valid values can be checked. Because predicates can also be treated as vertices the range
can be determined by checking if the predicate have another predicate called “rdfs:range”
connected to it. The “rdfs:range” predicate will have a literal on the other end. Checking
if the range is “xsd:date” or “xsd:dateTime” will determine if the predicate is temporal.
The final method, checks if the type of the literal is “xsd:date” or “xsd:dateTime”. Since
all literals have a type as part of the vertex, this is done by reading directly from the
literal. Checking the predicate would add an extra traversal to each predicate connected
to a vertex since the rdfs:range is treated as any other vertex. Using a predetermined
list requires more knowledge of the data set and adds some small overhead. Checking
the type of the objects is the fastest since this would not require any extra traversal and
carries little overhead. This would not require any extra knowledge about the data set,
assuming that no extra user added temporal types are created for the graph.

6.1.2 Reduction of vertices and edges

Since the number of vertices visited is the factor most correlated to time used for a search,
reducing the amount of vertices visited will also reduce the time used for a search. To
reduce the number of vertices, a possibility is to reduce the predicates followed. Following
predicates based on type can be used to create search methods that will only follow
specific predicates. This can be accomplished using natural language processing, similar
to what is done in [24, 14]. A less sophisticated method would be to allow for the selection
of categories to be searched, then using the selected categories to extract all predicates
that are connected. Because the predicates have types and properties, running a query to
find all connected predicates to a category would not add more than two extra traversals,
one for type, and one for property. Such a category would contain a set of types and
properties that would be used to find predicates. This would make it easy to add new
predicates, without having to rework the search. The same categories can be used for
natural language processing, but then the query have to be preprocessed to find the
categories that should be included. A downside of removing predicates, is the possibility
of missing some results, and decreasing the accuracy.
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Reduction of root vertices is also a method that can be implemented to increase the
speed of a search. To be able to reduce the roots while maintaining accuracy, using
more sophisticated natural language processing is an option. Implementing a system for
inferring structure from the keywords, like that used in [8] would make it possible to find
connections where the object and predicate is related to the query. Using the taxonomy
from YAGO, this is possible to implement.

6.1.3 Indexing and natural language processing

It is possible to index the vertices in the graph, so that they can be searched using full
text search. If all vertices are tokenized and indexed so that all vertices containing a
keyword can be retrieved, this can be combined with the roots for temporal, spatial or
spatiotemporal searches. Using SPARQL it is possible to find paths between two vertices
using “property paths”. From this, the shortest paths between a root and keyword vertex
can be determined, and finally the roots can be ranked. This will guarantee hits for
all roots, but it could be painfully slow, depending on the input keywords. Using the
keyword “south” as an example, this keyword has 2798973 hits in the YAGO data used
for the experiments in this thesis. Combining this with the average number of temporal
roots from section 5.3, 192, this search would have to query and rank 537 395904 paths,
just for one keyword. Using such an index would require more than just the shortest
path.

Using an index for keywords to find shortest paths without exploring the entire graph will
find the best result for a given keyword. Depending on how it is implemented, it might
not find the best solution for vertices containing multiple keywords. This is because a
vertex containing more than one keyword at a greater distance may score higher than
multiple vertices containing one keyword each at a shorter distance. The score would
depend on the number of keywords in a single vertex, and the difference in depth. If even
a single vertex is found at the same depth as the multi-keyword vertex, the result tree
with the fewest vertices will score better.

6.2 limitations

Some temporal vertices in YAGO use a so called “wildcard date”. These dates contain a
“#” symbol for parts of the date, making it impossible to directly query such dates when
selecting roots. This means that the temporal search has some possible vertices missing
from the set of root vertices used when traversing the graph. This could have been
remedied by creating two new temporal vertices for such dates, one start date indicating
the lowest possible value a wildcard date could have, and an end date indicating the
highest possible value a wildcard could have.

When searching spatiotemporal data, the wildcards have been used. This was done by
adding logic comparing the wildcards found connected to spatial vertices to the date
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range in the search. By doing this, the spatiotemporal search should be more accurate,
and should retrieve some vertices that a regular temporal search would not retrieve.

Because of the large number of vertices discovered during a search, memory would run
out on traversal with high distance from root. This could be solved by writing to disk, but
would be slow, and since the search already reads from disk to load vertices, this would
have a significant impact on search time. When testing without any form of pruning,
the computer would run out of memory. Because of this, no results are gathered from a
method following all edges of each vertex. Following all edges on each vertex would also
lead to highly connected category vertices being discovered, resulting in artificially high
hit rates for such searches.
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This thesis has explored search methods for RDF graphs, finding methods for spatial,
temporal, and spatiotemporal search. By building on existing keyword search methods,
a new method for spatiotemporal search have been introduced and evaluated. From the
evaluation further improvements have been proposed.

7.1 Contributions

This thesis had the goal to research methods for keyword searches on large spatiotemporal
RDF graphs. This was broken down into three research questions.

Research question 1 How can spatiotemporal data be integrated into existing keyword
query methods for RDF data?

In the chapter 2 previous methods used for keyword searches on RDF graphs was
investigated. Using methods from other research, spatiotemporal keyword search have
been implemented. The effectiveness of the search can be further improved, and by
treating one of the two dimensions as special cases, the accuracy of spatiotemporal
searches can be further improved.

Research question 2 What methods can be used to achieve greater speed and accuracy
for searches on RDF data?

This thesis looked at the parameters of a search that could increase speed and decrease
accuracy. When increasing speed, the main goal should be to reduce the number of
vertices visited during traversal. Reducing the edges followed is one of the primary
methods to accomplish this. By pre-processing the query, a structure can be created
from the keywords that can be used to create more effective queries.

Research question 3 How do spatial and temporal RDF query methods differ from other
query methods?

Using a BFS for traversing the graph, a spatiotemporal search does not need to differ from
spatial or temporal search. Spatial and temporal searches differ from regular keyword
searches by rooting the subgraph in a vertex containing data for the queried dimension.
When selecting the roots used as starting points for the search, a spatiotemporal search
needs to find roots that fall into both the spatial dimensions of the search, and the
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temporal. This makes the total set of roots used for a spatiotemporal search less than if
the search was done just on one dimension.

7.2 Future work

Further research into spatial, temporal, and spatiotemporal keyword search on RDF
graphs can make the technology more accessible. Exploring search methods implementing
natural language processing for pre-processing of queries, similar to [14] could improve
accuracy of search. Relying more on the ontology to infer meaning from a keyword search
can also make searching RDF graphs faster and more accurate.

Because each search is rooted in one specific root, and traverse the graph from that root,
parallelizing the search should be researched. Running multiple traversals at the same
time would not affect any of the other traversals result trees but would make it possible
to execute a search faster. This would not affect the accuracy and can be implemented
on many of the existing search methods for RDF graphs.

Finally, treating spatial or temporal data as a special case while traversing the graph, as
discussed in chapter 6 could be considered a continuation of this thesis. Testing these
search methods can give insight into how spatiotemporal searches on RDF graphs can be
further improved.
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Appendices

1 Spatial search source code

Source code for spatial search can be found in the spatial folder in the source code zip
file. The source code is also available on GitHub at https://github.com/MrHanSan/
master_thesis/tree/spatial/code/st-rdf

2 Temporal search source code

Source code for temporal search can be found in the temporal folder in the source code
zip file. The source code is also available on GitHub at https://github.com/MrHanSan/
master_thesis/tree/temporal/code/st-rdf

3 Spatiotemporal search source code

Source code for spatiotemporal search can be found in the spatiotemporal folder in the
source code zip file. The source code is also available on GitHub at https://github.
com/MrHanSan/master_thesis/tree/spatiotemporal/code/st-rdf
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