
Classification of speech samples
using multiple Neural Networks in
a tree hierarchy

June 2020

M
as

te
r's

 th
es

is

M
aster's thesis

Maciej Piatkowski

2020
M

aciej Piatkow
ski

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f C

om
pu

te
r S

ci
en

ce

Classification of speech samples using
multiple Neural Networks in a tree
hierarchy

Maciej Piatkowski

Master in Applied Computer Science
Submission date: June 2020
Supervisor: Mariusz Nowostawski

Norwegian University of Science and Technology
Department of Computer Science

Classification of speech samples using multiple
Neural Networks in a tree hierarchy

Maciej Piatkowski

CC-BY 2020/06/02

Abstract

This report describes the research project which aimed to investigate ways to re-
duce the load on the high-end hardware used in training neural networks by utiliz-
ing many smaller neural networks, rather than one big network. Neural networks
used in this thesis are iteratively re-trained on a progressively larger dataset and
then used to form a tree hierarchy. Various learnings from previous research done
in the field are applied to accelerate the development of the neural network model
to achieve satisfactory results before proceeding with the main experiments.

During the training process, a modified loss function with a filter is applied to
guide the neural network to achieve better classifications for the given samples.
The filter is applied by adding an extra layer of neurons after the softmax layer,
which is then discarded after the training process is finished. Weights of the extra
layer have been manually modified to transfer the results of the softmax layer dir-
ectly to the extra layer. As the goal of this process is to create better classifications,
the resulting network is discarded at the end of the process. Better classifications
are used as the basis for the clustering of the dataset used in the thesis.

The iterative re-training takes these better classifications, and uses them in
the training process as more and more of the dataset is processed. Finally, the
networks are assembled to form a tree, chaining clusters together to distribute the
dataset into smaller fragments. Both iterative re-training and the neural network
tree are attempted in combination. Additionally, a control group not using iterative
re-training is being attempted as well.

Results of the thesis show that iterative re-training has some effect on the size
and quality of the original data clusters, assuming one tunes the parameters of the
networks appropriately. Through the trees generated by using iterative re-training,
success is shown by comparing several audio samples that were grouped to same
and different tree nodes. Modification of the loss function is shown to have little
effect, but the entire process shows clear increase in quality over the alternatives.

iii

Sammendrag

Denne rapporten beskrier et forskningsprosjekt som hadde som mål å utforske
metoder til å redusere byrden på det utstyret fra høyeste hylle brukt til å trene
nevrale nettverk gjennom å bruke mange mindre nevrale nettverk, i stedet for
et stort nettverk. Nevrale nettverk brukt i denne masteroppgaven er re-trent it-
erativt på et progressivt større sett med data, og deretter brukt i et tre-hierarki.
Forskjellige lærdommer fra tidligere forskning ute i feltet er brukt til å akseler-
ere utviklingen av den nevrale nettverk modellen til å oppnå gode resultater før
hoved-eksperimentene begynner.

Gjennom treningsprosessen, en modifisert tapsfunksjon med en filter er brukt
til å rettlede det nevrale nettverket til å oppnå bedre klassifiseringer for gitte data-
prøver. Filteret er brukt gjennom å legge til et ekstra lag med nevroner etter soft-
max laget, som er deretter fjernet etter treningsprosessen er ferdig. Vektene av
dette ekstra-laget er manuelt modifisert til å overføre resultatene fra softmax-laget
direkte til ekstra-laget. Ettersom målet med denne prosessen er å skale bedre klas-
sifiseringer, det resulterende nettverket er fjernet på slutten av denne prosessen.
Bedre klassifiseringer er brukt som grunnlag for grupperingen av datasettet brukt
i denne masteroppgaven.

Den iterative re-treningen tar disse bedre klassifiseringene, og bruker de i
treningsprosessen ettersom mer og mer av datasettet er bearbeidet. Til slutt er
nettverkene samlet i et tre, og gruppene er kjedet sammen til å distribuere data-
settet til mindre fragmenter. Både den iterative re-treningen og det nevrale nettverk-
treet er forsøkt i kombinasjon. I tillegg er en kontroll-gruppe som ikke bruker den
iterative re-treningen brukt til å danne et tre.

Resultatet av masteroppgaven viser at iterativ re-trening har noe effekt på
størrelsen og kvaliteten av de opprinnelige data gruppene, så lenge man justerer
på parameterne i nettverkene korrekt. Gjennom trærne generert gjennom iterativ
re-trening, vellykkede eksperiment er vist gjennom sammenligning av flere lyd
klipp som ble gruppert i samme og forskjellige tre noder. Modifisering av taps-
funksjonen er vist til å ha liten effekt, men hele prosessen viser en klar hevelse av
kvaliteten over alternativene.

v

Contents

Abstract . iii
Sammendrag . v
Contents . vii
Figures . xi
Tables . xiii
Code Listings . xv
1 Introduction . 1

1.1 Keywords . 1
1.2 Research questions . 2
1.3 Contributions . 2

2 Background . 3
2.1 Neural networks . 3

2.1.1 History . 4
2.1.2 Convolutional neural networks 5
2.1.3 Training the neural network . 7
2.1.4 Transfer learning . 9

2.2 Audio processing . 9
2.2.1 Fourier transform . 9
2.2.2 Mel scale . 9
2.2.3 Discrete cosine transform . 10
2.2.4 Mel-frequency cepstrum coefficients 10

2.3 Hierarchical clustering . 11
2.4 Neural networks and data clustering 12

3 Methodology . 15
3.1 Dataset . 15

3.1.1 Processing steps . 16
3.1.2 Statistics . 21

3.2 Neural network . 23
3.2.1 Early development . 23
3.2.2 Extra layer . 24
3.2.3 Final model . 24

3.3 Loss function . 26
3.3.1 Primary filter . 26
3.3.2 Second filter . 27

vii

viii Maciej Piatkowski: Speech classification using many Neural Networks

3.4 Iterative re-training . 28
3.5 Tree generation . 28

4 Experiments . 31
4.1 Tools used in the thesis . 31

4.1.1 Hardware . 31
4.1.2 Software . 33

4.2 Dataset selection . 36
4.2.1 Experiment setup . 36
4.2.2 Experiment results . 38

4.3 Extra layer experiment . 38
4.3.1 Experiment setup . 39
4.3.2 Experiment results . 39

4.4 Neural network refinement experiments 40
4.5 Loss function experiments . 42

4.5.1 Secondary filter . 42
4.5.2 Correct cluster count reevaluation 42
4.5.3 Experiment results . 43

4.6 Iterative re-training experiment . 43
4.6.1 Parameters used . 43
4.6.2 Experiment process . 43
4.6.3 Experiment results . 44

4.7 Tree generation experiment . 44
4.7.1 Parameters used . 44
4.7.2 Experiment process . 44
4.7.3 Experiment results . 45

5 Results . 47
5.1 Iterative re-training results . 47

5.1.1 Size of clusters over the iterations 47
5.1.2 Value of the highest classifications over the iterations 47
5.1.3 Variation between first iteration and the following iterations 49
5.1.4 Variation between neighbor iterations 50
5.1.5 Number of sample files between training iterations 50

5.2 Tree results . 54
5.2.1 Cache size of the nodes in the tree 54
5.2.2 Re-training iterations throughout the trees 56
5.2.3 Failed node generation per branch layer 56
5.2.4 Comparison between samples classified by the tree 57
5.2.5 Control insight . 57

6 Discussion . 61
6.1 Iterative re-training performance . 61
6.2 Tree generation process . 62
6.3 Effect of parameter change . 63

7 Conclusion . 65
7.1 Future work . 66

Contents ix

Bibliography . 67

Figures

2.1 Illustration of a simple feed-forward neural network 3
2.2 The Inception Module[8], without (left) and with (right) pooling

layers in the module. 5
2.3 Example of a convolution operation. Padding operations on the bor-

ders not included. 6
2.4 Two examples of the pooling operation on the same initial values . 7
2.5 Two examples of 80 MFCCs generated with DCT-2 and DCT-3 on

the same 3.4-second long audio sample 10
2.6 Illustration of a data tree, arrows represent starting point for clus-

tering process . 12

3.1 Length of the samples in the dataset 23
3.2 Overlap statistics from the samples that had an overlap recorded . . 23
3.3 Example of the 1010 neuron layer . 25
3.4 Loss function filters 0 and 1 . 27
3.5 Loss function filters 2 and 3 . 27

4.1 Largest class and validation accuracy as number of samples increase 40
4.2 Custom layer performance with the extra operations 40
4.3 Normal layer performance with the extra operations 41

5.1 Largest cluster over the iterations, with 0.8 iteration threshold . . . 48
5.2 Largest cluster over the iterations, with 0.5 and 0.6 iteration threshold 48
5.3 Largest cluster over the iterations, with 0.7 and 0.9 iteration threshold 48
5.4 Samples below iteration threshold, with parameter set to 0.8. 49
5.5 Samples below iteration threshold, with parameter set to 0.5 and 0.6 49
5.6 Samples below iteration threshold, with parameter set to 0.7 and

0.9. 50
5.7 Variation between first and next iterations, with 0.8 iteration threshold 51
5.8 Variation between first and next iterations, with 0.5 and 0.6 itera-

tion threshold . 51
5.9 Variation between first and next iterations, with 0.7 and 0.9 itera-

tion threshold . 52
5.10 Variation between neighbor iterations, with 0.8 iteration threshold 52

xi

xii Maciej Piatkowski: Speech classification using many Neural Networks

5.11 Variation between neighbor iterations, with 0.5 and 0.6 iteration
threshold . 53

5.12 Variation between neighbor iterations, with 0.7 and 0.9 iteration
threshold . 53

5.13 Change in number of sample files between iterations, with 0.8 it-
eration threshold . 54

5.14 Change in number of sample files between iterations, with 0.5 and
0.6 iteration threshold . 55

5.15 Change in number of sample files between iterations, with 0.7 and
0.9 iteration threshold . 55

5.16 Largest tree node caches in descending order. All start from full
dataset. 56

5.17 Largest tree node iterations in descending order. Excluding full data-
set. 57

5.18 Nodes that failed to be created due to insufficient samples in the
cache . 58

5.19 Samples left per branch level over the course of the tree generation 58
5.20 Audio sample 1, English translation: "Kabu, I’m home!" 58
5.21 Audio sample 2, English translation: "Nu-uh! I’ll go by myself..." . . 59
5.22 Audio sample 3, English translation: "All right, I’m finished" 59
5.23 Largest tree node clusters in the control group, in descending order.

Including full dataset. 59
5.24 Node failures and samples left per branch level in the control group. 60

Tables

3.1 Time spent processing the dataset . 22
3.2 Number of subtitle lines over the course of processing the dataset . 22

4.1 Hardware specs . 31
4.2 Software versions . 33
4.3 Early neural network model . 36
4.4 Librosa functions that were tested . 37
4.5 Experiment 1 results . 38
4.6 Modified early neural network model 39
4.7 Modified early neural network model 41

xiii

Code Listings

4.1 Code to reduce memory usage of Tensorflow in a single console,
valid for Tensorflow 2.1 . 34

xv

Chapter 1

Introduction

In recent years, Artificial Intelligence, through the use of Neural Networks, has
become widely used in a broad spectrum of applications. While NNs have shown
themselves to be powerful, a point has been reached where the time it takes to
build NNs goes up exponentially. Meanwhile, the results are not that much better
than what simpler NNs achieve.
Current NNs have shown themselves to be superior to previously developed solu-
tions. However, they currently suffer from the flaw of having to remember all
of the information they have seen. If they lose some information while learning
something new, this loss may cause them to perform worse in tasks they were
previously solving well. In general, the more a network needs to do, the bigger it
has to be to do it. The need for a more extensive network leads to a performance
problem where one needs costly, powerful hardware to train it in a reasonable
time frame. Handling the problem of more extensive networks with brute-forcing
the problem through more expensive hardware is not sustainable in the long term.
Eventually, the network will require even more performant equipment to process
than what will be available on the market.
This master project seeks to test creating multiple NNs that will be able to accur-
ately predict the English translation of a phrase spoken by a person in Japanese.
Each NN will be trained iteratively on small batches of the dataset at a time, with
the output of the NNs being one of several “super-classes.” For each super-class,
a new NN will be generated for the data assigned to this super-class, creating
unique, smaller super-classes.

1.1 Keywords

Artificial intelligence, Neural networks, Transfer learning, Convolutional Neural
Network

1

2 Maciej Piatkowski: Speech classification using many Neural Networks

1.2 Research questions

The research questions of this master thesis can be boiled down to the following
three questions:

• How do neural networks that are iteratively re-trained using transfer learn-
ing on an increasing subset of the dataset, to group the entire dataset they
receive into “super-classes” perform?
• How does this training technique perform when used to train neural net-

works in a tree hierarchy that bases itself on these super-classes?
• How does changing the parameters of the training process affect the neural

networks and the resulting tree structures?

1.3 Contributions

The research area of this master thesis revolves around the improvement of the
scalability of neural networks. The first research question seeks to analyze the it-
erative transfer learning process of each NN by itself. As the size of the dataset is
increased, plugging the entire dataset into the training process will lead to time
spent training increasing at minimum linearly with the dataset size. In addition
to increased time to train, storage requirements also go up with dataset size, re-
quiring the dataset to be stored on slower memory. Using too much memory can
potentially even kill the training process due to insufficient resources on the weak-
est link in the computing chain. Different networks and parameters may exhibit
different characteristics. Analyzing the performance of each NN by itself can bring
valuable results for many different applications that would seek to use a similar
iterative transfer learning process.
The second research question seeks to expand on the results of the first by in-
troducing the tree hierarchy concept. Most NNs currently in use are single, large
models that take a lot of time and processing power to train. While some research
has been done in using NNs in hierarchical clusters, this thesis aims to research
more autonomous ways for such trees to be created. The tree generation would
be done from the view of the neural network, rather than based on human intu-
ition. It is ultimately the neural networks that have to use the super-classes, while
humans are generally interested only in the final result. The hypothesis is that the
networks should decide on how to distribute the dataset across the super-classes.
The final question aims to compare the different neural networks created during
this master thesis against each other to find which NNs worked better or worse
in various metrics. Some of the NNs could perform better in generating the root
node of the tree, while suddenly collapsing somewhere deeper in the tree. Un-
fortunately, a direct comparison between each tree will be impossible due to the
autonomous nature of the tree generation process. Still, providing some form of
analysis between the NNs can give insight into potential pitfalls that some of the
trees fell into that others did not.

Chapter 2

Background

2.1 Neural networks

Neural networks are something everyone has, even if they do not understand
the concept. Neurons in our brains transmit signals to other neurons, which in
turn do the same to the next neurons in line. Some neurons are connected to
many neurons, while other neurons may only be connected to a few. Through their
connections, the neurons are creating all sorts of connection shapes ranging from
massive trees to a short loop. Throughout a lifetime, these connections change as
the brain learns and forgets information.

Figure 2.1: Illustration of a simple feed-forward neural network

In computing, standard simple neural networks are clearly defined into layers,
with a clear point of entry called the "input" layer, with the result coming out of the

3

4 Maciej Piatkowski: Speech classification using many Neural Networks

"output" layer. A basic illustration of this is provided in Figure 2.1. Information we
want to be processed into the output result is inserted into each of its designated
input neurons. Between the input and output layers, we can place one or more
hidden layers. These hidden layers abstract the input from the output, allowing
the network more flexibility in making connections between input and output. In
the case of Figure 2.1, the input could be the current weekday and the time of
day, with the output being a value between 0 and 1 determining if it is time to eat
dinner. On weekdays it could say that between 18:00 and 19:00 is the best time
to eat dinner, while during the weekend it could extend the time to be sooner or
later.

2.1.1 History

History of artificial neural networks used in computing can be traced back to its
common roots with medicine and psychology that the NNs attempt to mimic. To-
wards the late 1940s, Donald Hebb [1] described a theory of how cells in a brain
function together. As the brain cells fire electrical signals to other cells, those con-
nections are strengthened and happen more frequently. Artificial neural networks
use this theory loosely to translate the signal received in the input neurons into
proper outputs. While the Hebbian theory allowed for the creation of first neural
networks, these networks were not very useful due to limitations in computing
power and lack of more complex structures. The creation of deep neural net-
works with multiple layers was practically impossible until the creation of the
backpropagation algorithm in 1975 by Paul Werbos[2]. Backpropagation allows
for the errors in the learning process to be sent back through multiple network
layers, and adjust all of the weights in the network.
Even with the creation of the backpropagation algorithm, the computational power
of the time did not allow for very complex neural networks. As execution in soft-
ware was too difficult at the time, hardware solutions were created. Using the
recent at the time metal-oxide semiconductors, in 1989, neural networks were
implemented using very-large-scale integration in analog, rather than digital[3].
During the following two decades, various techniques were developed to enable
neural networks to handle more complex problems. Among others, max-pooling
was introduced in 1992[4], and continuous improvement of existing and new
technologies enabled neural networks to grow in relevance as more powerful
hardware became available.
The first in the series of convolutional neural networks that drastically improved
the field of Artificial Intelligence is the deep neural network by Alex Krizhevsky
[5], created in 2012. A neural network becomes "deep" when more than one layer
is placed between the input and output layer. AlexNet was constructed with five
convolutional layers, followed by three dense layers, of which the last dense layer
was the output layer. Also, several max-pooling layers were placed throughout the
model. By using multiple convolutional layers in sequence, AlexNet managed to
beat all of its competition that year in the ImageNet[6] challenge[7].

Chapter 2: Background 5

After this breakthrough, commercial entities like Google used the findings in this
paper to create the Inception[8] network. This network utilized a combination of
different convolutional layers in what it calls the Inception Module, seen in figure
Figure 2.2. Unlike the previous models where the next layer strictly followed one
layer, the Inception network has one-to-many and many-to-one connections that
enable it to do multiple different operations on input from the same previous
layer. By combining the layers into building blocks, and then stacking them on
top of each other, the first Inception NN beat out its competition in the 2014
challenge[9].

Figure 2.2: The Inception Module[8], without (left) and with (right) pooling
layers in the module.

2.1.2 Convolutional neural networks

While a neural network like the one shown in Figure 2.1 can be used to receive
some results for simple data with no structure in the input, extracting informa-
tion from sound and images requires the network to understand the relationship
between each input. For the network to learn the meaning of the input structure,
several different types of layers are mixed, each applying its specific operation to
the input it receives.

Dense layer

The dense layer is the simplest of all layers in all neural networks. Looking back
at Figure 2.1, the hidden layer in the figure is a dense layer. A dense layer only
applies a simple multiplication operation on the input it receives with the weights
of the connections between the neurons. In convolutional neural networks, this
layer is usually placed at the end of the network to represent the features that the
previous layer has learned to detect.

Convolutional layer

The convolutional layer is the central part of the convolutional neural network.
Unlike the dense layer that applies only a simple multiplication operation, this
layer applies a filter over multiple inputs next to each other. This filter is can also
be called the convolution window or the kernel. The filter applies a multiplication

6 Maciej Piatkowski: Speech classification using many Neural Networks

operation to every item in the convolution window and then sums all of the results
into one number. An example of the thesis relevant 1D convolution operation can
be seen in Figure 2.3.

Figure 2.3: Example of a convolution operation. Padding operations on the bor-
ders not included.

In a convolutional layer, there can be any number of filters, and each of these filters
can be different to produce different results from the same data. By combining
these different filters, the model can be trained to detect different features in the
input data, combinations of which can represent different output classes.

Pooling layer

The pooling layer is a normal part of the complete convolutional neural network.
Whether one processes audio or images, the input is often an extensive matrix,
while the output is often at most 1000 classes, as is the case with the AlexNet[5]
and Inception[8] networks. Since suddenly reducing the matrix down to only
1000 neurons or less would wash out the significance of every single feature de-
tected by the network, pooling layers are applied to reduce the size of the input
gradually throughout the network. For this thesis, two different pooling layers
have been considered, the max-pooling layer and the average pooling layer. All
pooling layers apply a filter similar to the convolution window on the input data.
Unlike convolution, in the case of the max pooling operation, the highest value
in the window is passed to the next layer. The average pooling layer, on the other
hand, calculates the average value in the filter and passes this forward. In addition
to doing this, the size of the network is commonly divided by the size of the filter.
As shown in Figure 2.4, the input in both pooling types is reduced from 6 values
down to 3 in the next layer. While this is common, it is not strictly necessary and
can be adjusted freely.

Activation functions

In all neural network layers, the activation function is used to scale the final output
of the neuron. As significant variations in the input can give meaningless results
to the next layer, following the layer-specific processing done on the input, this
input is put through the activation function before being handed off to the next
layer.

Chapter 2: Background 7

(a) Max pooling (b) Average pooling

Figure 2.4: Two examples of the pooling operation on the same initial values

The standard activation function used in most neural network layers is the Rec-
tified linear unit (ReLU) function, which simply sets all input that is negative to
zero. All values above zero passed through ReLU are just left as-is. Removing neg-
ative values is advantageous when the next layers in the network need to process
something while excluding values that may be unimportant to final results from
further processing. The ability to exclude negative values is designed to mimic the
brain’s functionality of only sending a signal once enough energy is gathered in
the neuron, mimicking the real world neurons.
In addition to ReLU, the Softmax activation function is often used as the activation
function in the final neural network layer. The softmax operation reduces all input
to a spectrum between 0 and 1, where all outputs sum together to 1. When used
as the activation function of the final layer, the output of the network becomes a
probability for what the given output can be.
While Softmax and ReLU are the most commonly used activation functions, any
function can be theoretically used as an activation function. The last activation
function used in this thesis is the Sigmoid function. The sigmoid function is a
bounded, differentiable, real function[10] that also scales its input to a value
between 0 and 1, but unlike Softmax, the input value of 0 translates to 0.5 in the
sigmoid function. Input over zero is scaled gradually from 0.5 towards 1, while in-
put below zero is gradually scaled down from 0.5 to 0. An example of the formula
can be seen in Equation (2.1).

f (x) =
1.0

1.0+ ex p(−x)
(2.1)

2.1.3 Training the neural network

Creating the neural network structure is only the first step in the process, as the
initial weights in the model are utterly meaningless to the desired result. As men-
tioned in the history of neural networks, backpropagation was already figured
out in 1975[2]. For each training pass over the dataset, also called an epoch, the
training process executes several vital steps that can be modified to change the
weights more optimally to what is desired.

8 Maciej Piatkowski: Speech classification using many Neural Networks

Loss functions

During the training process, the network predicts a value on the given input, and
the expected value is also known. A loss function is used to calculate the difference
between these two values. When creating a neural network that has to classify the
input into different classes, the most commonly used loss function is the categor-
ical cross-entropy loss function[11]. In short, the result of the loss function can
be considered the distance between the result predicted by the network and the
desired result. Therefore, to achieve the best possible weight combination in the
neural network, the goal is to reduce this number as much as possible.

Optimizers

While knowing the loss function number is useful for the human watching the
training process, it is the role of the optimizer to take the loss values and turn them
into better weights. Optimizer is another word for the stochastic gradient descent
algorithm[12], of which there exist many variations. The optimizer takes the loss
value from each sample and calculates the most optimal way to reduce the total
error by adjusting the weights. As using the entire dataset can be impossible with
sufficiently large datasets, and using single samples can produce local minimums,
it is common to pass small batches of several dozen samples per batch to the
optimizer. To ensure that the weights are not changed randomly, all optimizers use
a parameter called the learning rate. The learning rate controls the distance by
which each weight can be changed during one training epoch. While the older SGD
optimizer only has one learning rate for the entire operation, newer optimizers like
AdaGrad, RMSProp and Adam create an adapted learning rate for each parameter.
Selective modification of weights allows the optimizers to modify some weights
more than others, leaving weights that have little effect on the loss alone while
working on the more problematic weights.

Metrics

Finally, various metrics can be reported by the training program to the user, and
be used to stop training early. In general, the two metrics used to determine how
good a neural network is are loss and accuracy. Loss is the value output by the
loss function, and accuracy is the percentage of times the network produced an
accurate result. With the loss, the best value is zero, while with accuracy, the goal
is to get as close to one as possible. As neural networks can be overfitted for a
particular dataset, it is common to use a part of the dataset as a validation set. The
goal of the validation set is to also reach as perfect values as possible; however, this
dataset is not used during the training process. By excluding part of the dataset
in this manner, the second set of metrics is produced with the validation prefix.
In addition to the standard loss and accuracy metrics, other metrics can be used,
like the top-K categorical accuracy. This variant of the accuracy metrics tracks how
often the target value is in the top-K number of targets, rather than tracking how

Chapter 2: Background 9

well the actual target was predicted.

2.1.4 Transfer learning

Once a neural network is trained to do one task, it can often be adapted to do a
similar but different task. This process is called transfer learning[13]. In the case
of convolutional neural networks, the earlier layers in the model will often pick
up generic features in the data, with the more specific features about the output
class coming up towards the end of the model.
As the old model is fit to work on its original task, to start the process of transfer
learning, it is necessary to replace the classification head of the model that is being
adapted. The classification head is the last couple of layers of the network, which
is, at minimum, the final output layer. As the weights in the model are already
initialized with feature detection, it is necessary to freeze large sections of the
network to prevent the model from quickly losing the features in the first few
epochs. Once the model reaches the top accuracy for the new problem, the previ-
ously frozen layers can be frozen to fine-tune the model to the new task, training
with a reduced learning rate to prevent information loss in the new classifica-
tion head. An example of this process can be found on various documentations of
software supporting neural network development, like Tensorflow[14] and Mat-
lab[15].
Assuming that the old and new problem areas allow for transfer learning, the
result of transfer learning is a very high-quality neural network model that takes
only a fraction of the time to develop.

2.2 Audio processing

2.2.1 Fourier transform

As raw audio is not too useful on its own, to make use of the raw audio signal,
it is necessary to isolate various parts of the audio into separate parts. As audio
is effectively a lot of sines and cosines combined to form a complex signal, these
parts of the signal can be separated to find the frequencies that constitute part
of the raw audio. The process of extracting these frequencies is computed using
the Fourier transform. By extracting each of the signal waves that form the full
audio signal, it is possible to analyze how each change over time, identifying the
relevant signal waves while also detecting noise in the audio. The detected noisy
signal waves can be removed while preserving the vital signal waves for further
processing.

2.2.2 Mel scale

Humans hear differences in sound on a different scale than the linear scale of
the Hertz frequencies. When the sound is of low frequency, minute differences
can be easily detected, while higher frequencies need more significant frequency

10 Maciej Piatkowski: Speech classification using many Neural Networks

(a) 80 MFCCs with DCT-2 (b) 80 MFCCs with DCT-3

Figure 2.5: Two examples of 80 MFCCs generated with DCT-2 and DCT-3 on the
same 3.4-second long audio sample

differences to be found by the human ear. To more accurately represent the scale
of sound heard by the human ear, the Mel scale was introduced in 1937[16]. By
applying the Mel scale to frequency data, the frequencies of the signal can be
represented on a more linear scale from the view of a human listener.

2.2.3 Discrete cosine transform

A raw audio signal takes much space and is, therefore, essential to compress into
smaller, more relevant blocks of information. Initially developed in the 1970s[17]
for use in image compression, it has also seen much use in audio processing. Un-
like the Fourier transform that operates on both sines and cosines, the DCT op-
erates only on the cosine. The limitations imposed on the DCT to achieve good
compression of the features in raw audio create several assumptions about the
input, such as whether the function being transformed is even or odd in the data
window being processed. Because of this, a total of 16 variants of the transform
exist, of which half are DCT and the other half are the Discrete sine transforms.
Of these, the most relevant are DCT-2 and DCT-3, which is the inverse of DCT-2,
both described in the original paper[17].

2.2.4 Mel-frequency cepstrum coefficients

Mel-frequency cepstrum is a combination of the above techniques that provide
values that are far more analyzable than raw audio. The process of producing the
MFC coefficients from raw audio follows the steps defined

1. Process the raw audio signal with the Fourier transform
2. Map the frequencies found in step 1 into the Mel scale
3. Calculate the log values of each Mel frequency
4. Process the Mel log values with the Discrete cosine transform
5. Amplitudes in the spectrum produced by step 4 are the MFCCs

It is possible to use different DCTs to generate MFCC values, as presented in Fig-
ure 2.5. One of the benefits of using MFCCs is that the number of coefficients can
be scaled as desired. Should one choose to generate 20, 40, or 80 coefficients for
a given sample, the first 20 MFCCs in the 40 and 80 options will match the MFCCs

Chapter 2: Background 11

generated in the 20 coefficient option. In Figure 2.5, a total of 80 coefficents are
generated. Should only 20 MFCCs be needed, the superfluous coefficients can be
removed rather than having to generate a new dataset.

MFCC Applications

One of the recent comparisons between the various audio classification methods
has been in grouping audio clips from various entertainment sources into their
respective category. A study conducted in 2011[18] aimed to identify if a particu-
lar audio sample originated from music, news, sports, advertisement, cartoon or
movie. This study compared MFCCs to Linear Prediction coefficients and Linear
Prediction Derived Cepstrum coefficients. In the final results of the 2011 study,
MFCC has produced superior results when compared to both alternatives, addi-
tionally being more superior in helping identify short 1-2 second samples.
Previous students have also used MFCCs at NTNU on similar topics. A former stu-
dent has used MFCCs to classify audio samples of various marine vessels[19]. The
audio samples in this project were sonar data generated using a sonar simula-
tion system developed by Kongsberg Defense & Aerospace. In this project, a small
convolutional neural network using the MFCC variant of the data provided the
highest accuracy result.

2.3 Hierarchical clustering

Among the current methods of clustering data, hierarchical clustering[20] is a
relatively simple but powerful concept. Hierarchical clustering assumes that all
data is in some way related to the rest of the dataset. The clustering process starts
with assigning a score that represents the distance between each data point. Once
the relationship is known, the data is clustered based on the score in one of two
different ways. In the first method called «Agglomerative clustering,» the clusters
are generated bottom-up, where each data point is its cluster, and the cluster-
ing aims to reduce the number of clusters by bringing close data points together.
The second method, called «Divisive clustering,» starts with all data being in one
cluster, dividing the data into smaller clusters recursively until the desired cluster
number is reached. The clustering is illustrated in Figure 2.6. Agglomerative clus-
tering starts on the right and works its way to the left, while Divisive clustering
starts from the left and works its way to the right.
Each method of hierarchical clustering has its advantages and disadvantages. The
most significant problem for the Agglomerative clustering is the significant per-
formance penalty that requires processing the dataset multiple times. Some vari-
ations of the method can improve on this performance drawback to some extent.
However, in general, the performance penalty comes from the exhaustive search
and checking every possibility of improvement on the resulting clusters. Divisive
clustering solves the problem of performance penalties by starting with one big
cluster that is split recursively into smaller clusters. The most significant draw-

12 Maciej Piatkowski: Speech classification using many Neural Networks

Figure 2.6: Illustration of a data tree, arrows represent starting point for cluster-
ing process

back is the potential for more optimal clusters to be available in the sub-clusters,
as these will not be checked for potential merges by the algorithm.
One example of agglomerative clustering used in the processing of audio samples
is found in an article about a modified Dynamic Tree Warping method used in cal-
culating distance between different audio samples[21]. The authors use agglom-
erative clustering to compare their modified DTW function with the standard, and
then use two different scoring mechanisms to determine how well their function
performed. The paper uses two different scoring mechanisms and both top out
at around 15 to 20 clusters. Results provided in this paper show potential dimin-
ishing results when using more than these numbers of clusters when processing
audio.

2.4 Neural networks and data clustering

The concept of using neural networks in tree structures is not new. As NN layers
learn information in a structured manner that focuses on more generic feature de-
tection in the first layers, expanding these networks to become more hierarchical
classifiers is possible. One example of this is Tree-CNN [22], which in addition to
using multiple models in its solution, also implements incremental learning that
expands the capability of the model over time, rather than training it on the entire
dataset in one go.
The Tree-CNN paper sought to primarily resolve the problem of neural networks
becoming final after their initial training. Once the training process is complete,
the neural network cannot be generally re-purposed or modified to learn new
information, at least not without losing critical information in the model that al-

Chapter 2: Background 13

lowed it to perform well in its previous tasks. By using multiple models in a tree
structure, more general classes were created in the root node of the tree that would
classify multiple end classes as same, moving the complexity of determining the
actual correct class to a more specialized branch node.
In this particular paper, the branches were found to cluster classes in similar-
looking groups, even if the classes were not too related to each other. More im-
portantly, in the interest of this master thesis, table 6 of the paper describes the
Tree-CNN as being relatively accurate while taking only 60% of the time to con-
struct.
Another case of using data clustering in combination with CNNs is the HD-CNN
paper[23] from 2015. The researchers in this paper used hierarchical clustering
to cluster the image dataset into more coarse classes. They then used information
from those coarse classes in the later layers of the NN that were responsible for
the fine classification into specific classes. The top-k error results of HD-CNN were
competitive with the first version of Inception[8] and other models, beating them
in some metrics.

Chapter 3

Methodology

Development of the hypothesis for this master thesis and the research questions
has begun during the summer of 2019, after contemplating the results of the pro-
ject work done in the Image Processing and Analysis course. Over the following
year, various parts of the thesis scope and hypothesis have been adjusted to fit
in the allocated time, and based on work done during the thesis. In the autumn
semester of 2019, preliminary work was done to assess the feasibility of the master
thesis. Based on the results of these feasibility studies, the spring semester work
was focused on implementing the iterative re-training process and tree hierarchy
generation.
The research questions of this thesis are aimed at the final result at the end of the
development process. However, the reasoning behind the decisions taken dur-
ing development needs to be documented. The development of the code used in
this thesis was done using agile methods. After a module was developed, it was
repeatedly tested, and based on the results of these tests; the next tests were cre-
ated.
The following chapter presents the methodology of the development done in this
thesis. For each section that has experiments associated with decisions taken dur-
ing development, the intent behind the experiment is explained. As the thesis does
not seek to answer the question of how to develop iterative re-training process or
tree hierarchy generation, the experiments done during the development of this
thesis are documented in chapter 4.

3.1 Dataset

In all neural network projects, having a big dataset is critical to getting meaning-
ful results. Of course, the dataset also has to be correct for the given problem that
is being solved. For this thesis, there was no problem, in particular, that was being
solved. Unlike other networks that may need to classify specific samples into dis-
tinct classes like AlexNet and Inception, the goal for the networks created in this
thesis was to group samples into classes. The result of the thesis was dependent on
having a big enough dataset for these groupings to generalize enough. Therefore,

15

16 Maciej Piatkowski: Speech classification using many Neural Networks

the size of the dataset was the primary concern.
The original, raw dataset in this thesis was the personal media library of the stu-
dent, in particular the segment consisting of Japanese animated TV shows and
movies. As almost all of the media in this dataset contained Japanese audio with
accurately timed English subtitles, small samples of audio could be extracted with
a matching English translation tied to this sample. Due to the nature of the data-
set, the English translation may carry minor artifacts in the label that would make
it unsuitable for use in a neural network translator. In addition, longer sentences
may have their appearance order reversed due to language differences. However,
the labels provide enough information for a human operator to analyze the res-
ults of the groupings and present them in the report. In terms of the quality of the
audio, some noise is bound to exist in the background. However, the same condi-
tions apply in the real world, adding to the authenticity of the dataset. Measures
to limit the potential bad samples in the final dataset are presented in the next
subsection.
As the primary priority in selecting the dataset for this thesis was its size, the
following list details the size of the raw dataset.

• Video files: 62.508
• Storage size: 32.5 TB
• Video length: Over 1000 days of uninterrupted video

The dataset was acquired over several years, mostly through the private torrent
tracker AnimeBytes1. Content on this tracker is curated by its users, leading to a
vast library that can be relied on. Multiple versions of a particular series can exist,
of which some may be ripped from a blu-ray disc while others may be down-
loaded from web streaming services. As the dataset was manually downloaded,
each series can be expected to be of the highest quality that was available at the
time of the download. Thus, it can be moderately depended on for use as the
dataset in this thesis.
There are some legal considerations needed given the nature in which the data-
set has been acquired. The entire dataset has been acquired through the use of
torrents on public and private trackers throughout the last couple of years. For
this project, the video/audio content has been stripped to audio-only and cut into
small several second long pieces. Afterward, the audio was converted into differ-
ent formats through a lossy process meant for use in neural networks. The neural
networks produced from this dataset during this master thesis are also not planned
to be published. Given this, it is considered that the legal considerations are not
significant enough to prohibit the use of this dataset in the master thesis.

3.1.1 Processing steps

The dataset was processed in four stages to prepare the raw dataset for use in
neural networks. Each of these stages represents a step that the dataset has been

1https://animebytes.tv/

https://animebytes.tv/

Chapter 3: Methodology 17

processed in, removing potential bad samples and selecting the correct format for
the final dataset.

Stage 1

The first stage of the dataset processing was to extract the audio and subtitles from
the media library. Standardization of the formats was a central part of this process,
as the media library had a wide variety of video, audio, and subtitle formats. While
some of the dataset was relatively new and used modern formats, some of the
files had used more ancient formats that have not been used much for well over
a decade. For this step, FFmpeg was used for its compatibility with a vast number
of formats that would be able to process the dataset more or less completely.
Most of the storage used on the dataset was expected to be in audio. Therefore
compression of the audio segment was done in this stage. The push for compres-
sion was fueled in part since parts of the dataset, movie blu-ray rips in particular,
used multi-channel lossless FLAC formats for the audio track. In some cases, the
audio track alone was over 1 GB in size for little less than 2 hours of audio. To
compress the audio, the OPUS codec2 was used. OPUS was selected for its superior
quality over other codecs[24]. To ensure that data loss due to compression would
be kept to a minimum and predictable, a constant bitrate of 128 kbit/s was used.
While standardization of audio content was easily selected, differences were more
significant in the standardization of the subtitle content. Throughout the years,
many different formats have been used to attach text content to videos. In the
past, subtitles were often attached as separate files with the same name as the
video file. More recently, the Matroska container has allowed for subtitles to be
combined with video files for a smoother distribution of content. These subtitles
could be elementary lists of lines with just a timestamp and the subtitle. In the
anime community, a separate dedicated subtitle codec has been used, called Ad-
vanced SubStation Alpha[25] (ASS). Unlike the more primitive standards that
attempt to only present the text in a simple, clear manner, ASS files can contain
formatting and styling information to be rendered along with the video, provid-
ing among other features font and karaoke styling. As information about styling
could be used in the later stages to filter undesired text, ASS was selected as the
standard subtitle format.
Unfortunately, on this stage, a significant part of the dataset was written off as un-
usable. While conversion of all text-based subtitles had been successful, around
20% of the dataset used image-based subtitles like VOBSUB or HDMV-PGS, com-
mon standards used in DVDs, and Blu-ray discs. Initially, the extraction of these
subtitles failed silently due to a configuration error in FFmpeg, not specifying these
particular standards. After extraction of subtitles using these formats, a minor at-
tempt using OCR software called "Subtitle Edit"3 was conducted to convert the
subtitles to text. The results of these attempts were unsatisfactory, with too many

2https://opus-codec.org/
3https://www.nikse.dk/subtitleedit

https://opus-codec.org/
https://www.nikse.dk/subtitleedit

18 Maciej Piatkowski: Speech classification using many Neural Networks

artifacts in the few samples processed to be considered reliable for further use.
Besides, this process would take too long to process over 10 thousand files, with
one file taking more than a couple of minutes.
Ultimately, this stage produced roughly 1.6 TB of compressed audio and subtitle
files.

Stage 2

Following the standardization of the data formats, the second stage of the dataset
processing sought to cut the audio content into samples based on the timestamps
in the subtitle tracks.
To extract the small audio samples, selecting the appropriate audio and subtitle
track is necessary. While most of the dataset contained strictly one audio and one
subtitle track, some files contained multiple audio tracks, and others contained
multiple subtitle tracks. In most of these files, the Japanese language flag was used
to identify the audio stream, and the English language flag was used to identify
the subtitle stream. Some of the streams had multiple Japanese audio streams,
and a lot more had multiple English subtitle streams. In the case of the audio
streams, most of these extra streams carried extra ID flags like "Commentary" that
allowed those streams to be filtered. If the stream could not be filtered, the first
stream was selected.
Subtitle streams were a more complicated process. Some of the extra subtitle
streams could also be related to the aforementioned "Commentary" streams and
were subsequently filtered out. Other streams were dedicated sign and song streams,
often used in conjunction with files that carried both Japanese and English audio.
Many shows that have English dubbing retain their original Japanese intro and
outro songs, in addition to specific sign translation, which these extra subtitle
streams provide translations for. As filtering out this content was essential to im-
prove the quality of the final dataset, these tracks have been used to filter matching
subtitles in the bigger subtitle file from the dataset.
While extra streams were useful in identifying some of the bad samples, most
of the subtitles required more analysis of the subtitle stream itself. Following the
ASS specification, all subtitles that could be a relevant audio sample are likely
to carry the "Dialogue" style option. Unfortunately, analysis of some files showed
that, in some cases, other tags were used for the relevant lines. Because of this,
a black flag approach was used to remove irrelevant samples. Subtitle lines using
the "ED," "OP," "Sign," "Song," "Comment," and "Logo" style names were removed
from the dataset.
In addition to these bad samples, the ASS specification permits creators to put
in all sorts of visual effects in their subtitles. These visual effects are also present
in the same subtitle file and had to be removed before the dataset could be con-
sidered usable. As styling information in the ASS file uses many modifiers using
the
character, lines that included more than two of these modifiers were removed

Chapter 3: Methodology 19

from the dataset before sample extraction. Newlines were excluded from this pro-
cess as exceptions, being replaced with spaces before the check took place. Upon
analysis, some relevant subtitle lines used more than two modifiers to position the
text, but it was concluded that this sample loss would be insignificant.
All subtitle lines that passed all checks were extracted from the audio stream to a
ramdisk, and once the entire subtitle file has been processed, the resulting subtitles
and labels were zipped and saved to disk. A total of 45.732 media files had at least
one relevant audio sample for the final dataset, with the storage size being 532.4
GB.

Stage 3

Once data has been split into appropriate fragments, it was necessary to convert it
into a format that could be read by a neural network. Raw audio feeds contain a lot
of noise and redundant data that is not critical for analysis but could also cause
the neural network to reach wrong assumptions about the dataset. The dataset
has been processed with the Python library Librosa to remove irrelevant noise
and strengthen the values of significance.
Librosa supports a wide variety of different feature detection functions. To de-
termine which of these functions would be best, and with which parameters, ex-
periment 1 has been run. The purpose of this experiment was to verify that a
convolutional neural network can reach high levels of accuracy in classifying the
processed audio samples. Should it be impossible for a neural network to reach
any proper levels of accuracy for any of the data types, this stage would already
reveal problems.
Also, it served as a selection process for the third stage of the data preprocessing
stage of the thesis. Each function type in Librosa takes time to process, not to men-
tion the time it takes to read in a sample from disk. During performance meas-
urements, it would take roughly 0.5 seconds to read in an audio sample, and 1.5
seconds in total to read in and process it using all considered function combina-
tions. Conversely, it would take 0.7-0.8 seconds to read in an audio sample and
process it using only a select few functions. As each neural network also has to be
adapted to the dataset format it has to process; it was unlikely that more than one
function combination would be used. However, the time penalty of reading in an
audio sample meant that if the selected function combination were problematic,
it would take an excessive amount of time to prepare another dataset from this
stage.
Two actions have been taken to reduce the number of samples. Firstly, samples
that were registered as having an overlap with another sample were removed at
this step. Having an overlap with another sample is likely to indicate two char-
acters talking over one another, or a song playing in the background. As these
potential errors are trivial to detect and did not constitute a significant portion of
the dataset, they were reduced with minimal impact on the dataset. Secondly, the
length of the samples was constrained to between 0.7 and 6 seconds. Convolu-

20 Maciej Piatkowski: Speech classification using many Neural Networks

tional neural networks have a defined input size, meaning that a maximum input
length had to be picked. A sample longer than 6 seconds is likely to be a very long
sentence, or contain some non-dialogue content. In some cases, some samples
could span the entire length of the original file. Similarly, samples shorter than
0.7 seconds are likely to be either quickly spoken single word phrases or format-
ting options that succeeded in passing the previous checks. If these samples were
actual words, there was a risk for these samples to be mistimed, losing a signific-
ant portion of the phrase, if not all of it. While the timing error could also happen
in longer samples, as sample length goes up, the effect of a minor mistiming goes
down, and therefore this was not an issue in longer samples.
For the decision on which function combination to pick, a compromise decision
was reached based on the results of experiment 1. Both MFCC function combina-
tions have been generated, with the MFCC generated with DCT 3 being considered
for use as the primary dataset. As the MFCCs scale linearly, a total of 80 coeffi-
cients have been generated for each sample. If the number of coefficients turned
out to be too high, the extra values could simply be discarded, while if more were
needed, the entire dataset would require reprocessing.
In addition to the two MFCC combinations, all three of the Constant-Q chroma-
gram combinations have been generated as well. This decision was made based on
both satisfactory performance of these combinations, and the need to have a sec-
ondary dataset generated should the primary prove to be useless beyond the first
experiment. The size on disk for all three of these combinations was equivalent to
an MFCC combination with 84 coefficients, meaning the storage penalty for this
decision was insignificant. Spectral contrast has also been chosen as a secondary
dataset, in particular, the version using the FFT window size parameter of 4096.
This variable would also take an insignificant amount of storage and provide extra
stability in the event of failure.
Following the processing of stage 3, the dataset took over 1.5 TB in storage space,
containing around 12.6 million samples. Both MFCC combinations took 393 GB of
storage, the three chromagrams took 60, 118, and 236 GBs, and the two spectral
contrast variants took 35.2 GB. Most critically, this stage was the longest to pro-
cess, taking over two weeks of continuous processing during the Christmas break
on the primary hardware, in addition to recruiting some help from extra hardware
from relatives.

Stage 4

All of the previous stages have generated samples based on a path mimicking the
original dataset. While useful for organizing data in the preprocessing stage, this
had to be corrected in the final stage.
In addition to moving all samples into one directory, it was also necessary to nor-
malize the dataset values. Neural networks create their conclusions based on the
variation between the input variables. If these values differ too much, the network
could overfit and conclude that each sample fits its class based on some arbitrary

Chapter 3: Methodology 21

input number that just so happens to match in all samples processed at the time.
Given that at the dataset size was too big to create a normalization process over
the entire dataset, a per-sample normalization was applied.
The process of normalization was done in two steps. First, the mean and variance
of the sample were calculated. Then, Equation (3.1) was processed. To prevent a
division by zero, an epsilon variable was added to the equation with the value of
1e-12.

norm_sample = (sample−mean)/
p

variance+ epsilon (3.1)

Similar to the previous stage, generating multiple versions of this stage was relev-
ant from the safety standpoint. While the primary goal of the thesis was to process
the entire dataset, the difference in length between all samples could prove too
big to overcome. Three subsets of the dataset were generated along with the full,
ready for use dataset to enable some degree of freedom in selecting the right data-
set. These three versions carried only short, medium, and long sample lengths. As
all of the generated dataset samples carried the length of the sample in the form
of their row length, this length was used to differentiate the samples. The short
dataset carried only samples with row lengths between 30 and 100, representing
samples between 0.7 and 2.3 seconds in length. The large dataset carried samples
that did not fit in the short dataset, with row length between 100 and 260, repres-
enting samples between 2.3 and 6 seconds in length. The medium dataset carried
samples with row length between 60 and 130, double of the minimum length and
half of the maximum length, representing samples between 1.4 and 3 seconds in
length.
Of all dataset preprocessing stages, this stage was the shortest and allowed for
some leniency in potential errors appearing in the normalized versions of the res-
ults. Stage 4 has only taken 24 hours to prepare all four versions of the final data-
set. As the variables in the normalized dataset are of the same size and length,
the full dataset was of the same size and sample number. The large-only data-
set version contained 5.9 million samples, while the small-only dataset contained
6.7 million samples. The medium-length dataset contained roughly 6.8 million
samples.

3.1.2 Statistics

Overall, a significant amount of time has been spent in processing the samples
down to a usable format. Except for some Tensorflow functions in Stage 4, all of
the processing was strictly CPU-bound. As detailed in subsection 4.1.1, the CPU
used in most of the processing is a quad-core from 2015, which was very limiting
for this task. A newer CPU with more cores could likely handle this task better,
given that the task of processing the dataset scales pretty much linearly with the
number of cores that can be thrown at the problem. In Table 3.1, the time spent
on processing each stage is listed.
During the processing in Stage 2, the total number of samples present in the data-
set became known. From the 54 million subtitle lines, around 40 million were de-

22 Maciej Piatkowski: Speech classification using many Neural Networks

Stage Time taken
Stage 1 5 days
Stage 2 5 days
Stage 3 16 days
Stage 4 24 hours

Table 3.1: Time spent processing the dataset

termined to be bad and removed at that stage. Most of those 40 million samples
could be found to be between 0 and 1 second in length, clearly representing some
form of formatting option that was used on the line. Of the remaining 14.5 million
samples, roughly 700 thousand overlapped another sample to some extent, while
the rest that did not make it into the good group failed some of the lesser checks
in the code. Following the time limitation on the dataset, the final number was
brought down to the final 12.6 million. A table detailing these stats can be found
at Table 3.2.

Samples Count
All lines 54 599 719
Removed 40 087 565

Total 14 512 154
Good 13 217 123

Overlap 723 152
Final 12 625 000

Table 3.2: Number of subtitle lines over the course of processing the dataset

From the total dataset mentioned in Table 3.2, a graph showing the distribution
of the samples is listed in Figure 3.1. A small rise in the sample length can be
seen at the beginning of the figure, which can be attributed to formatting options
that evaded deletion during processing. The bulk of the dataset can be found in
the 1-2.5 second range, with the rest of the dataset slowly descending in size as
sample length increases. This graph is an expected result, as most subtitle lines
with dialogue are expected to translate the speech in the video without cluttering
the whole screen with text.
As correcting for potential errors has been crucial in the dataset preprocessing,
the overlapping samples were analyzed for their characteristics. The Figure 3.2
shows the length of these overlaps, both in time and as a percentage of the sample.
Most of the overlapping samples had overlapped another sample completely while
simultaneously being very short. Another peak can also be seen at the beginning of
the percentage graph, indicating that some samples were overlapped minimally.
Both peaks were expected to have been mostly caused by formatting and other
non-dialogue content in the subtitle files. Due to the nature of the data in the
percentage graph, one overlap causes two results to appear in the graph as sample

Chapter 3: Methodology 23

Figure 3.1: Length of the samples in the dataset

(a) Percentage of the overlap in the samples (b) Length of the overlap in the samples

Figure 3.2: Overlap statistics from the samples that had an overlap recorded

A overlaps sample B and vice versa.

3.2 Neural network

During the course of this thesis, multiple neural network structures were tested
with multiple parameters to determine the best network to use on the dataset.
As at the beginning of the thesis, the experience of the student with developing
neural networks was negligible, which made this development process useful in
both an educational and exploratory purpose. Each of the subsections mentions
the methodology used in an associated experiment.

3.2.1 Early development

Early development of the neural network model has been a very chaotic process
of learning new features of neural networks, applying them to the first experi-
ment, and seeing what would stick. During this time, the Classification of Marine
Vessels[19] thesis written by a fellow NTNU student served as a helpful guide in
using neural networks for audio processing.
The first neural network model in the thesis consisted of three dense layers, fol-
lowed by the final dense output layer. Unfortunately, this model never achieved

24 Maciej Piatkowski: Speech classification using many Neural Networks

any stable results, and rarely achieved results better than the random classifica-
tion used as the control group in section 4.2. Following repeated failures, the three
dense layers were replaced with one-dimensional convolution layers, all contain-
ing 64 filters and a filter size of 3.
Basing the network structure on the AlexNet[5] and Inception[8] papers, the early
model has also included a single classification layer towards the end of the model.
Since unlike Inception, the network data was not flattened during data processing
throughout the network, a flattening layer was included before this classification
layer.
Multiples of 1000 samples were used in the early development of the neural net-
work model, based on the number of classes used in the papers mentioned above.
As the goal of the thesis has been to group audio samples autonomously, a dense
layer representing the output layer was added to the network, with a neuron count
of 10, followed by another with a neuron count of 1000. The decision to spread
the 1000 samples across ten classes was made based on the related work[21],
excluding more than 15-20 classes from being used. The ten classes were picked
to make the division into classes more simple.

3.2.2 Extra layer

As the early model was only designed to handle 1000 samples, and it did not carry
any capacity to grow to learn more, a modification was done to the final output
layer of the network. Instead of 1000 neurons, the network was expanded to carry
1010 neurons, with the final ten being manually modified to transfer the results
from the softmax layer directly to the final output layer.
An illustration of this can be seen in Figure 3.3.
By manually modifying the weights to translate the results of the network to the
last layer, parts of the dataset that have been classified already can be used by as-
signing them to the last ten classes. The manual weights in the layer prevent any
significant modification from being done by the training optimizer to the classific-
ations of these last neurons while leaving the first 1000 free to be changed. The
only values that the optimizer can use to classify the new dataset are the values
provided by the softmax layer, meaning that the samples have to be assigned by
the optimizer to be one of these ten classes. As the new dataset is trained on with
the old dataset, the weights cannot be adjusted to the point of overfitting by the
new dataset. However, some adjustment is desired, as these adjustments can be
picked up on by the iterative re-training process to improve the neural network
as a whole.
An experiment detailed in Section 4.3 was conducted to verify this layer in practice

3.2.3 Final model

Following the development of the extra layer, the final neural network model for
this thesis was developed. Since the earlier model was built very quickly to make

Chapter 3: Methodology 25

Figure 3.3: Example of the 1010 neuron layer

26 Maciej Piatkowski: Speech classification using many Neural Networks

decisions about parts that were needed to develop the final model, with those
parts in place, the final model could be put together.
Operational variables were identified in the various components used in a convo-
lutional neural network to develop the neural network model that would be suited
for the task it would work on, As running all of the possible variable combinations
would take forever, determining the correct number of convolutional layers was
deemed the top priority. The full details on the process of selecting the optimal
network configuration are listed in Section 4.4.

Stabilizing the result

In the beginning, it was intended that the neural network would do its classific-
ation from the very first iteration, generating the initial clusters by itself. While
it was determined that the network is capable of doing this in Section 4.2 and
Section 4.3, the results were not stable and predictable. Each run on the same
data would return a different cluster, meaning that comparing two different con-
figurations of neural networks would be mostly meaningless. The first cluster has
been from this point onward generated using the Scikit-learn Agglomerative clus-
tering function to bring stability to the network, and to make the results more
predictable.

3.3 Loss function

The loss function modifications have been a central part of the development part
of the thesis. As the custom layer has proven in Section 4.3 that a custom part can
significantly improve the performance of the training process, the same has been
assumed for the loss function modifications.

3.3.1 Primary filter

The filter in the loss function targets the results of the network after a top-K func-
tion has sorted them. To prevent the filter from damaging the result of the current
class, that class is excluded from the filter. As the results are sorted highest to
lowest, the filter adds an extra penalty to the result by multiplying the result with
itself. In the case of the highest values, the penalty is inverted, as the cost of errors
is significantly reduced. The goal of the filter was to incentivize the network to
cluster samples more equally by penalizing massive clusters and rewarding the
smaller ones.
Figure 3.4 and Figure 3.5 show the filters used in the thesis, following the results
of Section 4.5. Filter 0 (Figure 3.4a) is a simple forgiveness filter that removes the
penalty of the first 200 samples. Filter 1 (Figure 3.4b) is a similar filter, except the
final 200 samples are penalized doubly. Filter 2 (Figure 3.5a) is the first gradual
increase filter, where the filter gradually progresses towards a defined point at a
constant rate, and then changes the rate once somewhere in the middle of the

Chapter 3: Methodology 27

(a) Loss function filter 0 (b) Loss function filter 1

Figure 3.4: Loss function filters 0 and 1

(a) Loss function filter 2 (b) Loss function filter 3

Figure 3.5: Loss function filters 2 and 3

filter. Filter 3 (Figure 3.5b) is based on a similar concept as filter 2; however, it
also has a shelf similar to filter 1 in the middle of it.
The first two filters are meant to investigate the steep increase in penalties and
rewards, while the last two filters are meant to investigate the gradual increase in
penalties and rewards.

3.3.2 Second filter

In addition to the primary filter, another filter has been added to the loss function.
As the last ten neurons are not the normal sample neurons, these need to be
treated differently. The most substantial value among these ten neurons has its
loss function cost removed, to guide the network to group samples according to
these groups. A sub-experiment in Section 4.5.1 has aimed to add an extra cost
to the remaining nine neurons that would follow after the first. However, the
experiment has yielded inconclusive towards negative results as to the usefulness
of this second filter increase. Thus, the second filter only removes the first of the
ten final neurons from the loss function cost.

28 Maciej Piatkowski: Speech classification using many Neural Networks

3.4 Iterative re-training

Iterative re-training has been considered critical to the thesis due to the sheer size
of the dataset. While the dataset could be reduced to fit more efficiently during the
training process, it would ultimately be a tiny percentage of what was available.
A good part of the value in the research done in this thesis is the large dataset
involved, and therefore it was critical to at least attempt this.
Given the objective of the thesis, iterative re-training was considered to be the
right choice regardless of the dataset size. While one can always achieve a better
cluster distribution if one throws more data at the algorithm, odds are the cluster
generated with only a couple thousand samples will be relatively close, at a frac-
tion of the computational cost. Additionally, the data that does not fit well into any
of the existing clusters is likely to have the most significant effect on the network,
meaning that these are the samples that carry the most substantial significance.
The goal of the iterative re-training process was to start with a minimal dataset and
work through the dataset, accumulating new knowledge as more data is parsed.
As more data is processed, more samples appear out of the norm and are absorbed
into the training dataset. Over time, the new samples would give insight into better
clustering adjustments that would prevent some of the samples that were yet to
be processed, to be inserted into the dataset.
A parameter has to be picked that will determine if a sample is important enough
to be considered for use in the dataset, or if it should be ignored to start the
process of iterative re-training, In the thesis report, this parameter is referred to
as the "Iteration threshold." If the iteration threshold is set to 0.8, for example,
any sample that is classified higher than the threshold will be ignored for use in
the dataset, while samples classing lower will be added to the dataset.
Following the decision on the iteration threshold parameter, the process of iterat-
ive re-training follows these steps:

1. Train the first network using a pre-determined method
2. Classify samples until the minimum amount of valid samples are detected
3. Re-classify the samples using the selected process

a. Samples can also not be re-classified. Instead one can use the results
of the first classification

4. Train the network using the bigger dataset
5. Return to step 2 until the entire dataset is processed

The experiment detailing the practical parts of the iterative re-training can be
found in Section 4.6.

3.5 Tree generation

Similar to iterative re-training, the tree generation experiment has been central
to the thesis. By using the iterative re-training in a tree hierarchy, the goal is to

Chapter 3: Methodology 29

eventually track down a particular audio sample in the dataset. For the purposes
of this thesis however, the precision of the classification is reduced somewhat.
Based on the results of Section 4.6, the iterative re-training process is intended to
be used to train each node in a tree containing neural networks. The objective is to
group samples that are similar to each other together in a computationally cheap
manner. Once the tree would grow big enough, each node could receive a much
bigger neural network to solve its part of the entire problem. The current altern-
ative is to use the same bigger network to solve the entire problem, which quickly
fails to achieve satisfactory results due to the problem becoming too complex. A
small library of 2000 words is far easier to remember than a library with hundreds
of thousands of words, in addition to all possible forms and permutations of each
word.
The practical aspects of creating the trees in this thesis are specified in Section 4.7.

Chapter 4

Experiments

During the work on this thesis, various experiments have been conducted to find
the correct parameters to use in subsequent development. The following section
provides details on the experiments done during this thesis to explain how the
final results in the thesis have been achieved.

4.1 Tools used in the thesis

The following section lists the hardware and software used during the experiments
in this master thesis. It also lists tool-specific findings that are not relevant to
mention in the other sections.

4.1.1 Hardware

A table with the primary hardware used in this thesis can be found in Table 4.1.

Part type Name Main speed Total memory size
GPU RTX 2080 Ti 1.65 Ghz 11 GB GDDR5
CPU Intel i7 4790k 4.00 GHz 32 GB DDR3

Motherboard Z97X-UD5H-BK
SSD 2x Samsung 860 EVO 540 MB/s 2TB
HDD 5x 12TB + 1x 10 TB 160 MB/s 70 TB

Off. HDD 5x 4 TB 100 MB/s 20 TB

Table 4.1: Hardware specs

In addition to the primary hardware, in several steps, processing was accelerated
using other available PCs. While helpful, the presented hardware has proven itself
to be much faster than this alternative hardware, as noted in experiment 1 (data
processing) and experiment x (iterative train root node).
The primary workhorse of the thesis is the GPU, the RTX 2080 Ti[26]. When the
GPU is under minor load, the default clock is lower than advertised, at 1350 MHz.

31

32 Maciej Piatkowski: Speech classification using many Neural Networks

The lower clock is due to the adaptive overclock features of the GPU. Since the
neural network processing does not utilize all GPU functions, and smaller models
do not use the GPU to their fullest, the operating system lowers the clock speed
to reduce heat. To circumvent this and use the hardware to its fullest extent, one
can start multiple Python consoles and train multiple neural networks in parallel.
In the case of the RTX 2080 Ti, up to 5 simultaneous threads have been used
stably, with some limitations. During full utilization of the GPU, clock speeds above
1920 MHz have been recorded, while maintaining temperatures below 60 degrees
celsius. As at that point, resource utilization is at its fullest; network training time
is increased for each individual thread. However, the total processing time is still
reduced as hardware is utilized more overall.
One problem that has arisen during development was the lacking capabilities of
other hardware when compared to the GPU. The RTX 2080 Ti was purchased in
late 2019 for the thesis, while the CPU and RAM were purchased in early 2015.
Running multiple Python consoles includes having the cache for each console in
RAM. Python is not a memory-optimized scripting language, and uses much space
for each variable in memory[27]. While the amount of RAM available on the hard-
ware is above the standard of desktops built even today, maxing the capacity of
the motherboard, some experiments have still been limited in running more sim-
ultaneous processes due to RAM shortage. Also, the limitation of the quad-core
nature of the CPU has been a limiting factor in the more CPU intensive tasks in the
thesis, most notably experiment 1.Tasks that only run on the CPU like data pre-
paration and even python consoles themselves during neural network processing
need a minimum amount of CPU resources to function properly. Even if the RAM
issue was resolved, the limited number of CPUs would block more than 5 python
consoles running simultaneously.
In terms of findings on storage and caching, when using Pythons pickle library,
storing the dataset on an SSD will improve read times by an estimated 35% over
using HDDs. According to a speed test done on the hardware, the read-time of
an SSD is around 540 MB/s, while the read-time of the tested HDD is around
160 MB/s. Therefore, the benefits of moving the dataset to a faster medium is
entirely dependent on the size of the dataset, and frequency of changes to the
dataset. In the case of this thesis, experiment x (root node) used the SSD as a
cache for the dataset.In contrast, experiment y (trees) used almost all available
HDDs for the dataset cache, excluding the external drive.Given the nature of the
last experiment, each experiment variation would need a full copy of the dataset.
Also, these copies of the dataset would be repeatedly created and deleted, adding
to the wear of the drive. Each experiment variation was given a dedicated drive
to alleviate the potential performance loss due to drive seeking present on HDDs,
with the results also being printed to a dedicated drive. As mentioned, the external
drive was not used as a dedicated drive, due to lower performance compared to
the internal drives operating over SATA-3.
It is also important to mention the massive data storage pool of the hardware.
Thanks to the available storage, each step of the dataset generation could be stored

Chapter 4: Experiments 33

for safe-keeping. Large amounts of free storage also enabled various storage-
expensive methods of caching, as mentioned above. Also, multiple older HDDs
have been used as backups and portable storage for the dataset.

4.1.2 Software

The development platform used during this thesis has primarily been Python on a
Windows 7 computer. Table 4.2 details the different versions of the software used
for development in the thesis.

Name Version
Anaconda 2019.10

Python 3.7
TensorFlow 2.0, 2.1
TensorBoard 2.0, 2.1

Librosa 0.7.2
Scikit-learn 0.22.2

Spyder 3.3.6, 4.1.2
PowerShell 5.1

FFmpeg 4.2

Table 4.2: Software versions

Python environment

A Python environment requires a package manager to use it to the fullest extent.
Visual Studio that the student has already had installed on the computer also in-
cluded a full Python environment with Anaconda1. While the included version
has proven itself to be unreliable and required multiple re-installations, certain
features have proven themselves to be necessary throughout this thesis. The most
crucial feature that prioritized Anaconda over picking pip was the ability to create
separate virtual environments with different versions of packages installed simul-
taneously. Individual packages often require specific versions of dependencies that
may not be available anymore, in which case an outdated version of the package
may be installed without notice to the user.
One case of the separate environments being critical for this thesis was the Lib-
rosa2 library. Librosa is a python package for music and audio analysis, which this
thesis used to process the dataset with the various feature extraction methods that
Librosa supports. Deep in the dependency chain for Librosa, a dependency con-
flict arose that forced Anaconda to install version 0.6.3 of Librosa, while the latest
current version is 0.7.2. As the feature extraction methods are based on scientific
algorithms and thus should not change between versions, each new version of

1https://www.anaconda.com/
2https://librosa.github.io/librosa/index.html

https://www.anaconda.com/
https://librosa.github.io/librosa/index.html

34 Maciej Piatkowski: Speech classification using many Neural Networks

a package can include more methods that the user expects to have available. A
separate environment dedicated exclusively for Librosa had to be developed to
handle this dependency conflict to resolve the matter in the thesis.
The Tensorflow3 package was selected for the development of the thesis to cre-
ate and train neural networks. As Google develops TensorFlow, one of the leading
firms in Artificial Intelligence research that also employs researchers that pub-
lished the Inception paper[8], it was picked as the superior choice. Shortly be-
fore the thesis project started the development of neural networks, version 2.0
of Tensorflow was released. This thesis used version 2.0 at the beginning of the
thesis, updating to version 2.1 in the middle of the thesis. Version 2.2 was released
in the final month of the thesis. While certain features that were released in this
version would be exciting to use during development, it was not used to maintain
the stability of the thesis results.
As noted in the hardware section, multiple Python consoles have been used to
train multiple neural networks simultaneously. To achieve this, Tensorflow needs
to be configured only to use a limited amount of memory on the GPU. Under regu-
lar operation, Tensorflow will attempt to use all available memory for itself, which
will lead to potential system instability and hanging even if only one network is
trained at a time. Because of the recent update from 1.x versions of Tensorflow, a
compatibility layer needs to be used in current versions of Tensorflow as the equi-
valent functionality has not been found in versions 2.0 and higher. The memory
fraction parameter has to be changed to the desired level to adjust the maximum
memory used by Tensorflow, code for which is provided in the code listing below.
It is important to note that the memory fraction does not represent the actual
memory fraction used by Python, and is a significant percentage higher than the
parameter set in the code. A tool provided by Nvidia called Nvidia SMI had been
used to monitor resource utilization during the development of the minimal para-
meters that could provide a stable and fast environment.

Code listing 4.1: Code to reduce memory usage of Tensorflow in a single console,
valid for Tensorflow 2.1

#Tensorflow config to prevent lag
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.per_process_gpu_memory_fraction=0.10
session = tf.compat.v1.Session(config=config)

The Tensorboard4 package was used to process the results of the various experi-
ments detailed in the later sections of this chapter. Tensorboard is a visualization
toolkit developed for Tensorflow. The primary feature used in the toolkit was the
ability to record, view, and sort individual neural network tests. As Tensorboard
integrates easily in Tensorflow, this allowed for agile development of the test code,
where tests were rapidly coded, run, and analyzed. However, given the sheer
amount of tests run during this thesis, the thesis has stumbled across a critical

3https://www.tensorflow.org/
4https://www.tensorflow.org/tensorboard

https://www.tensorflow.org/
https://www.tensorflow.org/tensorboard

Chapter 4: Experiments 35

performance bug. Tensorboard attempts to record the state of the neural network
as it is trained, and recreate a visual graph for the training process. While this
may be a useful feature for other projects, it was not relevant for this thesis, while
simultaneously causing some experiments to max out the RAM on the computer.
The features that cause this bug to manifest can be disabled by using Anacondas’
capacity to create custom environments, creating an environment exclusively for
Tensorboard. Other packages can also be installed in this environment; however,
Tensorflow has to be explicitly excluded from this environment. Doing so causes
Tensorboard to enter a restricted feature mode, which allows for much larger tests
to be viewed with minimal lag.
In addition to the above packages, several other packages have been used ex-
tensively in the project. To create the hierarchical clusters for the first clusters,
scikit-learn5 has been used. Scikit-learn provides a lot of various functions that
are useful in neural network development. For the IDE, Anaconda comes pre-
installed with Spyder6, which was used for the development of the thesis. Lastly,
the pickle package in Python was used to save results to disk, along with handling
cache logic.

Other

In addition to using Python during most of the development, Powershell was used
in the early stages of dataset preparation. Powershell was chosen for these first
tasks due to earlier experience in using Powershell to maintain the media library
used as the dataset in the thesis. As Powershell would be satisfactory in the first
tasks, it was chosen to be used over Python due to students lacking experience
in using Python at the time. Since the data extraction script was intended to be
run only once, writing the scripts quickly and starting to develop Python code
was preferable, especially given the expected time to process the dataset. The
Powershell version used in the thesis was 5.1.
The media converter FFmpeg7 was used to facilitate the processing of the data-
set into a standardized form. FFmpeg supports a wide variety of video, audio,
and subtitle formats. The ability to process any input was critical when various
video files in the dataset had an unknown number of codecs used to encode them.
Some of the more recent media may use more modern formats, while older media
may use some more obscure format that other tools could fail to process. As each
sample in the final dataset needed to carry only the particular subtitle fragment,
the ability to specify file length options with a command line was also necessary
for the selection of the conversion tool. Since losing samples due to shortcomings
in the selected tool would be undesirable, FFmpeg fit the requirements the most.
The FFmpeg version used in the thesis was 4.2.

5https://scikit-learn.org/stable/index.html
6https://www.spyder-ide.org/
7https://ffmpeg.org/

https://scikit-learn.org/stable/index.html
https://www.spyder-ide.org/
https://ffmpeg.org/

36 Maciej Piatkowski: Speech classification using many Neural Networks

4.2 Dataset selection

The goal of this experiment was to investigate if neural networks could produce
any relevant results for the thesis and determine which of the function combina-
tions would be best suited to proceed with.

4.2.1 Experiment setup

The first experiment revolved around a minimalist neural network to select the
appropriate function combination to use in Librosa to generate the dataset for
the rest of the thesis. A table detailing each layer in the network can be seen in
Table 4.3.
Three one-dimensional convolution layers start the network, followed with a stand-
ard max pool layer. An operational flattening layer is added to make the layers fit
into the dense layers. One dense layer is added before the final two layers, to serve
as an abstraction of the input data. Then, a dense layer with the softmax activa-
tion function is added to the network. The softmax layer serves as the classification
layer, forcing the network to pick one of the neurons to classify the sample into.
An extra dense layer is added with the sigmoid activation function to represent
the dataset This layer represents the dataset used in this experiment, and each
sample maps to their neuron in this layer.

Layer type Parameters Activation
Conv1d 64 filters, size 3 ReLU
Conv1d 64 filters, size 3 ReLU
Conv1d 64 filters, size 3 ReLU

Max pool Size 2 ReLU
Flatten
Dense 250 ReLU
Dense 10 Softmax
Dense 1000 Sigmoid

Table 4.3: Early neural network model

The process of getting the results can be summarized as follows:

• Train a fresh network on the entire dataset.
• Remove the last layer
• Run a prediction on the dataset
• Generate a new instance of the network, minus the last layer
• Train the network on the dataset using a 70% train and 30% validation split

By creating a new network and training the network based on the results of the
first, the goal was to determine if the network was able to find any features to
group samples autonomously. To control for potential overfit errors, in addition
to the standard validation loss and accuracy values, the number of classes and the

Chapter 4: Experiments 37

size of the largest class was tracked. Therefore, the best result would be the func-
tion combination that achieved the best performance in all three combinations.

Dataset

Using the entire dataset for this experiment was not yet possible, both because
it did not exist in the correct form yet, and that the neural network was built to
handle only one thousand networks, to begin with. For this experiment, a selection
of around 38 thousand samples were processed in all function combinations.
The function combinations could consist of the following options:

• FFT window size: 1024, 2048, 4096
• n_chroma: 12, 24, 48
• DCT: 2, 3
• Power: 1, 2, 3
• Order: 0, 1, 2
• Center: True, False

The functions that were considered and the parameters that were tried with them
are presented in Table 4.4. In total, 67 possible combinations were tried.

Function type Parameter type
chroma_stft FFT, n_chroma
chroma_cqt n_chroma

chroma_cens n_chroma
melspectrogram FFT, Power

mfcc DCT
rms FFT

spectral_centroid FFT, Center
spectral_bandwidth FFT

spectral_contrast FFT, Center
spectral_flatness FFT, Power
spectral_rolloff FFT
poly_features FFT, Order

tonnetz
zero_crossing_rate

Table 4.4: Librosa functions that were tested

Control group

A control test was run to verify that the network achieved a useful result. The
control test consisted of training the neural network model on a randomly gener-
ated group of classes. Should the experiment be successful, then the results of the
tested networks will easily surpass the control group. In addition, if the control

38 Maciej Piatkowski: Speech classification using many Neural Networks

group scored a high level of accuracy, different problems with the neural network
itself could be highlighted.

4.2.2 Experiment results

The results that were used for further work in the thesis are listed in Table 4.5.
While some of the results completely removed some functions entirely, others
presented very good results. As expected, the control group achieved accuracy
rates within the proximity of 10%, which given the ten output classes, means that
the network failed to find anything in the control group.
In the experiment, however, the results were much better. Mel-frequency cepstrum
coefficients with the Discrete Cosine Transform set to three provided the best res-
ults of all. While the Constant-Q chromagram has marginally better results in the
loss and accuracy, its highest class count is significantly higher. The higher largest
size of the 12 chroma test is caught up by the other two combinations, indicating
the potential for improvement. Spectral contrast has also shown some promising
results. However, the loss accuracy values are considered to be too perfect on the
false parameter test, indicating potential pitfalls in using it as the primary dataset.

Function type Param type Loss/Acc Class count and largest size
Control group - - / 9-12% -

MFCC DCT 2 0.6 / 0.86 10 - 203
MFCC DCT 3 0.17 / 0.94 8 - 181

chroma_cqt 12 0.16 / 0.95 8 - 220
chroma_cqt 24 0.59 / 0.88 10 - 203
chroma_cqt 48 0.52 / 0.91 10 - 187

spectral_contrast 4096, False 0.01, 0.99 8 - 225
spectral_contrast 4096, True 0.64, 0.88 9 - 204

Table 4.5: Experiment 1 results

Ultimately, these three different function types have been determined to be the
best options to use for the rest of the thesis. Of these, MFCC with DCT 3 was
the only one used, as no issues with the dataset have arisen that would require a
dataset change.

4.3 Extra layer experiment

As detailed in the technical walk-through of the extra layer modifications in Sec-
tion 3.2.2, this experiment sought to put this layer to the test. The experiment was
done using the neural network from the previous experiment. Thus, the dataset
was also re-used, albeit with the learnings from that experiment.

Chapter 4: Experiments 39

4.3.1 Experiment setup

First, a custom dense layer was developed using the Tensorflow class interface.
An initial group of 1000 weights was generated using standard functions. Then, a
one-hot matrix was applied as the source for the final ten weights. The modified
neural network model can be seen in Table 4.6. The first five layers have been
frozen in this experiment to ensure that the model does not overfit heavily in this
experiment.

Layer type Parameters Activation
Conv1d 64 filters, size 3 ReLU
Conv1d 64 filters, size 3 ReLU
Conv1d 64 filters, size 3 ReLU

Max pool Size 2 ReLU
Flatten
Dense 250 ReLU
Dense 10 Softmax

Dense (custom) 1010 Sigmoid

Table 4.6: Modified early neural network model

As an additional test to look for improvements in the experiment result, two new
operations have been developed for the training process in this experiment.
The first operation sought to attempt to reduce the size of the largest class by run-
ning an iteration of the training process on the most abundant class. One thousand
samples were picked at random to lose their initial classification and be reclassi-
fied. The "max" step has been programmed to happen every five iterations.
The second operation sought to increase the performance of the lowest-performing
classifications in the dataset. The lowest-scoring 1000 samples would be reclassi-
fied again, with the aim to improve the certainty of the network. The "uncertain"
step has been attempted every third iteration.

Control group

A standard dense layer with 1010 neurons has been used as the control group
in this experiment. Should the custom layer completely fail at its task, or be a
completely meaningless endeavor, using a standard dense layer would serve as a
comparison.

4.3.2 Experiment results

The experiment results have clearly shown that the custom layer is a superior
option in the training of neural networks. Figure 4.1, Figure 4.2 and Figure 4.3
show that the custom layer maintains a steady growth with the dataset, while also
maintaining accuracy. Meanwhile, the standard layer quickly loses in the largest

40 Maciej Piatkowski: Speech classification using many Neural Networks

(a) Highest class (b) Validation accuracy

Figure 4.1: Largest class and validation accuracy as number of samples increase

(a) Custom layer largest class (b) Custom layer val accuracy

Figure 4.2: Custom layer performance with the extra operations

class metric and loses badly in the accuracy test. While some promise can be seen
on Figure 4.3b, where using both additional operators has reached the same levels
as the custom layer, the fact that the "max" option scored as low as it did indicates
that this would likely not last for much longer.
Therefore, this experiment verified that the custom layer is an excellent addition
to the neural network.

4.4 Neural network refinement experiments

During the refinement of the neural network model, the following workflow was
adopted:

• Determine the correct number of convolutional layers
• Test correct parameters to use in the conv layers
• Test the correct number of pooling layers, and their type
• Test the correct number of neurons in the first dense layer

Chapter 4: Experiments 41

(a) Normal layer largest class (b) Normal layer val accuracy

Figure 4.3: Normal layer performance with the extra operations

The last three steps were repeated in combination or by themselves depending
on the number of parameters tested. Each of the tests generated thousands of
results, of which most did not fall too far away from the best performing model.
Therefore, the feeling of urgency and strictness with the neural network model
was not present during development. Instead, this experiment aimed at being
thorough in its trials, to make sure the experiment would not need to be repeated.
After many different combinations of neural network structures have been attemp-
ted, the structure of the model was finalized. The final network structure can be
seen in Table 4.7.

Layer type Parameters Activation
Conv1d 128 filters, size 2 ReLU

Max pool Size 2 ReLU
Conv1d 64 filters, size 3 ReLU

Average pool Size 2 ReLU
Conv1d 64 filters, size 4 ReLU

Max pool Size 2 ReLU
Conv1d 16 filters, size 4 ReLU

Average pool Size 2 ReLU
Flatten
Dense 200 ReLU
Dense 10 Softmax

Dense (custom) 1010 Sigmoid

Table 4.7: Modified early neural network model

42 Maciej Piatkowski: Speech classification using many Neural Networks

4.5 Loss function experiments

A similar process has been adapted to what has been used in Section 4.4 to invest-
igate the correct parameters to use to determine the loss function filter boundaries,
The parameters that were picked centered around the final output layer neurons
divided by the number of classes that the samples could be allocated to. Thus,
the clusters that would be below average would be rewarded, while the massive
clusters would be penalized.
In addition to these parameters, two other components were tested in this exper-
iment. The first component was the use of differently sized initial clusters gener-
ated by Scikit, to have a more generalized cluster in the beginning. The second
component aimed to freeze most of the layers of the network used in the loss
function processing, to prevent the result from overfitting. In the beginning, the
model would only have its fresh final layer to train for a couple of epochs, until
which point the softmax layer would also be opened for training, albeit at a re-
duced learning rate. The goal of this layer freezing was to reduce the instability
of the loss function processing, by making sure that the significant shifts in the
clusters would need to be justified, rather than caused by a configuration error.

4.5.1 Secondary filter

During the early experimentation, the secondary filter described in Section 3.3.2
has been tested with the rest of the parameters. While the difference between the
combinations not using the filter was negligible, it was on the negative side of the
results. As the secondary filter never added much to the results, only the removal
of the first of the last neurons was kept.

4.5.2 Correct cluster count reevaluation

Following the first proper loss function experiment, it was revealed that all com-
binations of parameters have descended into three clusters. After an investigation,
it was discovered that the other clusters generated by Scikit were unlikely to ever
generalize with the rest of the dataset, and thus would only pollute the results.
The loss function experiment has been rerun with only three clusters to correct
for this error,
The code for the layers and the network was not adjusted to fit this discovery, as
most of this code would remain dormant with no samples ever touching the extra
nodes. As the network was optimized with ten clusters in mind, one more optim-
ization pass was run on the network to be sure that the model would be good.
Additionally, the parameters of the loss function experiment have been adjusted
to fit the new three cluster output.

Chapter 4: Experiments 43

4.5.3 Experiment results

After the second loss function experiment has concluded, the following results
were generated:

• Filter 0: First parameter 200
• Filter 1: First parameter 200, second parameter 800
• Filter 2: First parameter 400
• Filter 3: First parameter 400, second parameter 850
• Best iteration cluster size: 2000 (2x1000)
• First epoch limit: 5
• Second epoch limit: 10 (total of 15)

4.6 Iterative re-training experiment

4.6.1 Parameters used

The parameters used in the experiment are as follows:

• Function option, -2, -1, 0, 1, 2, 3
• Iteration threshold: 0.5, 0.6, 0.7, 0.8, 0.9

The iteration threshold defines the limit of how low certainty a sample needs to
have to become a part of the dataset.
The function options 0 to 3 refer to the results of the experiment in Section 4.5,
and the Figure 3.4 and Figure 3.5 filters used in the custom loss function. The
option -1 is created to verify that the loss function filters are of any use. Option -1
is defined not to have a custom loss function; instead, it uses the standard sparse
categorical cross-entropy. As the process of the re-classification also needs to be
investigated, option -2 is created. Option -2 uses the classifications found during
the search for the bad samples as the actual classes to use in the classification.
Should the entire loss function process be compromised, while there is still some
value to the iterative re-training itself, this option is expected to have the best
results.

4.6.2 Experiment process

Most of the logical process behind the experiment can be found in Section 3.4.
Among the practical decisions made during the experiment, was the resetting of
the final classification layer and layer freezing during the model re-train, after the
new classifications were acquired. The process is similar to the one used in the
loss function processing defined in Section 4.5; however, this process has three
steps. As the final classification layer carries the most dataset-specific conclusions
about the previous iteration, this layer was removed and replaced with a fresh
layer. The final layer was then processed for a maximum of 20 epochs, with the
remainder of the model frozen. Following this training process, the second last
layer is unfrozen, and the model is set to resume training with a reduced learning

44 Maciej Piatkowski: Speech classification using many Neural Networks

rate for another 20 epochs. Once the training freezes again, all but the first four
of the network layers are unfrozen, and the training continues for another five
epochs. An early stopping mechanism is used to prevent the model from needlessly
churning the iterations, which stops the training process if the accuracy has not
improved beyond 5% in the last ten epochs. Should this happen, the remaining
epochs are transferred to the next training step to utilize.

4.6.3 Experiment results

The bulk of the results for this experiment can be found in Section 5.1. One vari-
able parameter, however, had to be eliminated for the following tree experiment.
Based on the initial results of this experiment, it was discovered that in almost
all cases, iteration threshold 0.6 and 0.7 fail to achieve functional three clusters.
Because of the detected failure in those clusters, the generation of those neural
networks was frozen at iteration 25. As more and more observations were made
on the results, it was determined that an iteration threshold of 0.8 would be used
in the future experiment.

4.7 Tree generation experiment

4.7.1 Parameters used

The parameters used in this experiment are:

• Function option, -3, -2, -1, 0, 1, 2, 3
• Cache threshold: 0.5, (0.2, 0.3, and 0.4 with -3 only)

The function options are mostly the same parameters as used in Section 4.6.1.
There is one new parameter called -3, which does not use any iterative re-training
for the tree generation process.
The cache threshold option mimics the iterative threshold option, in that it de-
termines if a sample is used for a purpose or not. With this parameter, a classific-
ation value higher than the threshold is necessary for the sample to be inserted
into the next branch layer in the tree. The standard cache threshold value across
most of the function options is 0.5. As the tree generation is expected to last a
while, option -3 has been used to generate other tree combinations that there was
not enough time for the other function options. Option -3 therefore uses cache
thresholds 0.2, 0.3, and 0.4 in addition to 0.5.
Following the data from the previous experiment, an iteration threshold of 0.8 is
used across the entire experiment.

4.7.2 Experiment process

At the start of the experiment, the networks generated in the previous experiment
have been reused for this experiment. As the results would have been the same,
it served to cut down the time to start significantly. A cache from the root node

Chapter 4: Experiments 45

has been generated for each of the three clusters that would receive their own
networks.
The process can be summarized as follows:

1. Check if the node has at least 20’000 samples, delete node cache if not
2. Create the initial cluster using Scikit - AgglomerativeClustering
3. Train the first network iteration
4. Use iterative training (except -3) to create a new neural network
5. Create cache for the next branch layer
6. Repeat until no more cache folders to process

In addition to creating the cache for the next branch layer, should a node cluster
so severely that it put all of its samples into the same cluster, that cluster is re-
moved. These steps have utilized all available hard disk drives as caches for the
tree generation, as each of the options had to have its copy of the dataset, in the
case of the control options, even more than one copy.

4.7.3 Experiment results

All of the results for this experiment can be found in Section 5.2.

Chapter 5

Results

Results produced in this thesis stem from the final two experiments. First, from
the iterative re-training of the neural network, then from using the iterative re-
training to create a classification tree. As the experiments did varying amounts of
repeating steps that can magnify potential errors in the final results, the results
are presented in a broad view.

5.1 Iterative re-training results

This section goes through the entire result dataset for Section 4.6, in various
forms. The parameters used in the various examples are:

• Function option, -2, -1, 0, 1, 2, 3
• Iteration threshold: 0.5, 0.6, 0.7, 0.8, 0.9

An explanation of these values is listed in Section 4.6.1. The results are based on
parsing the entire dataset with the neural network created on each iteration of
the re-training process. As the results can be broken up into three general types,
the resulting graphs are broken up into different groups where appropriate.

5.1.1 Size of clusters over the iterations

Figure 5.1, Figure 5.2, and Figure 5.3 detail the size of the result clusters as the
number of iterations increases.
As the size of the clusters is the most straightforward value to track across the
iterations, it is listed first. Partial cluster size results were used to make the decision
on which iteration threshold to pick for Section 4.7.

5.1.2 Value of the highest classifications over the iterations

The value of the highest classification is also a vital characteristic to track across
the iterations. Should the cluster size vary wildly with the highest classification
value remaining the same, it could indicate a heavy overfit in the network and

47

48 Maciej Piatkowski: Speech classification using many Neural Networks

Figure 5.1: Largest cluster over the iterations, with 0.8 iteration threshold

(a) 0.5 iteration threshold (b) 0.6 iteration threshold

Figure 5.2: Largest cluster over the iterations, with 0.5 and 0.6 iteration threshold

(a) 0.7 iteration threshold (b) 0.9 iteration threshold

Figure 5.3: Largest cluster over the iterations, with 0.7 and 0.9 iteration threshold

Chapter 5: Results 49

Figure 5.4: Samples below iteration threshold, with parameter set to 0.8.

(a) 0.5 iteration threshold (b) 0.6 iteration threshold

Figure 5.5: Samples below iteration threshold, with parameter set to 0.5 and 0.6

flimsy reasoning for the cluster separation. Besides, the goal of the iterative re-
training is to reduce the uncertainty of the classification, which can be tracked by
following the highest classification values for the given samples.
Following the iteration threshold parameter, the most critical change in the highest
classification happens when the iteration threshold is reached. Figure 5.4, Fig-
ure 5.5, and Figure 5.6 present the number of samples that are below the iteration
threshold over the course of the iterative re-training.

5.1.3 Variation between first iteration and the following iterations

The goal of the re-training process is to train the network more, faster than just
using the entire dataset and a big data center worth of hardware. However, sig-
nificant variations throughout the entire training process can indicate that the

50 Maciej Piatkowski: Speech classification using many Neural Networks

(a) 0.7 iteration threshold (b) 0.9 iteration threshold

Figure 5.6: Samples below iteration threshold, with parameter set to 0.7 and 0.9.

parameters do not converge into a particular cluster group. While the first itera-
tion is expected not to be the perfect network immediately, it is still expected to
be a general approximation of the problem, and significant changes to the initial
cluster group can indicate problems in the combinations.
Only changes of 0.1 or more are tracked to represent the change as something
more significant than a minor rounding error. Figure 5.7, Figure 5.8, and Fig-
ure 5.3 present the number of samples that had a change in the highest class.

5.1.4 Variation between neighbor iterations

In a similar manner to the previous section, this section aims to compare the
neighboring iterations with each other. While significant variations could remain
present when comparing the first iteration with the others after new informa-
tion was gained, comparing neighbors serves to localize the comparison. If the
variation between the iterations remains significant, it could indicate that the
networks never converge into a particular classification, and just keep juggling
samples between the classes.
The result in this section mimics the previous section, only with a different set
of results. Only changes of 0.1 or more are tracked to represent the change as
something more significant than a minor rounding error. Figure 5.10, Figure 5.11,
and Figure 5.12 present the number of samples that had a change in the highest
class.

5.1.5 Number of sample files between training iterations

Finally, an important variable to analyze is the effect of the iterative re-training
over time, as the dataset is processed. While in the beginning little is known about
the dataset, as more and more information is gleaned on the dataset, it is expected
that the network becomes more and more capable of handling information it has
not seen yet. Should the number of files between iterations not change, or even go

Chapter 5: Results 51

Figure 5.7: Variation between first and next iterations, with 0.8 iteration
threshold

(a) 0.5 iteration threshold (b) 0.6 iteration threshold

Figure 5.8: Variation between first and next iterations, with 0.5 and 0.6 iteration
threshold

52 Maciej Piatkowski: Speech classification using many Neural Networks

(a) 0.7 iteration threshold (b) 0.9 iteration threshold

Figure 5.9: Variation between first and next iterations, with 0.7 and 0.9 iteration
threshold

Figure 5.10: Variation between neighbor iterations, with 0.8 iteration threshold

Chapter 5: Results 53

(a) 0.5 iteration threshold (b) 0.6 iteration threshold

Figure 5.11: Variation between neighbor iterations, with 0.5 and 0.6 iteration
threshold

(a) 0.7 iteration threshold (b) 0.9 iteration threshold

Figure 5.12: Variation between neighbor iterations, with 0.7 and 0.9 iteration
threshold

54 Maciej Piatkowski: Speech classification using many Neural Networks

Figure 5.13: Change in number of sample files between iterations, with 0.8 iter-
ation threshold

down, it could indicate that the network loses information in the training process,
or that the samples have a meager amount of common features between each
other. Figure 5.13, Figure 5.14, and Figure 5.15 show the change in number of files
used by the various function options over the course of the iterative re-training
process.

5.2 Tree results

This section goes through the entire result dataset for Section 4.7. The parameters
used in the various examples are:

• Function option, -3, -2, -1, 0, 1, 2, 3
• Cache threshold: 0.5, (0.2, 0.3, and 0.4 with -3 only)

An explanation of these values is listed in Section 4.7.1. As the results are far
more numerous in this section, processing of these results using all of the neural
networks would take an excessive amount of time. Therefore, a compromise was
used in the form of utilizing the classification results generated for the caching
process.
In addition to the standard comparison of function options, Section 4.7 included
a control group that did not use iterative re-training. Results of that particular
group of tests are included in the last subsection.

5.2.1 Cache size of the nodes in the tree

Among the most relevant results for the tree generation process are the sizes of
the caches used to train the various nodes in the tree. Some function options could

Chapter 5: Results 55

(a) 0.5 iteration threshold (b) 0.6 iteration threshold

Figure 5.14: Change in number of sample files between iterations, with 0.5 and
0.6 iteration threshold

(a) 0.7 iteration threshold (b) 0.9 iteration threshold

Figure 5.15: Change in number of sample files between iterations, with 0.7 and
0.9 iteration threshold

56 Maciej Piatkowski: Speech classification using many Neural Networks

(a) Largest 10 caches (b) Largest 25 caches

Figure 5.16: Largest tree node caches in descending order. All start from full
dataset.

distribute their dataset more evenly, while others could heavily lean towards put-
ting all samples in just one class. Furthermore, the control groups could provide
the same or better results than the developed experiment, casting doubt into the
need for the extra processing steps.
Figure 5.16 shows the size of the cache, descending from the largest to smallest.
As each tree can have different trees putting samples in differently named clusters,
the names of the clusters are ignored.

5.2.2 Re-training iterations throughout the trees

Using the iterative re-training process in the tree generation is a very dynamic
way to test the method on a vast number of sample combinations. However, it
can also show signs of failure if it takes more and more iterations to train each
next node in the tree. Iterative re-training adds a constant number of samples per
iteration to the training process, which can, in the worst case, end up using the
entire dataset.
Figure 5.17 show the number of iterations used in the tree nodes, descending from
largest to smallest.

5.2.3 Failed node generation per branch layer

Throughout the tree generation process, various samples are removed from fur-
ther use in the tree. First, a small number of samples are removed due to a hard
requirement of one thousand samples per sample file. Second, every time a tree
node receives less than 20 thousand samples to work with, it is considered fin-
ished and subsequently removed. How this process has developed for each tree
generation is a valuable insight into how the tree has formed, and its structure as
a whole. Each tree node can only lose so many samples, meaning that if the tree
does not distribute samples enough, it will be very narrow.

Chapter 5: Results 57

(a) Largest 10 iterations (b) Largest 25 iterations

Figure 5.17: Largest tree node iterations in descending order. Excluding full data-
set.

Figure 5.18 shows how many nodes failed to be created on a per branch level.
Figure 5.19 shows how many samples were lost during the tree generation process
on a per branch level.

5.2.4 Comparison between samples classified by the tree

To compare the performance of the tree generation on the real data, three samples
are presented in figures Figure 5.20, Figure 5.21, and Figure 5.22.
The first sample is the most distinct of the three, and splits off from the other two
in the tree at the root node, being classified as class 0 while the other two samples
are classed as class 2. The two similar samples follow each other until the end of
the tree, with the resulting class combination "210012".

5.2.5 Control insight

Section 4.7 used a control function option called "-3" that avoided the re-training
process entirely to control for potential faults in the iterative re-training process
The iterative re-training of the other options meant that while training the other
options could take hours due to slowly processing the entire dataset; this control
option could proceed immediately to the caching stage after the first iteration was
trained. The faster processing time enabled the use of lower cache threshold op-
tions, which carry different values than the rest of the trees. Due to the nature of
the softmax layer, with a caching threshold of 0.5, only one node could receive a
sample to process. Using a lower cache threshold enabled the possibility of mul-
tiple nodes receiving the same sample, inflating the original dataset throughout
the tree generation.
The results of the control group can be compared with the other trees through the
combination using the 0.5 cache threshold. Figure 5.23 displays the cache size of
the nodes in the control trees.

58 Maciej Piatkowski: Speech classification using many Neural Networks

Figure 5.18: Nodes that failed to be created due to insufficient samples in the
cache

Figure 5.19: Samples left per branch level over the course of the tree generation

Figure 5.20: Audio sample 1, English translation: "Kabu, I’m home!"

Chapter 5: Results 59

Figure 5.21: Audio sample 2, English translation: "Nu-uh! I’ll go by myself..."

Figure 5.22: Audio sample 3, English translation: "All right, I’m finished"

(a) Largest 10 clusters (b) Largest 25 clusters

Figure 5.23: Largest tree node clusters in the control group, in descending order.
Including full dataset.

60 Maciej Piatkowski: Speech classification using many Neural Networks

(a) Node failures (b) Samples left

Figure 5.24: Node failures and samples left per branch level in the control group.

Figure 5.24 shows how many nodes failed to be created, and the loss of samples
on a per branch level.

Chapter 6

Discussion

The main research goal was to investigate these three research questions that were
presented in the introduction:

• How do neural networks that are iteratively re-trained using transfer learn-
ing on an increasing subset of the dataset, to group the entire dataset they
receive into “super-classes” perform?
• How does this training technique perform when used to train neural net-

works in a tree hierarchy that bases itself on these super-classes?
• How does changing the parameters of the training process affect the neural

networks and the resulting tree structures?

Each of the following sections aims to answer how the research conducted in this
master thesis provided insight into the potential answer to these questions.

6.1 Iterative re-training performance

From the results of the iterative training performance, it is very apparent that the
process of using the loss function training step provides better results than merely
skipping that step. In Figure 5.1, it is clear that while all other combinations follow
the slope down to lower the size of the largest cluster, option -2 that does not
use this process fails and even proceeds to create an even bigger cluster. Looking
more directly on the rest of the options, the control option -1 is showing similar
levels of cluster distribution as the gradual loss filters 2 and 3. Meanwhile, the
drastic filter options 0 and 1 are above in the largest cluster size, both in the 0.8
iteration threshold, and others like Figure 5.3. From these graphs alone, it is easy
to conclude that while the loss function filters provide little benefit, the process
itself is superior to just going with the most significant classification from the
previous model.
However, a somewhat different picture can be seen on Figure 5.7. At first glance,
the -2 option turns out to be the one that varies from the first iteration the least,
while the rest vary more and more. The variation, however, is a desired trait of
the loss function process, and the gradual stabilization of the superior three (-1,

61

62 Maciej Piatkowski: Speech classification using many Neural Networks

2, 3) options indicates a steady stabilization of the process.
The stabilization becomes the most apparent on Figure 5.10. In all options, the
variation between the neighboring iterations rapidly descends to a minimum that
can be attributed to training process artifacts. By the time the 10th iteration is
reached, little more can be learned by the network. With each iteration adding
another 2000 samples to the dataset, a significant portion of the variation can be
caused by new samples being used in the training process.
To ultimately conclude that going too far beyond the 10th iteration is bound to
bring diminishing returns, Figure 5.4 can be referenced. At around 10th iteration,
over 80% of samples that were initially below the threshold have been put above
it. At that point, only 20’000 samples have entered the dataset. Since all samples
appear to be descending at the same speed, there is no difference between them
in this comparison. However, it is interesting to note that the -2 option that has
been relatively bad in the primary 0.8 results, appears to be maintaining its results
stably across all cluster size figures. In contrast, other options struggled at 0.6 and
0.7.
Lastly, in terms of the rate of sample files between iterations, the results are re-
latively similar in all cases. As previously, option -2 sticks out and does its own
thing, but in general, the number of sample files between iterations goes up on a
somewhat linear basis across the dataset.

6.2 Tree generation process

During the tree generation process, the distinctness of the -2 option has stayed
from the iterative re-training experiment. In Figure 5.16, it is the most distinct of
the options by having excessively large first six or so rows. On the flip side, on
Figure 5.17 it has the least amount of iterations in the first two nodes.
The other options, however, very quickly descend to two and then one million
samples per node. However, the first node in all remaining options has managed
to pass its root node in iterations to finish. The tree generation had to be conducted
strictly on a single thread basis for a while, as even one thread had consumed all
available RAM storage for its dataset.
Over time, the number of iterations drops down as there are fewer samples to go
around in the nodes. By the time Figure 5.17b finishes at 25 nodes, the iterations
drop down to below 20, which is close to where the sweet spot for iterative re-
training appears to be from the previous section’s findings.
Continuing in investigating the performance of the trees, we can see from Fig-
ure 5.18 that most of the nodes are removed at around level 8, with some strag-
glers remaining until the end of the graph. As the first cluster generation is tied
strictly to how good the first 2000 samples are in clustering, this result may not
represent each of the function options accurately. However, given that this trend
repeats itself for all options, it is relatively safe to say that for a dataset of 12.6 mil-
lion samples, most of the branching will be finished by branch level 10, assuming
a minimum branch size of 20’000 samples.

Chapter 6: Discussion 63

Lastly, for the comparison of the main options, all options had lost roughly the
same amount of samples on each branch level, descending rapidly around level
8, where most nodes were removed. Option -2 is again losing the least amount of
samples per level, followed shortly by the control option -3.
Moving on to the control options, the size of the most massive clusters in Fig-
ure 5.23 is not indicative of much. The lower cache threshold options are slightly
larger than the option using the shared variable, but in general, the largest cluster
size maintains itself steadily.
The difference becomes apparent on Figure 5.24. In the case of the control option
using the cache threshold of 0.2, the cache size almost doubled before going down
eventually. As the size of the dataset increases, so did the number of node failures
per branch level, with the 0.2 control option losing almost more branches in one
level than some of the trees had in total.
Lastly, the tree is proven to achieve some degree of similarity detection in Sec-
tion 5.2.4. While it can be argued that the two samples that were classified as
similar should have been separated at some point earlier, it is clear that both are
distinctly different from the first example.

6.3 Effect of parameter change

As noted in the previous sections, including the loss function process carries a clear
benefit to the results, even if only the normal sparse categorical cross-entropy loss
function is used. The samples receive more specific classification during this step,
which may correctly reclassify these samples as something else.
Between the iterative re-training options that did use the loss function process,
a clear split emerged between the options that went with a more heavy-handed
approach to the filter process, and the ones that used more gradual filters. The
decrease in quality from the drastic filters may be a sign that the filters did not
do much for the training process if only to slow it down with custom code. As the
more drastic effects of the gradual filters would only become pronounced at the
ends of the filters, their filters are likely to produce similar results to those of the
standard loss function.
Perhaps most interestingly, the effect of the iteration threshold parameter has had
a tremendous effect on the training process. Threshold of 0.6 Figure 5.2b and
0.7 Figure 5.3a displayed significant reduction in quality compared to the other
options. Meanwhile 0.5 Figure 5.2a increased its largest cluster size to encompass
almost the entire dataset. While more research on these parameters should be
done for other datasets and purposes, in this thesis, using an iteration threshold
of less than 0.8 has not been productive.
Unlike the root node generation in iterative re-training, comparing the parameter
changes on the tree generation is not as easy. Due to the nature of the autonom-
ous cluster generation, each tree is bound to become different from the rest very
quickly. However, some interesting facts can be gleaned from the results. Even
though the control option without iterative training has the least amount of know-

64 Maciej Piatkowski: Speech classification using many Neural Networks

ledge about the dataset, it manages to achieve the same largest cache sizes as the
other options. On the other hand, the option -2 that uses the previous network’s
results are becoming not only inferior but likely damaged by its training process.
In the few parameters that were investigated for tree generation, other than the
erroneous option -2, none of the results stick out from the rest.
Changing the cache threshold as has been done in the control group of tree gen-
eration, however, does have a substantial effect on the time spent processing the
tree. The effect of reducing the cache threshold does not appear to be of much
significance beyond spending more time on processing, however.

Chapter 7

Conclusion

In conclusion, the thesis has investigated a way to use currently existing hardware
more optimally by clustering data through the use of smaller neural networks
in tree hierarchies. The tree clustering has been facilitated by a vast home-made
dataset containing over 32 TB of raw video containing Japanese audio and English
text. This could make the thesis relevant for future students and researchers that
wish to start developing neural networks but lack the dataset to start. Even after
preprocessing all of the data, more than 370 GB and over 12 million samples were
ready to be used without any large-scale labeling actions taken by commercial or
private actors.
Iterative re-training has proven to provide meaningful results, while the loss func-
tion filters have not been all that effective. Their development has still led to the
introduction of the loss function process in the thesis, which turned out to be the
key to make the iterative re-training work for the thesis dataset. Usage of less
computationally expensive alternatives has simultaneously been proven to be not
very productive.
Due to the nature of the tree generation, it has been impossible to study in-depth
the differences between the trees. Nonetheless, the metadata provided during
their creation has shown that the method is relatively stable, if not without some
minor bad clusters. Comparing the samples classified by a tree, it has been shown
that more similar samples are clustered together, while more distinct samples are
kept separate.
The effects of changing the various parameters during the experiments have also
been investigated. Specific parameters like the iteration threshold have been proven
to be very sensitive to change, with lower values producing vastly inferior results.
Other parameters, like the cache threshold, have been shown to produce very
similar results across the different tested values while wasting more time for the
developer.

65

66 Maciej Piatkowski: Speech classification using many Neural Networks

7.1 Future work

While this thesis aimed to succeed in accomplishing many goals set up at the be-
ginning of the thesis, plenty of work remain. Initially, the thesis aimed to produce
a full-fledged Japanese speech to English text translator. Eventually, only the core
hypothesis of iterative re-training and tree generation has been accomplished in
time. It is likely to be possible to accomplish on the hardware available to con-
sumers using the work done in this thesis as a basis.
Of the future work that could be done in the immediate future, the replacement
of the activation function in the custom dense layer is an interesting aspect to re-
search. Currently, only Sigmoid has been used as the last activation function. As
Sigmoid due to its nature, compresses the input it receives from a Softmax activa-
tion function, and other functions could perform better. A potential candidate for
improvement is the ReLU activation function.
Another area that could be tested more is more variants of the loss function filters.
The filters used in the thesis are simple filters that are easy to program, but may
not be the most optimal mathematical functions that could distribute the loss
values better. It may be possible that in combination with a different activation
function, loss function filters could prove to be slightly superior to the standard
sparse categorical cross-entropy loss function.
Lastly, more architecture and analysis of the trees themselves is necessary to reach
any decisive conclusion about them. Due to time limitations caused in part from
the trees taking an excessive amount of time to generate, only the cache used in
the creation of the trees could be used for analysis. Other useful information could
come forward if more analysis is conducted.

Bibliography

[1] D. Hebb, The Organization of Behavior: A Neuropsychological Theory. Taylor
& Francis, 2005, ISBN: 9781135631901. [Online]. Available: https://
books.google.no/books?id=ddB4AgAAQBAJ.

[2] P. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences. Harvard University, 1975. [Online]. Available: https:
//books.google.no/books?id=z81XmgEACAAJ.

[3] C. Mead and M. Ismail, Analog VLSI Implementation of Neural Systems,
ser. The Springer International Series in Engineering and Computer Sci-
ence. Springer US, 2012, ISBN: 9781461316398. [Online]. Available: https:
//books.google.no/books?id=oNjTBwAAQBAJ.

[4] J. Weng, N. Ahuja and T. S. Huang, ‘Cresceptron: A self-organizing neural
network which grows adaptively’, vol. 1, 576–581 vol.1, 1992.

[5] A. Krizhevsky, I. Sutskever and G. E. Hinton, ‘Imagenet classification with
deep convolutional neural networks’, Commun. ACM, vol. 60, no. 6, pp. 84–
90, May 2017, ISSN: 0001-0782. DOI: 10.1145/3065386. [Online]. Avail-
able: http://doi.acm.org/10.1145/3065386.

[6] ImageNet, Imagenet large scale visual recognition challenge (ilsvrc), 2019.
[Online]. Available: http://www.image-net.org/challenges/LSVRC/.

[7] ImageNet, Imagenet large scale visual recognition challenge 2012 (ilsvrc2012),
2012. [Online]. Available: http://image-net.org/challenges/LSVRC/
2012/results.html.

[8] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.
Vanhoucke and A. Rabinovich, Going deeper with convolutions, 2014. arXiv:
1409.4842 [cs.CV].

[9] ImageNet, Imagenet large scale visual recognition challenge 2014 (ilsvrc2014),
2014. [Online]. Available: http://image-net.org/challenges/LSVRC/
2014/results.

[10] Wikipedia contributors, Sigmoid function — Wikipedia, the free encyclope-
dia, [Online; accessed 27-May-2020], 2020. [Online]. Available: https:
//en.wikipedia.org/w/index.php?title=Sigmoid_function&oldid=
955047622.

67

https://books.google.no/books?id=ddB4AgAAQBAJ
https://books.google.no/books?id=ddB4AgAAQBAJ
https://books.google.no/books?id=z81XmgEACAAJ
https://books.google.no/books?id=z81XmgEACAAJ
https://books.google.no/books?id=oNjTBwAAQBAJ
https://books.google.no/books?id=oNjTBwAAQBAJ
https://doi.org/10.1145/3065386
http://doi.acm.org/10.1145/3065386
http://www.image-net.org/challenges/LSVRC/
http://image-net.org/challenges/LSVRC/2012/results.html
http://image-net.org/challenges/LSVRC/2012/results.html
https://arxiv.org/abs/1409.4842
http://image-net.org/challenges/LSVRC/2014/results
http://image-net.org/challenges/LSVRC/2014/results
https://en.wikipedia.org/w/index.php?title=Sigmoid_function&oldid=955047622
https://en.wikipedia.org/w/index.php?title=Sigmoid_function&oldid=955047622
https://en.wikipedia.org/w/index.php?title=Sigmoid_function&oldid=955047622

68 Maciej Piatkowski: Speech classification using many Neural Networks

[11] Wikipedia contributors, Cross entropy — Wikipedia, the free encyclopedia,
[Online; accessed 20-May-2020], 2020. [Online]. Available: https://en.
wikipedia.org/w/index.php?title=Cross_entropy&oldid=945192009.

[12] Wikipedia contributors, Stochastic gradient descent — Wikipedia, the free
encyclopedia, [Online; accessed 20-May-2020], 2020. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Stochastic_gradient_
descent&oldid=956880506.

[13] Wikipedia contributors, Transfer learning — Wikipedia, the free encyclope-
dia, [Online; accessed 22-May-2020], 2020. [Online]. Available: https:
//en.wikipedia.org/w/index.php?title=Transfer_learning&oldid=
958093515.

[14] Google - Tensorflow tutorials, Transfer learning with a pretrained convnet,
[Online; accessed 22-May-2020], 2020. [Online]. Available: https://www.
tensorflow.org/tutorials/images/transfer_learning.

[15] Matlab, Pretrained deep neural networks, 2019. [Online]. Available: https:
//se.mathworks.com/help/deeplearning/ug/pretrained-convolutional-
neural-networks.html.

[16] S. S. Stevens, ‘A Scale for the Measurement of the Psychological Magnitude
Pitch’, Acoustical Society of America Journal, vol. 8, no. 3, p. 185, Jan. 1937.
DOI: 10.1121/1.1915893.

[17] N. Ahmed, T. Natarajan and K. R. Rao, ‘Discrete cosine transform’, IEEE
Transactions on Computers, vol. C-23, no. 1, pp. 90–93, 1974.

[18] P. Dhanalakshmi, S. Palanivel and V. Ramalingam, ‘Pattern classification
models for classifying and indexing audio signals’, Engineering Applications
of Artificial Intelligence, vol. 24, no. 2, pp. 350–357, 2011, ISSN: 0952-1976.
DOI: https://doi.org/10.1016/j.engappai.2010.10.011. [Online].
Available: http://www.sciencedirect.com/science/article/pii/
S0952197610001971.

[19] H. Gimse, Classification of marine vessels using sonar data and a neural
network, 2017. [Online]. Available: http://hdl.handle.net/11250/
2453247.

[20] Wikipedia contributors, Hierarchical clustering — Wikipedia, the free encyc-
lopedia, [Online; accessed 24-May-2020], 2020. [Online]. Available: https:
//en.wikipedia.org/w/index.php?title=Hierarchical_clustering&
oldid=955878698.

[21] L. Lerato and T. Niesler, ‘Feature trajectory dynamic time warping for clus-
tering of speech segments’, English, EURASIP Journal on Audio, Speech,
and Music Processing, vol. 2019, no. 1, pp. 1–9, Apr. 2019, Copyright -
EURASIP Journal on Audio, Speech, and Music Processing is a copyright
of Springer, (2019). All Rights Reserved.; c© 2019. This work is published

https://en.wikipedia.org/w/index.php?title=Cross_entropy&oldid=945192009
https://en.wikipedia.org/w/index.php?title=Cross_entropy&oldid=945192009
https://en.wikipedia.org/w/index.php?title=Stochastic_gradient_descent&oldid=956880506
https://en.wikipedia.org/w/index.php?title=Stochastic_gradient_descent&oldid=956880506
https://en.wikipedia.org/w/index.php?title=Transfer_learning&oldid=958093515
https://en.wikipedia.org/w/index.php?title=Transfer_learning&oldid=958093515
https://en.wikipedia.org/w/index.php?title=Transfer_learning&oldid=958093515
https://www.tensorflow.org/tutorials/images/transfer_learning
https://www.tensorflow.org/tutorials/images/transfer_learning
https://se.mathworks.com/help/deeplearning/ug/pretrained-convolutional-neural-networks.html
https://se.mathworks.com/help/deeplearning/ug/pretrained-convolutional-neural-networks.html
https://se.mathworks.com/help/deeplearning/ug/pretrained-convolutional-neural-networks.html
https://doi.org/10.1121/1.1915893
https://doi.org/https://doi.org/10.1016/j.engappai.2010.10.011
http://www.sciencedirect.com/science/article/pii/S0952197610001971
http://www.sciencedirect.com/science/article/pii/S0952197610001971
http://hdl.handle.net/11250/2453247
http://hdl.handle.net/11250/2453247
https://en.wikipedia.org/w/index.php?title=Hierarchical_clustering&oldid=955878698
https://en.wikipedia.org/w/index.php?title=Hierarchical_clustering&oldid=955878698
https://en.wikipedia.org/w/index.php?title=Hierarchical_clustering&oldid=955878698

Bibliography 69

under http://creativecommons.org/licenses/by/4.0/ (the “License”). Not-
withstanding the ProQuest Terms and Conditions, you may use this con-
tent in accordance with the terms of the License; Last updated - 2019-
04-05. [Online]. Available: https://search.proquest.com/docview/
2203088894?accountid=12870.

[22] D. Roy, P. Panda and K. Roy, Tree-cnn: A hierarchical deep convolutional
neural network for incremental learning, 2018. arXiv: 1802.05800 [cs.CV].

[23] Z. Yan, H. Zhang, R. Piramuthu, V. Jagadeesh, D. DeCoste, W. Di and Y. Yu,
‘Hd-cnn: Hierarchical deep convolutional neural networks for large scale
visual recognition’, pp. 2740–2748, 2015.

[24] Kamedo2, Results of the public multiformat listening test (july 2014), [On-
line; accessed 29-May-2020], 2014. [Online]. Available: https://listening-
test.coresv.net/results.htm.

[25] Wikipedia contributors, Substation alpha — Wikipedia, the free encyclope-
dia, [Online; accessed 29-May-2020], 2020. [Online]. Available: https:
//en.wikipedia.org/w/index.php?title=SubStation_Alpha&oldid=
934658921.

[26] TechPowerUp, Gigabyte rtx 2080 ti gaming oc, 2019. [Online]. Available:
https://www.techpowerup.com/gpu-specs/gigabyte-rtx-2080-ti-
gaming-oc.b6097.

[27] Theano - Theano tutorial, Python memory management, [Online; accessed
26-May-2020], 2020. [Online]. Available: http://deeplearning.net/
software/theano/tutorial/python-memory-management.html.

https://search.proquest.com/docview/2203088894?accountid=12870
https://search.proquest.com/docview/2203088894?accountid=12870
https://arxiv.org/abs/1802.05800
https://listening-test.coresv.net/results.htm
https://listening-test.coresv.net/results.htm
https://en.wikipedia.org/w/index.php?title=SubStation_Alpha&oldid=934658921
https://en.wikipedia.org/w/index.php?title=SubStation_Alpha&oldid=934658921
https://en.wikipedia.org/w/index.php?title=SubStation_Alpha&oldid=934658921
https://www.techpowerup.com/gpu-specs/gigabyte-rtx-2080-ti-gaming-oc.b6097
https://www.techpowerup.com/gpu-specs/gigabyte-rtx-2080-ti-gaming-oc.b6097
http://deeplearning.net/software/theano/tutorial/python-memory-management.html
http://deeplearning.net/software/theano/tutorial/python-memory-management.html

