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Abstract

When Deepmind’s AlphaGo computer program beat the human professional Go
player Fan Hui in 2015, it was a major breakthrough in AI game playing. Go
had proved resilient to techniques that had long since beaten humans in games
like chess. Through a novel combination of deep neural networks, reinforcement
learning and Monte Carlo tree search, Go was finally mastered. Soon after came
AlphaGo Zero, which accomplished even better results while learning completely
from self-play, and AlphaZero, which generalized it to other games.

This work contains a thorough description of these systems and the work in
the field which led up to them. It details my own implementation of this approach
as applied to the games Hex and Othello. Using this implementation, the role
rollouts play in the algorithm has been investigated. These were a core part of
earlier work in the field and still used in AlphaGo, but then absent from AlphaGo
Zero and AlphaZero. Several experiments have been conducted to gain empirical
data on whether rollouts can still be a beneficial part of this novel combination
of techniques, and how these rollouts should be performed.

Though there were some indications in the data that rollouts provide little or
no benefit, the results were ultimately mostly inconclusive. Some weaknesses in
the setup have been identified and some new questions have been raised. But the
work has resulted in a functional system that could be used to further investigate
the issue and produce more conclusive data or insight into new questions.



ii

Preface

This work is the result of a master’s program at the Department of Computer
Science at the Norwegian University of Science and Technology. It was supervised
by Keith Downing and I would like to thank him for his assistance. I would also
like to thank IDI for providing the computational resources required to run my
experiments. Finally I must thank my mother, without whose encouragement
this document might never have seen the light of day.

Henrik Brůasdal
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Chapter 1

Introduction

Section 1.1 shows the background and motivating forces for the research by pro-
viding a brief history of some game-playing AIs. The specific goals of the research
and how it will be conducted is shown in section 1.2. Section 1.3 gives a brief
overview of the document structure.

1.1 Background and Motivation

Game playing has long been a focal point for artificial intelligence research and
with time, artificial intelligences (AIs) have surpassed human players in many
games. Perhaps the most famous example of this is IBM’s Deep Blue beating
the then world champion Garry Kasparov at chess in 1997. It used a technique
which has proved successful in a number of games: alpha-beta search along with
an evaluation function hand-crafted by domain experts [Campbell et al., 2002].
Attempts to apply the same technique to the game of Go proved unsuccess-
ful however, due to its huge search space and the difficulty of crafting a good
evaluation function [Gelly et al., 2012]. The first breakthrough came with the
introduction of the Monte Carlo tree search algorithm in 2006, based on guiding
a search by playing many full simulations until the end of the game, so-called
rollouts [Coulom, 2006]. With this, the level of human professional players was
reached for a smaller-scale version of Go by 2008 [Gelly and Silver, 2008], with
further improvements in the following years; however, a similar success at full-
scale Go seemed out of reach. At the same time there was another revolution
in the field of AI with the resurgence of deep learning [Krizhevsky et al., 2012].
In 2015, a novel combination of Monte Carlo tree search and deep neural net-
works was used in Alpha Go, with training based on both supervised learning
and reinforcement learning. This was tremendously successful and finally allowed

1
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a computer system to best a human professional Go player [Silver et al., 2016].
Soon after came AlphaGo Zero, now relying on a simpler algorithm that learns
the game from scratch entirely through self-play, with even more impressive re-
sults [Silver et al., 2017]. Finally, there was AlphaZero, which generalized the
technique to the games of chess and shogi, beating the existing state-of-the-art
alpha-beta systems and indicating that this can be a feasible framework for gen-
eral game solving [Silver et al., 2018]. My thesis will take a closer look at these
systems.

1.2 Goals and Research Questions

Goal Investigate the use of a flexible combination of deep neural networks, re-
inforcement learning and Monte Carlo tree search for the games Hex and
Othello.

The basis for this combination will be the AlphaGo, AlphaGo Zero and Al-
phaZero systems. I will follow an experimental research methodology, designing
and implementing a system with inspiration from these, along with a set of ex-
periments applying variations of this system to Hex and Othello. These should
produce empirical results which enable me to analyze and discuss the merits of
the general technique and variations of it. These games are chosen as bench-
marks partially because they are relatively simple games that allow for easy and
performant implementations. There is also prior art on using standard Monte
Carlo tree search for these games, as seen in section 3.3. An explicit goal of the
system is flexibility, configurability and modularity, enabling me to easily create
a wide range of variations and experiments. Expanding the system to include
other games should be as simple as possible and not require any modification of
the existing system, only a new implementation for the game logic. The system
should not require any knowledge of a game outside of the rules, enabling it to
learn completely from scratch.

Research question 1 Is it beneficial to use both value network evaluation and
rollout evaluation in Monte Carlo tree search?

While rollouts were used in AlphaGo, AlphaGo Zero and AlphaZero dropped
them entirely. The advantage of this is faster computation and no need for
a rollout policy, but it makes value estimates less accurate, especially in the
early parts of a game. I would like to investigate whether rollouts can provide
a performance benefit in my system, both when performed all the time as in
AlphaGo or when only performed a portion of the time.

Research question 2 Is it preferable to do few rollouts with a policy network
or many with a simpler, faster policy?
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The rollout policy used in AlphaGo was relatively simple and fast compared
to its policy network. This allowed for performing many rollouts. An interesting
question is whether it could be beneficial to instead use a more sophisticated but
slower rollout policy and thus perform fewer but more accurate rollouts. If given
the same time per move, which of these approaches produce better players? I
would like to investigate this question, using the policy network which is trained
by the system for my rollout policy.

1.3 Thesis Structure

Chapter 2 will provide the reader with relevant background theory for the related
work and my own research.
Chapter 3 will expand on section 1.1 to further introduce the reader to the rele-
vant research through a literature review.
Chapter 4 will explain the system built as a part of this work in detail and provide
justification for choices made.
Chapter 5 shows how the system is used to answer the research questions by
providing the experimental design, parameters and results.
Chapter 6 contains an evaluation of the results, a discussion of the work as a
whole and potential future work.
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Chapter 2

Background Theory

This chapter provides the background theory necessary for the reader to under-
stand the fields the research touches upon. As some understanding of the games
used in this work can be useful, this section will first familiarize the reader with
Hex and Othello. It will go on to explain the Monte Carlo tree search algo-
rithm, convolutional neural networks and reinforcement learning in general, all
topics relevant both in my own work and for much of the prior art presented in
chapter 3.

2.1 Hex

Hex is a two-player zero-sum finite deterministic perfect information strategy
game. It is played on a rhombus-shaped board consisting of an NxN grid of
hexagons. 11x11 is generally the standard size. The rules are very simple. The
players, commonly denoted black and white, take turns placing pieces of their
respective colors on unoccupied tiles. The objective for each player is to produce
a connected path of pieces in their color between two opposite edges of the board,
commonly the top and bottom for black, the left and right for white. The game
ends when a player achieves this. [Browne, 2000, p. 1-4]

Figure 2.1 shows a 5x5 board before play has started (a) and after white has
won (b). Note the unbroken chain of white pieces between the two whites sides
in b.

A notable property of Hex is that a game can never end in a draw. A filled
board will always contain a connected path for one of the players and not the
other [Gale, 1979]. Additionally, Hex is a first-player-win game, meaning that
the first player can always guarantee a win with perfect play. This can be shown
reductio ad absurdum using Nash’s strategy-stealing argument and relies on the

5
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fact that an extra piece is never a disadvantage in Hex [Nash, 1952]. To weaken
this advantage and produce more fair games, a swap rule is often used: The
second player has the option of swapping colors after the first player has made
their move, taking that move as their own [Arneson et al., 2010].

Despite its simplicity, the computational complexity of Hex is large, due to its
board size and the fact that every open position constitutes a legal move. Browne
[2000] gives an upper bound on the number of valid board positions of roughly
2.38× 1056. The branching factor is around 100, situated between Go (250) and
Chess (40), and far higher than Checkers (2.8) [Allis, 1994].

(a) An empty 5x5 Hex board.

(b) A 5x5 Hex board after 12 moves where white has won by connecting the left and
right sides.

Figure 2.1
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2.2 Othello

Similarly to Hex, Othello is a two-player zero-sum finite deterministic perfect
information strategy game. It is also a board game where pieces are placed and
then not moved. But the similarities end here. In Othello, the objective is to
capture the opponent’s pieces and end up with more pieces than them at the
end of the game. The game is played on a square board with an even number
of tiles in each direction, generally 8x8. Initially there are four pieces on the
board, placed in the four middle tiles. White has the north-west and south-east
tile, black the north-east and south-west one. This initial configuration can be
seen in fig. 2.2a. Black plays the first move. A piece can only be placed on a
tile if there is a horizontal, vertical or diagonal line between the new piece and
another of that player’s pieces, with a contiguous line of the opponent’s pieces
between them. When the piece is placed, the opponent’s pieces between them are
captured and take on the color of the current player. Such a capture is shown in
fig. 2.2, which showcases black’s first move and the allowed moves for both black
and white. If there are no valid moves for a player, they are forced to pass and
the opponent plays instead. Passing is not legal if there are valid moves. The
game ends when both players must pass or the board is full. Whoever has the
most pieces at the end of the game wins. Draws are possible and occur when the
players have the same number of pieces. [Landau, 1985]

Because the rules for where a piece can be placed are fairly limiting (although
also partially because of the smaller board size), 8x8 Othello has a far lower
branching factor than 11x11 Hex, estimated at around 10 by Allis [1994]. He
gives an upper bound on the number of states of about 1028.

2.3 Monte Carlo Tree Search

Monte Carlo tree search (MCTS) is a relatively recent tree search algorithm that
has proved to be very powerful for problems where the search space is too large
for an exhaustive search and too complex to reduce to a manageable size using
heuristics. It was introduced as late as 2006 and first applied to the game of Go
[Coulom, 2006]. As the name suggests, it is a Monte Carlo method, meaning it
relies on repeated sampling for its quantitative results. Specifically, it uses Monte
Carlo rollouts, playing out from a state S to a final state F without branching or
backup. The value of S can be estimated as the mean value of the outcomes of
these simulations. If the problem is deterministic, the playouts generally use a
non-deterministic policy to introduce stochasticity. The policy can be simple, for
example, uniformly choosing among the valid actions. While many such rollouts
might then be needed for a good estimate, the complexity can be far lower than
an exhaustive search.
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(a) An initial 8x8 Othello board. The potential moves for black are shown in gray.

(b) A 8x8 Othello board after black has played their first move. The potential moves
for white are shown in gray.

Figure 2.2
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MCTS uses this to guide a search through the state tree by evaluating leaf
nodes using Monte Carlo rollouts and backpropagating information from the
rollouts. The root node in the tree corresponds to the current state of the game.
Its child nodes are the potential next states in the game, with edges representing
actions taken. Each node contains a visit count and each edge contains a visit
count and a value. The search starts in the root node and proceeds recursively
as follows: If the state already exists in the tree, select an action using the tree
policy (fig. 2.3a). This policy will generally be based on the node statistics. If
the node is not fully expanded, expand it by adding at least one of its children
to the tree (fig. 2.3b). Then perform a Monte Carlo rollout from it or one of
its children using the default policy (fig. 2.3c), also known as the rollout policy
This policy is generally non-deterministic and not based on node statistics as the
nodes visited in the rollouts are usually not added to the tree due to memory
limitations. [Gelly and Silver, 2011]

The information from the rollout will then be propagated back up the tree
(fig. 2.3d). The visit count of the nodes and edges along the visited path will be
incremented and the action values will be updated based on the outcome. Then
a new search starts from the root node.

This is repeated a number of times, iteratively refining the value estimates,
which will guide the tree policy to more promising regions of the search space.
As the number of simulations grow to infinity, the value estimates will approach
the optimum. [Kocsis and Szepesvári, 2006]

Instead of running simulations all the way to a final state, it is possible to
truncate the search at a lower depth and use an evaluation function to estimate
the value. This is dependent on being able to construct a function which both
gives an accurate estimate that does not increase the estimation bias too much,
and is reasonably fast. In that case, it can speed up the search and reduce its
variance. [Gelly and Silver, 2011]

After a certain number of simulations, when the estimates are deemed accu-
rate enough or there is no time left for additional searches, an actual move from
state S can be made based on the obtained information. This is commonly done
by choosing the action with the highest visit count, as it is less prone to outliers
than the maximum action value [Enzenberger et al., 2010]. The subtree rooted
at the next node can then be retained so that the gathered statistics can be used
as initial values in the search for the next move.

The policies used can have a large effect on the performance of MCTS. A
completely greedy tree policy will tend to be too biased and avoid good perform-
ing moves if they happen to receive a poor evaluation early in the search when
the estimates are still very uncertain. Some element of exploration is necessary
to avoid this problem. The Upper Confidence bounds applied to Trees algorithm
(UCT) does this by increasing the estimated value of actions based on the un-
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(a) Selection: The existing states of the
tree are searched until a node that is not
fully expanded is reached. The edges (ac-
tions) to follow are chosen by the tree pol-
icy.

(b) Expansion: One or more (possibly
all) child states are added to the tree.

(c) Rollout: A Monte Carlo rollout is
performed using the default policy from
a newly added node until the end of the
game.

(d) Backpropagation: The outcome of
the rollout is propagated back through
the tree, incrementing the visit count and
action values along the path that was
searched.

Figure 2.3: The four phases of MCTS.
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certainty of their value. Specifically, it adds the exploration bias c
√

logN(s)
N(s,a) to

the estimated value, where N(s) is the visit count for state s and N(s, a) is the
number of times action a has been taken in state s [Kocsis and Szepesvári, 2006].
This makes it more likely to choose rarely taken actions, even those that seem
poor if the node is visited enough, since the bonus grows without bound for ac-
tions that aren’t visited. At the same time, it decreases fast for actions that are
taken more often, so their value will mostly be based on the rollouts.

Improving the default policy can also be very beneficial to the performance of
MCTS. Incorporating domain knowledge has been shown to be an effective way
to do this [Gelly and Silver, 2011].

2.4 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a type of neural network that have
gained a large amount of popularity in recent years and have been shown to
perform exceptionally well on data with a grid-like structure, such as for image
classification [Krizhevsky et al., 2012]. The distinguishing feature of a convolu-
tional network is the replacement of the matrix multiplication used in a regular
neural network layer with the convolution operator. That is, the output of a
layer in the neural network is calculated by shifting a kernel of weights across the
input matrix, taking the weighted sum of the overlapping part of the input. This
can be seen in fig. 2.4, where each of the outputs is the sum of a 3x3 square from
the input, weighted by the corresponding value in the 3x3 kernel. The input can
also be 3-dimensional, in which case the convolution is done separately for each
layer and the results summed. The size of the shift is called the stride and is 1 in
the example. The behavior at the edge is implementation specific, but might, for
example, be done by zero padding. The example shown has no padding, leading
to a smaller output than input. As in a regular neural network, each layer is
generally followed by a non-linear activation function. Krizhevsky et al. [2012]
showed that Rectified Linear Units (ReLUs), defined as f(x) = max(0, x), make
a CNN train far faster than with more traditional activation functions such as
tanh or sigmoid.

CNNs take advantage of sparse weights, shared parameters and equivariance.
The first is accomplished by using a kernel which is smaller than the input. This
is useful because a small kernel can still detect semantically meaningful features
while requiring far less computation. It allows early layers to focus on simple,
localized features like edges in an image, while later layers consider abstract
combinations of these from a larger portion of the input. Shared parameters are
done by using the same kernel at all locations of the image. Thus, there is no need
to learn a separate set of parameters at each location, which greatly reduces the
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number of parameters needed. Equivariance means that if a feature in the input
is shifted, its representation in the output will shift in a corresponding manner.
This is a natural consequence of parameter sharing, as the kernel will detect the
same features at any location of the input. [Goodfellow et al., 2016, p. 326-335]

One of the greatest successes of CNNs is their ability to learn representations
from raw data, in contrast with earlier methods which required hand-crafted fea-
ture extractors created by domain experts. As previously mentioned, the early
convolutional layers tend to detect simple features such as edges in certain orien-
tations, making them feature detectors in their own right. Each layer can contain
a stack of kernels, each detecting a different feature at a similar abstraction level.
Many such layers are composed, each transforming its input into a representation
at a higher, more semantically useful abstraction level, highlighting important de-
tails and ignoring noise. After being transformed trough many such layers, the
final representation will be at a level where it can be used to classify the input,
for example. It turns out that the depth of the network has a large impact on
how effectively it can do this. However, deeper networks are generally harder to
train. He et al. [2016] found that introducing residual connections in the network
could mitigate this. These are skip connections where the input to a layer is
added directly to the output of itself or a later layer, as seen in fig. 2.5.

2.5 Reinforcement Learning

Consider the problem of an agent interacting with an environment. The environ-
ment is in some state s. At each time-step t it can perform an action a, which
takes it to some state s′ depending on s and a. Transitioning to s′ grants it some
reward r. This is shown in fig. 2.6. It can be formally stated as a Markov decision
process:

S A set of states.

As A set of actions in each state.

P (s′|s, a) A transition model giving the probability of going to state s′ when
performing action a in state s.

R(s) A reward function giving the reward for going to state s.

We define a policy π(s) as a function deciding which action a the agent should
perform in state s. Reinforcement learning concerns itself with learning an opti-
mal such policy by interacting with the environment and observing the rewards.
The optimal policy π∗ is the one which maximizes the expected total reward:

π∗ = arg max
π

E

[ ∞∑
t=0

γtR(st)

]
(2.1)
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Figure 2.4: Part of a convolution between a 7x7 matrix with a 3x3 kernel with
stride 1 and no padding, resulting in a 5x5 matrix. The kernel slides across the
matrix and each element in the result is the sum of an element-wise multiplication
between the kernel and the underlying 3x3 selection from the matrix.
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Weight layer

Activation function

Weight layer

Activation function

x

f(x)

x

f(x) + x

Figure 2.5: A residual block with a connection that skips two weight layers before
being added to the pre-activation output of the second layer.

γ is the discount rate, a number between 0 and 1 which makes future rewards
less valuable than immediate ones. [Russell and Norvig, 2010, p. 647, 830]

The fact that the policy is learned while gathering rewards leads to the
exploitation-exploration trade-off. The agent must find an appropriate balance
between exploring the environment to gather information about the rewards and
exploiting its current knowledge to maximize its reward. A simply policy to en-
sure exploration is to be ε-greedy: Select the option that looks optimal most of
the time, but select a random action for a proportion ε of the time. A better
exploration policy would be one that prioritizes actions that are poorly explored
and deprioritizes actions which seem to have a low value. [Russell and Norvig,
2010, p. 839-840]

We can define a state-value function V π(s) and a state-action-value function
Qπ(s, a) to be, respectively, the expected reward of following policy π from state
s and the expected reward of following policy π from state s after performing
action a. If Qπ

∗
is known, π∗ is simple: Pick the action with the maximum

Q-value. Notably this does not require knowledge of P and R, so learning Q
is a so-called model-free method. For the optimal policy, Q obeys the Bellman
equation:

Q(s, a) = R(s) + γ
∑
s′

P (s′|s, a) max
a′

Q(s′, a′) (2.2)

Informally, the value of doing a in s is the immediate reward in s and the sum
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Figure 2.6: An agent affects the environment through actions, producing new
states and rewards.

of the values of choosing the best actions in the next states you might end up in,
weighted by the chance of actually ending up in them. This equation can be used
to learn Q in an iterative fashion. Starting out with an estimate for Q, when
action a is performed in state s leading to state s′, it can be updated as

Qt+1(s, a) = Qt(s, a) + α(R(s) + γmax
a′

Qt(s
′, a′)−Qt(s, a)) , (2.3)

where α is the learning rate. This adjusts our estimate closer to the equilibrium
that must hold for the correct value function. This method is called Q-learning. If
α is decreasing it is guaranteed to converge. Because it assumes that the optimal
action is taken in the next state, regardless of what policy is actually used, it is
an off-policy method. [Russell and Norvig, 2010, p. 833, 843-844]

Real-world reinforcement learning problems tend to have a very large state-
action space. This can make a tabular approach where every state-action pair
is enumerated and their values estimated separately completely infeasible. Not
only is the space required to store the function in such a way very large, but
the complete lack of generalization means that there is no information available
about state-action pairs that have not been explored. Even if visiting them all is
realistic, it is clearly inefficient, as real-world problems tend to have similarities
between states that could be exploited. One way to do this is function approx-
imation. The approximation could be a linear function or a non-linear function
such as a neural network. In the case of a deep neural network the technique is
called deep reinforcement learning. Various things can be estimated, such as the
state value, the state-action value or a probability distribution representing the
optimal policy. In the second case, a neural network could take both the state
and action as input and output a single value or take just the state and output a
value for each action, or there could be one network per action with one output.
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The last of these has the advantage that modifying the network for one action
avoids affecting the output for other actions [Lin, 1993]. The first is efficient, as
it avoids having to evaluate it multiple times per state [Mnih et al., 2015]. When
the function approximation is an estimate for Q, it can be trained using stochas-
tic gradient descent. If the approximation of Q is Q̂θ, where θ is the function
parameters, and we define the error to be the mean squared error between the
approximation and the target Q-value as given by the Bellman equation, we get
the following parameter update:

∆θi = α
[
R(s) + γmax

a′
Q̂θ(s, a)− Q̂θ(s, a)

] ∂Q̂θ(s, a)

∂θi
(2.4)

We can see that this is essentially the same as Q-learning. [Russell and Norvig,
2010, p. 845-847]

One technique used to improve the training of function approximators for
reinforcement learning is experience replay [Lin, 1993]. After each choice, the
agent’s experience, consisting of s, a, R(s) and s′, is stored in so-called replay
memory. Instead of training on the most recent experience, training examples are
sampled from the replay memory, at random or prioritized in some way. This has
multiple advantages. An experience can be presented to the algorithm multiple
times instead of simply being thrown away, which is especially valuable if the
experience is rare or involves negative rewards. Thus, it keeps the agent from
forgetting transitions it has not experienced for a while and helps avoid revisiting
bad experiences. It is also more efficient to learn from random samples than
strongly correlated consecutive samples, and averaging over previous experiences
created with different parameters helps avoid oscillations or divergence [Mnih
et al., 2015].



Chapter 3

Related work

This chapter provides a thorough review of both earlier work and the state-of-
the-art in fields relevant for the project and aims to motivate my own research.
It also contains a justification for the choice of literature. The sections on deep
reinforcement learning and Monte Carlo tree search both cover multiple research
articles. The remaining sections are more in-depth and only cover a single article
each, as I regard these as the most important for my own work. The chapter
ends with a summary of how the research work motivates my own work.

3.1 Selection of Literature

The main method used for finding literature to review has been snowballing,
meaning using a few key articles as a starting point and then recursively con-
sulting their references for other relevant articles to include. This was a natural
choice, because there are three clear starting points: the DeepMind articles men-
tioned previously, Silver et al. [2016], Silver et al. [2017] and Silver et al. [2018].
These are where the specific combination of techniques I am investigating were
introduced and they contain a large number of references, so the assumption was
that they were likely to directly or indirectly reference most relevant articles.

One of their direct references is Mnih et al. [2015], which, while not utiliz-
ing MCTS, introduced an alternative, novel combination of deep learning and
reinforcement learning with state-of-the-art results. It’s included in my review
to increase the breadth. Lundgaard and McKee [2006] was not found through
the snowballing process, but is a recommended read in the Artificial Intelligence
Programming course. As an earlier attempt at combining neural networks with
reinforcement learning to video games, it serves as a good introduction to Mnih
et al. [2015].

17
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There were of course many referenced articles relevant to MCTS. Chief among
these were Coulom [2006], Kocsis and Szepesvári [2006] and Wang and Gelly
[2007], which introduced MCTS itself, UCT and their combined application to
Go respectively. As the original articles for these central ideas, they were a
natural part of the review. A followup to Wang and Gelly [2007], Gelly and
Silver [2007], is reviewed to show how the technique quickly developed further
and reached state-of-the-art levels in Go. Maddison et al. [2014] describes a
much later development where deep neural networks are used in combination
with MCTS. This article concludes the pre-Alpha Go timeline and thus sets the
stage for a review of the three main articles. All these articles were directly
referenced by those three.

Hingston and Masek [2007] and Arneson et al. [2010] show how MCTS was
applied to games other than Go. Because these apply to Othello and Hex re-
spectively, they also serve as a description of early prior art for my games of
interest, which is mainly why these articles in particular are used. As the Deep-
Mind articles naturally focused on prior art for Go, these were not found through
snowballing, but through searching Google Scholar for “monte carlo tree search
othello” and “monte carlo tree search hex”. The latter search also produced An-
thony et al. [2017], which was included to show an alternative approach inspired
by AlphaGo and because it makes use of uniformly random rollouts.

3.2 Deep Reinforcement Learning

Many games are ill-suited for supervised learning, as it is hard to define what a
correct move looks like. Many games also provide some kind of score or reward
during gameplay, which makes reinforcement learning an obvious choice. How-
ever, the traditionally successful reinforcement learning techniques are model-less
algorithms that enumerate the entire state or state-action space, which can be
intractable in many cases. Combining these techniques with neural networks as
a function approximator can provide sufficient generalization to make them ap-
plicable. One such attempt was Lundgaard and McKee [2006], which applied
it to the game of Tetris. They noted that the raw state space of Tetris is on
the order of 7.87× 1061, though many of these states are functionally equivalent.
Some pieces are rotationally or horizontally symmetric, rearranging columns can
produce an equivalent board and pieces below the top layer may not affect where
a piece should be placed. While also doing experiments with the raw state, they
devised a higher-level representation of states and actions. The states consist of
7 heuristic features which reduce the state space to about 40,000. The higher
level actions are things such as “Pick the action that minimizes holes/minimizes
column height/clears a line” and other such heuristics. They implemented two
different neural network agents, both ε-greedy, one based on raw state-action
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pairs, the other on high-level pairs. The neural networks were very narrow and
shallow, containing only a single hidden layer with 10 sigmoid activation neurons
and an output layer with linear activations. They took a state representation as
input and had one output per action. Training was done with stochastic gradient
descent as shown in section 2.5. Future actions were heavily discounted, with
γ = 0.1. The low-level agent showed little sign of learning and did not surpass a
random agent. The high-level agent learned, but only reached a level comparable
to an agent always attempting to clear lines. It did however score more points
per cleared line, suggesting slightly smarter play. It won 29.75% of games against
a very capable agent based on brute-force search and a hand-tuned evaluation
function. Lundgaard and McKee [2006] remark that it appears to perform well
compared to a human player, though it is important to note that a human is
limited by their reflexes.

Though the Tetris system used a neural network, it arguably does not qualify
as deep reinforcement learning, given the size of the network. This was however
not the case for Mnih et al. [2015], which combined reinforcement learning and a
significantly larger neural network with convolutions in a technique called deep
Q-network (DQN). The resulting agent could play a number of Atari games with
great success while incorporating no domain knowledge.

The network input was based on the raw pixel values from the games, al-
though downscaled, cropped and converted to grayscale. Because the games
were not necessarily fully observable from the current frame, the four last frames
were stacked. The network’s hidden layers consisted of 3 convolutional layers
and a fully-connected layer, all with rectifier non-linearities. As in Lundgaard
and McKee [2006], the network had a separate output for the expected reward
of each action. Similarly, the agent used an ε-greedy policy with off-policy train-
ing where the predicted rewards were adjusted towards the Q-value by gradient
descent. Instead of training directly on each sample, experience replay was used,
with a mini-batch being sampled after each move. The same network architec-
ture, hyperparameters and algorithm were used for all games. Because the game
scores have different scales, during training positive rewards were changed to 1
and negative rewards to -1. The discounting was significantly less harsh than in
Lundgaard and McKee [2006], with γ = 0.99. To have stable targets that discour-
age divergence or oscillations, the network used to generate the Q-value targets
was only updated every 10,000 iterations. For the same reason, error terms were
clipped between -1 and 1. To increase the number of games that could be played,
an action was only picked every 4th frame, then repeated on the following 3.

DQN was tested on 49 different Atari games. On 43 of these it outperformed
any existing reinforcement learning agent, including those incorporating game-
specific domain knowledge. On 29 of them it performed comparably to a human
professional games tester. It outperformed a random agent on all but one game,
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Montezuma’s Revenge, which requires long-term planning to a much greater ex-
tent than many of the others. The network was found to react similarly to visually
similar states, as well as to states with a similar expected reward, showing good
generalization. Testing showed that using a single linear layer would be a sig-
nificant detriment to performance. Experience replay and spacing out updates
of the target network also played a large part in its success, although to a lesser
degree.

3.3 Monte Carlo Tree Search

The term Monte Carlo tree search was coined by Coulom [2006], though the gen-
eral idea of combining Monte Carlo evaluation with tree search was not new and
had previously been attempted with Go. He applied a version of the technique to
Go with the Crazy Stone program, with competitive results. However, there are
some notable differences between MCTS as described by Coulom [2006] and the
approach that ended up being most popular for Go, UCT [Kocsis and Szepesvári,
2006].

He notes that some advantages of his scheme compared to earlier work is that
any new information is immediately backpropagated to the root and that it can
provably converge to the optimum. It does not make use of progressive pruning
of the search tree, which can cut off potentially good moves that have yet to
be properly explored. He prefers an approach for the tree search policy where
the probability of exploring bad moves tend to zero without ever reaching it,
and says that inspiration for this can be found in the fields of discrete stochastic
optimization and n-armed bandit problems. He recognizes that both assume
stationary distributions, while the probability distribution in a tree search is
continually changing, and also identifies some problems with their optimization
target. Kocsis and Szepesvári [2006] would later prove that despite this, the
UCB1 metric as used for n-armed bandits will guarantee convergence to the
optimum in MCTS.

Coulom’s [2006] proposed solution is to for each move store both an estimate
of its value µ and the uncertainty of its estimate, in the form of its variance σ2.
Then each move i is selected with probability proportional to

exp(−2.4
µ0 − µi√
2(σ2

0 + σ2
i

) + εi , (3.1)

where µ0 > µ1 > ... > µN and ei is a heuristic which is constant for a given
move. The formula is chosen to approximate the probability of that move being
the best assuming a Gaussian distribution. The author remarks that it is similar
to the Boltzmann distribution used in many n-armed bandit problems. Kocsis
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and Szepesvári [2006] later found the Boltzmann distribution to be significantly
weaker than UCB1 as a strategy in MCTS.

He makes a distinction between internal and external nodes based on the
number of visits. External nodes have had few visits. Rollouts are performed
from these nodes with a domain-specific heuristic policy. Their value for µ is the
average of their simulation values, while their variance σ2 is a heuristic designed
to match their large uncertainty. Internal nodes are those from which the tree
policy is used. Their value and variance are based on a relatively complicated
backup procedure. Coulom [2006] remarks that backing up the average will result
in an underestimate and the max will give an overestimate, and proceeds to show
empirically that a mixing operator is the most accurate. This is roughly a linear
combination of the average and the “robust max”, backpropagating the value of
the move with the highest number of visits.

Crazy Stone was evaluated against Indigo, which is based on an earlier Monte
Carlo method with pruning [Bouzy, 2004], and GNU Go, which uses state-of-
the-art search methods that precede the use of Monte Carlo for Go [Silver et al.,
2016]. It was found to outperform Indigo, but not GNU Go, against which it only
won 28% of games despite spending 10 times as long on computation. Coulom
[2006] remarks that Crazy Stone seems to be worse at deep tactics, but has a
better global understanding of the game.

To solve the problem of finding a balance between exploiting the currently
best move and exploring moves that look less promising, Kocsis and Szepesvári
[2006] looked to multi-armed bandit problems. These are problems that can be
described as a number of gambling machines, each with an arm where pulling it
grants a reward drawn from that arm’s distribution. The objective is to maxi-
mize the total reward when pulling arms in sequence. This resembles the move
selection in MCTS, as you need to choose between exploiting an arm that has
given a good outcome so far and exploring arms that might ultimately turn out to
be better. This resemblance makes the UCB1 algorithm a promising choice. It is
simple and bounds the growth of the regret, the loss caused by not always pulling
the best arm, as O(lnn). When transferred to the MCTS domain, the formula
is as described in section 2.3. UCB1 assumes a static distribution, which is not
the case in MCTS. Nevertheless, Kocsis and Szepesvári [2006] proved that when
UCB1 is applied to MCTS (called UCT), the probability of choosing an incorrect
action at the root converges to zero. It does so at a rate that is polynomial in
the number of simulations. They also showed it to be effective experimentally.

The idea of using UCT to guide the tree search in MCTS was quickly adopted
for Go. Wang and Gelly [2007] used it to develop MoGo. The tree search is as
in Crazy Horse, but replacing stochastic optimization with UCT. They used a
slightly modified version of UCB1 which takes into account the variance of the
estimate. Their rollout policy was a domain-specific heuristic based on local pat-
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terns that are matched against positions on the board around the location of
the last move. They experimented with pruning of branches and found some
improvement from it. Interestingly, they remark “[...] sophisticated pruning
techniques are undoubtedly necessary to improve the level of Computer-Go pro-
grams,” which would turn out to not be the case. One problem they note with
UCT is that upon encountering a new state there is no information to choose
an action, nor is there information about which order to explore them. Thus,
all actions should in theory be explored once before applying UCT, but they
found improvements from starting exploitation early if a move seemed particu-
larly promising after one simulation. They also attempted to order the moves by
the value of the same moves in an earlier position, with the rationale that a move
which is good in one position might also be good in a later position. This some-
what resembles the RAVE algorithm, which will be covered later. They modified
the algorithm to run on multiple processors with mutexes to lock access to the
tree, again with noticeable improvement. With these techniques, MoGo became
the leading computer Go player at the time.

MoGo was further improved in Gelly and Silver [2007]. They created a value
function consisting of a linear combination of binary features, where the features
are local patterns which are matched against all positions of the board. The value
function was trained using temporal difference learning from games of self-play.
This value function outperformed the default policy of the previous MoGo when
played directly against each other. Despite this, they found that for Monte Carlo
simulations, policies based on the value function performed significantly worse
than the original policy. They also note that injecting an appropriate amount
of nondeterminism improved the performance, but that it did not close the gap.
Instead, they attempted to use the value function to introduce prior knowledge
into UTC. When a new state-action pair is encountered during the tree search,
the value estimate can be initialized with a heuristic, and the visit count can be
initialized as the number of simulations normally required to achieve an estimate
of that accuracy. They compared different heuristics and found that the value
function was the most effective and that the equivalent experience of the estimate
was about 50 simulations.

To solve the problem of UCT requiring many samples of each action in a state
to produce an estimate with low variance, Gelly and Silver [2007] introduced the
UCTRAV E algorithm. This is based on the all-moves-as-first heuristic, which
is the idea that instead of averaging over the simulations where an action is
selected in the current state, one can average over the simulations where the
action is selected in the current or any later states. The reasoning behind this
is that an action which is a good choice now is likely to be so later as well.
This lets the algorithm generalize the estimate between related states, causing
more effective learning. Because this is a biased estimate, it is calculated such
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that the RAVE estimate will dominate initially, but it will converge to the UCT
estimate. They found this technique to improve performance equivalent to several
thousand extra simulations. Combining this with the prior knowledge from the
learned value function and the handcrafted default policy enabled MoGo to win
69% of matches against GNU Go in 9x9 Go. It achieved strong master level play
and was the first program to beat a professional human player for this board size
[Gelly and Silver, 2008].

MCTS was soon also used for other games than Go. Hingston and Masek
[2007] attempted to use it for Othello. They used UCT and a learned evaluation
function based on weighted piece counts to guide their default policy. Inter-
estingly, they experimented with an evolutionary algorithm to adjust the piece
weights, without great success. They were not able to develop a stronger player
for Othello than earlier minimax approaches. Arneson et al. [2010] developed
MoHex, a Hex player using RAVE and no UCT exploration. The tree search is
augmented by domain knowledge. Specifically, moves that are provably inferior
are pruned (avoiding the earlier mentioned problem of pruning potentially supe-
rior moves) and cells on the board which can be proved to not affect the outcome
are filled in. A solver runs parallel to the tree search which gives perfect play
when it is able to solve the position. They found that the program had weak
opening play, theorizing it could be because there is less information to guide the
search early on. This caused them to add an opening book. The default pol-
icy was uniformly random, except for a single pattern which aims to maintain a
connection if the opponent is attempting to break it. MoHex went undefeated in
the 2009 Computer Olympiad, but was similar in strength to an earlier program
when omitting the solver and opening book.

Maddison et al. [2014] experimented with training deep convolutional net-
works for Go as an alternative to the relatively simple and shallow evaluation
functions used up to that point. This took the form of a 12-layer policy network
trained using stochastic gradient descent to predict actions from a data set of
human expert moves. The inputs were a number of 19x19 feature planes. They
consisted of a mix of representations directly from the state of the board and the
rules of the game, a heuristic and the rank of the expert playing the move. The
data set was augmented with random rotations and reflections. This network
achieved a 55% prediction accuracy, compared to 35% and 39% for earlier state-
of-the-art move prediction, and 44% for an independent result around the same
time by Clark and Storkey [2015]. Using the CNN directly as a policy by greedily
selecting the recommended move won 97% of games against GNU Go, was about
equal to MoGo using 100,000 simulations per move and about equal to the state-
of-the-art program Pachi with 10,000 simulations per move. They tested the
use of the network’s output as prior knowledge in UCT MCTS with RAVE and
rollouts based on simple patterns. While this was not compared against other



24 CHAPTER 3. RELATED WORK

programs, it won 86.7% of games against the raw network when using 100,000
simulations. This showed the promise of using convolutional networks for move
evaluation in MCTS, leading directly into the work done for AlphaGo.

3.4 AlphaGo

Silver et al. [2016] introduced a new approach to computer Go, resulting in a
program which was substantially better than any previous attempt and capable of
beating a human professional player. They called it AlphaGo. The program used
a novel combination of deep learning, Monte Carlo tree search and reinforcement
learning. This differentiates it from the most successful approaches up until
that point, which were based on MCTS along with shallow policies using linear
combinations of features trained to predict human expert moves. These only
achieved strong amateur play in 19x19 Go.

While Silver et al. [2016] did make use of supervised training using human
moves, they took advantage of the rise of deep learning to construct much more
capable approximators based on convolutional neural nets. They use two different
network architectures. One is a policy network, which takes the state as an input
and outputs a probability distribution over the legal moves in that state. This
is based on the work in Maddison et al. [2014]. The other is a value network,
which again takes the state as an input, but outputs a single value predicting the
winner of the game.

The policy network is a 13-layer CNN with rectifier non-linearities. The in-
put is 19x19x48, corresponding to the 19x19 Go board with 48 feature maps.
Similarly the output is a 19x19 probability distribution over the positions on
the board, achieved with a softmax output layer. The training of the network
is initially supervised using stochastic gradient descent to predict human expert
moves. Taking advantage of Go’s symmetry, the training data is augmented with
rotations and reflections of each position. In addition, a simpler but faster rollout
policy based on a linear softmax of patterns is trained with the same data set,
achieving only roughly half the accuracy, but being three orders of magnitude
faster. The policy network is trained further using reinforcement learning based
on self-play. Games are played between the current policy network and a previ-
ous iteration of the network selected at random to prevent overfitting. Actions
are sampled from the output probability distribution. The games are played
in parallel until termination and the final outcomes are used as rewards. The
parameters are adjusted with policy gradient updates using the REINFORCE
algorithm [Williams, 1992]. After training, this network was by itself better than
Pachi, the best performing open-source Go program. It also beat a version of
itself only trained with supervised learning by a similar margin.

The value network is a 15-layer CNN with a similar architecture to the policy
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network, with the exception that the two last layers are fully connected. The
final output is one tanh neuron. It takes the same input, except an extra value
for the color of the current player (needed because the other feature maps were
represented as “current player” and “opponent”, not “black” and “white”). The
value network was trained by stochastic gradient descent to minimize the mean
squared error between the predicted and actual outcome on self-play games by
the policy network. Each training example was sampled from a separate game to
obtain uncorrelated positions. The resulting network was more accurate at eval-
uating positions than Monte Carlo rollouts using the fast rollout policy. Despite
being 15,000 times more efficient, it was nearly as accurate as rollouts using the
policy network.

During gameplay, the value and policy networks are used in MCTS to guide
and truncate the search. In addition to the action value and visit count, each
edge of the search tree stores a prior probability. This probability is the policy
network’s estimated value for that action in the given state, and is calculated
when the node is expanded. During the tree search, actions are chosen to max-
imize the sum of the action value and a bonus similar to UCT called PUCT

[Rosin, 2011], cPUCTP (s, a)

√∑
bN(s,b)

1+N(s,a) , where cPUCT is an exploration constant.

This encourages choosing actions with a high action value and prior probability,
as well as exploring actions with a low visit count. Silver et al. [2016] found that
using a policy network trained purely by supervised learning performed better
at this stage, theorizing that it’s caused by humans picking more diverse moves.
When reaching a leaf node, two different evaluations are performed: A full Monte
Carlo rollout with the fast rollout policy, as well as a value network evaluation.
The final evaluation is a weighted average of these. It was found that weighing
them equally performed the best, although using only the value network still
produced results superior to any existing program.

Because evaluating the networks is computationally expensive, this is done
asynchronously on GPUs by adding them to a queue, while the search simul-
taneously runs in multiple threads on CPUs. To discourage multiple threads
from searching the same branches, a virtual loss mechanism is used where during
the search, N(s, a) is increased by a constant amount and the value estimate is
decreased by the same amount. The updates during backpropagation are done
without locks. Leaf nodes are only expanded after reaching a dynamic visit
threshold. This is adjusted on-the-fly such that the positions are evaluated by
the policy network at the same rate as they are added to the queue. Both the
policy and value network evaluate positions one at a time.

AlphaGo does not use any heuristics such as all-moves-as-first or rapid action
value estimation, as this was shown to not be beneficial, nor extra knowledge
such as opening books. In addition to the features used in the fast rollout policy,
which won’t be covered, and the implicit knowledge in the training examples,
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AlphaGo makes use of the following domain knowledge:

• Explicit knowledge of the game rules is used during MCTS.

• The symmetry of the board is used to do data set augmentation and a
random reflection/rotation before network evaluation.

• The input features are mostly direct representations of the board or hand-
crafted features which are relatively direct results of the game rules (one is
partly a heuristic and two are based on a search).

When evaluating AlphaGo, Silver et al. [2016] found it to win practically
every match against state-of-the-art commercial and open-source Go programs,
and being substantially better even when playing with a handicap. Remarkably it
also beat the European Go champion Fan Hui, marking the first time a computer
had beat a human professional player at full-sized Go. They did this without
requiring the handcrafted evaluation functions that had been used in many other
games, but seemed intractable to create in Go. Thus they showed action selection
and position evaluation based on deep learning combined with MCTS to be a
highly effective technique for playing the game of Go.

3.5 AlphaGo Zero

Despite using reinforcement learning to train its policy network, AlphaGo still
required supervised learning based on human experience for the initial training.
This makes it hard to transfer the technique to other domains where such data
sets are not available or practical. It could also constrain the program by biasing
it towards the way humans play. Silver et al. [2017] introduced AlphaGo Zero,
which in contrast to AlphaGo starts from scratch and learns purely by self-play
reinforcement learning. This led to a superhuman player with substantially better
results than AlphaGo.

Despite the improvement in results, AlphaGo Zero is much simpler than its
predecessor in several aspects. It uses far fewer feature planes, 17 instead of 48.
These planes only represent the stones of the current player and the opponent
for the current and last 7 states, as well the color of the current player. This
is thus a pure representation of the board state, instead of using features which
are implicit from the game’s rules or heuristic in nature. Additionally there is
only a single CNN, which fulfills the role of both the policy and value network.
Finally, it uses pure truncated search with no rollouts, only value estimation by
the network. This gets rid of the rollout policy, which required domain knowledge
to construct and supervised learning to train.

The most important difference between AlphaGo and AlphaGo Zero, and
what enables using pure reinforcement learning, is the introduction of look ahead
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search using MCTS during the training phase. This search is mostly similar to
the search AlphaGo performed during gameplay. The notable differences are the
lack of rollouts and that nodes are always expanded. Positions are passed to the
network for estimation in mini-batches of eight instead of one by one. In the
early parts of the game, actions are sampled proportionally based on their visit
counts, while later the most visited action is picked. Dirichlet noise is added
to the probabilities in the root node to encourage additional exploration. Self-
play games using this technique are played continuously by the best-performing
network so far. Training examples consisting of the state, outcome and action
probabilities (proportional to visit counts in the root) for each position are stored
after each game in a replay buffer.

In parallel, the network’s parameters are adjusted using stochastic gradient
descent to minimize the difference between the predicted and actual winner and
the suggested probabilities and the search probabilities. The training examples
are sampled from the replay buffer. Because the search will tend to create better
probabilities than the raw network, adjusting the network towards these proba-
bilities will make it a stronger player. Along with making it a better predictor of
the outcome, this will in turn improve the search and lead to stronger play when
creating new self-play games. This is essentially a policy iteration procedure,
alternating between improvement and evaluation of the policy and continuously
improving it. To ensure that the training leads to an actual improvement, the
new network is always evaluated against the best network so far, and it only
replaces it if it wins by a margin greater than 55%.

As previously mentioned there is a single network responsible for both the
action policy and the position evaluation. This is a CNN with a number of
shared layers and two separate output heads. The network is far deeper than
the two used in AlphaGo, consisting of 79 shared layers in the full variant, and
a 2-layer policy head and 3-layer value head. The network uses residual blocks,
but with the addition of batch normalization after each convolution. The value
head is similar to the last layers of the value network from AlphaGo, but with
batch normalization after the last convolutional layer. The policy head consists
of a convolutional layer with batch normalization, followed by a fully connected
layer instead of another convolutional layer. It was shown that combining the two
networks into one reduced the accuracy of move prediction, but it also reduced the
value error and substantially improved the overall performance. Using residual
blocks improved both metrics. To isolate the effect of pure reinforcement learning,
Silver et al. [2017] also compared the network to one with the same architecture
but trained on human expert moves. This network was better at predicting
human moves, but worse at predicting game outcomes and substantially worse
overall. They suggest that this could mean AlphaGo Zero learns moves that are
qualitatively different to how humans play the game.
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Using the described techniques, AlphaGo Zero won 100-0 against the pub-
lished version of AlphaGo. It was substantially better than an unpublished,
improved version which beat the world champion Lee Sedol in 2016. It also won
89-11 against another unpublished version similar to AlphaGo Zero, but with Al-
pha Go’s features, rollouts and initial supervised learning, which in online games
beat the best human players by 60-0. During training they found that the pro-
gram first rediscovered many of the strategies used by human players, and then
later discovered entirely new ones. With this they showed that a program based
on reinforcement learning could teach itself Go from scratch to superhuman per-
formance, with little domain knowledge other than the rules of the game. It was
even evident that biasing the program with human knowledge using supervised
learning, rollout policies and hand-crafted features could constraint it and be
detrimental to performance.

3.6 AlphaZero

AlphaGo Zero achieved performance better than any existing Go program using
a very general pure reinforcement learning approach. This naturally raises the
question of whether this approach can be adapted to other domains with the
same success. With AlphaZero, Silver et al. [2018] attempted this in chess and
shogi. The result was yet again a notable improvement on the state-of-the-art in
these games.

Because few parts of AlphaGo Zero relied on domain knowledge, the mod-
ifications needed to use it for chess and shogi were limited. Go cannot end in
a draw, something which was exploited to optimize and estimate the probabil-
ity of winning. Because this is not the case in general, and for chess and shogi
specifically, AlphaZero instead uses the expected outcome. These games are also
not symmetrical like Go, so no data set augmentation or random reflections or
rotations were performed. The Dirichlet noise added in the root node was scaled
in inverse proportion to the typical number of legal moves in a position of that
game. The main change is in the representation of the state which is passed to
the network. These are obviously game dependent, but similar to in AlphaGo
they represent the positions of pieces on the board and the color of the current
player, as well as features for special, unobserved rules. Though this is not a
necessary change, AlphaZero also behaves differently during network training.
While its predecessor tested each updated network against the best performing
network so far, this algorithm uses a single network which is continuously up-
dated and always used for new self-play games. To explore the effect of these
changes compared to AlphaGo, AlphaZero was trained on Go as well.

It is remarked that intuitively a convolutional architecture seems much better
suited to Go than chess and shogi, due to its rules being invariant to translation
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and based on adjacencies between positions. The rules of chess and shogi depend
on the position on the board and the types of pieces and there are complex
interactions over greater distances. Note that both Hex and Othello are more
similar to Go in these respects. Despite the differences AlphaZero uses essentially
the same network architecture as AlphaGo with great success. The policy heads
are game dependent, but fairly similar. Unlike AlphaGo Zero, but similar to
AlphaGo, the output layer for chess and shogi uses a convolution. Their outputs
are represented as two parts, which piece to move and which position to move it
to.

In addition to the network architecture, the hyperparameters and algorithm
settings were general enough to be reused for all games, except for the learning
rate and the previously mentioned exploration noise.

Training was done using 5,000 first-generation tensor processing units (TPUs)
for self-play and 16 second-generation TPUs for optimization. Using this hard-
ware they generated 44 million, 24 million and 140 million training games for
chess, shogi and Go respectively and trained each network for 700,000 iterations
in mini-batches of 4,096 positions.

AlphaZero was tested against Stockfish, Elmo and AlphaGo for chess, shogi
and Go respectively. For chess, it won 155 games and lost 6 out of 1000. Common
human moves were discovered during training and AlphaZero was able to beat
Stockfish from all of these openings. For shogi, AlphaZero won 91.2% of its
games. For Go, it won 61%, despite only generating 1/8th of AlphaGo Zero’s
data due to not exploiting symmetry. AlphaZero’s performance is noteworthy, as
chess programs using regular MCTS have been weaker than those using alpha-
beta search, and alpha-beta search with neural networks has been weaker than
with handcrafted evaluation functions. Silver et al. [2018] theorize that while
alpha-beta search will propagate the larger errors a neural network may have
compared to have liner evaluation function, they will be averaged out using MCTS
in AlphaZero. Additionally, AlphaZero searches three orders of magnitude fewer
moves per second than its opponents which use alpha-beta search and are heavily
dependent on domain knowledge. These results show that a pure reinforcement
learning technique originally designed for Go with no domain knowledge other
than the rules of the game can be easily adapted to other games. Not only that,
but it proved superior even where handcrafted evaluation functions have been a
viable approach to superhuman performance, which was never the case in Go.

3.7 Expert Iteration

Anthony et al. [2017] introduced the Expert Iteration (ExIt) algorithm. It drew
inspiration from AlphaGo and though it was an independent discovery, it is very
similar to AlphaGo Zero and AlphaZero (“Alpha(Go) Zero” for convenience). It



30 CHAPTER 3. RELATED WORK

is of particular interest here because it was used to successfully learn the game
of Hex through pure reinforcement learning, achieving very impressive results.

Though the end result is similar, they approach the problem from a different
angle with different terminology. They argue first that when playing a board
game, a human player uses their intuition to select interesting avenues of play
to consider more deeply. This reasoning then improves their intuition, which
further improves their analysis. An algorithm with no look ahead is akin to a
human only using their intuition to play, while using a neural network as an
intuition to guide a tree search and using this to improve the neural network is
more reminiscent of human play. This is of course the essence of Alpha(Go) Zero,
and, it turns out, ExIt. They also draw parallels to imitation learning, where
an apprentice policy is trained to imitate the behavior of an expert policy. In
this case the apprentice is a neural network and the expert is a tree search. The
expert uses the apprentice to guide its search, such that when the apprentice is
improved by imitating the expert, the expert is also improved, which they call
expert improvement. This in turn gives the apprentice a better target to learn
from, so it can be viewed as a case of iterative imitation learning.

One major difference between Alpha(Go) Zero and ExIt is how they sample
positions. Anthony et al. [2017] chose to only sample a single position from each
game to avoid correlated positions, similar to the approach used in the original
AlphaGo to train the value network. Additionally, instead of playing full games
with the expert policy, they use the apprentice policy directly, which runs much
faster. The expert policy is only used to predict a better action for the single
position chosen from each game. This is equivalent to the DAGGER algorithm
[Ross et al., 2011]. It does not produce as accurate predictions as expert self-
play however, as the statistics will not be carried over from move to move. The
positions will also likely be different from those the expert policy would end up
in.

Some other differences are that ExIt uses early stopping instead of L2 regu-
larization and that the loss for value estimation is cross-entropy instead of mean-
squared error. Value estimates are averaged with rollout estimates as in the
original AlphaGo, although the rollout policy is uniformly random. The neural
network is a conventional and much shallower 14-layer CNN. They use a con-
tinually improving network as in AlphaZero, but unlike AlphaGo Zero. ExIt’s
MCTS uses the RAVE [Gelly and Silver, 2007] algorithm. MCTS is performed
synchronously, threads merely search from another position while waiting for
neural network evaluations. Dirichlet noise is not used, instead their version of
UCT guarantees that all moves will be tried at least once regardless of the prior
probabilities.

Before performing expert improvement, they warm start the apprentice policy
by training it using a pure imitation learning procedure where the expert policy
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is a MCTS which does not utilize the apprentice policy. Of note is that they
compare two training targets, one where the apprentice only tries to imitate the
expert’s chosen move, another where it tries to imitate the expert’s probability
distribution of moves. The former is similar to how AlphaGo initially learned
to imitate human expert moves. They found that while they achieve a similar
prediction accuracy, the latter leads to a better player. The end result was about
comparable to the MCTS expert. A combination of a warm started apprentice
policy network and MCTS won 97% of games against the pure MCTS expert.

They then went on to train the policy network further with ExIt, comparing
it with REINFORCE as used to train the policy network in AlphaGo. They
found that ExIt’s learning is faster and more stable and leads to a stronger policy.
They continued training until they had built up a large dataset of around 550,000
positions and then used this to train a combined policy and value network. ExIt
does not provide a way to do this directly. Their solution is to use the trained
policy network to get a Monte Carlo estimate of the value of each position. This
is another difference from Alpha(Go) Zero, where the value estimates are from
self-play by the expert. Anthony et al. [2017] say this was not feasible with their
computational resources. The combined network was further improved with ExIt.
A comparison shows a substantial improvement from adding value estimates, to
the point where the combined network apprentice outperforms the policy network
expert.

ExIt was compared against MoHex, the best publicly available Hex program,
which as described earlier is highly dependent on domain knowledge. In com-
parison, ExIt learns from scratch utilizing no information except the rules of the
game (although it does make use of the RAVE algorithm). ExIt won 75.3% of
games with the same number of MCTS iterations and 59.3% with 1/10th of the
iterations. These results show the validity of this approach in Hex, as Alpha(Go)
Zero did for Go, chess and shogi, even if many of the details are different. Notably
it showed that letting the apprentice do more of the work can still lead to good
results, while using vastly less computing resources. With the available resources,
a solution more similar to Alpha(Go) Zero would not have been feasible, accord-
ing to the authors. It is unclear, however, how such a solution would compare if
the necessary resources were available, although it is likely that relying more on
the expert would give it an edge.

3.8 Motivation

In this review, we first saw that reinforcement learning and deep learning can be
combined to create very successful game-playing agents. We then saw the history
of the development of Monte Carlo tree search, from the original idea, through to
the more familiar UCT variant and then on with further refinements. Utilizing
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these techniques, a much greater success than previously was over time achieved
in Go. We also saw how they could be applied to other games. They were
eventually combined with deep learning, but without the crucial reinforcement
learning aspect. That came with AlphaGo, which could even beat professional
players, but also required the use of supervised learning. AlphaGo Zero got rid
of this and could learn from scratch, with a substantial increase in performance.
But AlphaGo Zero lacked rollouts, which had been one of the central concepts in
MCTS until then and present in all the previous systems I have reviewed. This
was also missing from AlphaZero, which generalized the technique to chess and
shogi. It was present in ExIt, an similar but alternative approach applied to Hex.
I found it fascinating that what seemed like a core part of the algorithm could
be fully replaced by a direct, shallow evaluation by deep neural networks, with
state-of-the-art superhuman results. Clearly AlphaGo had shown that the two
techniques could be combined, but it required a domain-specific rollout algorithm
and supervised learning and still performed worse than the rollout-less algorithms.
This raised the question in my mind of whether there could be some benefit to
retaining the rollouts, but without compromising the ability to learn from scratch.
It led me to implement a system similar to AlphaZero so I could investigate the
idea.



Chapter 4

System Architecture

Based on the theory and research presented in chapter 2 and chapter 3, I have
designed and implemented a system for playing two-player zero-sum finite deter-
ministic perfect information games with a combination of deep neural networks,
reinforcement learning and Monte Carlo tree search. The system is intended to be
flexible and modular and parts of the system can be swapped out without major
effort. Game-specific code is kept separate from the general implementation of
the algorithm. The goal is to be able to easily create agents for additional games
by writing code purely for the game logic and without touching any existing
code. The system is implemented in Python. There are four principal, indepen-
dent parts of the system, the game manager (section 4.1), game net (section 4.2),
tree search (section 4.3) and training algorithm (section 4.4).

4.1 Game Manager

The logic for a game is encapsulated in a game manager. A game manager
knows how to represent states and actions of the game. A state always contains
the current player and can contain additional game-specific data, such as a board
representation. Actions are encoded as integers between 0 and the number of
possible moves in the game. Using these representations and the rules of the
game it can:

• Construct the initial game state.

• Generate the legal actions in a state.

• Generate the next state given a state and an action.

• Check if the end of the game is reached in a state.

33
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• Determine the outcome of a final state.

The generic game manager is defined purely as an interface with a method for
each of these, with any actual behavior found in concrete, game-specific man-
agers. Game managers are used to isolate the game logic from the generic MCTS
algorithm as described in section 4.3.

Because the same state can be found in many branches of the MCTS game
tree, the methods will potentially be called with the same arguments again and
again. To take advantage of this, game managers contain a cache that ensures
computation is reused. Because the system is built such that each process only
contains a single game manager, this cache is essentially global within each pro-
cess and greatly decreases the computational needs of the game logic.

For Hex, the game manager is relatively simple. The board state is represented
as a 2-dimensional grid where each square is either empty (-1) or filled by black
(1) or white (0). The initial state is an empty grid. This grid representation is
an NxN array equivalent to shifting the rows of the board into a square. The
initial state is thus such an array filled with only -1’s. Black’s goal is to achieve
a connected path between the top and bottom side, while white must do the
same between the left and the right. The 6 neighbors of each square are the
squares to the east, west, south, north, south-west and north-east. Actions are
2D-coordinates of the square to occupy, with the origin in the upper left corner,
x increasing to the right and y increasing downwards. They are stored as a single
integer on the form N · y + x. The legal actions are simply those that fill an
empty square. The next state is one where that square is filled by the current
player. To determine a winner, a depth first search is first run from any of the
left squares filled by black, traversing to any neighboring squares filled by black.
If this search reaches the right side, black has won. If not an equivalent search is
run from top to bottom to check if white has won. If neither player has won, the
game is not yet over, since Hex cannot end in a draw.

Othello uses the same representation of an NxN array with elements consisting
of -1, 1 or 0 for an empty square, a black piece and a white piece respectively.
Similarly, the action representation is the same, with one caveat. Pass is a legal
action in Othello when no other actions are possible and its representation is N2,
one more than placing a piece in the lower right corner. The algorithm for finding
legal actions is as follows:

1. For each position of the current player

(a) For each cardinal direction

i. If there is a path from the position in the cardinal direction con-
sisting of squares occupied by the other player and ending in an
empty square, add the action of placing a piece there as a legal
action.
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2. If no legal actions were found, add the pass move as a legal action.

The algorithm for generating a child state is as follows:

1. If it’s the pass move, simply reuse the state with the other player.

2. For each cardinal direction

(a) If there is a path from the position in the cardinal direction consisting
of squares occupied by the other player and ending in an empty square,
flip all enemy pieces in the path into pieces of the current player.

The trivial optimization of directly encoding the found direction of the path
into the action itself when calculating legal actions is invalid, because an action
might flip pieces in multiple directions. The algorithm could still be modified to
encode these multiple directions, which would give a small constant-factor speed-
up, but at the cost of additional complexity, so it wasn’t implemented (it turns
out that this is not a bottleneck in any case).

To determine whether the game is over, first the legal actions of the current
state is checked. If the only legal action is the pass move, the legal actions of the
next state is checked. If it too only allows for the pass move, the game is over.
The outcome can then be determined by simply counting the number of pieces
for each player.

4.2 Game Net

Similarly to the systems described in section 3.4, section 3.5, section 3.6 and sec-
tion 3.7, my system uses deep neural networks to estimate the state value (value
network) and probability distribution for the policy (policy network). This is
fully encapsulated in a game net, which contains such a neural network. It is
responsible for taking the state representation used by the game manager and
converting it to a representation which can be passed to this network for eval-
uation. Finally it needs to identify illegal moves in the policy output and zero
out (mask) the probabilities of these so that only legal moves can be chosen. In
addition to these game-specific behaviors, defined as a generic interface, a game
net has some default functionality that does not need to be reimplemented for
each game. This includes:

• Saving and loading from a file to allow checkpointing.

• Moving the net to a different hardware device (related to the use of GPUs).
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• Evaluating a single state by using the specialized methods to change the
representation, forwarding it through the neural network, zeroing out the
illegal probabilities and then renormalizing them.

• Converting a distribution over actions from MCTS to a representation that
can be compared with the policy network’s output.

• Training the network, see section 4.4 for details about this.

There is also a default implementation of masking that simply consults the
game’s manager for legal actions and masks out the illegal ones.

Some assumptions are made about the neural network wrapped by a game net.
The policy output is flattened, softmaxed, masked and renormalized before being
treated as a policy distribution in the following way: The integer value i of action
a can be treated as an index into the final output p, so that P (a) = pi. This means
that the initial output should be unnormalized and regardless of shape, the total
number of elements must equal the number of actions. The value network output
should also be unnormalized. A tanh is applied for normalization between -1 and
1. This value is interpreted as relative to the current player, with 1 meaning
a 100% probability of the current player winning and -1 a 100% probability of
losing. The value is negated for the min player and scaled to a range between 0
and 1. The reason for this is that MCTS expects a value between 0 and 1 from
the perspective of the max player.

The game net interface is flexible and implementations can use any kind of
network architecture (e.g. fully connected or convolutional) with both split and
combined policy and value networks. It could in principle be done using any
neural network library. My implementations are done in PyTorch [Paszke et al.,
2017].

Because the game net also handles game logic to some extent, it could be
argued that it should be a part of the game manager. However, separating them
has some clear advantages. It gives a clean break between the pure representation
of the game and the game as represented by the neural network. This allows for
reusing the same game manager with multiple different game nets, which is very
flexible and can be used to easily compare different network architectures. It
also allows for running MCTS without a policy and value network, for example
by substituting in estimators which give zero value to every state and uniform
probability to all actions and relying purely on rollouts. This is useful for testing.
Many other configurations are also possible, such as estimating just the value or
just the policy. As mentioned, an important goal of the system is modularity,
precisely because it allows for such flexibility.

I have implemented game nets based on a combined policy and value con-
volutional network. For both games the input to the network is a stack of 3
2D-grids of the same size as the board, where the first one represents the pieces
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of the current player, the second one represents the pieces of the other player
and the third one is a constant representing whether the current player is black
or white. Specifically the first two grids have value 0 for empty tiles and 1 for
tiles where the respective player has a piece, while the third grid has value 1
for all tiles if the current player is black and 0 if it is white. Using the current
player as the first grid and the opponent as the second rather than e.g. the black
player and then the white player is intended to improve generalization. It means
that two equivalent but flipped (black pieces turned into white and vice versa)
board states look the same to the network. Together with the interpretation of
the value network output, this means that the network could completely ignore
who’s actually playing. Still, the third grid ensures that if relevant the network
can still tell who’s playing and take into account e.g. first-player advantage (in
some games you would also need to know the current player to determine which
moves are legal or preferable).

For Hex, the input grid is rotated 90 degrees when white is playing. This
is intended to improve generalization. The idea is that rather than the network
having to learn to connect different sides depending on the player, it consistently
sees the target of the current player as connecting the north and south sides. This
means that the output will also be rotated for the white player, so the rotation is
reversed after forwarding through the neural network. No such transformations
are done for Othello.

The complexity of the network itself is highly configurable. The general ar-
chitecture consists of a single convolutional block, then a configurable number of
residual blocks, a policy head and a value head. Figure 4.1 depicts this architec-
ture.

A convolutional block consists of:

1. A convolutional layer with a configurable kernel size, padding and number
of filters.

2. A batch normalization layer.

3. A rectified activation.

A residual block consists of:

1. A convolutional block with a kernel size of 3, padding of 1 and a configurable
number of filters.

2. A convolutional layer with a kernel size of 3, padding of 1 and a configurable
number of filters.

3. A batch normalization layer.

4. A skip connection from the block input.
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5. A rectified activation.

The policy head consists of:

1. A convolutional block with a kernel size of 3, padding of 1 and a configurable
number of filters.

2. A linear, fully connected layer with a configurable number of outputs.

3. A softmax activation.

The value head consists of:

1. A convolutional block with a kernel size of 1, no padding and 1 filter.

2. A linear, fully connected layer with a configurable number of outputs.

3. A rectified activation.

4. A linear, fully connected layer with 1 output.

5. A tanh activation.

4.3 Monte Carlo Tree Search

Similarly to the other parts of the system, the MCTS algorithm is confined to
its own module and designed to be flexible. It is completely generic and game-
independent, so that no modification or specialization is required for a new game.
It does this by delegating any game specific logic such as finding child states and
determining if the game is over to game managers, and the evaluation of states
to game nets. See fig. 4.2 for examples of this. Specifically, one must pass a
game manager and a state evaluator for the algorithm to use. The latter is an
interface for a function which given a state returns an estimate of its value and a
probability distribution over the legal actions in that state. This is typically based
on a game net, but as mentioned in the previous section, it does not necessarily
have to be. The number of simulations per move can also be customized.

The algorithm can be passed a rollout policy, which simply needs to be a
function returning a legal action when passed a state. This policy is used to
choose actions while performing a rollout to the end of the game. The game
manager generates the next state for each action and determines when the game
is over. The use of the game manager and rollout policy is shown in fig. 4.3.
There is an adjustable parameter for the probability of performing a rollout.
When a rollout is performed, the backpropagated value is the average of the
state evaluation and the outcome of the rollout.
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State
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Residual block
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Convolutional block

Linear layer
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Linear layer
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Figure 4.1: The network architecture, showing the split heads of the network and
their corresponding outputs.
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Given the previous 
state and action, 

what is the 
state in this node?

Game
manager

(a) As the node is visited, the game manager
is queried for the current state, given the
state of the previous node and the action
taken by the tree policy.

Is this state the 
end of the

game? If yes, 
what is the 
outcome?

Game
manager

(b) Now that the state is known, the game
manager is used to check if the end of the
game has been reached. In that case the
outcome is also known by the game manager
and can be backpropagated directly.

If not, 
what actions are

legal in this state?
Game

manager

(c) If it wasn’t the end of the game, there
are actions to be taken and the node should
have child nodes. The game manager is
asked for these and they are all added.

What is the value
of this state and
the probabilities
for its children?

State
evaluator

(d) Finally the state evaluator is used to set
probabilities for the child nodes and get a
value estimate that can be backpropagated.

Figure 4.2: The process of expanding a node and how the game manager and
state evaluator are used during it. Rollouts take place during expansion, but are
shown in fig. 4.3.
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Given the previous 
state and 

action, what is the 
state now?
Is it the end

 of the game?

If not,
what action 

should be done in 
this state?

Rollout
policy

Game
manager

If yes,
 what is the outcome?

Game
manager

Figure 4.3: The process of performing a rollout and how the game manager and
rollout policy are used during it.

Tree nodes handled by the algorithm store the sum of their value estimates
E, their visit count N and the prior probability P of the action leading to them.
When expanded they also contain a mapping from legal actions to child nodes.
As an optimization, states are not stored in nodes, but rather computed once a
node is actually visited.

The tree policy is based on the same PUCT measure used in the AlphaGo,
AlphaGo Zero and Alpha Zero papers, meaning the exploration bonus for action

a in state s, us,a, is cPUCTPs,a
√
Ns

1+Ns,a
[Rosin, 2011]. Independent of the player,

a value estimate close to 1 is an indication that player 0 is winning, while an
estimate close 0 is an indication that player 1 is winning. Thus, player 0 is the
max player and player 1 is the min player. The total value for a in s is then
Es,a

Ns,a
+ us,a for player 0, and

Es,a

Ns,a
− us,a for player 1. When a node is unvisited,

its value estimate is estimated as a loss for the previous player. For example, if
the current player in an unvisited node is 1, the value estimate is 0, because this
is a loss for player 0, the current player in the parent node. This somewhat offsets
the high exploration bonus of unvisited nodes and can delay visits to them.

A measure that instead improves exploration is that Dirichlet noise with a
configurable α is optionally added in the root node each time MCTS is used to
find the next move. The noise is mixed with the probability distribution from
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the state evaluator using a configurable mixing factor d:

Ps,a = (1− d)Pns,a
+ dDir(α)i , (4.1)

where Pn is the network estimate, a is the action leading to the i-th child node and
Dir(α) is a symmetric Dirichlet distribution with the same number of parameters
as the number of child nodes, all equal to α. Note that when a move is chosen
and played in the actual game, the corresponding node of the game tree is set
as the new root. This means that any searches that were previously done in this
subtree are reused, essentially giving us free simulations. But this means that
the Dirichlet noise generally has the biggest impact at the beginning of a game,
because the probabilities are part of the exploration bonus, which decreases with
the number of visits. This might be beneficial, because in many games there are
more moves to choose between in the beginning and mistakes are less costly, so
focusing on exploration then is more beneficial than at the end of the game. If
however we end up in a branch that is not well explored, the Dirichlet noise will
have a larger impact, which fits with the intuition that even late in the game
exploration is important if you end up in an unexpected situation.

When the tree simulations are done, an actual move to play is chosen. This is
done differently depending on how many moves have been played. After a certain
number of moves, which is configurable, the move with the max number of visits in
the root node is chosen. Before this, a move is sampled from the distribution over
the number of visits. This is consistent with the earlier explanation: In earlier
parts of the game a mistake is likely less costly, so you can afford sampling a bad
move then, while in the endgame you probably want to pick the one move you
think is best. The motivation for sampling is to increase diversity between self-
play games, since they are used as training targets. Many similar (or even equal),
strongly correlated games are less useful targets than diverse games that explore
a multitude of possibilities, which should lead to a more robust generalization.
This is especially true when there are many moves that seem good and we want to
avoid only greedily playing the one that seems best. However it also encourages
sometimes trying moves that seem poor and thus checking if they actually increase
the chance of a loss.

The algorithm proceeds as follows for a complete self-play game:

1. Initialize the root node using the game manager.

2. While the game is not over (as determined by the game manager):

(a) If unexpanded, expand the root node using the game manager and
evaluate it using the state evaluator to get P for its children.

(b) Mix Dirichlet noise with parameter a with the child nodes’ probabili-
ties.
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(c) For each simulation:

i. Search from the root to a leaf (unexpanded) node using the tree
policy (arg maxa qs,a for the max player, arg mina qs,a for the min
player).

ii. If the leaf node is at the end of the game:

A. Use the actual outcome as determined by the game manager
as the value estimate.

iii. Else:

A. Expand the leaf node using the game manager, adding all
subsequent states as child nodes, and evaluate it using the
state evaluator to get an estimate of its value and P for its
children.

B. Optionally and with probability pr perform a rollout to the
end of the game using the rollout policy and average the result
with the estimated value.

iv. Backpropagate the value up to the root, incrementing visit counts
and adding to E for each visited node, including the leaf itself.

(d) If the number of moves played is below the sampling threshold:

i. Sample an action proportional to the visit counts in the root node.

(e) Else:

i. Pick the action with the highest visit count in the root.

(f) Execute the action using the game manager and set the root node to
the corresponding child node, reusing the subtree.

The algorithm is single-threaded and does synchronous evaluation. This is
far slower than the procedure utilizing parallel search threads and batching used
in e.g. Silver et al. [2018], because the process is blocked on state evaluation and
cannot do useful work. It is however also easier and quicker to implement and
debug, partially because of the inherent complexity of multi-threaded code, but
also because of implementation details in the Python runtime. Specifically, it
contains a global-interpreter lock which by default blocks Python threads in the
same process from executing in parallel [Python contributors, 2019b]. A partial
mitigation of this problem will be presented in the next section.

4.4 Training

Similarly to the MCTS algorithm, the training algorithm is game-agnostic. It
requires passing a game net and game manager, which contain all the necessary
game-specific logic.
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The algorithm initializes a replay buffer to store training games. This is a
first-in-first-out queue of a finite size and thus it evicts the oldest games first if
it reaches its max size. Storing all prior games would be a problem regarding
memory consumption, but the main reason to avoid it is that older games were
played using older, less accurate versions of the network. It might therefore be
better to evict these rather than continuing to use them as training targets.

The primary bottleneck in the system is the generation of training exam-
ples using MCTS self-play. The problem is that network evaluation is relatively
slow and because it runs in each tree simulation, it takes up the majority of the
runtime. One mitigation is to run the network on a GPU, which is specialized
for matrix operations and provides a large speed-up, especially for convolutional
networks. This is however not enough, as it does not solve the problem of ev-
erything being blocked waiting for network evaluation. As mentioned in the
previous section no parallelization is used within a single game. The solution has
been to instead introduce parallelization at a higher level of the training process.
Specifically, the optimization of the neural network and the generation of train-
ing targets through self-play are run in parallel, and the generation itself consists
of multiple games of self-play executing in parallel. The parallelization is based
on separate processes, not threads within a single process, with the optimiza-
tion occurring in the main process and each self-play game occurring in its own
separate process. This can be seen in fig. 4.4. This ensures that another game
can run concurrently even though no progress is done in a game during network
evaluation. In an environment where the number of cores equal or exceed the
number of games, they can all run simultaneously. A downside of processes is
a greater overhead than threads. Communication between processes in Python
does not generally use shared memory, but instead requires serialization of ob-
jects and message passing [Python contributors, 2019a]. For one this means that
passing training examples back to the main process is much slower than if it
ran within the same process or thread. This overhead also precludes the use of
batched network evaluation. This method can trivially be adapted to running
multiple single-threaded self-play games in parallel by batching between games
instead of search threads within a game, but requires a separate process to do
network evaluation. This was attempted but later abandoned, because the over-
head from passing states from each self-play process to an evaluation process and
then passing results back trumped the performance benefit of batching. This
means that as you increase the number of processes, the GPU soon becomes a
bottleneck. This is partially because the processes clamor for the use of the GPU
without coordination and partially because each process uses a separate chunk of
the limited memory of the GPU. To make matters worse, the main process also
requires use of a GPU to speed up the optimization process. For this reason the
system is designed such that the main process can use a separate GPU from the
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other processes, partially easing the pressure on their GPU. Another measure
that is taken to decrease GPU usage is to cache all state evaluation, since, as
explained previously, a state might be present in multiple locations in the game
tree. They can also repeat between games. This cache is purged whenever the
neural network is updated.

Moves updated weights into shared memory Main process

Self-play process Self-play process

Spawns self-play processes

Uses shared weights in network evaluation

Adds completed self-play games

Self-play process

Shared memory

Moves training examples to replay buffer

Game transfer
queue

Optimization

Evaluation

Figure 4.4: An overview of the responsibilities of the different processes and how
they communicate between each other.

Each process runs a certain configurable number of self-play games using
MCTS. They receive regular weight updates to their game net from the main
process. Before they receive their first weight update, they use a network that
provides a uniform evaluation (a state evaluation of 0.5 and equal probability
of all legal actions). After each game, they transfers the state, distribution of
visits in the root node and the final outcome for each move of the game to the
main process. Thus the improved policy of MCTS and the actual winner of the
game will be used as targets for the neural network, as explained in section 3.5.
Because we want the training targets to be from the perspective of the current
player, the outcome is negated for the min player (the game net reverses this
transformation when used as an evaluator, as mentioned previously). The main
process receives the examples and uses the game net to transform the states into
the game-specific representation before inserting them into the replay buffer. A
configurable number of examples are sampled uniformly random from the replay
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buffer and passed to the game net’s generic training implementation mentioned
previously, which forwards them through the network. It then calculates the loss
as the sum of the MSE between the expected outcome v and actual outcome z
and the cross-entropy between the network distribution p and MCTS distribution
π:

l = (z − v)2 − π log p (4.2)

This is averaged over the batch of training examples. Additionally, L2 regular-
ization is calculated for the network weights and added to the loss to improve
generalization. The loss is then used to optimize the network. The optimization
technique used is stochastic gradient descent with momentum, where the weight
update ∆w depends both on the gradients and on the previous weight updates:

∆wt+1 = α∇l +m∆wt , (4.3)

where α is the learning rate and m is a constant between 0 and 1 adjusting the
strength of the momentum.

As in Alpha Zero, but unlike AlphaGo Zero, the network is improved contin-
uously [Silver et al., 2017, 2018]. However, the updated weights are not continu-
ously transferred to the self-play processes. This is done at a configurable interval.
This is partially because even if the network improves over time, the change from
iteration to iteration might be more erratic. Training for several iterations before
using the network might therefore provide better and more stable targets. This
is also done for performance reasons. PyTorch provides a mechanism to share
memory directly between processes and thus avoiding the overhead of serializing
and passing weights to each process independently [PyTorch contributors, 2019].
Despite this, it would be too slow to update the shared weights at every iteration
of training.

In addition, there is both checkpointing to disk and evaluation at configurable
intervals. The former is done to enable post-hoc analysis of the training process
and trained models, as well as to enable restarting the training in case something
goes wrong or further training is desired. The latter allows for monitoring the
progress. To evaluate the network, it is compared against both the previous
network and MCTS using a random rollout policy. The comparisons use the
MCTS-enhanced policy, not the direct network output. This is slower, but more
realistic. A configurable number of games is played between the agents with
the starting player alternating. In the games between the networks, actions are
chosen ε-greedily to introduce stochasticity, meaning that ε · 100% of the time a
move is sampled based on the visit distribution and otherwise the most visited
move is chosen. This is done because the outcome when two networks play against
each other would otherwise be completely deterministic (Dirichlet noise and early
move sampling is not used during actual game play) and not give a particularly
useful indication of performance (the win rate would always be either 0%, 50% or
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100%). Plays against the agent using random rollouts are inherently stochastic, so
the action with the most visits is always played. Evaluation is about as much work
as self-play, so it’s relatively slow, and no network optimization takes place while
evaluation is running. Because the network is adjusted continuously without
checking if the new network outperforms the old one, evaluation could be moved
to a separate process. But as long as it uses the same GPU as the optimization,
the speed-up would likely not be large. Additionally, because the self-play is slow,
optimization is already very fast compared to the rate at which new training data
is produced.

The following is pseudocode for the main process:

1. Initialize a replay buffer.

2. Move the game net to a GPU.

3. Create a copy of the game net on another GPU and put the network weights
into shared memory.

4. Spawn multiple self-play processes and provide them with the copied game
net and a queue to transfer training examples.

5. While the self-play processes are still running:

(a) Get any new training examples from the queue, convert the states
to the network-specific representation and put them into the replay
buffer.

(b) Sample a batch from the replay buffer.

(c) Forward the batch through the network.

(d) Calculate the policy and value loss, backpropagate and adjust the
weights using the gradients and L2 regularization.

(e) If the correct number of training iterations has passed, move the new
weights into shared memory so they are available to the self-play pro-
cesses.

(f) If the correct number of training iterations has passed, save the net-
work weights and the rest of the training parameters to disk.

(g) If the correct number of training iterations has passed, evaluate the
network as described previously. Cache both the current and previous
network to reduce the number of GPU evaluations.

The following is pseudocode for the self-play processes:

1. Initialize a uniform state evaluator to use until the first weight update is
received.
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2. For the number of games to play:

(a) If still using the uniform evaluator and the weights have been updated,
switch to the neural network evaluator. Initialize a cache to reduce
the number of GPU evaluations.

(b) If the weights have been updated, reinitialize the cache.

(c) Play a self-play game using MCTS, recording each state-action pair.

(d) Add each state-action pair along with the final outcome of the game
to the queue to transfer the game to the main process.

4.5 Overview

As the preceding sections have shown, I have designed and implemented a flexible
framework for game-playing based on deep learning, Monte Carlo tree search and
reinforcement learning. General and game-specific code is cleanly separated, so
that even though game logic has only been implemented for Hex and Othello,
adding additional games would like little effort. The overall architecture of the
system can be seen in fig. 4.5. We can clearly see the modularity of the system,
with four different parts of the system, separated but connected so that each
fulfill their own function as part of a whole. The game manager encapsulates
the game logic, providing the MCTS module with what it needs to construct
and search the game tree. This module also receives evaluations of states and
actions from the game net. MCTS is then used by the training algorithm to run
many separate instances of self-play games in parallel, creating training examples
that can then be used to optimize the game net. This is a system ready to run
experiments that can shed light on my research questions.
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MCTSGame manager Game net

Training algorithm

Estimates value of 
state and actions

Creates child states, 
determines game winner 

etc.

Creates training examples
by self-play Trains on examples

from replay buffer

Figure 4.5: The system architecture with the four parts of the system and their
relation to each other.
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Chapter 5

Experiments and Results

To investigate the research questions posed in section 1.2, empirical data is
needed. This chapter covers the experimental parts of the project, with informa-
tion about the planned experiments, the parameters used for running the system
and the resulting data.

5.1 Experimental Plan

Experiment 1 Run the training process without rollouts. Afterwards, use each
checkpointed network as a state evaluator in MCTS and compare it to an
agent with a random rollout policy and to an agent using the network from
the previous checkpoint.

The goal of experiment 1 is to ensure that the system is working correctly and
that there is a smooth increase in performance during training.

Experiment 2 Using the final network trained in experiment 1 as a state eval-
uator, compare agents that have a 0%, 20%, ..., 80% and 100% chance of
doing a rollout with a random rollout policy on each expansion. Compare
each agent against all others.

Experiment 2 aims to get an indication of the effect rollouts have on the perfor-
mance and thus to answer research question 1.

Experiment 3 Using the final network trained in experiment 1, compare an
agent with a rollout policy of choosing the best movie suggested by the
policy network to one that uses a random rollout policy. Do rollouts on
every expansion. Balance the number of simulations such that the time per
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move is approximately the same. For comparison, run it both with and
without also using the network as a state evaluator for both agents.

This is to investigate the effectiveness of a sophisticated but slow rollout policy
and thus to answer research question 2.

Comparisons between agents are done as previously described in section 4.4.
The only caveat is that for experiment 3, caches are not shared between agents
and games. Caching gives a lower time per simulation and thus more simulations
per move, meaning that the second player would have an advantage and later
games would involve more simulations. To have a fair comparison and indepen-
dent games this must be avoided.

5.2 Experimental Setup

The hyperparameters used are shown in table 5.1, table 5.2 and table 5.3 for
experiment 1, 2 and 3 respectively. Because the networks trained in experiment
1 are reused, network parameters and board sizes are naturally the same in the
other experiments and have not been repeated in those tables. Experiment 1 is
run 20 times. Experiment 2 and 3 are run once for each trained model, i.e. also
20 times.

Evaluation is used during training to keep an eye on the progress, but with
an intentionally low number of games to decrease the performance impact. Eval-
uation is rerun after training using the checkpointed networks with more games
to increase the precision of the results. For this reason, there are two numbers
given for the evaluation games in table 5.1.

Table 5.4 shows the hardware used to run the experiments. This is IDI’s
Malvik server. Because it has two GPUs, training and optimization are set to
run on separate ones. The number of self-play processes are set to the maximum
allowed by the GPU’s memory. Note that this is a shared server without a queue
system, so the access to these resources is not exclusive.
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Max games in replay buffer 5,000
Games per process 1,000
Evaluation games during training 20
Evaluation games after training 40
Self-play processes 25
Evaluation interval 10,000
Checkpoint interval 10,000
Network transfer interval 1,000
Simulations 50
Simulations for random opponent 100
Batch size 1,024
Learning rate 0.01
Momentum 0.9
Regularization constant 0.001
Residual blocks 3
Filters 128
Value head hidden units 128
ε for move selection 0.05
cPUCT 1.25
Dirichlet factor 0.25
Board size 6x6
Sample move cutoff 10
Dirichlet α (Hex) 0.33
Dirichlet α (Othello) 1

Table 5.1: Experiment 1 parameters.

Simulations 50
Games per agent pair 40

Table 5.2: Experiment 2 parameters. Board size and network parameters are as
in table 5.1.

Games 240
Seconds per move 1

Table 5.3: Experiment 3 parameters. Board size and network parameters are as
in table 5.1.
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CPU 2x Intel Xeon 6132
GPU 2x Nvidia Tesla V100
RAM 768GB

Table 5.4: Specifications of the machine the experiments are run on.

5.3 Experimental Results

The results of experiment 1 are shown in fig. 5.2 as plots of the win ratios during
training for each model. The results are shown separately for each model as
there isn’t a suitable way to combine them while still judging how each training
progresses and being able to compare them. Recall that the training finishes as
soon as the self-play processes do, so though they’re based on the same number
of self-play games, there is some variation in the total number of iterations for
each model. The average number of iterations is about 320,000 for both games.
Of note in the data is that we see a clear progression for every single model across
both games, but with some instability that will be expanded upon in section 6.1
along with the other results.

Note that the win ratio is not calculated as nwins

ngames
, but nwins+0.5ndraws

ngames
(though

these are equivalent for Hex), meaning draws are counted as half a win. This
allows the draws to be included in the plot, without cluttering it with another
pair of lines, and lets Hex and Othello be treated the same. This calculation
is also used in fig. 5.3. They are however kept separate in table 5.5 in order to
calculate confidence intervals.

Figure 5.3 shows the results of experiment 2 as the win ratios for all possible
pairs of rollout probabilities. Because this creates a large number of values (36
for each model), only the means across all models are shown. Note the surprising
result of win ratios increasing towards the right, indicating that higher rollout
probabilities decrease performance.

Table 5.5 shows the results of experiment 3 in the form of aggregate win,
draw and loss ratios for policy network rollouts against random rollouts. The
numbers are given with 95% confidence intervals and separately for each game
and by whether the network was also used as a state evaluator. The full tables
are not shown to avoid clutter, but are available in appendix A. Recall that
draws are not possible in Hex, but they have been included simply to keep the
tables the same. Table 5.6 shows the average number of rollouts and simulations
done per move during experiment 3. We can see by the first table that policy
network rollouts consistently don’t perform as well as random rollouts. There
are considerable differences based on the game and whether a state evaluator
was used. The second table shows that the vast majority of simulations don’t
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contain a rollout and that including state evaluations has a large impact on the
number of simulations and rollouts.
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Figure 5.1: The training process for all 20 models in Hex, showing how the win
ratio evolves over the course of training. Results against both an agent based
on random rollouts and on the network from the previous iteration are shown.
The dashed line indicates a win ratio of 0.5. Legend: Random rollouts (blue),
previous network (red)
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Figure 5.2: The training process for all 20 models in Othello, showing how the
win ratio evolves over the course of training. Results against both an agent based
on random rollouts and on the network from the previous iteration are shown.
The dashed line indicates a win ratio of 0.5. Legend: Random rollouts (blue),
previous network (red)
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(a) Othello

(b) Hex

Figure 5.3: A comparison of win ratios when agents with different rollout prob-
abilities play against each other. The ratio is calculated as nwins+0.5ndraws

ngames
, where

nwins, ndraws and ngames are the number of wins, draws and games for the agent
on the y-axis against the agent on the x-axis. The results shown are the means
across all models.
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win 0.28± 0.01
draw 0.27± 0.01
loss 0.45± 0.01

(a) Othello with state evaluator.

win 0.40± 0.01
draw 0.00± 0.00
loss 0.60± 0.01

(b) Hex with state evaluator.

win 0.42± 0.01
draw 0.05± 0.01
loss 0.53± 0.01

(c) Othello without state evaluator.

win 0.32± 0.01
draw 0.00± 0.00
loss 0.68± 0.01

(d) Hex without state evaluator.

Table 5.5: The win, draw and loss ratio for policy network rollouts against random
rollouts across all models with 95% confidence intervals, both with and without
also using the network as a state evaluator, calculated as nwins

ngames
, ndraws

ngames
and nlosses

ngames
.

See appendix A for the full data and calculation.

Rollouts Simulations

Random rollouts 117 19490
Policy network rollouts 64 19147

(a) Othello with state evaluator.

Rollouts Simulations

Random rollouts 157 3146
Policy network rollouts 84 2999

(b) Hex with state evaluator.

Rollouts Simulations

Random rollouts 344 19874
Policy network rollouts 59 16637

(c) Othello without state evaluator.

Rollouts Simulations

Random rollouts 665 3332
Policy network rollouts 110 1854

(d) Hex without state evaluator.

Table 5.6: The average number of rollouts and simulations per move for the two
agents in the different configurations of experiment 3.
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Chapter 6

Evaluation and Conclusion

This chapter contains an evaluation and discussion of the results provided in the
previous chapter as well as concluding remarks for the work as a whole. It also
provides some ideas for potential improvements on the work.

6.1 Evaluation

Looking at the plots for experiment 1 in fig. 5.2, the results seem very promising.
First and foremost, all the models trained in Hex reach a 100% win percentage
against the opponent using random rollouts. Note that although this opponent
uses an extremely basic policy, it’s allowed to perform twice as many simulations.
Most of the models seem to eventually be stable at the maximum level, although
there are some that fluctuate down to 90% late in the process, most notably
model 3. All the models feature small fluctuations earlier in the process, but
there is nevertheless a clear and relatively steady progress that indicates learning
is taking place. The average difference between subsequent values, ignoring those
that are stable at 1.0, is about 0.046. If we look at the results against the previous
version of the network, we see something far less stable, but this is also to be
expected. The improvement from network to network will depend on random
factors such as e.g. what new training examples it has received and the current
landscape of the loss function. Of course ideally this value would stay at 1.0,
indicating a crushing defeat of the previous network each time, but what we at
least want to see is for it to stay above 0.5 (shown by the dashed line), because
this indicates some improvement. This is also the case most of the time, with any
exceptions of a notable size occurring before the midpoint of the training process
in all cases. The average ratio is about 0.75. This seems to confirm that there
is an improvement over time with learning taking place. It’s however interesting
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to note how in most of the plots, despite staying above 0.5, it tends to go back
and forth between high values close to 1.0 and lower ones close to 0.5 in a fairly
steady manner. One possibility is that this is a learning rate problem, where
too large steps are being taken in the loss landscape. Another reason might be
that them playing ε-greedily is simply causing a noticeable variance in the result,
although the high number of games should have alleviated this somewhat.

Looking at Othello, we see some of the same tendencies, but none of the
models perform as well against the random opponent as was the case for Hex.
While all but one model (18) reach 1.0 at some point, the performance is not as
stable and continues to fluctuate at a high level for all of them, mostly above 0.9.
We still see a clear progression from the early stages though, where they improve
quite quickly, even more so than Hex. The average difference between subsequent
values, ignoring those that are stable at 1.0, is about 0.031. If we look at the
other line we can see that the value mostly stays above 0.5 in later stages, with
models 1, 7, and 10 as notable exceptions, though it is quite unstable. This does
indicate that some improvement is taking place still, so it is possible that they
haven’t properly plateaued and if trained for longer could perhaps consistently
reach 1.0 against the random opponent. However it might also be that this
requires improved parameter tuning. The average ratio is about 0.72. Based on
these observations it seems clear that learning is taking place to some extent for
Othello as well.

It’s possible that the performance being worse for Othello is an indication
that the system has more trouble learning this game than Hex. Othello is more
complex in some ways, as an example not taking a chance to flip many pieces
can easily lead to a missed opportunity with large consequences, while in Hex
you can perform the same move on the next turn unless your opponent placed
their piece in that exact place. It also needs to learn not only some notion of
good and bad moves, but also a more complicated notion of illegal ones than in
Hex. But it could just be that the random rollouts are relatively more effective
in Othello. After all, there’s a much larger tree to explore in Hex, due to its far
higher branching factor, so more rollouts are likely necessary for a good estimate
than in Othello.

It’s worth pointing out that there is a large number of hyperparameters that
could be adjusted. I have already mentioned the learning rate, but all of them
have some impact on the result, some more than others. Many of these are
likely to be far from optimal, as tuning a slow system with many parameters is
challenging. If properly set. both the progress during training and the final result
would likely look better. I have also been prevented from increasing parameters
such as network size and the number of simulations, which likely have a big impact
on the performance, and board size, which would bring the games closer to the
size that is usually played. These have a large effect on the time it takes to train
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the system. Note how AlphaZero used 41/42-layer networks, 800 simulations
per move and full game boards and had hyperparameters tuned by Bayesian
optimization, which is completely unachievable in my system [Silver et al., 2018].

Another difference from AlphaZero worth noting is the ratio between the
number of self-play games and training iterations. By distributing self-play over
5,000 TPUs, AlphaZero generated about 63 (chess), 34 (shogi) and 200 (Go)
games per iteration [Silver et al., 2018]. In contrast, my system generated only
25 processes · 1000 games

process = 25 000 games, but trained for an average of 230,000
iterations, giving a ratio of 0.11. Even taking into account that their mini-batches
were 4 times as large as mine, this means they produced 77 times as many games
per iteration. This is despite the fact that in my system training halts while
doing evaluation. It’s a definite possibility that this extremely high number
of iterations compared to games causes the network to continuously overfit the
current contents of the replay buffer. This would strongly limit the system’s
ability to produce well-rounded agents that generalize well. It’s however hard to
judge if this is the case based on the available data.

The results for experiment 2 in fig. 5.3 can initially seem quite surprising.
Looking at each row of the heat map, we can consistently see an improvement
in the win ratio as we move to the right. This seems to indicate that the more
rollouts are done, the smaller the chance of winning the game. Doing no rollouts
at all when playing against an agent that always does rollouts gives a win ratio
of 0.59 and 0.64 for Othello and Hex respectively. This seems like a clear advan-
tage. We can see that each time we increase the rollout ratio by 20 percentage
points, it seems to fairly consistently decrease the win ratio by one to a few per-
centage points, with the decrease being larger for Hex. This cannot be caused
by the extra rollouts taking longer and thus reducing the time available, because
a constant number of simulations were used (arguably an unfair advantage for
anyone doing more rollouts). It can seem like the rollout itself is detrimental to
the performance. But why would that be?

The problem might stem from the fact that the policy is entirely random.
With a constant number of simulations, a rollout is essentially a free opportunity
to look at an end state that can be reached from the current state. But the quality
of this information does depend on how likely you are of actually ending up in
this end state. The outcome of a rollout through a path that is extremely unlikely
to occur in actual gameplay is not particularly helpful in guiding later search,
and a random rollout might very well take such a path. That is not to say that
a random rollout is fundamentally detrimental. We know that random rollouts
have the potential to be useful, because random samples are the cornerstone of
Monte Carlo methods and MCTS does converge using them. But this depends
on taking a large number of random samples, while one might get away with
doing much fewer simulations using a smarter policy, or alternatively doing the
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same number with a much better result. This is why all the systems reviewed
in section 3.3 uses domain-specific heuristics to some extent. Note that there is
a trade-off here. A more accurate policy might also be more computationally
expensive, but the number of simulations is also important, and realistically you
tend to be constrained by time and not by a constant number of simulations.

In any case the key is to recognize the lower value of a random outcome com-
pared to an informed one. This can cause a problem if you’re getting both an
informed outcome and a random one, which is precisely the case in this exper-
iment. If proper learning has taken place, the value head of the game net will
output an estimate of the value of the state that is certainly not random, but
informed to some extent. This means it is likely to provide a better estimate of
the real value than the outcome of the random rollout. But my system ignores
this asymmetry and does a simple unweighted average of the two values, thus
treating them as being of equal value. This average is then likely to be further
away from the real value of the state than the network estimate. Essentially the
rollouts can sabotage what could potentially be a good estimate, and this is a
plausible explanation for why my results show rollouts lowering the win ratio.
But this also points to how rollouts could be helpful. In a state where the net-
work estimate is too low for example, a random rollout with outcome 1 could in
a weighted average nudge the total value closer to the real estimate. The key
would be to find a weight that accurately reflects the quality of the information
provided by a random rollout. But note that as previously mentioned, random
rollouts require many simulations to achieve a good approximation. With few
simulations the influence of rollouts on the sum could be inaccurate and prone to
random fluctuation. As a side note, this might actually explain why the decrease
in performance is greater in Hex. Following the same argument as for experiment
1, Hex has a greater branching factor and state space, possible leading to more
inaccurate estimates for the same number of rollouts. With a lower weight the
influence of each rollout is smaller, so the influence on the total value would also
be quite small, and these inaccuracies might not matter much. However that also
means the rollouts might not prove to be advantageous even with an appropriate
weighting. Recall that my system was only doing 50 simulations in this experi-
ment, which might be too low for correctly weighted rollouts to have a noticeable
positive effect. It’s interesting to note that an unweighted average was used in
Silver et al. [2016], which could indicate their network estimates and heuristic
rollouts were of a similar quality, although this seems surprising.

Judging by table 5.5, it seems like random rollouts are in fact outperforming
rollouts using the policy network, regardless of game and whether a state eval-
uator is also used. The win ratio for the policy network is significantly below
0.5 for Hex in both cases. For Othello we can see a large difference in the win
and draw ratio between the two configurations, but the loss ratio is significantly
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higher than the win ratio in both cases. But clearly the policy network should
make much smarter moves during rollouts than if they are just picked at random,
so why are we seeing this result? My hypothesis is that this is mainly based on
the number of rollouts each agent is able to perform per move, which is why I
have included this in table 5.6. We can see that for both games, about twice
the number of rollouts are done per move with the state evaluator and about six
times more without it. This is because it is much slower to evaluate the neural
network than it is to simply find the legal moves and pick one of them at random.
Thus, even though the policy network makes better choices and provides more
value per rollout, it cannot do nearly as many, reducing the total value of them.
Doing a higher number of less accurate rollouts might ultimately give more ac-
curate estimates near the root, giving a better understanding of what move to
perform. The results seem to indicate that this is the case. It is also possible
that the agent using a random policy is benefiting from the stochasticity of the
rollouts. This will increase exploration compared to the fully deterministic policy
network rollouts. This is not inherently an advantage, but very well could be one
with such a high number of rollouts, especially if there is insufficient exploration,
as noted later.

The differences between Hex and Othello and running with and without a
state evaluator are interesting. In the case of Hex, we see that while the policy
network rollouts are worse in both configurations, the results are slightly more
even with a state evaluator. Intuitively there is some sense in this. Both agents
are using the same state evaluator, so this helps even out the differences between
them, which is most advantageous for the weaker agent. There is also a much
larger difference in the number of rollouts performed by the agents when not
using the state evaluator, because this evaluation consumes part of the time
budget. This naturally strengthens the random agent relative to the network-
based one. We can see the same tendency of evening for Othello. In that case the
state evaluator evens out the result by leading to far more draws. But while the
agent using policy network rollouts does lose less often using the state evaluator,
it also wins less often because games are ending in draws instead. If we score
draws as half wins, we get an average score of 0.415 with the state evaluator and
0.445 without, so the latter is arguably better, as opposed to in Hex. Perhaps
this could indicate that the network for Othello is biased in some way, with the
random rollouts being able to compensate for it and the policy network rollouts
being unable to, since it’s based on the same network. Interestingly this runs
contrary to what you would expect based on the increased number of random
rollouts without a state evaluator.

It is worth remarking on the large difference between the number of rollouts
and the total number of simulations. In this experiment rollouts were performed
on every expansion. This means that a simulation without a rollout can only
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occur without an expansion, i.e. if the tree search ends in a true leaf node,
one representing the end of the game. Such simulations only need to compute
the final outcome of the game, which is fast in itself, but extremely fast due to
caching if that final state has been encountered previously. If the tree search
consistently ends in such nodes we would therefore expect a large number of
simulations and a much lower number of rollouts, which is in fact what the data
shows. But this means that the value estimates will be entirely dominated by the
values backpropagated from actual outcomes as opposed to rollouts. Initially this
might sound like a good thing, because actual outcomes are clearly more accurate
than ones simulated by a rollout. This might however indicate a problem with
lack of exploration. We are not interested in backing up an actual outcome
again and again from the same node when we instead could be exploring other
branches. The close ancestors of that node will already have an estimate close to
it and will not change much by propagating back the same value yet again. In
fact if MCTS only explores a few branches until the end of the game and then
subsequently mostly searches these, the lack of exploration will tend to make
values near the root very inaccurate. If this is the case, it is likely beneficial to
increase the exploration constant cPUCT. But note that these averages are based
on all moves, including those close to the end of games. In those cases many
or most branches will quickly lead to final states, which brings up the average.
Based on this it cannot be concluded that there is a lack of exploration.

As a side note, some informal testing actually shows that the difference in
computation time between the two policies is much larger than one would expect
from the number seen, about two orders of magnitude. I believe there to be a
couple of reasons for this discrepancy. One is that caching is still used within each
agent (though, like mentioned previously, not between games or agents). Net-
work evaluations benefit immensely from caching, becoming about three orders of
magnitude faster, while finding legal states is only about one order of magnitude
faster when cached. This means that if states are often repeated between rollouts,
we can expect the difference between network-based rollouts and random rollouts
to be far less than two orders of magnitude. The fact that the policy network
rollouts are deterministic will also make repeated states more likely, increasing
the benefit of caching. There is also overhead from e.g. the tree search, expansion
and backpropagation that spends some of the limited time budget.

6.2 Conclusion

When I first heard about AlphaGo, I found it massively impressive. Here was a
game, Go, that had eluded attempts to master it using conventional game-playing
techniques and that few expected computers to beat human professionals at for
a long time. Then almost out of the blue came AlphaGo, a novel combination of
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reinforcement learning, deep learning and Monte Carlo tree search, and beat one
of the champions of the game. Then came AlphaGo Zero, the undisputed world
champion of Go, learning the game completely from scratch, and I was in awe.
When I saw news of AlphaZero, showing the technique could be generalized to
other games, I knew this was something I wanted to look deeper into. I read Silver
et al. [2016], Silver et al. [2017], Silver et al. [2018] and found them extremely
inspiring. This led me to my research goal of investigating this novel combination.

As seen in chapter 3, I then used these papers as a springboard into the rele-
vant fields of research, attempting to gain a thorough understanding of both past
work and the state-of-the-art. I looked into alternative techniques such as DQN,
which clearly showed the power of deep convolutional function approximators
for reinforcement learning. I looked at the history of Monte Carlo tree search
from its early conception by Coulom [2006], to the addition of UCT by Kocsis
and Szepesvári [2006] and on through various improvements that led to the first
revolution in Go AIs. But these could still only match human professionals for
smaller-scale boards. I looked at attempts at applying MCTS to other games in
the form of Hingston and Masek [2007] and Arneson et al. [2010], which showed
the technique could be used more generally. I found Maddison et al. [2014], com-
ing a couple of years after convolutional neural networks were popularized by
Krizhevsky et al. [2012] and serving as a sort of predecessor to AlphaGo and its
successors by combining MCTS and deep CNNs. Finally I looked into Anthony
et al. [2017], an independent work inspired by AlphaGo and similar to AlphaZero,
but providing a somewhat alternative approach.

At this point, I had a research goal and a good understanding of the field,
but despite the process being underway, it was still not clear to me exactly which
questions I should research. But I went back to the three main papers and
thought about the various things that set these systems apart from earlier work.
As I talked about in section 3.8, what struck me was how rollouts were a central
part of all the previous work in MCTS and even played an important role in
AlphaGo, while being completely absent from its successors. This made me
think about whether rollouts could still be beneficial in these systems. If they
were, could it be an idea to use the same network trained as part of the algorithm
to perform rollouts, instead of a faster but simpler policy? These two questions
then became my research goals.

Because my project is based on an experimental methodology, researching
these questions meant building a system and designing experiments that would
allow me to get empirical data. I set out to build a configurable, flexible and
modular framework that would allow me to apply this general combination of
MCTS, deep learning and reinforcement learning to various games without mixing
game-specific details with the core algorithm. This has been accomplished. As
seen in chapter 4, it is a system with four principle components. To start learning
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a new game from scratch, all that is needed is to implement a game manager
representing the rules of the game and a game net taking the states of the game
and feeding them through a neural network. Neither MCTS nor the overall
training algorithm has any knowledge of what game they are working on. This
has made it extremely easy to apply the system to Hex and Othello. The system
is similar to AlphaZero in many ways. One key difference is in how it parallelizes
and distributes training. Another is that while AlphaZero has no concept of
rollouts, my system allows a very flexible application of them, configuring how
often and exactly how to perform them. This was key to investigating my research
goals.

One problem I have touched upon multiple times throughout this document
is the speed of the system. A lot of time was spent working on this, perhaps even
too much. But while it is still an issue in the final system, it is massively improved
from earlier iterations of it. The key solutions were caching and distributing self-
play over multiple processes and training over multiple GPUs, which have all
provided massive speed-ups. I was also greatly helped by the access to hard-
ware provided by the department (but note the massive disparity between this
hardware and what used for Silver et al. [2018]). Without these improvements it
would have been difficult to perform the experiments I have, and it has taught
me a lot about scaling machine learning systems.

Based on my research goals I designed three experiments that I hoped could
help shed light on them. As seen in section 5.1, these were meant to confirm
whether learning was taking place in the system, whether performing random
rollouts more often would lead to better results and whether rollouts based on
the policy network would outperform random rollouts. These experiments were
performed using the system and the results have been presented in section 5.3
and thoroughly discussed in section 6.1. What can these results tell us about the
system and the research questions?

Experiment 1 indicates that the system is to some extent able to learn to
play both Hex and Othello from scratch and consistently beat random rollout
MCTS with twice the number of simulations. This is not a hugely surprising
result. As we have seen from both Silver et al. [2018] and Anthony et al. [2017],
the general technique seems to generalize well to games other than Go, including
Hex. It does serve as a confirmation that the system works and can be used for
further experiments. Because the resulting agents have not been compared to
a known baseline such as a previously published algorithm, it is difficult to say
exactly how well the agents have learned to play. There are some instabilities
in the result that could point to a suboptimal hyperparameters and additionally
parameters such as network size, board size and simulations per move have been
kept low to limit the runtime. This should be kept in mind, as my other results
don’t necessarily generalize to a well-tuned and more complex configuration. By
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comparison with Silver et al. [2018], there is also suspicion that the number of
self-play games are too low compared to the number of training iterations, but it
is not clear from the results whether this is actually a problem.

Experiment 2 seemed at first to suggest that the answer to my first research
question was no, rollouts are in fact detrimental to the performance of the algo-
rithm. But as discussed in the evaluation, the answer is not so clear-cut. It is
in hindsight to be expected for random rollouts to decrease performance when
combined with a low number of simulations and an unweighted average. This
does not give us a reason to conclude that this combination of network evalua-
tion and random rollout should be avoided in general. It does however hint at the
relatively low value of a random rollout, which might mean that any potential
benefit is small, but this is again not clear from these results. Experiment 2 has
not given us a clear answer to the research question.

When it comes to the second research question, the corresponding experiment
is slightly more helpful. The results of experiment 3 indicate that using the policy
network as a rollout policy does not improve on random rollouts, likely because
it is too slow and therefore results in a far lower number of rollouts, perhaps
also because it leads to reduced exploration. But there are caveats which mean
we cannot conclude this with certainty. For example, a network that is trained
with better tuning of hyperparameters or simply for longer could result in better
results. Note that a larger network would be even slower, so that is less likely to
be helpful. It is also not clear whether an improvement on random rollouts would
be an improvement on not performing rollouts at all. This is of course related
to research question 1. But instead of doing a rollout, which requires many
evaluations of the network, it is not inconceivable that you are better off simply
performing more simulations, which only require a maximum of one evaluation
each.

Experiment 3 also highlighted a potential problem with lack of exploration
due to many searches ending in final states. The data is not conclusive due to
the caveats mentioned in the evaluation, but if this is the case, it does affect all
three experiments. It is hard to say exactly how this issue would influence the
results, but it could possibly give an advantage to random rollouts, as they are
inherently more explorative.

These results do raise the question of whether other kinds of rollout policies
could be more useful. A random policy is completely uninformed, while a deep
policy network is extremely slow. These are large disadvantages which might
make them unsuitable as rollout policies. If they are, perhaps there are other
policies which could be a better fit. But the big advantage of these policies is that
they still allow you to learn from scratch without additional domain knowledge.
Perhaps using a domain-specific rollout policy, such as in Silver et al. [2016], could
be beneficial to create a better player, but the loss of generality would make this
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a less interesting result.
In the end, the contributions of this work aren’t major. We still don’t know

whether it was optimal for Silver et al. [2017, 2018] to not include rollouts, this
technique that was still an important aspect of Silver et al. [2016] and had been
so central to the previous work with MCTS. There are some indications that
random rollouts might not provide much benefit and better indications that policy
network rollouts are worse. The results are nevertheless too inconclusive to say
this for sure. But the work has resulted in a functional system that could be used
to investigate the issue of rollouts further, either with improved experiments that
could give more conclusive data or alternative ones that could provide insight
into new questions that have been raised.

6.3 Future Work

Some changes could be made to the system to speed it up further. One possibility
is to implement threaded MCTS in e.g. C++. This would allow searches in
parallel within each self-play game and batched network evaluation without the
overhead of processes. If the system could be distributed across more GPUs, this
would also be helpful in increasing the ratio between self-play games and training
iterations. It could for example be modified to run on NTNU’s Idun cluster. With
a more computationally performant system, it would then be easier to test various
hyperparameters to properly tune the system. This could also allow for larger
networks, bigger boards, more simulations and training the networks for longer.

To properly assess how well the system learns, the resulting agents could be
compared to those of prior work in the field, e.g. MoHex. This could involve
straight comparisons of win ratios, but also a deeper analysis of playstyles to
identify strengths and weaknesses.

To get more conclusive data on the first research question, the number of sim-
ulations could be increased and various weightings could be tested in experiment
2 to see any of them made random rollouts beneficial. For the second research
question, experiment 3 could be repeated with a better trained network and a
fine-tuning of parameters such as the exploration constant. An agent without
rollouts could also be included in the comparison. Improving these experiments
would be far more doable if the speed of the system was improved beforehand.

If an alternative, novel rollout policy that both preserves generality and im-
proves performance could be formulated, this would be a large contribution to
the field. This might require e.g. a deep study of prior art to see if there has
been related work in general policies that could be applicable.
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first second overall
win draw win draw win draw

Model

0 0.00± 0.00 0.01± 0.02 0.89± 0.06 0.08± 0.05 0.45± 0.06 0.05± 0.03
1 0.24± 0.08 0.18± 0.07 0.22± 0.07 0.28± 0.08 0.23± 0.05 0.23± 0.05
2 0.01± 0.02 0.00± 0.00 0.91± 0.05 0.04± 0.04 0.46± 0.06 0.02± 0.02
3 0.00± 0.00 0.02± 0.02 0.06± 0.04 0.17± 0.07 0.03± 0.02 0.09± 0.04
4 0.01± 0.02 0.18± 0.07 0.49± 0.09 0.44± 0.09 0.25± 0.05 0.31± 0.06
5 0.00± 0.00 0.00± 0.00 0.36± 0.09 0.42± 0.09 0.18± 0.05 0.21± 0.05
6 0.08± 0.05 0.06± 0.04 0.53± 0.09 0.00± 0.00 0.30± 0.06 0.03± 0.02
7 0.00± 0.00 0.06± 0.04 0.89± 0.06 0.03± 0.03 0.45± 0.06 0.05± 0.03
8 0.02± 0.02 0.94± 0.04 0.00± 0.00 0.98± 0.02 0.01± 0.01 0.96± 0.02
9 0.07± 0.05 0.03± 0.03 0.91± 0.05 0.04± 0.04 0.49± 0.06 0.03± 0.02
10 0.02± 0.02 0.01± 0.02 0.42± 0.09 0.43± 0.09 0.22± 0.05 0.22± 0.05
11 0.00± 0.00 1.00± 0.00 0.00± 0.00 0.98± 0.02 0.00± 0.00 0.99± 0.01
12 0.05± 0.04 0.00± 0.00 0.80± 0.07 0.01± 0.02 0.43± 0.06 0.00± 0.01
13 0.22± 0.07 0.65± 0.09 0.64± 0.09 0.09± 0.05 0.43± 0.06 0.37± 0.06
14 0.53± 0.09 0.33± 0.08 0.50± 0.09 0.11± 0.06 0.51± 0.06 0.22± 0.05
15 0.00± 0.00 0.00± 0.00 0.93± 0.04 0.06± 0.04 0.47± 0.06 0.03± 0.02
16 0.15± 0.06 0.38± 0.09 0.50± 0.09 0.19± 0.07 0.33± 0.06 0.29± 0.06
17 0.00± 0.00 0.98± 0.02 0.00± 0.00 0.80± 0.07 0.00± 0.00 0.89± 0.04
18 0.16± 0.07 0.07± 0.04 0.09± 0.05 0.47± 0.09 0.12± 0.04 0.27± 0.06
19 0.06± 0.04 0.10± 0.05 0.42± 0.09 0.25± 0.08 0.24± 0.05 0.17± 0.05
Total 0.08± 0.01 0.25± 0.02 0.48± 0.02 0.29± 0.02 0.28± 0.01 0.27± 0.01

Table A.1: The win and draw ratio for policy network rollouts against random
rollouts with 95% confidence intervals in Othello with a state evaluator. Note
that the loss ratio is not shown, but it’s fixed given the two others. Values are
shown separately both by model and by whether the agent using policy network
rollouts played first or second, thus those values are based on 20 matches. In ad-
dition there are values given across the starting player (240 matches) and across
the models (2400 matches). The values across both variables are based on all
4800 matches (these are also showed in table 5.5). In each case there are two
outcomes (“win” or “draw/loss” and “draw” or “win/loss”), meaning that they
form Bernoulli distributions. The variance of the estimator is therefore calcu-
lated as p̂(1−p̂)

ngames
, where p̂ is the maximum likelihood estimator nwins

ngames
and ndraws

ngames

for the win and draw ratio respectively. The confidence intervals are calculated

as p̂± 1.96
√

p̂(1−p̂)
ngames

. Note that this relies on the assumption that the sum of in-

dependent identically distributed Bernoulli random variables approach a normal
distribution. This is most reliable when n is large and p isn’t close to 0 or 1.
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first second overall
win draw win draw win draw

Model

0 0.84± 0.07 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.42± 0.06 0.00± 0.00
1 0.98± 0.02 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.49± 0.06 0.00± 0.00
2 0.00± 0.00 0.00± 0.00 0.98± 0.02 0.00± 0.00 0.49± 0.06 0.00± 0.00
3 0.22± 0.07 0.00± 0.00 0.88± 0.06 0.00± 0.00 0.55± 0.06 0.00± 0.00
4 0.62± 0.09 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.31± 0.06 0.00± 0.00
5 1.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.50± 0.06 0.00± 0.00
6 0.17± 0.07 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.08± 0.03 0.00± 0.00
7 0.01± 0.02 0.00± 0.00 0.50± 0.09 0.00± 0.00 0.25± 0.06 0.00± 0.00
8 0.97± 0.03 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.48± 0.06 0.00± 0.00
9 0.67± 0.08 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.34± 0.06 0.00± 0.00
10 0.93± 0.05 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.46± 0.06 0.00± 0.00
11 0.67± 0.08 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.33± 0.06 0.00± 0.00
12 0.23± 0.08 0.00± 0.00 0.17± 0.07 0.00± 0.00 0.20± 0.05 0.00± 0.00
13 0.00± 0.00 0.00± 0.00 0.31± 0.08 0.00± 0.00 0.15± 0.05 0.00± 0.00
14 0.50± 0.09 0.00± 0.00 0.03± 0.03 0.00± 0.00 0.27± 0.06 0.00± 0.00
15 0.93± 0.04 0.00± 0.00 0.97± 0.03 0.00± 0.00 0.95± 0.03 0.00± 0.00
16 0.63± 0.09 0.00± 0.00 0.32± 0.08 0.00± 0.00 0.47± 0.06 0.00± 0.00
17 1.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.50± 0.06 0.00± 0.00
18 0.97± 0.03 0.00± 0.00 0.16± 0.07 0.00± 0.00 0.57± 0.06 0.00± 0.00
19 0.45± 0.09 0.00± 0.00 0.02± 0.02 0.00± 0.00 0.23± 0.05 0.00± 0.00
Total 0.59± 0.02 0.00± 0.00 0.22± 0.02 0.00± 0.00 0.40± 0.01 0.00± 0.00

Table A.2: The win and draw ratio for policy network rollouts against random
rollouts with 95% confidence intervals in Hex with a state evaluator. Note
that the loss ratio is not shown, but it’s fixed given the two others. Values are
shown separately both by model and by whether the agent using policy network
rollouts played first or second, thus those values are based on 20 matches. In ad-
dition there are values given across the starting player (240 matches) and across
the models (2400 matches). The values across both variables are based on all
4800 matches (these are also showed in table 5.5). In each case there are two
outcomes (“win” or “draw/loss” and “draw” or “win/loss”), meaning that they
form Bernoulli distributions. The variance of the estimator is therefore calcu-
lated as p̂(1−p̂)

ngames
, where p̂ is the maximum likelihood estimator nwins

ngames
and ndraws

ngames

for the win and draw ratio respectively. The confidence intervals are calculated

as p̂± 1.96
√

p̂(1−p̂)
ngames

. Note that this relies on the assumption that the sum of in-

dependent identically distributed Bernoulli random variables approach a normal
distribution. This is most reliable when n is large and p isn’t close to 0 or 1.
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first second overall
win draw win draw win draw

Model

0 0.43± 0.09 0.03± 0.03 0.50± 0.09 0.09± 0.05 0.47± 0.06 0.06± 0.03
1 0.47± 0.09 0.06± 0.04 0.45± 0.09 0.04± 0.04 0.46± 0.06 0.05± 0.03
2 0.43± 0.09 0.03± 0.03 0.38± 0.09 0.03± 0.03 0.41± 0.06 0.03± 0.02
3 0.42± 0.09 0.07± 0.04 0.41± 0.09 0.02± 0.02 0.41± 0.06 0.04± 0.03
4 0.38± 0.09 0.05± 0.04 0.38± 0.09 0.03± 0.03 0.38± 0.06 0.04± 0.02
5 0.35± 0.09 0.09± 0.05 0.41± 0.09 0.03± 0.03 0.38± 0.06 0.06± 0.03
6 0.33± 0.08 0.08± 0.05 0.49± 0.09 0.04± 0.04 0.41± 0.06 0.06± 0.03
7 0.40± 0.09 0.04± 0.04 0.43± 0.09 0.03± 0.03 0.42± 0.06 0.04± 0.02
8 0.37± 0.09 0.04± 0.04 0.43± 0.09 0.07± 0.05 0.40± 0.06 0.06± 0.03
9 0.48± 0.09 0.05± 0.04 0.41± 0.09 0.07± 0.04 0.44± 0.06 0.06± 0.03
10 0.48± 0.09 0.04± 0.04 0.40± 0.09 0.06± 0.04 0.44± 0.06 0.05± 0.03
11 0.43± 0.09 0.06± 0.04 0.40± 0.09 0.07± 0.04 0.42± 0.06 0.06± 0.03
12 0.40± 0.09 0.04± 0.04 0.42± 0.09 0.03± 0.03 0.41± 0.06 0.03± 0.02
13 0.44± 0.09 0.05± 0.04 0.46± 0.09 0.03± 0.03 0.45± 0.06 0.04± 0.03
14 0.45± 0.09 0.05± 0.04 0.43± 0.09 0.05± 0.04 0.44± 0.06 0.05± 0.03
15 0.45± 0.09 0.04± 0.04 0.42± 0.09 0.06± 0.04 0.44± 0.06 0.05± 0.03
16 0.48± 0.09 0.04± 0.04 0.46± 0.09 0.07± 0.05 0.47± 0.06 0.06± 0.03
17 0.42± 0.09 0.04± 0.04 0.40± 0.09 0.08± 0.05 0.41± 0.06 0.06± 0.03
18 0.45± 0.09 0.03± 0.03 0.40± 0.09 0.07± 0.04 0.43± 0.06 0.05± 0.03
19 0.32± 0.08 0.05± 0.04 0.45± 0.09 0.07± 0.04 0.38± 0.06 0.06± 0.03
Total 0.42± 0.02 0.05± 0.01 0.43± 0.02 0.05± 0.01 0.42± 0.01 0.05± 0.01

Table A.3: The win and draw ratio for policy network rollouts against random
rollouts with 95% confidence intervals in Othello without a state evaluator.
Note that the loss ratio is not shown, but it’s fixed given the two others. Values
are shown separately both by model and by whether the agent using policy net-
work rollouts played first or second, thus those values are based on 20 matches.
In addition there are values given across the starting player (240 matches) and
across the models (2400 matches). The values across both variables are based on
all 4800 matches (these are also showed in table 5.5). In each case there are two
outcomes (“win” or “draw/loss” and “draw” or “win/loss”), meaning that they
form Bernoulli distributions. The variance of the estimator is therefore calcu-
lated as p̂(1−p̂)

ngames
, where p̂ is the maximum likelihood estimator nwins

ngames
and ndraws

ngames

for the win and draw ratio respectively. The confidence intervals are calculated

as p̂± 1.96
√

p̂(1−p̂)
ngames

. Note that this relies on the assumption that the sum of in-

dependent identically distributed Bernoulli random variables approach a normal
distribution. This is most reliable when n is large and p isn’t close to 0 or 1.
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first second overall
win draw win draw win draw

Model

0 0.38± 0.09 0.00± 0.00 0.35± 0.09 0.00± 0.00 0.36± 0.06 0.00± 0.00
1 0.47± 0.09 0.00± 0.00 0.25± 0.08 0.00± 0.00 0.36± 0.06 0.00± 0.00
2 0.31± 0.08 0.00± 0.00 0.23± 0.08 0.00± 0.00 0.27± 0.06 0.00± 0.00
3 0.31± 0.08 0.00± 0.00 0.28± 0.08 0.00± 0.00 0.29± 0.06 0.00± 0.00
4 0.37± 0.09 0.00± 0.00 0.39± 0.09 0.00± 0.00 0.38± 0.06 0.00± 0.00
5 0.31± 0.08 0.00± 0.00 0.35± 0.09 0.00± 0.00 0.33± 0.06 0.00± 0.00
6 0.26± 0.08 0.00± 0.00 0.33± 0.08 0.00± 0.00 0.30± 0.06 0.00± 0.00
7 0.40± 0.09 0.00± 0.00 0.33± 0.08 0.00± 0.00 0.37± 0.06 0.00± 0.00
8 0.22± 0.07 0.00± 0.00 0.27± 0.08 0.00± 0.00 0.24± 0.05 0.00± 0.00
9 0.15± 0.06 0.00± 0.00 0.11± 0.06 0.00± 0.00 0.13± 0.04 0.00± 0.00
10 0.47± 0.09 0.00± 0.00 0.37± 0.09 0.00± 0.00 0.42± 0.06 0.00± 0.00
11 0.28± 0.08 0.00± 0.00 0.41± 0.09 0.00± 0.00 0.34± 0.06 0.00± 0.00
12 0.34± 0.08 0.00± 0.00 0.27± 0.08 0.00± 0.00 0.31± 0.06 0.00± 0.00
13 0.35± 0.09 0.00± 0.00 0.32± 0.08 0.00± 0.00 0.33± 0.06 0.00± 0.00
14 0.40± 0.09 0.00± 0.00 0.23± 0.08 0.00± 0.00 0.32± 0.06 0.00± 0.00
15 0.35± 0.09 0.00± 0.00 0.26± 0.08 0.00± 0.00 0.30± 0.06 0.00± 0.00
16 0.39± 0.09 0.00± 0.00 0.31± 0.08 0.00± 0.00 0.35± 0.06 0.00± 0.00
17 0.50± 0.09 0.00± 0.00 0.42± 0.09 0.00± 0.00 0.46± 0.06 0.00± 0.00
18 0.26± 0.08 0.00± 0.00 0.35± 0.09 0.00± 0.00 0.30± 0.06 0.00± 0.00
19 0.35± 0.09 0.00± 0.00 0.26± 0.08 0.00± 0.00 0.30± 0.06 0.00± 0.00
Total 0.34± 0.02 0.00± 0.00 0.30± 0.02 0.00± 0.00 0.32± 0.01 0.00± 0.00

Table A.4: The win and draw ratio for policy network rollouts against random
rollouts with 95% confidence intervals in Hex without a state evaluator. Note
that the loss ratio is not shown, but it’s fixed given the two others. Values are
shown separately both by model and by whether the agent using policy network
rollouts played first or second, thus those values are based on 20 matches. In ad-
dition there are values given across the starting player (240 matches) and across
the models (2400 matches). The values across both variables are based on all
4800 matches (these are also showed in table 5.5). In each case there are two
outcomes (“win” or “draw/loss” and “draw” or “win/loss”), meaning that they
form Bernoulli distributions. The variance of the estimator is therefore calcu-
lated as p̂(1−p̂)

ngames
, where p̂ is the maximum likelihood estimator nwins

ngames
and ndraws

ngames

for the win and draw ratio respectively. The confidence intervals are calculated

as p̂± 1.96
√

p̂(1−p̂)
ngames

. Note that this relies on the assumption that the sum of in-

dependent identically distributed Bernoulli random variables approach a normal
distribution. This is most reliable when n is large and p isn’t close to 0 or 1.
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Appendix B

Source Code, Models and
Raw Data

The source code of the system, trained models and raw data of the experi-
ments can be found in this GitHub repository: https://github.com/henribru/
deep-mcts.
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