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Summary

The usage of unmanned aerial vehicle’s (UAV) has seen an increase as more people have
been testing their potential. Usage areas such as wildlife monitoring, search and rescue,
inspection and traffic monitoring are some of the fields that benefit from the development.

Combining UAV’s with state of the art object detectors have shown great promise in
automating the jobs stated above. This can help increase productivity, decrease human
error and automate dangerous jobs. This thesis aims at exploring how a UAV equipped
with a high resolution camera as well as an infrared camera, combined with a state of the
art object detector can help locate sheep in Norwegian highland terrain. One of the state
of the art object detectors is YOLO (You Only Look Once), which gives a good balance
between precision and inference time. YOLOv3 is the implementation used in this thesis.

For the shepherd, finding the rough location of the sheep is the most important aspect.
The exact location of every individual sheep in an image is not essential, as the sheep can
move around from the time of detection to herding. Thus, filtering out images without
any sheep is the most important. Another aspect is to compare the performance of RGB
pictures and infrared, to see if the infrared camera is redundant. 4k RGB pictures requires
more computing power, memory usage, as well as having three distinct wool colours. As
opposed to infrared that only output greyscale.

It is unclear how much of a benefit infrared images yield at this point, as the results
were very close between the networks. Infrared images increases performance in cold
environments, but struggles with generating clear images at higher altitudes, while RGB
images have a more consistent performance. Different network configurations were used
on RGB and infrared images, making it hard to compare the results fairly.
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Sammendrag

Bruken av ubemannede luftfartøy (UAV, eller drone på norsk) har sett en økning i bruk
etter at flere folk har testet potensielle bruksområder. Bruksområder som overvåkning av
dyreliv, søk og redning, inspeksjon og overvåkning av trafikk er noen av feltene som drar
nytte av denne utviklingen.

Ved å kombinere droner med topp moderne objekt detektorer har det blitt vist stort potensiale
i å automatisere ovennevnte jobber. Dette kan hjelpe med å øke produktivitet, minke
menneskelige feil og automatisere farlige jobber. Denne oppgaven utforsker hvordan en
drone utstyrt med høyoppløselig kamera i tillegg til et infrarødt kamera, kan kombineres
med en topp moderne objekt detektor for å lokalisere sauer i norsk fjellområder. En av de
topp moderne objektdektorene, er YOLO (You Only Look Once), som gir en veldig god
balanse mellom presisjon og inferensstid. YOLOv3 er implementasjon som ble brukt i
denne oppgaven.

For sauebonden er det viktigere å finne en tilnærmet posisjon for sauene. En eksakt
lokasjon av hver eneste sau i et bilde er ikke det viktigste, siden sauen kan ha beveget
seg i tiden mellom deteksjon og manuell gjenfinning. Det betyr at det å filtrere ut alle
bilder uten sau er viktigere. Et annet aspekt av oppgaven er å sammenligne fargebilder og
infrarøde bilder, for å se om et infrarødt kamera er overflødig. 4k fargebilder krever mer
komputasjon, minne og fargebildene gir tre forskjellige farger på sauens ull. I motsetning
har infrarøde bilder bare gråskala.

Det er uklart i hvor stor grad infrarøde bilder er bedre på dette stadiet, siden resultatene
er veldig jevne. Infrarøde bilder gir bedre resultat i kalde omgivelser, men sliter med
mer uklare bilder i større høyder, mens fargebilder har en mer konsistente resultater.
Forskjellige nettverkskonfigurasjoner ble brukt på fargebilder og infrarøde, så det var
vanskelig å sammenligne resultatene rettferdig.
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Chapter 1
Introduction

Sheep is among the most popular farm animals in Norway (SSB, 2019) with about 2.1
million sheep out on pasture every year (Blix and Vangen, 2019). The sheep pasture
in large areas, varying from closed in green fields to open areas like forests and rocky
highlands1. One of the main challenges in sheep farming is the roundup at the end of
the seasons, which is resource and time consuming. The sheep can pasture in flocks of
varying size, from big flocks to smaller groups. Even if sheep tend to stick together, the
individual groups can be spread out in a large area. Usually the farmer has to go over their
area multiple times in order to gather all the sheep, where the last rounds of gathering are
the most challenging.

As of now there are two approaches that help the farmer locate the sheep. One approach
is to radio tag the sheep, which will decrease the time spent looking for the sheep, but it
is an economic investment for the farmer. One of the problems with this approach is that
some of the areas the sheep are grazing in do not have radio signal coverage, therefore
making the economic investment a bigger risk for the farmer. The second approach is to
use satellite in order to track the sheep. This comes at a very large economic investment
and therefore might not be as valuable as simply looking for the sheep manually in areas
where the radio transmitters doesn’t work. Both approaches are also dependent on GPS to
function.

This thesis proposes using unmanned aerial vehicles (UAV’s) in order to solve the problem
of gathering all the sheep. An off the shelf consumer UAV, equipped with a high resolution
camera can cover a large area and take images or video of the area. The farmer can control
the UAV himself and cover a specific area, or the UAV can fly in a predefined flight
pattern and cover an area itself. As well as being a cheaper investment for the farmer.
The main problem with this approach is the manual filtering of the images. The farmer
has to manually filter through all the images taken and personally determine if an image

1A lot of sources on sheep and sheep farming in general is from the thesis supervisor Svein-Olaf Hvasshovd,
who has a lot of experience with sheep farming.
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Chapter 1. Introduction

contains a sheep, then figure out what area this image was taken in. This approach will
generate a massive amount of images, taken from a large area. It is not unlikely that the
sheep will have moved in the time it takes to filter the images to when the farmer is out
looking for the sheep.

The developments in artificial intelligence and specifically computer vision and object
detection shows great promise as a solution to the previously stated problem. State of
the art object detectors like You Only Look Once (YOLO) (Redmon et al., 2015), faster
R-CNN (Ren et al., 2015) and Single Shot Multibox Detector (SSD) (Liu et al., 2016)
and others are all claiming state of the art results in the field of object detection and
localisation. As of now, YOLO and specifically YOLOV3 is showing the better results
with a more preferable balance between precision and inference time. It is able to compete
with all the other detectors on precision, but has better inference time. This thesis will look
at how well YOLOV3 performs in detecting sheep in Norwegian highland terrain from a
UAV point of view, on both regular 4K RGB images and lower resolution infrared images.

2



Chapter 2
Literature Review

This chapter gives an overview of research related to our thesis problem. Related research
includes automatic object detection on UAV imagery, as well as a look at state of the art
object detectors.

2.1 Earlier master’s thesis
Detecting sheep using UAV imagery has been a thesis topic in a few earlier years as well.
In 2019, Jonas Hermansen Muribø achieved good results by using YOLOv3 (Muribø,
2019) on UAV images of sheep. With recall and precision at 0.99 and 0.94 respectively,
the thesis shows that YOLOv3 is a good candidate for the thesis problem. The thesis
does however point out a few threats to the validity of the experiment. One major point
of concern is the data used. The images used in this thesis have only grassy fields as
background, which in turn provides a very good contrast to the sheep and might be one of
the reasons why the thesis achieves such good results. The grassy fields do not represent
the most relevant environment for Norwegian sheep pasture, and it is unknown how well
it would perform on sheep in a more diverse environment. The thesis states that it is
possible that the model has learned to detect sheep as spots of white, brown and black
surrounded by green. In a more realistic environment it will be harder to spot the sheep
from the background, especially the brown and black that blend very well with Norwegian
highland. This previous work does however indicate that using deep learning on high
resolution RGB UAV images warrants further testing and research, and might be a very
relevant solution.

2.2 Wildlife monitoring
Modern development in UAV technology has made great progress in the field of wildlife
monitoring (Chabot and Bird, 2015), but a lot of untested potential still exists. According
to Chabot and Bird, UAV’s are particularly well suited for collecting data and the UAV’s

3



Chapter 2. Literature Review

prove both useful to humans as well as being unobtrusive to to the animals, especially
for aggressive or sensitive creatures. UAV’s also make gathering data easier in areas that
are usually hard to navigate or places that are generally hard to reach, like birds nests.
However, the paper argues that various barriers that hinder effective use remains, and that
the only way to normalize UAV usage is further research.

Monitoring wildlife for preservation and research purposes is a job often done manually,
and is in that case very slow, resource heavy and labour intensive (Gonzalez et al., 2016).
The use of inexpensive, consumer friendly UAV’s and automatic object detection might
provide a solution to the manual labor (van Gemert et al., 2014). Van Gemert et al. tests
out a fully automatic detection process, meaning that image capturing and object detection
are done on board the drone. The paper then argues that deep learning models are too
resource intensive for the on board electronics, even though these models are considered
state of the art. The experiment does however show good results by using more light-
weight machine learning models to run on board analysis. Three algorithms were tested,
with exemplar SVM showing the best result with a precision of 0.66 and recall of 0.72.

Another approach from (Andrew et al., 2017) demonstrates the usage of a version of
faster R-CNN (Ren et al., 2015) to detect cattle, and additionally testing individual cattle
identification. The paper achieved an accuracy of 99.3% on object detection and 86.1% on
identification. While the results are great, the paper does not provide precise precision and
recall measures. Additionally the images in the dataset only contain 89 individual cattle,
and the images are from the same two hour period. The results from the experiment might
be biased toward the data and the model might not be able to generalize well enough.

2.3 Other usage areas
In addition to wildlife monitoring, the use of UAV’s and automatic detections has many
other usage areas. One area that may benefit is civil engineering, such as fire detection,
search and rescue, bridge inspections, power line inspections and traffic monitoring. In
one paper by Radovic et al (Radovic et al., 2017), they managed to achieve pretty good
results on real time tracking and detection on video using the YOLO (Redmon et al., 2015)
algorithm. In this paper they first trained the system on detecting airplanes and managed
to achieve an accuracy of 97.5 %. Additionally they tested their system on a multiobject
scenario, where they tried to detect more than one type of object in the same image using
real-time video. They managed to achieve an accuracy of 84 %. The video feed was taken
from a horizontal point of view though, and does not present the general point of view
a UAV usually takes images in. Even so, the paper shows that YOLO is able to detect
multiple objects in real time video with low inference time.

In another paper from 2017, Wang and Zhang (Wang and Zhang, 2017) propose using
UAV’s and machine learning in order to automatically detect cracks in wind turbines.
They argue that a system like this will enable more frequent inspections and eliminate
the danger with human inspection. Additionally, it will help decrease human error and
the subjective impression of the human inspector. This is a common theme in UAV
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assisted automatic detection where the objective result of the computer system together
with a human inspector might help lessen error. In this paper, Wang and Zhang compare
two Logitboost cascading classifiers on Haar-like features. The first classifier is a novel
Logitboost cascading classifier, while the other is an extended cascading classifier. The
extended classifier is a Logitboost same as the first one, but substitutes the Logitboost
algorithm with Decision Tree or SVM respectively, if the number of predefined features
are reached. This is done in order to combat overfitting at later stages and in order to
seperate negative and positive samples at later stages. The extended classifier shows the
best result with an accuracy of 97%.

2.4 State of the Art Object Detection
As the previous sections show, a variety of algorithms and approaches for the object
detector exists. Even though traditional computer vision techniques are not as prevalent,
they still hold up with modern approaches like novel machine learning algorithms or deep
learning (O’Mahony et al., 2019). A few reasons a novel computer vision approach might
still hold up, is the vast data and computational resources deep learning models need in
order to achieve great accuracy, as well as being more dependent on high resolution data
and time in order to train a model.

In the field of deep learning, many models can make the claim to be ”state of the art”.
Different implementations yield different result, where the comparable is usually on metrics
measuring accuracy, and inference time. As of now, the biggest gain some of the models
have on other models seems to be on inference time, as the measure in accuracy is very
close between the models, which can be viewed in figure 2.1. As the figures show,
YOLOv3 has significantly better inference time, while still keeping up with other models
in accuracy.
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Figure 2.1: Two comparisons between state of the art models (Redmon and Farhadi, 2018), showing
that the models generally achieve very similar accuracy (mAP), but there is a lot to gain in inference
time.

6



Chapter 3
Basic Theory

This chapter will first explain the nature of neural networks, then explain convolutional
neural networks as well as an explanation of YOLOv3, and lastly how the area covered by
an image is calculated.

3.1 Neural Networks

3.1.1 Artificial neural networks
An artificial neural network (ANN) is a collection of nodes with some form of structured
connection between each node. A node will ”fire” an output which value depends on its
inputs the input connections weight and lastly the activation function (See Figure 3.1 for
an overview of an artificial neuron). The structure of the nodes connections and the type
of activation function used will describe the properties of the network. There are several
neural network typologies of which the Feed-forward network is relevant (See Figure 3.3).
In a Feed-forward network there is a direct ”flow” from the input of the network to the
output, each layer will only send output to layers after it and will never loop back to
previous neurons (Russell and Norvig, 2009, p.727-728).

3.1.2 Convolutional neural networks
A Convolutional neural network (CNN) is similar to the previously mentioned ANN, but
the main differences are that CNN‘s assume the input will be an image in the form of a 3D
matrix. In the CIFAR-10 dataset the images are 32 pixels wide, 32 pixels high and 3 pixels
in depth (the matrix has a depth of 3 because its a RGB image). In a normal ANN each
pixel would need to be connected to a neuron in the input layer making the input a size of
32*32*3 = 3072 which is manageable, however using larger images will quickly make a
fully connected network significantly slower. Therefore CNN‘s use small 2d matrices as
weights, which are commonly called filters (or kernels). The filters are than applied to a
area on the input and perform a convolution with the filter and the applied pixels in the
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Chapter 3. Basic Theory

Figure 3.1: An artificial neuron where ai defines the neurons input while wij is the neurons weights
(Russell and Norvig, 2009).

input, extracting the more important details of the image. After the convolution, a pooling
layer will be used to reduce the size of the input, which is how the network handles larger
resolution images (See Figure 3.3 for how the width and height decrease). A CNN consists
of three main types of layers a convolutional layer, a pooling layer and a fully connected
layer (Stanford, 2020a).

Convolutional layer

The convolutional layer will perform a convolution between a filter and a part of the input
resulting in a single value. The filter is then moved to the right by a given amount of
pixels which results in a second value. The amount of pixels the filter moves is defined by
the layers stride, which is chosen when creating the network. The filter will continue to
slide until the filter has covered the entire image, after which the next filter is used. The
resulting output will be a 3d matrix with the width and height reduced by inputSize −
(filterSize− 1), while the depth will depend on the input depth and the amount of filters
(Stanford, 2020a).

Pooling layer

The pooling layer is used to reduce the size of the features width and height, thereby
reducing the necessary computation needed to run the network. Larger networks are also
more prone to overfitting which the pooling layer also helps control. The pooling layer
selects a small 2 matrix of pixels similar to the convolutional layers. The selected pixels
however are not used to convolute, but to reduce the selected area down to one value, the
pooling layer can use different methods to chose which value is output, but typically the
max value in the filter is selected. The layer typically only uses a 2x2 matrix with a stride
of 2, resulting in about 75% of the width and height of the layers input being removed (See
Figure 3.2).

8



3.1 Neural Networks

Figure 3.2: Figure showing how max pooling works (Stanford, 2020a)

Fully connected layer

Fully connected layers are used after the convolutional layers have extracted the features
of the image. Eventually the spatial size of the features should be small enough to connect
to the fully connected layers. Fully connected layers function just like a layer in an ANN
as explained above where each neuron in a ANN connects to all activation’s in the previous
layer. The activated neuron in the last fully connected layer will then serve as the classifier
for the original input image (Stanford, 2020a).

3.1.3 Transfer learning

Training a convolutional network from scratch requires a large amount of data and will
take considerably longer to train, therefore several methods to reduce the time needed
have been created. The general method is to download the weights for a network which
has already been trained and use it either partially or completely, potentially also adjusting
the downloaded weights. The first approach is to load the convolutional section into a
new network and train the remaining fully connected layer. The second approach will
similarly load a finished network into the convolutional layers, but the difference is that
during training the network will also adjust the convolutional layers which were loaded
and not just the fully connected layers. The last approach is to load the entire network and
fine-tune the downloaded weights through training (Stanford, 2020b).

Figure 3.3: Left shows the architecture of a ANN, while right shows the architecture of a convolution
neural network. Figure was taken from (Stanford, 2020a).
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3.2 YOLOv3

You Only Look Once (YOLO) is a real time object detection algorithm which uses a
convolutional neural network type architecture to predict both an objects class and bounding
box. YOLOv3‘s architecture consists of a total of 106 layers the first 53 of which are
already trained on the Imagenet dataset. The first half of the network is structured as seen
in Figure 3.4 with several residual blocks allowing shortcuts through the network. The
pre-trained network is simply used to extract features from the input image and pass them
on to the other half of the network. The remaining 53 layers then need to be trained to the
specific dataset they are going to be used on.

The second half of the network is where the prediction of bounding boxes, objectness
and class happens. Bounding boxes are coordinates of where the object is located, objectness
is a single value which predicts whether or not there is an object in the bounding box and
class is a prediction of which class the object belongs to. The predictions are done three
times in the default YOLOv3 network, each at a different scale. At layer 82 the first
predictions are made, but the input to the prediction block is also passed to an upsampling
block which upsamples the feature maps. After upsampling, convolutional layers are used
to merge the newly upsampled feature maps with feature maps from earlier in the network.
The merged maps are passed to the second prediction block to make a new prediction, but
with the maps now being twice the size. The same process is repeated for all three YOLO
layers in the network(Redmon and Farhadi, 2018).

Figure 3.4: YOLOv3 feature extractor network (Redmon and Farhadi, 2018)
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3.3 Field of View
As mentioned in earlier chapters the goal of this thesis is to make it easier for a sheep
herder to locate his sheep, therefore finding the rough location of a flock is more important
than finding every instance of a sheep. In addition there is not a defined distance required
for a group of sheep to constitute a flock, thus an assumption of approximately 200 meters
was made. To find out how much of an image can be considered a flock, the length and
height of the area in the image needs to be calculated. This is done by using trigonometry
on the height of the UAV and the Field of View (FOV) of the camera. According to the
UAV‘s manual (DJI, 2019) the RGB camera has a diagonal FOV of 85 degrees. The
images were taken in heights ranging from 14m to 120m.

Given an RGB image taken at 120 meters, the length of its diagonal will be:

d = 2 ∗ 120 ∗ Tan(85/2) = 219.919m (3.1)

Since the aspect ratio of the RGB images are 4:3 the horizontal and vertical lengths can be
calculated as follows:

h = 219.919 ∗ Cos(Arctan(3/4)) = 175.9356m (3.2)

v = 219.919 ∗ Sin(Arctan(3/4)) = 131.9517m (3.3)

Where d is the diagonal length of the area covered by the image, h is the horizontal and v
is the vertical. The UAV‘s RGB images therefore have a maximum FoV of 175.937m by
131.952m

For the infrared camera the UAV documentation only mentions the horizontal FoV, however
the infrared sensor documentation shows the diagonal FoV (FLIR Systems Inc). With the
diagonal FoV the same equation can be used to find the length of the images field of view.

d = 2 ∗ 120 ∗ Tan(71/2) = 171.190m

h = 171.1903 ∗ Cos(Arctan(3/4)) = 136.952m

v = 171.1903 ∗ Sin(Arctan(3/4)) = 102.714m

(3.4)

The FoV for the infrared camera is therefore 136.952m by 102.714m. While the total area
a RGB or infrared image can cover is significant, it is close enough so that any sheep found
in the same image will be defined as a part of the same sheep flock 1.

3.4 Measuring performance
Measuring the performance of the networks are done by looking at different metrics the
networks produce when they are done training, and on different test sets.

1This area was sufficient enough for the farmer to locate the sheep manually after, as Svein-Olaf Hvasshovd
concluded.
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Precision

Precision is defined as the number of true positives over the number of true positives plus
the number of false positives (scikit-learn developers , 2020).

TruePositives

TruePositives+ FalsePositives
(3.5)

Essentially, this means the number of detections that were correct detections. If a dataset
contains 50 sheep, and a network detects 25 sheep, but 20 of them were actually sheep,
then the precision is 0.8

Recall

Recall is defined as the number of true positives over the number of true positives plus the
number of false negatives (scikit-learn developers , 2020).

TruePositives

TruePositives+ FalseNegatives
(3.6)

This means the fraction of the total number of objects in the dataset that were actually
detected. False negatives are the number of objects that were not detected. Using the
same example from the previous section, the recall rate is 0.4. Having high precision,
but low recall means that the network detect few sheep, but the detections have a higher
chance of being correct. The opposite means that the networks detect a lot of sheep, but
also have a lot of false positives reducing the precision.

mAP@50

mAP@50 is a metric combining mean average precision and a intersection over union
(IOU) threshold, where the threshold is .50. The threshold means that the IOU has to be
0.5 or higher in order to be considered a true positive.

Figure 3.5: Shows how IoU is calculated (AlexeyAB, a).
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Planning & Structure

4.1 Planning

4.1.1 Data Acquisition and Analysis

A good dataset for training should ideally be large and contain a diverse set of images. The
better the dataset is, the better the model is able to generalize. Defining diverseness in this
experiment means having images taken from different heights, from different areas, with
different backgrounds and weather conditions. A diverse set of wool color is also ideal.
One frustration in dataset generation is that white sheep are more prevalent than black and
brown, but black and brown wool color is harder to differentiate from the background.
This information combined with the results from previous master thesis (Muribø, 2019),
indicates that detecting sheep independent of their wool color should yield better results.
Thus we trained our models at detecting sheep in general, and not white, brown and black
sheep distinctly. In addition, distinguishing between sheep based on their wool color is
close to impossible when using the infrared images.

All of the images in the dataset were taken between 21-22 August, 20-22 September and
25th of October 2019 at Storlidalen in Trøndelag. Data from a test flight nearby Dragvoll
without images of sheep were added as negative samples as well. A rough location can
be seen in figure 4.1. The data was collected by the supervisor Svein-Olaf Hvasshovd and
two other master students at NTNU, Kari Meling Johannessen and Magnus Guttormesen.

The dataset contains images from different heights ranging from 14 to 120 metres. As
explained in section 3.3 the maximum FoV any image can have is 176m by 132m on
the RGB images. This means that the sheep is at maximum 176m/2 (considering the
UAV is always in the middle of an image) from the GPS location of the UAV. This in turn
means that the maximum area the shepherd has to manually look for the sheep is an area
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Figure 4.1: Approximate locations of the datasets images. Left is an image of Storlidalen in Oppdal
(Google-Maps, 2020a) and Right is an image nearby Dragvoll in Trondheim (Google-Maps, 2020b)

of 176m by 132m. Assuming the sheep has not relocated. Different backgrounds were
also prevalent in the dataset, with some grassy fields, forest environment, as well as rocky
highland. Weather conditions also vary somewhat with mostly cloudy or sunny conditions,
as well as some colder weather with snowy background (See Figure 4.2).

Figure 4.2: Some of the different backgrounds and altitudes of the RGB images.

Datasets for the experiment were generated manually in order to create the most optimal
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training data for the model. Most images were suitable for usage, with only a few being
unusable. Unusable images meaning blurry images, unclear infrared information or images
that do not follow the same settings as the other images in the dataset. A lot of images were
very similar to each other as well, almost looking like duplicates. The reason being that
images were taken in bursts in order to gather a lot of data. This also required manual
filtering of the raw dataset, in order to create a diverse dataset with as many different
backgrounds, environments and altitudes as possible. The dataset should not contain too
many images that look very similar as this could cause the networks to overfit. Images
taken of the same herd at the same place, but at different altitudes were still defined as
different images. It was only in the instance of similar images at the same altitudes that
some of the images were filtered out.

Figure 4.3: Examples of unusable infrared images, The left image was in the location of an infrared
image and has a resolution of 640x480 making it unusable for both the infrared and RGB network.
Image on the right used a different color palette than gray scale.

Labeling

After cropping the 4k images the number of images had effectively multiplied by 20,
causing the amount of work needed to label them to multiply by 20 as well. Therefore
this projects supervisor recommended cooperation on sharing data. Together with another
group (Magnus Falkenberg Nordvik, 2020), the RGB images were uploaded to Labelbox
(Labelbox, 2020) and used the websites tools to label the images. The infrared images on
the other hand were not labelled cooperatively and were instead labelled using labelimg
(Tzutalin). This was because of the significantly lower number of images causing labeling
to be less work.

4.1.2 Experiment Structure
The experiment used the darknet implementation by Alexey (AlexeyAB, a), which is a
popular fork of the original darknet repository by the creator of YOLO (pjreddie). The
repository by AlexeyAB contains many improvements over the original code. Some of the
improvements include general performance, more optimal GPU usage, windows support,
runtime warnings and improved metric calculations. In addition to code improvements,
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AlexeyAB provides a detailed plan for improving detection on custom datasets. AlexeyAB’s
implementation is more optimal for training on GPU’s, which was a concern for this
experiment as the training was done on the NTNU IDUN computing cluster (Själander
et al., 2019). The cluster has more than 70 nodes and 90 GPGPU nodes. Half of the
nodes are equipped with two or more Nvidia Tesla P100 or V100 GPGPU’s, which this
experiment will take advantage of.

In order to test YOLO’s performance on both infrared and RGB images, two different
models were needed. Training and testing on both models were carried out separately.
The difference in size between RGB and infrared images, as well as the difference in the
images, warrants different settings and thus separate testing was preferred. For instance,
the RGB images contain sheep in three different colors, but for the infrared images all
sheep are shown as white dots indicating heat.

With this in mind, these research questions were formed:

RQ1: How well does YOLOv3 perform in detecting sheep in highland terrain?

RQ2: Do infrared images improve the detection of sheep as opposed to RGB images?

The performance of a network was determined by comparing the performance data the
different network configurations generate. Many different metrics were generated when
the networks were tested, but the most important metrics was:

• Precision: The accuracy of predictions, the percentage of predictions that were
correct predictions.

• Recall: The percentage of predictions to the number of objects in the dataset.

• mAP@50: Mean average precision with a threshold of 0.50 intersection over union.

4.2 Preprocessing

4.2.1 Preprocessing for YOLO
The network required some setup before the experiment and training could start. The
YOLO implementation used, relied on different configuration files to be set up to fit the
experiment and data. In order to start training the YOLOv3 network we first needed to
ensure the data was setup correctly for the algorithm. The YOLO algorithm requires
several files to be able to start training. It needed a .data file to point to the data location,
a configuration file which defined the layer structure of the neural network and a weights
file which loads previously trained weights into the network. In addition to these files the
.data file contained the path to two additional require files namely the train.txt and val.txt
files. These two files need to contain a list of paths to the actual image data the network
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is supposed to use. The configuration files used in this experiment are available in the
following git repository, https://github.com/Imingen/master-sheep.

4.2.2 RGB preprocessing

As mentioned earlier all of the RGB images were in 4k resolution. 4K resolution increase
the training time for YOLO dramatically, as it has to downscale each input image to fit
within the resolution of the network. One approach that could be taken to solve this
problem was to downscale the images to a lower resolution before feeding them to the
network. While this is a simple solution, the images risk loosing some of its detail and
information. This is especially true for images taken at higher altitudes and this will in turn
affect the performance of the network. Another approach was to split the images. This is a
more cumbersome approach, but there is no risk of loosing any detail. As well as speeding
up the training process, this approach also has a positive side effect in that it will generate
a lot of images with no sheep in it. When the images were taken, the drone operators only
took images when they found sheep. It can also be beneficial to the network performance to
have images that does not contain any of the target objects it is being trained to recognize.
The RGB images were cropped by using a python script developed by another master
student group, with a similar thesis problem (Magnus Falkenberg Nordvik, 2020). The
script calculated how many smaller images would be necessary to cover the entire area of
the 4k image while ensuring a minimum of 200 pixels overlap. An image with a resolution
of 4056x3040 required 5 images to cover the width and 4 images to cover the height while
ensuring a minimum of 200 pixels overlap. Therefore each 4k image was split into a set
of 4 ∗ 5 = 20 images, the exact areas with overlap can be seen in Figure 4.4.

Figure 4.4: Left image shows partially how and where the 4k image was cropped, and the right
shows how the whole image was cropped, blending colors shows overlap.

4.2.3 Infrared preprocessing

Since the infrared images were already in 480p the images could simply be input to the
network as is, the network would then rescale them to the resolution stated in the config
file. The operator of the drone also decided to turn on and off FLIR MSX during the
collection of data, causing the images to look significantly different and have varying
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amounts of detail. FLIR MSX is a program which adds details from the optical image to
the infrared image (FLIR Systems, 2020).

A subset of the dataset consisted of images taken in october 2019 when there was
snow on the ground, the subsequent temperature difference could impact the networks
performance, therefore a seperate subset of the october 2019 images was created to test
the networks performance under colder conditions.

To better understand the results the algorithm had produced, it was necessary to know
the altitude of the drone when taking each individual image. In particular the infrared
camera was unlikely to perform well at higher altitudes, therefore testing the infrared at
lower altitudes was deemed necessary to properly evaluate its performance.

4.3 Structure

Finding the perfect network settings can be difficult and cumbersome work, and it can
take a lot of time just finding the perfect configuration. Thorough research was therefore
important, and using knowledge obtained from the literature, previous master thesis and
the code repository mentioned in 4.1.2, three different configurations for RGB images and
three for infrared images were chosen to be tested.

4.3.1 RGB Images

Two of the networks trained on RGB images did not differ much in their configuration,
where the biggest difference were the network size. One network (network 1) used 832 x
832 and the other (network 2) used 1024 x 1024. The network resolutions were recommended
from the code repository, were it recommended a higher resolution in order to increase
precision. The max number of objects an image can contain was also increased to 300.

The third network (network 3) was tested on a full model, with 5 yolo layers from
the code repository. This modified model was recommended by AlexeyAB if the purpose
was to train on both small and large objects, which was the case for this experiment. The
network tries to predict objects at five different scales, as opposed to standard YOLO
layout which detects at three different scales.

8193 images were used in total for training the RGB models. The dataset were then
shuffled thoroughly and 6412 were used for training and 1781 were used for validation. An
equal amount of images with sheep and images without sheep were used, in accordance
with ”How to improve detection” in (AlexeyAB, b) repository. 760 images were used
for testing, which was handpicked before creating the training and validation sets. The
networks where then trained on the IDUN cluster and each network ran for 9000 epochs.
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Table 4.1: End result after training is complete on RGB images.

precision recall mAP@50
network 1 0.93 0.77 86.20%
network 2 0.94 0.72 84.47%
network 3 0.93 0.69 81.64%

Figure 4.5: Training graphs for the RGB images.

Due to the training process being interrupted on network 1 and network 2, the graphs
shown in figure 4.5 are not complete. The network was started again, from the previous
stopping point and the graphs were then redrawn by the program. Total runtime was also
not calculated, as the network did not run until it was manually started again, which could
take up to 10 hours depending on the time it stopped. It is however safe to say that total
runtime of network 1 and 2 exceeded multiple days, as network 3 ran continuously for 2
days and 20 hours.

4.3.2 Infrared images
Since the dataset had a large variety in the altitude the images are taken at it was important
to chose the network configurations best suited to handle the variation. One of the relevant
network configurations was the 5l network, which will increase accuracy on images of
varying size (AlexeyAB, a). This is because it has five detection layers which attempt to
predict objects at different scales, as opposed to the default configuration which has three.
Similarly the tiny 3l configuration is designed to work better for varying sizes of objects
and will also have faster prediction speed. However the networks smaller size will likely
impact performance negatively. The yolov3-spp network configuration had the highest
performance on the COCO dataset (AlexeyAB, a) meaning it could perform better on our
dataset as well, while also being useful to compare the 5l and 3l-tiny network to.

The training set consisted of 1467 images where 80% was was used as training data, the
remaining 20% was split equally into validation and test sets. As with the RGB images,
half of the dataset consisted of negative samples. The training and validation set were
used during training while the test set was saved in order to check the finished networks
performance. Each network configuration was then trained on the IDUN cluster(Själander
et al., 2019).
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Each network reduced the loss score to under two after approximately 1000 epochs
(See Figure 4.6), All three of the networks were run for 6000 epochs, where the 5l and 3l
network settled at a loss value of approximately one while the spp network was about 0.6.
The 3l-tiny network spent the least amount of time training completing after 11 hours and
30 minutes, followed by spp which ran for 26 hours and lastly the 5l network ran for 47
hours.

Table 4.2: End result after training is complete on infrared images.

precision recall mAP@50
5l network 0.86 0.62 79.62%
spp network 0.86 0.78 78.56%
3l-tiny network 0.75 0.64 63.74%

Figure 4.6: loss and mAP from 3l network during training. mAP score was run on validation data
every 100 epoch from epoch 1000 to 6000. Higher resolution graphs are proviede in the appendix.
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Chapter 5
Results & Analysis

This chapter presents the results of all the networks, as well as analyse the results and
compare RGB and infrared results to each other. The networks are also tested on more
specific test data. This is done to check if there are some environments where either
RGB or infrared images yield different results as opposed to the test data that provides the
baseline.

5.1 Results

5.1.1 RGB results
The test set used for RGB images were manually made. Images from different environments
and heights were handpicked in order to create a diverse test scenario. Some images
without sheep, but with confusing content like white snow patches and dark shadow was
also picked in order to try and confuse/stress test the networks.The test set contained 760
images in total.

Table 5.1: Network performance on the test dataset, bold indictating the best results

precision recall mAP@50 TP FP
832x832 0.89 0.59 76.61% 200 25
1024x1024 0.91 0.63 80.33% 214 22
5l 0.85 0.60 75.16% 202 35

Looking at the table above, the 1024x1024 network shows best results. It achieved
a precision of 0.91 and mAP@50 of 80%. All networks achieve fairly high precision,
meaning all sheep that were detected have a high chance of actually being sheep. They do
however perform worse on recall rate, meaning a lot of sheep were not actually detected.
Positively, the high precision means that the networks will rarely notify the shepherd with
a false detection. After images with detected bounding boxes were generated, there were
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no images where at least one sheep was not detected, but there were many sheep which
was not detected. The network did however struggle with precise bounding boxes and it
was easy to see how the network got confused. In figure 5.1 its obvious how some of the
boxes cover more than one sheep, and the boxes are not as precise, but it does find multiple
sheep. In figure 5.2 its clear how the contrast of a grassy field help the network. It also
shows how a white rock confuses the network, with 65% confidence in detecting a sheep.
The last figure (figure 5.3, shows another wood terrain, but also shows how a shadow
confuses the network. With a confidence of 51% it is labeled as a sheep. Bounding boxes
were generated from the 5l network.

Figure 5.1: The left image showing a big flock and the right showing three sheep in the woods.

Figure 5.2: The left image showing the good contrast the green grass gives, while the right show a
false positive with a white stone.
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Figure 5.3: The left image show another woodland terrain, while the left show how the networ
struggles with shadow.

The networks were also tested on a set of images with snowy and cold background.
This set consisted of 54 images, in order to compare with the infrared set.

Table 5.2: Network performance on images with only cold/snowy ground, bold indicating the best
results.

precision recall mAP@50 TP FP
832x832 0.94 0.57 81.72% 82 5
1024x1024 0.94 0.47 82.93% 67 4
5l 0.97 0.47 69.10% 68 2

On snowy backgrounds, the results are not as clear. The 5l network got the highest
precision, but the 832x832 network achieved the best recall with 0.57, beating the two
other networks with 10%. However, the mAP@50 metric was best for the 1024x1024
network with a 82%, and the 5l network was the worst with 69%. The 832x832 network
got overall the best results, with a higher recall and true positives than the other networks,
while still being close in mAP@50 and precision. The networks gain a few points in
accuracy on the previous test, showing that there are fewer false positives in snowy backgrounds.
However, all networks loose some points in recall, showing that it is harder to find all the
sheep in a cold/snowy environment. One reason for this could be that it struggled with
finding one particular wool color. As both figure 5.4 and figure 5.5 show, the network
really struggles with darker wool color. This is surprising considering it detected a shadow
as a sheep in figure 5.3. This is clearly the reason the network got a poor recall rate, as
it almost never detected any sheep with darker wool color. The higher precision in this
environment seems to be from the fact that there are less false positives.
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Figure 5.4: Images show how well it detects white sheep, but no black sheep.

Figure 5.5: White sheep seem to give good result, but the network struggle with darker wool.

5.1.2 Infrared results
The spp network had the best performance on the test data taken from the original dataset,
although the 5l network had fewer false positives and a slightly higher precision. The
3l-tiny network had significantly lower results than both the 5l and spp network (See
Table 5.3). It was very clear that it would be easier to spot sheep in the infrared images in
comparison to the cold/snowy environment, which is likely due to the increased temperature
difference between the sheep and the background. Therefore superior results were expected
on the cold/snowy dataset. The infrared networks performed significantly better than
the previous test set on this dataset with the 5l network reaching a recall of 0.84 and
mAP@50 of 93.58%. The 5l had 230 false positives beating both the 3l and spp networks.
Unexpectedly the 3l tiny network managed a recall of 0.85, higher than both the spp and 5l
network while predicting faster than both. However it had worse mAP than the 5l network
and made a total of 514 false positive predictions. Lastly the spp network performed
worse than both the 5l and 3l network with a recall of 0.81 and mAP of 88.39%, false
positives were at 389, lower than the 3l but still higher than the 5l (See Table 5.4). Some
of the networks better predictions in practice can be seen in Figure 5.6. The network was
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successful in locating most of the sheep in these images while managing to avoid similar
objects such as rocks. On the other hand Figure 5.7 shows some of images where the
network clearly failed to detect sheep a human would have been able to. Lastly Figure 5.8
shows how well the network performs on the colder images, while also failing at detecting
sheep which seem simple to detect. All the bounding boxes were generated with the 5l
network.

Table 5.3: Network performance on the test dataset, bold indicating the best results.

Network precision recall mAP@50 TP FP
5l network 0.84 0.55 75.65 % 222 42
3l tiny network 0.72 0.59 61.34 % 236 92
spp network 0.82 0.71 77.44 % 285 62

Table 5.4: Network performance on images with only cold/snowy ground, bold indicating the best
results.

Network precision recall mAP@50 TP FP
5l network 0.89 0.84 93.58 % 1819 230
3l tiny network 0.78 0.85 88.74 % 1854 514
spp network 0.82 0.81 88.39 % 1769 389

5.2 Infrared performance in different altitudes

After inspecting the results of the infrared images, a pattern of high altitude images performing
noticeably worse than the lower images was discovered. Therefore further testing was
needed to ensure these observations were not anecdotal. However according to one of
the data collectors the altitude section of the datasets EXIF altitude data was incorrect,
meaning the only place to acquire altitude data was in the drones flight logs. Unfortunately
the images taken in the cold/snowy environment seemed to have lost the EXIF timestamp
making these images unusable for this test. Considering the networks improved performance
on these images, lacking these will likely impact any comparison to the previous datasets.
Additionally for some of the images the logs did not have a height measurement at the
respective images timestamp meaning these image had to be discarded leaving only 88
images in the test set. The test set was split at 50 meters, where 26 images was above and
62 was below. The 5l and tiny 3l both performed better on the image sets below 50 meters,
for these two networks it is clear that lower altitudes improve performance. However the
spp network achieved higher mAP and precision on the higher images (See Table 5.5).
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Figure 5.6: Good detection results from the normal test set using the 5l network. Upper left detects
most of the sheep while not detecting the nearby rocks.

Table 5.5: Network performance on the test set randomly separated from the training set and split
based on height.

Network precision recall mAP@50 TP FP
5l below 0.87 0.60 85.58 % 34 5
5l above 0.80 0.42 63.21 % 20 5
3l tiny below 0.80 0.65 69.21% 37 9
3l tiny above 0.67 0.50 54.57% 24 12
spp below 0.74 0.70 74.79% 40 14
spp above 0.86 0.67 77.20% 32 5
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Figure 5.7: Bad detection results from the normal test set using the 5l network. Upper left fails to
detect any sheep at all, while the right misses two. Lower image misses several.

27



Chapter 5. Results & Analysis

Figure 5.8: Good and bad examples of the 5l networks test results on the cold/snowy images.
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5.3 Discussion
The results clearly show that the networks perform very similar on the normal test dataset.
The infrared networks seems to yield better recall, but the RGB networks give better
precision and mAP@50. This might be a result of the sheep being more distinct in the
infrared images, meaning that it is easier for the network to distinctly detect the sheep in
the images. Comparing the 5l network in both instances, it is clear that it performs slightly
better on RGB images on the normal test set. It does however perform way better on
infrared images with a cold/snowy background, with almost double recall value. Overall,
the infrared images gives a huge performance boost when the background is cold. This
might show that the infrared is better in general, if some precautions are taken.

One clear issue that the infrared images had, was that the images performed worse on
images taken at higher altitudes than 50 metres. Although the altitude difference seems to
impact the spp network less than the 5l and 3l tiny networks, the spp still found a higher
percentage of sheep in the lower altitude images. It is unclear how big this issue is and if
the trade off is impactfull at all. On one note, the pilot would have to fly lower in order to
get the best performance that infrared images can give, but would at the same time cover
less area in the images taken. The RGB images do not have the same issue because of their
high resolution, meaning as they are cropped and thus cover a reduced field of view they
will still retain enough detail for the sheep to be clearly visible, assuming the sheep was
clearly visible from that location.

The loss of performance on higher altitudes is not as severe as to completely discard the
infrared images. The difference on the basic dataset is not as severe as well, and the
infrared keeps a higher recall rate while the RGB has a higher mAP@50. This changes in
a cold/snowy environment where the infrared images yield a much higher mAP@50 and
recall rate. Usually, the mAP@50 metric is the most important, but in this scenario we are
more concerned about finding sheep and not the exact location. Overall, it seems that the
infrared images yield slightly better results. The difference in a general environment is not
as huge, but the gain in a specific, infrared friendly environment is large.

5.3.1 Research questions.
RQ1: How well does YOLOv3 perform in detecting sheep in highland terrain? The
best network configuration of YOLOv3 acheives a recall of 0.71 locating 71% of any
sheep visible in an image. Out of 347 sheep detections 285 were actual sheep and 62
were false positives. YOLOv3 ability to detect sheep is significant, however with room for
improvement.

RQ2: Do infrared images improve the detection of sheep as opposed to RGB images?
Infrared images improved detection on cold background, indicating that the right environment
might make infrared images superior in detecting sheep. Additionally it does not lose to
much on a dataset containing a diverse set of environments, and it still keeps a higher recall
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rate than RGB images. In general, infrared images seem to be a good candidate in sheep
detection.

5.3.2 Validity of the experiment
While the detection networks performed well on the test datasets used in this experiment
there are several questions on how valid these results are, for example how would it
function in different environments or simply on a different dataset.

The use of FLIR MSX

Since the infrared dataset consisted of many images where FLIR MSX was used it is
unknown to what extent the networks performance would be affected on a dataset with
only FLIR MSX or normal infrared images. The effect of FLIR MSX can be seen in
Figure 5.9 MSX makes the location of some sheep even more clear, however it does not
accomplish this for all sheep and will highlight not only sheep but other miscellaneous
objects as well, such as stones or buildings possibly increasing false positive detections.

Figure 5.9: Two images taken at the same spot within a minute of each other, the image on the left
did not have MSX while the one on the right used FLIR MSX.

Ability to generalize

While the test sets were separated from the training and validation sets before the training
of the networks, they were still from the same UAV flights meaning their terrain and
environments were the same. Therefore these test results do not necessarily represent
the networks performance under different conditions.

Different network configuration

One main issue with this experiment is that different network configurations were used,
and might make the results incomparable. One network, the 5l configuration, was used
on both RGB and infrared images and is therefore the most interesting to compare. On
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the baseline test set, the 5l network performs slightly better on RGB images. It does
however get a huge performance boost on infrared images in cold environments. It would
be interesting to test similar configurations on both types of images, to see if the result
would be different. In hindsight, the test should have either been 3 similar network
configuration or use all 5 different configurations on both infrared and RGB images. This
could potentially show a bigger difference between images, making one type of camera
redundant.

5.4 Further Work

5.4.1 YOLOv4
On the 23rd of April 2020, an improved version of YOLO was released, YOLOv4 (Bochkovskiy
et al., 2020). This paper was written by the creator of the repository used in this experiment.
This version claims to run twice as fast as other detectors, while still keeping comparable
results. It also improves 10% on YOLOv3’s average precision and 12% on FPS. Using
YOLOv4 might give better results than the version used in this thesis and might show
great results on live video feed. It would also be interesting to see a fully integrated
system, where the system not only detects sheep in images, but also notifies the user with
the location of the detected sheep on a map.

5.4.2 Data collection time
Considering the infrared camera‘s increased performance on the colder environment, future
research on the usage of infrared camera‘s should focus on collecting data during the
coldest time of day to ensure a significant difference in temperature between the sheep and
the background.

5.4.3 Improving infrared quality
In order to improve infrared performance, the infrared images needs to be of a higher
quality. Currently, the infrared images need a specific environment in order to beat the
performance of RGB images. The infrared images have a higher recall rate, but lower
precision than RGB images. If it could keep its recall rate but increase its precision it
would be a strong contender.
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Chapter 6
Conclusion

The main goal of this thesis was to test YOLOv3‘s ability to detect sheep on UAV imagery
in order to help shepherds gather sheep in Norwegian sheep farming terrain. Additionally,
RGB and infrared images were compared in order to see which one yields the best results.
Overall, the infrared images gave the best results, with the YOLOv3 spp network achieving
a recall of 0.71 and a mAP@50 of 77.44% on the infrared images. In comparison the RGB
images achieved a recall of 0.63 and a mAP@50 of 80.33% using the default YOLOv3
configuration on the normal test set. When testing on cold backgrounds the infrared
performance was boosted significantly, with the 5l network achieving a recall of 0.84 and a
mAP@50 of 93.58%. On the RGB images the networks performance was slightly reduced
achieving a recall of 0.57 and a mAP@50 of 81.72%. The quality of the infrared images
do get worse at higher altitudes, and thus the results are worse on infrared images at higher
altitudes. Further testing on infrared environments, and a better infrared camera would be
favorable in order to see if infrared cameras are superior to RGB.

The results do give a skewed image, as the network configurations are not similar in RGB
and infrared scenarios. Only one similar network was tested, and it would be interesting
to see how similar networks would perform.

Further work would benefit from testing improved versions of YOLO such as YOLOv4, a
more diverse dataset and better infrared images. On board testing would also be interesting
or testing on a live video feed, as YOLO claims quick inference time and high FPS.

33



Chapter 6. Conclusion

34



Bibliography

AlexeyAB, a. Alexeyab / darknet. https://github.com/AlexeyAB/darknet.
Accessed on 02/10/2019.

AlexeyAB, b. Alexeyab / darknet. https://github.com/AlexeyAB/darknet#
how-to-improve-object-detection. Accessed on 02/10/2019.

Andrew, W., Greatwood, C., Burghardt, T., 2017. Visual localisation and individual
identification of holstein friesian cattle via deep learning, in: Proceedings of the IEEE
International Conference on Computer Vision Workshops, pp. 2850–2859.

Blix, A., Vangen, O., 2019. Sau. https://snl.no/sau. Accessed on 11/11/2019.

Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M., 2020. Yolov4: Optimal speed and accuracy
of object detection. arXiv preprint arXiv:2004.10934 .

Chabot, D., Bird, D.M., 2015. Wildlife research and management methods in the 21st
century: Where do unmanned aircraft fit in? Journal of Unmanned Vehicle Systems 3,
137–155.

DJI, 2019. Mavic 2 Enterprise Series User Manual-EN. DJI.

FLIR Systems, 2020. What is msx R©? https://www.flir.com/discover/
professional-tools/what-is-msx/. Accessed on 23/05/2020.

FLIR Systems Inc, . Lov om dyrevelferd. https://www.flir.com/products/
lepton/. Accessed on 09/03/2020.

van Gemert, J.C., Verschoor, C.R., Mettes, P., Epema, K., Koh, L.P., Wich, S., 2014.
Nature conservation drones for automatic localization and counting of animals, in:
European Conference on Computer Vision, Springer. pp. 255–270.

Gonzalez, L.F., Montes, G.A., Puig, E., Johnson, S., Mengersen, K., Gaston, K.J., 2016.
Unmanned aerial vehicles (uavs) and artificial intelligence revolutionizing wildlife
monitoring and conservation. Sensors 16, 97.

35

https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet##how-to-improve-object-detection
https://github.com/AlexeyAB/darknet##how-to-improve-object-detection
https://snl.no/sau
https://www.flir.com/discover/professional-tools/what-is-msx/
https://www.flir.com/discover/professional-tools/what-is-msx/
https://www.flir.com/products/lepton/
https://www.flir.com/products/lepton/


Google-Maps, 2020a. 62.693465, 9.094728 - google maps. https://www.
google.com/maps/place/62%C2%B041’36.5%22N+9%C2%B005’41.0%
22E/@62.693465,9.0925393,508m/data=!3m2!1e3!4b1!4m11!1m4!
3m3!1s0x0:0x0!2zNjLCsDQwJzU3LjYiTiA5wrAwOCcxOS45IkU!3b1!
3m5!1s0x0:0x0!7e2!8m2!3d62.6934647!4d9.0947283. Accessed on
28/05/2020.

Google-Maps, 2020b. 63.403771, 10.464441 - google maps. https:
//www.google.com/maps/place/63%C2%B024’13.9%22N+10%C2%
B027’56.6%22E/@63.403848,10.4635183,496m/data=!3m2!1e3!
4b1!4m13!1m6!3m5!1s0x466d3038626e6b93:0x894ea08c53ba31b7!
2sDragvoll!8m2!3d63.4089983!4d10.4708427!3m5!1s0x0:
0x0!7e2!8m2!3d63.4038482!4d10.4657066. Accessed on 28/05/2020.

Labelbox, 2020. Labelbox. https://labelbox.com. Accessed on 06/01/2020.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C., 2016. Ssd:
Single shot multibox detector, in: European conference on computer vision, Springer.
pp. 21–37.

Magnus Falkenberg Nordvik, Jens Tobias Kaarud, H.R.P., 2020. Mastergradsarbeid 2020.
Master’s thesis. Norwegian University of Science and Technology.

Muribø, J.H., 2019. Locating Sheep with YOLOv3. Master’s thesis. Norwegian University
of Science and Technology.

O’Mahony, N., Campbell, S., Carvalho, A., Harapanahalli, S., Hernandez, G.V.,
Krpalkova, L., Riordan, D., Walsh, J., 2019. Deep learning vs. traditional computer
vision, in: Science and Information Conference, Springer. pp. 128–144.

pjreddie, . pjreddie / darknet. https://github.com/pjreddie/darknet.
Accessed on 02/10/2019.

Radovic, M., Adarkwa, O., Wang, Q., 2017. Object recognition in aerial images using
convolutional neural networks. Journal of Imaging 3, 21.

Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A., 2015. You only look once: Unified,
real-time object detection. CoRR abs/1506.02640. URL: http://arxiv.org/
abs/1506.02640, arXiv:1506.02640.

Redmon, J., Farhadi, A., 2018. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767 .

Ren, S., He, K., Girshick, R., Sun, J., 2015. Faster r-cnn: Towards real-time object
detection with region proposal networks, in: Advances in neural information processing
systems, pp. 91–99.

Russell, S., Norvig, P., 2009. Artificial Intelligence: A Modern Approach. 3rd ed., Prentice
Hall Press, USA.

36

https://www.google.com/maps/place/62%C2%B041'36.5%22N+9%C2%B005'41.0%22E/@62.693465,9.0925393,508m/data=!3m2!1e3!4b1!4m11!1m4!3m3!1s0x0:0x0!2zNjLCsDQwJzU3LjYiTiA5wrAwOCcxOS45IkU!3b1!3m5!1s0x0:0x0!7e2!8m2!3d62.6934647!4d9.0947283
https://www.google.com/maps/place/62%C2%B041'36.5%22N+9%C2%B005'41.0%22E/@62.693465,9.0925393,508m/data=!3m2!1e3!4b1!4m11!1m4!3m3!1s0x0:0x0!2zNjLCsDQwJzU3LjYiTiA5wrAwOCcxOS45IkU!3b1!3m5!1s0x0:0x0!7e2!8m2!3d62.6934647!4d9.0947283
https://www.google.com/maps/place/62%C2%B041'36.5%22N+9%C2%B005'41.0%22E/@62.693465,9.0925393,508m/data=!3m2!1e3!4b1!4m11!1m4!3m3!1s0x0:0x0!2zNjLCsDQwJzU3LjYiTiA5wrAwOCcxOS45IkU!3b1!3m5!1s0x0:0x0!7e2!8m2!3d62.6934647!4d9.0947283
https://www.google.com/maps/place/62%C2%B041'36.5%22N+9%C2%B005'41.0%22E/@62.693465,9.0925393,508m/data=!3m2!1e3!4b1!4m11!1m4!3m3!1s0x0:0x0!2zNjLCsDQwJzU3LjYiTiA5wrAwOCcxOS45IkU!3b1!3m5!1s0x0:0x0!7e2!8m2!3d62.6934647!4d9.0947283
https://www.google.com/maps/place/62%C2%B041'36.5%22N+9%C2%B005'41.0%22E/@62.693465,9.0925393,508m/data=!3m2!1e3!4b1!4m11!1m4!3m3!1s0x0:0x0!2zNjLCsDQwJzU3LjYiTiA5wrAwOCcxOS45IkU!3b1!3m5!1s0x0:0x0!7e2!8m2!3d62.6934647!4d9.0947283
https://www.google.com/maps/place/63%C2%B024'13.9%22N+10%C2%B027'56.6%22E/@63.403848,10.4635183,496m/data=!3m2!1e3!4b1!4m13!1m6!3m5!1s0x466d3038626e6b93:0x894ea08c53ba31b7!2sDragvoll!8m2!3d63.4089983!4d10.4708427!3m5!1s0x0:0x0!7e2!8m2!3d63.4038482!4d10.4657066
https://www.google.com/maps/place/63%C2%B024'13.9%22N+10%C2%B027'56.6%22E/@63.403848,10.4635183,496m/data=!3m2!1e3!4b1!4m13!1m6!3m5!1s0x466d3038626e6b93:0x894ea08c53ba31b7!2sDragvoll!8m2!3d63.4089983!4d10.4708427!3m5!1s0x0:0x0!7e2!8m2!3d63.4038482!4d10.4657066
https://www.google.com/maps/place/63%C2%B024'13.9%22N+10%C2%B027'56.6%22E/@63.403848,10.4635183,496m/data=!3m2!1e3!4b1!4m13!1m6!3m5!1s0x466d3038626e6b93:0x894ea08c53ba31b7!2sDragvoll!8m2!3d63.4089983!4d10.4708427!3m5!1s0x0:0x0!7e2!8m2!3d63.4038482!4d10.4657066
https://www.google.com/maps/place/63%C2%B024'13.9%22N+10%C2%B027'56.6%22E/@63.403848,10.4635183,496m/data=!3m2!1e3!4b1!4m13!1m6!3m5!1s0x466d3038626e6b93:0x894ea08c53ba31b7!2sDragvoll!8m2!3d63.4089983!4d10.4708427!3m5!1s0x0:0x0!7e2!8m2!3d63.4038482!4d10.4657066
https://www.google.com/maps/place/63%C2%B024'13.9%22N+10%C2%B027'56.6%22E/@63.403848,10.4635183,496m/data=!3m2!1e3!4b1!4m13!1m6!3m5!1s0x466d3038626e6b93:0x894ea08c53ba31b7!2sDragvoll!8m2!3d63.4089983!4d10.4708427!3m5!1s0x0:0x0!7e2!8m2!3d63.4038482!4d10.4657066
https://www.google.com/maps/place/63%C2%B024'13.9%22N+10%C2%B027'56.6%22E/@63.403848,10.4635183,496m/data=!3m2!1e3!4b1!4m13!1m6!3m5!1s0x466d3038626e6b93:0x894ea08c53ba31b7!2sDragvoll!8m2!3d63.4089983!4d10.4708427!3m5!1s0x0:0x0!7e2!8m2!3d63.4038482!4d10.4657066
https://labelbox.com
https://github.com/pjreddie/darknet
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640


scikit-learn developers , 2020. Precision-recall. https://scikit-learn.
org/stable/auto_examples/model_selection/plot_precision_
recall.html. Accessed on 05/05/2020.
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Appendix

6.1 The training graphs of Figure 4.5

Figure 6.1: Loss and mAP from the 832x832 network during training. mAP score was run on
validation data every 100 epoch from epoch 1000 to 9000. Training was interrupted multiple times
so graph is incomplete.
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Figure 6.2: Loss and mAP from the 1024x1024 network during training. mAP score was run on
validation data every 100 epoch from epoch 1000 to 9000. Training was interrupted multiple times
so graph is incomplete.
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Figure 6.3: Loss and mAP from the 5l network during training. mAP score was run on validation
data every 100 epoch from epoch 1000 to 9000.
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6.2 The training graphs of Figure 4.6.

Figure 6.4: Loss and mAP from the 5l network during training. mAP score was run on validation
data every 100 epoch from epoch 1000 to 6000.
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Figure 6.5: Loss and mAP from 3l network during training. mAP score was run on validation data
every 100 epoch from epoch 1000 to 6000.
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Figure 6.6: Loss and mAP from the spp network during training. mAP score was run on validation
data every 100 epoch from epoch 1000 to 6000.
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