
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Håvard Aspen Løvik

Top-k Spatial Join on GPU

Master’s thesis in informatics

Supervisor: Kjetil Nørvåg

June 2020

Håvard Aspen Løvik

Top-k Spatial Join on GPU

Master’s thesis in informatics
Supervisor: Kjetil Nørvåg
June 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Problem Description
The amount of spatial data being collected is increasing. The presence of GPS modules in
common everyday tools as smart phones, cars and watches has increased the interest in making
useful apps utilizing the spatial data. Both large scale commercial apps and scientific research
is dependent on efficient algorithms handling this data. As the single core processor seems to
be closing in on its performance limit the focus has shifted to multi-core CPUs and GPUs. In
the last few decades the increase in multi-core systems availability and programmability made
researchers focus on creating parallel algorithms from their traditional serial implementations.
In this thesis, the aim is to investigate these new parallel spatial join methods on GPU hardware
to better understand their strengths and weaknesses. What we learn will be used to design a
new top-k spatial distance join algorithm for GPUs.

Supervisor: Kjetil Nørvåg

i

ii

Abstract

In this thesis we will investigate spatial join queries on GPU. The specific goal is to find out if
top-k spatial distance join queries are suitable for the GPU architecture.

We first discuss spatial join in general before we define the specific query we want to design
an algorithm for.

Then the characteristics of traditional computer architectures are visited to understand the
differences between it and the massively parallel GPU architecture. The GPU architecture is
discussed to get a good understanding of the execution model. Important aspects that utilize the
hardware to its full potential is also discussed.

Next, two common spatial indexes called R-tree and uniform grid are discussed. This is to
give context to our choice of the uniform grid as the spatial index for the top-k spatial distance
join query.

To get a better understanding of how previous research have handled spatial join on GPU
we choose four different spatial join methods to investigate. The purpose is to learn which
techniques works well for GPU and what we need to be cautious of when designing our own
algorithm.

Lastly the top-k spatial distance join algorithm is design and benchmarked against a simple
parallel approach. The results show that the spatial distance join part of the problem is well
suited for GPU parallelization. Adding the top-k part introduce significant challenges that leaves
none of our benchmarked methods without significant drawbacks to the hardware utilization.

ii

Sammendrag

Oppgaven utforsker romlige sammensettingsspørringer utført på GPU. Målet er å utforske om
en top-k romlig sammensettingsspørring gir mening å utføre på GPU.

Først introduseres romlige sammensettninger generelt før den spesifikke spørringen blir de-
finert. Så diskuteres karakteristikken til tradisjonelle datamaskinarkitekturer for å gi kontekst
til hvorfor GPU arkitekturen er som den er og hvordan man effektivt kan programmere den.

Neste del av oppgaven diskuterer to forskjellige romlige søkestrukturer som heter R-trær og
uniforme rutenett. Dette gir kontekst til valget for en romlig søkestruktur.

For å få en bedre forståelse av hvordan tidligere forskning har håndtert romlige sammenset-
tninger på GPU, undersøker vi fire forskjellige metoder. Målet er å finne ut hvilke teknikker som
passer bra til GPU arkitekturen og hvilke aspekter vi må være oppmerksom på når vi desinger
vår egen algoritme.

Til slutt blir den nye algoritmen designet og sammenlignet med en enkel parallel algoritme
på GPU. Resultatene viser at romlige sammensettningsspørringer alene passer bra til GPU par-
allelisering. Om man legger til top-k delen av problemet, støter vi på signifikante utfordringer
hvor ingen av metodene vi testet ungikk store utfordringer med å utnytte GPU maskinvaren til
sitt fulle potensial.

ii

Contents

1 Introduction 1
1.1 Motivation and related work . 1
1.2 Research questions . 2

2 Background 5
2.1 Database queries . 5

2.1.1 Join and spatial join queries . 6
2.1.2 Top-k spatial distance join . 7

2.2 Traditional computer architecture and parallelization 8
2.2.1 von Neumann architecture . 8
2.2.2 Memory hierarchy . 9
2.2.3 Parallel computing . 11

2.3 GPU architecture and CUDA . 12
2.3.1 Architecture . 12
2.3.2 CUDA . 14
2.3.3 GPU evolution . 17

3 Spatial indexes 19
3.1 Curse of dimensionality . 19
3.2 BVH and R-trees . 20
3.3 Uniform grid . 22
3.4 Choosing a spatial index for the top-k SDJ problem 26

4 Spatial join algorithms on GPU 27
4.1 Nested-loop join on GPU . 27
4.2 Multi Layered Grid join . 28

4.2.1 The MLG-join process . 29
4.2.2 Performance and analysis . 30

4.3 GCMF . 33
4.3.1 SMF . 34
4.3.2 Performance and analysis . 35

4.4 Self-join on point data . 36
4.4.1 Batching . 36

5 The new Top-k spatial distance join algorithm 39
5.1 Design overview . 39
5.2 Indexing . 39

iii

5.3 Filtering and Refinement . 40
5.4 Finding the top-k . 41
5.5 Batching . 41
5.6 Memory management . 42
5.7 Correctness . 42
5.8 Algorithm and complexity . 43

6 Methodology 47
6.1 Uniform synthetic data . 47

6.1.1 Box data . 47
6.1.2 Point data . 47

6.2 Real data . 48
6.3 Setup environment . 48
6.4 Profiling . 49
6.5 Implementation . 50

7 Analysis and Discussion 53
7.1 Baseline algorithm . 53
7.2 Comparison . 54
7.3 Suitability for GPU architecture . 59

8 Conclusion and future work 61
8.1 Conclusion . 61
8.2 Future work . 62

iv

List of Figures

2.1 Database query process . 5
2.2 Simple equality join . 6
2.3 The typical process of a spatial join algorithm. 7
2.4 von Neumann architecture. 9
2.5 Memory hierarchy. 10
2.6 GPU architecture . 12
2.7 GPU register usage . 15
2.8 GPU latency hiding . 16
2.9 GPU memory access patterns . 16

3.1 Minimum bounding boxes example . 20
3.2 R-tree example . 21
3.3 Hilbert curve . 24
3.4 Linear and Z-order ordering . 24
3.5 Uniform hash grid . 25

4.1 GPU brute-force nested loop join . 28
4.2 MLG-join grid . 29
4.3 MLG-join index . 29
4.4 MLG-join cell size and partition runtime performance 31
4.5 MLG-join density runtime performance . 31
4.6 Spatial intersection join Tesla P100 . 32
4.7 MLG-join cell size and partition size . 32
4.8 MLG-join memory usage . 33
4.9 GCMF . 34
4.10 GCMF memory summary . 35
4.11 GCMF densities Tesla P100 . 36

5.1 Top-k SDJ algorithm . 39

6.1 New York Buildings . 49
6.2 Bruteforce detailed runtime Tesla P100 . 49

7.1 Top-k SDJ runtime . 55
7.2 Top-k runtime where |R| = |S| . 55
7.3 Top-k SDJ epsilon . 56
7.4 Top-k SDJ epsilon comparison . 56
7.5 Top-k SDJ K comparison . 57
7.6 Top-k SDJ K parameter . 58

v

7.7 Cache usage . 59
7.8 Top-k SDJ register epsilon low . 59
7.9 Top-k SDJ memory . 60

vi

List of Tables

4.1 MLG-join probe and stream . 30

6.1 Uniform synthetic data . 47
6.2 Uniform synthetic data . 48
6.3 Real point data . 48
6.4 NVIDIA Tesla P100 PCIe 12GB specifications 50

vii

List of Algorithms

1 Naive Top-k SDJ . 8

2 The Naive GPU algorithm . 28
3 The SFM algorithm . 34

4 The new top-k SDJ algorithm in pseudo code 43
5 Top-k SDJ hash kernel. 43
6 Top-k SDJ filtering kernel. 44

7 The baseline top-k SDJ algorithm . 54
8 SDJ filter for used in the baseline algorithm. 54

viii

Chapter 1

Introduction

1.1 Motivation and related work
Spatial data collection is increasing. We have Global Positioning System (GPS) modules in
smart phones, computers, tablets, watches, cars etc.. Anywhere we go there is a potential of
generating spatial data. This has lead to an increased interest in applications using this data
both in commercial and scientific fields.

The join operator is essential when dealing with spatial data. The spatial join operator
can for example answer queries asking which objects intersects, are in close proximity to each
other or are similar. When we combine the join operator with the top-k query we can filter out
irrelevant results based on our own ranking/scoring function. Some of the use cases that are
mentioned in [1], [2] and [3] for spatial join queries are listed below:

• When traveling to a new city the hotel and restaurant quality may be important. The top-k
spatial join query can give you the top five combinations of hotels and restaurant within
a kilometer distance from each other based on the user ratings from other customers.

• Top-k spatial distance join can also be used in bioinformatics. Identifying pairs of amino
acids that exhibit “good” properties that contribute to the stability of a protein is one use
case. The properties of amino acids can be assigned scores and the top-k spatial join
query can identify pairs of amino acids that are close to each other with respect to their
3D location. The pairs of amino acids with the highest scores within a certain distance
can contribute best to the stability of a protein.

• Often different spatial datasets need to be joined to derive new information and knowl-
edge to support decision making. For example, GPS traces can be better interpreted when
aligned with urban infrastructures, such as road networks and Point of Interests (POIs),
through spatial joins. As spatial datasets are getting increasingly larger, techniques for
high-performance spatial join processing on commodity and inexpensive parallel hard-
ware become crucial in addressing the “BigData” challenge.

Previous research has focused on making algorithms for the Central Processing Unit (CPU).
This has been going for several decades and some techniques are well established. For example
the R-tree is a well established indexing structure for spatial data that is used in many of the
traditional spatial join algorithms.

1

Spatial join on Graphical Processing Unit (GPU) is by contrast a relatively new field. One
problem researchers have faced is that traditional techniques that rely on hierarchical structures
such as the R-tree [4] are not inherently suited for GPU. There is done research on trying to im-
plement efficient R-tree structures on GPU [5], [6], [7]. Their focus is on trying to minimize the
effect of the branching nature of the tree structure and fast construction. They show significant
improvements compared to the CPU baseline methods they compared to. Still there seems to
be hesitation to use R-tree structures for spatial join on GPU.

Much of the previous research on spatial join on GPU have tried to use other simpler struc-
tures [8], [9], [10] and [11]. In [8] they use a uniform grid structure to implement a spatial
intersection join between boxes. The method is made for real time intersection join on moving
objects. The performance shows significant improvements over the previous state of the art
method.

Grid structures are also used in [9] they use a grid structure for distance self-join. Since the
query is based on a distance measure the grid cells are sized according to this distance allowing
for an efficient distance comparisons of points.

In [10] they make a system for spatial join between polygons on GPU. They do not use an
index structure at all. The common reasoning between these articles are that heavy indexes such
as R-trees have problems fitting well in a GPU context.

The article most relevant to the specific query we are investigating is [1]. They implement
a top-k spatial distance join operation that is based both on the score and spatial attributes for
CPU. They use an R-tree as the spatial index and a min-heap to hold candidate results. They
also rely on a common threshold based on the previously found scores to stop early. These are
all techniques that do not fit well on a massively parallel architecture. We will therefore have to
think differently when solving this problem for GPUs. To their knowledge they were the first
to implement such an algorithm. In [12] they solve a similar problem but their solution was
restricted to attributes based on probabilities and the aggregation function had to be product.

To our knowledge they still are the only ones researching this problem. The most similar
research we could find on GPU was [13] which investigated top-k trajectory similarity join on
GPU. That means that there is no attempts to solve this problem on GPU. Therefor the top-k
spatial distance join problem is an interesting problem to create a new algorithm for on GPU.

The only research we could find that solved top-k on GPU was [14]. They solve a pure top-k
problem using a method based on radix sort where they find ways to stop early since sorting all
data may be unnecessary.

In addition the authors of paper [15] that go through interesting directions for future research
on spatial joins specifically mentions that the ε distance join is an interesting problem to try to
parallelize.

This motivates the goal of this thesis that is to investigate which techniques that are suited
for top-k spatial distance join on GPU and use this knowledge to design a new top-k spatial join
algorithm designed for the highly parallel GPU architecture.

1.2 Research questions
The main question this thesis tries to answer is how the top-k spatial distance join query can
be efficiently executed on the GPU. This implies that we can end up with and answer that tells
us that GPUs are not suited. To be able to answer this there are some important questions that
needs to be answered.

2

One sub-research question that have to be answered is how we can structure the data for ef-
ficient utilization. Spatial indexes are commonly used by spatial algorithms to speed up search
and manipulation of the data. Finding which spatial indexes that benefits from GPU paralleliza-
tion will be an important step on the way to an efficient algorithm for spatial joins on GPU.

The second sub research question will ask how the top-k part of the query can be efficiently
executed on the GPU. Since the high speed GPU memory is limited and little research is done
on top-k queries on GPU this is an important question to answer. The research questions are
formally defined as:
RQ1: Are GPUs suited for top-k spatial distance join queries?

• SRQ1: Which spatial indexes and data types if any are suited for spatial join on GPU?

• SRQ2: How can top-k be efficiently implemented in the GPU memory architecture?

Hopefully by answering these questions it can give us knowledge also outside of the specific
query we have chosen.

3

4

Chapter 2

Background

2.1 Database queries
Database queries are requests sent to a Database Management System (DBMS) written in a high
level query language such as the Structured Query Language (SQL). The queries are processed
by the DBMS and the return value is a result set or an error message. A very common query that
will be the focus of this thesis is the join query denoted by R ./A=B S, where R and S represents
two tables and A and B are respective attributes.

The overall query processing flow is described in Figure 2.1.

Figure 2.1: The steps involved in a typical database query process.

The first step is to translate the query into a format usable for the DBMS. This involves
scanning the query for key words specific to the querying language, parsing the query to see if
it has valid syntax and validating to see if attributes and relations makes sense. The result is an
internal representation of the query often represented by a Directed Acyclic Graph (DAG) that
is guaranteed to be a valid query.

The DBMS can then start planing how the query will be executed. This is often called the
query optimization step. The goal of this step is to find a fitting execution strategy for the given

5

Figure 2.2: A simple join between two tables where the equality predicate is on the class attribute.

query. Query optimization may be a bit miss leading since the DBMS does not necessarily have
all sources of information that is needed to make the optimal plan. Finding an optimal plan
would in many cases be to time consuming as well. There may also be information needed that
is not available, for example the distribution of the data. The DBMSs job is therefore to quickly
find a good execution plan with the given information.

Based on this plan the DBMS generates the code required to execute the query in the runtime
database processor. After the query is executed the result is returned to the user. In this thesis
the main focus will be on making an efficient execution step for the top-k spatial distance join
query.

2.1.1 Join and spatial join queries
There are many different types of join queries. The basic idea is that two or more tables in a
relational database can be joined together based on a join predicate. Join means that tuples
from two or more tables are combined into a single longer tuple. The most common join
method involves a join predicate checking for equality between two attributes. The equality
join operation between two tables are illustrated in Figure 2.2.

In this thesis we will be investigating the intersection and distance join queries. The inter-
section join query will be using boxes as the spatial objects and the distance join query will be
using points. The reasoning behind this choice is that they have a wide array of use cases and
are the most common queries to find in previous research [15]. Queries on polygons are also
common but much of the research focus on finding efficient methods for polygons intersection.
This is outside of the scope of this thesis, but the filtering part of those algorithms is still relevant
and will therefore be considered as well.

The common concern when processing spatial queries is to find some way to decrease the
number of comparisons needed when executing the query. As demonstrated in Algorithm 1 this
is an O(n2) algorithm. This is especially important for algorithms that needs complex checks
to verify the join predicate. For example intersection join on polygons have complex checking
algorithms so the best solution is to avoid as many comparisons as possible. An expensive
filtering step to reduce the candidate pairs can most often be justified.

Figure 2.3 describes the typical spatial join process. R-trees(Section 3.2) and grid structures
as uniform grids(Section 3.3) are commonly used structures for spatial joins. The benefit of
using indexes such as R-trees on spatial joins is that finding and comparing spatial objects can
be done very efficient as long as you have already made the spatial index. The disadvantage is
that the creation of such indexes can be expensive, especially if they are never reused. Methods
that do not use indexes are also developed. The sweeping line method is an example of this
[16]. The indexes are used to make the filtering step be faster.

6

The main purpose of filtering is to generate potential candidate pairs for the refinement step.
This is because the refinement is so slow that even with two extra steps of indexing and filtering
we still save time. The filtering step most commonly use MBBs as defined in Section 3 to
simplify the geometric shapes. This is why the filtering step of the polygon intersection queries
is relevant to box intersection queries.

The refinement step does the last thorough check to produce the final pairs. This step de-
pends on the predicate and data used in the query. For example when intersection on polygons
is the predicate edge intersection and point in polygon test can be done. This is a very expensive
step.

It is important to note that the need of a filter step depends on the cost of the actual join
predicate check. For example for point data where we want to find pairs of points within a
given distance of each other the filtering and refinement steps are combined into one. This is
because the distance check is so fast that it often does not make sense to do it in two steps.
A common way to execute this kind of algorithm is to index the points in a way that reduces
the number of comparisons drastically, and then just execute the actual comparisons using this
index.

Figure 2.3: The typical process of a spatial join algorithm.

2.1.2 Top-k spatial distance join
In this section the top-k Spatial Distance Join (top-k SDJ) problem is introduced. The problem
will be formally defined and an example of a naive serial algorithm will be presented. This is
the problem we will try to design an efficient algorithm for on GPU in Chapter 5.

This is a very similar definition of the problem as in [1]. We start out by having two sets
R and S. These two sets contain spatial coordinates within Rn and a score. We do not require
the sets to be sorted by score as in [1]. The goal of the top-k SDJ algorithm is to find the top-k
combinations of two elements, one from each set, which have the highest combined score based
on a scoring function γ . Our scoring function does not have to be monotone as in [1]. The
objects also need to satisfy the join predicate which is that the two objects needs to be within
ε distance from each other. The result is a set C with length K that contains the top scoring
element combinations. The formal definition can be found in Definition 1.

Definition 1. (Top-k Spatial Distance Join). Let R= {r1,r2...rm−1,rm} and S= {s1,s2...sn−1,sn}
be two sets of spatial objects, k be a positive integer k ∈ Z+, ε be a distance threshold ε ∈ R>0
, γ(r,s) be a monotone function γ : R×R→ R and dist be a distance measure. The top-k SDJ
query will return a set C of length k with spatial object pairs x = (r,s) were dist(r,s) ≤ ε . No
other pair x′ in R× S−C have a higher score than any object in C, ∀x ∈ C(¬∃x′ ∈ R× S−
C|γ(x)< γ(x′))

The distance measure in this algorithm can be any general distance called a Minkowski dis-
tance Lt . The distance is measured between two points in Rn. For t = 2(L2) it is called euclidean

7

distance, for t = 1(L1) it is called the Manhattan distance and for t = ∞(L∞) it is called the Max-
imum distance. Which distance metric to use depends on the application. In this thesis we will
use the L2 euclidean distance.

A naive approach to solving this problem would be slow. One approach is to compare all
objects with each other to get the pairs that are closer than ε . We could then calculate the
score γ of all the pairs that are within ε distance and sort them in descending order. Taking the
top-k elements from the sorted list would give the correct result. The worst-case running time
would be O(n2) for the distance comparison, and O(n log(n)) to sort based on γ assuming an
optimal comparison sort algorithm and O(1) to fetch the top-k. The running time would then
be dominated by the distance comparisons so O(n2) would be the upper bound. Algorithm 1.

Algorithm 1: Naive Top-k SDJ
input : R, S, γ , ε , k
output: A set C with the top-k object combinations

1 Pairs← /0 ;
2 foreach r ∈ R do
3 foreach s ∈ S do
4 if dist(r, s) ≤ ε then
5 Pairs := Pairs ∩ (r, s);
6 end
7 end
8 Descending← Sort(Pairs, γ);
9 C← GetTop-k(Descending, k);

10 return C ;

2.2 Traditional computer architecture and parallelization
This section is meant to give the background knowledge needed to understand why the GPU
architecture is designed the way it is. Section 2.2.1 describes the von Neumann architecture
before Section 2.2.3 describes the overall process of solving a problem in parallel. The GPU
architecture is then discussed in Section 2.3 before we discuss how to program them efficiently
in Section 2.3.2.

2.2.1 von Neumann architecture
The von Neumann architecture [17] is a classical computer architecture by mathematician and
physicist John von Neumann. It is a simple concept consisting of a central processing unit
and a memory module. The CPU have two sub-modules called the Control Unit (CU) and the
Arithmetic and Logical Unit (ALU). The CPU and memory module is interconnected allowing
the CPU to read and write from memory Figure 2.4.

The control unit is responsible for knowing which instruction should be executed. It does
this by keeping track of a Program Counter (PC) which holds the address of the next instruction.
The ALU is responsible for executing these instructions.

Inside the CPU there are small memory modules called registers. These registers are rela-
tively fast and mainly used for keeping track of the program logic or saving intermediate values

8

during computations by the ALU. They are only used for storing data and instructions necessary
to execute the current program. The program counter is an example of a register.

The main memory module outside the CPU is much larger than the registers in the CPU.
The memory module stores data and instructions needed to execute the program. For the CPU
to be able to access this memory it uses the interconnections between the two modules often
called the bus.

The memory module is much slower than the CPU registers. Since the CPU needs to access
this memory for data and instructions it is slowed down. This separation of memory and CPU is
called the von Neumann bottleneck, since the interconnection determines how fast instructions
and data can be accessed hence affecting the execution time.

To improve upon this architecture there have been a lot of research on how to better utilize
the CPU for efficient computations and finding smarter ways to access memory to overcome the
von Neumann bottleneck.

Figure 2.4: The von Neumann architecture.

2.2.2 Memory hierarchy
The memory hierarchy is a concept developed to overcome the von Neumann bottleneck. The
idea is that we can limit the effect of the slow memory access by placing smaller but much faster
memory modules between the memory and the CPU. These memory modules are called cache
modules. They are ordered in a hierarchy where the smallest and fastest module is close to
the CPU. When moving further away form the CPU the cache modules gets larger and slower.
Figure 2.5 shows an example of a typical memory hierarchy on a modern computer. There are
three layers where the first layer can hold some kilobytes of data while the third layer can hold a
few megabytes. The main memory on modern computers are now often tens of gigabytes. This
means that there is a very small percentage of the data in the main memory module that can be
stored in cache modules.

To chose what data is stored in the cache modules we need to look at the memory usage of
most programs. When executing a program most instructions happen in sequence. Programs
and data are stored consecutively in memory. This means that when executing a program we
can be pretty certain that after one instruction the next instruction will be the one laying con-
secutively in memory. This is called the spatial locality cache principle.

Branching may contradict this but its found that branching instructions makes up a very
small portion of typical programs. The spatial locality principle also holds for data. Then we

9

access a memory location we want to cache the surrounding data since they will most likely be
accessed next. It may vary how much data and for how long the data will be stored in cache.

A good example of utilizing the spatial cache principle is when we access a 2D matrix in
memory. If we store the rows consecutively in memory we want to loop over all items/columns
in that row before moving to the next. This allows the cache to cache the rows consecutively in
memory. If we had accessed it in a column mayor fashion we would no be able to do the same
as each access would have a whole row of data between them.

The temporal locality principle is similar. Instead of focusing on the spacial information it
focus on the time aspect. When accessing data it will likely be accessed again in the near future.
If we cache the accessed data we can reduce the amounts of times we need to access the slow
main memory data.

To take advantage of these cache principles we fetch data and instructions in whats called
cache blocks or cache lines. The idea is that since the data laying next to the data we want to
access is so likely to be accessed next we can fetch more than only one data item or instruction
per operation. Typically 8 or 16 times more data can be accessed in one transaction and cached.
How much will depend on the architecture. If the next memory fetch instruction finds the data
or instruction it is looking for in cache it is called a cache hit. If it does not it is called a cache
miss.

The caching principle is also very important in modern GPUs where the execution cores
can execute operations much faster than the main memory module can keep up with. Memory
access latency is a big challenge when developing efficient GPU algorithms. Good memory
access patterns to maximize cache usage is an important method for better performance. More
on this in Chapter 2.3.

Figure 2.5: The typical memory hierarchy in modern computers.

10

2.2.3 Parallel computing
For a long time software was written in serial. This worked well when the performance increase
was mainly driven by Mores law and more efficient algorithms. When the transistors got smaller
and smaller the heat density also increased. To overcome this problem the focus on making
faster cores shifted to making multi-core processors instead. This lead to new challenges where
the old serial algorithms had to be revise to work on parallel systems to utilize the core. To
do this we can rewrite the serial algorithm to a complete new parallel algorithm or we can
write a translation program that automates the process. Research on automatic translators have
shown to have limited effects. The problem is that writing a parallel program is not trivial and
often needs complete redesign of the algorithm to give good results. The translators currently
does not have the capability to do this and can only recognize common serial patterns that can
be translated. This is not sufficient for a good parallel implementation as the original serial
sequence of tasks may be terribly inefficient on the parallel processor. A complete rewrite
currently needs a human developer.

Writing a parallel program is done by carefully considering the parallel architecture and
dividing the problem into tasks that can be done in parallel. Problems that have independent sub
problems where each sub problem can be solved individually are perfect for parallel algorithms.
This is why for example graphics processing benefit so much from parallel execution since each
individual pixel can be processed individually.

There are two main schemes in task division called task parallelism and data parallelism.
Task parallelism is dividing different task out for all the processor cores where the cores may
process the same or different data.

A simple example of task parallelism: Consider a car factory. Along the assembly line there
are 5 robots that can work simultaneously. Each robot is responsible for assembling 1

5 of the
car. The robots will represent the cores in a multi-core system. Each core does different tasks
in parallel on the same data, hence task parallel.

A simple example of data parallelism: Consider the same car factory as the last example,
but instead of one assembly line we have 5 lines doing the same work but with one robot per
line. The cars would be split onto the 5 assembly lines. Here the individual assembly lines
represent a single core. The same tasks are performed in parallel but on different cars or ’data’,
hence data parallel.

What technique that is best is problem and hardware dependent. For this problem the most
efficient method would depend on how the work was divided among the workers or robots in the
task parallel method. If we assume the tasks parallel process was divided so there was exactly as
much work for each worker it would be as fast as the data parallel method. If not we may get the
problem that one worker finish before the others and need to wait doing nothing. Redistributing
this worker to help the other workers may help but will require communication overhead. One
disadvantage to data parallelism is that each core may get very complex as each core needs to
execute the whole process by itself. If there is limited register space per core this may become
a problem.

GPUs are perfect for data parallel processing as explained in Section 2.3. Using Flynn’s
taxonomy GPUs best fit the Single Instruction Multiple Data (SIMD) execution model but since
each core have multiple threads it is often called Single Instruction Multiple Threads (SIMT).
It is therefore data parallel algorithms that will be the focus of this thesis.

11

2.3 GPU architecture and CUDA
The Graphics Processing Unit (GPU) was originally created to accelerate graphical processes.
Computer games have traditionally been computationally heavy where complex graphical scenes
must be rendered up to hundreds of times per second. The basic building blocks of computer
graphics are simple primitives (usually triangles) represented by floating point numbers. To
move the viewpoint around the scene we apply combinations of simple affine transformations
to these primitives. This means that millions of floating point computations need to be done
every time we want to render a scene. This has lead to games being an important pushing force
in the development of GPUs since they often require high frame rates and detailed scenes. In
the last decades as the GPUs performance have steadily increased and they have turned into
general purpose GPUs. This has lead other areas to also show interest in the highly parallel
architecture. Neural networks have recently become very popular as the generation of neural
network models benefit greatly from the parallel nature of the GPU. All discussions on GPUs
will assume an NVIDIA GPU. The next Section 2.3.1 will describe the GPU architecture while
Section 2.3.2 will explain how it is programmed using Compute Unified Device Architecture
(CUDA).

2.3.1 Architecture

Figure 2.6: A simple diagram of the typical NVIDIA GPU architecture seen from a programmers per-
spective.

Figure 2.6 gives a simplified overview of a typical GPU architecture from the programmers
perspective. The GPU consists of a collection of Streaming Multiprocessors (SM). Each SM has
multiple cores for executing threads. The cores inside the SMs are called CUDA cores. These
cores are essentially a Floating Point Unit (FPU) designed for efficient floating point operations
and an ALU. There are also memory modules on each SM that are described in the memory list
below. Each SM have a large amount of cores. The Tesla P100 (see Table 6.4) we will be using
in this thesis have 56 SMs with 64 cores combining to a total of 3584 cores. This is a massive
parallelization increase compared to multi-core CPUs. The GPU does have slower cores than
CPUs often ranging between 1 to 2 GHZ but the large amount of cores makes the GPU perfect
for tasks that have independent sub-problems.

12

To schedule work each SM has its own scheduler called a warp scheduler. Warps are a
collection of 32 threads executed synchronously. Further details on warps can be found in the
next Section 2.3.2. The warp scheduler can actively switch between the warps that are executed
between each clock cycle. This is essential for techniques as latency hiding. Other than the
already mentioned parts the most important aspects of the GPU is the memory structure. The
memory structure on a GPU is as follows:

• Global memory: The large Dynamic Random Access Memory (DRAM) memory banks
outside the SM’s that holds most of the memory space available to the GPU. Global mem-
ory is often used when memory space is allocated on the GPU device from the host before
it is copied over from the computers main memory. Global memory is slow compared to
the other memory banks on the GPU, so you want to minimize global memory usage.

• Constant memory: Is also resident on the DRAM memory banks. Constant memory is
optimized for constant values and can be accessed more efficiently than if ’normal’ global
memory was used. Constant memory is also cached. constant is used to declare
constant memory.

• Texture memory: Texture memory is also allocated on the DRAM memory banks and
share the same space as global memory. The difference is that texture memory access is
highly optimized for 2D access patterns. This was originally done to accelerate texture
access for the graphics pipeline but have proven useful for general purpose computing as
well.

• L1 and L2 cache: since global memory is relatively slow there are multiple layers of
cache between it and the SMs. L2 cache is a shared layer of memory between the SMs
and the global memory. It is much smaller than global memory but significantly faster.
L1 cache is a local per SM memory chip that is even smaller and faster than L2 cache. L1
cache is also often called ”Unified Memory”. The sizes of these caches can be very small
compared to the size of the global memory. The difference can be in the order of a few
MB to more than 10 GB.

It is important to note that not all architectures have both L1 and L2 cache. This will
depend on which architecture the GPU use. The caches are typically not available to the
developer and is handled by the GPU itself. The programmer can although use smart
access pattern to utilize the caches as much as possible.

• Shared memory: Each SM has its own shared memory chip that is local on the SM. This
chip is significantly faster than the global memory but it is quite small. Shared memory is
shared by all the blocks currently resident on the SM. If you have to access global memory
multiple times you may want to use shared memory as a buffer to minimize the times you
have to access global memory. Shared memory can be used by specifying share when
declaring.

The shared memory is organized into 32 banks, one for each thread in a warp. This is so
threads can access shared memory in parallel. Storing data in shared memory that spreads
the out on these banks is therefor important. If not the share memory access is serialized.
Shared memory can also be used for communication purposes between threads in a block.

• Registers: Registers are the memory space with the lowest access time. They can be used
by the threads to for example store the increment variable in a for loop. If the registers

13

get full the treads may store data in local memory. It is the CUDA compiler that decides
if it wants to use registers or local memory.

• Local memory: It is a part of the global memory assigned to large thread local data. That
is if a thread wants to allocate space for data that is too large for the registers to handle
it is allocated in local memory instead. Local memory is much slower than registers but
lets programs threads use allocate more memory than available in the registers.

2.3.2 CUDA
Compute Unified Device Architecture (CUDA) is a parallel computing platform and Applica-
tion Programming Interface (API) created by NVIDIA. The following section will not discuss
specific API calls but rather explanation what we need to think of when writing a program for
GPU.

A common CUDA program follows these steps:

1. Allocate memory space on the GPU.

2. Copy data from the host machine to the GPUs global, constant or texture memory.

3. The host machine specifies how GPU threads should be structured when executing a
kernel. A kernel is a program running on the GPU.

4. The device finish executing the kernel and copies data back to the host machine.

To understand how to program using CUDA it is important to understand how threads are
executed. Warps are a collection of 32 threads that are executed simultaneously on the CUDA
cores in an SM. Each warp is taken from three dimensional blocks of threads simply called
blocks. All blocks are organized into a three dimensional grid. This structure is used so individ-
ual threads can be indexed using their x, y and z coordinates. When a GPU kernel is executed
the grid is turned into a queue of blocks. Each block is waiting to be assigned to a SM with free
capacity. All the warps in the block need to be finished before a block can be freed from the
SM. When all warps in all the blocks are finished executing the kernel is finished.

So what determines how many blocks can be active on a SM? There is a max limit to warps,
threads and blocks. On a NVIDIA Tesla P100 that will be used for benchmarking in this thesis
the maximum is 32 blocks, 64 warps and 2048 threads. These are only theoretical maximums.
If we want to know the actual number that can be assigned it is a bit more complicated.

When a block is assigned to a SM all its registers and shared memory that the block will
use is allocated. This means that if you have 65536 registers available on the SM and each
block have 16 warps where each thread uses 32 registers we get that 65536

(16∗32)∗32 = 4 blocks can
be assigned to the SM. Note that if 4 blocks were assigned to the SM that would result in 2048
threads which is the maximum. Decreasing the register usage per thread would not increase the
number of blocks that could be assigned since we have already hit the max thread limit. The
same principle is true for shared memory as well.

Since register and shared memory space is allocated per whole block we get an interesting
scenario if we use one more register per thread. Then we get 65536

(16∗32))∗(32+1) = 3.88. This
causes only three blocks to be assigned to the SM resulting in 14848 registers to be unused.
An illustration of this can be seen in Figure 2.7. One technique that makes the impact of many
registers per thread smaller is to reduce the number of warps in a block. By doing this we let

14

the blocks be allocated on a fine grained level that will reduce the number of unused registers
significantly. It also makes more warps available that is good for latency hiding.

Figure 2.7: (Top) Register usage per thread is 32 with 16 warps per block. This fully utilize the register
space. (Bottom) Register usage is 33 with the same block dimensions. Now we can only fit 3 blocks
which leaves 14848 registers unused.

Register spilling is another effect of using too many registers per thread. If the compiler
finds that the data allocated by threads is too large to fit in registers it may need decide to save
it in local memory instead. As explained before the local memory is much slower than registers
an may therefore degrade the performance of the kernel significantly.

Memory space on the SM is allocated per block because it lets the warp scheduler switch
between active threads instantaneously. The warp schedulers task is to schedule the warp exe-
cutions as efficiently as possible. One technique the warp scheduler use is to switch between
warps when they stall. A very common causes for stalling is memory access where the warp
needs to wait for data from global memory. The scheduler switch to another warp that is not
stalling while the warp is waiting. This will essential hide the memory access delays if there
are enough warps available. What allows us to use this technique is that the registers and shared
memory are not deallocated when the warp is deactivated. Since the memory space for all
warps (threads) got allocated at the start when the block was assigned to the SM the only thing
the scheduler needs to do is to tell which warps should be active. It is then also obvious that
having a high amount of warps available to switch between is beneficial for the latency hiding
technique. Figure 2.8 shows an example of latency hiding.

We do therefore also need to be careful of how much register and shared memory space we
use. Using too much will lead to few blocks being resident on the SM which in turn leads to
low occupancy.

To reduce the impact of memory requests the GPU tries to make as few transactions for data
as possible to minimize DRAM bandwidth. One transaction to the global memory fetches 32,
64 or 128 bytes of data per transaction. The transactions are using these sizes because since a
warp can then use only one transaction to fetch one data item per thread. For example a warp
can use one transaction to fetch 32 floats of 4 bytes each. The GPU trying to minimize the
memory transfers into as few transactions as possible is called memory coalescing. Figure 2.9
shows shows a optimal access pattern where only one transaction is needed per warp.

When data is stored in global memory it is aligned to fit into these transaction sizes. This
means that if you were to access data that is not aligned with the transactions sizes we would
need multiple transactions to access the data requested by a warp. This would be bad if the
transactions were not cached. This was the case on old GPUs with compute capability less than

15

Figure 2.8: (1) Scheduler starts executing warp 0. (2) Warp 0 executes code with memory latency,
scheduler switches to executing warp 1. (3) Warp 1 executes code with memory latency. Switches to
warp 2. (4) While warp 1 and 2 have executed the data warp 0 was waiting for is now ready. So when
warp 3 meets a memory latency the scheduler switches to warp 0.(5) The data warp 2 was waiting for is
now ready. When warp 0 hits a new memory latency the scheduler switches to warp 2. Warp 1 is still
waiting for the memory request to finish.

2. On modern GPUs as the Tesla P100 the memory transactions are cached in L1 cache. If
we execute multiple transactions the cache lines will be available in cache for the next warp to
access making the effect of miss aligned access pattern having performance closed to an aligned
pattern. The middle diagram in Figure 2.9 shows miss aligned access. An access pattern that
will always be problematic is a strided access pattern shown in the bottom diagram in Figure
2.9. With strided access each tread in the warp wants to access a separate memory location
contained in separate transactions. Since the cache cannot does not help with this pattern the
resulting performance is bad on all architectures.

Figure 2.9: (Top) An ideal access pattern where all memory requests resides within the same transaction
unit. (Middle) Memory access pattern where all accesses are sequential but offset. The performance of
an offset access pattern will average out to be very close to an optimal access pattern on modern GPUs.
(Bottom) A strided access pattern where each request would require a separate transaction. Will perform
bad on all GPU architectures.

Another important thing to note in addition to block sizes and register memory usage is
thread divergence. Thread divergence is a problem where we have branching internally in a
warp. This can happen if some threads in a warp qualify an if-statement while some do not.

16

Since all threads have to do the same instruction the threads that did not qualify the if-statement
have to be idle while the other threads run(and opposite for the other threads). This can lead to
many threads being idle for large portions of the program. Therefor we want our code to have
as few branches as possible.

2.3.3 GPU evolution
The GPU architectures evolve over time as better performance is needed. For example GPUs
made using the Fermi architecture in 2010 have different approaches to problems than the GPUs
made with the Pascal architecture in 2016. NVIDIA use the term compute capability do dis-
tinguish between the different architectures. For example the Fermi architecture have compute
capability 2 while the Pascal architecture have compute capability 6. There may also be varia-
tions within an architecture.

While the same basic concepts apply through all the architectures, some small changes may
lead to differences in the algorithm design. For example the Fermi architecture did not have
support for dynamic parallelization, that was introduced with the Kepler architecture succeeding
Fermi. The dynamic parallelization made it much easier to implement hierarchical structures
and recursive algorithms on the GPU. Previous architectures only allowed the CPU to execute
kernels on the GPU. When dynamic parallelization was implemented the GPU could execute
more kernels itself. Another aspect that also use to change between architectures are how much
memory is available in the different modules and the cache layout.

These architectural changes lead to changes in how the developers and researchers have
to think. It is therefore important that we are aware of which hardware the algorithm will
be running on and which limitations or improvements that can occur when running on other
architectures. In this thesis we are using the Tesla P100 GPU based on the Pascal architecture.

17

18

Chapter 3

Spatial indexes

This chapter will cover two common spatial data structures that are used to index spatial data.
Each structure will be shortly described and their performance will be discussed in a GPU
context. The main purpose of this section is to show which structures are suited for spatial join
algorithms on GPU, and specifically a structure that can be used for the top-k SDJ algorithm.
Section 3.2 covers R-trees while Section 3.3 covers the uniform grid structure.

A spatial index allows algorithms dealing with spatial objects to access them efficiently com-
pared to non structured data which would have to be accessed by a sequential search. Finding a
good spatial structure is both problem dependent and execution model dependent. Examples of
commonly used indexes for solving spatial problems are R-trees and uniform grids. All spatial
indexes discussed will consider objects in a real coordinate space of n-dimensions, Rn.

Definition 2. (Spatial object) Spatial objects can form any shape in Rn. The object X is a set of
points subject to X ⊆ Rn.

Most spatial indexes use Minimum Bounding Boxes (MBBs) to represent spatial objects.
Figure 3.1 shows examples of MBBs for some common shapes. The MBB is an axis aligned
box with the smallest measure which still covers all points in the object. The measures can for
example be area in two dimensions or volume in three dimensions.

Definition 3. (MBB) A minimum bounding box B enclosing an object X such that X ⊆M and
no other box B’ satisfying this has a smaller measure |B′|< |B|.

MBBs are efficient in space usage since they only use two points to represent shapes. The
first point is the minimum of all n dimensions and the second is the maximum. By using only
two points to represent an object we can significantly speed up for example intersection between
two polygon objects.

We start by initially only checking if their MBBs intersects. The MBBs make this an ef-
ficient process in both space and time. If we have an intersection between the MBBs a more
thorough check can be used to find out if the objects actually intersects. This method is a crucial
part of why spatial indexes are so efficient.

3.1 Curse of dimensionality
The curse of dimensionality is a common problem in fields that process data with many dimen-
sions as machine learning or spatial database systems. When we increase the dimensions of

19

Figure 3.1: Four shapes in R2 with their respective MBBs (dashed lines).

the data the complexity also increases. The data is also more sparsely distributed. This have
resulted in a split in focus among the indexing algorithms where some only focus on lower
dimensional data while others specifically focus on solving the problem with indexes for high
dimensional data.

Some techniques are created for high dimensional spatial data as locality-sensitive hashing.
This is a technique where we use a hash function to place the spatial objects in ’buckets’. Points
in a bucket are spatially close to each other. This technique has for example proven to be very
useful for k-nearest neighbor queries for high dimensions. The drawback with this method is
that it only calculates the approximate result since the hash function is not guaranteed to place
all objects perfectly.

To limit the scope of this thesis we will focus on lower dimensional data.

3.2 BVH and R-trees
Bounding Volume Hierarchies (BVH) are commonly used when indexing spatial objects. BVH
is a broad term used on algorithms that use hierarchical bounding volumes to structure the
spatial objects. The bounding shape can be any shape as a box or a sphere. This structuring
makes search and manipulation of the objects much faster.

One specific type of BVH structure is the R-tree. The R-tree is a spatial index which struc-
tures MBBs of objects in a hierarchical tree. Internal nodes in the R-tree contain a set of entries.
R-trees became a popular subclass of the BVH tree because of its small memory footprint and
efficient ways of doing intersection and distance computations. Each entry is represented by a
MBB and a pointer to a child node. The child node could be another internal node or a leaf node
which contains an object. All MBBs of descendant nodes are enclosed in the MBBs of their
ancestor nodes. Some variants of BVH indexes use MBBs that are not axis aligned. Reasons for
doing this is to better fit surround spatial object to reduce the chance of false positives. These
boxes are called Object Oriented Box (OBB). R-trees though use whats called Axis Aligned
Bounding Boxes (AABB). Through the reset of this when MBB is used it is equivalent to an
AABB unless specified otherwise.

The formal definitions are written below as well as an example of a R-tree in Figure 3.2.

Definition 4. (R-tree entry) An entry E can be an internal node as defined in Definition 7 or a
leaf node as defined in Definition 6.

Definition 5. (R-tree internal node) An internal node NI contains a set of child nodes where
each element of the set contains a pointer to another entry defined in Definition 4 and that
entries MBB.

20

Definition 6. (R-tree leaf node) A leaf node NL must have exactly one parent node and no child
nodes. It holds a pointer to a spatial object Definition 2.

Definition 7. (MBB internal node) If we have an internal node NI , the MBB of NI will enclose
all MBBs of descendant nodes: MBB(NI) = MBB(∪E∈NiMBB(E))

Definition 8. (Axis Aligned Bounding Box) Has the same enclosing properties as a MBB in
Definition 3. We will define the axis aligned box B = (a,b) using two points a,b ∈ Rd:

∀i ∈ {1...d}|a[i] ≤ b[i]

B = {p ∈ Rd|∀i ∈ {1...d} : a[i] ≤ p[i] ≤ b[i]}

where x[i] represent the ith coordinate in the point vector.

Figure 3.2: (Left) The spatial objects with their MBBs. Root level is green, the internal nodes are red
and the leaf nodes are black.(Right) The R-tree structure corresponding to the spatial objects on the left
figure.

The benefit of structuring the spatial objects in R-trees is the improved search performance.
When searching for objects in a traditional range search the search starts at the root node, and
checks if the search query intersects with any of its entries. This will be referred to as a node
scan. If an entry does intersect the search continues scanning the node it intersected with. If
an entry does not intersect we can prune the whole branch with all the descendant nodes. The
pruning of these branches in addition to the fast comparison of MBBs is what makes the search
efficient. This process continues digging down the tree in a recursive manner until leaf nodes
are reached. If the search intersects with the MBB of the leaf node a more detailed check is
needed to see if they actually intersect.

It is then clear that when building the R-tree we want as few overlapping boxes as possible.
This is because overlapping MBBs can potentially lead to unnecessary node scans. This is also
why we want to use minimum bounding boxes and not just any box representing the spatial
objects. Imagine an R-tree with all bounding boxes for all levels covering the same space.
For each node scan we would not gain any information, and all objects would be potentially
intersecting meaning we would have to do a thorough intersection check for all objects in the
tree.

We also want to find a balance for how many children a node can have. Too few will lead to
deep trees, while too many will lead to shallow trees with many entries per node that have to be
searched. Since R-trees are balanced there is a minimum and maximum amount of children in

21

internal nodes(except for root) N bounded by m ≤ |N| ≤M , where the minimum m is m ≤ M
2

and M is the maximum. If a node overflows it is split and the change is propagated up the tree.
If it reaches the root node the root is split and a new level is made. This also ensures that all
leaf nodes are at the same level.

There are many variants of the R-tree trying to improve upon different aspects. The R∗-
tree and the Hilbert R-tree are examples of this. They both try to improve different things in
different ways. The R∗-tree is focusing on improving the quality of the tree. This results in a bit
worse construction time, but much better query performance. The main focus the R∗-tree has
is to minimize overlap between the MBBs and also their coverage. Coverage in this setting is
the extent of the MBBs and is defined in Definition 9. Having as small coverage as possible is
beneficial since having small MBBs in the tree will result in more pruning since the search have
less chance of needing to search it. This is also the reason we want to have no overlap between
MBBs since the overlap prevents us from prune.

Definition 9. (AABB coverage) The coverage of an AABB B = (a,b) as defined in Definition
8 is defined as:

Coverage(B) =
d

∑
i=1

(b[i]−a[i])

The disadvantage of R-trees are the cost of building and maintaining them. There are many
algorithms created for building. Some focus on efficient creation, while others focus on a high
quality tree that allows for fast searching. The quality of the R-tree is mainly determined by
the amounts of MBB hits we get when searching for a spatial object. Many hits is an indicator
that there is a high degree of overlapping with many unnecessary node scans. Since the tree
is balanced the cost of inserting a node can also be high since splitting nodes can propagate
changes upwards in the tree and cause expensive structural changes. The branching nature of the
R-tree is also a huge problem for GPU. Since the GPU is running threads in warps that always
execute the same instructions branching may create thread divergence which leaves much of the
GPU hardware idle. Irregular memory access patterns is also a problem since the GPU memory
is best utilized for consecutive memory instructions the tree structure is a problem.

3.3 Uniform grid
The uniform grid index also called epsilon grid has been widely used in particle physics sim-
ulations on the GPU. Much research on efficient spatial indexes on the GPU have been done
through fields as particle physics and computer graphics. NVIDIA have used this index them-
self for particle simulation [18]. In particle physics we often want to simulate a finite number
of particles to represent a fluid as for example water. All these particles can interact with each
other. One way of doing this is through Smoothed Particle Hydrodynamics (SPH) [19] where
the effect of forces interacting between particles drops of when the distance between them in-
creases. It was originally developed for use in astrophysics but have been adopted by many
other fields.

Both in [20] and [9] they use this structure to achieve great results on distance join queries.
In [20] they use the grid index structure for spatio-textual similarity joins while in [9] it is used
for spatial self-join on GPU. They both show significantly better performance than the previous
state of the art methods which is promising.

22

The main idea is to make a finite space containing all spatial objects, and then dividing this
space into a grid structure. Each cell in the grid have size of ε in all dimensions. Epsilon can be
compared to the distance threshold in our top-k SDJ query. Since each cell have size ε we only
need to compare the objects in a particular cell with all surrounding neighboring cells.

The uniform grid structure scales up with dimensions so for 2 dimensions we would only
need to check 32− 1 cells while for 3 dimensions it would be 33− 1 cells. This dramatically
reduces the number of points needed to be checked to O(n×m) , where n is the number of points
and m is the average points in a cell. One problem with this structure is that it is unbalanced.
When there are spaces with high concentration and most objects are placed in a few neighboring
cells then the effect of the structure is not that great. The structure works best if the objects
are uniformly distributed. This may not problem for the top-k SDJ query as the points in the
neighboring cells would need to be tested anyways. By hashing the cells we can also preserve
locality when processing the grid which will help with balancing the work in the SMs since
points that are processed that lay in the same cell will have the same neighboring cells which
will result in better cache utilization.

To implement this we need to first map the points to a grid, and then find an order that is best
suited for traversing this grid that at the same time preserves the spatial properties when stored
in GPU memory. This algorithm is a bit complicated so instead of describing the construction
with pseudo-code the process will be described in detail below.

Mapping objects to the grid

First we need to map the spatial objects to the grid. This can easily be done by dividing
the coordinates by the cell size ε for all dimensions and taking the floor of each dimension:
GridPos(p) = bp× ε−1c, where p is the vector representing a spatial object. Figure 3.5 shows
the result after the first step. We now have one array containing all the spatial objects and one
array of the same size containing the cell ids of all the objects.

Cell id hashing and sorting

The cell id is responsible for representing the cell in one dimension. The result of the GridPos
function in the mapping phase actually gives a vector of the same dimension as the points. To
represent this grid in memory as a one dimensional array we need to hash the cell values. This
can be done in many different ways.

One way to hash the cells is just a linear hash function. This will represent the cells the
same way as in Figure 3.5. We then need to sort the array containing all the spatial objects
based on these hash values. This will make sure that cells are processed in a linear order which
is beneficial for thread divergence. This is because when warps can process points in the same
cell each object have the same number of points they need to compare with.

A downside to this method is memory layout. If we consider the row-wise linear hash in
Figure 3.5 we get a good row-wise structure, but if we want to compare objects with objects on
another row the memory locations are far apart. This is bad for caching.

One ordering that helps with this is z-ordering. The idea is to order the cells in a one
dimensional way that keeps in mind their multidimensional positions. To calculate the z-order
cell id we first need to convert the cells dimensional values to binary. This means that cell (2,1)
in decimal is replaced by (010, 001). To calculate the z-order:

z = f (x,y) = (x0,y0,x1,y1...xn,yn)2 (3.1)

23

Example of (3.1): z = f (010,001) = (001001)2 = 9. If we do this for all cells and sort the
points based on the hash values we can traverse the points in z-order. Figure 3.4 shows both
z-ordering and linear order hashing for a grid of 4x4 cells.

There is still one problem with the z-order curve. There are still some long jumps in space.
To solve this we may want to use a Hilbert curve. Hilbert curves never have longer jumps than
one cell while still preserving the multidimensional locality. The only disadvantage compared
to z-ordering is that Hilbert curves can be more difficult to calculate while z-order curves are
very simple. Figure 3.4 shows an example of all the different curves.

The Hilbert space filling curve was introduced by David Hilbert in [21]. The fact that the
points on a continuous curve can be mapped uniquely to the points of a square is pointed out.

Figure 3.3: The first, second and third order Hilbert curve respectively from left to right.

Figure 3.3 shows how the curve is constructed. The curve starts out with a predefined curve
covering 4 quadrants of a square. This is called a first order Hilbert curve.

The second order curve is generated by copying the first order curve four times to fill the
four quadrants of a new square and rotating the bottom two before two curves to connect them.

Rotation and connection of the pattern at the step before, we get a Hilbert curve of order 3.

Figure 3.4: (Left) A linear row-wise ordering. (Middle) A z-order ordering. The the binary numbers
represent the cell id positions in binary. (Right) A Hilbert curve ordering.

Finding cell start and end

Since our task is to compare objects of neighboring cells we need to know where cells start and
end. We only have a one dimensional array so we need to store the cell start and end positions
somewhere else. Since the cell id hash values are ordered we can find cell start and end values
by traversing the array and detecting where the hash value changes. If it does we know that we
have a new cell.

24

Comparing cells

Now we have built our grid index structure. The only thing left is to compare the cells. To
do this we can launch a kernel with one thread per object. Each thread compares the object
it is given with all the objects of its neighboring cells. Since we have taken thread divergence
and memory access patterns into account we can expect the GPU utilization to be high. This
structure also fits the top-k SDJ problem perfectly as the ε distance also is utilized.

Cell id Object id
0 1
1 2
4 3
4 4
6 5
8 6
2 7
5 8
3 9
7 10
6 11

Figure 3.5: (Left) The spatial objects divided into the grid structure.The bottom left cell has id 0 while
the top right cell has id 8.(Right) The list of the spatial objects with their respective cell id. The cell id is
retrieved by a linear hash of the cells position.

25

3.4 Choosing a spatial index for the top-k SDJ problem
The nature of the GPU execution model makes spatial indexing challenging. The reason is that
the hierarchical and branching nature of the structures actually makes them slower on the GPU
if implemented as on the CPU. One of the main reasons for this is that all threads in a warp
execute the same instruction making thread divergence (Section 2.3.2) a huge problem. This
also makes memory access patterns not utilize the cache of the GPU to its full potential. Since
global memory access is so slow this has a substantial performance impact.

There is research done on implementing these R-tree on GPU in [5], [6], [7]. They achieve
respectable results but the nature of the spatial distance join problem makes the epsilon grid a
better choice. This does not mean that the other structure does not have a potential to be a good
choice for for example box data. But since we are trying to solve a problem for point data with
the distance predicate the uniform grid structure seems like the best choice.

The conclusion that grid structures are suited for GPU also aligns with previous research [8],
[9] and [11]. This including the previous findings by [20] which shows that the grid structure
even out performed a R-tree structure on CPU for a problem very similar to our spatial distance
join problem. This indicates that the uniform grid structure is the best choice for our top-k SDJ
algorithm.

26

Chapter 4

Spatial join algorithms on GPU

In this chapter methods for spatial join on GPU will be discussed. The methods will be im-
plemented based on the descriptions in the papers and benchmarked to find their strengths and
weaknesses. The benchmarking setup can be found in Chapter 6.

The aim of this chapter is to give a solid understanding of which methods and techniques
are suited for GPU. Since there may be relevant techniques in different types of spatial join we
have chosen not to limit our investigation to only SDJ join on point data.

We will first look at a naive brute-force nested loop approach in Section 4.1 and see how
it compares to more complex methods. The second method in Section 4.2 called MLG-join
will be a spatial intersection join between boxes. The third method will be an intersection join
method called GCMF in Section 4.3. It is made for polygons where the focus is on the MBB
filtering algorithm. The last method in Section 4.4 will be a spatial self join method for point
data. The idea with investigating such a range of problems is that since the field is new and
there are no other top-k spatial distance join algorithms on GPU it may be important to get a
broad understanding of the filed to pick up ideas that would otherwise be missed.

The things we learn in this chapter will be used in the development of the new top-k SDJ
algorithm.

4.1 Nested-loop join on GPU
The traditional nested loop join is relatively slow. The complexity of O(|R|× |S|) makes even
reasonable problem sizes of 106 element datasets very slow to compute since it would require
1012 that is one trillion comparisons. Processors today use gigahertz clocks, so even if we had
managed to make hardware that could compare two objects in only one clock cycle we would
still need 1000 seconds for this relatively small problem size.

This clearly shows the importance of algorithms that can reduce the search space drastically.
Instead of reducing the search space nested-loop join on GPU utilizes the parallel nature of the
problem to its full potential.

The idea is that since thread divergence and bad memory access patterns leaves some of
the GPU hardware unused it may be better to do the spatial join as simple as possible where
the access patterns allow for coalesced contiguous memory requests. Since all computations
are individual it is trivial to parallelize the algorithm. Each thread on the GPU represents the
objects in dataset R. Each of these threads will loop over all the objects in S and check if the
join predicate holds. If it does it is appended to the result set.

27

Algorithm 2: The Naive GPU algorithm
input : R, S
output: Result

1 index←− (blockIdx.x * blockDim.x) + threadIdx.x ;
2 if index > |R| then
3 return ;
4 foreach s ∈ S do
5 if predicate(R[index], s) then
6 resultIndex← atomicAdd(resultIndex, 1) ;
7 Result[resultIndex]← Result ∩ (r,s)
8 end

Figure 4.1 shows how the runtime is effected by different densities and dimensions. Differ-
ent densities have close to no effect on the runtime since there are no index structure that can be
effected by the density. There is no difference for the brute-force algorithm checking distances
in dense data compared to more sparse data. The difference we see is from the increased result
set size.

Changing the dimensionality of the data will on the other hand effect the runtime since more
data is transferred and the intersection check complexity scales with dimensions. This method
will act as a baseline to the other methods we will implement in this chapter.

102 103 104 105 106 107

104

105

106

107

|S|

M
ic

ro
se

co
nd

s
µ

Bruteforce-join dens 0.1
Bruteforce-join dens 1
Bruteforce-join dens 10

102 103 104 105 106 107

104

105

106

107

108

|S|
Bruteforce-join 2D Bruteforce-join 3D
Bruteforce-join 4D Bruteforce-join 5D

Figure 4.1: (Left) The runtime of the brute-force nested loop algorithm for different densities. (Right)
The runtime of the same brute-force algorithm for different dimensions.

4.2 Multi Layered Grid join
The Multi-Layered Grid (MLG) join algorithm [8] introduced by Ward et. al is a spatial in-
tersection join algorithm for boxes designed for GPU. It was intended to solve the problem of

28

real-time continuous intersection joins over large sets of moving objects. Since it is a continu-
ous intersection join algorithm it is designed so that updates to the index is efficient. Since we
are only concerned with static joins we can ignore the update steps and only focus on the initial
join process.

4.2.1 The MLG-join process
The first step in MLG-join is to build a multi-layered grid structure. The idea is to partition the
R dataset into N equal partitions, and make a grid out of each partition. This is why its called
multi-layered. In contrast to many other spatial algorithms using partitions this algorithm does
not base its partitions on the spatial information of the objects. Instead the partitions are logical
and consecutive meaning that each partition is just consecutive partition laying in memory. No
need to move or transform any data.

This step is best illustrated with a simple example. Lets say we have two datasets of boxes
R = { r1, r2, r3, r4 } and S = { s1, s2 }, and we want to find which boxes intersect. Figure 4.2
illustrates the objects drawn on top of the grid. We choose to make two partitions of R called P1
= { r1, r2 } and P2 = { r3, r4 }. We then project each object onto the grid. If at least one object
is projected onto a cell it writes 1 and if no objects are projected onto it the value is 0. The final
index is the combination off all partitions projected onto the grid. Figure 4.3 illustrates the final
grid index.

Figure 4.2: (Left) All objects in R drawn on top of the grid. (Right) The objects in S drawn on top of
the grid.

Figure 4.3: The two first matrices are the result of projecting the objects in P1 and P2 onto the grid
respectively. The resulting Grid index is the combination of all the partitions, where each bit position
represents the value of that partition.

Some of the main reasons the authors give for using a multi-layered grid is that they need no
atomics or locking mechanisms to update the index. In addition, the index does not use dynamic
memory allocation which is important for GPU performance.

The next step is to reduce the search space. We want to probe the objects in S against the
grid-index we have made in the previous step and see which partitions that have objects that
potentially intersects.

29

Object is S Bit string
s1 11
s2 00

Partition S Object form S
p1 s1
p2 s1

Table 4.1: (Left) The resulting bit string list of the probing step. (Right) The resulting object lists for
each partition after stream preparation.

The result is a bit string for every object in S, where a bit represents whether or not the
object from S intersects at least one object in a partition of set R. Zero in an bit string means
the object in S does not intersect any object in the partition corresponding to that bit. Table 4.1
show the result of this step.

The stream preparation step prepares the objects in S for the actual intersection checks in
the next step. This step can be thought of as a transposing step where instead of having a bit
string for each object in S we make a list for each partition where the elements of the list are the
objects that had a 1 at that partition in its bit string from the probing step. The result is in Table
4.1.

This stream preparation step is problematic for memory performance as the size increases
with both the number of partitions and the size of S. Finding a way to not materialize the grid
structure for the top-k SDJ algorithm may be important to not make memory capacity a limiting
factor as the GPU main memory is small.

The only step left now is finding the intersecting objects in the reduced search space. To do
this we need to iterate through all partitions and for all the objects from R in that partition we
check if they intersect with any of the objects in the stream that corresponds with that partition.

4.2.2 Performance and analysis
Figure 4.4 show how the cell size and partition parameter affects runtime performance for dif-
ferent problem sizes. The results confirm the findings in the original paper that the cell size is
optimal when it is about the same size as the box objects in R. In this case the objects were
rectangles with dimensions ca 0.003. That explains why the cell size of 0.001 and 0.01 perform
best.

MLG-join perform well for large problem sizes but struggles on lower sizes. This problem
will occur when the number of objects is significantly smaller than the maximum number of
threads in a block for the kernel that will create the grid. This will result in under-use of the
hardware. This penalty can be minimized or completely avoided through parameter selection.
For example when selecting an appropriate cell size the performance is good also for small
problem sizes.

For number of partitions the graphs show that more partitions is better. What limits us from
having more partitions is the memory footprint of the grid index when increasing the number of
partitions.

Figure 4.5 gives an overview of how the density of the data impact performance. Since the
problem sizes are the same for all the problems the density is determined by the size of the box
objects. When the object density increases the runtime will also increase as both the number of
boxes that overlap is increasing but also the number of cells that have a potential overlapping
box in the grid. This is a downside of using a grid index compared to for example a brute-force
method that is not affected by the density as much. Figure 4.5 shows how the MLG-join method
compares to the brute-force method. As we can see the brute-force method is much slower, but

30

102 103 104 105 106 107

104

105

106

107

|S|

M
ic

ro
se

co
nd

s
µ

MLG-join size 0.001 MLG-join size 0.01
MLG-join size 0.1 MLG-join size 1

102 103 104 105 106 107

105

106

107

|S|
MLG-join 4 par.
MLG-join 8 par.
MLG-join 16 par.
MLG-join 32 par.
MLG-join 64 par.

Figure 4.4: (Left) The cell size parameter effects the runtime of MLG-join. (Right) Show how the
number of partitions effect the runtime of MLG-join

not as effected by the density as MLG-join. If we were to increase the density even more the
index would render useless ass all boxes would cover the same space which would result in the
MLG-join method doing more work than brute-force.

10−1 100 101

105

106

Density

M
ic

ro
se

co
nd

s
µ

MLG-join Brute-force

Figure 4.5: The runtime of MLG-join and brute-force for different dataset densities.

Even though there is a problem with using an index the positive aspects outweigh the neg-
ative. Figure 4.6 show how the brute-force algorithm compares to the MLG-join algorithm on
different problem sizes. The graph clearly show that the MLG-join is a better option for all but
the smallest problem sizes.

The memory usage is also effected when changing the parameters. Figure 4.7 show that the
memory usage increases drastically for relatively small problem sizes. This clearly show the
dis-advantage of materializing an index structure. Both decreasing the cell size and increasing

31

102 103 104 105 106 107

104

105

106

107

|S|

M
ic

ro
se

co
nd

s
µ

MLG-join GPU nested-loop join GCMF-SMF join

Figure 4.6: The runtime of MLG-join compared to an optimized nested loop join and the SMF step of
the GCMF algorithm. |R| = 105 and a uniform distribution with density 1 is used.

the number of partitions heavily increase the memory usage and therefor limit the usage on
GPU because of the limited device memory size. Finding a method to not materialize the grid
index for the top-k SDJ problem while still having efficient look-up could be important.

10−4 10−3 10−2 10−1 100

10−5

10−2

101

|Cell size|

M
B

Grid structure size

22 23 24 25 26

102.5

103

103.5

|Number of partitions|

M
B

Stream size

Figure 4.7: (Left) The memory usage of MLG-join with when varying cell size with problem size |R|
= 105 and |S| = 107. (Right) The memory usage of MLG-join stream size when varying number of
partitions for the same problem size.

The 3D surface plot in Figure 4.8 show how memory is affected by the input dataset sizes.
The important points here is that increasing |S| significantly affects the memory usage of MLG-
join. This is mainly because both the probe structure and the stream structure increase based
on |S| and not |R|. As noted in Figure 4.8 the total memory usage of MLG-join is significantly
affected by the stream structure size. Finding a way to reduce this size would be beneficial as
the limit of GPU global memory is quickly reached when using this structure. It will also be

32

important to try to balance the memory footprint of increasing R and S so that the imbalance
wont effect how large problems we can execute.

102 103 104 105 106 107

0

1,000

2,000

3,000

|S|

M
B

Total GPU memory used Grid structure size
Probed structure size Stream structure size

R objects size S objects size
Result size(Fixed)

0
0.5

1

·1070
0.5

1

·107

0

2,000

4,000

|R||S|

M
B

Total memory usage

Figure 4.8: (Left) The memory usage of MLG-join with cells size 0.0003 and 64 partitions over the
problem size |R| = 105 and |S| = 102 to 107. (Right) The MLG-join memory usage for different input
size combinations.

4.3 GCMF
The GCMF spatial join method [10] is based on the filter and refinement structure used in many
other spatial join systems Section 2.1.1. In contrast to many others this method does not use an
index structure as grids or R-trees. It is designed for intersection tests between polygons so the
main focus of the article and the algorithm is on the filtering step. Figure 4.9 shows an overview
of the system. The focus in this section will be on the filtering process for two reasons. Firstly
the refinement step of polygon intersections is a complex field that could have multiple thesis
on itself on how to do it efficiently on GPU. Secondly the refinement step is not really focused
in the paper itself so the new ideas introduced in this paper mainly come from the filtering step.

33

Figure 4.9: An overview of the GCMF spatial join system. The original figure can be found in [10].

Algorithm 3: The SFM algorithm
input : MBB(R), MBB(S)
output: C

1 X = {xi|xi ∈ x− coordinates of R∩S} ;
2 (sortIndex, RankIndex) = RadixSort(X) ;
3 foreach GPU-block i, 0 < i <(m + n) do
4 foreach x j0 , xi0 < x j0 < xi1 do
5 if (yi0 , yi1)insersect (y j0 , y j1) then
6 if MBB j ∈ S then
7 Add (i,j) to C ;
8 else
9 Add (j,i) to C ;

10 end
11 end

4.3.1 SMF
The first filtering algorithm is Sort-based MBB Filter (SMF). It does not use an index as many
other algorithms but instead bases itself on sorting for some inherent structure. The algorithm
starts out by finding the MBBs of the two sets of polygons R and S such that p ∈ R,S have a
MBB MBBp. The next step is to find pairs of overlapping MBBs. The result is a candidate set
C where C = {(i, j)|i ∈ R, j ∈ S}. The pseudo algorithm can be found in Algorithm 3.

The first step is to make an array of all the x-values of the MBBs in R and S. The array
is labeled X. The next step is to make two new arrays called SortedIndex and RankedIndex.
SortedIndex is made from taking the indexes of the elements in X and sorting them based on
their X values. This means that when you index SortedIndex[i] you get the index of the i-th
smallest element in X. To keep track of the new positions of MBBs in the new sorted array
we use the RankedIndex array. It will give the index of where the MBBs moved to in the
sortedIndex. Example:

MBBs = {(1,6),(2,4),(3,9),(7,12),(10,13)}

X = {1,6,2,4,3,9,7,12,10,13}

XSorted = {1,2,3,4,6,7,9,10,12,13}

34

SortedIndex = {0,2,4,3,1,6,5,8,7,9}

RankedIndex = {0,4,1,3,2,6,5,8,7,9}

Algorithm 3 uses these indexes on line 4 to efficiently find the MBBs that have an x value
between the two x values of the MBR that is checked. This will give us a set of MBBs that
overlap with the MBB we are checking in the x dimension. This set of MBBs are then checked
with the checked MBB if they overlap in the y dimension. If they are we can add a new pair to
C witch is the result set from this step.

4.3.2 Performance and analysis
The other steps in GCMF are one more filtering step called CMF and a final refinement step
which do the actual polygon intersections. Since the algorithm was supposed to handle polygons
it can afford to have multiple relatively expensive filtering steps since the polygon intersection
test are so complex. For our top-k SDJ problem we can think of the points with distance checks
as the filtering and the top-k part as the refinement. Compared to polygon intersections the ε

distance checks are much less demanding. Finding a method that like GCMF filters out as much
as possible from the expensive refinement step could be a good idea to use for our top-k SDJ
algorithm.

One improvement the GCMF method has over the MLG-join method is the memory usage.
Since it is not using an index the space problem does not become as big of a problem as for
MLG-join. The GCMF method is therefor able to run larger problem sizes not limited by the
GPU device space. Figure 4.10 shows the total memory usage.

0
0.5

1

·1070
0.5

1

·107

0

1,000

2,000

|R||S|

M
B

Total memory usage

Figure 4.10: The memory usage for different input size combinations.

Like MLG-join GCMF also struggles with density. As Figure 4.11 shows the runtime is
significantly effected by increasing the density. This is because the more MBBs needs to be
checked for intersection when there are more MBBs that have overlapping x-axis.

The comparison of the other methods in Figure 4.6 shows that the GCMF-SMF algorithm
struggles to perform better than the brute-force method. MLG-join shows significantly better
performance likely because more potential intersections are filtered out. This teaches us that
even though memory usage is better controlled the benefit of having an index may outweigh the
negatives.

35

102 103 104 105 106 107

105

106

107

108

|S|

M
ic

ro
se

co
nd

s
µ

GCMF-join dens 0.1 GCMF-join dens 1 GCMF-join dens 10

Figure 4.11: The runtime of GCMF over datasets with different densities.

4.4 Self-join on point data
Gowanlock and Karsin presents an efficient self-join algorithm for spatial distance join on point
data in [9]. The algorithm performs well compared to state of the art algorithms on multi-
core CPU platforms. The method utilizes a grid structure that is optimized for GPU and a
batching scheme. The algorithm is made to handle distance comparisons similar to our top-k
SDJ algorithm.

The grid index is very similar to the uniform grid structure discussed in Section 3.3. The
difference is that instead of needing to materialize all cells, this grid only allocates space for
the grid cells that have at least one object in them. This method significantly reduces the space
allocated for the index. The original paper [9] explains well how this is done. The method
checks for empty cells and only sends cells with points in them to the GPU. Masks was also
used to not check empty cells on the GPU side. Since grids are already explained in Chapter
3 this section will not focus on this again. Using this knowledge the new top-k SDJ algorithm
may benefit from not materializing the grid.

4.4.1 Batching
Since the GPU memory space is heavily limited it is important to handle result sizes that over-
flows this limit. Batching is a technique that can be used to overcome this issue [9], [22]. By
using a batching scheme we can not only prevent memory overflows but we can also reduce
memory usage on the GPU and use memory streams to do data copying and processing simul-
taneously.

The idea of the batching scheme is to use result size estimation to determine how many
batches are needed. If we knew the result size exactly we could use the simple equation:

nb =
ab

bb
(4.1)

,where ab is estimated total result size and bb is allocated result size space on the GPU.
This is unfortunately not the case for two reasons. The result size will vary between batches

and the estimated result is only and estimate. To overcome this issue we need to make an

36

overestimation. In [22] they introduce the overestimation factor α and the equation is changed
to:

nb =

⌈
(1+α)∗ab

bb

⌉
(4.2)

The estimated result size ab is must be calculated based on the query. The method used in
[22] is to take a uniform sample of points from from the dataset and run the query on those
points but only save the result size. This sample run will be much faster than the actual query.
This assumes that every batch will produce approximately the same result size. To achieve this
you may need to customize the query algorithm. ab is calculated by:

ab = eb(f)∗ 1
f

(4.3)

, where eb is the estimated result size of a fraction of size f .
Batching allows kernels to run simultaneously while copying data from the host to the de-

vice. This is called streams in CUDA. To enable stream data transfers we need to pin the data
on the host side. One positive effect of this is that data transfers can be faster when the memory
is pinned. This is because data allocations are pageable by default. Since the GPU cannot ac-
cess data directly from pageable host memory, so when we want to transfer data from pagable
memory to the device the CUDA driver must first allocate a temporal page locked space before
we can transfer the data to the device.

If we pin the memory allocated on the host from the start this step is not needed allowing
for much higher memory transfer speeds. This will save time for two reasons. The first is that
kernel computation can be overlapped with memory transfers potentially solving the memory
transfer time consumption often being a limiting factor with GPU algorithms. The second is
that the memory transfer speeds are higher when we use pinned memory, so if the GPU is not
able to overlap the transfers with kernel computation it at least have faster memory transfers.

37

38

Chapter 5

The new Top-k spatial distance join
algorithm

The new top-k spatial distance join algorithm is build based on the knowledge we have gathered
in the previous sections. The algorithm is constructed to run on GPUs with a massively parallel
architecture. This chapter will describe the algorithm design in detail including complexity
analysis. This will hopefully help with reproducibility and improvement suggestions from other
researchers. The algorithm will then be benchmarked in Chapter 7.

5.1 Design overview

Figure 5.1: A diagram describing the new top-k SDJ algorithm.

The new top-k spatial join algorithm is made to solve the problem defined in Definitions 1.
The spatial data will be point data in n dimensions. This section will cover the design choices
that were maid when constructing the algorithm. To get an overview of the process Figure 5.1
shows the overall process. The upcoming sections will describe the design choices in more
detail.

5.2 Indexing
The first step of a typical spatial join algorithm Section2.3 is to index the data in a spatial data
structure for easy access to spatial objects based on a position query. This is also the first step
in this algorithm. As shown in Chapter 3 there are many options to chose from where each

39

structure have their own advantages and disadvantages. The structure chosen for this algorithm
is an epsilon grid.

There are three main reasons for picking this. The first is that epsilon grid is not a hi-
erarchical structure. Many of the other traditional indexing structures as R-trees base their
spatial reduction on reducing the options when traversing the structure hierarchical. For those
algorithms the hierarchical division is good, but for GPUs this will lead to thread divergence
leading to large amounts of hardware being idle. Since epsilon grids are direct access and not
a hierarchical structure the epsilon grid seems to be a good fit for this problem. As discussed
in Chapter 4 epsilon grids can also be used for spatial objects covering an area as rectangles or
polygons. The difference is that instead of the cell width being the size of the epsilon of the
query it is the mean size the objects cover in the space. This is demonstrated in Figure 4.2 and
4.3.

The second aspect that was important when choosing a structure is space complexity. Ep-
silon grids can potentially have space complexity of O(nd) which can be especially bad when ε

is small and the data is spread out on in a large space. To solve this problem we have come up
with a technique that lets us not materialize the epsilon gird. The technique is based on doing
binary search to find cell bounds in sorted arrays of hash values. We are able to do this since the
spatial objects are sorted based on hash values that preserve spatial locality. Since binary serach
is quite fast only requiring O(log(|R|)) steps at worst the cost of this compared to materializing
the grid is justified. This also allows for arbitrary small ε values.

Choosing a key value sorting algorithm was quite simple. Since all hash values was unsigned
integers of the same size a highly optimized parallel key value radix sort algorithm was chosen.
The sorting algorithm is provided by the thrust library [23] for CUDA. Since the algorithm is
using the GPU to perform the sort we don’t need to transfer any data back to the host. The time
consumption of this sorting step has shown to be insignificant compared to the total runtime of
the algorithm

The third aspect that was important when choosing a spatial index was spatial locality. This
is especially important for GPUs since we want objects that are located in the same space to be
processed at the same time to avoid thread divergence. This is done by calculating the space-
filling curve hash of all points in R and S and sorting the points based on this order. This has
two advantages. The first is that we preserve the spatial locality of the objects while they are
stored in a 1-d array. The second is that when processing this data we can find the start and
end of a cell in just O(log(n)) time for all cells. We have tested 3 different space-filling curves
linear, z-order and Hilbert and found that the Hilbert curve gave the best results.

5.3 Filtering and Refinement
The filtering step uses one GPU thread per point in S. First it calculates the cell the point belongs
to in the epsilon grid. It then loops through all the neighboring cells. To find which points in R
that are inside the neighboring cells we use two binary searches in the sorted hash values to find
the upper and lower bound of hash values equal to the hash value of S’s neighboring cells. If
the difference between the upper and lower bound is 0 we now that there was no points from R
in that cell and we can skip it. Only the neighboring of the point are checked. If we find a pair
from R and S within epsilon distance we can update a thread local heap. The refinement step
is to find the top-k form the reduced serach space of only K*batches potential pairs by sorting.
We want to reduce the amount of points sent to this step as much as possible.

40

5.4 Finding the top-k
The local heap can potentially be stored in global memory, shared memory or register memory.
Global memory is a bad choice since the latency is too high. This is both because the off chip
memory is slow compared to registers and shared memory, but also because the access pattern
would be impossible for the GPU to coalesced. Shared memory is a better pick. We can save
the heap as an array in shared memory. The arrays can be striped so each thread in a warp can
access a separate bank in the shared memory so we get parallel access. The disadvantage is
that we have a very limited amount of shared memory. Since we need to allocate space for K
* number of threads in a block items we quickly run out of space. For example if we have K
= 64, threads in block = 64 and the size of each item stored set to 12B we get 49KB which is
already close to the 64 KB available per SM on the Tesla P100(see Table 6.4)

During benchmarking the time used on this step has been insignificant compared to the
filtering step. We can also add that other top-k methods were considered. The HRJN methods
used in the top-k SDJ algorithms in [1] do not fit the parallel GPU architecture as they rely on
an ordered procedure where all steps of the iterative process rely on the last. Another option
that was considered was to calculate all pairs and their combined score within ε distance fist
before using an efficient top-k key value algorithm as [14] based on radix sort on the GPU to
find the top-k. The main problem with this method is that we would generate a huge amount of
unnecessary results from the distance comparison step that would nearly all be unnessesary. It
would also more costly batch size estimations as we would need to run a small sample of the
problem to get an estimate the same way as described in Section 4.4.1. Calculating the local
top-k values as described earlier reduces the result size of filtering potential significantly while
also not needing a batch size estimation as the result size from all batches are known.

Also if the result size from the distance comparisons where too large to fit in memory we
would need to split the top-k calculations into multiple steps. By our evaluation calculating the
local top-k values solves all these problems and is therefor a much better option.

5.5 Batching
Batching for a top-k spatial join problem is actually significantly easier and faster than for
normal spatial join since we already know the result size will be K from all kernels. There
is no need for a result estimate which will save time. The user can specify how much device
space that can be allocated for the result. From that parameter we can calculate how many
objects from S we need in each batch. The only data that is not batched is the R set and its hash
values. This means that if you can fit the size of R plus its hash values all problem sizes can
be calculated. This virtually removes the bottleneck of small memory sizes on the device while
still getting the benefits of the high speed device memory.

We were not able to find a method that could batch the R set as well. The problem is that we
would need to find which points in R all the points in the S batch could potentially be within ε

distance from. This is equivalent to finding the cells that surround the cells that the points in S
cover. Doing this with a Hilbert grid was challenging and is left to future research.

41

5.6 Memory management
To utilize the GPU to its full potential it was important to ensure the design allowed for coa-
lesced reads and writes. Since all objects in S are sorted based on the space filling curve we
use one thread per object in S so each warp access consecutive objects in memory. Both R
and S are Arrays of Structures (AoS). Other data structuring techniques as Structure of Arrays
(SoA) was also considered. SoA is known for being good for GPUs since the arrays are made
out of data types with guaranteed alignment compared to custom struts that do not necessarily
align. They also allow for access of only the data that is requested and not the whole structure.
During development both methods were tested and the performance of the two was very sim-
ilar. Since the algorithm ended up needing all data in the structure when it was requested the
performance difference was minimal. Also unaligned memory access does not have that much
effect on transfer speeds as discussed in Section 2.3.2. Since the AoS approach was simpler to
implement especially for the key value radix sort the AoS approach was chosen.

To ensure registers was used for the top-k heap we had to fulfill 3 requirements. The first
is that the heap needs to have a constant size. For this problem it is K. The second is that
arrays needs to be indexed based on constant quantities. This is ensured by the heap update
process indexing the array in the interval between 0 and K which gives the compiler knowledge
of which registers will be accessed. The third is that the compiler decides if it use too much
register space. If it does the heap is placed in local memory instead. This will be affected by
the K parameter. For reasonably small sizes of K the heap can be placed in register memory.

To ensure proper memory access for the shared memory heap we store the K arrays striped
so that all threads store the heap in a single bank. This lets each thread in a warp access a
separate shared memory bank which leads to full parallelization of both reads and writes to the
heaps in shared memory.

5.7 Correctness
The correctness of the algorithm will now be discussed. The uniform grid index have cells of
ε dimensions. When all objects in S are processed we check all neighboring cells that contain
R objects. Since the radius around the points in S will never be larger than ε the neighboring
cells are guaranteed to include the points in R which could be within ε distance. Since distance
measures are reflective we do not need to check the other way around if R is withing distance of
S. This guarantees that all pairs from now on are fulfilling the distance requirement. The next
part is finding the top-k scores. We find local heaps for all object in S and add them to a partial
result batch. The local top-k pairs have higher scores than all other pairs found for an object in
S. Then these local heaps are added to the result batches. The batches are then also guaranteed
to have the highest scores found so far. Then we sort the batches to find the top-k for each batch.
This will guarantee that each batch have the top-k scores for all pairs in that batch. These top-k
scores from each batch are then sorted a one last time to get the final top-k pairs. The same
principle as for the batches is used for the final sort.

42

5.8 Algorithm and complexity

Algorithm 4: The new top-k SDJ algorithm in pseudo code
input : R, S, ε , γ , K, ResultSize
output: Result

1 hashValuesR←− hashKernel(R, ε);
2 hashValuesS←− hashKernel(S, ε);
3 keyValueRadixSort(hashValuesR, R);
4 keyValueRadixSort(hashValuesS, S);
5 batchSize←− getBatchSize(ResultSize);
6 partialResults←− /0 ;
7 foreach Sbatch ∈ S do
8 top-kFilterKernel(R, hashValuesR, Sbatch, Resultbatch, ε , γ , K) ;
9 partialResults←− partialResults ∩ keyValueRadixSort(Resultbatch.scores,

Resultbatch.ids)[:K];
10 end
11 return keyValueRadixSort(partialResults.scores, partialResults.ids)[:K];

Algorithm 5: Top-k SDJ hash kernel.
input : points, ε

output: pointGridHash
1 index←− (blockIdx.x * blockDim.x) + threadIdx.x;
2 if index > |points| then
3 return;
4 gridCell←− pointToCell(points[index], ε);
5 pointGridHash[index]←− spaceFillingCurveHash(gridCell);

43

Algorithm 6: Top-k SDJ filtering kernel.
input : R, hashValuesR, Sbatch, Resultbatch, ε , γ , K
output: Resultbatch

1 index←− (blockIdx.x * blockDim.x) + threadIdx.x ;
2 heap←− /0 ;
3 if index >= |Sbatch| then
4 return;
5 s←− S[index] ;
6 gridCellS←− pointToCell(s, ε);
7 foreach x ∈ {−1,0,1} do
8 foreach y ∈ {−1,0,1} do
9 foreach n ∈ {−1,0,1} do

10 pointHash←− spaceFillingCurveHash(gridCell + (x, y ... n));
11 limitlower, limitupper ←− equalRang(hashValuesR, pointHash);
12 foreach r ∈ {R[limitlower]...R[limitupper]} do
13 if withinDistance(s, r, ε) ∧ γ(r.score, s.score) > heap.minValue then
14 localHeap.insert((r.id, s.id, γ(r.score, s.score)));
15 end
16 end
17 end
18 end
19 Resultbatch←− Resultbatch ∩ localHeap ;

Algorithm 4 shows the pseudo code of the new top-k SDJ algorithm.
Line 1 to 4 finds the hash values from both R and S. The kernels are launched with one thread

for each point in the respective datasets. The time complexity is O(|R|+ |S|) or alternatively
O(|R| ∗ d + |S| ∗ d) if the hash function depends on the dimensionality of the space as it often
does. Sorting is done using radix sort on unsigned integers of 32 bits. The algorithm is a parallel
algorithm designed for GPUs described in [24]. The time complexity is O(|R|+ |S|) for this
step.

Line 5 logically splits S into appropriate batches. The batch size is calculated from the
space allocated to the result based on a user parameter. The time complexity is constant O(1)
as we only need to calculate

⌈
|S|

batchSize

⌉
and not physically split the data into separate memory

locations.
Line 7 and 8 runs the batches through through the top-kFilterKernel. The filter kernel

launches one thread for each point in the current batch. Comparing the point in S to all points
in the surrounding cells have time complexity O(|S| log(|R|)+ |S|3dε

VR
|R|K) where VR is the total

volume R covers and 3dε <VR.
An important observation is that the time complexity is largely dependent on 3dε

VR
. If we have

epsilon that covers the whole space the complexity is actually worse than quadratic. But since
it is reasonable to assume that ε is a small factor the complexity is effectively O(|S| log(|R|)
for each thread. Since the parallelization factor is high when running on the GPU its maybe
reasonable to expect the performance to be close to an algorithm with linear runtime.

Line 9 sorts the resulting top-k values from the batch using radix sort. The time complexity
is O(BatchSize ∗K) Since the batches are small in size and not memory transfers are needed
this step is expected to account for a very small part of the total runtime. This is also true for

44

the final step in the algorithm at Line 11 that sorts all the top k values in the partialResult array
which does also have linear time complexity.

45

46

Chapter 6

Methodology

This chapter will describe the methodology used to benchmark and profile the spatial join meth-
ods. The synthetic datasets are presented in Section 6.1 and real data is presented in Section
6.2. The environment setup in Section 6.3 describes the computer setup used when benchmark-
ing for reproducible results and easier comparison. Profiling tools for profiling CUDA code is
briefly discussed in Section 6.4. Finally implementation of the benchmarker and join methods
are discussed in Section 6.5.

6.1 Uniform synthetic data

6.1.1 Box data
The uniform synthetic box data is generated based on density. The generator takes as input
the number of boxes, dimension minimum and maximum values to make a closed space and
density. It then adjusts the volume of the boxes to get the desired density. Density p is in this
case defined as the sum of the volume the objects cover divided by the total volume of the space
they are contained in.

p =
∑Vo

Vs
(6.1)

, where Vo is the volume of a spatial object and Vs is the volume of the closed space.
Table 6.1 shows the combinations used when benchmarking.

Table 6.1: The properties of the uniform box datasets.

Distribution Dimensions Density(p) Cardinality Coordinate range
Uniform 2,3,4,5 0.1, 1, 10 102 to 107 0 to 1

6.1.2 Point data
Synthetic point data was generated using the same uniform distribution as for boxes. All co-
ordinates are represented by single precision floating point numbers and will range between 0
and 1. Since the definition of density used for box data does not make sence for point data we
have removed it from the table. Carnality will be a better indicator of the ”density” of the point
dataset. Table 6.2 show the properties of the datasets used for benchmarking point data.

47

Table 6.2: The properties of the uniform point datasets.

Distribution Dimensions Cardinality Coordinate range
Uniform 2 103 to 108 0 to 1

6.2 Real data
The real datasets are a collection of mapping data gathered from open data platforms. Table
6.3 describes the properties of the datasets. Figure 6.1 shows a visualization of all the subway
entrances in New York together with all roof top water tanks as a representation of how the
datasets may look like. The datasets used when benchmarking were aggregated datasets were
the geographical positioning data was first transformed into the World Geodetic System (WGS),
a standard use in cartography. WGS84 is the revision used.

Table 6.3: Real geographical point datasets used in benchmarking.

Name Cardinality Description

Harbour water quality 89545
Map of all administrative states an

provinces in the world version 4.1.0
from naturalearthdata.com

Radioactive equipment 6444
Map of all urban areas derived from the MODIS

satellite from 2002 to 2003.
Version 4.0.0 from naturalearthdata.com

Trees 683788
Map of all census block groups in

USA from arcgis.com.

Roof top water tanks 25054
Map of all water bodies in USA

from arcgis.com

Points of interest 96

Map of areas in the world subject to
floodings in 2002. The map is not

complete but around 25%. Available at
maps.princeton.edu/catalog/

Subway entrance 1928
Map of all building footprints in

New York from 2016. Available at
opendata.cityofnewyork.us

Address 964214
Map of all New York tax lots from 2008.
Available at opendata.cityofnewyork.us

6.3 Setup environment
The environment used for benchmarking was two Intel Xeon Gold 5120 CPU at 2.20GHz with
14 codes 28 threads each with 125 GB main memory. The operating system used was Linux
Ubuntu 18.04.4 LTS. To make the benchmarking probram CMAKE 3.16.4 was used to generate
make files. For compilation the system used GCC 7.5.0 and g++ 7.5.0.

The graphics cards used by the system was a Tesla P100 PCIe 3 x16 using CUDA 9.2
compiled for compute architecture 6.0. The specifications of the Tesla P10 card can be found
in Figure 6.4

48

Figure 6.1: Visualization of all subway entrances in New York(yellow) and all roof top water tanks(red).

6.4 Profiling
Profiling code on the GPU cannot be done the same way as on CPU. Typical tools as VAL-
GRIND [25] an PAPI [26] does not work when you want to profile CUDA GPU programs.
Therefore NVIDIA Nsight Systems(NNS)[27] is used to gather detailed information about how
the algorithms perform. We have used NNS to gather information as occupancy, SU utilization,
memory statistics and optimization possibilities. Some memory statistics as overall memory
usage is still gathered by the benchmaker we created.

Figure 6.2 shows a histogram of 1000 runtimes for the bruteforce nested loop spatial join
algorithm. When benchmarking runtime for the algorithms we take the mean of 20 runtime
samples.

2.115 2.12 2.125 2.13 2.135

·104

0

20

40

Microseconds µ

Fr
eq

ue
nc

y

Brute-force

Figure 6.2: The runtime for the problem size 105 x 104 on a uniform dataset. The figure shows 1000
runtimes recorded.

49

Table 6.4: Some important specifications of the NVIDIA Tesla P100 PCIe 12GB.

Device property Value
Name Tesla P100 PCIe 12GB

Compute capability 6.0
Base clock frequency 1126 MHz
Boost clock frequency 1303 MHz

Memory type HBM2
Memory bandwidth 549 GB/s

Global memory 12GB
Streaming multiprocessors 56

CUDA cores per SM 64
Cuda codes total 3584
Constant memory 64 KB

Shared memory(per SM) 64 KB
32-bit registers(per SM) 64KB

Warp size 32 threads
Max grid dimensions x:2147483647 y:65535 z:65535

Max block dimensions x:1024 y:1024 z:64
Max threads in a block 1024

Max resident blocks per SM 32
Max resident warps per SM 32

6.5 Implementation
To benchmark the join methods we have continued developing the benchmarker Truls Rustad
Fossum developed for his master thesis on ”Efficient Spatial Search using Memory Resident
R-trees”. The benchmarker is rewritten to be able to handle benchmarking of Spatial join meth-
ods for both box and point data. The methods are compiled separately from the benchmarker as
shared objects. The benchmarker loads the shared objects and run the join methods. The user
need to specify what type of data is being joined when compiling. When running the bench-
marker the user provides the R and S datasets and what information they want to record eg.
average runtime, all runtimes or memory usage statistics.

The benchmarker is written in C++11 and join methods are written using CUDA 9.2. Both
the benchmarer and join method code is compiled using the -03 optimization parameter. For
the CUDA code this only affects the code that is running on the CPU not the GPU. The nvcc
compiler that compiles the CUDA code uses mostly default parameters except that the paramers
”-use-fast-math” and ”-Xptxas -dlcm = ca” are used to ensure optimized floating point opera-
tions and the use of l1 cache for global loads respectively.

The Thrust library [23] was used for binary search and key value radix sorts. Thrust is a
CUDA library that provides highly optimized implementations of some common algorithms.
All radix sort calls were executed using the ”thrust::device” execution policy so the algorithms
were running in parallel on the GPU. The binary sort executions that were executed from a GPU
kernel used the ”thrust:seq” execution policy for serial execution.

Heavy use of templates allows the compiler to do optimizations by increased knowledge
by doing loop unrolling on dimensional loops or knowing how much memory to allocate for

50

the result set. The result set size can be unknown before running the join. Therefore there is a
compile option to set the result set size. This prevents us from having to dynamically allocate
memory for the join method while it is running. If the result set is larger than the allocated
memory the program will prompt the user to allocate more space. If batching and result size
estimation is used this parameter is ignored. All spatial data is read as 4 byte floating point
numbers.

51

52

Chapter 7

Analysis and Discussion

In this chapter we will benchmark the new top-k SDJ algorithm and compare it against a simple
baseline algorithm which is explained in Section 7.1. Section 7.2 will present the benchmark
results before we discuss the suitability for a top-k SDJ algorithm on GPU in Section 7.3. The
benchmarking methodology is explained in Chapter 6. The details of the uniform point data is
shown in Section 6.1.2 while the physical setup, profiling tools and implementation details can
be found in Section 6.3, 6.4 and 6.5 respectively.

7.1 Baseline algorithm
For comparison we made a baseline algorithm. Since there are no other algorithms solving the
same problem on GPU. The purpose is to compare the algorithm described in Section 5.1 to
a simpler method where we first find the points within ε distance as a filtering step before the
refinement step which sorts these points using radix sort on GPU to get the top-k values. The
method for calculating the pairs is very similar to the Algorithm 6. The only difference is that
no local heaps need to be updated since the sorting happens afterwards. The pseudo code for
the baseline algorithm step can be seen in Algorithm 7.

As Algorithm 8 show we need to update an index value for each time we get a new result
we that we want to be a part of the final refinement radix sort. Since this is a shared global array
between all threads we need to use an atomic add to increment the result index position so no

53

results overwrite each other.
Algorithm 7: The baseline top-k SDJ algorithm

input : R, S, ε , γ , K, ResultSize
output: Result

1 hashValuesR←− hashKernel(R, ε);
2 hashValuesS←− hashKernel(S, ε);
3 keyValueRadixSort(hashValuesR, R);
4 keyValueRadixSort(hashValuesS, S);
5 baselineSDJFilter(R, hashValuesR, S, Result, ε , γ , K) ;
6 Result ←− keyValueRadixSort(Result.scores, Result.ids)[:K];
7 return Result;

Algorithm 8: SDJ filter for used in the baseline algorithm.
input : R, hashValuesR, S, Result, ε , γ , K
output: Result

1 index←− (blockIdx.x * blockDim.x) + threadIdx.x ;
2 if index >= |S| then
3 return;
4 s←− S[index] ;
5 gridCellS←− pointToCell(s, ε);
6 foreach x ∈ {−1,0,1} do
7 foreach y ∈ {−1,0,1} do
8 foreach n ∈ {−1,0,1} do
9 pointHash←− spaceFillingCurveHash(gridCell + (x, y ... n));

10 limitlower, limitupper ←− equalRang(hashValuesR, pointHash);
11 foreach r ∈ {R[limitlower]...R[limitupper]} do
12 if withinDistance(s, r, ε) ∧ γ(r.score, s.score) > heap.minValue then
13 resultIndex←− atomicAdd(resultIndex, 1) ;
14 Result[resultIndex]←− (γ(r.score,s.score), (r.id, r.id));
15 end
16 end
17 end
18 end

7.2 Comparison
Figure 7.1 shows the overall runtime of the algorithm when using shared memory and registers.
We set ε to 0.001 and K to 16 as default. The block size was 64 threads per block. As the
figure shows there is no significant difference between the two methods for a fixed K size. Both
algorithms perform well with no sizes exceeding 6 seconds of runtime even for problems where
|R| = |S| = 108. It is worth noting that for large sizes or R the runtime is close to constant
until |S| increases to 107. Figure 7.2 shows the runtime when |R| = |S|. Since the two methods
performs so similarly we will only compare the baseline algorithm to the register method. If
there are some interesting differences between the register and shared memory methods they
will of course be noted.

The runtime will be affected mainly by the ε and K parameters. When we increase epsilon

54

103 104 105 106 107 108

104

105

106

|S|

M
ic

ro
se

co
nd

s
µ

|R|= 108 |R|= 107

|R|= 106 |R|= 105

|R|= 104 |R|= 103

103 104 105 106 107 108

104

105

106

107

|S|

M
ic

ro
se

co
nd

s
µ

|R|= 108 |R|= 107

|R|= 106 |R|= 105

|R|= 104 |R|= 103

Figure 7.1: (Left) The runtime of top-k SDJ with register memory for the top-k heap at different problem
sizes of R. (Right) The runtime of top-k SDJ with register memory for the top-k heap for the same
problem sizes. |R| = |S|

103 104 105 106 107 108

104

105

106

|R|= |S|

M
ic

ro
se

co
nd

s
µ

Registers Shared Baseline

Figure 7.2: The runtime of the top-k SDJ algorithm for problems where |R| = |S|. the baseline method
could not solve problems larger than 107.

the number of points that needs to be evaluated increases drastically. Figure 7.3 shows how the
runtime of the register method is affected by ε for some problem sizes. The R set is fixed to size
106. Increasing ε shows that the algorithm handles the increase in epsilon exceptionally. This is
mainly because the algorithm limits the amount of points sent the the radix sort steps to K. One
positive aspect with this is that the algorithm does not have space problems when increasing ε .
All sizes of ε are handled nicely.

This is a huge benefit over the baseline method. Figure 7.4 shows how the baseline method
compares to the register method when ε increases. The figure show the percentage of time
used to filter the points and sorting relative to the total runtime. Note that the percentages does
not add to 100% at some time is also used to hash and sort the points using the Hilbert space

55

1 2 3 4 5

·10−2

104

105

106

ε

M
ic

ro
se

co
nd

s
µ

|S| = 103 |S| = 106 |S| = 107

Figure 7.3: The runtime of the top-k SDJ algorithm for different values of ε .

filling curve. We do not show this step since its the same for all methods and during testing it
accounted for about 1 % or less of the total runtime. The achieved occupancy is also shown as
marks in Figure 7.4.

1 2 3 4 5

·10−3

0

20

40

60

80

100

ε

To
ta

lr
un

tim
e

(%
)/

O
cc

up
an

cy
(%

) Baseline method

0

2

4

6
·105

Total runtime

1 2 3 4 5

·10−3

0

20

40

60

80

100

ε

Register method

Filtering Sorting Filtering achieved occupancy

2

4

6

·104

M
ic

ro
se

co
nd

s
µ

Total runtime

Figure 7.4: (Left) The percentage of the total runtime the baseline method used to filter or sort when ε

is increasing. (Right) The same benchmark as on the left but with the top-k SDJ register method instead.

The baseline gets in trouble if too many pairs are found in the filtering step before sorting. In
our test we got 313893485 results from this step for problem sizes of 107 x 107 points with ε =
0.001. This was equivalent to about 3.7 GB of data that needed to be sorted. The impact of this
is clearly visible in Figure 7.4. The time used to sort the points after filtering dominates the total
time used when ε increase. This is in sharp contrast to the register method where we can see
that the filtering step is the one increasing. This is natural since the number of point pairs sent
to sorting in the register method is constant. When ε increase the filtering step will therefore
naturally take more time relative to the sorting step. The runtime evolves much better for the

56

register method and shows that the ε parameter is handled much better than in the baseline
method.

Another interesting observation is the achieved occupancy. Even tough the filtering step in
the baseline method has much better achieved occupancy than the register method the runtime
is much worse. This tells us that we actually benefit from sacrificing some occupancy in in trade
of a lighter sorting step.

24 25 26 27 28
0

20

40

60

80

100

K

To
ta

lr
un

tim
e

(%
)/

O
cc

up
an

cy
(%

) Baseline method

2

2.2

2.4

2.6

2.8

3
·104

Total runtime

24 25 26 27 28
0

20

40

60

80

100

K

Register method

Filtering Sorting Filtering achieved occupancy

0

2

4

6

8

·105

M
ic

ro
se

co
nd

s
µ

Total runtime

Figure 7.5: (Left) The percentage of the total runtime the baseline method used to filter or sort when K
is increasing. (Right) The same benchmark as on the left but with the top-k SDJ register method instead.

Increasing the K parameter tells another story. Since the baseline method returns all points
within ε distance to be sorted the runtime is not affected by K as shown in Figure 7.5. The time
used on filtering and sorting is relatively balanced.

The register method is by contrast much more effected. When K increase the amount of
registers used in each kernel also increase. This negatively effects the achieved occupancy on
each SM since all registers in a block needs to be allocated. There will therefore be assigned
very few blocks at a time which is problematic for memory latency hiding. This is true until K
= 64. After that the compiler decides to use local memory instead which increase the runtime
significantly. This is explained in detail in Section 2.3.2. Figure 7.5 show that after K = 64
we get a dramatic increase in total runtime. This is caused by the increased time used by the
filtering step. The runtime evolves much better using the baseline method and shows that the ε

parameter is a significant drawback in the register method.
The achieved occupancy is as expected high for the baseline method. The register method

do by contrast struggle to achieve respectable occupancy. When we increase K up to 64 only
registers are used for the local heaps. The number of blocks the SMs can be assigned are is
therefore extremely low. For K = 64 we could only allocate 4 blocks per SM. When K is larger
than 64 local memory is also used to store the local heaps. The occupancy therefore increases
as the SMs can allocate memory for more blocks. In our testing the register usage was still the
limiting factor. Each SMs could only locate 20 out of a maximum of 32 blocks per SM for K
larger than 64 where local memory was used.

57

Figure 7.6 shows also shows how the algorithms are affected by K but not the shared mem-
ory method is also included. The shared memory is not large enough to handle more than 64KB
so the algorithm as it is right now cannot run problems with K > 64 when using shared memory.
Using registers it seems that it is possible to solve larger problems, but that is with using local
memory instead of registers. Since local memory is much slower we see a significant increase
in runtime.

Using registers is therefor better than shared memory since it can handle larger problem
sizes, but at the cost of significant runtime increase for large values of K.

20 23 26 29 212

0

2

4

6

8
·105

K

M
ic

ro
se

co
nd

s
µ

Register memory Shared memory
Baseline

Figure 7.6: The runtime of top-k SDJ for different sizes of K with ε = 1 and the problem size |R|= |S|=
106.

The memory effect of increasing K can be seen in more detail in Figure 7.7. The figure
shows how memory reads and writes changes when we increase the K parameter from K=32
to K=64 where local memory is used. Arrows pointing to the right are writes and the arrows
pointing left are reads. All green boxes are logical memory spaces while blue boxes are physical
memory chips. The ”Unified Cache” box is the same as he L1 cache layer discussed in Section
2.3.1. The figure only shows memory usage for the algorithm using registers as the difference
between it and the shared memory method is that the shared memory usage would be visible.

The cache hit rate is shown as a percentage in the ”Unified cache” and ”L2 cache” boxes.
They show that the hit rate is relatively high for both problems. The diagram showing cache
usage for K=32 have 78% hit rate in L1 cache compared to 68% for the K=64 problem. Despite
the L1 cache being higher the L2 cache hit rate is higher for the K=64 problem. This might
be because the heaps that gets stored in local memory now also utilizes the L1 cache taking up
space from the global memory requests in L1 memory.

Figure 7.8 shows how the register algorithm behaves running the join on a collection of
real datasets.The most interesting thing to note is that the harbor water quality datasets joined
with the tree dataset have an interesting jump in runtime after epsilon exceeds 10−2. This is
because for lower values of epsilon there are very few data points that intersect since the two
datasets are very spatially separated. No trees are planted in the water. Therefor when epsilon
increases so that the radius around the trees reaches out to the water the runtime also increases
significantly. The other datasets does not have the same problem as the spatial range or the

58

Figure 7.7: (Left) The top-k SDJ algorithms memory usage patterns for K=32, ε = 1. (Right) The same
as the left figure but now K=64. The local memory is now being used. Both figures are generated in the
NVIDIA Nsight profiler.

objects are overlapping much more. The last Figure 7.9 confirms that the memory usage is
balanced between R and S.

10−4 10−3 10−2 10−1 100

104

105

ε

M
ic

ro
se

co
nd

s
µ

Radioactive equipment X water tanks Subway entrances X Restaurant controls
Harbour water quality X Trees Points of interest X Addresses

Figure 7.8: The runtime of top-k SDJ for low ε values for the problem size |R|= 106.

7.3 Suitability for GPU architecture
There are many factors that contribute to the evaluation of how suitable the GPU architecture
is for solving the top-k SDJ problem. The main problem we faced was finding a good way to
handle the top-k part.

The new top-k SDJ algorithms we designed solved this problem well for K < 64. The fact
that we could use K to reduce the number of pairs that needed to be sorted both reduced the
space complexity and memory transfer times greatly which resulted in a very efficient solution.
The main problem is that when K increases the limited register and shared memory available
makes the GPU use slow global memory instead. Our analysis show that a baseline method
that first filters all points and then sorts them for the top-k will perform much better for large K
values. For this approach to be better for GPU we would need more register or shared memory.

The spatial distance join part of the problem is much easier to solve efficiently on the GPU.
By using a grid index we can reduce the serach space drastically while still being able to utilize
the GPU hardware to its full potential. This is in large because the nature of the problem is

59

0
0.5

1

·1080
0.5

1

·108

0

2,000

4,000

|R||S|

M
B

Total memory usage

Figure 7.9: The memory usage of top-k SDJ when for all problem sizes. the space used increace linear
ly with the input size. This is with 4 byte floats for points in 2D with 4Bytes unsigend integers for scores
and batch size of 50 MB.

more parallelization friendly. All calculations that find points within ε distance are independent
of each other. No need for common structures or communication between the threads.

This is the main problem we face when we add the top-k part to the problem. Since the
calculations are not independent we need common structure such as a heap if we want to solve
the problem in one step. Solving the problem in two steps as the baseline method does lets
the problem be solved utilizing the GPU hardware to its full potential. The drawback is that
the amount of point pairs that needs to be sorted includes a huge amount of unnecessary points.
This also makes the space complexity a much greater issue than in our top-k SDJ methods using
registers.

The conclusion is therefor that the top-k part of the problem is difficult to take advantage of
on GPU while still utilizing the massively parallel hardware without significant drawbacks.

60

Chapter 8

Conclusion and future work

Recently advancements in GPU and massively parallel architectures have lead to an increased
interest in many fields. Even though there is relatively limited research done utilizing the GPU
for spatial join operations we think this architecture will get an increased importance as more
research is done.

In this thesis we explored how the GPU architecture could best be utilized for indexing
spatial data. We explored existing methods and identified challenges that occur because of het-
erogeneous computing scheme and memory layout of the GPU. The methods were tackling
different spatial problems to show how other researchers have tackled similar problems. We de-
veloped a new top-k SDJ algorithm based on the knowledge we gathered from studying existing
indexing and spatial join methods on GPU.

Finally we conducted experiments to study the new top-k SDJ algorithm to get a better
understanding of the challenges and its performance.

8.1 Conclusion
The thesis started out by asking one main research questions and two sub reserach guestions.
Based on the knowledge gathered and observations we have done this section will discuss if the
research questions are answered.

The main research question RQ1 asked if GPUs are suited for top-k spatial distance join
queries. To be able to answer this we needed to answer two sub research questions.

SRQ1 : Which spatial indexes and data types if any are suited for GPU?

In Chapter 3 we went through some common spatial indexing techniques and identified
the some challenges with traditional hierarchical indexes as R-trees that are common for CPU.
The common consensus in the research papers we have read and our own conclusion from that
chapter is that a uniform grid structure or ε grid is a good choice for our top-k SDJ algorithm.
Uniform grids can also be used for other spatial join problems as our investigation of spatial
join in Chapter 4 show that the grid structure can also be used on box data as well as point data
for other queries as self join. Chapter 4 also gave us knowledge that not materializing the grid
structure could be a good idea for our top-k SDJ algorithm.

SRQ2 : How can top-k be efficiently implemented in the GPU memory architecture?

61

SRQ2 is answered extensively while designing the top-k SDJ algorithm in Chapter 5. The
conclusion we come to in this thesis is that we have two options for top-k on GPU. One use
shared memory or registers to hold local top-k heaps while the other use a filter then sort ap-
proach. Both methods are limited by the memory size available and the low occupancy when
using large amounts of register or shared memory on the GPU. In Chapter 7 we show that both
methods perform similarly until K = 64. After that the shared memory method does not work as
there are no space left. For the register method local memory is used for large Ks which effects
the performance negatively. The baseline filter then sort method performed the best when we
increase K but run into space issues when there are large amounts of pairs returned from the
filtering step. So the the answer to SRQ2 is that top-k can be efficiently implemented by local
top-k heaps for K < 64 while for larger K values we were not able to find a good approach.

We can now answer RQ1. The answer of SRQ1 tells us that there are spatial structures that
are both well suited for the SDJ part of the problem and suited for the GPU architecture. The
answers we got from SRQ2 on the other hand shows that we could not find a method without
significant drawbacks for large K values. We will therefor conclude that GPU is well suited for
SDJ but we need more research to find better ways of handling the top-k part of the problem.

8.2 Future work
There is still a lot of research that could be done on spatial join problems running on GPU. The
problem of hierarchical index structures is being researched already but there seems to be some
uncertainty of how well its suited for GPU. A comparison of how different indexing structures
perform on the GPU could be interesting as our conclusions may not necessarily be the right
ones as we were not able to implement and compare them.

It could also be interesting to look at how ε grids could be used in a spatial distance query
where the data was boxes instead of points. The approach used by the MLG-join algorithm in
Section 4.2 shows that grids are suited for intersection joins. Maybe a similar approach could
be used or distance joins?

Doing different join predicates could also be interesting. Our top-k SDJ algorithm uses
distance less than ε as to compare the objects from R and S. It could be interesting to see how
for example intersection between boxes or polygons could could be implemented as a top-k
spatial intersection join algorithm.

A better solution to handle large K values for the top-k SDJ algorithm would also be a
research topic worth investigating further. Our approach utilized the on chip memory banks to
utilize the high speed reads and writes. A method that find a more space efficient approach for
local heaps or do not use local heaps at all could be of interest.

62

Bibliography

[1] S. Qi, P. Bouros, and N. Mamoulis. Efficient top-k spatial distance joins. In International
Symposium on Spatial and Temporal Databases, pages 1–18, 2013.

[2] S. Qi, P. Bouros, and N. Mamoulis. Efficient top-k joins on complex data types. 2015.

[3] Naga Govindaraju, K, Brandon Lloyd, Wei Wang, Ming Lin, and Dinesh Manocha. Fast
computation of database operations using graphics processors. In Proceedings of the 2004
ACM SIGMOD international conference on Management of data, pages 215–226, 2004.

[4] Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In SIG-
MOD’84, Proceedings of Annual Meeting, Boston, Massachusetts, USA, June 18-21,
1984, pages 47–57, 1984.

[5] Jianting Zhang, Simin You, and Le Gruenwald. Parallel spatial query processing on gpus
using r-trees. In Proceedings of the 2nd ACM SIGSPATIAL International Workshop on An-
alytics for Big Geospatial Data, BigSpatial@SIGSPATIAL 2013, Nov 4th, 2013, Orlando,
FL, USA, pages 23–31. ACM, 2013.

[6] Sushil K. Prasad, Michael McDermott, Xi He, and Satish Puri. Gpu-based parallel r-tree
construction and querying. In 2015 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshop, IPDPS 2015, Hyderabad, India, May 25-29, 2015, pages
618–627. IEEE Computer Society, 2015.

[7] Jinwoong Kim and Beomseok Nam. Co-processing heterogeneous parallel index for
multi-dimensional datasets. Journal of Parallel and Distributed Computing, 113:195–203,
2018.

[8] Phillip G Ward, Zhen He, Rui Zhang, and Jianzhong Qi. Real-time continuous intersec-
tion joins over large sets of moving objects using graphic processing units. The VLDB
Journal—The International Journal on Very Large Data Bases, 23(6):965–985, 2014.

[9] Michael Gowanlock and Ben Karsin. Gpu accelerated self-join for the distance similar-
ity metric. In 2018 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pages 477–486. IEEE, 2018.

[10] Danial Aghajarian, Satish Puri, and Sushil K. Prasad. GCMF: an efficient end-to-end spa-
tial join system over large polygonal datasets on GPGPU platform. In Proceedings of the
24th ACM SIGSPATIAL International Conference on Advances in Geographic Informa-
tion Systems, GIS 2016, Burlingame, California, USA, October 31 - November 3, 2016,
pages 18:1–18:10, 2016.

63

[11] Jianting Zhang, Simin You, and Le Gruenwald. Parallel selectivity estimation for optimiz-
ing multidimensional spatial join processing on gpus. In ICDE, pages 1591–1598. IEEE
Computer Society, 2017.

[12] Vebjorn Ljosa and Ambuj K. Singh. Top-k spatial joins of probabilistic objects. In Pro-
ceedings of the 24th International Conference on Data Engineering, ICDE 2008, April
7-12, 2008, Cancún, Mexico, pages 566–575. IEEE Computer Society, 2008.

[13] Hamza Mustafa, Eleazar Leal, and Le Gruenwald. Fasttopk: A fast top-k trajectory sim-
ilarity query processing algorithm for gpus. In 2018 IEEE International Conference on
Big Data (Big Data), pages 542–547. IEEE, 2018.

[14] Anil Shanbhag, Holger Pirk, and Samuel Madden. Efficient top-k query processing on
massively parallel hardware. In Proceedings of the 2018 International Conference on
Management of Data, pages 1557–1570, 2018.

[15] P. Bouros and N. Mamoulis. Spatial joins: what’s next? SIGSPATIAL Special, 11:13–21,
2019.

[16] George Roumelis, Antonio Corral, Michael Vassilakopoulos, and Yannis Manolopoulos.
New plane-sweep algorithms for distance-based join queries in spatial databases. GeoIn-
formatica, 20(4):571–628, 2016.

[17] John Von Neumann. First draft of a report on the edvac. IEEE Annals of the History of
Computing, 15(4):27–75, 1993.

[18] Simon Green. Particle simulation using cuda. NVIDIA whitepaper, 6:121–128, 2010.

[19] Yi He, Andrew E Bayly, Ali Hassanpour, Frans Muller, Ke Wu, and Dongmin Yang. A
gpu-based coupled sph-dem method for particle-fluid flow with free surfaces. Powder
technology, 338:548–562, 2018.

[20] Panagiotis Bouros, Shen Ge, and Nikos Mamoulis. Spatio-textual similarity joins. Pro-
ceedings of the VLDB Endowment, 6(1):1–12, 2012.

[21] David Hilbert. Über die stetige abbildung einer linie auf ein flächenstück. In Dritter Band:
Analysis· Grundlagen der Mathematik· Physik Verschiedenes, pages 1–2. Springer, 1935.

[22] Michael Gowanlock, Cody M Rude, David M Blair, Justin D Li, and Victor Pankratius.
Clustering throughput optimization on the gpu. In 2017 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 832–841. IEEE, 2017.

[23] Nathan Bell and Jared Hoberock. Thrust: A productivity-oriented library for cuda. In
GPU computing gems Jade edition, pages 359–371. Elsevier, 2012.

[24] Nadathur Satish, Mark Harris, and Michael Garland. Designing efficient sorting algo-
rithms for manycore gpus. In 2009 IEEE International Symposium on Parallel & Dis-
tributed Processing, pages 1–10. IEEE, 2009.

[25] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight dynamic
binary instrumentation. ACM Sigplan notices, 42(6):89–100, 2007.

64

[26] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. Collecting performance
data with papi-c. In Tools for High Performance Computing 2009, pages 157–173.
Springer, 2010.

[27] NVIDIA. Nvidia Nsight Systems. https://developer.nvidia.com/

nsight-systems, 2020. [Online; accessed 30-May-2020].

65

https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems

66

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Håvard Aspen Løvik

Top-k Spatial Join on GPU

Master’s thesis in informatics

Supervisor: Kjetil Nørvåg

June 2020

	Introduction
	Motivation and related work
	Research questions

	Background
	Database queries
	Join and spatial join queries
	Top-k spatial distance join

	Traditional computer architecture and parallelization
	von Neumann architecture
	Memory hierarchy
	Parallel computing

	GPU architecture and CUDA
	Architecture
	CUDA
	GPU evolution

	Spatial indexes
	Curse of dimensionality
	BVH and R-trees
	Uniform grid
	Choosing a spatial index for the top-k SDJ problem

	Spatial join algorithms on GPU
	Nested-loop join on GPU
	Multi Layered Grid join
	The MLG-join process
	Performance and analysis

	GCMF
	SMF
	Performance and analysis

	Self-join on point data
	Batching

	The new Top-k spatial distance join algorithm
	Design overview
	Indexing
	Filtering and Refinement
	Finding the top-k
	Batching
	Memory management
	Correctness
	Algorithm and complexity

	Methodology
	Uniform synthetic data
	Box data
	Point data

	Real data
	Setup environment
	Profiling
	Implementation

	Analysis and Discussion
	Baseline algorithm
	Comparison
	Suitability for GPU architecture

	Conclusion and future work
	Conclusion
	Future work

