
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Odd Kristian Kvarmestøl

Database Access through a Functional
Programming Language

Master’s thesis in Informatics

Supervisor: Svein Erik Bratsberg

May 2020

Odd Kristian Kvarmestøl

Database Access through a Functional
Programming Language

Master’s thesis in Informatics
Supervisor: Svein Erik Bratsberg
May 2020

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Stage is a new functional programming language. It was designed to be stat-
ically typed and without function side effects. These principles were chosen with
the intent of making the language easy to use and easy to debug. In this pro-
ject an SQL interface was developed for Stage. This interface provides developers
with an ergonomic system for writing SQL queries, that take parameters from
the program. The SQL interface aims to be type safe and to automate tedious
tasks. Such tasks include: keeping track of query parameters, and converting the
returned tuples into native data types.

This thesis has two main goals: (1) to explore the implementation of an SQL
interface into Stage, and (2) to develop Stage into a working language able to
express the SQL interface. At the outset of the project, the idea for the language
and a foundation for the compiler had been implemented. During this project
the compiler and language was further developed into a functioning prototype.
The design of the SQL interface was conceived and developed along with the
compiler, and a simplified version was implemented. This version serves as a
proof-of-concept for the fully designed interface.

This thesis describes the design of Stage and the SQL-interface. The language’s
compiler, and the systems it is comprised of, will also be discussed.

Sammendrag

Stage er et nytt funksjonelt programmeringsspråk. Språket har statisk typing
og tillater ikke funksjoner med sideeffekter. Dette er for å gjøre språket lett å
bruke samt lett å feilsøke. Et SQL-grensesnitt har blitt utviklet for Stage som en
del av dette prosjektet. Dette grensesnittet tilbyr utviklere et ergonomisk system
for å skrive SQL-spørringer som bruker parametere fra applikasjonen sin. SQL-
grensesnittet er typesikkert og har som mål å automatisere bort omstendelige
oppgaver. Dette er oppgaver som å holde styr på parameterne til en spørring eller
konvertere radene gitt av databasen til datatyper i programmet.

Oppgaven har to hovedmål: (1) å utforske design av et SQL-grensesnitt for
Stage, og (2) å utvikle Stage til å bli et fungerende språk som kan uttrykke SQL-
grensesnittet. I begynnelsen av prosjektet var ideen for språket samt et grunnlag
for kompilatoren implementert. I løpet av prosjektet har språket og kompilatoren
blitt utviklet til en fungerende prototype. Designet av SQL-grensesnittet ble utvik-
let sammen med kompilatoren, og en forenklet versjon av SQL-grensesnittet ble
implementert. Denne versjonen fungerer som en proof-of-concept for det fullsten-
dige grensesnittet.

Denne masteroppgaven beskriver designet til Stage og SQL-grensesnittet. Kom-
pilatorens design, samt systemene den er satt sammen av, blir også diskutert.

iii

Contents

Contents . v
1 Introduction . 1
2 Background . 3

2.1 Functional Programming . 3
2.1.1 Type System . 4
2.1.2 Monads . 4
2.1.3 Type Classes . 6

2.2 SQL Database Access . 7
3 Language Design . 11

3.1 Language Overview . 11
3.1.1 Modules . 11
3.1.2 Composite Data Types . 12
3.1.3 Variants . 14
3.1.4 Functions . 15
3.1.5 Tuples . 16
3.1.6 Match Expressions . 16
3.1.7 Classes . 18
3.1.8 Side Effects . 18
3.1.9 String Interpolation . 21

3.2 Formal Language Definition . 21
3.2.1 Language Grammar . 22
3.2.2 Core Language . 25
3.2.3 Syntactic Sugar . 27
3.2.4 Composite Data Types . 29
3.2.5 Typing Rules . 32

3.3 Standard Module . 33
3.3.1 prelude . 34
3.3.2 init . 34
3.3.3 io . 34
3.3.4 list . 35
3.3.5 composite . 35

4 SQL-Interface . 37
4.1 Database Connection . 37
4.2 Simple Query Interface . 37

v

CONTENTS CONTENTS

4.3 Query Interface . 38
4.3.1 Type Mapping . 41
4.3.2 Query String Interpolation . 41

4.4 Atomicity & Transactions . 43
5 Compiler Design . 45

5.1 Syntactic Analysis . 45
5.2 Semantic Analysis . 45

5.2.1 Composite Data Type . 46
5.2.2 Object Instantiations . 51
5.2.3 Name Resolution . 51
5.2.4 Type Solver . 51

5.3 Code Generation and Optimisation . 54
5.4 Runtime System . 55
5.5 Modules . 55

5.5.1 Native Module Extension . 56
6 Results . 57

6.1 Language . 57
6.1.1 Init Expressions . 57
6.1.2 Error Handling . 58
6.1.3 Type System . 59

6.2 SQL-Interface . 60
6.2.1 State of Implementation . 61

6.3 Compiler Implementation . 61
6.3.1 Recursion of Polymorphic Function 62
6.3.2 Recursive Data Types . 62
6.3.3 Tuple . 62
6.3.4 Type Classes . 63
6.3.5 Use Expressions . 64
6.3.6 Error Reporting . 64

7 Conclusion . 65
7.1 Future Work . 66

Bibliography . 69

vi

Chapter 1

Introduction

Stage is a functional programming language that is currently being designed and
developed by the author of this thesis. The goal of the language is to make specify-
ing real time data flow systems easy. The language is being designed with strong
type safety in mind to make development as easy as possible while ensuring the
system will run as expected when in use.

However, so far no effort has been made to integrate database access into this
language. Having such an ability is important to allow persistent and reliable
storage of data for both short and long term.

The mutable nature of a DBMS is inherently conflicting with the pure and type
safe nature of pure functional languages. Resolving this disparity is an important
part to implementing such a library.

This master project aims to integrate DBMS access into the programming lan-
guage. This will be done as a literature review of existing database interfaces,
and will result in a prototype implementation of a library that is capable of inter-
acting with a DBMS in a functional manner. In this report we present the design
and a prototype implementation for both the new pure functional programming
language and an SQL interface for this language.

The project source code is hosted on GitHub1, and the version at the time of
project delivery is available at the tag v0.1.02.

The goals for this master project is:

• Design database access as an integrated part of a new functional program-
ming language.

• Design an API that is a natural part of the language.
• Find a database solution that may easily be supported as a part of the func-

tional language.
• Evaluate if a server based database (e.g. PostgreSQL) or an embedded data-

base (e.g. SQLite) is the best solution.
• Prototype a database solution for this programming language.

1https://github.com/oddkk/stage
2https://github.com/oddkk/stage/tree/v0.1.0

1

https://github.com/oddkk/stage
https://github.com/oddkk/stage/tree/v0.1.0
https://github.com/oddkk/stage
https://github.com/oddkk/stage/tree/v0.1.0

CHAPTER 1. INTRODUCTION

Chapter 2 will lay out the foundation for the language and the database access
interface. Chapter 3 will introduce the syntax and semantics of the language, and
chapter 4 will detail the design of the SQL interface. Chapter 5 will describe the
implementation of the prototype compiler and chapter 6 will review the design
and implementation of the language, compiler, and SQL interface.

2

Chapter 2

Background

This chapter introduces the fundamentals of functional programming languages
and in particular their type systems and common patterns. We will also examine
some existing database interfaces for other languages to look at common patterns
and approaches. These systems provide the foundation upon which the language,
SQL-interface, and compiler discussed in later chapters are built.

2.1 Functional Programming

Functional programming is a paradigm that is based on using functions and their
compositions as the primary building block of larger programs. This kind of
language extend the pure λ calculus from category theory with additional con-
structs[1].

Functional programming languages come in two versions: pure and impure[1][2].
Impure functional languages, such as Standard ML, have facilities for state and
for evaluating functions with side effects. Examples of side effects are I/O, such as
writing to a file or reading from a database, and assigning to a mutable variable.
In pure functional languages, such as Haskell, the program is unable to modify
state or directly invoke side effects.

The pure languages can further be classified as call-by-value or call-by-name[1],
often called lazy. Call-by-value indicates that values are eagerly being calculated
when they are used as function arguments. For example in an expression such as
f (a+2), the argument a+2 will be evaluated before being passed to the function
f . Call-by-name would instead substitute the argument into the function using
capture-avoiding substitution, thereby postponing evaluation until the argument
is actually needed. The same effect can be achieved in call-by-value languages by
having the function take a function of no parameters instead of the value itself as
parameter. In the previous example for example this would be f (() => a+ 2).

3

2.1. FUNCTIONAL PROGRAMMING CHAPTER 2. BACKGROUND

2.1.1 Type System

Languages such as Python, JavaScript, and Lisp employ dynamic type checking.
These languages store types together with values, and defer the checking of types
to when a value is used at run-time[3][4]. This style of language allow developers
to make functions which can be applied over values of a wide variety of types. A
drawback of such languages is that it is difficult to find bugs caused by passing a
value of an unexpected type to a function[5].

On the other hand, languages like C and Java requires all types to be known
at compile time, and the developer is required to explicitly state the type of all
variables in the program text. This allows the compiler to check if the program
contains "silly mistakes"[3], such as passing a string to a parameter expecting an
integer.

Hindley[6] and Milner[5] independently developed a static, polymorphic type
system. This typing system aimed to introduce some of the simplicity of dynamic
languages into statically typed languages. This is achieved in particular through
the use of parametric polymorphism and type inference. This kind of type system
has two primary tasks: type checking and type inference. The type inference
system attempts to fill out the types not explicitly specified in the program text.
Type checking aims to verify that the typing schema of the program is correct.

In the Hindley-Milner system there are two kinds of types: mono types and
poly types. Mono types represent exactly one kind of values. int is an example
of a mono type because it only represents only integer numbers. Poly types are
composed of other type variables. These variables can themselves be either mono-
or poly-types. A function such as ∀α.α→ α is an example of a poly type. The type
variable α can be substituted by any mono- or poly-type. Poly types are useful for
describing polymorphic constructs, such as parametric types, functions, and type
classes. Poly types can be turned into mono types by substituting all type variables
with mono types.

2.1.2 Monads

The monad design pattern was borrowed by Haskell from category theory[7].
Monads provide a way for programmers to specify a composable and serial list of
operations that are evaluated inside the context of the monad. Monads allow for
sequencing actions in a way that emulates side effects. This gives purely functional
programming languages a way of specifying stateful programs.

Monads were first considered as a tool for analyzing lambda calculus with state
in category theory by Moggi in 1989[8]. They were later introduced as a mechan-
ism to provide stateful operations in pure functional languages in 1990[7]. Mon-
ads have since been introduced into the Haskell programming language, both in
the language itself and as a core mechanism driving the Glasgow Haskell Com-
piler[9].

Each monad M consist of three functions[9]:

4

CHAPTER 2. BACKGROUND 2.1. FUNCTIONAL PROGRAMMING

• A type constructor, M: [T : Type]→ M[T], that creates a monadic type of
type T .

• A type converter, return: ($T)→ M[T].
• A combinator, bind: (M[$T], (M[T])→ M[$U])→ M[U]

While the programming language itself is functional, it still needs to have side
effects. Certain monads can be used to express "actions" that, when dispatched
by the underlying runtime system, can perform operations with side effects. The
result of the side effect can then be returned to the program[2][10]. In both Scala
Cats Effect[11] and Haskell[12] this monad is named IO.

Using the combinator we can create a monad that will evaluate two monads
in sequence. The combinator evaluates the first monad and passes the returned
value to the function on the right. This function returns another monad that is
then evaluated. For example, to read a line from stdin and echo that line back
twice we can write the following in Haskell.

1 getLine >>= (\ln -> putStrLn(ln) >>= (_ -> putStrLn(ln)))

This expression returns a new IO-monad. The line will not be read and prin-
ted back immediately when the monad is declared. The monad instead must be
passed to some mechanism that will execute it. In Haskell this is done by returning
the monad from main.

1 main :: IO ()
2 main = getLine >>= (\ln -> putStrLn(ln) >>= (_ -> putStrLn(ln)))

Syntactic convenience have been introduced in Haskell to make monadic ex-
pressions easier to write. First, notice that the output from the first putStrLn is
not used. We can introduce an operator >> which functions like bind but ignores
the value returned from the left hand monad. In Haskell, this can be written as
follows.

1 (>>) :: Monad m => m a -> m b -> m b
2 a (>>) b = a >>= (_ -> b)
3
4 main = getLine >>= (\ln -> putStrLn(ln) >> putStrLn(ln))

To make the sequencing of operations easier, Haskell introduced do-notation[13].
This notation is reminiscent of imperative programs with statements that are eval-
uated in order.

1 main = do {
2 ln <- getLine;
3 putStrLn(ln);
4 putStrLn(ln);
5 }

The result of a monadic computation can be kept by prefixing the expression
with a name and <-, as shown on line 2 of the previous listing. Do-notation is
merely syntactic sugar that is translated into a series of binds. This do-expression
example is translated into the same expression as above.

5

2.1. FUNCTIONAL PROGRAMMING CHAPTER 2. BACKGROUND

The type converter function, return, returns a monad that will return the given
value. For example, the above expression could be modified to always print "test"
twice as show in the following listing.

1 main = do {
2 ln <- return("test");
3 putStrLn(ln);
4 putStrLn(ln);
5 }

While these examples all use monads to deal with IO, monads have other uses.
One example is the State monad[7]. This monad executes a series of operations,
and is able to get and put a value into its store. The following example in Haskell
illustrates this monad.

1 runState do {
2 v1 <- get;
3 put v1 + 3;
4 v2 <- get;
5 put v1 + 10;
6 return v2;
7 } 5

This expression returns (8, 15). This tuple contains the value returned from
the expression, v2, and the state at the end of the operations.

2.1.3 Type Classes

Languages such as C++ and C# provide mechanisms for overloading functions
and operators. This way of providing different functionality based on the type
signature of the function is called ad-hoc polymorphism[3]. This is opposed to
parametric polymorphism where a function is defined over many types with the
same behaviour for each. Type classes are a way of making "ad-hoc polymorphism
less ad hoc"[14]. Type classes introduce the notion of a "class" of types that possess
a common set of operations[13].

For Haskell, the type class for equality tests, Eq, can be declared over a type
parameter a with the class statement listed below. This type class will contain the
equality test function (==) which must be implemented for all instances of this type
class. Afterwards, instances of the type class can be declared with the instance
statement. Here, the character and integer types receive such implementations.

1 class Eq a where
2 (==) :: a -> a -> bool
3
4 instance Eq Int where
5 (==) = eqInt
6
7 instance Eq Char where
8 (==) = eqChar

After this, the equality test function can be used, either for comparison of
integers or characters, or any other type the type class is implemented for. Any
usage of the function on types that are not an instance of the class results in a
compilation error.

6

CHAPTER 2. BACKGROUND 2.2. SQL DATABASE ACCESS

1 > 2 == 4
2 False
3 > ’a’ == ’a’
4 True
5 > (\a -> a) == (\a -> a)
6 error:
7 • No instance for (Eq (p0 -> p0)) arising from a use of ’==’
8 (maybe you haven’t applied a function to enough arguments?)
9 • In the expression: (\ a -> a) == (\ a -> a)

10 In an equation for ’it’: it = (\ a -> a) == (\ a -> a)

2.2 SQL Database Access

SQL database access libraries fundamentally take or construct SQL statements,
passes those statements to the database server, and receives and presents the result
to the application. Several paradigms have been developed on top of this core
principle to make interfacing with the database easier. This section will discuss
some of these approaches.

Imperative Interfaces

The simplest library paradigm for interacting with databases is to provide a inter-
face for querying using SQL as a string. Databases such as PostgreSQL and MySQL
provide such libraries for C which serves as the foundation for other libraries that
provide abstractions on top. Libraries such as ODBC and JDBC provide standard
APIs for accessing a database of any of the supported kinds.

The following is an example of querying a PostgreSQL database using libpq[15].
The text provided as parameters is escaped before being incorporated into the
query, allowing user data to be passed directly without risk of vulnerabilities. Fail-
ing to properly escaping user-provided data can enable SQL-injection attacks.

The parameters can be passed as types other than text. For such parameters
the binary value is interpreted on the back end according to what type it is expec-
ted to be. The values returned from the query are also passed as text, as requested
by the resultFormat parameter being 0. Both the returned values and the para-
meters can be passed as their binary representation. This does require the client
to have knowledge about the back end’s representation of these values. For para-
meters, the types can then either be inferred from the query, be explicitly stated
in the query by suffixing parameter usage with ’::’ followed by the type name,
or by specifying OIDs through the paramTypes parameter to PQexecParams. The
returned fields’ types can be controlled by suffixing the fields to return with ’::’
followed by the type name, or be checked by inspecting the field’s type OID with
the PQftype routine.

1 #include <stdio.h>
2 #include <libpq-fe.h>
3
4 int main(int argc, char *argv[])
5 {

7

2.2. SQL DATABASE ACCESS CHAPTER 2. BACKGROUND

6 PGconn *connection;
7 connection = PQconnectdb("dbname=test");
8
9 const char *const args[] = { "1" };

10
11 PGresult *query;
12 query = PQexecParams(
13 connection,
14 "select * from account where account=$1",
15 1, // nParams
16 NULL, // paramTypes
17 args, // paramValues
18 NULL, // paramLengths
19 NULL, // paramFormats
20 0 // resultFormat, 0 = all data returned as text.
21);
22
23 if (PQresultStatus(query) == PGRES_TUPLES_OK) {
24 int num_rows, num_columns;
25 num_rows = PQntuples(query);
26 num_columns = PQnfields(query);
27
28 for (int row = 0; row < num_rows; row++) {
29 for (int column = 0; column < num_columns; column++) {
30 printf("%s ", PQgetvalue(query, row, column));
31 }
32
33 printf("\n");
34 }
35 } else {
36 printf("Query failed:\n%s", PQresultErrorMessage(query));
37 return -1;
38 }
39
40 return 0;
41 }

Functional Interfaces

We will investigate a library named Doobie for Scala as an example of a functional
query interface. Scala is a multi-paradigm programming language built on top
of the Java Virtual Machine[16]. It is geared towards both object oriented and
functional programming.

Doobie is a purely functional JDBC API[17]. It is built on Cats, which is a
library that provides abstractions for functional programming in Scala, and aims
to provide the foundation for other pure and type full libraries[18].

As an example, the following Scala code demonstrates the same query as the
C example above.

1 import doobie._;
2 import doobie.implicits._;
3 import cats.implicits._;
4 import cats.effect.IO;
5 import scala.concurrent.ExecutionContext;
6
7 object Main extends App {

8

CHAPTER 2. BACKGROUND 2.2. SQL DATABASE ACCESS

8 implicit val cs = IO.contextShift(ExecutionContext.global);
9

10 val xa = Transactor.fromDriverManager[IO](
11 "org.postgresql.Driver",
12 "jdbc:postgresql://localhost/test",
13 "test", "test"
14);
15
16 case class Account(account: Long, name: String);
17
18 def getByID(id: Long) =
19 sql"select account, name from account where account=${id}".query[Account];
20
21 getByID(5) // :: Query0[Account]
22 .to[List] // :: ConnectionIO[List[Account]]
23 .transact(xa) // :: IO[List[Account]
24 .unsafeRunSync // :: List[Account]
25 .foreach(println);
26 }

The getByID function constructs an object of type Query0[Account]. This ob-
ject represents a query to the database which is closed over its input arguments.
The library utilize the string interpolation inside of getByID to capture the query
arguments. When evaluated, the query is expected to return objects of type Ac-
count. Next, using to[List] indicates we expect to receive a list of Accounts from
the database. This function returns an instance of the ConnectionIO monad. This
monad will, when evaluated, query the database within the context of the data-
base connection. This context is created using transact(xa) with a connection
object xa. This monad executes the actions described by the ConnectionIO monad
within the context of the IO monad. Finally, since Scala allows routines with side
effects, the query is evaluated with unsafeRunSync.

Language Integrated Queries

Language Integrated Query (LINQ) is an API developed by Microsoft, which is in-
tegrated into their language C# for performing operations over lists of objects[19]
[20]. While not itself an ORM, together with LINQ to SQL, LINQ can act as one.
LINQ also allows querying other collections, such as XML-files and web-based re-
sources. The goal with LINQ is to abstract away the actual query interface and
provide a uniform way of working with collections from different sources. It also
provides type safety and a means for the programmer’s IDE (Visual Studio and
IntelliSense in the case of C#) to reason about the queries’ type. This enables
the IDE to provide the user with auto completion of code. In addition to the IE-
numerable interface’s methods, LINQ provides a language extension that allows
programmers to write queries with a syntax reminiscent of SQL.

LINQ is based around the IEnumerable and IEnumerable<T> interfaces which
provides basic methods for manipulating a list of elements. These provide a mon-
adic style of list comprehensions inspired by Haskell[13].

Another option is to base the language integrated queries on the list compre-
hension system[21]. Such a system could utilize the monadic list comprehensions.

9

2.2. SQL DATABASE ACCESS CHAPTER 2. BACKGROUND

This also does not require a completely separate embedded domain specific lan-
guage (DSL), like the SQL-like language extension for C# LINQ.

10

Chapter 3

Language Design

The goal for this programming language is to allow users to easily describe real-
time data streaming and signalling applications, similar to streaming databases.
It is designed to be easy to use, concise, and safe. This is achieved through static
typing, pure functions, and immutability.

3.1 Language Overview

This section will introduce the core syntax and semantics of the language and will
discuss the design decisions behind it.

1 use mod base.init.printLn;
2
3 !printLn("Hello, World!");

To run this example, type the above program text into a file, hello_world.stg,
and pass it to the compiler:

1 $ stage hello_world.stg
2 Hello, World!

The line use mod base.init.printLn; imports the print line function from the
base module which contain standard functionality. The text is printed with the
line !printLn("Hello, World!");. Notice the exclamation mark before printLn(...).
This tells the compiler that the action on the right of the exclamation should be
executed when the program is initialized. Omitting the exclamation would result
in nothing being printed. This mechanism is discussed in detail in section 3.1.8.

3.1.1 Modules

Modules are a way of organizing pieces of code and data into composable parts.
A module is a directory in the file system under the system module directory, that
contains zero or more .stg files in a hierarchy. The root name space is populated
by a file named mod.stg, if present. All other files create their own name space
inside the parent name space. Directories containing .stg files also create name

11

3.1. LANGUAGE OVERVIEW CHAPTER 3. LANGUAGE DESIGN

spaces, and as with the top-level directory, these will be populated by the mod.stg
file, if present.

Modules can also provide a shared object, named module.so, in the top dir-
ectory of the module, which can perform complex interactions with the compiler
(see section 5.5.1).

If a module contains init-expressions (see section 3.1.8), they will be executed
as part of the module initialization (see section 5.5).

Foreign modules can be accessed with the mod <modname> expression, where
<modname> is the name of an available module. For example, to access the member
a on the module test, one could write mod test.a.

3.1.2 Composite Data Types

Composite data types, structs, provides a way of grouping members of several
types together in a single object.

There are two uses for composite data types: as data structures, Structs, and
as modules. Each file inside a module compiles into a composite data type that
represents its name space. These name spaces are combined in the module’s top
level composite data type.

Data structures, structs can be declared by enclosing a set of statements in
struct { stmt1; ... stmtn; }. The statements available in modules are also
available within structures.

When a composite data type is declared inside another composite data type,
either as a name space in a module or as a data structure, all the members of the
parent’s scope can be accessed as closures. This means that the values will be
stored on the child data type at the time of the parent’s instantiation. This also
means that values on a data type is available for all its descendants.

Member Declaration and Assignment

A composite data type is composed of zero or more members. Each member has
a type that must be known at the time of compilation, and may have an assigned
value. If no default value was given during declaration, a value must be provided
during object instantiation.

A member a of type int can be declared with the following statement. This
member will not be bound, so it must be bound by another statement, either at
the composite declaration site, or during object instantiation.

1 a: int;

A member a can be bound to the value 2 with the following statement. The
value expression must be be of the same type as a was declared with. In this case,
a was declared as an integer, and 2 is an integer literal.

1 a = 2;

Instead of having to use two statements to declare and bind the above member,
the statements can be combined into the following declare-and-bind statement.

12

CHAPTER 3. LANGUAGE DESIGN 3.1. LANGUAGE OVERVIEW

1 a: int = 2;

In the case of the above declaration, the type of a is obvious from the value
expression 2. In such cases the type expression can be omitted.

1 a := 2;

Declarations and assignments inside a composite data type can appear in any
order and can depend on any other member, as long as there are no cyclic de-
pendencies.

1 # OK
2 a := b;
3 b := 2;
4
5 # Compilation error: Cyclic dependency between ’c’ and ’d’.
6 c := d;
7 d := c;

All members must be bound exactly once before the containing data type can
be instantiated. Binding a member multiple times or not binding a member at all
results in a compilation error.

Composite data types can provide a default bind that can be overridden by
another bind. An overridable bind is designated by prefixing the bind operator
(=) with a tilde (~). In the following example, a, b, and c will all be bound to 5.

1 a: int ~= 2;
2 a = 5;
3
4 b: int;
5 b ~= 2;
6 b = 5;
7
8 c :~= 2;
9 c = 5;

To avoid confusion about what overridable bind would be applied, each mem-
ber can have at most one overridable bind. For instance, the following snippet
results in an compilation error due to conflicting overridable binds.

1 a: int;
2 a ~= 2;
3 a ~= 5;

Based on this description we can impose three rules that a composite object
need to exhibit before it can be instantiated.

1. Each member must be bound by either an overridable or a non-overridable
bind.

2. Each member can be bound by at most one non-overridable bind.
3. Each member can be bound by at most one overridable bind.

Use Statements

Use statements allows the user to import names from other scopes into the current
one. This is useful to reduce clutter from having to type out a fully qualified path
each time. It is also useful for importing operator names into the current context.

13

3.1. LANGUAGE OVERVIEW CHAPTER 3. LANGUAGE DESIGN

The expression of the use expression can be a direct reference to a member,
in which case that member will be imported. The use’s expression can also be
suffixed with .* to import all names of that scope into the current scope.

The following example will import the names from the composite object a of
type Test into the current scope.

1 Test := struct {
2 a: int = 2;
3 b: int;
4 };
5
6 test: Test;
7 use test.*;
8
9 b = 5 + a;

A special case of the use statement is the mod statement. mod, if used as a state-
ment instead of as an expression, is translated into a use of that mod. For example,
mod test; is equivalent to use mod test.

In the current compiler implementation, while the used names are available
in the data type’s scope and all descendent scopes, they are not part of the object
definition. They can therefore not be accessed as members of an instance of the
data type.

Instantiation

After having created a composite data type S, an object of that type can be instan-
tiated using the expression S { ... }. The body of the instantiation can be filled
with bind statements that fill out the unbound or overridably bound members
from the data type. As noted above, all members must be bound before the object
can be instantiated. Failing to bind all members results in a compilation error.

3.1.3 Variants

A variant is a data type that can have one of a predefined set of values. Such a
type is defined by enclosing a comma separated list of the variant’s options in the
variant { ... } expression. A simple variant is the boolean type which can have
either the value true or the value false. This type is defined as follows.

1 Bool := variant { true, false };
2 use Bool.*;

Variant options can have a data field. In this case the option value is only
present if the corresponding option is selected. An example of a variant with data
type is the Maybe type. This definition of the variant holds either some integer value
or none.

1 Maybe := variant { some int, none };
2
3 a := Maybe.some(2);
4 b := Maybe.none;

14

CHAPTER 3. LANGUAGE DESIGN 3.1. LANGUAGE OVERVIEW

In reality we wish to define Maybe over any type, so it is defined as a poly-
morphic type.

1 Maybe := [$T] variant { some T, none };
2
3 a: Maybe[int] = Maybe.some(2);
4 b: Maybe[String] = Maybe.some("Hello, World!");

3.1.4 Functions

Functions can be declared as follows.

1 (a: int, b: int) -> int => a + b

This expression consists of two parts: the function prototype and the body. The
prototype, (a: int, b: int) -> int, is everything up to the lambda operator, =>. A
function prototype consists of zero or more parameters separated by commas (,).
Each parameter has a name, followed by colon (:) and its type. After the list
of parameters, the type of the returned value is prefixed with the function type
operator, ->.

Often the return type of the function is obvious from the body. In those cases
the return type specifier can be omitted.

1 (a: int, b: int) => a + b

Because anonymous, in-line functions are common, the parameter type can
also be omitted for functions with a single parameter. Currently the type of the
parameter must be obvious from their use in the body. In a future implementation
of the language the functions should strive to be as generic as possible[5].

1 a => a + 2

When used in the context of a scope, functions can capture a closure of vari-
ables in that scope. If the closure value is not constant at compile time it is filled
in at the time of the function’s instantiation.

1 b := 2;
2 f := (a: int) -> int => a + b;
3
4 A := struct {
5 x: int;
6 f := (a: int) -> a + x;
7 };
8
9 s := A { x = 5; };

10 !printLn("${s.fn(2)}"); # 7
11
12 t := A { x = 10; };
13 !printLn("${t.fn(2)}"); # 12

Recursion is possible for named functions.

1 fac := (a: int) -> int
2 => match a {
3 0 => 1;
4 _ => a * fac(a-1);

15

3.1. LANGUAGE OVERVIEW CHAPTER 3. LANGUAGE DESIGN

5 };
6
7 !printInt(fac(9));

Parametric functions can be declared by placing template parameters in the
function prototype. A template parameter is designated by the name of the para-
meter prefixed with $. For instance, the identity function, id can be declared like
this.

1 id := (a: $T) -> T => a;
2
3 a := id(2); # a = 2
4 b := id("Hello, World!"); # b = "Hello, World!"
5 c := id(true); # c = true

A template parameter can only be declared with the ’$’ prefix once. This declar-
ation should happen at the point of the function prototype that is considered au-
thoritative for that parameter’s value. For all other uses the name of the parameter
is enough. It does not matter from the type solver’s perspective what parameter is
tagged as authoritative, but this information is used when reporting typing errors.

The template parameter can appear inside of type constructors and function
type constructors. For instance, the compose function, f ◦ g, can be declared as
follows.

1 compose := (f: ($T) -> $U, g: (U) -> $V) -> (T) -> V
2 => (a: T) -> V => g(f(a));

A function type can be declared using the function type operator, ->. For
instance, (int, int) -> String is the type of a function that takes two integers as
parameters and returns a string. The function type declaration does not include
parameter names. The function parameter names are not part of the function type
and are only used for naming the parameters in the function body scope.

3.1.5 Tuples

Tuples contain a fixed set of members of disparate types. They are similar to structs
except their members are anonymous. A tuple can be created by surrounding a
comma separated list of elements with parenthesis. For example, a three-tuple of
a integer, a string, and a boolean can be created as follows. (2, "test", true). The
type of this object is declared by Tuple(int, String, Boolean). Tuple is a varadic type
constructor that takes N types as parameters, and returns the type of an N-tuple
with the given types as members.

This feature is not yet available in the prototype compiler, but is discussed as
it is necessary for the SQL-interface. We leave the exact implementation of this
feature as future work.

3.1.6 Match Expressions

Match expressions allows conditionally evaluate one of several expressions based
on patterns. The cases of the match expression are considered from top to bottom,

16

CHAPTER 3. LANGUAGE DESIGN 3.1. LANGUAGE OVERVIEW

and the branch at the first matching case is executed. The syntax for the match
expressions is inspired by the similar construct in Rust[22].

As a simple example, a match expression can select a branch based on match-
ing a value.

1 a := 2;
2 !printLn(match a {
3 1 => "one";
4 2 => "two";
5 3 => "three";
6 _ => "something else";
7 });
8 # "two"

_ is the wild card. It matches anything and acts as the default case in case no
other cases match. Notice that if we put the wild card at the top of the case list,
that branch will always be executed.

1 a := 2;
2 !printLn(match a {
3 _ => "something else";
4 1 => "one";
5 2 => "two";
6 3 => "three";
7 });
8 # "something else"

Match expressions can also pattern match on variants and on instantiated ob-
jects.

1 a := Some(2);
2 !printLn(match a {
3 Some(2) => "some two";
4 Some(_) => "something else";
5 None => "nothing";
6 });
7 # some two
8
9 Test := struct { a: int; }

10
11 b := Test { a = 2; };
12 !printLn(match b {
13 { a = 2; } => "test two";
14 { a = _; } => "test something else";
15 });
16 # test two

In cases where a case want to match on anything and the branch uses that
matched value, one can use a pattern/template parameter in place of the wild
card.

1 a := Some(2);
2 !printLn(match a {
3 Some(1) => "some one";
4 Some($v) => toString(v);
5 None => "nothing";
6 });
7 # 2

17

3.1. LANGUAGE OVERVIEW CHAPTER 3. LANGUAGE DESIGN

3.1.7 Classes

Classes provides a way of declaring different behaviour or values depending on a
set of parameters. As opposed to parametric polymorphism where the behaviour
is the same for all compatible parameters, the programmer can make different
behaviour for each set of parameters they choose to implement for. The condi-
tion for members of a class is that their members must conform to a specified
type schema. Classes provides a replacement for ad-hoc polymorphism, such as
function and operator overloading.

Classes define a set of common fields that must be implemented for each object
it is defined on. Type classes are comprised of two parts: the class declaration
and the instance implementations. The class declaration details what members
are required and their types. The instance implementations binds the fields from
its class for a particular object.

While classes are not limited to being defined over types, that is the most
common use case. This case is often referred to as a type class.

Classes are declared using a class expression.

1 Eq := class[$T, $U] {
2 op==: (T, U) -> Bool;
3 op!= :~= (lhs: T, rhs: U) -> Bool
4 => not(op==(lhs, rhs));
5 };

The programmer must specify an implementation for each set of parameters
the class should respond to. Referencing a type class with parameters that have
no matching implementation is a compilation error.

1 impl Eq[int, int] {
2 op== := (lhs: int, rhs: int) -> Bool
3 @native("int_int_eq");
4 };

3.1.8 Side Effects

Because this language is a pure functional programming language all function
calls must be pure. This means they can have no side effects and that the return
value of the function is exclusively determined by its arguments. This has ad-
vantages for code cleanliness, composability, and correctness, but does however
make the language in itself inert. To allow a program to perform actions that has
side effects, such as reading a file or interfacing with a database, we represent
the actions in terms of monads. Monads, as described in section 2.1.2, are used
to describe a sequence of operations that are executed within the context of the
monad.

IO Monad

Like Haskell and Scala with Cats, this language has a monad named IO that rep-
resents operations with potential side effects on the world. A simple example of

18

CHAPTER 3. LANGUAGE DESIGN 3.1. LANGUAGE OVERVIEW

using the IO monad is to print a line to the screen. The base module provides the
printLn function that does exactly that.

1 printLn := (val: String) -> IO[Unit] => (...);

Calling printLn("Hello, World!") alone does not result in a line being printed to
the screen. What this function does is return an object that when executed within
the context of IO will print the given string. An IO monad can be evaluated at
module initialization by using the withIO init monad as an init expression.

1 !withIO(printLn("Hello, World!"));

Init Monad

The Init monad represents computations that happen as part of the program ini-
tialization. This is intended to be actions such as setting up systems and loading
data required for the program to function.

Init monad calls start from the module’s object instantiation using init expres-
sions.

Init expressions

Init-expressions provides a mechanism, similar to do notation, for evaluating mon-
adic expressions. The init expression monads are evaluated as part of the instan-
tiation of objects. Init expressions are syntactic sugar which translates to a series
of bind calls.

When a composite data type contains one or more init expressions its instan-
tiations turns into init monads. If the module’s top-level scope contains init-
expressions the resulting init-monad will be executed during the module’s ini-
tialization.

1 random := (min: int, max: int) -> Init[int] => ...;
2
3 A := struct !Init {
4 b: int = !random(0, 10);
5 };
6
7 b: Init[A] = A {};

1 A := struct {
2 b: int;
3 };
4
5 b: Init[A] = random(0, 10) >>= value => return(A { b = value; });

As opposed to do-notation, init expressions does not provide a guarantee that
the operations will be bound in the order they appear in the program text. This is
in line with the design decision that members of data types can be declared in any
order. The compiler only guarantees that the init expressions will be evaluated in
an order such that their dependencies are fulfilled.

19

3.1. LANGUAGE OVERVIEW CHAPTER 3. LANGUAGE DESIGN

Do-Expressions

While useful, writing monadic expressions using the bind function directly is very
verbose and hard to read and write.

1 printAccount := (a: Account) -> IO[Unit]
2 => bind(printLn(f"id: ${a.id}"),
3 b => bind(printLn(f"name: ${a.name}"),
4 b => bind(printLn(f"register: ${a.register}"),
5 b => printLn(f"last login: ${a.lastLogin")
6)
7)
8);

We can improve this by creating the bind operator >>=.
1 op>>= := bind;
2
3 printAccount := (a: Account) -> IO[Unit]
4 => printLn(f"id: ${a.id}")
5 >>= (b => printLn(f"name: ${a.name}"))
6 >>= (b => printLn(f"register: ${a.register}"))
7 >>= (b => printLn(f"last login: ${a.lastLogin"));

Furthermore, since we are not interested in the value returned from the pre-
vious expression, we can create another operator, >>, which ignores the returned
value.

1 op>> := (a: IO[$T], b: IO[$U]) -> IO[U]
2 => a >>= dc => b;
3
4 printAccount := (a: Account) -> IO[Unit]
5 => printLn(f"id: ${a.id}")
6 >> printLn(f"name: ${a.name}")
7 >> printLn(f"register: ${a.register}")
8 >> printLn(f"last login: ${a.lastLogin");

Finally, we can introduce syntactic sugar to make the chain of monads even
easier to read and modify. This syntax is based on the do-notation from Haskell[13],
as well as the for comprehension from Scala[16].

1 printAccount := (a: Account) -> IO[Unit]
2 => do {
3 printLn(f"id: ${a.id}");
4 printLn(f"name: ${a.name}");
5 printLn(f"register: ${a.register}");
6 printLn(f"last login: ${a.lastLogin");
7 };

This syntax makes the monads very reminiscent of a series of imperative state-
ments.

If we rewrite the example of reading a line from stdin and echoing that twice
from section 2.1.2 from Haskell to this language, we can see the resulting expres-
sions are very similar. Note that in order to execute the monad we wrap it in
!withIO();.

1 !withIO(getLine >>= (ln => printLn(ln) >>= (_ => printLn(ln))));
2 !withIO(getLine >>= (ln => printLn(ln) >> printLn(ln)));
3 !withIO(do {

20

CHAPTER 3. LANGUAGE DESIGN 3.2. FORMAL LANGUAGE DEFINITION

4 ln <- getLine;
5 printLn(ln);
6 printLn(ln);
7 });

3.1.9 String Interpolation

Strings can be prefixed with a modifier that enables string interpolation. For in-
stance, the base module provides the f prefix witch transforms the string into a
default string formatter. The string interpolation is syntactic sugar that is expan-
ded into a list of string literals and expressions.

1 w := "world";
2 !printLn(f"Hello, ${w}!");
3
4 !printLn(StringInterpolator["f"].compose([
5 StringInterpolator["f"].fromLit("Hello, "),
6 StringInterpolator["f"].fromExpr(w),
7 StringInterpolator["f"].fromLit("!")
8]));

These string interpolators can be declared by implementing the type class
StringInterpolator for the string of the string prefix. A string interpolator provides
functions for transforming input literals and expressions into segments of type
Part, fromExpr and fromLit, and a function that concatenates the list of these seg-
ments to the final object of type Out.

The string formatter, f, concatenates each string literal and each expression
cast to a string to form the formatted string.

1 StringInterpolator := class [prefix: String] {
2 Out: Type;
3 Part: Type;
4
5 fromLit: (String) -> Part;
6 fromExpr: ($U) -> Part;
7 compose: (List[Part]) -> Out;
8 };
9

10 impl StringInterpolator["f"] {
11 Out = String;
12 Part = String;
13
14 fromLit = id;
15 fromExpr = string.ToString.toString;
16 compose = string.join;
17 };

3.2 Formal Language Definition

This section details the formal definition of the language, including parsing rules
and the rules for type resolution.

21

3.2. FORMAL LANGUAGE DEFINITION CHAPTER 3. LANGUAGE DESIGN

3.2.1 Language Grammar

An abbreviated formal description of the language syntax.

〈module〉 ::= 〈stmt-list〉

〈stmt-list〉 ::= 〈stmt-list〉 〈stmt〉
| 〈empty〉

〈stmt〉 ::= 〈use-stmt〉 ’;’
| 〈impl-stmt〉 ’;’
| 〈assign-stmt〉 ’;’
| 〈expr〉 ’;’
| ’;’

〈expr〉 ::= 〈expr1〉
| 〈func-decl〉
| 〈object-decl〉
| 〈object-inst〉
| 〈type-class-decl〉
| 〈match-expr〉

〈expr1〉 ::= 〈ident〉
| ’$’ 〈ident〉
| ’!’ 〈ident〉
| ’_’
| 〈number-lit〉
| 〈string-lit〉
| 〈array-lit〉
| 〈cons-call〉
| 〈func-call〉
| 〈func-proto〉
| 〈do-expr〉
| 〈special〉
| 〈expr1〉 ’.’ 〈ident〉
| 〈expr1〉 〈binary-op〉 〈expr1〉
| ’(’ 〈expr〉 ’)’

〈use-stmt〉 ::= ’use’ 〈expr〉
| ’use’ 〈expr〉 ’.*’

〈assign-stmt〉 ::= 〈ident〉 ’:’ 〈expr〉
| 〈ident〉 ’:’ 〈expr〉 ’=’ expr
| 〈ident〉 ’:=’ expr
| 〈expr〉 ’=’ expr
| 〈ident〉 ’:’ 〈expr〉 ’∼=’ expr

22

CHAPTER 3. LANGUAGE DESIGN 3.2. FORMAL LANGUAGE DEFINITION

| 〈ident〉 ’:∼=’ expr
| 〈expr〉 ’∼=’ expr

〈mod-expr〉 ::= ’mod’ 〈ident〉

〈type-class-decl〉 ::= ’class’ ’[’ 〈template-decl-args〉 ’]’ ’{’ 〈stmt-list〉 ’}’

〈template-params〉 ::= 〈template-params1〉
| 〈template-params1〉 ’,’

〈template-params1〉 ::= 〈template-params1〉 ’,’ 〈template-param〉
| 〈template-param〉

〈template-param〉 ::= ’$’ 〈expr〉
| 〈ident〉 ’:’ 〈expr〉

〈impl-stmt〉 ::= ’impl’ 〈expr〉 ’[’ 〈func-args〉 ’]’ ’{’ 〈stmt-list〉 ’}’

〈special-args〉 ::= 〈special-args1〉 ’,’
| 〈special-args1〉

〈special-args1〉 ::= 〈special-args1〉 ’,’ 〈special-arg〉
| 〈special-arg〉

〈special-arg〉 ::= 〈number-lit〉
| 〈string-lit〉

〈func-decl〉 ::= ’(’ 〈func-decl-params〉 ’)’ ’⇒’ 〈expr〉
| ’(’ 〈func-decl-params〉 ’)’ ’→’ 〈expr1〉 ’⇒’ 〈expr〉
| 〈ident〉 ’⇒’ 〈expr〉
| ’(’ 〈func-decl-params〉 ’)’ ’→’ 〈expr1〉 ’@native(’ 〈string-lit〉

’)’

〈func-decl-params〉 ::= 〈func-decl-params1〉
| 〈func-decl-params1〉 ’,’
| 〈empty〉

〈func-decl-params1〉 ::= 〈func-decl-params1〉 ’,’ 〈func-decl-param〉
| 〈func-decl-param〉

〈func-decl-param〉 ::= 〈ident〉 ’:’ 〈expr〉

〈func-proto〉 ::= ’(’ 〈func-proto-params〉 ’)’ ’→’ 〈expr1〉

〈func-proto-params〉 ::= 〈func-proto-params1〉
| 〈func-proto-params1〉 ’,’
| 〈empty〉

23

3.2. FORMAL LANGUAGE DEFINITION CHAPTER 3. LANGUAGE DESIGN

〈func-proto-params1〉 ::= 〈func-proto-params1〉 ’,’ 〈func-proto-param〉
| 〈func-proto-param〉

〈func-proto-param〉 ::= 〈expr〉

〈func-call〉 ::= 〈expr1〉 ’(’ 〈func-args〉 ’)’

〈cons-call〉 ::= 〈expr1〉 ’[’ 〈func-args〉 ’]’

〈func-args〉 ::= 〈func-args1〉
| 〈func-args1〉 ’,’
| 〈empty〉

〈func-args1〉 ::= 〈func-args1〉 ’,’ 〈func-arg〉

〈func-arg〉 ::= expr

〈object-decl〉 ::= ’struct’ ’{’ 〈stmt-list〉 ’}’

〈object-inst〉 ::= 〈expr1〉 ’{’ 〈stmt-list〉 ’}’

〈variant-decl〉 ::= ’variant’ ’{’ 〈variant-items〉 ’}’

〈variant-items〉 ::= 〈variant-items1〉 ’,’
| 〈variant-items1〉
| 〈empty〉

〈variant-items1〉 ::= 〈variant-items1〉 ’,’ 〈variant-item〉
| 〈variant-item〉

〈variant-item〉 ::= 〈ident〉
| 〈ident〉 〈expr〉

〈match-expr〉 ::= ’match’ 〈expr1〉 ’{’ 〈match-cases〉 ’}’

〈match-cases〉 ::= 〈match-cases〉 〈match-case〉
| 〈empty〉

〈match-case〉 ::= 〈expr1〉 ’⇒’ 〈expr〉 ’;’

〈do-expr〉 ::= ’do’ ’{’ 〈do-expr-stmts〉 ’}’

〈do-expr-stmts〉 ::= 〈do-expr-stmts〉 〈do-expr-stmt〉
| 〈empty〉

〈do-expr-stmt〉 ::= 〈pattern〉 ’<-’ 〈expr〉 ’;’
| 〈expr〉 ’;’

24

CHAPTER 3. LANGUAGE DESIGN 3.2. FORMAL LANGUAGE DEFINITION

〈array-lit〉 ::= ’[’ 〈array-body〉 ’]’
| ’[’ 〈array-body〉 ’,’ ’]’
| ’[’ 〈array-body〉 ’,’ ’...’ ’]’

〈array-body〉 ::= 〈array-body〉 ’,’ 〈array-item〉
| 〈array-item〉

〈array-item〉 ::= 〈expr〉

The 〈binary-op〉 non-terminal matches any binary operator. Currently +, -, *,
/, ==, !=, <, >, <=, >=, &&, ||, &, |, >>, <<, and >>= are recognized as binary
operators.

The 〈ident〉 non-terminal matches any user-provided word that is not the name
of a terminal, as well as any binary operator prefixed with ’op’, for instance ’op+’.

3.2.2 Core Language

The language is comprised of a set of core operations, which is what the compiler
works on for the semantic analysis and code generation. The syntactic sugar is
built on top of the core language.

The core language contains the following expressions.

• Function declaration.
(p1: T1, ..., pn: Tn) -> Tr => e

Declares a function with parameters p1 ... pn with respective types T1 ... Tn,
return type Tr, and body e.

• Native function declaration.
(p1: T1, ..., pn: Tn) -> Tr @native("function name")

Declares a function with parameters p1 ... pn with respective types T1 ... Tn

and return type Tr which calls the native function named "function name". See
section 5.5.1.

• Function type declaration.
(T1, ..., Tn) -> Tr

Declares a function type with parameters of type T1 ... Tn and return type
Tr.

• Template Declaration.
[p1: T1, ..., pn: Tn] e

Declares a parametric template over object e The parameters p1 ... pn of
respective type T1 ... Tn are provided to the expression in e.

• Function call.
fn(a1, ..., an)

Calls the function fn with arguments a1 ... an.
• Construct object.

cons[a1, ..., an]

Packs the object constructor cons with arguments a1 ... an.

25

3.2. FORMAL LANGUAGE DEFINITION CHAPTER 3. LANGUAGE DESIGN

• Instantiate object.
inst { m1 = e1; ... mn = en }

Packs the object inst with extra binds of members m1 ... mn to expressions
e1 ... en.

• Access.
target.name

Unpacks the member name from the composite object target.
• Literal.

Any object.
• Native literal.

@native("literal name")

References a native object named "literal name" registered by the native
module extension (section 5.5.1).

• Lookup.
Any identifier.

• Module.
mod target

Returns the top level object for the module named target.
• Match.

match condition { pat1 => expr1; ... patn => exprn; }

Executes the first of expr1 ... exprn where the corresponding pat1 ... patn

matches condition.
• Wild card.

_

Represents the pattern that matches anything.
• Init expression.

!exprid

References the init expression with id exprid of the parent composite.
• Type class.

class[p1: T1, ..., pn: Tn] { m1: M1; ... mk: Mk; }

Registers a type class with parameters p1 ... pn of respective type T1 ... Tn

and with members m1 ... mk of type M1 ... Mk.
• Composite.

struct { statements }

Registers a composite data type with statements statements. These state-
ments can be:

◦ Member declaration (section 3.1.2).

1 m: T;
2 m: T = e;
3 m: T ~= e;
4 m := e;
5 m :~= e;

Declares a member m on the composite data type with type T and value
e. If T is not present the type is derived from the value. If the assign-

26

CHAPTER 3. LANGUAGE DESIGN 3.2. FORMAL LANGUAGE DEFINITION

ment operator is prefixed with tilde (~=) the bound value is overrid-
able.

◦ Member assignment (section 3.1.2).

1 m = e;
2 m ~= e;

Binds member m to value e. If the assignment operator is prefixed with
tilde (~=) the bound value is overridable.

◦ Use (section 3.1.2).

1 use e;
2 use e as name;
3 use e.*;

(1) Put the value e with name e in the current scope. This is only
available if e is a lookup, module, or access expression. (2) Put the
value e in the current scope with name name. (3) Put all members of
the expression e in the current name space. This is only available if
the value returned by e is a composite.

◦ Init expression.
!expr

Evaluates the init monad provided by expr during module initialization.
The result of this monad can be referenced using the init expression
node.

◦ Type class implementation.
impl target[a1, ..., an] { binds }

Creates an implementation for the type class target with arguments
a1 ... an where the type class members are bound by the binds.

• Variant.
variant { opt1 T1, ... optn Tn }

Registers a variant type with options opt1 ... optn with respective types
T1 ... Tn. Each of the types are optional.

3.2.3 Syntactic Sugar

To make the core language easier to use, syntactic sugar is introduced to automate
or provide more convenient syntax for commonly used patterns.

Infix Binary Operators

Infix binary operators are just function calls with the left and right hand side
as its two arguments. This syntax sugar is resolved during parsing. Any binary
operation, such as 2 + 3, is converted into a function call. The target function
of the call is a variable with the operator symbol prefixed with ’op’ as name. For
instance, the previous addition is translated into op+(2, 3).

27

3.2. FORMAL LANGUAGE DEFINITION CHAPTER 3. LANGUAGE DESIGN

Lists

Lists are a simple rewrite syntax sugar, and are handled at the transition from
syntax tree to abstract syntax tree. A list is simply a linked list specified by the
cons function. cons is a tuple of the current value, the head, and the rest of the
list, the tail. A list literal, [e1, e2] is translated into cons(e1, cons(e2, nil)). A list
pattern can also match on only the first few elements. Such a pattern, [e1, e2, . . .]
is translated into cons(e1, cons(e2, _)), where _ is the wild card.

Do Notation

Do notation is a simple rewrite syntax sugar. It is exactly equivalent to calling
bind (the >>= or >> operators) on its statements.

If we care about the returned value from a monad, we can write a statement
like a <- getLine;. This will be translated to getLine >>= (a => <next>). If we do not
care about the returned value, we can write getLine;. This will be translated to
getLine >> <next>.

Object Instantiation with Init Expressions

Object instantiation with init expressions requires knowledge of the object to in-
stantiate and the types of its members. It is therefore performed very late in the
compile pipe line. In the current compiler implementation it is resolved as part of
code generation.

When an object with init expressions is instantiated it does not result in the
object itself, T , but rather an init-monad with itself, Init[T]. The instantiation
is structured as a series of binds of the init expression monads, with the non-
init expressions and bound members being passed as closures to the bottom-most
bind, where the packed object is returned. The init-monad binds are structured in
such a way that all their dependencies have been fulfilled before the monad itself
is evaluated.

The following example illustrates how an object with init expressions is trans-
lated to the core syntax.

1 random := (min: int, max: int) -> Init[int] => ...;
2
3 Test := struct {
4 a := !random(b, c);
5 b := !random(x, x+5);
6 c := !random(b, y);
7
8 x: int;
9 y: int;

10 };
11
12 test: Init[Test] = Test { x = 2; y = 5};
13
14 test: Init[Test] =
15 do {
16 x <- return(2);

28

CHAPTER 3. LANGUAGE DESIGN 3.2. FORMAL LANGUAGE DEFINITION

17 e2 <- random(x, x+5);
18 b <- return(e2);
19
20 y <- return(5);
21
22 e3 <- random(b, y);
23 c <- return(e3);
24
25 e1 <- random(b, c);
26 a <- return(e1);
27
28 return(Test { a = a; b = b; x = x; y = y; });
29 };

In the current compiler implementation, as this transformation happens at
the code generation stage, such an instantiation does not bind return monads for
the member binds and expression evaluations. In stead, they are expressed as
imperative assignments and passed as closures to the next function. The resulting
code, however, is functionally equivalent.

Object Constructor Decay

As parametric functions are represented as object constructors, the user must an-
notate references to parametric values with []. This often happens in cases where
the parameters of the constructor can be inferred, and the extra notation serves
no purpose. Object constructor decay automatically transforms uses of object
constructors into instances of the constructed object in cases where the object
constructor itself is not expected.

This operation is applied during the type check phase. Any AST node that
returns an object constructor is transformed into a construct node with the original
node as its target function. For a discussion about the implementation of this
feature, see section 5.2.4.

3.2.4 Composite Data Types

We present the algorithm used in the current compiler prototype implementation
for verifying the binds of the data type and ordering the operations that constitute
its instantiation. The resulting actions from the instantiation ordering algorithm
typically is used to generate byte code.

The composite data type for type t is a tuple Ct = (M , E, B, B̃). M is a set of
the members of the data type, M = {m1 : tm1

, . . . , mn : tmn
}, with mi : tmi

being
the member named mi of type tmi

. E is a set of expressions associated with the
data type, E = {e1 : te1

, . . . , ek : tek
}, with ei : tei

being the expression ei of type
tei

. B is a set of binds that bind parts of expressions from E to parts of members in
M (equation 3.3). B̃ is a set of binds that are overridable. B̃ has the same domain
as B.

The set of descendants for a member m : t can be determined by desc(m : t)
(equation 3.1). A descendant is a member of a composite member or its children,

29

3.2. FORMAL LANGUAGE DEFINITION CHAPTER 3. LANGUAGE DESIGN

or the top member itself. For instance in the following listing, desc(val : A) = {a :
int, b : int, x : B, val : A}.

1 A := struct { a: int; x: B; };
2 B := struct { b: int; };
3
4 val := A { (...) };

desc(m : t) = {m : t} ∪

¨
⋃

d:td∈Ct .M
desc(d : dt) if type t is composite Ct

; otherwise
(3.1)

As a convenience, the descendants of a composite data type, Ct can be de-
termined with desc(Ct) (equation 3.2).

desc(Ct) =
⋃

m:tm∈Ct .M
{m : tm} ∪ desc(m : tm) (3.2)

B ⊆ {(d : td , e : te) | (d : td , e : te) ∈ (desc(Ct)× (
⋃

a:ta∈Ct .E
desc(a : ta))), td = te}

(3.3)
The set of all bind targets for a set of binds, B, can be determined with the

function targets(B). This is useful for considering what descendants are touched
by each bind, while keeping track of the duplicate binds for validation.

targets(B) =
⋃

(m:tm,e:tm)∈B

desc(m : tm)× {e : tm}

At the site of instantiation the use can provide additional expressions and
binds, E1 and B1 respectively. There are several requirements that must be fulfilled
for a object instantiation to be valid.

1. All members must be bound, either overridably or not. (Equation 3.4)
2. No member can be bound non-overridably more than once. (Equation 3.5)
3. No member can be bound overridably more than once. (Equation 3.6)

For the validity test equations (3.4, 3.5, and 3.6) of composite Ct = (M , E, B, B̃)
with extra binds, B1, and extra expressions, E1, we will use B = Ct .B ∪ B1 and
B̃ = Ct .B̃.

;⇔ Ct .M − {m : t | (m : t, e : t) ∈ targets(B ∪ B̃)} (3.4)

;⇔ {m : t |
(m : t, e : t) ∈ targets(B),

m : t ∈ (targets(B)− {(m : t, e : t)})}
(3.5)

30

CHAPTER 3. LANGUAGE DESIGN 3.2. FORMAL LANGUAGE DEFINITION

;⇔ {m : t |
(m : t, e : t) ∈ targets(B̃),

m : t ∈ (targets(B̃)− {(m : t, e : t)})}
(3.6)

Provided all the requirements above are satisfied, a bind solution can be de-
termined by solve (equation 3.7).

solve(Ct , B1) = targets(Ct .B ∪ B1)

∪ {(m : t, e : t) |
(m : t, e : t) ∈ targets(Ct .B̃),

m : t /∈ {m1 : t1 | (m1 : t1, e1 : t1) ∈ targets(Ct .B ∪ B1)}}

(3.7)

Let dep(e : t) : Ct .E → P (desc(Ct .M)) be a function of the members that
expression e : t is dependent on.

The directed dependency graph that dictates the order of which the expres-
sions should be evaluated is G = (Ct .E, D(Ct)), where Ct .E is the set of vertices
of the graph and D(Ct) is the set of edges (dependencies).

D(Ct) =
⋃

e:t∈Ct .E
(dep(e : t)× {e : t})

Given such a dependency graph, a final order of evaluation can be derived for
the expressions using a topological sort. In addition to evaluating the expressions,
the value of expressions must be unpacked onto the members who are bound
to them, and the composite members must be packed with their now evaluated
members.

There are 4 operations that are used to instantiate objects:

1. EXPR(e : t): Evaluates the expression e : t, taking its dependencies, dep(e :
t), as arguments.

2. INIT_EXPR(e : t): Evaluates the expression returning an init monad and
binds the monad with a lambda function of the remaining actions.

3. BIND(m : t): Assigns the part of member m : t ’s bound expression to the
member. After this point the member is available as a dependency to other
expressions.

4. PACK(m : t): Packs the composite member m : t with its members. All the
members desc(m : t) are expected to be available, either having been bound
or packed.

Given a composite data type, Ct , a set of extra binds, B1, and a set of extra
expressions, E1, the list of operations required to instantiate the object is given by
the following algorithm.

1. Let S := solve(Ct , B1) be the bind solution.

31

3.2. FORMAL LANGUAGE DEFINITION CHAPTER 3. LANGUAGE DESIGN

2. Let G := (Ct .E, D(Ct)) be the dependency graph.
3. Let Om := ; be the set of members that have been packed.
4. Let A := [] be the list of operations required to instantiate the object.
5. Topologically sort the graph G into the list L.
6. For each expression e : t ∈ L:

a. For each composite member

m : tm ∈ {m : tm | m : tm ∈ dep(e : t), {m : tm} ⊂ desc(m : tm)}

i. If m : tm /∈ Om:

A. Append PACK(m : tm) to A.
B. Add m : tm to Om.

b. Append EXPR(e : t) to A.
c. For each terminal member

m : tm ∈ {m : tm | m : tm ∈ dep(e : t), {m : tm}= desc(m : tm)}

i. If m : tm /∈ Om:

A. Append BIND(m : tm) to A.
B. Add m : tm to Om.

7. For each composite member that is not yet visited

m : tm ∈ {m : tm | (m : tm, e : tm) ∈ S, {m : tm} ⊂ desc(m : tm), m : tm /∈ Om}

a. Append PACK(m : tm) to A.
b. Add m : tm to Om.

8. Return A.

3.2.5 Typing Rules

The type system and notation is based on "Types and Programming Languages"[4].
This system of typing rules describe both how the types of expressions relate to
each other, as well as how the names are being propagated through the expres-
sions.

• LIT: For a constant value v : T

Γ ` v : T

• LOOKUP:
x : T ∈ Γ
Γ ` x : T

• ACCESS:
Γ ` x : struct{m : T ; . . . }

Γ ` x .m : T

32

CHAPTER 3. LANGUAGE DESIGN 3.3. STANDARD MODULE

• FUNC: Abstraction

Γ , p1 : P1, . . . , pn : Pn ` e : R
Γ ` (p1 : P1, . . . , pn : Pn)→ R⇒ e : (P1, . . . , Pn)→ R

• FUNC_NATIVE:

P1 : Type, . . . , Pn : Type ∈ Γ R : Type ∈ Γ
Γ ` (p1 : P1, . . . , pn : Pn)→ R @native(name) : (P1, . . . , Pn)→ R

name is a literal string referring to a C-function registered to the system
from the current module.

• FUNC_TYPE:

P1 : Type, . . . , Pn : Type ∈ Γ R : Type ∈ Γ
Γ ` (P1, . . . , Pn)→ R : Type

• CALL: Application

Γ ` f : (p1, . . . , pn)→ r Γ ` a1 : p1, . . . , an : pn

Γ ` f (a1, . . . , an) : r

• COMPOSITE:

T1 : Type, . . . , Tn : Type ∈ Γ , m1 : T1, . . . , mn : Tn

Γ ` struct{m1 : T1; . . . ; mn : Tn; }

• INST: Instantiate

C : struct{m1 : T1; . . . ; mn : Tn} ∈ Γ
Γ , m1 : T1, . . . , mn : Tn ` v1 : T1, . . . , vn : Tn

Γ ` C{m1 = v1; . . . ; mn = vn; } : T

• VARIANT:
{T1 : Type, . . . , Tn : Type} ⊆ Γ

Γ ` variant{v1T1; . . . ; vnTn; } : T ype

• TEMPL: Template

Γ , p1 : P1, . . . , pn : Pn ` e : T
Γ ` [p1 : P1, . . . , pn : Pn] e : [P1, . . . , Pn]→ T

• CONS: Constructor

Γ ` c : [p1 : P1, . . . , pn : Pn]→ T
Γ ` c[a1, . . . , an] : [p1 7→ a1, . . . , pn 7→ an]T

3.3 Standard Module

The base module provides standard functionality that is commonly required for all
other modules.

33

3.3. STANDARD MODULE CHAPTER 3. LANGUAGE DESIGN

3.3.1 prelude

The prelude name space is used by default by every module. This is to ensure all
names required for the basic functionality of the compiler is available, as well as
to provide easy access to commonly used features.

Type: Type

The type of types.
int: Type

The type of 64 bit signed integers.
String: Type

The type of UTF-8 encoded strings.
Unit: Type

The unit type. Contains only the value unit

unit: Unit

The unit value.
Init: [T: Type] -> Init[T]

Type constructor for the init monad.
Bool: Type

The boolean variant type which contains true and false.
true: Bool

The true boolean value.
false: Bool

The false boolean value.

3.3.2 init

The init module contains functionality related to the init monad.
return: (val: $T) -> Init[T]

Wrap the value val in the init monad.
bind: (a: Init[$T], f: (T) -> Init[$U]) -> Init[U]

Sequence the monad returned by f to be evaluated after a.
withIO: (a: io.IO[$T]) -> Init[T]

Execute an IO monad as part of the module initialization.
printLn: (val: String) -> Init[Unit]

A convenience for printing a line of text to the terminal within the context of the
Init monad. Equivalent to withIO(io.printLn(val))

3.3.3 io

The IO module contains functionality related to the IO monad.

34

CHAPTER 3. LANGUAGE DESIGN 3.3. STANDARD MODULE

IO: [T: Type] -> IO[T]

Type constructor for the IO monad.
return: (val: $T) -> IO[T]

Wrap the value val in the init monad.
bind: (a: IO[$T], f: (T) -> IO[$U]) -> IO[U]

Sequence the monad returned by f to be evaluated after a.
printLn: (val: String) -> IO[Unit]

Writes the text val to stdout.

3.3.4 list

List: [T: Type] -> List[T]

Type constructor for the List type.
nil: List[$T]

Empty list.
cons: (head: $T, tail: List[T]) -> List[T]

A linked list with head and tail.
head: (a: List[$T]) -> Maybe[T]

Returns some head if the list is not nil, none otherwise.
tail: (a: List[$T]) -> List[T]

Returns the tail of the list. If the list is empty, it returns the empty list.
map: (fn: (T) -> $U, a: List[$T]) -> List[U]

Applies the function fn to each element of list a and returns the output as a new
list.
foldl: (fn: (T) -> $U, a: List[$T]) -> List[U]

Applies the function fn to each element of list a and returns the output as a new
list.

3.3.5 composite

This API is not implemented in the current compiler prototype.
Composite: class [T: Type]

Type class that is automatically implemented for all composite (struct) data types.
Composite[T].tupleType: $U

The type of a tuple that contains anonymous versions of the members of data type
T in order of definition. For example:
Composite[struct {a: int, b: String}].tupleType = Tuple(int, String)

Composite[T].fromTuple: (Composite[T].tupleType) -> T

Instantiates the composite object from the tuple.

35

Chapter 4

SQL-Interface

This report will consider an SQL-interface that allows users to dispatch SQL quer-
ies and receive sets of results back. The goal of this interface is to make it easy for
users to specify queries, pass parameters to said query, and receive rows from the
query for further processing. By easy it is implied that the compiler should provide
useful error messages and hints in cases where the user have made a mistake in
the program. The interfaces should fit into the functional and type safe nature of
the language.

The SQL examples are written for PostgreSQL.

4.1 Database Connection

Connecting to the database, like other operations with side effects, is encapsulated
in an IO-monad.

All operations on the database requires the Connection handle, which is ac-
cessible in the context of an IO monad, using a specific connect function for the
database they are connecting to. The connection object creates a uniform inter-
face for querying any database.

1 connect := (conStr: String) -> Connection => ...;

Using this interface, the user can connect to, for instance, a PostgreSQL data-
base using the following snippet.

1 mod sql;
2
3 db := !withIO(sql.postgresql.connect("dbname=test"));

4.2 Simple Query Interface

This first implementation of an SQL interface provides a query monad. It will, when
executed, send the provided query string and parameter strings to the database
back end and return a list of rows, each consisting of a list of fields represented
as strings.

37

4.3. QUERY INTERFACE CHAPTER 4. SQL-INTERFACE

1 query := (db: Connection,
2 q: String,
3 params: List[String]) -> IO[List[List[String]]] => ...;

The user can now, for example, query the database as follows:

1 rows := !withIO(query(db, "select * from account where id=$1"), ["3"]);

While this query interface is easy to implement into the language and allows
the user to make any query to the database, it does not fulfill all the requirements
put forth in the introduction. Both the parameters and the output of the query
are passed as strings, and the conversion to the correct data types, as well as
unwrapping the tuple lists, must be done manually. This is both error prone and
tedious.

4.3 Query Interface

We propose this query interface as a layer on top of the previous query monad,
which is inspired by the Scala library Doobie[17]. This API simplifies the process
of querying the database while providing greater type safety.

This system is not yet implemented in the prototype sql module due to certain
compiler features that are not complete. See section 6.2.1 for a discussion about
this.

The first part of executing a query is to input the SQL that should be evalu-
ated. A simple and naïve approach would be to use the default string formatter to
interpolate the variables directly into the SQL statement. In this implementation
this can be acceived by the following expressiont.

1 id := 2;
2 q: Query = sql.markSafe(f"select * from account where id=${id}");
3
4 !withIO(sql.query(db, q));

This poses an issue when using untrusted parameters. A malicious user would
be able to inject rogue SQL into the statement in an SQL-injection attack. Because
of this we instead use the sql-formatter. The query is bundled with the query
parameters in the Query data type, which is passed to the database back end for
escaping and evaluation. This data structure stores the parameters next to the
string, and inserts place holder variable references in the query string. When the
query is executed, the parametrized query string along with the list of parameters
is passed to the backend for escaping and evaluation.

1 id := 2;
2 q: Query = sql"select * from account where id=${id}";
3
4 !withIO(sql.query(db, q));

This query will be translated into the following SQL with 2 being passed as
parameter 1.

1 select * from account where id=$1::integer;

38

CHAPTER 4. SQL-INTERFACE 4.3. QUERY INTERFACE

Because we know what type the user passed as each parameter we can expli-
citly tag the usages in the generated SQL. This provides the database engine with
more information about the user’s intent and can provide error messages in case
of type mismatch.

Sometimes the programmer wishes to compose a query of multiple parts. This
can be accomplished safely with SQL fragments. Any such query string prefixed
by sqlf is an SQL fragment, and when interpolated like a variable, the fragment
is inserted literally, and the parameters are renamed to remain unique in the new
query.

1 id := 2;
2 name := "test";
3
4 nameFilter := sqlf"name=${name}"
5 q := sql"select * from account where id=${id} and ${nameQuery}";
6
7 !withIO(sql.query(db, q));

This query translates into the following SQL statement with parameter 1 as 2

and parameter 2 as "test".

1 select * from account where id=$1::integer and name=$2::text;

The safe version of the query is designed to be much simpler to use than the
unsafe version presented first. Because the query-function only accepts Query ob-
jects as statements, one would have to manually tag the potentially compromised
string as safe. The intention is to make specifying safe programs easier than spe-
cifying potentially dangerous ones. Of course, some times the programmer wants
to escape the safety of the automatic escaper. In this case they can resort to the
markSafe function. This makes it clear that this location has a higher potential
for vulnerabilities and indicates extra scrutiny from the programmer is in order to
ensure the program is still safe.

When a Query object has been created the next step is to pass the query to the
database. This can be accomplished by one of three monads: query, queryOne, or
execute. query, when evaluated, returns a list of rows. queryOne expects and returns
only one row as a result, and raises an error if the query produces more than
one row. execute is intended for queries that does not return any rows, such as
updates, inserts, and deletes. This monad returns the number of rows affected by
the command.

For the query and queryOne monads the final step is to transform the fields of
the returned tuples into native data types.

After the database back end has processed the query the resulting tuples are
returned to the application. At this point the tuples must be transformed back
into data that is easily usable within the language. The simple query interface
presented first solved this by returning a list the fields as strings for each row.
While simple to implement, this puts the burden on the application developer to
both unpack the list into a usable data structure, as well as converting the strings
into their correct data types.

39

4.3. QUERY INTERFACE CHAPTER 4. SQL-INTERFACE

This improved interface automates this task by letting the user specify what
data type the returned tuples should have, and automatically transforming the
rows into that type. The simplest form of this mechanism can be seen with a
tuple. The query and queryOne must be qualified with the type of the tuples they
are expected to return.

1 !withIO(do {
2 db <- postgresql.connect();
3 rows <- query[(int, String)](db, sql"select id, name from account");
4 mapM_(((id, name)) => printLn(f"${id}: ${name}"), rows);
5 });

The query is expected to return rows of fields with types matching the mem-
bers of the tuples, in the same order. A run-time error is returned if there is a type
mismatch.

This interface is useful for ad-hoc queries, but if the goal of the query is to fill
a data structure with data the programmer still has to transform the data into the
final data type for each query. In that case the programmer can implement the
SQLTuple type class on the target data type.

1 SQLTuple := class [T: Type] {
2 tupleType: Type;
3 fromTuple: (tupleType) -> T;
4 };
5
6 Account := struct {
7 id: int;
8 name: String;
9 };

10
11 impl SQLTuple[Account] {
12 fieldTypes = (int, String);
13 fromTuple = ((i, n): Tuple(int, String)) -> Account
14 => Account { id = i; name = n; };
15 };
16
17 !withIO(do {
18 db <- postgresql.connect();
19 rows <- query[Account](db, sql"select id, name from account");
20 mapM_(a => printLn(f"${a.id}: ${a.name}"), rows);
21 });

the data type transform can be automated further in cases such as this where
the members of the target data type match both the type and the order of the re-
turned tuples. By introducing a default implementation of SQLTuple that matches
on any composite data type, the developer can automatically get back the final
data type without having to implement a special transformation.

1 impl SQLTuple[$T] {
2 fieldTypes = Composite[T].tupleType;
3 fromTuple = Composite[T].fromTuple;
4 };
5
6 Account := struct {
7 id: int;
8 name: String;

40

CHAPTER 4. SQL-INTERFACE 4.3. QUERY INTERFACE

9 };
10
11 !withIO(do {
12 db <- postgresql.connect();
13 rows <- query[Account](db, sql"select id, name from account");
14 mapM_(a => printLn(f"${a.id}: ${a.name}"), rows);
15 });

4.3.1 Type Mapping

Type mapping concerns how data stored in the database is translated into language-
native types that can be reasoned about by the compiler.

The type class SQLType[$T] is responsible for performing this type mapping. Any
type that can be pased to and from the SQL-backend is implemented for this type
class.

1 SQLType := class[$T] {
2 toSQL: (T) -> String;
3 fromSQL: (String) -> T;
4 typeSuffix: Maybe[String];
5 };
6
7 impl SQLType[String] {
8 toSQL = v => v;
9 fromSQL = v => v;

10 typeSuffix = None;
11 };
12
13 impl SQLType[String] {
14 toSQL = v => base.toString(v);
15 fromSQL = v => base.toInt(v);
16 typeSuffix = Some("integer");
17 };

The function toSQL is responsible for converting the native object into a string
that can be passed to the database backend, and fromSQL takes a string returned
from the database and converts it back into a native object. For providing ad-
ditional type safety in the SQL query, types can optionally specify a suffix that is
inserted into the query to indicate what type the user intended it to be. For Postgr-
eSQL, such a parameter is translated into, for example $1::integer for parameter
1 of type int.

4.3.2 Query String Interpolation

As described above, we provide a string interpolator that returns a query object
that is ready to be sent to the database. Here we will investigate how this mech-
anism functions.

The sql and sqlf prefixed strings are translated into lists of expressions re-
turning parts of the expressed query, similarly to the string formatter prefix f (see
section 3.1.9). The difference from the string format interpolator is that the parts
are QueryPart objects. These object represent either a literal, sql-safe string or a
parameter that will be passed to the underlying database for escaping.

41

4.3. QUERY INTERFACE CHAPTER 4. SQL-INTERFACE

1 QueryPart := variant {
2 literal String,
3 parameter struct { val: String; typeName: Maybe[String]; },
4 };

A query, such as sql"select * from account where name=${aName} and id=${aId}" is
translated into an expression such as the following.

1 StringInterpolator["sql"].compose([
2 StringInterpolator["sql"].fromLit("select * from account where name="),
3 StringInterpolator["sql"].fromExpr(aName),
4 StringInterpolator["sql"].fromLit(" and id="),
5 StringInterpolator["sql"].fromExpr(aId)
6])

The proposed implementation of the string interpolator class is presented in
the following listing.

1 ComposeState := struct {
2 query :~= "";
3 params: List[(int, String)] ~= nil;
4 nextParam :~= 1;
5 };
6
7 makeTypeSuffix := (suf: Maybe[String]) -> String
8 => match suf {
9 Some($name) => "::${name}";

10 None => "";
11 };
12
13 composePart := (s: ComposeState, p: QueryPart) -> ComposeState
14 => match p {
15 literal($lit) => s {query = s.query+lit;};
16 parameter{$val, $typeSuffix} => s {
17 query = s.query+f"\$${s.nextParam}${makeTypeSuffix(typeSuffix)}";
18 params = cons((s.nextParam, val), s.params);
19 nextParam = s.nextParam+1;
20 };
21 };
22
23 impl StringInterpolator["sql"] {
24 Out = Query;
25 Part = QueryPart;
26
27 fromLit = QueryPart.literal;
28 fromExpr = (val: $T) -> QueryPart
29 => QueryPart.parameter {
30 val = SQLType.toSql(val);
31 typeName = SQLType[T].typeSuffix;
32 };
33
34 compose = (parts: List[QueryPart]) -> Query
35 => Query {
36 {query; params;} = foldl(composePart, ComposeState {}, parts);
37 };
38 };

42

CHAPTER 4. SQL-INTERFACE 4.4. ATOMICITY & TRANSACTIONS

4.4 Atomicity & Transactions

By default, each query is executed in a separate transaction. Multiple queries can
be executed within the same transaction using the transaction monad. Opera-
tions inside this monad is wrapped with begin and commit, or rollback on error.

1 transaction := (db: Connection, IO[$T]) -> IO[T] => ...;

An example of using this API follows. Notice that both the INSERT and the
SELECT statements will be executed within the same transaction by being wrapped
with BEGIN and COMMIT. If either of the queries fail, the transaction will automat-
ically call ROLLBACK.

1 !withIO(do {
2 db <- postgresql.connect();
3 count <- transaction(db, do {
4 exec(db, sql"insert into account (name) values (\"test\")");
5 queryOne(db, sql"select count(*) from account");
6 });
7 printLn(f"${count}");
8 });

Nesting these transaction blocks causes savepoints to be used in plack of BEGIN
and COMMIT.

43

Chapter 5

Compiler Design

This chapter will discuss the current implementation of the compiler for the lan-
guage described in chapter 3. Certain parts of the compiler will deviate from the
language description due to challenges of implementation. These deviations will
be discussed where applicable and summarized in chapter 6

The compiler is structured in a conventional form, with a clear pipeline from
syntactic analysis through semantic analysis and finally to code generation. This
chapter will describe how these components are designed and interact to form a
complete compiler.

5.1 Syntactic Analysis

The syntactic analysis step is a conventional tokenizer and parser setup. The out-
put of this step is a syntax tree which is a tree-based representation of the program.
See section 3.2.1 for a listing of the parser grammar rules.

The current compiler implementation uses re2c to generate the tokenizer, and
GNU Bison as a compiler compiler for the parser. Re2c is a free and open-source
lexer generator[23]. This system serves as the tokenizer for the compiler. GNU
Bison is a free and open-source parser generator[24]. Bison generates the LALR(1)
parser for the language. The output from the parser is a syntax tree that literally
describes the structure of the program the user specified. As a final step the syn-
tax tree is converted into an abstract syntax tree (AST) which will be used for the
semantic analysis. The abstract syntax tree is a much terser representation of the
program where most syntactic sugar is represented in terms of the core language.

5.2 Semantic Analysis

The semantic analysis attempts to understand and validate the statements and
expressions made by the user. This step takes as input an AST and augments this
with information about objects and types.

45

5.2. SEMANTIC ANALYSIS CHAPTER 5. COMPILER DESIGN

The Abstract Syntax Tree (AST) acts as the primary representation of the input
program through the semantic analysis, and represents the core language (see
section 3.2.2).

5.2.1 Composite Data Type

The composite data type is the primary user definable data type in the language.
This system is used as the base for both data structures and for modules and name
spaces. In fact, modules and name spaces are just structs with some additional
rules.

Because of the design decision to make all values first-class citizens and to
not impose requirement on the order of statements, the task of resolving member
types and values requires ordering the operations required such that they have all
data the values required to resolve.

At its core the composite data type system is a job system. Different tasks
required to finalize the members and their values are placed into a dependency
graph and dispatched in a topologically sorted order. The system is finished when
there are no more jobs that can be dispatched, either because all jobs have been
dispatched or because no remaining jobs have all their dependencies fulfilled. The
latter case indicates one or more cycles in the job dependency graph. This triggers
a failure of the composite system.

Except for modules and their name spaces, the composite solver is evaluated
once for each composite declaration. Each module and all its name spaces are
batched together. This is to facilitate type classes requiring all their implementa-
tions to be discovered before it can be used (see section 5.2.1).

Member Declaration and Assignment

Member declarations and assignments are the central feature of the composite
data type. These statements allows the user to create members on the final data
type that are accessible to other members or from the outside.

These statements can have several forms:

1 # Declaration only.
2 a: int;
3
4 # Assignment to an existing member a.
5 a = 2;
6 a ~= 2;
7
8 # Declaration with bind.
9 a: int = 2;

10 a: int ~= 2;
11
12 # Declaration with implicit type from the bound value.
13 a := 2;
14 a :~= 2;

46

CHAPTER 5. COMPILER DESIGN 5.2. SEMANTIC ANALYSIS

Adding the tilde (~) before the assignment operator (=) marks the bind as
overridable. Any other assignment statement that binds this member will take
precedence.

a : int = 2 ;

(1) (2) (3)

There are up to three distinct parts to a declaration or assignment: (1) The
target, (2) the explicit type, and (3) the bind value. The declaration-only state-
ment consists of a target and a type. The assignment and the declaration with
implicit type has a target and a value. The declaration with a bind has all three
parts.

Figure 5.1 presents the dependency graph for a member declaration with an
explicit type and a value. The dashed arrow indicates the job dependency on the
target job is imposed by the source job. The diamond represents all jobs the cur-
rent expression is dependent on. For a member declaration without a bind, such
as a: int; the value group of jobs would be omitted. For a member declaration
with a value but no type expression, such as a := 2;, the type group of jobs would
be omitted. In this case the dependency from the parent’s target names resolved
blocker would be to the member’s evaluate job instead of to the type’s evaluate
job.

The resolve names jobs resolves all name references in the relevant expression
and impose constraints from the dependencies to the next typecheck job. The
value typecheck and type evaluate jobs generates a slot system and attempts to
solve that system. Value expressions use this solution to populate types in its AST
nodes. Type expressions use the returned type as the member’s type. The target
resolve names job attempts to determine what member its bind is targeting. If the
target is found the bind’s value code generation job is placed as a dependency for
the target’s evaluate member job.

The final task that has to be performed for a member is to resolve whether or
not the member’s value is unchangeably determined and constant. This is true
if the member has a non-overridable bind whose values is not dependent on any
non-constant members.

Use

Use expressions are challenging for both the name resolution system and for the
data type resolution job system because of the dependencies placed upon them. A
use expression introduce one or more names into the current scope. This name can
either be fixed, in the case of statement 1 and 2 of the following listing. Statement
3 introduce the name of all members of the composite data type returned by expr

into the current scope.

1 use test;
2 use expr as test;
3 use expr.*;

47

5.2. SEMANTIC ANALYSIS CHAPTER 5. COMPILER DESIGN

Resolve names

Typecheck

Code generation

Value
Resolve names

Evaluate

Type

Resolve names

Target

Evaluate member

Figure 5.1: Dependency graph for jobs related to member declaration and as-
signment.

Use-all statements require type of the expression to be known so that the
names are known. Because names from use-all statements take precedence over
names captured from the parent as closures, the compiler does not know what
names come from where before having resolved all use-all statements. Because
of this, any expression that contains names that are not unambiguously determ-
ined by local members must be postponed until after all use-all statements have
been resolved. The ambiguous names are the ones tagged as potential closures.

The dependency graph of use-all statements is show in figure 5.2. The expres-
sion jobs are the same as for the value of member binds. If the use expression
has one or more ambiguous references a dependency must be placed from the
parent’s Use resolved job to the Resolve names. This would create a cycle. Because
of this, use-all statements are required to have no ambiguous references in the
current compiler implementation.

The other use expressions does not have to be dependencies of the Use resolved
job, and therefore does not need to have the same restriction. Due to some quirks
of the current implementation they are handled exactly the same as the use-all
statements, and does receive the same restrictions.

Type Class

Type classes provides an additional challenge for the composite data type system.
Any type class is made up of two distinct statements: the declaration and the
implementation statements.

1 # The declaraion statement.

48

CHAPTER 5. COMPILER DESIGN 5.2. SEMANTIC ANALYSIS

Resolve names

Typecheck

Code generation

Expr

Evaluate use Use resolved
Parent

Figure 5.2: Dependency graph for use-all statements.

2 Eq := class [T: Type, U: type] {
3 op==: (T, U) -> Bool;
4 };
5
6 # The implementation statements.
7 impl Eq[int, int] {
8 op== := (...);
9 };

10 impl Eq[Bool, Bool] {
11 op== := (...);
12 };

Because types can not travel up the module hierarchy we only have to consider
any type class usage dependencies within the current module. This does however
impose an interesting constraint: Any impl statement must be evaluated after the
type class itself has been evaluated, but the type class can not be used until all of
its impl statements have been evaluated.

Because all name spaces for a module are handled as part of the same batch in
the composite data type system we are able to require all implementation state-
ments to be evaluated before their respective type class is used.

Figure 5.3 shows a dependency graph for an implementation statement. The
statement itself has three stages:

1. Names resolves the names of the target type class, the implementation para-
meters, and the body. This job is dependent on the parent composite’s clos-
ures to be evaluated in order to determine what names can be determined
through the closure. If any of the expressions in the implementation state-
ment references any name that is not immediately found among the parent

49

5.2. SEMANTIC ANALYSIS CHAPTER 5. COMPILER DESIGN

Names

Targets

Resolve

impl

Closures evaled

Use resolved

If ambigous:

Parent

All impl targets
Context

Ready

Type Class

Figure 5.3: Dependency graph for jobs related to impl statements.

composite’s members, a dependency is placed on the parent composite’s Use
resolved job.
A dependency is placed upon the Targets job from each member referenced
from the target expression. A dependency is placed upon the Resolve job
from each member referenced in the implementation parameters expres-
sions or in the body.

2. Targets is evaluated after the type class target found during the Names job
has been evaluated. This job is a dependency of the All impl targets job on
the composite batch to block any type class from being used until we have
discovered all implementation statements, to let them place dependencies
from their Resolve jobs to their exact target type class’ Ready job.

3. Resolve evaluates the parameter expressions and the body of the implement-
ation statement, and registers this information with the type class. At this
point, the implementation is ready, and after all other implementations for
that type class has been resolved, the type class is ready for use.

Init Expression

Init expressions are declared within the context of a composite data type. The
expression itself is placed in a separate set of init expressions on the data type,
while its usage is referenced by a special AST node. When the composite data type
is instantiated the non-init expression expressions and binds are bound together
with the init-expressions to create a monad that evaluates all the init expressions
and then packs and returns the final object.

During the composite object resolution the init expressions are treated like
normal expressions and pass through the same jobs.

50

CHAPTER 5. COMPILER DESIGN 5.2. SEMANTIC ANALYSIS

5.2.2 Object Instantiations

Object instantiations are specialized object constructors that has additional in-
formation about how the members of the data type should be bound. This in-
formation is combined with the extra binds listed at the site of the instantiation
to pack a final value. Due to the inter-dependencies between expressions and
members, the expressions, binds and packs of members must be evaluated in a
topological order. See section 3.2.4 for a description of the system and an al-
gorithm for resolving the order of operations for a given instantiation.

5.2.3 Name Resolution

The name resolution system is responsible for determining what values are re-
quired for each expression.

The name resolution system operates in several stages: First, the name resol-
ution system traverses the AST to determine what potentially free variables are
part of each expression. These variables are stored as potential closures on the
expression’s root scope (function, template, or composite data type), and if the
names are free in those scopes as well they propagate up the tree. An unknown
name does not trigger an error at this stage because it might be discovered later
as part of a use statement. This stage operates on the module’s entire AST.

Next, during the composite data type solver, the real name references are pop-
ulated. This is done expression by expression, for bind targets, bind values, and
member types. Name resolution jobs for expression that contain free names are
postponed until after all use-statements are resolved. This phase populates all
lookup nodes with name references that point to specific values. When references
to other members have been found, dependencies are placed on those members.

During type checking the AST is traversed again, this time to generate the type
system that will be solved. Here the names and their types are propagated through
the traversal. The value of any name that is known and constant is passed along
as well. How these values propagate through the tree is described in section 3.2.5.
The names, their types, and potential values are used in the same way during code
generation.

5.2.4 Type Solver

The type solver is based of the Hindley-Millner type system[6][25], described in
section 2.1.1.

In this language, mono types are represented as values of the type Type. This
is a result of the design decision that all values are first-class citizens. Poly types
on the other hand are represented as objects of type cons, or object construct-
ors. These are special functions that, only at compile time, are able to instantiate
certain objects. What is special about the constructor functions is that they are
bijective, meaning the parameters can unambiguously be determined given a re-
turn value. This is called unpacking, where as calling the constructor function

51

5.2. SEMANTIC ANALYSIS CHAPTER 5. COMPILER DESIGN

using its parameters is called packing.
The type solver works in three stages: (1) The constraints are imposed based

on the AST, (2) the constraint solver attempts to resolve all constraints and de-
termine values, types, constructors, and instantiators, and (3) the relevant values
are extracted from the solution and put back into the AST.

During the type solve each site in the AST that potentially can be inhabited by
a value is slot. Each slot can have an explicit value attached to it. It can also derive
certain information from relations to other slots. These relations are imposed by
the constraints gathered during the first phase of the type solve.

The constraints that can be imposed are detailed in the following list. The
target and slot parameters refer to other slots.

• IS_OBJ(target, o:t): The target slot is expected to have the exact value o
of type t.

• IS_FUNC_TYPE(target): The target slot is expected to be a function type,
(t1, . . . , tn)→ tr . Its parameter types and return type are derived from its
indexed parameters, with the return type, tr at index 0 and parameter types
t1 . . . tn at index 1 . . . n.

• CONS(target, slot): The target slot value is expected to be the value of
packing the target’s parameter with the object constructor that is the value
of the slot slot.

• PARAM_NAMED(target, name, slot): the object constructor of target is
expected to have a parameter called name, and its value should be the value
of slot.

• PARAM_INDEXED(target, index, slot): the object constructor of target is
expected to have a parameter at index index, and its value should be the
value of slot.

• INST(target, slot): The value of the target slot should be given by an object
instantiation by the instantiator as value from slot.

• MEMBER_NAMED(target, name, slot): The object instantiator of target is
expected to have a member named name with the value equal to the value
of slot slot.

• TYPE(target, slot): The type of the target slot is expected to be the value
of slot.

• EQUALS(target, slot): The target slot and slot are expected to be equal.

While regular type constructors are imposed using IS_OBJ, function type con-
structors have a special constraint, IS_FUNC_TYPE. This is because functions can
have an arbitrary amount of parameters, which is something that normal cons
objects does not support.

This slot-and-constraint system is merely an alternative representation of the
AST that aims to provide a core semantics that is able to represent, in particular,
the systems that are intended to be resolved at compile time. These include types,
object constructors, and object instantiators. It is not capable of performing all
run-time operations, such as calling functions.

52

CHAPTER 5. COMPILER DESIGN 5.2. SEMANTIC ANALYSIS

Func
type

Func
value

Type

Ret
type

Param 0

Ret
value

Type

Arg 1
type

Arg 1
valueType

Arg n
type

Arg n
valueType

Param 1

Param n

Figure 5.4: A graph of the slot system for a function declaration. Dashed slots
are filled by the relevant child in the AST, and the bold slot is the one that is
returned to the parent in the AST.

The slots and constraints constitutes a graph representation of the AST.
The FUNC_DECL AST node is translated into the slot sub-system shown in

figure 5.4.
After the slot system is created the next step is to solve it. This is done through

repeated application of a set of rules. These rules does for the most part not verify
the constraint, but only attempt to propagate values. When no more rules can
make changes to the system, the solve is complete.

Push Type

value(x) = m : t
value(type(x)) = t : Type

Pack Cons

value(cons(x)) = [t1, . . . , tn]→ t ∀i∈1..nvalue(param(x , i)) = vi : t i

value(x) = cons(x)[v1, . . . , vn] : t

Pack Inst

value(inst(x)) = (t1, . . . , tn)⇒ t ∀i∈1..nvalue(mbr(x , i)) = vi : t i

value(x) = inst(x){v1, . . . , vn} : t

53

5.3. CODE GEN. & OPTIMISATION CHAPTER 5. COMPILER DESIGN

Pack Function Type

cons(x) = functype
∀i∈1..nvalue(param(x , i)) = t i : Type

value(param(x , 0)) = tr : Type

value(x) = (t1, . . . , tn)→ tr : Type

When the solve is complete, the solution is scanned for slots, x , where an
object constructor, c, was given, either through IS_OBJ(x , c) or as a member
from MEMBER_NAMED(p, m, x) where m is a member of value(p) and is the
constructor c, but the solution requires another type. This is used as an indica-
tion that the object constructor should decay. Any such constraint that apply the
constructor c on slot x is disabled, a new slot t is allocated to represent the con-
structor, and the old constraint is replaced with IS_OBJ(t, c) or MEMBER_NAMED(p, m, t)
respectively, and CONS(x , t). Rules 5.1 and 5.2 present these transformations. C
is the set of constraints that were used to generate the current solution, and C1
is the set of constraints for the next solve attempt. If any slot decayed and these
transformations were applied, the current solution is discarded and the solve sys-
tem is run again with these new constraints, C1.

IS_OBJ(x , c : Cons) ∈ C value(x) = v : t t 6= Cons

{IS_OBJ(y, c : Cons),CONS(x , y)} ⊆ C1
IS_OBJ(x , c : Cons) /∈ C1

(5.1)

MEMBER_NAMED(p, m, x) ∈ C value(x) = v : t t 6= Cons

{MEMBER_NAMED(p, m, y),CONS(x , y)} ⊆ C1
MEMBER_NAMED(p, m, x) /∈ C1

(5.2)

After no more decay is required the next step is to validate the solution. This
is done by letting each constraint check that it holds. Any validation error is
reported, and the target slot of invalid constraints are tagged.

After the validation the results are sent back to the AST. Here the type of each
AST node is populated, the object constructors and instantiators of CONS and
INST nodes are set, and packed values are populated if available.

5.3 Code Generation and Optimisation

After the program semantics have been evaluated and validated we no longer
need all the semantic information generated during the semantic analysis. The
compiler now converts the AST into an intermediary byte code that describes the
imperative steps required to evaluate each expression. This byte code represent-
ation still contains type information and is intended to be further compiled into
some executable form. The intermediary byte code is not itself intended to be
executed due to lacking access to absolute memory offsets and value sizes. Cal-
culating such values at run time would be computationally expensive.

54

CHAPTER 5. COMPILER DESIGN 5.4. RUNTIME SYSTEM

At this point the compiler will optimise the expressions. No optimizations have
been implemented yet as they are considered out of scope for this thesis.

The current compiler implementation converts the intermediary byte code to a
format that is more suitable for execution. This representation contains only sizes
and absolute addresses for stack variables, as well as the most direct function
pointers that are available.

5.4 Runtime System

The runtime starts during the pre-init, init, and post-init stages of the module life
cycle (figure 5.5). After the module has been compiled into byte code it has the
opportunity to perform any initialization operations using init monads and init
expressions. The native module extension can hook in to perform any actions
it needs to function, either before or after the init expressions using the pre- or
post-init hook, respectively.

After all modules have been compiled and initialized the entire system is star-
ted. What happens here is up to the modules that have been loaded and have
provided a start hook through their native module extensions. By default, if no
module provides a start hook, the application will immediately exit.

All objects in the system is represented as a block of memory that has a fixed
size given by its type. For objects that only are used during the execution of a
function the object data is stored on the function stack. Any object that is required
through the life time of the module is stored on the module’s object store. This is
an arena that objects are pushed on to permanently, and only when the module
gets destroyed is the arena is freed. No memory should be pushed onto this arena
during run time to avoid memory leak issues. In cases where objects must have
a more specialized life time, modules can implement their own mechanisms to
manage this.

While many types have a fixed size, such as integers, other types can have
varying size. Examples of such types include monads, strings, and lists. These
objects can utilize a heap that is passed through all function calls to store the
additional data that is potentially varying in size, in addition to the fixed-size
component that is stored on the stack and points to the heap.

5.5 Modules

Each module compiles into a composite data type, and if that data type has init
expressions they will be executed as part of module initialization.

This shared object will be read before the rest of the module is compiled,
and provides several hooks for altering or augmenting how and what the module
loads. The life cycle is presented in figure 5.5.

55

5.5. MODULES CHAPTER 5. COMPILER DESIGN

Load Native
Extension

Parse

Wait for
Dependencies

Register

Pre Compile

Compile

Pre Init

Init

Post Init

Start

Figure 5.5: A flow chart describing the stages of a module. The dashed nodes
are hooks for the native module extension.

5.5.1 Native Module Extension

The native module extensions provide a mechanism for performing advanced
tasks on the system through a shared library. On Linux the extensions are shared
objects. All the default extensions are written in C.

All such extensions must use the STAGE_MODULE(modname, load_func) macro
to register themselves. This macro creates a special routine, struct stg_module_magic
*stg_module_magic(), that provides the runtime system with basic information
about the module, such as the version of the project it was compiled against,
and what function should be the entry point. After the module is loaded and the
runtime system has received the stg_module_magic struct, the module’s load_func
routine is called. This routine is responsible for registering any hooks this exten-
sion requires.

A native module extension can both directly modify the AST of the module and
provide objects and functions for the run time system to pick up with the native
function declaration- and native literal nodes. There are several locations in the
module’s life cycle where the native module extension can hook into in order to
provide functionality. The life cycle is presented in figure 5.5. Hooks are shown
with dashed outlines.

56

Chapter 6

Results

This chapter discuss the language design, SQL-interface, and prototype imple-
mentation.

6.1 Language

The style of the language has changed over the course of the project’s life. Origin-
ally the system was designed to allow users to describe real-time signal processing
systems, such as DSPs. This design was declarative, allowing the user to connect
processing devices together to form signal chains. Other functionality that was
considered for the system did not fit with this model, so more general paradigms
were considered.

Another consideration was whether or not the language should be purely func-
tional. Originally the language allowed for functions with side effects. These were
intended to perform initialization, similar to the init-expressions in the current
design. To avoid the issues that can arise from allowing functions with side ef-
fects they were dropped. This was in particular because of the design decision of
not imposing an order on statements. Monads was chosen as the alternative. This
choice was made due to the success of monads in the Haskell community[13]. It
was also inspired by other functional systems, such as Cats for Scala. The monad
structure also lent itself well to describing the signal systems the language was
originally designed for.

Unlike Scala this language is pure functional. This means that the programmer
is unable to write code that can have side effects. In Scala this is only a convention
the developer can impose themselves.

The type class and monad systems in all three languages are very similar, as
both Scala and this language are directly inspired by Haskell[13].

6.1.1 Init Expressions

Init expressions aim to make specifying programs of disparate parts easier by auto-
mating the work of ordering the parts based on their inter dependencies. It does

57

6.1. LANGUAGE CHAPTER 6. RESULTS

however pose a challenge for developers using the language. They can not know
the exact order the operations occur because the compiler does not provide such a
guarantee. For new developers in particular this feature might lead to unexpected
behaviour. For example, if the developer expects the two write-to-file operations
in the following listing to come in order, they might be surprised when they do
not. The developer can in fact not even rely on fclose(f) to happen after the prints,
despite being the last operation in the program text. The only guarantee in this
listing is that the two printf operations and the fclose operation will occur after
fopen, as the previously mentioned operations depends on the result of fopen.

1 f := !withIO(fopen("test", "rw"));
2 !withIO(fprint(f, "Hello, "));
3 !withIO(fprint(f, "World!"));
4 !withIO(fclose(f));

To serialize such operations one must manually bind the monad operations,
either using the >>= operator or do notation.

1 !do {
2 f <- withIO(fopen("test", "rw"));
3 withIO(fprint(f, "Hello, "));
4 withIO(fprint(f, "World!"));
5 withIO(fclose(f));
6 }

One could consider restricting this mechanism to only work on order-independent
or order-forcing operations, in particular by disallowing executing IO within its
context with withIO. This does seem too restrictive as performing IO, such as load-
ing a file or connecting to a database, can be useful tasks to perform during pro-
gram loading and can be performed in an order-independent manner.

6.1.2 Error Handling

This proposal has not considered how errors in operation that can fail should be
handled. The current prototype implementation of the SQL-interface only prints
any error message and aborts immediately. This is not a satisfactory solution
as errors can not be recovered from, making any application developed in the
language unreliable.

Haskell handles this by letting monads throw exceptions[13]. When an excep-
tion is thrown the rest of the bound operations in the monad chain are ignored. If
the monad chain is enclosed within a catch-monad, the error can be handled by
a provided function and normal operation can resume.

One alternative is to have IO operations that can fail return a Maybe-like object.
If the operation succeed, some result is returned. If the operation fails none is re-
turned instead. This is the approach taken by Rust[22]. Routines in rust that can
fail return a Result object. This object, much like Maybe, either returns OK with
the returned value, or Error with an error description.

The Rust approach involves more obvious error handling by requiring check-
ing that the result is OK before unpacking the result. This system also requires

58

CHAPTER 6. RESULTS 6.1. LANGUAGE

some way of exiting a monad early to avoid forcing it to run to completion. The
exception semantic of the Haskell system can lead to less obvious failure paths
because the monad chain can abort without explicit syntax.

6.1.3 Type System

The strict typing has been a part of the language’s design since its conception due
to the goal of making writing programs reliable and have good error messages.

The current type system implementation functions for the most part, but sys-
tems such as constructor decay are not cleanly integrated into the solver, but rather
tacked on. The type solver is limited in its ability to reason about object construct-
ors. In particular type classes can pose a challenge for the system. This is due to
the slot system only allowing for at most one value for each parameter at each
slot. It is not capable of considering multiple options of values. This is an area
that should be investigated further to improve the power and usability of the type
system.

Function Generalization

When the current compiler is unable to unambiguously determine the types of
a function’s parameters or return type it fails. Unlike the Hindley-Milner type
system it does not attempt to create a generalized template function. This means
that in order to create a template function the application developer is required
to explicitly tag the template parameters as such using the $ prefix.

Template Qualifiers

Any template function or data type that passes name checking and has no imme-
diately conflicting types is admitted as valid. Any type conflicts that happen as
a result of template parameters is not caught until the attempt to instantiate the
template and type check the resulting AST. Such an error occur at the site where
the parameter is used. To provide better error reporting, the type system could
instead require that the function or type should be instantiable for all types it is
declared to be valid for. To be able to use constructors that are not declared for
all types, the template’s parameters must be sufficiently constrained to only allow
values that overlap with one of the constructor’s implementations.

As an example, in Haskell, the function >> could be defined as follows.

1 (>>) :: Monad m => m a -> m b -> m b

The expression Monad m before => is a template qualifier. This indicates the
function is defined for any type constructor m which is an instance of the Monad

type class.

59

6.2. SQL-INTERFACE CHAPTER 6. RESULTS

6.2 SQL-Interface

The inspiration from the Doobie library from scala is very clear in this language’s
SQL interface. From the string interpolation for specifying queries to the monadic
structure of the queries.

1 mod sql;
2
3 getByID := (id: int)
4 => sql"select account, name from account where account=${id}";
5
6 !withIO(do {
7 db <- sql.postgres.connect("dbname=test");
8
9 res <- query(db, getByID(5));

10 printResult(res);
11 });

While the proposed SQL-interface provides some type checking, it still is un-
able to determine if a specified query is valid or not until the query is executed.
This will then trigger a run-time error. It would be useful to, at compile time,
determine that all queries are valid. This is difficult to achieve because whether
or not a query is valid is dependent on the database the query is executed on. The
validity can also change throughout the life time of the application due to changes
to the database schema, such as added, altered, or removed tables or columns.

The mechanism for returning tuples and objects as rows from queries intro-
duce some challenges for the language design. Tuples was introduced because
they allow for returning multiple unnamed fields from the queries. An alternat-
ive could be to automatically fill a composite object directly, either based on their
names or by the index. This was not chosen because constructing composite data
types from a dictionary or list of values of different types would be very difficult
to implement. It seemed more clean to first convert the rows into tuples, then
construct the objects from the tuples.

The paradigm the database interface ended up with was an SQL-interface. It
ended up with a version that provides better user ergonomics for the interaction
between SQL and the language, but does not replace SQL. Other options such as
ORMs and list comprehension schemes were also considered. The SQL-based in-
terface was chosen for several reasons. As SQL is the primary way of interacting
with modern relation DBMS it is the most direct and most powerful the interface
can be. It can also support any database engine by only implementing the con-
nection and query back end. ORMs requires an SQL translation system that must
be tweaked to conform to each back end’s quirks.

The string interpolation functionality was heavily influenced by it’s use as part
of the SQL interface. Because this system must keep the original value of the
expressions until they are cast to the type passed to the database, they required
support for custom data structures to store the format parts.

The current design does not discuss any way of preparing statements. Pre-
pared statements incur less overhead in case of repeated queries with different

60

CHAPTER 6. RESULTS 6.3. COMPILER IMPLEMENTATION

parameters[26]. The reduced overhead is due to the back end being able to
cache the query strategy used instead of having to transmit and process the SQL
query text for each query. There are two mechanisms that can be implemented to
provide prepared statements. The SQL-interface can implement an explicit monad
that prepares an SQL-statement and another monad that takes a prepared state-
ment and parameters and executes the query. Such a system is incompatible with
the current string interpolation system because the string interpolator captures
the values of the parameters and stores them together with the query. It is thus
not possible to pass different parameters to the same query string. An alternative
is to use parameter indices in the query text and pass the parameters separately.
This solution should require the developer to explicitly state the parameter types
with the query string to enable type checking. The types can not automatically be
determined as the parameters are not embedded in the query string through the
string interpolator. One could also consider an automated system for preparing
statements. The first time a query is executed its query string is prepared. The
prepared query is then used for all subsequent executions of the that query. Such
a system requires some mechanism to keep track of the prepared query strings.

It was also considered to implement a language integrated query system, sim-
ilar to LINQ, in place of the string interpolator. This was dropped as it would
require extensive modifications to the parse system of the language, and the res-
ult would not be very different in usability from the SQL-interface with string
interpolation proposed in this thesis. One advantage an embedded domain spe-
cific language or a list comprehension system would afford is better type checking
and better user feedback in an integrated development environment.

By implementing the SQL interface we lay the foundation upon which other
interfaces can be built.

6.2.1 State of Implementation

The database connection API (section 4.1) and the simple query interface (sec-
tion 4.2) have been implemented, and are available under ./modules/sql/ in the
project repository. This module currently only support the PostgreSQL database
back end. In the future this library should be expanded to include more database
systems or provide support for plug-in database adaptors.

The proposed interface does not impose any constraints on what database
back end it interfaces with, other than it must support SQL. Some functional-
ity discussed could be lost with certain DBMS that does not support or impose
as strict type requirements. Both file-based and server-based database systems
should work well.

6.3 Compiler Implementation

At the time of writing, the current compiler implementation has most of the dis-
cussed functionality implemented.

61

6.3. COMPILER IMPLEMENTATION CHAPTER 6. RESULTS

The compiler is, however, not production-ready. Extensive testing should be
performed to ensure the stability and correctness of the system.

6.3.1 Recursion of Polymorphic Function

While function recursion is supported for regular functions, polymorphic functions
does not have this ability. This is due to a shortcoming in the system for recursion
and name resolution. In a named expression, for example a bind statement, the
name of the target is tagged as a self reference and it references itself both in the
type solver and during code generation. Recursive functions, when generated,
create a closure on itself which is a reference to itself after the rest of the function
is generated. Template expressions does, however, not have this ability.

This leads to certain higher order functions, such as map, having to be declared
as native functions. In the case of map this implementation might be preferable
to a native implementation because map in the current implementation returns a
special list that contains the map function and points to the original, unmodified
list. Only when an element of the list is required is that element passed through
the map function. This functionality is achieved "for free" in Haskell by virtue of
it being a lazy language. The next step in the recursion is not evaluated until it is
needed.

The simplest implementation of a polymorphic recursive function would be
monomorphic within its body and polymorphic everywhere else[4]. This would
be sufficient, at least for the higher order functions we have discussed in this thesis
(map and foldl). A more permissive solution has been discussed, but imposes new
issues[4].

6.3.2 Recursive Data Types

Recursive data types allows for linked structures, such as linked lists and trees.
They are created by having an variant have one or more option with data refer-
encing itself, and at least one option that does not. This is to allow the data type
terminate.

This is challenging because of the need to know the size of every object. To
implement a recursive data type, the self reference must be a reference, otherwise
the data type would have infinite size.

The lack of this feature requires the List type be implemented as a primitive in
the base module, and makes creating new list- or tree-like structures very difficult.

6.3.3 Tuple

Tuple types, while being considered early in the language’s design, was one of
the last features to be considered seriously. Tuple type declarations are varadic by
nature. This is a challenge for the compiler due to the design decision that func-
tions and constructors must have a fixed number of parameters. Several designs
for the implementation of tuples have been considered.

62

CHAPTER 6. RESULTS 6.3. COMPILER IMPLEMENTATION

• The tuple type could get an exception in the type solving system. This is how
function type declaration is implemented. Such a solution is not optimal
because it introduces more complexity and more cases that must be handled
in the compiler.

• The language could permit varadic functions. This, again, requires substan-
tial complexity to be added to the compiler. Such functions could also pose
challenges when passed as parameters to other functions expecting a fixed
number of parameters.

• We could implement tuple types in terms of a chain of tuples, where each
tuple has exactly two members. Under this declaration, a tuple type such as
Tuple(int, String, Bool) would be syntactic sugar for the recursively defined
two-tuple Tuple(int, Tuple(String, Bool)).

6.3.4 Type Classes

Some type class implementations, such as the monads, are defined over all types.
This requires the implementation itself to be polymorphic. Notice in the following
example how the implementation for the IO monad still has a parametric type $T.

1 Monad := class[$M[$T]] { (...) };
2 impl Monad[IO[$T]] { (...) };

This feature is currently not implemented into the compiler.
The monad example highlights another feature that has yet to be implemen-

ted: polymorphic type class members. Some members of the type class can have
additional template parameters beyond what is defined for the type class itself. In
this following example, the bind function has the parameter $U which is not part
of the type class.

1 Monad := class[$M[$T]] {
2 bind: (a: M[T], fn: T -> M[$U]) -> M[U];
3 (...)
4 };
5
6 impl Monad[IO[$T]] {
7 bind := (a: IO[T], fn: T -> IO[$U]) -> IO[U]
8 => (...);
9 (...)

10 };

Another limitation is that types defined as part of the type class body can not
be used by other members of the type class. For example, referencing the member
Out as part of the type declaration for the member fn in the following example is
not allowed. This functionality is useful for having functions return different types
for different instances, such as for different string interpolators.

1 Test := class[$T] {
2 Out: Type;
3
4 fn: (T) -> Out;
5 };

63

6.3. COMPILER IMPLEMENTATION CHAPTER 6. RESULTS

6.3.5 Use Expressions

Currently the dependencies imposed by use statements when resolving data types
are not granular enough, resulting in false cyclic dependency errors. This is due
to the requirement that all use-expressions must be known before the names of
expressions containing ambiguous names can be resolved. The use-all statements
require this because the names they expose are dependent on the type of the
use expression. This system should be further improved to admit more complex
systems of use expressions.

6.3.6 Error Reporting

Clear error reporting is important to make the programmer understand what has
gone wrong, and to make the process of figuring out how to fix the issues as easy
as possible.

While many parts of the system provides proper error messages, the type solver
in particular some times provides confusing errors. The type solver keeps the value
for each slot that comes from the most authoritative constraint. How authoritat-
ive a constraint is is given by what imposed the constraint. When errors are to
be reported, the most authoritative value is the one that is marked as expected.
Without proper tuning of this score the resulting error messages will not be very
useful.

For a future iteration of the compiler the authority scores should be properly
adjusted. Alternatively other systems for reporting typing errors should be invest-
igated that more effortlessly produce useful error messages.

64

Chapter 7

Conclusion

This thesis has presented the design of the new functional programming language
stage and an accompanying SQL-interface. A prototype of the compiler for this
language and the database access module have been implemented. This report
has discussed the systems that compose the compiler.

In particular the design decision to allow statements to appear in any order in
the program text and the decision to make all values, including types, first-class
citizens had major impact on the systems for semantic analysis. The composite
data type system is designed to evaluate all expressions of a program in such an
order that the expression’s dependencies were evaluated before the expression.
The type solver is designed to be flexible enough to reason about values of any
type.

The design of the SQL-interface is intended to make specifying safe programs
easy and to make it difficult to make mistakes. Being safe implies both type safety
and protection from security-related vulnerabilities. This principle lead to the
Query object and query string interpolator which automatically converts and es-
capes parameters. Also the system for converting returned tuples to native tuples
or data structures is inspired by this principle. The act of querying the database
is designed to follow the convention from the rest of the language. By utilizing
the IO-monad, programs containing database queries can be described in a pure
manner.

The prototype implementation of the compiler has many of the features dis-
cussed in this thesis, but some features were left as future work. The SQL-module
currently only implements a simplified query interface without the desired type-
safety and usage ergonomics.

The goals for this thesis is:

• Design database access as an integrated part of a new functional program-
ming language.

• Design an API that is a natural part of the language.
• Find a database solution that may easily be supported as a part of the func-

tional language.
• Evaluate if a server based database (e.g. PostgreSQL) or an embedded data-

65

7.1. FUTURE WORK CHAPTER 7. CONCLUSION

base (e.g. SQLite) is the best solution.
• Prototype a database solution for this programming language.

In terms of the goals, the new functional programming language has been
designed and an SQL-interface has been integrated into it. The interface is in-
tegrated by using specialized mechanisms to allow developers to ergonomically
write SQL-statements containing parameters from their program. This interface
also provide type checking and error reporting for detecting issues of passing para-
meters of the wrong type. The SQL-interface use the monad system for performing
all operations that has side effects, such as connecting to the database or query-
ing. The monad mechanism allow a natural way of interfacing with a database
in a functional language. The proposed interface only require the target database
to query using SQL. Thus both server based databases, such as PostgreSQL, and
embedded databases, such as SQLite, work well with this system. A prototype of
the compiler and a simplified version of the SQL-interface have been implemented
and are available on GitHub1.

7.1 Future Work

The system for error handling in monad chains was not designed. Two solutions
were considered:

1. Letting monads throw exceptions that aborts the current monad chain and
can be catched by the caller.

2. Returning an object that must be unpacked to determine if the call suc-
ceeded.

A future iteration of the monad-system should evaluate which error handling
mechanism is the best fit for the language.

Not all features of the compiler were completed for the prototype implement-
ation. The implementation of these features should be investigated in future it-
erations. In particular tuples, parametric recursive functions, and recursive data
types should be implemented. Classes also lack some functionality. Future iter-
ations of the compiler should support classes with parametrically polymorphic im-
plementations, parametrically polymorphic members, and inter-references between
members.

The current type system solver should be improved in future iterations of the
compiler. In particular, improving the system’s ability to reason about type classes
and the system’s ability to report useful error messages should be investigated.

In some circumstances the composite data type solver currently fail to solve
certain systems of composite data types due to too strict dependencies. Both
classes and use-statements impose a complex and far-reaching order requirement
in the system. In particular in batches of module composites, this requirement can
lead to unexpected cyclic dependencies. Reducing the reach of the order require-

1https://github.com/oddkk/stage

66

https://github.com/oddkk/stage
https://github.com/oddkk/stage

CHAPTER 7. CONCLUSION 7.1. FUTURE WORK

ments imposed by, in particular, classes and use-statements would alleviate this
issue. Such solutions should be investigated for future iterations of the compiler.

No effort was put into optimizing the compiler itself, the compiled programs,
nor any of the libraries. All three areas should be addressed in the future.

Neither the current SQL-library design nor implementation provide optimiz-
ations such as preparing repeatedly used statements. Implementing either an
explicit or implicit mechanism for preparing queries could lead to less overhead
when using a query multiple times.

Besides fully implementing the proposed SQL-interface, one could look into
different paradigms for such an interface. One option that can be investigated
is to implement some language integrated query system. Such a system can be
based around a list comprehension system[21] or an embedded domain specific
language like LINQ[19].

67

Bibliography

[1] A. Sabry, «What is a purely functional language?», Journal of Functional
Programming, vol. 8, no. 1, pp. 1–22, Jan. 1998, ISSN: 0956-7968, 1469-
7653. DOI: 10.1017/S0956796897002943. [Online]. Available: https://
www.cambridge.org/core/product/identifier/S0956796897002943/
type/journal_article (visited on 21/05/2020).

[2] S. L. Peyton Jones and P. Wadler, «Imperative functional programming»,
in Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, ser. POPL ’93, Charleston, South Carolina, USA:
Association for Computing Machinery, 1st Mar. 1993, pp. 71–84, ISBN: 978-
0-89791-560-1. DOI: 10.1145/158511.158524. [Online]. Available: https:
//doi.org/10.1145/158511.158524 (visited on 25/05/2020).

[3] C. Strachey, «Fundamental concepts in programming languages», Higher-
Order and Symbolic Computation, vol. 13, no. 1, pp. 11–49, 1st Apr. 2000,
ISSN: 1573-0557. DOI: 10.1023/A:1010000313106. [Online]. Available:
https://doi.org/10.1023/A:1010000313106 (visited on 25/05/2020).

[4] B. C. Pierce, Types and programming languages. MIT press, 2002.

[5] R. Milner, «A theory of type polymorphism in programming», Journal of
Computer and System Sciences, vol. 17, no. 3, pp. 348–375, Dec. 1978, ISSN:
00220000. DOI: 10.1016/0022-0000(78)90014-4. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/0022000078900144
(visited on 12/12/2019).

[6] R. Hindley, «The principal type-scheme of an object in combinatory lo-
gic», Transactions of the American Mathematical Society, vol. 146, p. 29,
Dec. 1969, ISSN: 00029947. DOI: 10.2307/1995158. [Online]. Available:
https://www.jstor.org/stable/1995158?origin=crossref (visited on
12/12/2019).

[7] P. Wadler, «Comprehending monads», in Proceedings of the 1990 ACM con-
ference on LISP and functional programming, ser. LFP ’90, Nice, France: As-
sociation for Computing Machinery, 1st May 1990, pp. 61–78, ISBN: 978-
0-89791-368-3. DOI: 10.1145/91556.91592. [Online]. Available: https:
//doi.org/10.1145/91556.91592 (visited on 01/04/2020).

69

https://doi.org/10.1017/S0956796897002943
https://www.cambridge.org/core/product/identifier/S0956796897002943/type/journal_article
https://www.cambridge.org/core/product/identifier/S0956796897002943/type/journal_article
https://www.cambridge.org/core/product/identifier/S0956796897002943/type/journal_article
https://doi.org/10.1145/158511.158524
https://doi.org/10.1145/158511.158524
https://doi.org/10.1145/158511.158524
https://doi.org/10.1023/A:1010000313106
https://doi.org/10.1023/A:1010000313106
https://doi.org/10.1016/0022-0000(78)90014-4
https://linkinghub.elsevier.com/retrieve/pii/0022000078900144
https://doi.org/10.2307/1995158
https://www.jstor.org/stable/1995158?origin=crossref
https://doi.org/10.1145/91556.91592
https://doi.org/10.1145/91556.91592
https://doi.org/10.1145/91556.91592

BIBLIOGRAPHY BIBLIOGRAPHY

[8] E. Moggi, An abstract view of programming languages. University of Edin-
burgh, Department of Computer Science, Laboratory for . . ., 1989.

[9] P. Wadler, «The essence of functional programming», in Proceedings of the
19th ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, ser. POPL ’92, Albuquerque, New Mexico, USA: Association for
Computing Machinery, 1st Feb. 1992, pp. 1–14, ISBN: 978-0-89791-453-
6. DOI: 10.1145/143165.143169. [Online]. Available: https://doi.org/
10.1145/143165.143169 (visited on 25/05/2020).

[10] S. P. Jones, «Tackling the awkward squad: Monadic input/output, concur-
rency, exceptions, and foreign-language calls in haskell», 2001.

[11] C. E. contributors. (). «Cats Effect: Home», Cats Effect. Library Catalog:
typelevel.org, [Online]. Available: https://typelevel.org/cats-effect/
(visited on 20/04/2020).

[12] (). «System.IO», [Online]. Available: https://hackage.haskell.org/
package/base-4.12.0.0/docs/System-IO.html (visited on 20/04/2020).

[13] P. Hudak, J. Hughes, S. P. Jones and P. Wadler, «A history of haskell: Being
lazy with class», in Proceedings of the third ACM SIGPLAN conference on His-
tory of programming languages - HOPL III, San Diego, California: ACM Press,
2007, pp. 12–1–12–55. DOI: 10.1145/1238844.1238856. [Online]. Avail-
able: http://portal.acm.org/citation.cfm?doid=1238844.1238856
(visited on 01/05/2020).

[14] P. Wadler and S. Blott, «How to make ad-hoc polymorphism less ad hoc»,
in Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages - POPL ’89, Austin, Texas, United States: ACM
Press, 1989, pp. 60–76, ISBN: 978-0-89791-294-5. DOI: 10.1145/75277.
75283. [Online]. Available: http://portal.acm.org/citation.cfm?
doid=75277.75283 (visited on 15/05/2020).

[15] (). «PostgreSQL: Documentation: 12: Chapter 33. libpq - C Library», [On-
line]. Available: https://www.postgresql.org/docs/12/libpq.html
(visited on 22/04/2020).

[16] (). «Scala Book», Scala Documentation. Library Catalog: docs.scala-lang.org,
[Online]. Available: https://docs.scala-lang.org/overviews/scala-
book/scala-features.html (visited on 24/04/2020).

[17] R. Norris. (). «doobie», doobie. Library Catalog: tpolecat.github.io, [On-
line]. Available: https://tpolecat.github.io/doobie/ (visited on 22/04/2020).

[18] C. contributors. (). «Cats: Home», Cats. Library Catalog: typelevel.org, [On-
line]. Available: http://typelevel.org/cats/ (visited on 22/04/2020).

[19] B. Wagner. (). «Language-integrated query (LINQ) (c#)», [Online]. Avail-
able: https://docs.microsoft.com/en-us/dotnet/csharp/programming-
guide/concepts/linq/ (visited on 11/02/2020).

70

https://doi.org/10.1145/143165.143169
https://doi.org/10.1145/143165.143169
https://doi.org/10.1145/143165.143169
https://typelevel.org/cats-effect/
https://hackage.haskell.org/package/base-4.12.0.0/docs/System-IO.html
https://hackage.haskell.org/package/base-4.12.0.0/docs/System-IO.html
https://doi.org/10.1145/1238844.1238856
http://portal.acm.org/citation.cfm?doid=1238844.1238856
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/75277.75283
http://portal.acm.org/citation.cfm?doid=75277.75283
http://portal.acm.org/citation.cfm?doid=75277.75283
https://www.postgresql.org/docs/12/libpq.html
https://docs.scala-lang.org/overviews/scala-book/scala-features.html
https://docs.scala-lang.org/overviews/scala-book/scala-features.html
https://tpolecat.github.io/doobie/
http://typelevel.org/cats/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/

BIBLIOGRAPHY BIBLIOGRAPHY

[20] E. Meijer, B. Beckman and G. Bierman, «LINQ: reconciling object, rela-
tions and XML in the .NET framework», in Proceedings of the 2006 ACM
SIGMOD international conference on Management of data, ser. SIGMOD ’06,
Chicago, IL, USA: Association for Computing Machinery, 27th Jun. 2006,
p. 706, ISBN: 978-1-59593-434-5. DOI: 10.1145/1142473.1142552. [On-
line]. Available: https://doi.org/10.1145/1142473.1142552 (visited on
09/02/2020).

[21] E. Cooper, «The script-writer’s dream: How to write great SQL in your own
language, and be sure it will succeed», in Database Programming Languages,
P. Gardner and F. Geerts, Eds., ser. Lecture Notes in Computer Science, Ber-
lin, Heidelberg: Springer, 2009, pp. 36–51, ISBN: 978-3-642-03793-1. DOI:
10.1007/978-3-642-03793-1_3.

[22] (). «The Rust Programming Language - The Rust Programming Language»,
[Online]. Available: https://doc.rust-lang.org/book/title-page.
html (visited on 26/04/2020).

[23] (). «Bison - GNU Project - Free Software Foundation», [Online]. Available:
https://www.gnu.org/software/bison/ (visited on 19/04/2020).

[24] (). «re2c — re2c 1.2 documentation», [Online]. Available: https://re2c.
org/ (visited on 19/04/2020).

[25] R. Milner, «A proposal for standard ML», in Proceedings of the 1984 ACM
Symposium on LISP and functional programming, ser. LFP ’84, Austin, Texas,
USA: Association for Computing Machinery, 6th Aug. 1984, pp. 184–197,
ISBN: 978-0-89791-142-9. DOI: 10.1145/800055.802035. [Online]. Avail-
able: https://doi.org/10.1145/800055.802035 (visited on 09/02/2020).

[26] (). «PostgreSQL: Documentation: 12: PREPARE», [Online]. Available: https:
//www.postgresql.org/docs/12/sql-prepare.html (visited on 24/05/2020).

71

https://doi.org/10.1145/1142473.1142552
https://doi.org/10.1145/1142473.1142552
https://doi.org/10.1007/978-3-642-03793-1_3
https://doc.rust-lang.org/book/title-page.html
https://doc.rust-lang.org/book/title-page.html
https://www.gnu.org/software/bison/
https://re2c.org/
https://re2c.org/
https://doi.org/10.1145/800055.802035
https://doi.org/10.1145/800055.802035
https://www.postgresql.org/docs/12/sql-prepare.html
https://www.postgresql.org/docs/12/sql-prepare.html

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Odd Kristian Kvarmestøl

Database Access through a Functional
Programming Language

Master’s thesis in Informatics

Supervisor: Svein Erik Bratsberg

May 2020

	Contents
	Introduction
	Background
	Functional Programming
	Type System
	Monads
	Type Classes

	SQL Database Access

	Language Design
	Language Overview
	Modules
	Composite Data Types
	Variants
	Functions
	Tuples
	Match Expressions
	Classes
	Side Effects
	String Interpolation

	Formal Language Definition
	Language Grammar
	Core Language
	Syntactic Sugar
	Composite Data Types
	Typing Rules

	Standard Module
	prelude
	init
	io
	list
	composite

	SQL-Interface
	Database Connection
	Simple Query Interface
	Query Interface
	Type Mapping
	Query String Interpolation

	Atomicity & Transactions

	Compiler Design
	Syntactic Analysis
	Semantic Analysis
	Composite Data Type
	Object Instantiations
	Name Resolution
	Type Solver

	Code Generation and Optimisation
	Runtime System
	Modules
	Native Module Extension

	Results
	Language
	Init Expressions
	Error Handling
	Type System

	SQL-Interface
	State of Implementation

	Compiler Implementation
	Recursion of Polymorphic Function
	Recursive Data Types
	Tuple
	Type Classes
	Use Expressions
	Error Reporting

	Conclusion
	Future Work

	Bibliography

