
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Frederic Mjølsnes

Near Real-Time Indexing and Querying
of Spatiotemporal Data in Distributed
Key-Value Stores

Master’s thesis in Informatics

Supervisor: Svein Erik Bratsberg

June 2020

Frederic Mjølsnes

Near Real-Time Indexing and Querying
of Spatiotemporal Data in Distributed
Key-Value Stores

Master’s thesis in Informatics
Supervisor: Svein Erik Bratsberg
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

The Internet of Things (IoT) is continuously evolving and expanding, and the complexity and

volume of the data generated by IoT devices is increasing as a result. IoT devices such as

various sensors, cars, smartphones and aerial drones are all equipped to generate large amounts

of spatiotemporal data specifying their geographical location at a given point in time. The

mass collection and utilization of spatiotemporal data enable a whole set of new services to

be deployed, as well as requiring continual improvements in the methods for storing, indexing,

processing and querying the data as services demand ever more strict service level agreements.

NoSQL systems that are horizontally scalable have been introduced in order to cope with the

large volume of data, however, as these are typically one-dimensional data stores, indexing

multidimensional data is not a trivial task. Space-filling curves enable the linearization of

spatiotemporal data and may allow for the usage of NoSQL systems to support the indexing

and querying of spatiotemporal data. It is not clear how well a NoSQL database would support

near real-time indexing and querying of spatiotemporal data using space-filling curves and the

thesis aims to examine existing methods as well as the characteristics of NoSQL stores in order

to answer this.

An examination of methods used in two prevalent systems, GeoMesa and GeoWave, has been

performed in order to study how space-filling curves may be used in conjunction with NoSQL

stores to index and query spatiotemporal data. Furthermore, to examine how well distributed

key-value stores support near real-time indexing and querying of spatiotemporal data a set of

requirements has been proposed to provide a framework for evaluation. ScyllaDB, a NoSQL

store, has been evaluated with regards to the established requirements, and finally an experi-

mental setup for evaluating the performance of different space-filling curve and key-value store

combinations has been proposed.

We found that both GeoMesa and GeoWave provide complete extensible facilities for indexing

and querying spatiotemporal data in NoSQL stores. Furthermore, regarding the viability of near

real-time scenarios with ScyllaDB it was found that it likely does not meet all the requirements,

specifically with regards to latency and range queries. Further work is needed to improve latency

guarantees and range query performance before key-value stores based on the LSM-tree can be

considered viable.

i

Sammendrag

”Internet of Things” (IoT) er under stadig utvikling, og kompleksiteten og volumet p̊a generert

data øker i takt med at fler IoT enheter kobles til. Enheter som sensorer, biler, smarttelefoner og

droner kan alle generere store mengder spatiotemporell data som spesifiserer enhetens plasser-

ing p̊a et gitt tidspunkt. Innsamlingen og utnyttelsen av spatiotemporell data p̊a stor skala

muliggjør mange nye tjenester, men krever ogs̊a kontinuerlige forbedringer i metodene for la-

gring, indeksering, prosessering og spørringer p̊a denne dataen etter hvert som tjenester etterspør

strengere serviceniv̊a-garantier. Horisontalt skalerbare NoSQL systemer har blitt introdusert for

å h̊andtere det store datavolumet, men da disse hovedsaklig er utviklet for endimensjonell data

i form av nøkkel-verdi-par er indeksering av multidimensjonell data et ikke triviellt problem.

Romfyllende kurver kan brukes for å linearisere spatiotemporell data, og muliggjør bruken av

endimensjonale NoSQL databaser for indeksering og utføring av spørringer p̊a spatiotemporell

data. Det er ikke klart hvor godt en NoSQL database i samband med romfyllende kurver støtter

nær sanntid indeksering og spørringer, og denne oppgaven forsøker å svare p̊a dette ved å studere

eksisterende metoder og karakteristikker ved NoSQL databaser.

En studie av to eksisterende systemer, GeoMesa og GeoWave, er blitt gjennomført, og metodene

som er brukt i disse systemene er blitt kartlagt for å belyse hvordan indeksering og spørringer p̊a

spatiotemporell data i NoSQL databaser gjøres i praksis. For å forsøke å svare p̊a hvor godt slike

metoder fungerer i nær sanntid scenarier er det blitt foresl̊att en rekke krav en NoSQL database

m̊a imøtekomme for å kunne sies å støtte indeksering og spørringer i nær sanntid. ScyllaDB,

en NoSQL database er blitt evaluert opp mot disse kravene, og et sett med eksperimenter er

foresl̊att som kan gi en bedre indikasjon p̊a hvor godt nær sanntid bruksomr̊adet støttes.

Resultatene fra evalueringen av NoSQL databaser og spesifikt ScyllaDB opp mot kravene som

ble stillt viser at ikke alle kravene ble oppfyllt av ScyllaDB. Mer spesifikt ble blant annet ikke

kravene til forsinkelsestid møtt, og det viste seg usannsynlig at omr̊adespørringer vil kunne

utføres innenfor korte tidsrom. For at et NoSQL basert p̊a LSM-trær skal støtte nær sanntid

indekseringer og spørringer bør framtidig arbeid være i retning av å forbedre omr̊adespørringer.

ii

Preface

This master thesis was written during 2019-2020 for the Department of Computer Science (IDI)

at the Norwegian University of Science and Technology (NTNU) under the supervision of Pro-

fessor Svein Erik Bratsberg. A basic familiarity with database systems, algorithms and data

structures is assumed on the part of the reader.

I would like to thank Svein Erik Bratsberg for his assistance and giving me great flexibility to

shape the thesis as I saw fit.

In addition, I would like thank my family for always supporting me, and thanks to all the

contributors of code to the open source repositories that have been used throughout this thesis.

Frederic Mjølsnes

Trondheim, June 2020

iii

Contents

Summary i

Sammendrag ii

Preface iii

Contents iv

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Motivation . 1

1.2 Research Questions and Method . 2

1.3 Structure . 3

2 Background 4

2.1 Spatiotemporal Databases and Spatiotemporal Data 4

2.2 Scalability . 5

2.3 Distributed Key-Value Stores . 6

2.3.1 ACID, BASE, CAP Theorem and PACELC 6

2.3.2 Partitioning of Data . 9

2.4 Space-Filling Curves . 10

iv

2.4.1 Properties of Space-Filling Curves . 10

2.4.2 Z-order curve . 12

2.4.3 Hilbert curve . 13

2.4.4 Spatiotemporal Queries using Space-Filling Curves 13

2.5 Access Methods for Indexing and Querying Linearized Spatiotemporal Data . . . 15

2.5.1 B-Tree . 16

2.5.2 B+ Tree . 17

2.5.3 Log-Structured Merge-tree . 19

3 Methods for Indexing and Querying Spatio-Temporal Data in Distributed

Key-Value Stores 21

3.1 GeoMesa . 21

3.1.1 Indexing . 21

3.1.2 Queries . 23

3.2 GeoWave . 24

3.2.1 Indexing . 24

3.2.2 Queries . 26

4 Viability of Near Real-Time Spatiotemporal Indexing and Querying using

Distributed Key-Value Stores 27

4.1 Near Real-Time Indexing and Querying of Spatiotemporal Data 27

4.2 Use-Case Description . 28

4.3 Requirements . 29

4.3.1 Consistency, Availability and Partition Tolerance 29

4.3.2 Scalability . 30

4.3.3 Storage . 32

4.3.4 Ingestion . 33

4.3.5 Querying . 33

v

4.4 Evaluation of ScyllaDB . 34

4.4.1 Consistency, Availability and Partition Tolerance 34

4.4.2 Storage . 35

4.4.3 Scalability . 35

4.4.4 Ingestion . 36

4.4.5 Querying . 37

4.5 Experimental Setup to Measure Viability of Trajectory Indexing and Querying

System . 37

4.5.1 Insertion . 38

4.5.2 Querying . 39

4.5.3 Further considerations . 39

4.6 Discussion . 40

5 Conclusion and Further Work 42

5.1 Conclusion . 42

5.2 Further Work . 43

References 44

vi

List of Tables

4.1 Characteristics of DRAM, flash and disk based storage mediums. 33

vii

List of Figures

2.1 Illustration of range, kNN and trajectory queries on spatiotemporal point-data. . 5

2.2 Examples of different ways to order a 2-dimensional space using space-filling curves 10

2.3 Three stages of decomposition of a coordinate space using z-ordering 12

2.4 Three stages of decomposition of a coordinate space using the Hilbert curve ordering 13

2.5 B-Tree of order 3 containing 14 keys. 17

2.6 B+ Tree of order 3 containing 14 keys. 18

2.7 LSM-tree with levels 0 ... i . 20

3.1 The structure of an Accumulo key generated by GeoMesa for spatiotemporal

point-data [31] . 22

3.2 Sample Ingest Architecture for Apache Accumulo data store [32] 23

3.3 Sample Query Architecture for Apache Accumulo data store [33] 24

3.4 GeoWave Architecture [37] . 25

3.5 GeoWave Key Structure [38] . 25

3.6 GeoWave Indexing Strategies [39] . 26

4.1 Experimental Setup for Collecting Data about Insertion and Querying Performance 38

viii

Chapter 1

Introduction

1.1 Motivation

The Internet of Things (IoT) [1] is continuously evolving and expanding, and the complexity

and volume of the data generated by IoT devices is increasing as a result. IoT devices such as

various sensors, cars, smartphones and aerial drones are all equipped to generate large amounts

of spatiotemporal data specifying their geographical location at a given point in time. The

mass collection and utilization of spatiotemporal data enable a whole set of new services to

be deployed, as well as requiring continual improvements in the methods for storing, indexing,

processing and querying the data as services demand ever more strict service level agreements.

A wide range of services rely on the storage, processing and querying of spatiotemporal data;

however, these services make different demands of the underlying software and hardware de-

pending on their intended use case. This thesis is written with regards to services that require

horizontal scalability of system resources, high throughput insertion of spatiotemporal point

data collected in real-time from mobile sources and the ability to perform low-latency spatial

and temporal range queries on the data. Examples of such services include monitoring crowd

flow in areas hit by natural disasters and real-time route planning with coordination between

self-driving cars.

As increasing amounts of data is collected from connected devices the underlying system must

scale its available resources to accomodate the elevated resource demand. Systems are typically

scaled by adding more resources in the form of processing power, memory, disk storage or

network bandwidth. There are two main ways in which a system scales its resources [2]. The

first method, known as scaling up or vertical scaling, adds more resources to a single machine.

The second method, known as scaling out or horizontal scaling, adds more servers to an existing

cluster of servers which handle the data in a distributed manner.

Relational database management systems (RDBMS) were originally designed to run on a single

server and emphasize normalization of data and enforcing ACID [3] transaction properties, which

1

are not well suited for distributed systems. Because of this relational databases traditionally

resort to vertical scaling. There is ongoing work being done on scaling relational databases

horizontally [4], but this work is outside the scope of this thesis.

NoSQL data stores are generally designed for horizontal scalability [5] and as a result they are

commonly used in scenarios where such scaling is needed. Real-time indexing and querying of

massive amounts of data also typically requires horizontal scaling, which is why NoSQL stores

are focused on in this thesis.

In order to store multidimensional spatiotemporal data in one-dimensional key-value stores

a space-filling curve can be employed as a linearization technique. There exists a variety of

different space-filling curves, and with each having different properties it’s not always clear how

they impact performance in a given system.

Because of the need for systems that can index and query spatiotemporal data in near real-time

this thesis will examine how space filling curves can be used in conjunction with distributed

key value stores to index and query spatiotemporal data, as well as attempt to evaulate the

viability of using distributed key value stores to index and query spatiotemporal trajectory data

in real-time by evaluating ScyllaDB. ScyllaDB [6] is a known as a highly performant wide-column

NoSQL store, and due to its performance claims is the subject of evaluation in this thesis.

1.2 Research Questions and Method

Research Questions

• RQ1: How can space-filling curves be used in conjunction with horizontally scalable key-

value stores in order to index and query spatiotemporal data?

• RQ2: Is the usage of space-filling curves in conjunction with a horizontally scalable key-

value store a viable solution for indexing and querying real-time spatiotemporal data

streams with regards to throughput, latency and memory usage?

Method

To attempt to answer RQ1 a review of current state-of-the-art systems will be conducted, with

prevalent methods and concepts described.

To attempt to answer RQ2 a set of requirements are established, and a subsequent review of the

characteristics of a selected distributed key-value store is performed in order to evaluate how

well the requirements are met.

2

1.3 Structure

The thesis is structured as follows:

• Chapter 2 Background, provides the theoretical background and discusses fundamental

concepts

• Chapter 3 Methods for Indexing and Querying Spatiotemporal with Space-Filling Curves

in Distributed Key-Value Stores, provides an overview and discussion of approaches to

indexing and querying used in two currently existing systems, GeoMesa and GeoWave

• Chapter 4 Viability of Near Real-Time Spatiotemporal Systems with Distributed Key-Value

Stores, establishes a set of requirements and subsequently evaluates the characteristics

of distributed key-value stores and ScyllaDB against these requirements. In addition a

method in the form of a set of experiments for benchmarking the performance of a near

real-time system is proposed.

• Chapter 5 Conclusion and Further Work, presents a summary of our findings and suggests

directions in which further research could be undertaken.

3

Chapter 2

Background

2.1 Spatiotemporal Databases and Spatiotemporal Data

Spatiotemporal databases are specially designed to handle the indexing, storage and querying

of spatiotemporal data and objects [7, p. 2150]. The simplest form of spatiotemporal data can

be conceived of as a point in a 2- or 3-dimensional space with an associated timestamp, while

more complex forms may consist of polygons with associated timestamps. This work deals with

spatiotemporal objects of the form {x, y, t, p}, where x, y, t and p represent longitude, latitude,

time and a payload such as an UserID respectively. This type of data is referred to in this thesis

as spatiotemporal point-data and spatiotemporal trajectory data interchangably.

A spatiotemporal object is typically dynamic in both the spatial and temporal dimensions,

meaning that the location of the object can change over time. Because spatiotemporal data is

dynamic and can arrive at frequent intervals from several sources, a spatiotemporal database

typically needs to support either high update/insertion throughput, depending on the number

of sources that are to be indexed.

Spatiotemporal databases should support queries along both the temporal and spatial dimen-

sions and the types of queries that are typically supported are range queries, k-Nearest-Neighbors

(kNN) queries and trajectory queries. A range query returns all objects within a given spatial

and/or temporal range. A kNN query returns the k nearest neighbours by distance to a given

object, usually along the spatial dimension, but can also be done across the temporal dimension.

A trajectory query returns all locations within a given temporal range for a given identifiable

moving object. An illustration of what the queries look like can be seen in figure 2.1.

4

(a) Range query on spa-

tial and temporal dimen-

sion

(b) kNN query on spa-

tial dimension, k=4

(c) Trajectory query on

temporal dimension

Figure 2.1: Illustration of range, kNN and trajectory queries on spatiotemporal point-data.

2.2 Scalability

Scaling a system is the act of adding more resources to a system to meet increased demands, while

scalability refers to the system’s ability to integrate and use the added resources. Four general

types of scalability may be considered [8]. These are load, space, space-time, and structural

scalability. Taken together these concepts may provide a good indication of how well a given

system scales.

• Load scalability refers to the degree to which the system can efficiently and smoothly

operate under varying degrees of loads. Using various scheduling and load balancing

techniques, as well as improving the elasticity of the system enables load scalability.

• Space scalability describes the degree to which the system is able to support increased

memory requirements, and how the memory requirements increase as the system scales.

Using access methods with small space overhead and compression techniques may increase

the space scalability of a system.

• Space-time scalability refers to how well the system continues to operate as the number of

objects in the system increase. Using algorithms and access methods with logarithmic or

constant time complexity for operations may enable space-time scalability.

• Structural scalability denotes how the structural design choices of a system affect scaling

as the number of objects increase. For instance, increasing the bits used for adressing

from 32 to 64 bits, as in IPv4 vs. IPv6 increases the structural scalability of the Internet

Protocol and systems that depend on it.

5

2.3 Distributed Key-Value Stores

A distributed data store is a network of connected servers where the data and data access is

distributed across the network [9]. Each component in the network may be referred to as a node,

and data is typically replicated between nodes to reduce the risk of data loss when nodes fail. A

distributed key-value store is a type of distributed data store which stores data in key-value pairs.

Distributed key-value stores differ from other distributed databases in that they only provide

simple key-value querying mechanisms, rather than full fledged SQL style query mechanisms.

This can make supporting advanced queries on distributed key-value stores difficult, but the

simple data model allows for robust and easily scalable systems. Because of this lack of full SQL

support, distributed data stores of this type are often known as NoSQL databases. An extension

of the distributed key-value store is the wide-column store, which can be conceptualized as a

two dimensional key-value store. As there are several different implementations of distributed

key-value stores, rather than look at specific implementation details we will describe some overall

characteristics and concepts used in their design.

2.3.1 ACID, BASE, CAP Theorem and PACELC

ACID (Atomicity, Consistency, Isolation, Durability) is an acronym used to describe a set

of desirable properties of transactions in transactional databases. A transaction is a single

operation or a set of operations which modify the state of the underlying database system, and

ACID is meant to guarantee the validity of the data in the database even if a transaction or

operation fails in the face of database errors, network failures and crashes.

• Atomicity is a property which guarantees that a transaction either fully succeeds in modi-

fying the state of the system or does not modify it at all. I.e. all operations in a transaction

are fully committed and saved, or none are.

• Consistency guarantees that any transaction that modifies the state of the database system

will bring the system from one valid state to another, and never leave the system in an

invalid state.

• Isolation guarantees that transactions executed concurrently will leave the database in the

same state as if the transactions were executed sequentially.

• Durability ensures that any transaction that has been fully committed will remain com-

mitted in the face of a system failure, and will be written to the database on system

recovery.

Maintaining ACID guarantees in a system typically adds overhead and complexity in the form

of synchronization and protocols, even more so when the system is scaled horizontally. Because

of this, distributed key-value stores seek to remove the overhead and complexity by modeling

themselves on other principles.

6

BASE (Basically Available, Soft state, Eventual Consistency) is a set of modeling principles that

is proposed as an alternative to the ACID transactional model and is the predominant model

on which NoSQL systems are based:

• Basically available means all nodes in the network are available for read and write oper-

ations, but no consistency guarantees are given that a given read will return the latest

version of data stored in the cluster, or that a write will persist if a conflicting write has

been done somewhere else.

• Soft state denotes the fact that without any guarantees of consistency across the system,

we can no longer know exactly which state the system as a whole is in at any given point

in time, only probabilistically.

• Eventual consistency describes the final property, which is that if no new changes in state

are made to the system, the system will eventually converge to a globally consistent state.

Proponents of NoSQL systems contend that forgoing the strict ACID transactional requirements,

and instead modelling the system on BASE principles allows the distributed database to better

scale horizontally, with less performance overhead, lower latency, and higher availability. Mod-

eling systems on the BASE principles however lead to other problems with regards to trade-offs

between consistency and availability.

The CAP (Consistency, Availability, Partition tolerance) theorem [10] is used to reason about

trade-offs in the design of distributed systems such as distributed data stores. The theorem

states that a networked system with shared data can only maintain two out of three guarantees

at the same time, the guarantees being consistency, availability and partition tolerance:

• Consistency is the property of the system to be in a globally consistent state after any

insertion or update. I.e. all committed changes in the state of the data will be consistent

across all nodes in the network which share said data. This property enables all clients of

the system to see the same version of the data at a given point in time.

• Availability denotes the degree to which the system is available and responding to requests.

With perfect availability the system will remain available for and respond to any request

at any given point in time. While availability guarantees that any read request will get a

response, depending on the degree of consistency within the system, it does not guarantee

that the response contains the latest write.

• Partition tolerance denotes the system’s tolerance to network partitions, and refers to

the degree with which the system can satisfy consistency and availability requirements

when the network is partitioned. E.g. a node goes offline or messaging between the

nodes is interrupted and as a result a section of the network is partitioned off or becomes

unavailable.

7

In practice no distributed system can rely on all nodes being online and messaging being un-

interrupted at all times, and so network partition tolerance is a fundamental requirement for

distributed data stores. Furthermore as the number of nodes and interconnects increase with

scale, the likelihood of a node failure and messaging failure also increases, making partition

tolerance increasingly important as the system scales. In systems where partition tolerance is

a requirement the CAP theorem comes into play whenever such a network partition occurs.

Consider the case where a node goes offline and a read request is made for data recently written

to that node: The system must either refuse or ignore the request, decreasing the availability of

the system; alternatively the system can respond with a copy of the requested data stored on

a replica node, which increases the availability at the cost of consistency because the replicated

data may not be consistent with the data that the offline node was storing.

PACELC (Partition tolerance, Availability, Consistency, Else Latency, Consistency) [11] is an

extension of the CAP theorem which states that when network partitioning is not occurring,

a tradeoff has to be made between enforcing global consistency and the latency of a system.

Enforcing global consistency increases latency because of synchronization overhead as well as

increased writes in order to furnish replicas with fresh data. On the other hand, latency can be

lowered on the expense of consistency by removing these synchronizations and extra writes.

Further considerations

Database systems can be classified according to which two properties out of consistency, avail-

ability and partition tolerance they guarantee. CA focused systems choose consistency and

availability over network partition tolerance. These systems do either not support network par-

titioning at all, or if a network failure occurs the system shuts down completely until it has

been manually recovered. CP focused systems choose consistency and partition tolerance over

availability. The system will keep its consistency in the face of a network failure, but will become

unavailable, requests resulting in either error responses or being ignored. Finally, AP focused

systems focus on availability and partition tolerance, and will always try to serve requests in the

case of network failures. Even if the response is inconsistent with state stored on other network

partitions.

When indexing spatiotemporal data in a distributed key-value store the concepts mentioned

above must be taken into account. The system must be partition tolerant in order to scale, so

the choice lies between availability and consistency. Combining the CAP theorem and PACELC

we find that if the system requires low latency reads and writes and needs to be available at

all times, an AP focused system should be chosen. If keeping the system in a consistent state

at all times is crucial and availability and low-latency less so, a CP focused system should be

chosen. We will consider these properties again when discussing the viability of using distributed

key-value stores to index and query spatiotemporal data in real-time.

It is also important to note that in the case that the system is operating normally, both consis-

tency and availability can be satisfied, and it is only during a network partition that the system

8

must choose between availability and consistency. The choice between consistency, availability

and partition tolerance are not binary choices, most systems will support all to a certain degree,

the theorem is concerned with the choice between perfect consistence, availability and partition

tolerance. As Brewer states in ’CAP twelve years later: How the ”rules” have changed’ [12]:

Although designers still need to choose between consistency and availability when par-

titions are present, there is an incredible range of flexibility for handling partitions

and recovering from them. The modern CAP goal should be to maximize combina-

tions of consistency and availability that make sense for the specific application.

2.3.2 Partitioning of Data

The partitioning of data allow a distributed key-value store to distribute incoming data and

requests across different nodes and is typically done by partitioning the data according to the

key. Partitioning is employed in distributed key-value stores mainly for load balancing and

availability purposes. Partitioning is a complex subject, but the main relevant concepts will be

described briefly in this section.

There are several different partitioning schemes that can be employed in distributed systems

and distributed key-value stores typically use hash partitioning. In hash partitioning a hash

function is applied to incoming keys and the resulting hash is used to determine which node in

the network is currently storing, or should store the key-value pair. Each node in the system has

a token or a range of tokens associated with it, and a simple linear hash function to determine

the correct node in which to store an incoming key would be token = hash(key)modN , where

N is the number of nodes in the cluster and token is the token associated with a node. This

technique works well if the number of nodes remains constant over time, but in a scalable system

where nodes go offline and online continually it runs into problems because the same key will

be hashed to different nodes when N changes, and a rehashing of all the keys in the database

would be necessary to make the hash table consistent again.

To solve the problem of varying node counts consistent hashing with a ring architecture is

employed. Consistent hashing can be modeled as hashing values to ranges on a circle, where

each node assumes responsibility for a given range on the circle. When a node is added it

assumes responsibility for part of it’s neighboring nodes ranges, and when a node is removed it

distributes its keys to its neighbors. The entire keyspace is divided equally among the available

nodes as each node can be responsible for a range of tokens.

The choice of hash function for generating the partitioning tokens is significant. Using a ran-

domizing hash function like Murmur3 will essentially provide system load balancing properties

for free, since incoming keys will be distributed evenly across the nodes. However it is a poor

choice where range queries must be supported because it destroys the order of the incoming

data resulting in a range query having to read from several nodes, then concatenating the re-

sult, rather than performing a sequential read. In such a case an order preserving function such

9

as the identity function may be chosen, which will preserve the global order of keys across the

nodes, but will lose the property of load balancing. In practice in systems like Cassandra, a

Murmur3 partitioner is used, and ordering of keys is maintained within each node. Murmur3

provides an even distribution of the incoming data across the nodes given that the incoming

keys are evenly distributed, since spatiotemporal data is typically skewed, a custom partitioning

scheme could be necessary in order to enable good load balancing between the nodes.

2.4 Space-Filling Curves

(a) Row-Major Or-

der

(b) Scan Order (c) Z-Order (d) Hilbert Order (e) Peano Order

Figure 2.2: Examples of different ways to order a 2-dimensional space using space-filling curves

Space-filling curves are employed as a linearization technique to map multidimensional data such

as spatiotemporal data to one-dimensional values and allows for the indexing and querying of

spatiotemporal data using access methods designed for one-dimensional data. For the purposes

of this thesis, a space-filling curve is defined as a surjective function which maps each value in a

discretized n-dimensional space onto a one-dimensional line while preserving the locality of the

input data. The strict mathematical definition of a space-filling curve differs somewhat from

the definition commonly employed when linearizing multidimensional data. As a linearization

technique the space-filling curve can be conceptualized as being any function that provides

an ordered traversal of the points belonging to an n-dimensional space. Some examples of

space-filling curves and their traversal order of 2-dimensional squares are shown in figure 2.2.

There exists many different space-filling curves and they have different properties. This section

discusses locality measures of space-filling curves especially relevant for indexing and querying

spatiotemporal data: the z-order and Hilbert curve. And describes how encoding, decoding and

querying spatiotemporal data with space-filling curves work.

2.4.1 Properties of Space-Filling Curves

The degree to which a space-filling curve preserves the original locality of the encoded data is an

important measure when indexing and querying spatiotemporal data. Preservation of locality

refers to how close to each other points in a spatiotemporal space end up when mapped to a

one-dimensional space. Haverkort [13] gives a summary of different quality measures used for

evaluating how well space-filling curves preserve locality in two dimensions. The ones mainly

relevant for use with spatiotemporal data are:

10

1. Bounds on the worst case or average distance between two points in the plane as a function

of their distance along the space-filling curve.

2. Bounds on the average distance between two points along the curve as a function of their

distance in the plane.

3. Bounds on the worst case or average number of contiguous sections of the curve needed to

cover an axis-parallel query window.

Measure 1 and 2 indicate how well a given curve decodes and encodes spatiotemporal data re-

spectively. Ideally, objects close on the space-filling curve will be close in the spatiotemporal

coordinate space and objects close in the spatiotemporal coordinate space will be indexed closely

together on the space-filling curve. These measures are particularly important when spatiotem-

poral data is sorted according to its encoded value because decoded values will then also be

located close together in the spatiotemporal space, which is an important property to be able to

support kNN-queries by neighborhood propagation well. Measure 3 is be important because it

indicates how well a given curve will support range queries. A curve with a high worst case or

average number of contiguous sections needed will result in a large number of individual ranges

to be scanned, which introduces overhead to the querying process in the form of preparing and

executing many separate range queries instead of a few. In addition, with fewer, larger range

queries we may benefit from sequential access, while a big number of small range queries will

give us an access pattern closer to random access. In practice choosing the best curve is a matter

of implementation complexity versus locality preservation. Curves with good locality tend to be

more complex to implement and compute, while curves such as the Z-order, with worse locality

measures are simpler to implement and compute. Experiments also demonstrate that the gains

from implementing a certain curve might be outweighed by the additional computational costs

needed in the encoding and decoding process [14], so it is not certain that space-filling curve

measures directly translate into real-world performance gains.

Space-filling curves may be classified into two kinds of traversals: discontinuous and continuous

[15]. A continous curve guarantees that for any point along the curve, pi, then the points pi−1

and pi+1 will at most be located one distance unit away from eachother in the multidimensional

space. On the other hand, a discontinuous curve makes no such guarantees, and consecutive

points on the curve may be located any distance from eachother in multidimensional space. Typ-

ically a continuous curve will generate fewer and larger consecutive ranges than a discontinuous

curve, but as mentioned earlier they are typically more complex to implement and require more

processing power because operations such as flipping and rotating of the bits are needed in the

encoding and decoding process.

Furthermore, space-filling curves can be divided into self-similar and non-self-similar curves. Self-

similar curves can be recursively decomposed by subdividing the n-dimensional space into equally

sized partitions. Recursive decomposition enables easy parallelization of the decomposition task

as well as enabling fast range generation for queries without sacrificing precision. Non-self-

similar curves such as the scan-order curve shown in 2.2b can not be decomposed in the same

way and as such do not easily derive the benefits of recursive decomposition.

11

2.4.2 Z-order curve

The Z-order curve shown in figure 2.2c is a discontinuous, self-similar space-filling curve which is

commonly used because it is comparatively simple to encode and decode. Because the ordering

contains no rotations or flips of cells and is self-similar, encoding values may be achieved by

interleaving bits of the spatiotemporal coordinate values, essentially resulting in an equivalent

ordering to a depth-first traversal of a quadtree when encoding 2-dimensions, and an equivalent

ordering to an oct-tree when encoding 3-dimensions. An illustration of three decompositions of

a 2-dimensional space to encode a coordinate pair (x, y) is shown in figure 2.3.

Figure 2.3: Three stages of decomposition of a coordinate space using z-ordering

As we can see from the figure, the curve is recursively decomposed into similar pieces, and

each index in the space-filling curve is a result of interleaving the bits the x and y coordinate

at a given resolution, starting from the most significant bits of each dimension. This has the

desirable property that we can from any given z-order encoded index know which quadrant it is

located in just by examining the bits from left to right. This property enables quick encoding

of coordinates as well as fast decomposition of range queries.

Expanding the Z-order curve to encode coordinates located in n-dimensional coordinate spaces,

like 3-dimensional spatiotemporal coordinate spaces is a simply a matter of interleaving another

bit into the sequence for each dimension, and works in the same way. I.e. if we have coordinate

(x, y, t), and m bits per dimension; starting from the most significant bit of each coordinate, the

encoded value would be x0y0t0x1y1t1...xm−1ym−1tm−1.

Decoding an encoded value is done by reversing the process mentioned above, and requires the

number of bits used per dimension as well as the number of dimensions in the encoding process to

be known. Given an encoded value of a three dimensional coordinate with 4 bits of precision per

dimension, 010 100 101 010, corresponds to the coordinate tuple (x, y, t), x = 0110, y = 1001, t =

0010→ (6, 5, 2).

12

2.4.3 Hilbert curve

The Hilbert curve shown in figure 2.2d is a continuous, self-similar space-filling curve employed

for its superior locality preserving properties. Because it is self-similar it can be decomposed

using a recursive approach similar to the one described for the Z-order curve, however since it is

a continuous curve and the ordering of the points in a given sub-region varies, the encoding and

decoding process requires rotation and flip operations in order to calculate the correct index.

Figure 2.4 shows three stages of decomposition of a Hilbert curve, and shows how the ordering

from smallest to largest index varies within a given sub-region changes depending on the degree

of decomposition.

Figure 2.4: Three stages of decomposition of a coordinate space using the Hilbert curve ordering

A Hilbert curve can also be defined for three-dimensions and up. Haverkort explores a subset of

the three dimensional variants in [16]. A generalisation of the Hilbert curve for n-dimensional

spaces with uneven side lengths, the compact Hilbert Curve has also been developed [17].

2.4.4 Spatiotemporal Queries using Space-Filling Curves

Performing spatiotemporal queries on space-filling curves can be modeled as a four step process,

similar to the query processing phases in SQL:

1. Query formulation: A spatiotemporal query is formulated in a given query language, then

sent to the spatiotemporal data store for a response.

2. Query parsing, conversion and planning : The received query is parsed and converted from

a spatiotemporal query into a series of one-dimensional queries on the underlying space-

filling curves using a query planner. An optional optimization phase on the resulting

ranges could also be performed before constructing the final query plan.

3. Query execution: The one-dimensional queries are executed against the space-filling curve

encoded data in the underlying data store and results are retrieved.

4. Returning results: The results are consolidated, optionally converted from one-dimensional

to spatiotemporal data using a decoder, and returned to the requester.

13

The above model suggests some key components that must be present in a system for enabling

queries using a space-filling curve:

1. An encoder, decoder pair : An encoder turns any multidimensional data into an index along

a given space-filling curve. A decoder turns any index along a given space-filling curve

into a multidimensional datapoint. Both the encoder and decoder must be specifically

implemented for a given space-filling curve, and must have access to the cardinality of the

vector space to be encoded, as well as each dimension’s length. The encoder and decoder

adds a constant cost each time they are used to the querying process, and as such an

efficient implementation of both must be considered.

2. A query planner : the query planner uses the encoder and decoder, as well as knowledge

about the shape of the underlying space-filling curve and the space which it encodes to

produce a series of one-dimensional queries that when executed should produce equivalent

to the original query being performed in a multidimensional spatiotemporal database. The

ideal query planner should compute the fastest and most precise way to query the space-

filling curve in the shortest amount of time. In practice these two concerns work against

eachother, so a trade-off between accuracy and computation time is usually made.

The above overview of the process enables a description of how specific simple spatiotemporal

queries may be performed on data encoded in a space-filling curve:

Range Query

A spatiotemporal query that wants to retrieve all points in a given range can be expressed as a

vector describing a bounding box in 3-dimensional space, with the following values:

[longitudemin, latitudemin, timemin, longitudemax, latitudemax, timemax]

This vector is then sent to a query planner, which proceeds to generate a query plan consisting

of a set of 1-dimensional ranges which cover the region using a given encoder and decoder

and a query planning algorithm. Each 1-dimensional range search is then executed against the

underlying data store, the results are aggregated and returned.

Polygon Queries

A spatiotemporal query that wants to retrieve all given points within a polygon expressed as

a series of points in three dimensions is an extension of the range query. The query planner

typically calculates the minimum bounding box of the given polygon, then proceeds to generate

the one-dimensional ranges covering the bounding box, and filters out the part of the ranges not

covered by the polygon using a point-in-polygon test.

14

k-NN Queries

A spatiotemporal k-NN query may be performed across either the temporal dimension, spatial

dimension, or both. A k-NN query will have different semantics depending on what dimensions

is queried. The basic way of performing a k-NN query without any external distance tables is

typicall done by a method known as neighborhood propagation. First, the given point that we

want to find the nearest neighbors to is calculated to a corresponding index on the space-filling

curve. A search rectangle or box is then constructed around this with a given extent. This extent

is then decomposed into one-dimensional ranges and the range queries are executed against the

underlying data store. If the amount of objects returned from the query is larger than k, the

returned objects are sorted according to their distances and the top-k points are returned. If the

number of objects is equal to k, then all objects are returned. If the number of objects returned

is less than k, the search extent is widened and the process repeats until the k objects are found.

While there exists several variations on how to implement the queries described above, the

general concepts of how the queries are performed still apply. The main function of the query

planner in all of the above queries is to efficiently deconstruct a given spatiotemporal range into

a series of ranges. Specific methods employed for doing this are discussed in the next chapter

where we examine how GeoWave and GeoMesa use space-filling curves to enable indexing and

querying of spatiotemporal data.

2.5 Access Methods for Indexing and Querying Linearized Spa-

tiotemporal Data

A wide array of access methods have been developed and used for supporting the indexing and

querying of spatiotemporal data in spatiotemporal databases[18, 19, 20]. The access methods for

spatiotemporal data can be classified in four main categories based on what kind of time frame

the data to be indexed exists in. These are spatiotemporal index for the current, recent-past,

past and future. They may be further divided into non-parallel and parallel/distributed access

methods.

As we are interested in indexing and querying both current and historical data using space-

filling curves, the general access methods useful for purpose will be described. In principle any

one-dimensional access method can be used in conjunction with space-filling curves as they work

by linearizing multidimensional data; however different access methods have various trade-offs

with regards to insertion and querying and each of them will be evaluated with regards to using

them in conjunction with space-filling curves to index and query large amounts of real-time

spatiotemporal data.

15

2.5.1 B-Tree

B-trees are self-balancing search trees that allow retrieval, insertion and deletion of keys with

O(logm n) worst case and average time complexity, where n describes the number of elements

being indexed in the tree and m sets the bounds for the number of elements and child nodes for

each node [21]. The root of the tree holds [1, 2m] elements, while each node in the tree holds

[m, 2m] elements. The root node has [2, 2m+1] children while internal nodes have [m+1, 2m+1]

children. The minimum and maximum height hmin, hmax of a B-tree is given by the formulas

hmin = dlog2m+1(n + 1)e − 1 and hmax = blogm+1((n + 1)/2)c. There are different ways of

defining the order of a B-tree, but we will consider the order of a B-tree to be equal to the

maximum number of children for internal nodes, 2m + 1.

Each element in a node consists of a a key which points at a record, k; a value associated with the

key, v; and an associated pointer to a child node, psmaller. v represents the largest value indexed

in the child node pointed to by psmaller as well as the value associated with k. In addition, each

node has null element at the end of the array which cointains a pointer, plarger, which points to

a child node that indexes keys with values larger than the largest value in the current node.

Retrieving a record associated with a key r in a B-tree is performed by recursively traversing

the tree from the root to a leaf node. For each key, k, in a node starting from the smallest

we compare r to v. If r = vk we return the data pointed by k. If r < vk we follow psmaller

to the child node. If we traverse all the elements in the node without finding a key where

r < vk and plarger 6= nullptr we follow plarger. If the first element has psmaller = nullptr, and

plarger = nullptr we know we are in a leaf node of the tree. If none of the elements in the leaf

node has r = vk, the record does not exist.

Inserting a key value pair, kv, in a B-tree starts with finding the leaf node where kv should be

inserted. This is accomplished by attempting to retrieve kv from the tree and selecting the leaf

node in which the retrieval process ends up. If we encounter a node that has a key where the

value of kvnode = kvinsert we may choose to update the key at the node or simply do nothing and

return. If the leaf node marked for insertion contains less than the maxium allowed number of

elements for a node we can insert kv directly into the node, keeping the keys in the node sorted

by value. If the node is full we need to evenly split the node into two nodes. First we choose

the median of the key-value pairs in the node including kv, then the keys with values less than

the median are put in the new left node, and the keys with values greater than the median are

put in the new right node, with the median key acting as the separation key. The separation

key is then inserted into the node’s parent, which will be directly inserted if the parent node is

not full, or, if the parent node is full a new split will be performed. If the node to be split is the

root, a new root node is created above the root increasing the height of the tree. The number of

split operations that need to be performed during an insert is bound by the height of the tree,

which gives the insertion operation its logarithmic time complexity.

Deleting a key, k, in a B-tree is done by first retrieving k from the tree, deleting it, then

rebalancing the tree so that the nodes so that the nodes retain the proper amount of keys and

16

children. In our case we would typically only insert and retrieve keys from the tree, so the

rebalancing process will not be described in further detail.

An illustration of a B-tree where 14 elements were inserted in ascending order is shown in 2.5.

Figure 2.5: B-Tree of order 3 containing 14 keys.

Evaluation

A range query for all keys in a range [k0, ki] in a B-tree would have to perform a retrieval

operation for each of the keys in the range, which would give a range query a time complexity

of O(i logm n). This means a range query has linear increase in time complexity as the number

of elements in a range increases. Because spatiotemporal range queries on space-filling curves

typically involve a high number of range queries, this makes the B-tree ill suited for this purpose.

As mentioned above the insertion complexity of a B-tree increases logarithmically as the number

of elements indexed increase. Even though this is a relatively small increase in complexity as

the number of elements increased, it will still have an impact on the write throughput as the

number of elements increase. For instance, let 10o be the number of elements indexed by the

tree, then the current maximum write throughput, tc, as a function of the order of magnitude

and initial maximum write throughput ti will be given by tc = ti ∗ (1/o). If we reformulate this

to express how much initial throughput we need from a system in order to support a throughput

at a given order of magnitude we get, ti = tc ∗ o. It follows that the resources needed to keep

a certain throughput level scales linearly with the order of magnitude of keys currently being

indexed and the desired insertion throughput.

2.5.2 B+ Tree

The B+ tree [22, p. 652-660] is variant of the B-tree structured similarly in that each node can

contain a certain minimum and maximum amount of children and keys. There are some key

differences between the two trees which will be described. The first is that a B+ tree stores

only keys, and not key-value pairs. The second is that B+ trees store all the keys in the leaf

nodes, and root and internal nodes store a copy which indicates the range of the keys stored in

the child nodes. The third is that each leaf node contains a pointer to the next leaf node in the

series which contain keys with values higher than the node.

17

As all the keys are stored in the leaf nodes, every retrieval of a key needs to traverse the entire

tree to the leaf node, and can not exit early as in the case of the B-tree, this means that a high

fanout, i.e. a high number of maximum elements per node, is desirable in order to reduce the

overall height of the tree. A higher fanout results in a shorter path to the leaf nodes.

Retrieving a key from a B+ tree is done in a similar fashion to the B-tree. The tree is traversed

from the root to the leaf nodes comparing the key, k, to each key in the node, kn. If k < kn

we traverse the pointer to the child node to the left of the current key. If kn < k <= kn+1 we

traverse the pointer to the right child node of the current key. If k is larger than the last kn in

the node we traverse the pointer to the rightmost child node of the current node. This process

is repeated until we arrive at a leaf node, at which point the leaf node is returned.

Inserting a key into a B+ tree also works similarly to the B-tree, first finding the leaf node in

which the key should be inserted, then inserting the key and rebalancing the tree recursively up

to the root if the leaf node is full. There are some implementation differences between inserting

in a B+ tree and a B-tree, but for brevity they will be omitted.

The time complexity of inserting and retrieving a key from a B+ tree is O(logm n), the same

as in the B-tree. An illustration of a B+ tree of the same number of elements and order as the

B-tree in figure 2.5 is shown in figure 2.6.

Figure 2.6: B+ Tree of order 3 containing 14 keys.

Evaluation

The B+ tree has one key advantage over the B-tree in relation to range queries. As the leaf

nodes are linked together by pointers, only the leaf node containing the lowest key in the range

has to be retrieved. The rest of the leaf nodes can be accessed sequentially by following each

pointer until the largest key in the range is found. This means that a range query for keys in the

range [k0, ki] time complexity of O(logm n + i) rather than the B-tree’s O(i logm n), which is a

substantial improvement, and makes the B+ tree much better suited for range intensive queries.

The similarity of the B+ and regular B-tree means that the other remarks made in the evaluation

of the B-tree also apply to the B+ tree. In addition, the B+-tree may have a higher storage

overhead than the B-tree as copies of keys are stored internally.

18

2.5.3 Log-Structured Merge-tree

The Log-Structured Merge-tree (LSM-tree) is designed to provide an indexing method for sit-

uations where a high volume of insertions of key-value pairs are required without sacrificing

insertion performance as the number of elements indexed increase [23]. To achieve this, an

LSM-tree exploits the characteristics of the underlying storage medium by maintaining separate

indexes for each medium. These indexes are intermittently merged using batch strategies when

an index is full, or after a certain time period in a process referred to as a compaction.

An LSM-tree maintain its data in at least two levels, where each level represents a tree-like index

optimized for the underlying storage medium. In the paper O’Neil et. al. uses an LSM-tree with

two levels, c0 and c1, for illustration, but there can be any number of levels and more levels are

often used in practice. In the case of two levels c0 resides in main memory, and c1...ci typically

reside on slower, larger storage mediums.

Incoming data is inserted into c0, which resides in main memory. The tree c0, has a specified

threshold size, and if the record that is inserted should make c0 reach it’s threshold, then the

lowest k entries in c0 are removed from the tree and reorganized into a full leaf node in the

tree at c1. If there are more than two levels, and c1 is full, the same process is repeated for

c1, compacting the lowest entries in c1 into a full leaf node for c2, and so on. As the levels

are compacted they grow larger, so c0 < c1 < ci. Because the index residing in main memory

typically contains comparatively few elements, the insertion time complexity in relation to the

total number of elements in the database is O(1), where 1 represents the time it takes to insert

a key into the in-memory tree.

The data in secondary storage in an LSM-tree is organized into runs of data, sorted by the index

key. The runs can be stored as a single file or as a collection of files with non-overlapping key

ranges.

Querying an LSM-tree for a key k is done by looking up the key in the in-memory c0 tree, as well

as looking up k in each of the runs, typically using a binary search for each run. The worst case

of querying for a key is thus O(N), where N is the number of runs in the LSM-tree. Because

the runs reside on slower storage, the base cost to search a run is high. Assuming the tree in

c0 is a B-tree variant with nc0 elements, and the search for each run containing nr elements is

performed using a binary search we thus get a total time complexity of O(log nc0 + N log nr

to look up a single key.

Bloom filters [24] are often used in conjunction with LSM-trees to minimize the associated cost

of reading a key. A bloom filter for each run is maintained in-memory, and is consulted before

searching for a key in a run. The bloom filter is a compact representation of the elements

contained in a given set, and by hashing a key against the filter one can determine whether a

given key does not exist in the set. This saves having to search for the key in runs where the

key does not exist; however, the bloom filter does nothing for determining whether a key exists

in a set, so these runs will still have to be scanned.

19

An simplified illustration of the overall structure of an LSM-tree is shown in figure 2.7.

Evaluation

Range queries can be performed in LSM-trees, but suffer from the same limitations in read

performance that single key queries do. A naive range query in an LSM-tree is performed by

first searching for the lowest key in the range to be searched, then if the key is found in a run,

sequentially scanning the run for all the keys until either the range query is exhausted, or a new

key search must be performed in order to find the run with the next sequence of keys in the

range. If one is searching for large consecutive ranges, and have a relatively low number of large

runs to search in, a range query may perform acceptably. However, if the number of ranges is

high, and many of the ranges are small ranges, a range query will generally perform worse.

Because of the LSM-tree’s good write characteristics distributed key-value stores are often built

on this access method. In addition, because the data is stored in different levels asynchronous

compression techniques can be employed on the lower levels in order to reduce the size of

the database. In the endm choosing a LSM-tree or B+ tree as the underlying access method

for indexing and querying spatiotemporal data comes down to a tradeoff between acceptable

read and write speeds, or low read speeds and high write speeds. There has been much work

done on both improving LSM trees for mixed workloads [25, 26], as well as work showing that

highly parallelized implementations of B+ trees can outperform LSM trees on both insertion

and querying workloads [27]. An LSM-tree which amortizes insertion cost across several larger

less expensive disks and can be highly compressed, will possibly be a good choice of access

method if one expects the spatiotemporal workload to be write intensive, and not particularly

read intensive.

Figure 2.7: LSM-tree with levels 0 ... i

20

Chapter 3

Methods for Indexing and Querying

Spatio-Temporal Data in Distributed

Key-Value Stores

This chapter examines how indexing and querying of spatiotemporal data using space-filling

curves and distributed key-value stores is accomplished in two existing state-of-the-art systems:

GeoMesa and GeoWave. This is done in order to attempt to answer the first research question:

”How can space-filling curves be used in conjunction with horizontally scalable key-value stores

in order to index and query spatiotemporal data?”.

3.1 GeoMesa

GeoMesa [28, 29, 30] is an open source collection of tools licensed under the Apache 2.0 license

that, among other things, enable the indexing and querying of spatial and spatiotemporal data

with key-value and wide-column stores. GeoMesa does not provide its own underlying data store,

but works as a middleware layer that supports several existing open source data stores including

Apache Accumulo, Apache Cassandra and Redis. GeoMesa is written in Java/Scala and is

maintained by LocationTech, an Eclipse Foundation working group. GeoMesa was originally

made to support the efficient indexing and retireval of spatiotemporal point data, but has grown

over time to support polygons, secondary attributes and more complex queries. The system uses

the Extended Common Query Language as its query language. GeoMesa also includes tools for

visualizing spatiotemporal data, but our focus is on how the indexing and querying works.

3.1.1 Indexing

GeoMesa supports spatiotemporal indexing through two kinds of space-filling curves: the Z3

index, which is a three dimensional Z-order curve as mentioned in section 2.4.2; and the XZ3

21

curve, which is a three dimensional space-filling curve for non-point spatiotemporal data.

The user defines a schema through a SimpleFeatureType object, which defines the attributes of

the object that is to be indexed. According to the object attributes specified schema GeoMesa

creates indexes to support querying of each attribute. If the schema specifies both a Geometry

Point and Date type, GeoMesa will generate a Z3 index based on a three-dimensional Z-curve.

Since time is a potentially unbounded dimension and a space-filling curve must operate in a

bounded space, GeoMesa will partition the temporal dimension into periods known as epochs

using an approach known as time binning. By default each epoch represents one week, but

may also be configured to represent day, month or year intervals. Choosing an epoch length

depends on what kind of queries are expected to be executed. If the user expects to execute

predominantly short range temporal queries consisting of a few minutes, the index may perform

better with an epoch interval of a day. On the other hand if the user expects the workload to

consist of mainly long range queries such as several months, the index may perform better with

an epoch interval of months or years. This is due to the fact that the larger the epoch, the more

keys will have to be scanned within each bin for a temporal range query, and a small epoch

interval will allow a query to quickly narrow down to the relevant epoch before scanning.

Tables are split according to the rows, and GeoMesa supports splitting tables according to

different attributes. Typically for a Z3 curve the table is split based on the time prefix, i.e.

epoch.

Using the schema information, a key structure is constructed that fits the underlying data store.

An example of the key-structure used for Accumulo is shown in figure 3.1. As the figure shows

the row-key consists of an epoch number, Z3 index and UUID.

Figure 3.1: The structure of an Accumulo key generated by GeoMesa for spatiotemporal point-

data [31]

As GeoMesa is a middleware layer and positions itself in between the data source and underlying

data store a variety of ingestion configurations are possible, an example architecture from the

GeoMesa documentation is shown in figure 3.2.

22

Figure 3.2: Sample Ingest Architecture for Apache Accumulo data store [32]

3.1.2 Queries

GeoMesa supports arbitrary ECQL queries, which include bounding-box/range queries, inter-

section queries, temporal operators and logical filters. The fact that the user can specify cus-

tomizable index schemas and that GeoMesa aims to support full ECQL support adds complexity

to the query planning process.

Query planning in GeoMesa consists of the following steps. Firstly the CQL query is processed

and split based on the indices stored. Then an appropriate index is chosen that can support the

query best, i.e. if the query is on spatiotemporal point data the Z3 index will be chosen. After

this an abstract query plan for the given index is created by GeoMesa which is translated into

a physical query plan compatible with the underlying data store.

GeoMesa selects the appropriate index to use for a given query using one of two strategies:

1. A cost-based strategy, using cached statistics about the datasets in order to select the best

index. The stats collected include total count of items in the dataset, histogram and top-k

for any indexed attributes.

2. A heuristic strategy, which uses a set of priorities based on the contents of the query in

order. E.g. if the query contains spatiotemporal predicates on point data, the Z3 index

will be used etc.

A range query on the Z3 curve is performed in the classic manner, by decomposing ranges on

the Z3 curve into ranges that overlap with the bounding box specified by the range query. If

23

the query includes a temporal range, first the range will include only epochs that contain points

within the temporal range, and the query is further decomposed into ranges on the Z3 curve in

each epoch. K-NN queries are performed by using an expanding query window, which expands

the search window until k neighbors have been found.

As with indexing, GeoMesa supports a number of configurations for querying data. An example

setup based on the GeoMesa documentation is shown in figure 3.3.

Figure 3.3: Sample Query Architecture for Apache Accumulo data store [33]

3.2 GeoWave

Geowave [34, 35, 36] is an open source set of software that aims to add generalized multidi-

mensional indexing capabilities to key-value stores. It also includes support for indexing and

querying spatiotemporal data. Like GeoMesa it is not a key-value store in itself, but acts as a

middleware layer to a pluggable key-value store backend. Currently supported data stores are

Apache Accumulo, Apache HBase, Apache Cassandra, Amazon DynamoDB, Google BigTable,

Redis, RocksDB and Apache Kudu. GeoWave, like GeoMesa, also includes plugins for sharing

and visualization of geospatial data, is written in Java/Scala and maintained by LocationTech.

Unlike GeoMesa, which requires a separate index for attributes that exceed the spatiotemporal

dimensions GeoWave can index data of higher dimensionality by using n-dimensional space-filling

curves.

3.2.1 Indexing

GeoWave consists of three main components: data stores, indices and adapters. A data store

implements an interface to communicate to an underlying key-value store; the indices are used

in order to specify how data should be indexed and retrieved; and the adapters specify how

24

incoming data should be transformed in order to fit with the schema defined by an index. An

overview of the architecture taken from GeoWave’s documentation is shown in figure 3.4.

Figure 3.4: GeoWave Architecture [37]

GeoWave uses a default key structure shown in figure 3.5. Of special interest is the partition

key and sort key. The partition key is unused by default, but if specified enables GeoWave

to partition the spatiotemporal data across different nodes according to a partition strategy

which may improve load balance in scenarios where the distribution of the input data is skewed.

The currently supported partitioning strategies in GeoWave are round robin and hash-based

partitioning, but custom partitioning strategies may be implemented. The sort key is the result

of the indexing strategy used to index the spatiotemporal data, and is the value rows will be

sorted by.

Figure 3.5: GeoWave Key Structure [38]

An index in GeoWave consists of a common index model and an index strategy. The index

model defines the dimensionality of the data to be indexed. When indexing spatiotemporal data

a user first defines three dimensions with given precisions in order to construct the common

index model. After the common index model is constructed an indexing strategy is chosen. The

indexing strategy determines how the key to be stored in the underlying data store is structured.

GeoWave supplies several indexing strategies to choose from, as shown in figure 3.6. Out of these

the, TieredSFCIndexStrategy is the primary index strategy GeoWave supports.

25

Figure 3.6: GeoWave Indexing Strategies [39]

While GeoWave supports extending the indexing strategies to support custom space-filling

curves; two different space-filling curves are implemented by default: the Z-Order curve and

the Hilbert curve. The Z-order curve is implemented using the bit interleaving approach men-

tioned in section 2.4.2 and the Hilbert curve implementation is based on the compact Hilbert

curve mentioned in section 2.4.3. The fact that the compact Hilbert curve can have different

side lengths for each dimension is exploited in GeoWave in that different precisions can be spec-

ified for each value of the data to be indexed. E.g. if the spatiotemporal indexing requires

high precision on the spatial dimensions and low precision on the temporal dimension, this is

accommodated by GeoWave and can lead to increased query performance since the coordinate

space can be made less sparse, leading to fewer and shorter ranges that need to be queried. This

allows for the key-length to be only as long as it needs to be to index the data at the wanted

resolution for each of the attributes and this directly leads to better space utilization and lower

storage requirements when storing a large amount of data. A downside of using the compact

Hilbert curve is that it is more complex, and as such requires more computation both when

encoding a spatiotemporal point and when decomposing a query into a series of ranges.

3.2.2 Queries

GeoWave supports simple vector queries, but not arbitrary CQL queries like GeoMesa does.

A GeoWave vector query is composed of a set of filters and index constraints. The index

constraints constrain the dimensional ranges of the queries across the different dimensions of

the index; while the filters provide further filtering of the results returned by retrieving the

ranges inside the index constraints. E.g. querying GeoWave for all spatiotemporal point data

within a given spatial and temporal range would specify three index constraints, one for each

spatiotemporal dimension. As with GeoMesa querying, GeoWave first plans the query on the

space-filling curve, then translates the query plan into a set of queries that are to be run against

the underlying key-value store.

26

Chapter 4

Viability of Near Real-Time

Spatiotemporal Indexing and

Querying using Distributed

Key-Value Stores

The previous chapter showed how GeoMesa and GeoWave can be used to index and query

spatiotemporal data using space-filling curves in conjunction with distributed key-value stores.

In principle both can also be used to index streaming spatiotemporal data in near-real time by

performing ingestion from a stream-processing software such as Apache Kafka. In this chapter

we will attempt to evaluate a key-value store, ScyllaDB, by first defining a set of requirements,

and then examining ScyllaDB’s properties in relation to these requirements to get an indication

of how well it may support near real-time indexing and querying of spatiotemporal data streams.

It was originally planned to implement a system and run experiments in order to benchmark

its real-world performance, but this had to be dropped because of lack of time and resources.

However, we will describe how an experiment evaluating a key-value store’s compatibility with

real-time streaming data could be performed.

4.1 Near Real-Time Indexing and Querying of Spatiotemporal

Data

Real-time systems have constraints on how fast they must deliver responses to requests and

update the state of the underlying system. There are three levels of strictness that may be

imposed based on the level of guarantee that is needed: hard, firm and soft constraints. If a

system operates with hard real-time constraints a broken guarantee will lead to total system

failure. If a system operates with firm real-time constraints then a broken guarantee will be

tolerated, but the system integrity is degraded and the operation that broke the guarantee must

27

be discarded. If a system operates with soft real-time constraints and a guarantee is broken

then the system integrity is gradually degraded the more the constraint is broken. A near real-

time system is typically a real-time system with soft constraints, or larger maximum latency

constraints; guarantees may be broken, but the system is designed in order to best meet the

required constraints for each operation.

In the context of indexing and querying spatiotemporal data with space-filling curves this means

that the indexing operation and querying operations both have constraints on how much time

they have to complete, and this may result in high demands with regards to speed on the

algorithms used to encode and query the data, as well as the underlying key-value store.

Because the constraints will necessarily differ between use-cases, we will first begin by describing

a use-case and then proceed to establish a set of requirements for the given use-case so that we

may evaluate how well the requirements are met by the chosen key-value store.

4.2 Use-Case Description

As a primary reason to use a horizontally scalable key-value store is its ease of scalability we will

consider a use-case that necessitates scaling of the underlying resources. We consider a com-

mon use-case that easily benefits from horizontal scaling: trajectory indexing, which essentially

consists of continuously indexing spatiotemporal point-data with an associated payload.

A system supporting near real-time trajectory indexing must be able to continuously ingest and

index spatiotemporal point-data from an input stream without being overloaded and support

low latency queries on the indexed data. Such a system could be useful as a component of any

system that consists of continuously moving sensors; such as optimizing traffic flow and collision

avoidance for self-driving cars; tracking the movement of large amounts of people in pandemic

or natural disaster scenarios; for business intelligence purposes where the business wants to

index the movement of customers between websites in cyberspace or even to track the flow of

communication packets between nodes in a distributed system.

From the description above we may construct a generalized trajectory indexing use-case with

the following characteristics and requirements in order to establish a framework for further

evaluation:

1. The system must be able to process a high velocity, high volume incoming data stream con-

sisting of a large number of relatively small spatiotemporal data points within a specified

time constraint.

2. The incoming stream of spatiotemporal data should be encoded using a space-filling curve

and subsequently inserted into an underlying key-value store. The time spent processing

and inserting each tuple should ideally remain constant as the number of tuples indexed

increase and must be completed within a specified time constraint.

28

3. The system should at least support indexing within a bounded temporal dimension. If the

temporal bounds of the indexed data are too large to be indexed with satisfying precision,

time binning should be supported.

4. The system should at the least support temporal and spatial range queries on the indexed

data, and the query response time should remain within a specified time constraint. The

query response time should be predictable with regards to the size of the query, and should

ideally remain constant even as the number of indexed elements increase.

4.3 Requirements

Based on the characteristics described in the previous section we can derive some requirements

for the underlying key-value stores and the system. Specifically we will consider requirements

with regards to the CAP theorem, scalability, underlying storage, ingestion and querying.

4.3.1 Consistency, Availability and Partition Tolerance

The system must support network partitioning in order to be scalable, so partition tolerance is

a given for the scenario described above. According to the CAP theorem described in section

2.3.1 this means the system designer must choose between an underlying key-store that is either

highly available or consistent during a network partitioning.

A BASE system only guarantees eventual consistency, but as trajectory indexing is a scenario

where data is continuously written and not intended to be updated this changes how we evaluate

the consistency requirement. As data can be assumed be written in an append-only fashion to

the system, we may also assume that any replicas of the data that exist in the system will be

up to data at any given time after the initial write.

Availability however is a more pressing concern in our scenario. A near real-time system must

ensure that data is written to the system and queries responded to within a given time frame,

and only highly available systems are able to guarantee this in the case of network partitions.

Assuming we choose to use a highly available and partition tolerant key-value store, the PACELC

principle from section 2.3.1 then comes into play. The PACELC principle states that latency

and consistency are direct tradeoffs. In our case consistency comes in the form of how many

replicas of the data that should be stored so that the most recent writes remain available for

querying even when nodes fail. Adding more replicas will increase the amount of writing that

needs to be done for each tuple that is indexed and as such might use disk resources that could

otherwise be used for indexing new tuples. If the write volume is high and a high number of

replicas are made this could possibly decrease the overall throughput of the system. Thus tuning

the number of replicas should also be taken into consideration.

29

4.3.2 Scalability

As mentioned in section 2.2, there exists four main types of scalability: load-, space-, space-

time-, and structural scalability. We will consider each of these with regards to the requirements

of near real-time trajectory indexing and querying.

Load Scalability

Load scalability refers to how well the system can be scaled to handle increasing loads, and

perhaps the most important factor of load scalability is load balancing. Proper load balancing

ensures that all nodes in the cluster are evenly stressed, and allows the system to scale to

accommodate larger loads without having to resort to overprovisioning of system resources.

When indexing spatiotemporal trajectory data the data distribution and throughput will inher-

ently be skewed. Not all sources of data may be active at the same time which leads to varying

levels of throughput that must be supported. In addition the density of the spatiotemporal data

is skewed both spatially and temporally with higher densities in certain temporal and spatial

ranges. I.e. if tracking the trajectories of cars, a higher density may be observed during rush

hour than at other times and cities will have more closely clustered data than rural areas.

Distributing the load evenly across several nodes in a cluster when the data is inherently skewed

is not a trivial problem. One should ideally distribute the load such that when ingesting data

the write load is evenly distributed across the nodes and when performing range queries each

node should not have an inordinate amount of data to search through. Some potential solutions

to the problem of load balancing could be to partition the incoming data to different nodes

based on the data point’s timestamp; its geographical location; or other distinguishing features.

Essentially, high density areas in the spatiotemporal space should involve more nodes, while

low density areas should involve fewer nodes. As we can expect the distribution of densities

not to vary significantly over time over a larger time period such as a month or year, keeping

a histogram of the density distribution could also possibly be used in the partitioning scheme.

Ultimately, this means that the underlying key-value store must provide support for custom

partitioning and load distribution schemes, and this can be considered an essential requirement

for the key-value store with regards to load scalability.

Space Scalability

As space scalability refers to how well the system scales with regards to memory requirements,

a primary aspect of space scalability is how storage capacity requirements increase as more

elements are added to the system. When indexing trajectory data we can roughly predict how

many data-points are to be stored in total based on how many sources are being indexed at

any time on average and what timespan the system will index. I.e. if we have on average 106

concurrent sources of trajectory data, the system needs to provide storage space for around

30

8.64 ∗ 1010 tuples after 24 hours of indexing.

The large amount of tuples that are involved in trajectory indexing means there are two primary

requirements that should be considered with regards to space scalability: The first is to consider

the storage overhead of the index that is being used to store the data. As the number of

tuples stored increase, the index overhead should ideally remain the same; preferrably increase

logarithmically; and in the worst case increase linearly. It follows that the key-value store should

use an index that minimizes the storage overhead. However, using the RUM-conjecture[40], we

see that in reality the index supported by the key-value store must necessarily make trade offs

between write, read and space optimization. As such, the designer of a trajectory indexing

system must choose an index that reflects the available resources. I.e. if the index is to be

stored in main-memory, the designer could choose a space-optimized index; as main-memory is

expensive, but provides fast accesses which may alleviate the added cost of reads and writes.

On the other hand,if the index is based on secondary storage, a write or read optimized index

may be chosen instead. Ultimately the key-value store must support an indexing scheme that

fits the resources available.

The other consideration with regards to space scalability is how well the key-value store supports

compression. Compression can be used either to compress the index itself, alleviating storage

overhead, or compress the stored data, which will reduce the overall storage requirements of the

system as the number of indexed tuples grow. Different key-value stores and indexes support

different compression schemes and it is mentioned as it is something that should be supported

to provide good space scalability.

Space-Time Scalability

Space-time scalability refers to how well the system continues to operate as the number of

objects in the system increase. In order to support good space-time scalability the system

should support an index method where inserting new elements and performing range queries

on indexed elements, ideally has a time complexity of O(1) and in the worst case better than

O(n). As with we mentioned in the section regarding space-scalability, each access method will

necessarily make tradeoffs. For example, the LSM-tree which is write/update optimized scales

well with regards to insertion, but is performs worse than a B+-tree for point queries and range

queries. Because of the necessary tradeoffs, we cannot specify a single access method that the

key-value store should support, again, it depends on what resources are available. However,

since insertion and range queries are essential components of trajectory indexing, the key-value

store should support an index which scales well with regards to these.

Structural Scalability

Structural scalability primarily comes down to choice of space-filling curve, encoding precision

and encoding and decoding algorithms. The system must use a space-filling that can represent

31

the spatiotemporal space that is to be indexed, an encoding precision that allows for the wanted

precision, and encoding and decoding algorithms that provide constant, predictable performance.

Choosing a three dimensional Z-curve may be a good choice with regards to constant predictable

encoding and decoding performance as the algorithm complexity for encoding and decoding are

constant related to the precision chosen for the index. However, a three dimensional Z-curve

requires the dimensional side lengths to be equal, which may prove to be suboptimal in scenarios

where equal side lengths result in very sparse indexes. As an example, let’s say we are indexing

spatiotemporal data with a temporal range of 24 hours, and spatial range of the entire surface of

the earth. If we were to sample the spatial dimensions at around one meter precision per point

at the equator, and the temporal dimension at a precision of one second per point, this would

necessitate at least 26 bits for longitude, 25 bits for latitude and only 17 bits for time. In this

case a Z-curve would have to use 26 bits for each dimension for a total of 78 bits to represent the

data, while an optimal representation would consist of 26+25+17 = 68 bits, which is equivalent

to a direct ≈ 14% increase in key size. If we were to use a compact Hilbert curve which supports

uneven side lengths, we could reduce this overhead for the cost of added decoding and encoding

costs. Ultimately, it comes down to a trade-off between storage capacity and processing power.

The specific requirements with regards to choice of space-filling curve, precision and algorithms

will vary based on what spatiotemporal range and precision is needed by the specific scenario.

Regardless, the system should support the tuning of these components, i.e. choice of space-filling

curve and choice of precision, as well as optimized encoding and decoding algorithms.

4.3.3 Storage

The storage requirements can be divided into the following categories:

1. The system requires enough storage capacity in order to store the index and data.

2. The underlying storage medium must support enough writes and reads per second (IOPS)

in order to meet the throughput demands of the system. In addition random read and

write throughput should be primarily considered, as in near real-time scenarios we may

not necessarily be able to prepare big batches of data for sequential writes.

3. The ratio between throughput and storage capacity should not be unduly skewed. If the

storage medium has a small capacity and high throughput, it will be filled quickly and

effectively render the IOPS zero as long as it remains full. I.e. if the ratio is too low, we

are not efficiently filling the storage space, and if the ratio is too high we are not efficiently

utilizing the throughput capabilities of the storage medium over time.

These requirements must be met by the storage medium that the system runs on, table 4.1 de-

scribes the overall characteristics of the typical storage choices for reference. As these character-

istics are continually evolving the table is only meant as a rough indication of the characteristics,

and does not represent precise values.

32

Storage Medium Storage Capacity Max Cost / Storage Capacity IOPS (4K random R/W) IOPS/Capacity Non-Volatile

Random Access Memory

(DRAM)

Low

(<256GB)

High

≈ 8 $/GB

Very High

(<2 million)
7812.5 No

Flash Based Memory

(SSD/NVMe)

Medium

(<2TB)

Low

≈ 0.1 $/GB

High

(<500k)
250 Yes

Disk Based Memory

(HDD)

High

(<15TB)

Low

≈ 0.04 $/GB

Very low

(<150)
0.01 Yes

Table 4.1: Characteristics of DRAM, flash and disk based storage mediums.

As we read from the table for near real-time trajectory indexing, the choice will be between flash

based memory and DRAM, as HDD based memory simply is too slow to support the amount

of random reads and writes that are needed. While DRAM is expensive, given that trajectory

data tuples are typically small, one could possibly use an in-memory solution to index the data.

However, because DRAM is volatile, some sort of persistence mechanism must be implemented

in addition to prevent loss of data when a node fails. Ultimately, the system should support

either a mix of DRAM and flash based storage solutions, or optimized for flash based storage

solutions, while support for HDD storage is not a necessity.

4.3.4 Ingestion

There are two primary requirements the system must be able to meet with regards to ingestion

of the data. The system must be able to support an insertion rate in proportion to the number

of trajectories/sensors that are to be indexed. I.e. indexing of data from n sensors every x

seconds means that the system must at least support an insertion rate of n
x

tuples/second.

In addition, the ingestion latency, i.e. the time for a tuple to arrive until it is written and

available for querying, must be lower than the requirement set by the real-time constraints.

Furthermore, depending on the strictness of the real-time constraints the system must be able

to provide a latency guarantee on the insertion of the data.

4.3.5 Querying

Primarily the system should be able to deliver responses to queries with low latency guarantees,

meeting the real-time constraints. Furthermore, the response latency should be predictably

correlated to the result size returned by the query, optionally providing automatic scaling of the

result set in order to meet the latency guarantees.

Because the trajectory data will be indexed using space-filling curves, meeting latency guarantees

is dependent on two main factors. The first is the time it takes to decompose a query into a

set of ranges for look-up in the key-value store. The second is how fast and how well the

underlying key-value performs range querying. The query planning algorithm is a requirement

of the ingestion engine of the system, while range query performance is directly dependent on

the characteristics of the underlying key-value store’s supported access methods.

33

The query types that should be supported depend on the specific scenario in which trajectory

indexing is performed. At the minimum, point and range queries should be supported, as they

are needed in order to support more complex queries such as box-queries, kNN-queries and

trajectory queries.

4.4 Evaluation of ScyllaDB

Having established some fundamental requirements for systems to support near real-time in-

dexing and querying of large amounts of trajectory data using space-filling curves, we will now

proceed to evaluate a reference key-value store in relation to these requirements in order to get

an estimation of how viable it is for near real-time trajectory indexing and querying.

ScyllaDB [6] is a C++ reimplementation of Apache Cassandra with focus on increasing the

performance while still keeping Cassandra’s data model. It was chosen for this evaluation because

both ScyllaDB and Cassandra are well known, widely used and are highly performant. ScyllaDB

is optimized for flash storage, and scales vertically as well as horizontally. While ScyllaDB is

technically a wide-column store, it is evaluated in this context as a simple key-value store.

The original plan was to implement a real-time trajectory indexing prototype on top of ScyllaDB

and run the tests described in section 4.5. Unfortunately, because time and resources did not

allow for this, we will use the information available in the documentation as well as third-party

benchmarks in order to evaluate the key-value store.

4.4.1 Consistency, Availability and Partition Tolerance

ScyllaDB is an AP type system, prioritising availability over consistency during network par-

titions. It offers a tunable replication factor, i.e. how many nodes should have a copy of each

write, as well as a configurable consistency level. The consistency level determines how many

nodes must acknowledge read or write operations before it is considered valid. For example, a

consistency level of ANY guarantees that the value will be written to at least one node in the

cluster before being acknowledged, giving the highest availability, but lowest consistency. On

the other hand a consistency level of ALL means that a value must be written or read from all

replication nodes in the cluster before being acknowledged as valid. There exists a number of

consistency level options in between: QUORUM, in which a request a valid when a majority

of the replicas respond; ONE, which is valid when one replica responds; LOCAL ONE, at

least one replica in a local data center responds; and several more variations.

The fact that ScyllaDB is highly available and provides tunable replication factor and consistency

levels means ScyllaDB meets the requirements set out in the previous section with regards to

CAP. In addition the consistency level allows us to fine tune the level we need in order to

minimize latency at the cost of consistency. I.e. since we know that values will rarely be

updated, a consistency level of ANY, or QUORUM may provide a lower latency on writes

34

and reads.

4.4.2 Storage

ScyllaDB is optimized for flash storage and uses RAM for caching and storing node local bloom

filters and metadata. The fact that it is optimized for flash storage allows the system to benefit

from flash storage characteristics including high IOPS and bandwidth. Furthermore, the size of

the cluster can theoretically scale to any size and real world examples of large clusters include

Baidu, which runs a petabyte sized cluster [41], so meeting storage capacity requirements is

simply a matter of how much hardware one has available.

With regards to throughput, benchmarks performed by IBM [42] show a read/write throughput

of ≈ 7.25 × 105 / 106 tuples/second respectively. Furthermore, numbers from Scylla them-

selves[43], show a cluster of 83 nodes with 28 CPU cores per node achieving over 109 reads

per second. When inserting tuples into ScyllaDB on a local machine with an SSD supporting

≈ 20kIOPS, the insertion rate was also found to be ≈ 20ktuples/second. While these numbers

are not independently verified, and the local test indicates nothing more than that Scylla is ca-

pable of maxing out the throughput capacity of a mid-range SSD on a local machine, they give

an indication that Scylla can support a high throughput rate, and may efficiently exploit the

underlying storage medium to meet the throughput requirements for near real-time trajectory

indexing.

4.4.3 Scalability

Load Scalability

With regards to load scalability, ScyllaDB supports both custom partitioning schemes as well as

the ability to store metadata such as a histogram in auxilliary tables, and use this information

to implement more sophisticated load balancing strategies. Without speculating about what an

optimal load balancing strategy looks like, ScyllaDB meets the load scalability requirements in

that it provides the necessary options for customizing it to the use-case.

Space Scalability

ScyllaDB’s storage is based on the LSM-tree described in section 2.5.3. The LSM-tree has a

relatively modest index overhead, only the index referring to the compacted tables is needed,

which is typically much smaller than the number of indexed tuples depending on how large each

table is. Two more pressing concerns with regards to space scalability is the compaction strategy

employed and how many replicas are to be stored. With regards to the replication factor, the base

storage capacity needed to store the data is equal to basestoragecapacity × replicationfactor

since each tuple is stored multiple times. Considering the compaction strategy employed, the

35

default compaction strategy, size-tiered compaction, requires having at least 50% free storage

space in order to have enough space to perform the table merging in the worst case. This means

that with a typical replication factor of 3 and using the default size-tiered compaction strategy,

the storage capacity required is 6 times the base storage cost before considering compression.

Scylla introduces an incremental compaction strategy [44] which reduces the needed temporary

space for compaction alleviating this problem, however this feature is only available in the

enterprise version of ScyllaDB, which is not open source. Since we are basing this evaluation on

the open source version of ScyllaDB, we can conclude that the open source version of ScyllaDB

does not do well with regards to the storage capacity asepct of space scalability, while the

enterprise version might do better.

ScyllaDB supports various compression schemes [45], which may reduce the storage requirements

by over half at a negligble performance loss when using standard flash storage. In addition tuples

that are not intended to be updated can be marked as frozen, which enables further compaction

of the SSTables containing the tuples. Thus we can say ScyllaDB meets the compression re-

quirements of space scalability.

Space-Time Scalability

As ScyllaDB uses the LSM-tree, the insertion time complexity is amortized O(1), and remains

constant as the number of indexed datapoints grow. This means that Scylla meets the require-

ments of space-time scalability with regards to writes.

When considering the space-time scalability of ScyllaDB with regards to reads we get a more

complicated picture. Because the worst case read performance of an LSM-tree is O(N), where

N is the number of tuples stored in a node, the read performance and latencies could possibly

become too slow to meet the real-time requirements as the number of indexed tuples grow.

Furthermore, Scylla does not support efficient range querying as a result of using the Cassandra

data model and LSM-tree access method without carefully constructing a data model and using

multiple tables and secondary indexes, which may make it difficult to get good read latencies as

the database grows. Overall, this means that we can not say for certain that ScyllaDB meets the

requirements for read aspect of space-time scalability; an implementation and further testing

would be needed in order to ascertain the actual performance.

4.4.4 Ingestion

With regards to the throughput requirements we showed in section 4.4.2 that ScyllaDB can

be scaled to meet any throughput requirement, and given the evidence available it exploits the

underlying hardware efficiently in order to do so. In ScyllaDB each CPU core in a given node is

treated as its own shard, and as a result it may scale efficiently both horizontally and vertically.

ScyllaDB provides no insertion latency guarantees, and the insertion latency is a result of a

combination of the performance underlying hardware, the size of the index, ongoing compactions,

36

network latency and Scylla configuration. Judging from I/O benchmarks provided by Scylla [46]

and insertion tests done on local hardware, the insertion latency is typically low, but may jump

if concurrency is too high, i.e. data is being queued because throughput is higher than the disks

support.

Overall ScyllaDB meets the throughput requirements, and with regards to latency it can meet

the latency requirements most of the time if one can make sure there are always enough resources

available. However, it does not provide any consistent latency guarantees, which may prove to

be an issue for trajectory indexing applications with strict real-time constraints.

4.4.5 Querying

As with ingestion, ScyllaDB does not provide strict query latency guarantees, but may provide

consistently low latencies when querying for single point data. We were not able to find any

performance benchmarks that indicate how well Scylla performs when querying ranges. Tra-

jectory querying on trajectories stored in a space-filling curve typically involve a large amount

of range queries, so without implementing and testing it is not possible to say exactly how

good ScyllaDB’s range query latencies will be. In general LSM-trees typically have poor read

performance with regards to range queries. Given a partitioning scheme where data is evenly

distributed among nodes a range query will in the worst case have to read data from all nodes,

and for each node, every level of the node’s LSM-tree must be searched. When the start of

the queried range is found on a given node, an iterator is created which iterates through the

SSTable(s) until the end of the range is reached. The results from all the nodes are then merged

and returned to the client, adding additional overhead. Overall this evidence indicates that

the range query performance with regards to latency of ScyllaDB is poor. We cannot ascertain

whether it meets the requirement of low latency range queries, however it seems unlikely. An

implementation and benchmarks would have to be performed in order to say for sure.

4.5 Experimental Setup to Measure Viability of Trajectory In-

dexing and Querying System

While we were not able to perform these experiments, the experimental setup that was intended

to be performed is described in this chapter in order to provide a framework within which a

system intended to index and query trajectory data using space-filling curves might be evaluated.

Figure 4.1 illustrates the overall experimental setup.

37

(a) Insertion

(b) Querying

Figure 4.1: Experimental Setup for Collecting Data about Insertion and Querying Performance

The experimental setup consists of two experiment groups: insertion, shown in figure 4.1a, and

querying, shown in figure 4.1b. Each of them consist of data being transformed by a set of

functions, and a set of measures which measure characteristics of the data as it is being trans-

formed, as well as measuring the performance of each function. Overall, this experimental setup

should be able to both evaluate the performance a given space-filling curve and it’s associated

encoding, decoding and decomposition algorithms, as well as measuring the performance of the

underlying key-value store.

4.5.1 Insertion

The insertion experiment takes as input one or more spatiotemporal datasets, the datasets could

either be synthesized or be real world datasets such as the T-Drive Taxi Trajectories[47, 48],

or GeoLife Trajectories[49, 50, 51]. The benefit of using a real world dataset is that it will

inherently be skewed, and as such might give a better indication of real-world performance than

a synthetic dataset.

After loading the input data it is pre-processed into a form that is ready for insertion. Each

tuple in the transformed dataset is then encoded into a key-value pair using a corresponding

space-filling curve encoding algorithm, and the average encoding time per tuple is measured.

This gives us an idea of how performant the encoding algorithm is, as well as establishing an

upper bound on the tuple insertion, as tuples cannot be inserted faster than they are encoded.

After the tuples are encoded they are then inserted into the key-value store and total insertion

time, average throughput as well as maximum write latency is measured. This indicates how

well the insertion part of the system is working.

38

4.5.2 Querying

To generate the window queries that are used as input in the querying experiment the encoded

ST-dataset from the insertion step is used. The dataset is sorted by key, then by iterating

through the dataset n queries with increasing ranges is generated based on how many results

should be in the query. I.e. first a set of n range queries each containing r results may be

generated by iterating over the entries of the dataset, then setting a start and end range for

every r rows. This process can be repeated in order to produce several sets of range queries

with different result sizes. After this, each encoded range should be decoded into a x, y, t using

the inverse of the space-filling curve function used in the insertion step.

When the generated window queries are properly prepared each of the queries are then decom-

posed into a set of ranges using a decomposition algorithm for the chosen space-filling curve,

each decomposition is measured by the time spent to decompose the query, the spatiotemporal

size of the query, and how many ranges were produced. Because of the different locality measures

of space-filling curves, a Hilbert Curve will produce fewer larger, contiguous ranges on the cost

of more computation time, while a Z-curve will be fast, but produce more ranges to be queried.

Using these measures will give an indication of how well the chosen decomposition algorithm

and space-filling curve is performing compared to others.

After generating the sets of range queries they are subsequently executed against the key-value

store. The average query response time for each range query based on the results returned should

be measured, as well as the total response time vs. how many results are returned. The results

show how the key-value store performs with range queries with regards to results returned, as

well as the performance of individual range queries.

4.5.3 Further considerations

The experimental setup described above is not complete. For a more complete experiment one

would have to first set up a constant streaming data source, such as Apache Kafka which con-

tinuously feeds tuples into the system in order to measure how performance changes over time.

In addition, one should consider the performance implications of multitenancy query scenarios,

as well as how performance is impacted by concurrently inserting and running queries. The

complexity and amount of variables in the experiment quickly increase, and as such the experi-

mental setup above can be used in order to give a preliminary indication of how a given system

will perform and identifying possible bottlenecks before instantiating a complete production test

environment.

39

4.6 Discussion

After qualitatively evaluating Scylla against the requirements set up in section 4.3 it was found

that Scylla does not meet all the requirements. The lack of latency guarantees precludes any

scenario where such guarantees are needed, the large storage overhead means overprovisioning

storage is necessary which adds to the overall cost and maintenance overhead of the system, and

the likely poor range query latencies mean near real-time querying is probably unfeasible. While

it is possible that these issues may be mitigated with proper tuning, because of the underlying

LSM-tree’s characteristics they will likely remain a problem, especially considering range query

latencies. In order to ascertain the exact performance and viability of Scylla a cluster would

have to be set up and experiments performed which we unfortunately were not able to perform.

Ultimately, as the evidence stands Scylla does not present itself as a good alternative for near

real-time trajectory indexing and querying using space-filling curves. Alternative key-value

stores which do not use LSM-trees, and solutions that work directly on distributed file systems

like HDFS might prove to be more viable, but were not evaluated.

While researching, two alternative methods of interest were found that according to their authors

support near real-time spatiotemporal indexing and querying:

First, a paper by Park, Ko and Song [52] suggests a Parallel Insertion and Indexing Method for

Large Amount of Spatiotemporal Data Using Dynamic Multilevel Grid Technique, and imple-

ments a working prototype using the Hadoop Distributed File System and Apache Accumulo.

The system manages to provide ingestion performance of skewed spatiotemporal data that is

much faster than GeoMesa’s ingestion throughput,providing around 8 × 105 tuples per second

versus 105 tuples per second respectively using a 9 node cluster. However, while scaling better

than GeoMesa when performing range queries, the range query throughput experiments is lim-

ited to queries with a small amount of results returned, at only 120 on average per query. As

there is no data showing how the system performs with larger range queries, this indicates that

performing range queries may be a weakness of this system as well.

Ruichi, Cai et. al. propose a system in their paper DITIR: distributed index for high throughput

trajectory insertion and real-time temporal range query [53]. DITIR uses HDFS as the underlying

storage medium, as well as a B+-trees with a templatized insertion scheme in order to reduce

the insertion overhead associated with B+-trees. The spatial component of the incoming tuples

is encoded using a z-order curve and inserted in a B+-tree, and the B+-trees are subsequently

flushed to storage periodically, where each b+-tree is responsible for a given temporal range.

A metadata 2-dimensional R-tree provides an indexing scheme which correlates spatial and

temporal ranges with the appropriate chunks on the underlying filesystem. Overall the system

provides an insertion throughput of around 7.5 × 105 tuples per second on a 10 node cluster

according to its authors. This is an acceptable ingestion performance, but not markedly different

to ingestion speeds achieved by other systems, such as Scylla. Their query range results show a

consistent query latency of around 500 ms per query, which can be regarded as good for certain

applications, but the authors do not provide enough details in their paper to assess the range

query performance, i.e. they only specify the selectivity of the query and not the total amount

40

of results returned by the query. In addition the system is optimized for temporal queries,

first breaking down the query by temporal range, and subsequently filtering the spatial range.

This approach will work well for smaller temporal ranges, i.e. a smaller number of B+-trees are

involved in the query, but for a range query with a large temporal range and a small spatial range,

such an approach might lead to large response times as a large amount of separate B+-trees

must be consulted.

Both examples indicate that the bottleneck for near real-time indexing and querying does not lie

with ingestion throughput, but rather with query latencies as with ScyllaDB. This indicates that

query latencies is a concern that must be especially considered, and is perhaps more important

than pure write throughput.

41

Chapter 5

Conclusion and Further Work

5.1 Conclusion

Two research questions were posited for research in this thesis:

• RQ1: How can space-filling curves be used in conjunction with horizontally scalable key-

value stores in order to index and query spatiotemporal data?

• RQ2: Is the usage of space-filling curves in conjunction with a horizontally scalable key-

value store a viable solution for indexing and querying real-time spatiotemporal data

streams with regards to throughput, latency and memory usage?

To answer RQ1 two existing systems, GeoMesa and GeoWave, that use space-filling curves to

index and query spatiotemporal data on distributed key-value stores were identified. These sys-

tems were examined and the methods they use were described. Both systems can be extended

with support for additional key-value stores, as well as implementing custom space-filling curves,

with GeoWave being the more modern and extensible of the two. GeoMesa supports full CQL

queries, while GeoWave supports more basic range queries. By showing the methods and ar-

chitectures used we showed different ways in which space-filling curves can be employed in

conjunction with key-value stores, and that the open source resources exist to implement such

a system with relatively low development investment.

In order to answer RQ2 a set of requirements were established that should be met by a system

for it to be viable. Furthermore a reference key-value store, ScyllaDB, was evaluated against

these requirements. Scylla was found to meet the requirements related to consistency, avail-

ability, partition tolerance, load scalability and insertion throughput. However it did not meet

the requirements with regards to latency guarantees on reads and writes. In addition space-

scalability was poor, requiring a large storage overhead equal to double the size of the indexed

data to enable compactions to take place. In addition range query support was found to be

42

lacking, with range queries typically involving large response times depending on the number of

results in the query.

It was found that Scylla provides tuning options that could mitigate these issues, but as we

were unable to implement and run tests we can not ascertain whether it will actually alleviate

the issues. An experimental setup was alsp proposed to enable evaluation of different design

combinations when performing near real-time indexing and querying of spatiotemporal data.

This setup can be used to evaluate both the effect of choosing a certain space-filling curve and

associated encoding, decoding and decoding algorithms. It can also be used to evaluate how

well a given key-value store and different tunings of the store will perform.

Finally, two alternative implementations were examined and found to provide similar insertion

performance to Scylla, while the range query latency could not be ascertained fully given the

information available in the papers.

Overall, we conclude that if the range query latency issues can be overcome, and latency guar-

antees can be made, then horizontally scalable key-value stores in conjunction with space-filling

curves may be a viable solution. In the case of LSM based key-value stores the write ampli-

fication and storage overhead is also a concern with regards to the viability, however storage

capacity is relatively cheap, and the latency issues are the bigger barrier.

5.2 Further Work

The most pressing further work involves actually implementing a system and properly measuring

the impact choice of space-filling curve, associated algorithms and key-value store has on the

performance of the system. Different space-filling curves result in different amounts of ranges

that must be queried that could mitigate the bad range query latency. In addition implementing

a proper experimental setup on a multi node cluster would enable relatively direct comparison

of performance between key-value stores, and it would be interesting to see how B+-tree based

key-value stores compare to LSM-tree based key-value stores.

Finding ways to improve range query support, as well as reducing query latencies has emerged

as an important avenue for further work. Investigating how more complex queries such as

prediction of future trajectories, kNN queries and calculating intersections between trajectories

are also directions for further work.

Finally, other types of distributed databases such as SQL based systems like PostgreSQL could

be evaluated as possible candidates. It would be especially interesting to see whether timeseries

databases can efficiently support trajectory indexing and querying of spatiotemporal data.

43

References

[1] Luigi Atzori, Antonio Iera, and Giacomo Morabito. “The internet of things: A survey”.

In: Computer networks 54.15 (2010), pp. 2787–2805.

[2] Hesham El-Rewini and Mostafa Abd-El-Barr. Advanced computer architecture and parallel

processing. Vol. 42. John Wiley & Sons, 2005, p. 66.

[3] Theo Haerder and Andreas Reuter. “Principles of transaction-oriented database recovery”.

In: ACM computing surveys (CSUR) 15.4 (1983), pp. 287–317.

[4] ABM Moniruzzaman. “Newsql: Towards next-generation scalable rdbms for online trans-

action processing (oltp) for big data management”. In: arXiv preprint arXiv:1411.7343

(2014).

[5] Rick Cattell. “Scalable SQL and NoSQL data stores”. In: Acm Sigmod Record 39.4 (2011),

pp. 12–27.

[6] ScyllaDB Inc. ScyllaDB Documentation. url: https://docs.scylladb.com/ (visited on

02/15/2020).

[7] Hui Xiong, Xun Zhou, and Shashi Shekhar. Encyclopedia of GIS. 2017.

[8] André B Bondi. “Characteristics of scalability and their impact on performance”. In:

Proceedings of the 2nd international workshop on Software and performance. 2000, pp. 195–

203.

[9] Yaniv Pessach. Distributed storage: concepts, algorithms, and implementations. 2013.

[10] Seth Gilbert and Nancy Lynch. “Brewer’s conjecture and the feasibility of consistent,

available, partition-tolerant web services”. In: Acm Sigact News 33.2 (2002), pp. 51–59.

[11] Daniel Abadi. “Consistency tradeoffs in modern distributed database system design: CAP

is only part of the story”. In: Computer 45.2 (2012), pp. 37–42.

[12] Eric Brewer. “CAP twelve years later: How the” rules” have changed”. In: Computer 45.2

(2012), pp. 23–29.

[13] Herman Haverkort and Freek van Walderveen. “Locality and bounding-box quality of two-

dimensional space-filling curves”. In: Computational Geometry 43.2 (2010), pp. 131–147.

[14] Boris Muratshin. Hilbert curve vs Z-order. url: https://weekly-geekly.github.io/

articles/340100/index.html (visited on 03/11/2020).

[15] Herman Haverkort. “Sixteen space-filling curves and traversals for d-dimensional cubes

and simplices”. In: arXiv preprint arXiv:1711.04473 (2017).

44

https://docs.scylladb.com/
https://weekly-geekly.github.io/articles/340100/index.html
https://weekly-geekly.github.io/articles/340100/index.html

[16] HJ Haverkort. “How many three-dimensional Hilbert curves are there?” In: Journal of

Computational Geometry 8.1 (2017), pp. 206–281.

[17] Chris H Hamilton and Andrew Rau-Chaplin. “Compact Hilbert indices: Space-filling curves

for domains with unequal side lengths”. In: Information Processing Letters 105.5 (2008),

pp. 155–163.

[18] Mohamed F. Mokbel, Thanaa M. Ghanem, and Walid G. Aref. “Spatio-temporal access

methods”. In: IEEE Data Eng. Bull. 26.2 (2003), pp. 40–49.

[19] Long-Van Nguyen-Dinh, Walid G Aref, and Mohamed Mokbel. “Spatio-temporal access

methods: Part 2 (2003-2010)”. In: (2010).

[20] Ahmed R Mahmood, Sri Punni, and Walid G Aref. “Spatio-temporal access methods: a

survey (2010-2017)”. In: GeoInformatica 23.1 (2019), pp. 1–36.

[21] Rudolf Bayer and Edward McCreight. “Organization and maintenance of large ordered

indexes”. In: Software pioneers. Springer, 2002, pp. 245–262.

[22] Ramez Elmasri and Sham Navathe. Fundamentals of Database Systems 6 ed. 2010.

[23] Patrick O’Neil et al. “The log-structured merge-tree (LSM-tree)”. In: Acta Informatica

33.4 (1996), pp. 351–385.

[24] Burton H Bloom. “Space/time trade-offs in hash coding with allowable errors”. In: Com-

munications of the ACM 13.7 (1970), pp. 422–426.

[25] Jin Wang et al. “PLSM: a highly efficient LSM-tree index supporting real-time big data

analysis”. In: 2013 IEEE 37th Annual Computer Software and Applications Conference.

IEEE. 2013, pp. 240–245.

[26] Dejun Teng et al. “A low-cost disk solution enabling LSM-tree to achieve high performance

for mixed read/write workloads”. In: ACM Transactions on Storage (TOS) 14.2 (2018),

pp. 1–26.

[27] Muhammad A Awad et al. “Engineering a high-performance GPU B-Tree”. In: Proceedings

of the 24th Symposium on Principles and Practice of Parallel Programming. 2019, pp. 145–

157.

[28] James N Hughes et al. “Geomesa: a distributed architecture for spatio-temporal fusion”.

In: Geospatial Informatics, Fusion, and Motion Video Analytics V. Vol. 9473. International

Society for Optics and Photonics. 2015, 94730F.

[29] Eclipse Foundation LocationTech working group. GeoMesa Documentation. url: https:

//www.geomesa.org/documentation/ (visited on 02/10/2020).

[30] LocationTech. LocationTech working group, Eclipse Foundation. url: https://github.

com/locationtech/geomesa (visited on 02/10/2020).

[31] Eclipse Foundation LocationTech working group. GeoMesa Accumulo key structure. url:

https://www.geomesa.org/documentation/_images/accumulo-key.png (visited on

03/09/2020).

45

https://www.geomesa.org/documentation/
https://www.geomesa.org/documentation/
https://github.com/locationtech/geomesa
https://github.com/locationtech/geomesa
https://www.geomesa.org/documentation/_images/accumulo-key.png

[32] Eclipse Foundation LocationTech working group. Sample Ingest Architecture in GeoMesa.

url: https://www.geomesa.org/documentation/_images/sampleIngestArch.png

(visited on 03/09/2020).

[33] Eclipse Foundation LocationTech working group. Sample Query Architecture in GeoMesa.

url: https://www.geomesa.org/documentation/_images/sampleQueryArch.png

(visited on 03/09/2020).

[34] Michael A Whitby, Rich Fecher, and Chris Bennight. “Geowave: Utilizing distributed

key-value stores for multidimensional data”. In: International Symposium on Spatial and

Temporal Databases. Springer. 2017, pp. 105–122.

[35] Eclipse Foundation LocationTech working group. GeoWave documentation. url: https:

//locationtech.github.io/geowave/overview.html (visited on 02/10/2020).

[36] Eclipse Foundation LocationTech working group. GeoWave GitHub Repository. url: https:

//github.com/locationtech/geowave (visited on 02/10/2020).

[37] Eclipse Foundation LocationTech working group. GeoWave Architecture Overview. url:

https://locationtech.github.io/geowave/images/architecture_overview_dev.

svg (visited on 03/09/2020).

[38] Eclipse Foundation LocationTech working group. GeoWave Key Structure. url: https://

locationtech.github.io/geowave/images/keystructure.svg (visited on 03/09/2020).

[39] Eclipse Foundation LocationTech working group. GeoWave Indexing Strategies. url: https:

//locationtech.github.io/geowave/images/IndexStrategyHierarchy.svg (visited

on 03/09/2020).

[40] Manos Athanassoulis et al. “Designing Access Methods: The RUM Conjecture.” In: EDBT.

Vol. 2016. 2016, pp. 461–466.

[41] Zhangmei Li and Jeff; Baidu Security R&D Department Liu. How Baidu Runs Scylla on

a Petabyte Level Big Data Platform. url: https://www.slideshare.net/ScyllaDB/

scylla-summit-2017-how-baidu-runs-scylla-on-a-petabytelevel-big-data-

platform (visited on 03/20/2020).

[42] IBM. IBM ScyllaDB Performance Benchmark. url: https://developer.ibm.com/

articles/l-performance-scylla/ (visited on 03/20/2020).

[43] ScyllaDB. ScyllaDB Performance Benchmark. url: https://www.globenewswire.com/

news-release/2019/11/05/1941144/0/en/ScyllaDB-Smashes-Performance-Record-

Hits-1-000-000-000-RPS.html (visited on 03/20/2020).

[44] Inc. ScyllaDB. ScyllaDB Incremental Compaction Strategy. url: https://www.scylladb.

com/2020/01/16/maximizing-disk-utilization-with-incremental-compaction/

(visited on 03/20/2020).

[45] Inc. ScyllaDB. Compression in ScyllaDB. url: https://www.scylladb.com/2019/10/

07/compression-in-scylla-part-two/ (visited on 03/20/2020).

[46] Inc. ScyllaDB. The Scylla I/O Scheduler. url: https://www.scylladb.com/2018/04/

19/scylla-i-o-scheduler-3/ (visited on 03/20/2020).

46

https://www.geomesa.org/documentation/_images/sampleIngestArch.png
https://www.geomesa.org/documentation/_images/sampleQueryArch.png
https://locationtech.github.io/geowave/overview.html
https://locationtech.github.io/geowave/overview.html
https://github.com/locationtech/geowave
https://github.com/locationtech/geowave
https://locationtech.github.io/geowave/images/architecture_overview_dev.svg
https://locationtech.github.io/geowave/images/architecture_overview_dev.svg
https://locationtech.github.io/geowave/images/keystructure.svg
https://locationtech.github.io/geowave/images/keystructure.svg
https://locationtech.github.io/geowave/images/IndexStrategyHierarchy.svg
https://locationtech.github.io/geowave/images/IndexStrategyHierarchy.svg
https://www.slideshare.net/ScyllaDB/scylla-summit-2017-how-baidu-runs-scylla-on-a-petabytelevel-big-data-platform
https://www.slideshare.net/ScyllaDB/scylla-summit-2017-how-baidu-runs-scylla-on-a-petabytelevel-big-data-platform
https://www.slideshare.net/ScyllaDB/scylla-summit-2017-how-baidu-runs-scylla-on-a-petabytelevel-big-data-platform
https://developer.ibm.com/articles/l-performance-scylla/
https://developer.ibm.com/articles/l-performance-scylla/
https://www.globenewswire.com/news-release/2019/11/05/1941144/0/en/ScyllaDB-Smashes-Performance-Record-Hits-1-000-000-000-RPS.html
https://www.globenewswire.com/news-release/2019/11/05/1941144/0/en/ScyllaDB-Smashes-Performance-Record-Hits-1-000-000-000-RPS.html
https://www.globenewswire.com/news-release/2019/11/05/1941144/0/en/ScyllaDB-Smashes-Performance-Record-Hits-1-000-000-000-RPS.html
https://www.scylladb.com/2020/01/16/maximizing-disk-utilization-with-incremental-compaction/
https://www.scylladb.com/2020/01/16/maximizing-disk-utilization-with-incremental-compaction/
https://www.scylladb.com/2019/10/07/compression-in-scylla-part-two/
https://www.scylladb.com/2019/10/07/compression-in-scylla-part-two/
https://www.scylladb.com/2018/04/19/scylla-i-o-scheduler-3/
https://www.scylladb.com/2018/04/19/scylla-i-o-scheduler-3/

[47] Jing Yuan et al. “Driving with knowledge from the physical world”. In: Proceedings of the

17th ACM SIGKDD international conference on Knowledge discovery and data mining.

2011, pp. 316–324.

[48] Jing Yuan et al. “T-drive: driving directions based on taxi trajectories”. In: Proceedings

of the 18th SIGSPATIAL International conference on advances in geographic information

systems. 2010, pp. 99–108.

[49] Yu Zheng et al. “Mining interesting locations and travel sequences from GPS trajectories”.

In: Proceedings of the 18th international conference on World wide web. 2009, pp. 791–800.

[50] Yu Zheng et al. “Understanding mobility based on GPS data”. In: Proceedings of the 10th

international conference on Ubiquitous computing. 2008, pp. 312–321.

[51] Yu Zheng, Xing Xie, Wei-Ying Ma, et al. “GeoLife: A collaborative social networking

service among user, location and trajectory.” In: IEEE Data Eng. Bull. 33.2 (2010), pp. 32–

39.

[52] Sangdeok Park, Daesik Ko, and Seokil Song. “Parallel Insertion and Indexing Method for

Large Amount of Spatiotemporal Data Using Dynamic Multilevel Grid Technique”. In:

Applied Sciences 9.20 (2019), p. 4261.

[53] Ruichu Cai et al. “DITIR: distributed index for high throughput trajectory insertion and

real-time temporal range query”. In: Proceedings of the VLDB Endowment 10.12 (2017),

pp. 1865–1868.

47

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Frederic Mjølsnes

Near Real-Time Indexing and Querying
of Spatiotemporal Data in Distributed
Key-Value Stores

Master’s thesis in Informatics

Supervisor: Svein Erik Bratsberg

June 2020

	Summary
	Sammendrag
	Preface
	Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Research Questions and Method
	Structure

	Background
	Spatiotemporal Databases and Spatiotemporal Data
	Scalability
	Distributed Key-Value Stores
	ACID, BASE, CAP Theorem and PACELC
	Partitioning of Data

	Space-Filling Curves
	Properties of Space-Filling Curves
	Z-order curve
	Hilbert curve
	Spatiotemporal Queries using Space-Filling Curves

	Access Methods for Indexing and Querying Linearized Spatiotemporal Data
	B-Tree
	B+ Tree
	Log-Structured Merge-tree

	Methods for Indexing and Querying Spatio-Temporal Data in Distributed Key-Value Stores
	GeoMesa
	Indexing
	Queries

	GeoWave
	Indexing
	Queries

	Viability of Near Real-Time Spatiotemporal Indexing and Querying using Distributed Key-Value Stores
	Near Real-Time Indexing and Querying of Spatiotemporal Data
	Use-Case Description
	Requirements
	Consistency, Availability and Partition Tolerance
	Scalability
	Storage
	Ingestion
	Querying

	Evaluation of ScyllaDB
	Consistency, Availability and Partition Tolerance
	Storage
	Scalability
	Ingestion
	Querying

	Experimental Setup to Measure Viability of Trajectory Indexing and Querying System
	Insertion
	Querying
	Further considerations

	Discussion

	Conclusion and Further Work
	Conclusion
	Further Work

	References

