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1 Introduction

A problem which arises in many real-life scientific applications is the need

to make inference about an unobserved dynamic process based on a series of

indirect, noisy measurements. Examples include applications in control engineer-

ing, finance and economics, and several fields of the geosciences. Often in such

situations, a so-called state-space model is adopted. The unobserved dynamic

process is then modelled as a sequence of states, or state vectors, that evolve in

time according to a first-order Markov chain, and the observations are assumed

to be conditionally independent given the states. The problem of making infer-

ence about the unobserved state at a certain point in time, given all observations

available at this time, is known as filtering.

Filtering is a recursive inference procedure which allows observations to be as-

similated sequentially as they arrive. From a Bayesian perspective, each iteration

involves a standard Bayesian inference problem, where the goal is to compute a

posterior model, in this context called the filtering distribution, by conditioning

a prior model, in this context called the forecast distribution, on new observa-

tions assumed to be distributed according to a corresponding likelihood model.

In the special case of a linear-Gaussian state-space model, the recursion leads to

the famous Kalman filter (Kalman, 1960). In most situations, however, exact

computation of the filtering distributions is problematic due to complex and/or

high-dimensional integrals. Approximate solutions are therefore required, and

approaches based on simulation, so-called ensemble methods, where the filtering

distributions instead are empirically represented with an ensemble of realisations,

are usually the best option.

The focus of the present thesis is filtering of high-dimensional state vectors

where each element is a categorical variable. The integrals in each step of the

filtering recursions then represent summations which, brute force, are too com-

putationally demanding to cope with. For state-space models with continuous

state and observation vectors, there is an extensive literature on ensemble-based

filtering methods, of which the most important contribution perhaps is the en-

semble Kalman filter as presented in Burgers et al. (1998). Filtering of categorical

state vectors, however, has received considerably less attention. Particle filters

(Gordon et al., 1993; Doucet et al., 2001) are in principle applicable, but break

down in high-dimensional situations. The main objective of the present thesis

is to develop a novel and computationally feasible ensemble filtering method for
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high-dimensional, categorical state vectors.

2 State-space models

To motivate the work of this thesis, we now review state-space models and the

associated filtering problem in more detail. State-space models are also known as

hidden Markov models (HMMs), although this term is often reserved for models

with categorical states (Künsch, 2000).

2.1 The general state-space model

A state-space model is a probabilistic model consisting of an unobserved

discrete-time stochastic process {xt, t 2 N} and a corresponding observed discrete-

time stochastic process {yt, t 2 N} where yt is a partial observation of xt at time t.

It is possible to extend the following material to situations where an observation

yt is only available at a few of the time steps t = 1, 2, . . . , but for simplicity we

restrict here the focus to situations where an observation yt is available at every

time step. Each xt is an n-dimensional vector taking value in a sample space

⌦x ✓ Rn and each yt is an m-dimensional vector taking value in a sample space

⌦y ✓ Rm. The unobserved xt-process is called the state process, and the vector xt

is called the state vector, or simply the state, at time t. For notational simplicity,

we will in the following use the notations xs:t = (xs, . . . , xt) and ys:t = (ys, . . . , yt)

to denote the vector of states and the vector of observations, respectively, from

time s to time t, for s  t. In the state-space representation, the unobserved state

process is assumed to evolve in time according to a first-order Markov chain with

initial distribution p(x1) and transition probabilities p(xt|xt�1), i.e.

p(x1:t) = p(x1)
tY

j=2

p(xj|xj�1). (1)

The observations y1, y2, . . . of the observed process are assumed to be condition-

ally independent given {xt, t 2 N}, with yt depending only on xt. This means

that the joint likelihood of y1:t given x1:t is given as

p(y1:t|x1:t) =
tY

j=1

p(yj|xj). (2)
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x1 x2 · · · xt�1 xt · · ·

y1 y2 yt�1 yt

Figure 1: Graphical illustration of a state-space model

For continuous state and observation vectors, an equivalent, and very common,

way to specify a state-space model is as a discrete-time dynamical system, with

initial conditions x1 ⇠ p(x1), a state equation,

xt = f(t, xt�1, "t), (3)

and an observation equation,

yt = g(t, xt, !t), (4)

where f(·) is a known function describing the evolution of the state vector from

one time step to the next, g(·) is a known function describing the relation between

the observation and the state, and "t ⇠ p("t) and !t ⇠ p(!t) are independent state

and observation random errors, respectively, assumed to follow known probability

distributions. The state equation in Eq. (3) may then stem from a di↵erential

equation describing the behaviour of the system under study. Under this alterna-

tive formulation of the state-space model, the distributions p(xt|xt�1) and p(yt|xt)

in Eqs. (1) and (2) are not specified directly and may not necessarily be known in

closed form, but they do follow from Eqs. (3) and (4), respectively. A graphical

illustration of the general state-space model is shown in Figure 1.

Two important special cases of the general state-space model are the linear-

Gaussian model and the finite state-space HMM. Both of these are central for the

work of this thesis. In the linear-Gaussian model, the initial state x1 is Gaussian,

and the state and observation equations in Eqs. (3) and (4) are linear with

additive zero-mean Gaussian noise. Specifically, we have

x1 ⇠ N (x1; µ1, Q1),

xt = Atxt�1 + ✏t, ✏t ⇠ N (✏t; 0, Qt),

yt = Htxt + !t, !t ⇠ N (!t; 0, Rt),
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or, equivalently,

p(x1) = N (x1; µ1, Q1),

p(xt|xt�1) = N (xt; Atxt�1, Qt),

p(yt|xt) = N (yt; Htxt, Rt), (5)

where µ1 2 Rn, Qt 2 Rn⇥n, At 2 Rn⇥n, Ht 2 Rm⇥n, Rt 2 Rm⇥m, and N (x; µ,⌃)

denotes the density function of the Gaussian distribution with mean vector µ and

covariance matrix ⌃. In the finite state-space HMM, xt is a univariate variable

and the state-space ⌦x = {0, 1, . . . , K � 1}, K > 1 takes on a finite number of

distinct values. The forward model p(xt|xt�1) then represents a K ⇥K transition

matrix.

2.2 Filtering, smoothing and prediction

The main objective of state-space modelling is some type of inference about

the unobserved state process given the observed sequence of observations. Three

common inference procedures are filtering, smoothing and prediction. Suppose

in the following that we are currently at time step t. Filtering refers to inference

about the present state xt given all past and present observations, y1:t. The

distribution of interest is then the distribution of xt given y1:t, p(xt|y1:t), called

the filtering distribution of xt. Smoothing refers to inference about a past state

xs, s  t, given the observations y1:t, and the distribution of interest is then

the smoothing distribution of xs, p(xs|y1:t). For s = t, filtering and smoothing

coincides. Finally, prediction refers to inference about future states xt+1, xt+2, . . .

given the observations y1:t, and the distribution p(xt+k|y1:t) for k � 1 is called the

k-step ahead prediction, or forecast, distribution of xt.

By exploiting conditional independence properties of the state-space repre-

sentation, the filtering, smoothing and prediction distributions can be computed

recursively. Consider first the k-step ahead forecast distribution of xt, p(xt+k|y1:t),

and suppose that the filtering distribution of xt, p(xt|y1:t), is known. Using that

xt+k is conditionally independent of y1:t given xt+k�1, the k-step ahead forecast

distributions p(xt+k|y1:t), k = 1, 2, . . . can be computed recursively according to

p(xt+k|y1:t) =

Z

⌦x

p(xt+k|xt+k�1)p(xt+k�1|y1:t)dxt+k�1. (6)

Next, consider the filtering distribution p(xt|y1:t). Using Bayes’ rule and that yt
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is conditionally independent of y1:t�1 given xt, the filtering distribution p(xt|y1:t)

can be computed recursively for t = 1, 2, . . . according to

p(xt|y1:t) =
p(xt|y1:t�1)p(yt|xt)

p(yt|y1:t�1)
(7)

where

p(yt|y1:t�1) =

Z

⌦x

p(xt|y1:t�1)p(yt|xt)dxt (8)

and where the one-step ahead forecast distribution p(xt|y1:t�1) follows from Eq.

(6), assuming p(xt�1|y1:t�1) is known. This means that the series of filtering distri-

butions can be computed recursively according to a recursion where each iteration

consists of two steps: first, a forecast step, where the one-step ahead prediction

distribution p(xt|y1:t�1) is computed according to Eq. (6), and thereafter, an

update step, where the filtering distribution p(xt|y1:t) is computed according to

Eqs. (7) and (8). In this context, p(xt|y1:t�1) is typically just referred to as the

forecast distribution, or simply the prior. The recursion is initialised by setting

the forecast distribution of the first iteration equal to the Markov chain initial

distribution p(x1). Finally, suppose T observations, y1:T , have been recorded and

consider the smoothing distributions p(xt|y1:T ) for t < T . From the state-space

representation it follows that xt is conditionally independent of yt+1:T given xt+1.

That is, we have

p(xt|xt+1, y1:T ) = p(xt|xt+1, y1:t).

Using Bayes’ rule and that xt+1 is conditionally independent of y1:t given xt,

p(xt|xt+1, y1:t) can be expressed as

p(xt|xt+1, y1:t) =
p(xt+1|xt)p(xt|y1:t)

p(xt+1|y1:t)
.

Thereby, if the filtering and one-step ahead prediction distributions have already

been calculated for t = 1 to T as described above, the smoothing distributions

p(xt|y1:T ) for t < T can be computed recursively for t = T �1, T �2, . . . according

to

p(xt|y1:T ) = p(xt|y1:t)

Z

⌦x

p(xt+1|y1:T )p(xt+1|xt)

p(xt+1|y1:t)
dxt+1. (9)

Generally, the integrals in Eqs. (6), (8) and (9) are too complex to be evaluated

exactly, and the series of prediction, filtering and smoothing distributions are
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left intractable. Two exceptions are the linear-Gaussian model and the finite

state-space HMM. For the linear-Gaussian model, all distributions involved are

Gaussian and the filtering and smoothing recursions lead to the famous Kalman

filter and Kalman smoother, respectively (Kalman, 1960). For the finite state-

space HMM, the integrals simply represent summations so that no complicated

integrals need to be solved. Provided that the number of classes, K, is not

too large, it is then possible to perform all the required computations. The

forward filtering recursions, followed by the backward smoothing recursions, are

then typically referred to as the forward-backward algorithm.

In this thesis, the focus is on the filtering problem. Filtering is in some com-

munities, especially in geophysics, referred to as sequential data assimilation, and

the update step of the filtering recursions is often called the analysis step. As

mentioned, the solution to the filtering recursions is generally intractable, and

approximate strategies are therefore required. In most situations, the best ap-

proach is to use an ensemble-based method, where a set of samples, an ensemble,

is used to empirically represent the forecast and filtering distributions. A broad

range of ensemble-based filtering methods have been proposed, among which we

find two main classes: particle filters (Gordon et al., 1993; Doucet et al., 2001;

Chopin and Papaspiliopoulos, 2020) and ensemble Kalman filters (EnKFs) (Burg-

ers et al., 1998; Evensen, 2003). While particle filters are based on importance

sampling combined with an optional resampling step, EnKFs rely on the assump-

tion of a linear-Gaussian model. Particle filters and the EnKF are described in

more detail in the next two sections.

3 Particle filtering

This section gives a brief introduction to the class of ensemble-based filtering

methods called particle filters, also referred to as sequential Monte Carlo methods.

Particle filters are very general as no assumptions about the distributions of the

underlying state-space model are introduced, and they are asymptotically correct

in the sense that as the ensemble size goes to infinity, the filters converge to the

true filtering solution. Below, we start out in Section 3.1 with a quick review of

importance sampling, which represents the foundation of particle filtering meth-

ods. Thereafter, we describe importance sampling in a sequential framework in

Section 3.2. Finally, we present the most basic particle filtering algorithm, called

the bootstrap filter, or the sequential importance resampling (SIR) algorithm, in
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Section 3.3.

3.1 Importance sampling

Importance sampling is a Monte Carlo integration technique for estimating

properties of a target distribution p(x) while sampling from another distribution.

Specifically, consider a distribution p(x),

p(x) =
⇡(x)R

⌦x
⇡(z)dz

,

where the unnormalised distribution ⇡(x) is known in closed form and the normal-

ising constant
R
⌦x

⇡(x)dx possibly is not. Suppose we are interested in computing

the expected value of some function ⇣(x) with respect to p(x),

Ep [⇣(x)] =

Z

⌦x

⇣(x)p(x)dx =

Z

⌦x

⇣(x)
⇡(x)R

⌦x
⇡(z)dz

dx, (10)

where the subscript p on the left-hand-side is used to express that the expectation

is taken over the distribution p(x). Importance sampling represents a method for

approximating Eq. (10) when sampling from p(x) is problematic and standard

Monte Carlo integration is not an option. Importance sampling relies on the fact

that, for some distribution q(x) such that q(x) > 0 for all x 2 ⌦x so that p(x) > 0,

the expectation in Eq. (10) can be rewritten as

Ep [⇣(x)] =

Z

⌦x

⇣(x)

⇡(x)
q(x)

q(x)
R
⌦x

⇡(z)
q(z)

q(z)dz
dx =

Eq [w(x)⇣(x)]

Eq [w(x)]

where

w(x) = ⇡(x)/q(x) (11)

and the subscript q on the right-hand-side indicates that the expectation is taken

with respect to q(x). Usually in this context, q(x) is called the importance dis-

tribution and w(x) the importance weight. If M independent random samples

x(1), . . . , x(M) from q(x) are available, the expectation Ep [⇣(x)] can be approxi-

mated as

Êp[⇣(x)] =
1
M

PM
i=1 w(i)⇣(x(i))

1
M

PM
j=1 w(j)

=
MX

i=1

ew(i)⇣(x(i)), (12)
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where w(i) = w(x(i)), and

ew(i) =
w(i)

PM
j=1 w(j)

, i = 1, . . . , M

are the normalised importance weights. The approximation in Eq. (12) is biased

for a finite ensemble size, but unbiased in the limit of an infinite ensemble size

(Geweke, 1989). Another important thing to note, is that the weighted ensemble

{(x(i), w(i))}M
i=1 yields an importance sampling approximation to p(x) in the form

of a weighted sum of delta masses,

p̂(x) =
MX

i=1

ew(i)�(x � x(i)),

where �(x � x(i)) is the standard dirac delta function.

3.2 Sequential importance sampling

Reconsider hereafter the general state-space model introduced in Section

2. Sequential importance sampling (SIS) uses importance sampling to recur-

sively construct an estimate of the joint posterior distribution p(x1:t|y1:t) for

t = 1, 2, . . . . For each t, an estimate of the filtering distribution p(xt|y1:t)

is thereby also obtained. Specifically, SIS involves importance sampling with

p(x1:t|y1:t) / p(x1:t, y1:t) as the target distribution and an importance distribution

q(x1:t|y1:t) of the form

q(x1:t|y1:t) = q(x1:t�1|y1:t�1)q(xt|x1:t�1, y1:t) = q(x1|y1)
tY

j=2

q(xj|x1:j�1, y1:j). (13)

An importance distribution of this form, combined with the conditional inde-

pendence properties of the state-space representation, allows us to construct a

recursive algorithm. Using Eq. (13) and that the joint distribution p(x1:t, y1:t)

can be recursively computed according to

p(x1:t, y1:t) = p(x1:t�1, y1:t�1)p(yt|xt)p(xt|xt�1),
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the importance weight in Eq. (11) takes the form

w(x1:t) =
p(x1:t�1, y1:t�1)p(yt|xt)p(xt|xt�1)
q(x1:t�1|y1:t�1)q(xt|x1:t�1, y1:t)

= w(x1:t�1)
p(yt|xt)p(xt|xt�1)
q(xt|x1:t�1, y1:t)

. (14)

To initialise the algorithm, we generate an ensemble {x
(1)
1 , . . . , x

(M)
1 } of M inde-

pendent realisations from q(x1|y1) and compute the corresponding importance

weights w
(1)
1 , . . . , w

(M)
1 according to w

(i)
1 = p(y1|x(i)

1 )p(x
(i)
1 )/q(x

(i)
1 |y1). There-

after, for t = 2, 3, . . . , we sample x
(i)
t from q(xt|x(i)

1:t�1, y1:t) independently for

each i = 1, . . . , M and compute the associated weights w
(i)
1:t = w(x(i)

1:t) according

to Eq. (14). At each time step t, an empirical estimate of p(x1:t|y1:t) follows as

p̂(x1:t|y1:t) =
MX

i=1

ew(i)
1:t�(x1:t � x

(i)
1:t),

where ew(i)
1:t, i = 1, . . . , M are the normalised importance weights. The pair

(x(i)
1:t, w

(i)
1:t) is usually called a particle in this context.

An important special case of the SIS framework arises when the Markov for-

ward model p(xt|xt�1) is used as importance distribution q(xt|x1:t�1, y1:t). This is

the approach of standard particle filters. The sampling from p(xt|xt�1) can then

be interpreted as the forecast step of the filtering recursions, while the consecutive

reweighting of the particles corresponds to the update step. Using p(xt|xt�1) as

importance distribution, the importance weight function in Eq. (14) simplifies to

w(x1:t) = w(x1:t�1)p(yt|xt),

i.e., the updated importance weight at time t is simply obtained by multiplying

the previous weight by the likelihood p(yt|xt).

3.3 Sequential importance resampling

Although the SIS filter with p(xt|xt�1) as importance distribution yields a

consistent estimate of p(x1:t|y1:t) for each t, it is well-known that, unless a very

high ensemble size is used, the filter tends to collapse after only a few iterations

in the sense that almost all of the weight is given to one, or a few, particles, while

all the other particles have negligible weight. The e↵ective sample size (Kong



10

et al., 1994),

Me↵ =
1

PM
i=1 ew

(i)
1:t

,

is thereby close to one, and the weighted ensemble {(x
(i)
1:t, w

(i)
1:t)}M

i=1 is a poor repre-

sentation of p(x1:t|y1:t). A simple approach to prevent filter collapse is to include

a resampling step where a new ensemble of state trajectories, {ex(1)
1:t , . . . , ex(M)

1:t }, is

generated by resampling from {x
(1)
1:t , . . . , x

(M)
1:t }. The most standard resampling

approach is to resample the x
(i)
1:t’s by sampling, with replacement, from the set

{x
(1)
1:t , . . . , x

(M)
1:t } with probabilities according to the corresponding normalised im-

portance weights. This results in a filter known as the bootstrap filter (Gordon

et al., 1993), or the sequential importance resampling (SIR) algorithm. More ad-

vanced resampling techniques, such as residual resampling (Lui and Chen, 1998)

and stratified resampling (Carpenter et al., 1999), have also been proposed. After

the resampling step, the ex(i)
1:t’s are assigned equal weights, so that our new weighted

ensemble is {(ex(i)
1:t,

1
M

)}M
i=1. An approximation to the joint posterior distribution

p(x1:t|y1:t) then follows as

p̂(x1:t|y1:t) =
MX

i=1

1

M
�(x1:t � ex(i)

1:t).

If interest is only in the filtering distributions p(xt|y1:t), only x
(i)
t needs to be

resampled and not the entire trajectory x
(i)
1:t, since a consequence of the resampling

is that w(x1:t) is no longer dependent on x1:t�1.

Although particle filters may appear to solve the smoothing problem for free

since an importance sampling approximation to the joint posterior distribution

p(x1:t|y1:t) is obtained at every time step, particle filters are generally not used

to solve the smoohting problem. For s ⌧ t, the estimate of the marginal distri-

bution p(xs|y1:t) obtained from the estimate of the joint distribution p(x1:t|y1:t) is

generally rather poor. If interest is in the smoothing problem, it is better to first

run a particle filter in the usual way, and thereafter do a backwards sweep and

update the trajectories with a particle smoother (Doucet et al., 2000).

The resampling step can in some situations prevent the basic SIS filter from

collapsing. However, it is generally not su�cient. It can be shown that the

number of particles required to avoid filter collapse, when p(xt|xt�1) is used as

importance distribution and no resampling is performed, grows exponentially with

the dimension of the state vector (Snyder et al., 2008), and it is unlikely that a
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simple resampling can defeat this so-called curse of dimensionality. As pointed

out in Doucet et al. (2000), resampling can even be harmful as it introduces

other theoretical and practical issues. In their simplest form, particle filters are

therefore, generally, not suited for high-dimensional filtering problems. There is,

however, a lot of ongoing research in this area, and more advanced schemes are

in development. A nice review can be found in van Leeuwen et al. (2019).

4 The ensemble Kalman filter

This section describes the ensemble Kalman filter (EnKF), an ensemble-based

version of the traditional Kalman filter. Many variations of the original EnKF

scheme, as presented in Burgers et al. (1998), have been proposed in the literature.

The many contributions can be divided into two main categories, stochastic filters

and deterministic filters, the latter also known as ensemble square root filters

(EnSRFs). For simplicity, we restrict in the following the attention to linear-

Gaussian likelihood models as in Eq. (5). It is, however, possible to modify

the EnKF to allow for non-Gaussian, non-linear likelihood models, although this

complicates the theoretical justification of what is really going on in the filter.

4.1 Kalman filter

For the linear-Gaussian state-space model introduced in Section 2.1, the fil-

tering recursions lead to the well-known Kalman filter. The series of forecast and

filtering distributions are in this case all Gaussian,

p(xt|y1:t) = N (xt; eµt, ePt),

and

p(xt+1|y1:t) = N (xt+1; µt+1, Pt+1),

and the Kalman filter provides recursive formulas for the associated parameters

eµt, ePt, µt+1, and Pt+1. Specifically, starting from the initial distribution p(x1)

which, by assumption, is Gaussian with known mean vector µ1 and covariance

matrix Q1, and setting P1 = Q1, the Kalman filter computes the filtering param-

eters eµt, ePt and the forecast parameters µt+1, Pt+1 recursively for t = 1, 2, . . .

according to

eµt = µt + Kt(yt � Htµt), (15)
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ePt = (In � KtHt)Pt, (16)

µt+1 = Ateµt,

and

Pt+1 = At
ePtA

>
t + Qt,

where In is the n ⇥ n identity matrix, and

Kt = PtH
>
t

�
HtPtH

>
t + Rt

��1
(17)

is the so-called Kalman gain matrix.

4.2 The stochastic EnKF

The stochastic EnKF was first introduced in the geophysics literature as an

alternative to the traditional Kalman filter. Geophysical models, such as reservoir

models or models of the atmosphere, preclude straightforward implementation of

the traditional Kalman filter for two main reasons. Firstly, they are typically

of such high dimensions that explicit storage and computation of the full n ⇥ n

Kalman filter covariance matrices become problematic. Secondly, they usually

involve a forward model p(xt|xt�1) which is non-linear and/or non-Gaussian. By

exploiting the ensemble representations of the forecast and filtering distributions,

the EnKF avoids explicit computation of the full n ⇥ n covariance matrices and

is able to cope with mild features of non-linearity and non-Gaussianity in the

forward model.

Like the traditional Kalman filter, each iteration of the EnKF involves a fore-

cast step and an update step. The update step can be viewed as an ensemble-based

version of the update step of the traditional Kalman filter. Iteration number t

starts with the assumption that a forecast ensemble, {x
(1)
t , . . . , x

(M)
t }, with in-

dependent realisations from the forecast distribution p(xt|y1:t�1) is available. In

reality, this assumption holds only approximately. The update step is then per-

formed by first (implicitly) approximating the forecast model p(xt|y1:t�1) with a

Gaussian distribution N (xt; µ̂t, P̂t) with mean vector µ̂t equal to the sample mean

of the forecast ensemble,

µ̂t =
1

M

MX

i=1

x
(i)
t ,
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and covariance matrix P̂t equal to the sample covariance,

P̂t = XtX
>
t , (18)

where

Xt =
1p

M � 1

⇣
x

(1)
t � µ̂t, . . . , x

(M)
t � µ̂t

⌘

is the so-called forecast ensemble-anomaly matrix. Thereafter, each forecast sam-

ple is linearly shifted according to

ex(i)
t = x

(i)
t + K̂t(yt � Htx

(i)
t + !

(i)
t ), (19)

where !
(i)
t ⇠ N(yt; 0, Rt), !

(1)
t , . . . , !

(M)
t are all independent, and

K̂t = Xt(HtXt)
> �HtXt(HtXt)

> + Rt

��1
(20)

is the Kalman gain matrix in Eq. (17), only Pt is replaced with the sample co-

variance matrix P̂t in Eq. (18). The justification of the update in Eq. (19)

is that, under the assumption that the Gaussian approximation N (xt; µ̂t, P̂t) is

the correct forecast model, i.e. that x
(1)
t , . . . , x

(M)
t are independent samples from

N (xt; µ̂t, P̂t), the update yields independent samples ex(1)
t , . . . , ex(M)

t from the cor-

responding correct filtering distribution, which then is a Gaussian N (xt; ˆ̃µt,
ˆ̃Pt)

with mean ˆ̃µt and covariance ˆ̃Pt available from the Kalman filter equations in Eqs.

(15) and (16),

ˆ̃µt = µ̂t + K̂t(µ̂t � Htµ̂t) (21)

and
ˆ̃Pt = (In � K̂tHt)P̂t. (22)

In geophysical applications, the ensemble size M is typically much smaller

than the state dimension n due to computer demanding forward models p(xt|xt�1).

The observation dimension, m, is also smaller than n, though considerably bigger

than M . From Eqs. (19) and (20), one should note that explicit storage and

computation of the full n ⇥ n covariance matrix P̂t can be avoided and that the

largest matrices that need to be maintained are of size n⇥M , n⇥m and m⇥m.

This allows for an e�cient numerical implementation compared to the traditional

Kalman filter and makes the EnKF computationally feasible also in large-scale

applications.
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Having generated the filtering ensemble {ex(1)
t , . . . , ex(M)

t } according to Eq.

(19), the forecast step is performed by generating a new forecast ensemble,

{x
(1)
t+1, . . . , x

(M)
t+1 }, by simulating from the Markov forward model,

x
(i)
t+1|ex(i)

t ⇠ p(xt+1|ex(i)
t ), (23)

independently for i = 1, . . . , M . In contrast to the update step, which relies on

Gaussian approximations, the forecast step is exact in the sense that under the as-

sumption that ex(1)
t , . . . , ex(M)

t are exact and independent samples from the true fil-

tering distribution p(xt|y1:t), Eq. (23) returns forecast samples x
(1)
t+1, . . . , x

(M)
t+1 that

are exact and independent samples from the true forecast distribution p(xt+1|y1:t).

If the underlying state-space model really is linear-Gaussian, the EnKF is

correct in the limit of an infinite ensemble size. The solution it then provides

corresponds to that of the Kalman filter. In the more general case of a non-

linear, non-Gaussian model, the filter provides a biased solution. However, if

there are non-Gaussian features present in the forecast ensemble, it is to some

extent possible for the filtering ensemble to capture some of these properties, since

it is obtained by linearly shifting the forecast samples.

4.3 EnSRFs

EnSRFs perform a deterministic version of the update in Eq. (19). As the

traditional, stochastic EnKF, EnSRFs start by replacing the forecast distribution

p(xt|y1:t�1) with a Gaussian approximation N (xt; µ̂t, P̂t) from which a correspond-

ing Gaussian approximation N (xt; ˆ̃µt,
ˆ̃Pt) to the filtering distribution p(xt|y1:t) fol-

lows from Bayes’ rule. While the stochastic EnKF updates the forecast ensemble

so that the sample mean and sample covariance of the updated ensemble equal ˆ̃µt

and ˆ̃Pt in expectation, or in the limit of an infinite ensemble size, EnSRFs deter-

ministically update the ensemble so that the sample mean and sample covariance

equal ˆ̃µt and ˆ̃Pt exactly.

EnSRFs involve computations with matrix square roots. Similarly to the

ensemble-anomaly matrix Xt of the forecast ensemble, an ensemble-anomaly ma-

trix eXt of the filtering ensemble can be defined as

eXt =
1p

M � 1

⇣
�ex(1)

t , . . . ,�ex(M)
t

⌘
, (24)
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where

�ex(i)
t = ex(i)

t � 1

M

MX

j=1

ex(j)
t . (25)

The ensemble-anomaly matrices Xt and eXt are matrix square roots of the sample

covariance matrices of the forecast and filtering ensembles, respectively. The

strategy of EnSRFs is to compute an ensemble-anomaly matrix eXt by requiring

that the sample covariance matrix of the filtering ensemble is exactly equal to ˆ̃Pt.

Specifically, this requirement entails that

ˆ̃Pt = eXt
eX>

t . (26)

Using Eqs. (18) and (26), and defining Dt = HtXtX
>
t H>

t + Rt, Eq. (22) can be

written as

eXt
eX>

t =
�
In � XtX

>
t H>

t D�1
t Ht

�
XtX

>
t .

Rearranging terms on the right-hand-side, we obtain

eXt
eX>

t = Xt

�
IM � X>

t H>
t D�1

t HtXt

�
X>

t .

Thereby, we see that a posterior ensemble-anomaly matrix eXt with the desired

properties can be obtained as

eXt = XtWtU

where Wt 2 RM⇥M is a matrix square root of
�
IM � X>

t H>
t D�1

t HtXt

�
, i.e.

WtW
>
t =

�
IM � X>

t H>
t D�1

t HtXt

�
,

and U is an M ⇥ M orthonormal matrix, i.e. UU> = U>U = IM . The pos-

terior ensemble members ex(1)
t , . . . , ex(M)

t can thereafter be obtained by inserting
1
M

PM
j=1 ex

(j)
t = ˆ̃µt in Eq. (25). Since the matrices Wt and U are not unique,

except in the univariate case, a variety of EnSRF schemes can be formulated. As

such, several EnSRFs have been proposed in the literature, e.g. Anderson (2001),

Bishop et al. (2001), Whitaker and Hamill (2002), and Evensen (2004). J. L.

Anderson (2001)
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(a) (b) (c)

Figure 2: Demonstration of covariance localisation. (a) True covariance matrix, P . (b) Sample
covariance matrix, P̂ , obtained from M = 20 random samples. (c) Regularised
covariance matrix obtained from the Schur product of ⇢ and P̂ with ⇢ given by Eq.
(29) using L = 10.

4.4 Localisation and inflation

The use of a finite ensemble size, and especially the use of an ensemble size

much smaller than the state dimension, comes at a price. When M ⌧ n, the

forecast sample covariance matrix P̂t, whose rank is at most M�1, is severely rank

deficient and usually a poor substitute for the true, possibly full rank, covariance

matrix Pt. In particular, P̂t is known to su↵er from what is known as spurious

correlations, which refers to overestimation of o↵-diagonal elements of Pt that

are supposed to be close to zero. This undesirable behaviour is demonstrated

in Figure 2(b) which shows the sample covariance matrix obtained from M = 20

independent samples from a Gaussian distribution of dimension n = 100 with zero

mean and covariance matrix shown in Figure 2(a). Spurious correlations can lead

to an updated ensemble with a too small spread which, when done sequentially,

can result in filter divergence in the sense that the variability of the forecast and

filtering ensembles become smaller and smaller and the ensemble mean eventually

drifts away from the truth. Spurious correlations are a natural result of sampling

errors and occur also for M > n, however when M is su�ciently large the e↵ect

is often small enough to avoid filter divergence. Two techniques proposed to

correct for spurious correlations are localisation and inflation. Both techniques

are commonly applied in practical applications, often in combination.

Localisation

Localisation relies on the fact that, in most spatial geophysical systems, corre-

lations between variables decrease rapidly with the distance between them, often
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exponentially. The correlation between two variables xi
t and xj

t of xt should there-

fore be close to zero if the indices i and j correspond to locations far apart in

space. Two di↵erent localisation techniques have been proposed in the literature:

covariance localisation and domain localisation. A nice review of the two proce-

dures can be found in Sakov and Bertino (2011), where also the relation between

them is investigated.

Covariance localisation (Hamill and Whitaker, 2001; Houtekammer and

Mitchell, 2001) seeks to increase the rank of the estimated forecast covariance

matrix and to suppress spurious correlations by replacing the sample covariance

matrix with its Schur (element-wise) product with some well chosen correlation

matrix ⇢ 2 Rn⇥n,

P̂t ! ⇢ � P̂t. (27)

The matrix ⇢ is chosen so that it reflects how the correlations between variables

decrease with the distance between them as seen in real geophysical systems. The

Schur product in Eq. (27) should then result in a regularised covariance matrix

where the spurious correlations are dampened. A common approach is to use the

Gaspari-Cohn function (Gaspari and Cohn, 1999),

G(r) =

8
>>><
>>>:

1 � 5
3
r2 + 5

8
|r|3 + 1

2
r4 � 1

4
|r|5, if 0  |r| < 1,

4 � 5|r| + 5
3
r2 + 5

8
|r|3 � 1

2
r4 + 1

12
|r|5 � 2

3|r| , if 1  |r| < 2,

0, if |r| � 2,

(28)

and define the entries of ⇢ as

⇢ij = G((i � j)/L), (29)

where L is a so-called correlation length which determines the rate at which

the correlations decrease towards zero. Figure 2(c) shows the covariance matrix

obtained from the Schur product of the sample covariance matrix shown in Figure

2(b) and a correlation matrix ⇢ defined by Eq. (29) with L = 10. The downside

of covariance localisation is that, brute force, it involves storage and computation

of n ⇥ n matrices. A possible way to circumvent this, is to choose ⇢ as sparse.

Domain localisation (Ott et al., 2004; Hunt et al., 2007; Janjic et al., 2011),

or local analysis, instead divides the state vector into several disjoint subsets and

performs a ’local’ update for each subset. In each of the updates, only a corre-

sponding local subset of the observation vector, containing observations within
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some chosen cut-o↵ radius from the centre of the assimilation region, is considered.

Computationally, this approach is advantageous over covariance localisation as it

can exploit the ensemble representations and avoid explicit maintenance of n⇥ n

matrices. An issue of concern, however, is lack of smoothness in the updated

realisations due to the division of the global domain into several subdomains.

Di↵erent techniques have been proposed to correct for this issue. For example,

Hunt et al. (2007) propose to weight the observation error covariance matrix so

that observations further away from the assimilation region are assigned larger

variances.

Inflation

For high-dimensional models, localisation alone is often not su�cient to avoid

filter divergence, and covariance inflation (Anderson and Anderson, 1999) is also

applied to stabilise the filter. With inflation, the estimated forecast distribution is

artificially broadened by multiplying the sample covariance matrix P̂t by a factor

� > 1,

P̂t ! �P̂t,

or, equivalently, by multiplying the ensemble-anomaly matrix Xt by a factor
p
�,

i.e. Xt !
p
�Xt. The inflation factor � is usually only slightly larger than one

and needs to be tuned to obtain satisfactory performance. Such tuning can be a

burden computationally, but adaptive schemes have been proposed (e.g., Wang

and Bishop, 2003; Anderson, 2007, 2009).

An illustrative example

Here, we present a simple simulation example which illustrates the poten-

tial e↵ect of using covariance localisation in the EnKF. The example involves

a linear-Gaussian state-space model, and results obtained using the stochastic

EnKF scheme, with and without covariance localisation, are compared. For

demonstration purposes, we also present output from a modified EnKF where

the true forecast covariance matrices, computed with the Kalman filter, are used

to update the ensemble in each iteration. Of course, such an approach is not

something one would be able to run in practice, but for the purpose of this ex-

periment it is convenient to use the output as a reference, since it reflects how an

ensemble of M realisations ideally should look like. The dimension of the state

vector xt is n = 100, and for every fifth variable of xt there is an observation yj
t ,
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so that the dimension of the observation vector yt is m = 20. The relatively small

ensemble size M = 20 is used in all three schemes, and the correlation matrix

⇢ used in the localisation procedure is defined by Eq. (29) with L = 10. (J. L.

Anderson & Anderson, 1999)

Figure 3(a) shows the true state vector xt and the observation vector yt at

time step t = 40, and Figures 3(b)-(d) show the posterior ensemble members

ex(1)
t , . . . , ex(M)

t obtained from the three di↵erent EnKF schemes described above

at this time step. Notice in particular that the ensemble spread in Figure 3(b)

obtained with the traditional EnKF, with no localisation, unmistakably is much

too narrow compared to the spread in Figure 3(d) obtained with the scheme

using the correct covariance matrices. The true values of the xj
t ’s are then also

quite often far outside the spread of the ensemble. In Figure 3(c), which shows

the results from the covariance localisation scheme, this e↵ect is considerably

reduced, and the ensemble spread is more comparable to that in Figure 3(d).

5 Summary of papers

The ultimate goal of my Ph.D. was to generalise the EnKF and to use this gen-

eralised scheme to develop an ensemble-based filtering method, or essentially an

ensemble updating method, for high-dimensional, categorical state vectors. The

reason for wanting to generalise the EnKF is that many studies show that the

filter provides quite good results even in non-linear, non-Gaussian situations, so

therefore it would be interesting to investigate whether some of the underlying

properties of the filter that contribute to this appealing behaviour can be trans-

ferred to a categorical sample space. Throughout the thesis, we focus on state

vectors with a one-dimensional spatial arrangement, meaning that the vector is

spatially arranged along a line. Extending the proposed methods to two, and

possibly three, dimensions is an interesting area for future research. The remains

of the thesis consists of four papers, all closely related. The papers can be read

independently, but we recommend reading paper I before the others, especially

before papers II and III. Below, we briefly summarise each paper.

Paper I

The first paper, ”Ensemble updating of binary state vectors by maximising

the expected number of unchanged components”, describes our first e↵ort on
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(a)

(b)

(c)

(d)

Figure 3: EnKF simulation example: (a) True state vector xt (black dots) and observed vector
yt (red stars) at time t = 40. (b) True state vector xt (black dots) and filtering
ensemble members (coloured lines) at time t = 40 obtained using the standard
stochastic EnKF. (c) Corresponding output as in (b), obtained using stochastic
EnKF with covariance localisation, where ⇢ is defined by Eq. (29) with L = 10. (d)
Corresponding output as in (b) and (c), obtained using a modified stochastic EnKF
where the true Kalman filter forecast covariance matrices are used in the ensemble
update.
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developing a new ensemble updating method for categorical state vectors. As

implied by the title, the paper restricts the focus to vectors where each element

is a binary variable. The paper starts with the description of a general ensem-

ble updating framework based on a generalisation of the statistical properties of

the EnKF. In the EnKF, a Gaussian approximation to the forecast distribution

is (implicitly) constructed. Combined with the assumption of a linear-Gaussian

likelihood model, a corresponding Gaussian approximation to the filtering dis-

tribution can be computed according to Bayes’ rule. Given that the Gaussian

approximation to the forecast distribution is correct, the EnKF linear update

corresponds to conditional simulation from a Gaussian distribution such that the

marginal distribution of each updated sample is equal to the Gaussian approxi-

mation to the filtering distribution. More generally, one can imagine to proceed in

a similar fashion, but pursue another parametric model than the Gaussian. That

is, instead of assuming that the forecast model is Gaussian and that the likeli-

hood model is linear-Gaussian, other models can be chosen. Moreover, instead

of linearly shifting the forecast samples, the posterior samples can be obtained

by conditional simulation from some distribution such that, under the assump-

tion that the forecast samples are distributed according to the assumed forecast

model, the marginal distribution of each updated sample is equal to the corre-

sponding assumed filtering distribution. Generally, an infinite number of such

conditional distributions may exist. To choose a solution, one could for example

seek a solution which is optimal with respect to some chosen optimality criterion.

To update a vector of binary variables, we propose to construct a first-order

Markov chain approximation to the forecast distribution and assume that the

elements of the observation vector are conditionally independent. This choice of

forecast and likelihood models constitutes an HMM and returns a correspond-

ing tractable first-order Markov chain approximation to the filtering distribution.

Based on the assumed HMM, the next task is to construct an appropriate condi-

tional distribution from which the posterior samples can be simulated. Because

of the discrete context, this conditional distribution is a transition matrix, not a

density as in the EnKF. A simple yet näıve option is to set the transition ma-

trix equal to the already established first-order Markov chain approximation to

the filtering distribution. However, this näıve approach entails that the posterior

samples are simulated independently of the forecast samples and may result in

that important information about the true forecast and filtering models, possibly

not captured with the assumed Markov chain models, is lost. To capture more
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information from the forecast samples, we propose to construct an optimal tran-

sition matrix with respect to the optimality criterion of maximising the expected

number of components of a forecast realisation that remain unchanged. A dy-

namic programming algorithm for recursively constructing the optimal solution is

presented, and the proposed procedure is demonstrated in a geophysics-inspired

simulation example.

Paper II

The second paper, ”Geophysics-based fluid-facies predictions based on ensem-

ble updating of binary state vectors”, is much more applied than the remaining

papers. Basically, the paper presents a synthetic geophysical filtering problem

where the method proposed in Paper I is applied. The problem considered is

a two-phase fluid flow problem originating from water injection in a petroleum

reservoir. Based on noisy measurements of a geophysical property called resistiv-

ity recorded at various times and at di↵erent locations in the reservoir, the goal

is to monitor the oil displacement. Simulation examples with a two-dimensional

reservoir model are presented. Here, to deal with the two-dimensional context,

the updating of the variables associated with each column of the grid is done

independently of the remaining variables.

Paper III

The third paper, ”A generalised and fully Bayesian ensemble updating frame-

work”, is an extension of the work presented in Paper I. The contribution of the

paper is three-fold. Firstly, the general updating framework proposed in Paper I is

modified to a Bayesian context where the parameters of the assumed forecast dis-

tribution are also treated as random variables. Secondly, the proposed Bayesian

framework is investigated under the assumption of a linear-Gaussian model. An

important result of this part of the paper is the proof that a particular EnSRF

scheme is optimal with respect to the optimality criterion of minimising the ex-

pected Mahalanobis distance between a prior and posterior ensemble member.

Thirdly, the framework is examined under the assumption of a binary HMM.

Simulation examples for both the linear-Gaussian model and the binary HMM

are presented.

A consequence of the proposed Bayesian setup is that, prior to the updating

of each forecast ensemble member, a corresponding parameter vector needs to be
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simulated, and this simulation is to be done conditionally on both the incoming

observation and all the forecast samples except the forecast sample which is to be

updated. This is di↵erent from existing fully Bayesian approaches, such as the

hierarchical EnKF (HEnKF) of Myrseth and Omre (2010), where the parameters

are simulated conditionally on all the forecast samples (including the sample

which is to be updated), but not the data. In the simulation example with the

linear-Gaussian model, we observe that the exclusion of the forecast sample which

is to be updated can have a major impact on the results when the ensemble size

is small. In particular, compared to the traditional EnKF and the HEnKF, we

observe that the proposed Bayesian EnSRF scheme provides more reliable results

and gives a much better representation of the uncertainty.

Currently, although referred to as a paper in the thesis, Paper III is not really

a paper, but a technical report. However, it will be submitted to a journal in the

future, after some revisions.

Paper IV

The fourth paper, ”Ensemble updating of categorical state vectors”, is another

extension of work presented in Paper I. The paper follows in the same Bayesian

spirit as Paper III, but focuses entirely on categorical state vectors. A slightly

modified version of the general Bayesian framework proposed in Paper III is pre-

sented and an improved version of the updating method proposed in Paper I is

described. Two important limitations about the algorithm proposed in Paper I are

that it works for binary variables only and that the assumed forecast distribution

is restricted to be a first-order Markov chain. In Paper IV, we address these two

issues and present an improved method which is computationally feasible also for

situations with more than two classes and which allows for a higher-order Markov

chain as the assumed forecast distribution. While the algorithm proposed in Pa-

per I is based on a certain directed acyclic graph for the dependencies between the

variables of a prior and posterior ensemble member, the algorithm proposed in

Paper IV instead makes use of an undirected graph. The chosen structure of this

undirected graph makes it possible to e�ciently construct the optimal transition

matrix by solving a linear program. A simulation example where each variable

of the state vector can take three di↵erent values is presented. (J. L. Anderson,

2007, 2009)
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1 INTRODUCTION

A state-space model consists of a latent {xt}�t=1 process and an observed {yt}�t=1 process, where
yt is a partial observation of xt. More specifically, the yt’s are assumed to be conditionally
independent given the xt process and yt only depends on xt. Estimation of the latent variable at
time t, xt, given all observations up to this time, y1:t = (y1, … , yt), is known as the filtering or data
assimilation problem. In the linear Gaussian situation an easy to compute and exact solution is
available by the famous Kalman filter. In most nonlinear or non-Gaussian situations, however,
no computationally feasible exact solution exists and ensemble methods are therefore frequently
adopted. The distribution p(xt|y1:t) is then not analytically available, but is represented by a set
of realizations �xt(1), … , �xt(M) from this filtering distribution. Assuming such an ensemble of real-
izations to be available for time t � 1, the filtering problem is solved for time t in two steps. First,
based on the Markov chain model for the xt process, each �xt�1(i) is used to simulate a correspond-
ing forecast realization xt(i), which marginally are independent samples from p(xt|y1:t � 1). This is
known as the forecast or prediction step. Second, an update step is performed, where each xt(i)

is updated to take into account the new observation yt and the result is an updated ensemble
�xt(1), … , �xt(M) which represents the filtering distribution at time t, p(xt|y1:t). The updating step is
the difficult one and the different strategies that have been proposed can be classified into two
classes, particle filters and ensemble Kalman filters.

In particle filters (Doucet, de Freitas, & Gordon, 2001) each filtering realization �xt(i) comes
with an associated weight �wt(i), and the pair ( �wt(i), �xt(i)) is called a particle. In the forecast step a
forecast particle (wt(i), xt(i)) is generated from each filtering particle ( �wt�1(i), �xt�1(i)) by generating
xt(i) from �xt�1(i) as discussed above and by keeping the weight unchanged, that is, wt(i) = �wt�1(i).
The updating step consists of two parts. First the weights are updated by multiplying each forecast
weight wt(i) by the associated likelihood value p(yt|xt(i)), keeping the xt component of the particles
unchanged. Thereafter a resampling may be performed, where ( �wt(i), �xt(i)), i = 1, … ,M are gen-
erated by sampling the �xt(i)’s independently from xt(i), i= 1, … , M with probabilities proportional
to the updated weights, and thereafter setting all the new filtering weights �wt(i) equal to one. Dif-
ferent criteria can be used to decide whether or not the resampling should be done. The particle
filter is very general in that it can be formulated for any Markov xt process and any observation
distribution p(yt|xt). However, when running the particle filter one quite often ends up with parti-
cle depletion, meaning that a significant fraction of the particles ends up with negligible weights,
which in practice requires the number of particles to grow exponentially with the dimension of
the state vector xt. To cope with the particle depletion problem various modifications of the basic
particle filter described here have been proposed, for example, the equivalent-weights particle
filter of van Leeuwen (2010, 2011).

The ensemble Kalman filter (Burgers, van Leeuwen, & Evensen, 1998; Evensen, 1994) uses
approximations in the update step, and thereby produces only an approximate solution to the
filtering problem. In the update step it starts by using the forecast samples xt(i), i= 1, … , M, to
estimate a Gaussian approximation to the forecast distribution p(xt|y1:t � 1). This is combined with
an assumed Gaussian observation distribution p(yt|xt) to obtain a Gaussian approximation to the
filtering distribution p(xt|y1:t). Based on this Gaussian approximation the filtering ensemble is
generated by sampling �xt(i), i = 1, … ,M independently from Gaussian distributions, where the
mean of �xt(i) equals xt(i) plus a shift which depends on the approximate Gaussian filtering dis-
tribution. The associated variance is chosen so that the marginal distribution of the generated
filtering sample �xt(i) is equal to the Gaussian approximation to p(xt|y1:t) when the forecast sample
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xt(i) is assumed to be distributed according to the Gaussian approximation to p(xt|y1:t � 1). The basic
ensemble Kalman filter described here is known to have a tendency to underestimate the variance
in the filtering distribution and various remedies have been proposed to correct for this, see for
example the discussions in Anderson (2007a, 2007b) and Sætrom and Omre (2013). The square
root filter (Tippett, Anderson, Bishop, & Hamill, 2003; Whitaker & Hamill, 2002) is a special vari-
ant of the ensemble Kalman filter where the update step is deterministic. The filtering ensemble
is then generated from the forecast ensemble only by adding a shift to each ensemble element.
Here the size of the shift is chosen so that the marginal distribution of the filtering realizations is
equal to the approximated Gaussian filtering distribution.

The Gaussian approximations used in the ensemble Kalman filter limit the use of this filter
type to continuous variables, whereas the particle filter setup can be used for both continuous
and categorical variables. In the literature there exists a few attempts to use the ensemble Kalman
filter setup also for categorical variables, see in particular Oliver, Chen, and Nævdal (2011). The
strategy then used for the update step is first to map the categorical variables over to continuous
variables, perform the update step as before in the continuous space, and finally map the updated
continuous variables back to corresponding categorical variables. In the present article, our goal
is to study how the basic ensemble Kalman filter idea can be used for categorical variables with-
out having to map the categorical variables over to a continuous space. As discussed above the
update step is the difficult one in ensemble filtering methods. The basic ensemble Kalman fil-
ter update starts by estimating a Gaussian approximation to the forecast distribution p(xt|y1:t � 1).
More generally one may use another parametric class than the Gaussian. For categorical variables
the simplest alternative is to consider a first-order Markov chain, which is what we focus on in
this article. Having a computationally feasible approximation for the forecast distribution we can
find a corresponding approximate filtering distribution. Given the forecast ensemble the ques-
tion then is from which distribution to simulate the filtering ensemble to obtain that the filtering
realizations marginally are distributed according to the given approximate filtering distribution,
corresponding to the property for the standard ensemble Kalman filter. In this article we develop
in detail an approximate way to do this when the elements of the state vector are binary vari-
ables, the approximate forecast distribution is a first-order Markov chain, and the observation
distribution has a specifically simple form.

The article has the following layout. First, in Section 2, we review the general state-space
model, the associated filtering problem, and present the ensemble Kalman filter. Next, in
Section 3, we describe a general ensemble updating framework. Then, in Section 4, we restrict
the focus to a situation where the elements of the state vector are binary variables and develop
in detail an algorithm for how to perform the update step in this case. After that, we present
two numerical experiments with simulated data in Section 5. Finally, in Section 6, we give a few
closing remarks and briefly discuss how the proposed updating method for binary vectors can be
generalized to a situation with more than two classes and an assumed higher order Markov chain
model for the forecast distribution.

2 PRELIMINARIES

In this section, we review some basic theoretical aspects of ensemble-based filtering methods.
The material presented should provide the reader with the necessary background for understand-
ing the proposed approach and it also establishes some of the notations used throughout the
article.
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F I G U R E 1 Graphical illustration of the state-space model behind the filtering problem

2.1 Review of the filtering problem

The filtering problem in statistics can be nicely illustrated with a graphical model, see Figure 1.
Here, {xt}�t=1 represents a time series of unobserved states and {yt}�t=1 a corresponding time series
of observations. Each state xt is n-dimensional and can take on values in a state space �X , while
each observation yt is k-dimensional and can take on values in a state space �Y . The series of
unobserved states, called the state process, constitutes a first-order Markov chain with initial
distribution p(x1) and transition probabilities p(xt|xt � 1), t > 1. For each state xt, t � 1, there is a
corresponding observation yt. The observations are assumed conditionally independent given the
state process, with yt depending on {xt}�t=1 only through xt, according to some likelihood model
p(yt|xt). To summarize, the model is specified by

x1 � p(x1),
xt�xt�1 � p(xt�xt�1), t > 1,
yt�xt � p(yt�xt), t � 1.

The objective of the filtering problem is, for each t, to compute the so-called filtering distribu-
tion, p(xt|y1:t), that is, the distribution of xt given all observations up to this time, y1:t = (y1, … , yt).
Because of the particular assumptions about the state and observation processes, it can be shown
(see Künsch, 2000) that the series of filtering distributions can be computed recursively according
to the following equations:

i) p(xt�y1�t�1) = ��X

p(xt�xt�1)p(xt�1�y1�t�1)dxt�1, (1a)

ii) p(xt�y1�t) =
p(xt�y1�t�1)p(yt�xt)

��X
p(xt�y1�t�1)p(yt�xt)dxt

. (1b)

As one can see, the recursions evolve as a two-step process, each iteration consisting of (i) a predic-
tion step and (ii) an update step. In the prediction, or forecast step, one computes the predictive,
or forecast, distribution p(xt|y1:t � 1), while in the update step, one computes the filtering distribu-
tion p(xt|y1:t) by conditioning the predictive distribution on the incoming observation yt through
application of Bayes’ rule. The update step can be formulated as a standard Bayesian inference
problem, with p(xt|y1:t � 1) becoming the prior, p(yt|xt) the likelihood, and p(xt|y1:t) the posterior.

There are two important special cases where the analytical solutions to the filtering recursions
in (1a) and (1b) can be computed exactly. The first case is the hidden Markov model (HMM).
Here, the state space �X consists of a finite number of states, and the integrals in (1a) and (1b)
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reduce to finite sums. If the number of states in �X is large; however, the summations become
computer-intensive, rendering the filtering recursions computationally intractable. The second
case is the linear-Gaussian state space model, which can be formulated as follows:

x1 � �n(x1��1,�1),

xt�xt�1 = Atxt�1 + �t, �t � �n(��0,�t),

yt�xt = Htxt + �t, �t � �k(��0,Rt), (2)

where At � Rn�n and Ht � Rk�n are nonrandom linear operators, �t � Rn�n and Rt � Rk�k are
covariance matrices, and x1, �1, �2, … , �1, �2, … are all independent. In this case, the predictive
and filtering distributions are all Gaussian, and the filtering recursions lead to the famous Kalman
filter (Kalman, 1960).

In general, we are unable to evaluate the integrals in (1a) and (1b). Approximate solu-
tions therefore become necessary. The most common approach in this regard is the class of
ensemble-based methods where a set of samples, called an ensemble, is used to empirically
represent the sequence of forecast and filtering distributions. Starting from an initial ensemble
{x1(1), … , x1(M)} of M independent realizations from the Markov chain initial model p(x1), the
idea is to advance this ensemble forward in time according to the model dynamics. As the original
filtering recursions, the propagation of the ensemble alternate between an update step and a pre-
diction step. Specifically, suppose at time t � 1 that an ensemble {xt(1), … , xt(M)} of independent
realizations from the forecast distribution p(xt|y1:t � 1) is available. We then want to update this
forecast ensemble by conditioning on the incoming observation yt in order to obtain an updated,
or posterior, ensemble {�xt(1), … , �xt(M)} with independent realizations from the filtering distri-
bution p(xt|y1:t). If we are able to carry out this updating, we can proceed and propagate the
updated ensemble {�xt(1), … , �xt(M)} one time step forward by simulating xt+1(i)��xt(i) � p(xt+1��xt(i))
for each i. This produces a new forecast ensemble, {xt + 1(1), … , xt + 1(M)}, with independent real-
izations from the forecast distribution p(xt + 1|y1:t). However, while we are typically able to cope
with the forecast step, there is no straightforward way for carrying out the update of the prior
ensemble {xt(1), … , xt(M)} to a posterior ensemble {�xt(1), … , �xt(M)}. Therefore, ensemble meth-
ods require approximations in the update step. Consequently, the assumption we make at the
beginning of each time step t, that is, that xt(1), … , xt(M) are exact and independent realizations
from p(xt|y1:t � 1), holds only approximately, except in the initial time step.

In the remains of this article, we focus primarily on the challenging updating of a prior ensem-
ble {xt(1), … , xt(M)} to a posterior ensemble {�xt(1), … , �xt(M)} at a specific time step t. We refer to
this task as the ensemble updating problem. For simplicity, we omit from now on the time super-
script t and the y1:t � 1 from the notations as these quantities remain fixed. That is, we write x
instead of xt, p(x) instead of p(xt|y1:t � 1), p(x|y) instead of p(xt|y1:t), and so on.

2.2 The ensemble Kalman filter

The ensemble Kalman filter (EnKF), first introduced in the geophysics literature by
Evensen (1994), is an approximate ensemble-based method that relies on Gaussian approxima-
tions to overcome the difficult updating of the prior ensemble. The updating is done in terms of
a linear shift of each ensemble member, closely related to the traditional Kalman filter update.
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The literature on the EnKF is extensive, but some basic references include Burgers et al. (1998)
and Evensen (2009). Here, we only provide a brief presentation. For simplicity, we restrict the
focus to the linear-Gaussian observational model in (2) which, if we omit the superscript t, can
be rewritten

y�x = Hx + �, � � �k(�; 0,R).

There exist two main classes of EnKFs, stochastic filters and deterministic, or so-called square root
filters, differing in whether the updating of the ensemble is carried out stochastically or determin-
istically. The stochastic EnKF is the most common version, and we begin our below presentation
of the EnKF by focusing on this method.

Consider first a linear-Gaussian state space model as introduced in the previous section.
Under this linear-Gaussian model, it follows from the Kalman filter recursions that the current
forecast, or prior, model p(x) is a Gaussian distribution, �n(x;�,�), with analytically tractable
mean � and analytically tractable covariance �. Furthermore, the current filtering, or posterior
model p(x|y) is a Gaussian distribution, �n(x; ��, ��), with mean �� and covariance �� analytically
available from the Kalman filter update equations as

�� = � + K(y � H�)

and

�� = (I � KH)�,

respectively, where K = �H�(H�H� + R)�1 is the Kalman gain. The stochastic EnKF update
is based on the following fact: If x � �n(x;�,�) and � � �k(�; 0,R) are independent random
samples, then

�x = x + K(y � Hx + �) (3)

is a random sample from �n(x; ��, ��). The verification of this result is straightforward. Clearly,
under the assumption that the prior ensemble {x(1), … , x(M)} contains independent samples from
the Gaussian distribution �n(x;�,�), one theoretically valid way to obtain the updated ensemble
is to simulate �(i) � �k(�; 0,R) and replace (x, �) in (3) by (x(i), �(i)). The stochastic EnKF performs
an approximation to this update. Specifically, each prior sample x(i) is updated with a linear shift
identical to (3), but with the true Kalman gain K replaced with an empirical estimate �K inferred
from the prior ensemble,

�x(i) = x(i) + �K(y � Hx(i) + �(i)), i = 1, … ,M. (4)

In the EnKF literature, each term Hx(i) � �(i) is typically referred to as a perturbed observation.
Under the linear-Gaussian assumptions, the update in (4) returns approximate samples from the
Gaussian posterior model �n(x; ��, ��). The update is in this case consistent in the sense that as the
ensemble size goes to infinity, the distribution of the updated samples converges to �n(x; ��, ��),
that is, the solution of the Kalman filter.

Although the EnKF update is based on linear-Gaussian assumptions about the underlying
model, it can still be applied in nonlinear, non-Gaussian situations. Naturally, bias is in this case
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introduced, and the updated samples will not converge in distribution to the true posterior p(x|y).
However, since the update is a linear combination of the x(i)’s, non-Gaussian properties present
in the true prior and posterior models can, to some extent, be captured.

Deterministic EnKFs instead use a nonrandom linear transformation to update the ensemble.
In the following, let �� and �� denote estimates of � and �, respectively, obtained from the prior
ensemble. Furthermore, let ��� and ��� denote the mean and covariance, respectively, of the Gaus-
sian posterior model �n(x; ���, ���) corresponding to the Gaussian prior approximation �n(x; ��, ��).
Generally, the update equation of a square root EnKF can be written as

�x(i) = �� + �K(y � H ��) + B(x(i) � ��), i = 1, … ,M, (5)

where B � Rn�n is a solution to the quadratic matrix equation

B ��B� = (I � �KH) ��.

Note that B is not unique except in the univariate case. This gives rise to a variety of square root
algorithms, see Tippett et al. (2003). As such, several square root formulations have been proposed
in the literature, including, but not limited to, Anderson (2001), Bishop, Etherton, and Majum-
dar (2001), and Whitaker and Hamill (2002). The nonrandom square root EnKF update in (5)
ensures that the sample mean and sample covariance of the posterior ensemble equal ��� and ���
exactly. This is different from stochastic EnKFs where, under linear-Gaussian assumptions, the
sample mean and sample covariance of the posterior ensemble only equal ��� and ��� in expectation.

3 A GENERAL ENSEMBLE UPDATING FRAMEWORK

In this section, we present a general ensemble updating framework. Both the EnKF and the updat-
ing procedure for binary vectors proposed in this article can be viewed as special applications of
the framework.

3.1 The framework

For convenience, we first give a brief review of the ensemble updating problem. Starting out, we
have a prior ensemble, {x(1), … , x(M)}, which is assumed to contain independent realizations
from a prior model p(x). The prior model p(x) is typically intractable in this context, either compu-
tationally or analytically, or both. Given an observation y and a corresponding likelihood model
p(y|x) the goal is to update the prior ensemble according to Bayes’ rule in order to obtain a pos-
terior ensemble, {�x(1), … , �x(M)}, with independent realizations from the posterior model p(x|y).
However, carrying out this update exactly is generally unfeasible and approximate strategies are
required.

Conceptually, the proposed framework is quite simple. It involves three main steps as follows.
First, we replace the intractable model p(x|y)� p(x)p(y|x) with a simpler model f (x|y)� f (x)p(y|x).
Here, f (x) is an approximation to the prior p(x) and is constructed from the samples of the prior
ensemble, while f (x|y) is the corresponding posterior distribution which follows from Bayes’ rule.
In the remains of this article, we refer to the model f (x|y)� f (x)p(y|x) as the assumed model. Notice
that the likelihood model p(y|x) has not been replaced; for simplicity, we assume that this model
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already has a convenient form. Second, we put forward a distribution conditional on x and y,
denoted q(�x�x, y), obeying the following property:

f (�x�y) = ��X

f (x)q(�x�x, y)dx. (6)

Third, we update the prior ensemble by generating samples from this conditional distribution,

�x(i) � q(�x�x(i), y), i = 1, … ,M.

To understand the framework, note that under the assumption that the assumed model is cor-
rect, the prior samples have distribution f (x) and the updated samples should have distribution
f (x|y). If one is able to compute and sample from f (x|y), one straightforward way to obtain the
updated samples is to sample directly from f (x|y). However, since the assumed model is not really
the correct one, this is probably not the best way to proceed. The prior ensemble contains valuable
information about the true model p(x) that may not have been captured by the assumed model
f (x), and by straightforward simulation from f (x|y) this information is lost. To capture more infor-
mation from the prior ensemble, it is advantageous to simulate conditionally on the prior samples.
This is why we introduce the conditional distribution q(�x�x, y). The criterion in (6) ensures that
the marginal distribution of each updated sample �x(i) generated by q(�x�x, y) still is f (x|y) given that
the assumed model is correct. However, since the assumed model is not the correct model, the
marginal distribution of the updated samples is not f (x|y), but some other distribution, hopefully
one closer to the true posterior model p(x|y).

There are two especially important things about the proposed framework that must be taken
care of in a practical application. First, we need to select an assumed prior f (x) which, combined
with the likelihood model p(y|x), returns a tractable posterior f (x|y). Second, we need to construct
the updating distribution q(�x�x, y). Typically, there are many, or infinitely many, distributions
q(�x�x, y) which all fulfill the constraint in (6). A natural strategy for choosing a solution q(�x�x, y) is
then to define a criterion of optimality and set q(�x�x, y) equal to the corresponding optimal solu-
tion. Below, we present two special cases of the proposed framework. The first case corresponds
to the EnKF where f (x), p(y|x), and q(�x�x, y) are all Gaussian distributions. In the second case,
f (x) and p(y|x) constitute a hidden Markov model with binary states xi �{0,1}, and the updating
distribution q(�x�x, y) is a transition matrix.

3.2 The EnKF as a special case

The EnKF can be seen as a special case of the proposed framework. The assumed prior model
f (x) is in this case a Gaussian distribution. Combined with a linear-Gaussian likelihood model
p(y|x) the corresponding assumed posterior model f (x|y) is also Gaussian. The conditional distri-
bution q(�x�x, y) in the EnKF arises from the linear update, and takes a different form depending
on whether the filter is stochastic or deterministic. In stochastic EnKF, the linear update (4) yields
a Gaussian distribution q(�x�x, y) with mean equal to x + �K(y � Hx) and covariance equal to �KR �K�,
that is,

q(�x�x, y) = � (�x; x + �K(y � Hx), �KR �K�).
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In square root EnKF, the case is a bit different. Because the linear update in (5) is deterministic,
q(�x�x, y) has zero covariance and becomes a degenerate Gaussian distribution, or a delta function,
located at the value to which x is moved, that is

q(�x�x, y) = �(�x; �� + �K(y � H ��) + B(x � ��)).

As mentioned in Section 2.2, the matrix B in square root EnKF is not unique except in the uni-
variate case. This gives rise to a class of square root EnKF algorithms. When choosing a particular
filter, one could proceed as briefly suggested at the end of Section 3.1 and choose the matrix B so
that it is optimal with respect to some criterion.

3.3 The proposed method for binary vectors as a special case

Suppose x = (x1, … , xn) is a vector of n binary variables, xi �{0,1}, and that x is spatially arranged
along a line. A possible assumed prior model for x is then a first-order Markov chain,

f (x) = f (x1)f (x2�x1) · · · f (xn�xn�1).

Furthermore, suppose that for each variable xi there is a corresponding observation, yi, so that
y= (y1, … , yn), and suppose that the yi’s are conditionally independent given x, with yi depending
on x only through xi,

p(y�x) = p(y1�x1) · · · p(yn�xn).

This combination of f (x) and p(y|x) constitutes a hidden Markov model as introduced in Section 2.
It follows that the corresponding assumed posterior model f (x|y) is also a first-order Markov chain
for which all quantities of interest are possible to compute. Note that we can also handle likeli-
hood models p(y|x) where only a selection of the x�i s are observed, as long as the observed y�js are
conditionally independent and each yj is only connected to one variable xi of x.

Now, since �X = {0, 1}n is a discrete sample space, we rewrite the constraint in (6) as a sum,

f (�x�y) = �
x��X

f (x)q(�x�x, y). (7)

Because of the discrete context, q(�x�x, y) represents a transition matrix, not a density as in
EnKF. The size of this transition matrix is 2n � 2n since there are 2n possible configurations of
the state vector x. Brute force, the specification of q(�x�x, y) involves the specification of 2n(2n � 1)
parameters, and the constraint in (7) leads to a system of 2n � 1 linear equations in these parame-
ters. The number of unknowns (parameters) is larger than the number of equations, so there are
infinitely many valid solutions of q(�x�x, y). To choose a specific solution, we proceed as suggested
in Section 3.1 and seek a solution which is optimal with respect to a certain criterion; we consider
this in full detail in the next section.

Even for moderate n, dealing with the problem outlined above is too complicated. Therefore,
we need to settle with an approximate approach. Specifically, instead of seeking a solution q(�x�x, y)
which retains the whole Markov chain model f (x|y) cf. the constraint (7), we pursue a solution
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which only retains all the marginal distributions f (xi,xi+ 1|y) of f (x|y). For convenience, let

�(�x, x�y) = f (x)q(�x�x, y) (8)

denote the distribution of x and �x under the assumption that x is distributed according to f (x) and
�x is generated from q(�x�x, y). Mathematically, the requirement that q(�x�x, y) must retain all the
marginal distributions f (xi,xi+ 1|y) can then be expressed as

�(�xi, �xi+1�y) = f (�xi, �xi+1�y), i = 1, … ,n � 1. (9)

In the next section, we consider in full detail how to compute a distribution q(�x�x, y)which ful-
fills (9). In particular, we impose Markov properties on q(�x�x, y), formulate an optimality criterion
for q(�x�x, y), and use dynamic programming to construct the optimal solution.

4 ENSEMBLE UPDATING OF BINARY STATE VECTORS

This section continues on the situation introduced in Section 3.3. The main focus is on the con-
struction of the updating distribution q(�x�x, y). In Section 4.1 we formulate an optimality criterion
and enforce Markov properties on q(�x�x, y). Thereafter, in Section 4.2, we present a dynamic pro-
gramming (DP) algorithm for constructing the optimal solution of q(�x�x, y). Finally, in Section 4.3,
we take a closer look at some more technical aspects of the DP algorithm.

4.1 Optimality criterion

As mentioned in the previous section, there are infinitely many valid solutions of q(�x�x, y). For us,
however, it is sufficient with one solution, preferably an optimal solution, q�(�x�x, y), with respect to
some criterion. To specify an appropriate optimality criterion, we argue that in order for q(�x�x, y)
to retain information from the prior ensemble and capture important properties of the true prior
and posterior models, it should not make unnecessary changes to the prior samples. That is, as
we update each prior sample x(i), we should take new information from the incoming observation
y into account and, to a certain extent, push x(i) toward y, but the adjustment we make should be
minimal. We therefore propose to define the optimal solution q�(�x�x, y) as the one that maximizes
the expected number of variables, or components, of x that remain unchanged after the update to
�x. Mathematically, that is

q�(�x�x, y) = argmax
q(�x�x,y)

E�

� n�
i=1

1(xi = �xi)

�
, (10)

where the subscript � is used to indicate that the expectation is taken over the joint distribution
�(�x, x�y) in (8).

The problem of computing the optimal solution q�(�x�x, y) in (10) given the original constraint
in (7) can be interpreted as a discrete version of an optimal transport problem (Villani, 2009). Brute
force, the optimization problem is a linear programming problem since (10) defines an objective
function which is linear in q(�x�x, y) and (7) yields a set of equations that are linear in q(�x�x, y).
However, since the number of variables involved is so large, the problem is too demanding to cope
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F I G U R E 2 Graphical illustration of the updating distribution q(�x�x, y)

with. Therefore, we resort to an approximate approach. As mentioned in the previous section, we
replace the requirement (7) with the less strict requirement (9). Moreover, to reduce the number
of parameters involved, we enforce Markov properties on �(�x, x�y) as illustrated graphically in
Figure 2. Given this structure, q(�x�x, y) can be factorized as

q(�x�x, y) = q(�x1�x1, y)q(�x2��x1, x2, y)q(�x3��x2, x3, y) · · · q(�xn��xn�1, xn, y). (11)

Consequently, the number of parameters reduces from 2n(2n � 1) = �(4n) to 2 + 4(n � 1) =�(n), namely, two parameters for the first factor q(�x1�x1, y), and four parameters for each
q(�xk��xk�1, xk, y), k= 2, … , n. Another, and just as important, consequence of the Markov prop-
erties is that the optimal solution q�(�x�x, y) can be efficiently computed using dynamic program-
ming. Following (11), the optimal solution can be factorized as

q�(�x�x, y) = q�(�x1�x1, y)q�(�x2��x1, x2, y)q�(�x3��x2, x3, y) · · · q�(�xn��xn�1, xn, y). (12)

The next section presents a DP algorithm where the n factors in (12) are constructed recur-
sively.

4.2 Dynamic programming

Here, we describe a DP algorithm for constructing the optimal solution q�(�x�x, y) introduced in the
previous section. The algorithm involves a backward recursion and a forward recursion. The main
challenge is the backward recursion and the details therein are a bit technical. For simplicity, this
section provides an overall description of the algorithm, while the more technical aspects of the
backward recursion are considered separately in Section 4.3. Following the notation introduced in
(8), we use the notation �(�xi�j, xk�l�y), 1� i� j�n, 1� k� l�n, to denote the joint distribution of
�xi�j = (�xi, … , �xj) and xk:l = (xk, … , xl) under the assumption that x is distributed according to f (x)
and �x is simulated using q(�x�x, y). Furthermore, we introduce the following simplifying notations:

�k =

�
�(x1�y), k = 1,
�(�xk�1, xk�y), 2 � k � n,

qk =

�
q(�x1�x1, y), k = 1,
q(�xk��xk�1, xk, y), 2 � k � n.
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The backward recursion of the DP algorithm involves recursive computation of the quantities

max
qk�n

E�

� n�
i=k

1(xi = �xi)

�
(13)

for k=n,n� 1, … ,1. In words, (13) represents the largest possible contribution of the partial
expectation E�

��n
i=k 1(xi = �xi)

�
to the full expectation E�

��n
i=1 1(xi = �xi)

�
that can be obtained

for a fixed �(�x1�k�1, x1�k�y). The recursion uses the fact that, for k� 2, the Markov properties of
�(�x, x�y) yield

max
q(k�1)�n

E�

� n�
i=k�1

1(xi = �xi)

�
= max

q(k�1)�n
E�

�
1(xk�1 = �xk�1) +

n�
i=k

1(xi = �xi)

�

= max
qk�1

�
E�[1(xk�1 = �xk�1)] + max

qk�n
E�

� n�
i=k

1(xi = �xi)

��
(14)

suggesting that the full maximum value in (10) can be computed recursively by recursive
maximization over qn, qn� 1, … , q1.

An essential aspect of the backward recursion are the distributions �1, … , �n. At each step
k, we compute (13) as a function of �k. Essentially, each �k, k� 2, consists of four numbers, or
parameters, one for each possible configuration of the pair (�xk�1, xk). However, one parameter is
lost since �(�xk�1, xk�y) is a distribution so that the four numbers must sum to one. Another two
parameters are lost since we require that �(�xk�1, xk�y) retains the marginal distributions f (�xk�1�y)
and f (xk), that is, we require

�
�xk�1

�(�xk�1, xk�y) = f (xk)

and
�

xk

�(�xk�1, xk�y) = f (�xk�1�y).

Thereby only one parameter, which in the following we denote by tk, remains. This parameter tk is
free to vary within an interval [tmin

k , tmax
k ], where the bounds tmin

k and tmax
k are determined by the

probabilistic nature of �k. An example parametrization is to set tk = �(�xk�1 = 0, xk = 0�y), which
is the approach taken in this work. Below, the notation �tk (�xk�1, xk�y) will, when appropriate, be
used instead of �(�xk�1, xk�y), in order to express the dependence on tk more explicitly. The chosen
parameter tk leads to a parametrization of �k as follows,

�tk (�xk�1 = 0, xk = 0�y) = tk,
�tk (�xk�1 = 0, xk = 1�y) = f (�xk�1 = 0�y) � tk,
�tk (�xk�1 = 1, xk = 0�y) = f (xk = 0) � tk,
�tk (�xk�1 = 1, xk = 1�y) = 1 � f (xk = 0) � f (�xk�1 = 0�y) + tk,

and the bounds of the interval [tmin
k , tmax

k ] are given as

tmin
k = max {0, f (xk = 0) + f (xk�1 = 0�y) � 1}, (15)
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tmax
k = min {f (xk = 0), f (xk�1 = 0�y)}. (16)

For k= 1, the situation is a bit different, since there is only one variable, x1, involved in �1 =
�(x1�y). In fact, due to (8), we have �(x1�y) = f (x1). Consequently, t1 is not a parameter free to vary
within a certain range, but a fixed number. Here, we set t1 = f (x1 = 0).

Apart from the parametrization of �k, an essential feature of each �k, for k� 2, is its depen-
dence on �k�1 and qk� 1. This connection is due to the particular structure of �(�x, x�y). Generally,
for k� 3, we know that �k, or �(�xk�1, xk�y), can be computed by summing out the variables �xk�2
and xk� 1 from the joint distribution �(�xk�2, �xk�1, xk�1, xk�y),

�(�xk�1, xk�y) =
�
�xk�2

�
xk�1

�(�xk�2, �xk�1, xk�1, xk�y), (17)

and the distribution �(�xk�2, �xk�1, xk�1, xk�y) can be written in the particular form

�(�xk�2, �xk�1, xk�1, xk�y) = �(�xk�2, xk�1�y)q(�xk�1��xk�2, xk�1, y)f (xk�xk�1).

Similarly, for the special case k= 2, we can compute �(�x1, x2�y) by summing out x2 from
�(�x1, x1, x2�y),

�(�x1, x2�y) =
�

x1

�(�x1, x1, x2�y), (18)

where �(�x1, x1, x2�y) can be written as

�(�x1, x1, x2�y) = f (x1)q(�x1�x1, y)f (x2�x1). (19)

Inserting �xk�1 = 0 and xk = 0 in (17), and using that �k�1 is parametrized by tk� 1, we obtain a
formula for tk in terms of tk� 1 and qk� 1, k� 3. Likewise, inserting �x1 = 0 and x2 = 0 in (18), and
using that f (x1 = 0)= t1, we obtain a formula for t2 in terms of t1 and q1. To express the dependence
of tk on tk� 1 and qk� 1, k� 2, we will use the notation

tk = tk(tk�1, qk�1).

In some of the following equations, it will be necessary to explicitly express that (13) is a function
of tk. We therefore define

E�
k�n(tk) = max

qk�n
E�

� n�
i=k

1(xi = �xi)

�
.

Similarly, we need a notation for the argument of the maximum in (14) as a function of tk:

q�
tk
(�xk��xk�1, xk, y) = argmax

qk

�
E�[1(xk = �xk)] + max

q(k+1)�n
E�

� n�
i=k

1(xi = �xi)

��
, 2 � k � n,

q�
t1
(�x1�x1, y) = argmax

q1

�
E�[1(x1 = �x1)] + max

q2�n
E�

� n�
i=1

1(xi = �xi)

��
.
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If q�
tk
(�xk��xk�1, xk, y) and q�

t1
(�x1�x1, y) are discussed in a context where the specific values of the

involved variables are not important, simpler notations are preferable. In this regard, we also
introduce

q�
k(tk) =

�
q�

tk
(�xk��xk�1, xk, y), 2 � k � n,
q�

t1
(�x1�x1, y), k = 1.

Also, we need a notation for E�[1(xk = �xk)] indicating that this is a function of both tk and qk,

Ek(tk, qk) = E�[1(xk = �xk)].

The backward recursion computes E�
k�n(tk) recursively for k=n,n� 1, … ,1. Each step performs

a maximization over qk as a function of the parameter tk. The recursion is initialized by

E�
n(tn) = max

qn
[En(tn, qn)] (20)

and

q�
n(tn) = argmax

qn

[En(tn, qn)]]. (21)

Then, for k=n� 1,n� 2, … ,1, the recursion proceeds according to

E�
k�n(tk) = max

qk
[Ek(tk, qk) + E�

(k+1)�n(tk+1(tk, qk))], (22)

q�
k(tk) = argmax

qk

[Ek(tk, qk) + E�
(k+1)�n(tk+1(tk, qk))]. (23)

Note that at the final step of the backward recursion, where k= 1, we compute E�
1�n(t1) and

q�
1(t1). Now, since we have one specific value for t1, we also obtain one specific value for E�

1�n(t1)
and corresponding specific values for q�

1(t1). This completes the backward recursion.
After the backward recursion, the forward recursion can proceed. Here, we recursively com-

pute specific values for t2,t3, … , tn. Hence we recursively obtain the optimal values q�(�x2��x1, x2, y),
q�(�x3��x2, x3, y), … , q�(�xn��xn�1, xn, y) in (12). The forward recursion is initialized by

t�1 = t1

and

q�(�x1�x1, y) = q�
t�1
(�x1�x1, y).

Then, for k= 2,3, … , n, the recursion proceeds according to

t�k = tk(t�k�1, q�
k�1(t

�
k�1)),

q�(�xk��xk�1, xk, y) = q�
t�k
(�xk��xk�1, xk, y).

When the forward recursion terminates, the optimal solution q�(�x�x, y) is readily available.
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4.3 Parametric, piecewise linear programming

In this section, we look further into the backward recursion of the DP algorithm described in
Section 4.2. As we shall see, each step of the recursion involves the setup of an optimization
problem that we refer to as a parametric, piecewise linear program, namely, an optimization
problem with a piecewise linear objective function subject to a set of linear constraints, which we
solve as a function of the parameter tk. For simplicity of writing, we now introduce the following
notations:

qij
k = q(�xk = 0��xk�1 = i, xk = j, y), (24a)

qi
1 = q(�x1 = 0�x1 = i, y), (24b)

f ij
k = f (xk�1 = i, xk = j�y), (24c)

�ij
k (tk) = �tk (�xk�1 = i, xk = j�y), (24d)

q�ij
k (tk) = q�

tk
(�xk = 0��xk�1 = i, xk = j, y), (24e)

�i�j
k�1 = f (xk = i�xk�1 = j), (24f)

for i,j�{0,1} and k� 2.
Reconsider the initial step of the backward recursion. The goal of this step is to compute E�

n(tn)
in (20) and q�

n(tn) in (21). The objective function at this step, En(tn,qn), can be computed as

En(tn, qn) = �00
n (tn)q00

n + �01
n (tn)(1 � q01

n ) + �10
n (tn)q10

n + �11
n (tn)(1 � q11

n ). (25)

Since �01
n (tn) + �11

n (tn) = f (xn = 1), we can, after rearranging the terms, rewrite (25) as

En(tn, qn) = �00
n (tn)q00

n � �01
n (tn)q01

n + �10
n (tn)q10

n � �11
n (tn)q11

n + f (xn = 1). (26)

As a function of the parameter tn � [tmin
n , tmax

n ], we are interested in computing the solution
of qn which maximizes (26). In this regard one needs to take the constraint in (9) into account.
Specifically, the constraint entails at this step that

�(�xn�1, �xn�y) = f (�xn�1, �xn�y)

for all �xn�1, �xn � {0, 1}. Hence, using that �(�xn�1, �xn, xn�y) = �(�xn�1, xn�y)q(�xn��xn�1, xn, y), and that
�(�xn�1, �xn�y) follows by summing out xn from �(�xn�1, �xn, xn�y), we see that qn must fulfill

f (�xn�1, �xn�y) =
�

xn

�(�xn�1, xn�y)q(�xn��xn�1, xn, y).

This requirement leads to four linear equations of which two are linearly independent, one where
we set �xn�1 = 0 and one where we set �xn�1 = 1. Using the notations in (24a)–(24d), the two linearly
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independent equations can be written as

f 00
n = �00

n (tn)q00
n + �01

n (tn)q01
n , (27a)

f 10
n = �10

n (tn)q10
n + �11

n (tn)q11
n . (27b)

Additionally, we know that q00
n , q01

n , q10
n , and q11

n can only take values within the interval [0,1],

0 � qij
n � 1, for all i, j � {0, 1}. (28)

To summarize, we want, as a function of the parameter tn � [tmin
n , tmax

n ], to compute the solu-
tions of q00

n , q01
n , q10

n , and q11
n which maximize the function (26) subject to the constraints in (27)

and (28). For any fixed tn, this is a maximization problem where both the objective function and
all the constraints are linear in q00

n , q01
n , q10

n , and q11
n . As such, the maximization problem can, for

a given value of tn, be formulated as a linear program and solved accordingly. In Appendix A,
we show that the optimal solutions q�00

n (tn), q�01
n (tn), q�10

n (tn), and q�11
n (tn) are piecewise-defined

functions of tn and easy to compute analytically. Furthermore, we show that the correspond-
ing function E�

n(tn), obtained by inserting q�00
n (tn), q�01

n (tn), q�10
n (tn), and q�11

n (tn) into (26), is a
continuous piecewise linear (CPL) function of tn.

Next, consider the intermediate steps of the backward recursion, that is, k=n� 1,n� 2, … ,2.
At each such step, the aim is to compute E�

k�n(tk) in (22) and q�
k(tk) in (23). The objective function

at each step reads

Ek�n(tk, qk) = Ek(tk, qk) + E�
(k+1)�n(tk+1(tk, qk)), (29)

and this function is to be maximized with respect to qk. The first term, Ek(tk,qk), in (29) can be
computed as

Ek(tk, qk) = �00
k (tk)q00

k � �01
k (tk)q01

k + �10
k (tk)q10

k � �11
k (tk)q11

k + f (xk = 1). (30)

The second term, E�
(k+1)�n(tk+1(tk, qk)), is a CPL function of tk+ 1. For k=n� 1, this result is

immediate, since we know from the first iteration that E�
n(tn) is CPL. For k < n� 1, the result is

explained in Appendix A. Since tk+ 1(tk,qk) is linear in qk, it follows that E�
k+1(tk+1(tk, qk)) is CPL

in qk for any given tk � [tmin
k , tmax

k ]. Hence, the objective function in (29) is also CPL in qk for
any tk � [tmin

k , tmax
k ]. As in the first backward step, we have the following equality and inequality

constraints for qk:

f 00
k = �00

k (tk)q00
k + �01

k (tk)q01
k , (31a)

f 10
k = �10

k (tk)q10
k + �11

k (tk)q11
k (31b)

and

0 � q00
k , q01

k , q10
k , q11

k � 1. (32)

Additionally, we now need to incorporate constraints ensuring that qk and tk return a value
tk+ 1 within the interval [tmin

k+1 , tmax
k+1 ], where tmin

k+1 and tmax
k+1 are given by (15) and (16), respectively.
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That is, we require

tmin
k+1 � tk+1(tk, qk) � tmax

k+1 , (33)

where tk+ 1(tk,qk) follows from (17) as

tk+1(tk, qk) = �00
k (tk)q00

k �0�0
k + �01

k (tk)q01
k �0�1

k + �10
k (tk)q10

k �0�0
k + �11

k (tk)q11
k �0�1

k . (34)

Clearly, for any fixed tk � [tmin
k , tmax

k ], all the constraints (31)-(33) are linear in qk. However,
the objective function in (29) is only piecewise linear. As such, we are not faced with a standard
linear program, but a piecewise linear program. Piecewise linear programs are a well-studied
field of linear optimization and several techniques for solving such problems have been proposed
and studied, see for instance Fourer (1985, 1988, 1992). The most straightforward approach is to
solve the standard linear program corresponding to each line segment of the objective function
separately, and afterward compare the solutions and store the overall optimum. This technique
can be inefficient and is not recommended if the number of pieces of the objective function is
relatively large. However, in our case, the objective functions normally consist of only a few pieces.
For example, in the simulation experiment of Section 5.2, where a model q(�x�x, y) is constructed
as much as 1,000 times, the largest number of intervals observed is 10 and the average number of
intervals is 4.35. We therefore consider the straightforward approach as a convenient method for
solving the piecewise linear programs in our case, but we note that more elegant strategies exist
and may have their advantages. Further details of our solution are presented below.

First, some new notations needs to be introduced. For each 2� k�n, we let Mk denote the
number of pieces, or intervals, of E�

k�n(tk), and we let tB(j)
k , j= 1, … , Mk + 1, denote the cor-

responding breakpoints. Note that for the first and last breakpoints, we have tB(1)
k = tmin

k and
tB(Mk+1)
k = tmax

k . Furthermore, we let I(j)k = [tB(j)
k , tB(j+1)

k ] � [tmin
k , tmax

k ] denote interval number j, and�k = {1, 2, … ,Mk} the set of interval indices. For each j � �k, E�
k�n(tk) is defined by a linear

function, which we denote by E�(j)
k (tk), whose intercept and slope we denote by a(j)

k and b(j)
k ,

respectively.
Each linear piece, E�(j)

k+1(tk+1), of the piecewise linear function E�
(k+1)�n(tk+1) leads to a stan-

dard parametric linear program. Specifically, if E�
(k+1)�n(tk+1(tk, qk)) in (29) is replaced with

E�(j)
(k+1)�n(tk+1(tk, qk)), we obtain an objective function

E(j)
k�n(tk, qk) = Ek(tk, qk) + E�(j)

(k+1)�n(tk+1(tk, qk)), (35)

which is linear, not piecewise linear, as a function of qk. The corresponding constraints for qk
are given in (31) and (32), but instead of (33), we require that tk and qk return a value tk+ 1(tk,qk)
within the interval I(j)k+1,

tB(j)
k+1 � tk+1(tk, qk) � tB(j+1)

k+1 . (36)

Using (30), (34), and that E�(j)
k+1(tk+1) = a(j)

k+1 + b(j)
k+1tk+1, we can for each j � �k+1 rewrite (35) as

E(j)
k�n(tk, qk) = �00(j)

k (tk)q00
k + �01(j)

k (tk)q01
n�1 + �10(j)

k (tk)q10
k + �11(j)

k (tk)q11
k + �(j)

k , (37)
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where

�00(j)
k (tk) = (b(j)

k+1�
0�0
k + 1)�00

k (tk),

�01(j)
k (tk) = (b(j)

k+1�
0�1
k � 1)�01

k (tk),

�10(j)
k (tk) = (b(j)

k+1�
0�0
k + 1)�10

k (tk),

�11(j)
k (tk) = (b(j)

k+1�
0�1
k � 1)�11

k (tk),

and

�(j)
k = a(j)

k+1 + f (xk = 1).

To summarize, we obtain for each j � �k+1 a standard parametric linear program, with the objec-
tive function given in (37) and the constraints given in (31), (32), and (36). Solving the parametric
linear program corresponding to each j � �k+1, yields the following quantities:

�E(j)
k�n(tk) = max

qk
E(j)

k�n(tk, qk), (38)

�q(j)
k (tk) = argmax

qk

E(j)
k�n(tk, qk). (39)

The overall maximum value E�
k�n(tk) and corresponding optimal solution q�

k(tk) are then
available as

E�
k�n(tk) = Ej�k+1(tk)

k�n (tk)

and

q�
k(tk) = �q(j�k+1(tk))

k (tk)

where

j�k+1(tk) = argmax
j��k+1

�E(j)
k�n(tk).

As previously mentioned, and as shown in Appendix A, E�
k�n(tk) is a CPL function of tk. As such,

E�
k�n(tk) is fully specified by its breakpoints and the function values at those points. The break-

points of E�
k�n(tk) can be computed prior to the maximization. Thereby, we can obtain E�

k�n(tk)
for all values of tk quite efficiently since we only need to solve the parametric, piecewise linear
program at the breakpoints of E�

k�n(tk).
Finally, consider the last step of the backward recursion, k= 1. Here, the goal is to compute

q�
t1
(�x1�x1, y) and E�

1�n(t1). Essentially, this step proceeds in the same fashion as the intermediate
steps, but some technicalities are a bit different since there are only two variables involved in q1,
namely, q0

1 = q(�x1 = 0�x1 = 0, y) and q1
1 = q(�x1 = 0�x1 = 1, y). Also, t1 is not a parameter free to

vary within a certain range, but a fixed number, namely t1 = f (x1 = 0), meaning that we obtain spe-
cific values for q�

t1
(�x1�x1, y) and E�

1�n(t1). The function we want to maximize at this final backward
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step, with respect to q1, is

E1�n(t1, q1) = E1(t1, q1) + E�
2�n(t2(t1, q1)), (40)

where now, recalling that �(x1�y) = f (x1), the first term, E1(t1,q1), can be written as

E1(t1, q1) = t1q0
1 + (1 � t1)(1 � q1

1). (41)

Again, as in the intermediate steps, we have a piecewise linear, not a linear, objective function.
To determine the constraints for q1, we note that the requirement (9) for q(�x�x, y) entails that

f (�x1�y) = �(�x1�y).

Thereby, since t1 = f (x1 = 0) and using that f (�x1�y) = �
x1
�(�x1, x1�y) and �(�x1, x1�y) =

f (x1)q(�x1�x1, y), we see that the following requirement must be met by q(�x1�x1, y):

f (�x1�y) = t1q(�x1�x1 = 0, y) + (1 � t1)q(�x1�x1 = 1, y). (42)

Additionally, we have the inequality constraints

0 � q0
1, q1

1 � 1. (43)

So, we are faced with a piecewise linear program, with the piecewise linear objective function
(40) and the linear constraints (42) and (43). Again, we proceed by iterating through each linear
piece of E�

2�n(t2(t1, q1)), solving the standard linear program corresponding to each piece sepa-
rately. That is, for each j � �2, we replace E�

2�n(t2(t1, q1)) in (40) by E�(j)
2�n(t2(t1, q1)) and consider

instead the objective function

E(j)
1�n(t1, q1) = E1(t1, q1) + E�(j)

2�n(t2(t1, q1)), (44)

which is linear, not piecewise linear, as a function of q1. As we did for each subproblem j � �k+1
in every intermediate backward iteration, we must for each subproblem j � �2 incorporate the
inequality constraints

tB(j)
2 � t2(t1, q1) � tB(j+1)

2 , (45)

where now t2(t1,q1) follows from (18) and (19) as

t2(t1, q1) = t1q0
1�

0�0
1 + (1 � t1)q1

1�
0�1
1 . (46)

Using (41), (46), and that E�(j)
2�n(t2) = a(j)

2 + b(j)
2 t2, we can rewrite the function in (44) as

E(j)
1�n(t1, q1) = �0(j)

1 (t1)q0
1 + �1(j)

1 (t1)q1
1 + �(j)

1 (t1), (47)

where

�0(j)
1 (t1) = t1(1 + b(j)

2 �0�0
1 ),
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�1(j)
1 (t1) = (1 � t1)(1 + b(j)

2 �0�1
1 ),

�(j)
1 (t1) = 1 � t1 + a(j)

2 .

To summarize, we obtain for each j � �2 a standard linear program, where the aim is to maximize
the objective function (47) with respect to q1 subject to the constraints (42), (43), and (45). This
program is solved for t1 = f (x1 = 0). Analogously to (38) and (39), let

�E(j)
1�n(t1) = max

q1
E(j)

1�n(t1, q1),

�q(j)
1 (t1) = argmax

q1

E(j)
1�n(t1, q1).

Ultimately, we obtain

E�
1�n(t1) = �E(j�2)

1�n(t1)

and

q�
1(t1) = �q(j�2)

1 (t1)

where

j�2 = argmax
j��2

[ �E(j)
1�n(t1)].

5 NUMERICAL EXPERIMENTS

In this section, we demonstrate the proposed ensemble updating method for binary vectors in
two simulation experiments. In Section 5.1, we present a toy example where the assumed prior
f (x) is a given stationary Markov chain of length n= 4. Here, we focus on the construction of
q(�x�x, y) for this assumed prior model, not on the application of it in an ensemble-based context.
In Section 5.2, we consider a higher dimensional and ensemble-based example, inspired by the
movement, or flow, of water and oil in a petroleum reservoir.

5.1 Toy example

Suppose the assumed prior f (x) is a Markov chain of length n= 4 with homogenous transi-
tion probabilities f (xk = 0|xk� 1 = 0)= 0.7 and f (xk = 1|xk� 1 = 1)= 0.8 for k� 2, and initial dis-
tribution f (x1) equal to the associated limiting distribution. The Markov chain f (x) is then a
stationary chain with marginal probabilities f (xk = 0)= 0.40, f (xk = 1)= 0.60 for each k= 1,2,3,4.
Furthermore, suppose every factor p(yi|xi) of the likelihood model p(y|x) is a Gaussian dis-
tribution with mean xi and standard deviation � = 2, and consider the observation vector
y= (� 0.681,� 1.585,0.007,3.103). The corresponding posterior Markov chain model f (x|y) then
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T A B L E 1 Results for the optimal solution q�(�x�x, y) of the toy example in
Section 5.1, in (a) for the first factor q�(�x1�x1, y), and in (b) for the remaining factors
q�(�xk�xk, �xk�1, y), k= 2,3,4

(a) (b)

k 1 k 2 3 4
t�k 0.400000 t�k 0.305356 0.308676 0.281108

q�0
k (t�k) 1.000000 q�00

k (t�k) 1.000000 1.000000 0.853968

q�1
k (t�k) 0.211299 q�01

k (t�k) 0.481489 0.212926 0.000000

q�10
k (t�k) 1.000000 0.860986 0.546043

q�11
k (t�k) 0.097118 0.000000 0.000000

have the transition probabilities

f (x2 = 0�x1 = 0, y) = 0.7821, f (x2 = 1�x1 = 1, y) = 0.7223,
f (x3 = 0�x2 = 0, y) = 0.6600, f (x3 = 1�x2 = 1, y) = 0.8278,
f (x4 = 0�x3 = 0, y) = 0.5490, f (x4 = 1�x3 = 1, y) = 0.8846, (48)

and marginal distributions

f (x1 = 0�y) = 0.526779,
f (x2 = 0�y) = 0.543379,
f (x3 = 0�y) = 0.437279,
f (x4 = 0�y) = 0.304977. (49)

Given the prior model f (x) and the posterior model f (x|y), we can construct q�(�x�x, y) as
described in Section 4. For this simple example, this involves computing 14 quantities, namely,
q�0

1 (t�1) = q�(�x1 = 0�x1 = 0, y), q�1
1 (t�1) = q�(�x1 = 0�x1 = 1, y), q�ij

k (t�k) = q�(�xk = 0��xk�1 = i, xk = j, y),
for k= 2,3,4, and i,j= 0,1. As described in Section 4 the construction of q�(�x�x, y) involves a
backward recursion and a forward recursion. In the backward recursion, we compute E�

k�n(tk)
and q�00

k (tk), for k= 4,3,2. The results for these quantities are presented in Figure 3. In the for-
ward recursion, we start out computing the optimal solution of the first factor, q�(�x1�x1, y), and
then compute the remaining optimal parameter values t�2 , t�3 , and t�4 and corresponding optimal
solutions q�ij

k (t�k), k= 2,3,4, i,j= 0,1. The results from the forward recursion are given in Table 1.
Taking a closer look at the results for the optimal solution q�(�x�x, y), we see that many of

the probabilities q�ij
k (t�k) are either zero or one. This feature can be formally explained mathe-

matically (see Appendix A), but is also quite an intuitive result which has to do with how the
probabilities of the prior model f (x) differ from the probabilities of the posterior model f (x|y).
Often, if f (xk = 0) < f (xk = 0|y), we obtain q�00

k (t�k) = 1 and q�10
k (t�k) = 1, while q�01

k (t�k) and q�11
k (t�k)

take values somewhere between zero and one. Thus, if we have a prior sample x with xk = 0, the
update of x to �x is always such that �xk = 0. Specifically, in our toy example, this is the case for
k= 2, that is, we have f (x2 = 0) < f (x2 = 0|y), and obtained q�00

2 (t�2) = 1 and q�10
2 (t�2) = 1. Likewise,

if f (xk = 0) > f (xk = 0|y), we often obtain q�01
k (t�k) = 0 and q�11

k (t�k) = 0, while q�00
k (t�k) and q�10

k (t�k)
take values somewhere between zero and one. Thus, if we have a prior sample x with xk = 1, the
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F I G U R E 3 Results from the toy example of Section 5.1. (a–c) E�
k�4(tk) for k= 2,3, and 4, respectively, with

the breakpoints highlighted as black dots. (d–f) q�00
k (tk) (solid) and q�01

k (tk) (dashed) for k= 2,3, and 4,
respectively. (g–i) q�10

k (tk) (solid) and q�11
k (tk) (dashed) for k= 2,3, and 4, respectively. The vertical line in each

figure represents the optimal parameter value t�k

update of x to �x is always such that �xk = 1. In our toy example, this is the case for k= 4, that
is, we have f (x4 = 0) > f (x4 = 0|y), and obtained q�01

4 (t�4) = 0 and q�10
4 (t�4) = 0. However, the model

q(�x�x, y) is not only constructed so that the marginal probabilities in (49) are fulfilled, but also so
that the posterior transition probabilities in (48) are reproduced. In our toy example, we see, for
example, that for k= 3 we obtained q�10

3 (t�3) < 1 even if f (x3 = 0) < f (x3 = 0|y). Instead, we observe
another deterministic term, namely q�11

3 (t�3) = 0.

5.2 Ensemble-based, higher dimensional example with simulated
data

Until now, we have focused on the ensemble updating problem at a specific time step of
the filtering recursions. However, in a practical application, one is interested in the filtering
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problem as a whole and needs to cope with the ensemble updating problem sequentially for
t = 1,2, … , T. In this section we address this issue and investigate the application of the pro-
posed approach in this context. More specifically, we reconsider the situation with an unobserved
Markov process, {xt}T

t=1, and a corresponding time series of observations, {yt}T
t=1, and at every

time step t = 1, … , T, we construct a distribution q(�xt�xt, y1�t) for updating the prior ensem-
ble {xt(1),xt(2), … , xt(M)} to a posterior ensemble {�xt(1), �xt(2), … , �xt(M)}. Below, we first present
the experimental setup of our simulation example in Section 5.2.1, and thereafter study the
performance of the proposed updating approach in Sections 5.2.2 and 5.2.3.

5.2.1 Specification of simulation example

To construct a simulation example we must first define the {xt}T
t=1 Markov process. We set T = 100

and let xt = (xt
1, … , xt

n) be an n= 400 dimensional vector of binary variables xt
i � {0, 1} for each

t = 1, … , T. To simplify the specification of the transition probabilities p(xt|xt � 1) we make two
Markov assumptions. First, conditioned on xt � 1 we assume the elements in xt to be a Markov
chain so that

p(xt�xt�1) = p(xt
1�xt�1)

n�
i=2

p(xt
i �xt

i�1, xt�1).

The second Markov assumption we make is that

p(xt
i �xt

i�1, xt�1) = p(xt
i �xt

i�1, xt�1
i�1 , xt�1

i , xt�1
i+1 ),

for i= 2, … , n� 1, that is, the value in element i at time t only depends on the values in elements
i� 1, i, and i+ 1 at the previous time step. For i= 1 and i=n we make the corresponding Markov
assumptions

p(xt
1�xt�1

1 , xt�1
2 ) and p(xt

n�xt
n�1, xt�1

n�1, xt�1
n ).

To specify the xt Markov process we thereby need to specify p(xt
i �xt

i�1, xt�1
i�1 , xt�1

i , xt�1
i+1 ) for

t = 2, … , T and i= 2, … , n and the corresponding probabilities for t = 1 and for i= 1 and i=n.
To get a reasonable test for how our proposed ensemble updating procedure works we want an

{xt}T
t=1 process with a quite strong dependence between xt � 1 and xt, also when conditioning on

observed data. Moreover, conditioned on y1:t, the elements in xt should not be first-order Markov
so that the true model differ from the assumed Markov model defined in Section 3.3. In the fol-
lowing we first discuss the choice of p(xt

i �xt
i�1, xt�1

i�1 , xt�1
i , xt�1

i+1 ) for t = 2, … , T and i= 2, … , n and
thereafter specify how these are modified for t = 1 and for i= 1 and n. When specifying the prob-
abilities we are inspired by the process of how water comes through to an oil producing well in
a petroleum reservoir, but without claiming our model to be a very realistic model for this situa-
tion. Thereby t represents time and i the location in the well. We let xt

i = 0 represent the presence
of oil at location or node i at time t and correspondingly xt

i = 1 represents the presence of water.
In the start we assume oil is present in the whole well, but as time goes by more and more water is
present and at time t =T water has become the dominating fluid in the well. Whenever xt�1

i = 1
we therefore want xt

i = 1 with very high probability, especially if also xt
i�1 = 1. If xt�1

i = 0 we corre-
spondingly want a high probability for xt

i = 0 unless xt
i�1 = 1 and xt�1

i�1 = xt�1
i+1 = 1. Trying different
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T A B L E 2 Probabilities defining the true model p(xt|xt � 1) used to simulate a true chain
{xt}T

t=1 in the simulation experiment presented in Section 5.2

xt�1
i�1 xt�1

i xt�1
i+1 p(xt

i = 1�xt
i�1 = 1, xt�1

i�1�i+1) p(xt
i = 1�xt

i�1 = 0, xt�1
i�1�i+1)

0 0 0 .0100 .0050

1 0 0 .0400 .0100

0 1 0 .9999 .9800

1 1 0 .9999 .9900

0 0 1 .0400 .0400

1 0 1 .9800 .0400

0 1 1 .9999 .9800

1 1 1 .9999 .9800

F I G U R E 4 Results from the simulation experiment of Section 5.2: Grayscale images of (a) the unobserved
process {xt}t=1, (b) { �pc(xt

i �y1�t)}100
t=1, (c) { �pq(xt

i �y1�t)}100
t=1, and (d) { �pa(xt

i �y1�t)}100
t=1. The colors black and white

correspond to the values zero and one, respectively

sets of parameter values according to these rules we found that the values specified in Table 2 gave
realizations consistent with the requirements discussed above. One realization from this model is
shown in Figure 4a, where black and white represent 0 (oil) and 1 (water), respectively. The corre-
sponding probabilities when t = 1 and for i= 1 and n we simply define from the values in Table 2
by defining all values lying outside the {(i,t):i= 1, … , n;t = 1, … , T} lattice to be zero. In partic-
ular this implies that at time t = 0, which is outside the lattice, oil is present in the whole well. In
the following we consider the realization shown in Figure 4a to be the (unknown) true xt process.

The next step in specifying the simulation example is to specify an observational process. For
this we simply assume one scalar observation yt

i for each node i at each time t, and assume the
elements in yt = (yt

1, … , yt
n) to be conditionally independent given xt. Furthermore, we let yt

i be
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Gaussian with mean xt
i and variance �2. As we want the dependence between xt � 1 and xt to be

quite strong also when conditioning on the observations, we need to choose the variance �2 rea-
sonably large, so we set �2 = 22. Given the true xt process shown in Figure 4a we simulate yt

i values
from the specified Gaussian distribution, and in the following consider these values as observa-
tions. An image of these observations is not included, since the variance �2 is so high that such
an image is not very informative.

Pretending that the {xt}T
t=1 process is unknown and that we only have the observations

{yt}T
t=1 available, our aim with this simulation study is to evaluate how well our proposed

ensemble based filtering procedure is able to capture the properties of the correct filtering dis-
tributions p(xt|y1:t),t = 1, … , T. To do so we first need to evaluate the properties of the correct
filtering distributions. It is possible to get samples from p(xt|y1:t) by simulating from p(x1:t|y1:t)
with a Metropolis–Hastings algorithm, but to a very high computational cost as a separate
Metropolis–Hastings run must be performed for each value of t. Nevertheless, we do this to get the
optimal solution of the filtering problems to which we can compare the results of our proposed
ensemble based filtering procedure. In our algorithm for simulating from p(x1:t|y1:t) we combine
single site Gibbs updates of each element in x1:t with a one-block Metropolis–Hastings update
of all elements in x1:t. To get a reasonable acceptance rate for the one-block proposals we adopt
the approximation procedure introduced in Austad and Tjelmeland (2017) to obtain a partially
ordered Markov model (Cressie & Davidson, 1998) approximation to p(x1:t|y1:t), propose poten-
tial new values for x1:t from this approximate posterior, and accept or reject the proposed values
according to the usual Metropolis–Hastings acceptance probability. For each value of t we run
the Metropolis–Hastings algorithm for a large number of iterations and discard a burn-in period.
From the generated realizations we can then estimate the properties of p(xt|y1:t). In particular we
can estimate the marginal probabilities p(xt

i = 1�y1�t) as the fraction of realizations with xt
i = 1. We

denote these estimates of the correct filtering probabilities by �pc(xt
i = 1�y1�t). In Figure 4b all these

estimates are visualized as a grayscale image, where black and white correspond to �pc(xt
i = 1�y1�t)

equal to zero and one, respectively. It is important to note that Figure 4b is not showing the solu-
tion of the smoothing problem, but the solution of many filtering problems put together as one
image.

Given the simulated observations {yt}100
t=1 and the model specifications described above, the

proposed ensemble filtering method is run using the ensemble size M = 20. This is quite a small
ensemble size compared with n= 400. The reason for choosing the ensemble size this small is to
keep the simulation experiment as realistic as possible, and in real-world problems it is often nec-
essary to set M rather small for computational reasons. A problem, however, when the ensemble
size is this small compared with n, is that results may vary a lot from one run to another. To quan-
tify this between-run variability, we therefore rerun the proposed approach a total of B= 1,000
times, each time with a new initial ensemble of M = 20 realizations from the initial model p(x1).
At each time step t we thus achieve a total of MB= 20,000 posterior samples of the state vector xt

which can be used to construct an estimate, denoted �pq(xt�y1�t), for the true filtering distribution
p(xt|y1:t).

An important step of the proposed approach is the estimation of a first-order Markov chain
f (xt|y1:t � 1) at each time step t. Basically, this involves estimating an initial distribution f (xt

1�y1�t�1)
and n� 1 transition matrices f (xt

i+1�xt
i , y1�t�1), i= 1, … , n� 1. Since each component xt

i is a binary
variable, the initial distribution f (xt

1�y1�t�1) can be represented by one parameter, while the transi-
tion matrices f (xt

i+1�xt
i , y1�t�1) each require two parameters. In this example, we pursue a Bayesian

approach for estimating these parameters. Specifically, if we let �t represent a vector contain-
ing all the parameters required to specify the model f (xt|y1:t � 1), we put a prior on �t, f (�t), and
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then set the final estimator for �t equal to the mean of the corresponding posterior distribution
f (�t�xt,(1), … , xt,(M)). In the specification of f (�t) we assume that all the parameters in the vec-
tor �t are independent and that each parameter follows a Beta distribution �(�, �) with known
hyperparameters � = 2, � = 2.

To get a better understanding of the performance of the proposed approach, we also imple-
ment another, more naïve procedure to which our results can be compared. The naïve procedure
is essentially the same as the proposed approach but at each time step t we do not construct a
q(�xt�xt, y1�t) and instead update the prior ensemble by simulating independent samples from the
assumed Markov chain model f (xt|y1:t). Below, we refer to this method as the assumed model
approach. As with the proposed approach, we rerun the assumed model approach B= 1,000 times.
This yields a total of MB= 20,000 posterior samples of each state vector xt, t = 1, … , T, which can
be used to construct an estimate, denoted �pa(xt�y1�t), for the true filtering distribution p(xt|y1:t). By
comparing �pa(xt�y1�t) and �pq(xt�y1�t) with the MCMC estimate �pc(xt�y1�t), which essentially rep-
resents the true model p(xt|y1:t), we can get an understanding of how much we gain by executing
the proposed approach instead of the much simpler assumed model approach. In the next two
sections we investigate how well �pq(xt�y1�t) and �pa(xt�y1�t) capture marginal and joint properties
of the true distribution p(xt|y1:t) for which the MCMC estimate �pc(xt�y1�t) works as a reference.

Before we present our results, we mention that we also tried to implement the method of
Oliver et al. (2011). This method has the advantage of being relatively easy to implement and
slightly less computer-demanding than the proposed approach. However, we could not obtain
useful results with this method when the ensemble size was as small as M = 20. For simplicity, the
results are therefore not included in the next sections. We note, however, that the results obtained
with larger ensemble sizes were more promising. In our implementation of the algorithm, we
used a first-order Markov chain as the prior model, and to estimate this Markov chain we used
the Bayesian procedure described above, that is, the same procedure that was used to estimate the
first-order Markov chain at every time step in the two other updating methods. Perhaps using a
higher order Markov chain, which indeed is possible in the method of Oliver et al. (2011), could
help to improve the results for the small ensemble size M = 20. Moreover, we only applied a basic
EnKF in our implementation. It is possible that using a more advanced EnKF scheme which for
example incorporates inflation and/or localization could improve the results.

5.2.2 Evaluation of marginal distributions

In this section, we are interested in studying how well the proposed approach estimates the
marginal filtering distributions p(xt

i �y1�t), i= 1, … , n, t = 1, … , T. Following the notations intro-
duced above, we let �pq(xt

i �y1�t) and �pa(xt
i �y1�t) denote estimates of the marginal distribution

p(xt
i �y1�t) obtained with the proposed approach and the assumed model approach, respectively.

The values of �pq(xt
i = 1�y1�t) and �pa(xt

i = 1�y1�t) are in each case set equal to the mean of the
corresponding set of samples of xt

i . Figure 4c,d presents grayscale images of { �pq(xt
i = 1�y1�t)}100

t=1
and { �pa(xt

i = 1�y1�t)}100
t=1, respectively. From a visual inspection, the image of { �pq(xt

i = 1�y1�t)}100
t=1

is more gray and noisy than that of { �pc(xt
i = 1�y1�t)}100

t=1 shown in Figure 4b which contains more
tones closer to pure black and white. This is to be expected, since { �pc(xt

i �y1�t)}100
t=1 essentially is

the ideal solution, and we cannot expect an approximate method to perform this well. However,
the image of { �pa(xt

i = 1�y1�t)}100
t=1 is even more gray and noisy than that of { �pq(xt

i = 1�y1�t)}100
t=1, so

it seems that we do gain something by running the proposed approach instead of the simpler
assumed model approach. To investigate this further, we compute the Frobenius norms of the
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two matrices obtained by subtracting the true marginal probabilities �pc(xt
i = 1�y1�t) from the cor-

responding estimates �pq(xt
i = 1�y1�t) and �pa(xt

i = 1�y1�t). We then obtain the numbers 35.38 and
63.00, respectively. That is, the Frobenius norm of the difference between the true and the esti-
mated marginal filtering distributions is reduced to almost the half with the proposed approach
compared with the assumed model approach. This clearly suggests that we overall obtain much
better estimates of the marginal distributions p(xt

i �y1�t) with the proposed method than with the
assumed model approach.

To look further into the accuracy of the marginal estimates �pq(xt
i = 1�y1�t) and �pa(xt

i = 1�y1�t)
and to study their variability from run to run, we take a closer look at the results for some spe-
cific time steps. For each of these time steps we compute a 90% quantile interval for each of
the estimates �pq(xt

i = 1�y1�t) and �pa(xt
i = 1�y1�t), i= 1, … ,400. To compute the quantile intervals,

recall that the proposed approach and the assumed model approach were both rerun B= 1,000
times. This means that from each run b= 1, … , B of the proposed approach, we have an esti-
mate �p(b)

q (xt
i �y1�t) of p(xt

i �y1�t) for each i. Likewise, from each run b= 1, … , B of the assumed
model approach, we have an estimate �p(b)

a (xt
i �y1�t) of p(xt

i �y1�t) for each i. Hence, for each marginal
distribution p(xt

i �y1�t), we have B= 1,000 estimates { �p(b)
q (xt

i �y1�t)}B
b=1 obtained with the proposed

approach and B= 1,000 estimates { �p(b)
a (xt

i �y1�t)}B
b=1 obtained with the assumed model approach.

From these two sets of samples, corresponding quantile intervals for �pq(xt
i = 1�y1�t) and �pa(xt

i =
1�y1�t) can be constructed. Figure 5 presents the computed results for time step t = 60. For simplic-
ity, we do not include corresponding figures from the other time steps that we studied, since they
look very much the same as those obtained for time t = 60. According to Figure 5a,b, it seems that
the essentially true value �pc(x60

i �y1�60) typically lies within the 90% quantile interval correspond-
ing to �pq(x60

i �y1�60), but often closer to one of the interval boundaries rather than the estimate
�pq(x60

i �y1�60) itself. In particular, we note that �pc(x60
i �y1�60) often is close to either zero or one, while

�pq(x60
i �y1�60) is a bit higher than zero or a bit lower than one. This is not unreasonable, since we

have used approximations to construct �pq(x60
i �y1�60). Thereby, we loose information about the true

quantity �pc(x60
i �y1�60) and end up with estimated values closer to 0.5. From Figure 5c,d, we observe

that this is even more the case for the estimate �pa(x60
i �y1�60) whose quantile interval often not even

covers �pc(x60
i �y1�60).

5.2.3 Evaluation of joint distributions

In this section, we want to evaluate how well the proposed approach manages to capture prop-
erties about the joint distribution p(xt|y1:t). To do so, we select three specific time steps to study,
namely t = 60, t = 70, and t = 80. For each of these steps, we perform two tests on our samples,
both concerning a feature we refer to as contact between a pair of nodes of xt. Consider two com-
ponents xt

i and xt
j of xt at a given time step t. Given that xt

i is equal to one, that is, xt
i = 1, we say

that there is contact between node i and node j in xt if all components of xt between and includ-
ing node i and node j are equal to one. That is, there is contact between node i and j, given that xt

i
is equal to one, if the function

�ij(xt) =

�
1(xt

j = 1 � xt
j+1 � … � xt

i = 1), if j � i,
1(xt

i = 1 � xt
i+1 � … � xt

j = 1), if j > i,

is equal to one.
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F I G U R E 5 Results obtained at time step t = 60 in the numerical experiment of Section 5.2. (a,b) Marginal
estimates �pq(xt

i = 1�y1�t) (dashed) and corresponding 90% quantile intervals (dotted), in (a) from i= 1 to i= 200,
and in (b) from i= 201 to i= 400. (c,d) Corresponding results for �pa(xt

i = 1�y1�t). The solid line in each plot
represent the MCMC estimate �pc(xt

i �y1�t)

Keeping i fixed, we are in our first test interested in studying the probability that there is con-
tact between node i and node j for various values of j, given that xt

i is equal to one. Mathematically,
that means we are interested in

pt(i, j) = Prob(�ij(xt) = 1�xt
i = 1, y1�t). (50)

It is most informative to study (50) for a node i whose corresponding component xt
i has a high

probability of being equal to one. Therefore, we concentrate on estimating (50) for three specific
choices of i, each corresponding to a component xt

i with a relatively high probability of being equal
to one. According to the grayscale images in Figure 4 this appears to be the case for the three
nodes i= 115, i= 210, and i= 290 at all three time steps t = 60, t = 70, and t = 80. For each i and t,
we can then use our three sets of samples of xt to obtain three different estimates of (50) for all
j. Following previous notations, we let �pt

c(i, j) denote the MCMC estimate of pt(i,j), while �pt
q(i, j)

and �pt
a(i, j) denote the estimates obtained with the proposed approach and the assumed model
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F I G U R E 6 Results from the numerical experiment of Section 5.2. The graphs present �pt
c(i, j) (solid), �pq(i, j)

(dashed), and �pa(i, j) (dotted) for the three components i= 115, i= 210, and i= 290 at time steps t = 60 (left
column), t = 70 (middle column), and t = 80 (right column)

approach, respectively. Figure 6 presents the computed results. Comparing the curves represent-
ing the estimates �pt

c(i, j), �pt
q(i, j), and �pt

a(i, j), we observe that �pt
q(i, j) and �pt

a(i, j) typically decrease
to zero for increasing values of j quicker than �pt

c(i, j) does. However, we see that �pt
a(i, j) decreases

considerably faster than �pt
q(i, j). This makes sense, since the posterior samples used to construct

the estimate �pt
a(i, j) are drawn independently from the assumed model f (xt|y1:t), not taking the

state of the prior samples into account.
In our second test, we focus on the total number of nodes an arbitrary node i with xt

i = 1 is in
contact with. We denote this quantity by Li(xt). Mathematically, Li(xt) can be written

Li(xt) = max
j�i

{j; �ij(xt) = 1} � min
j�i

{j; �ij(xt) = 1} + 1.

For each of the time steps t = 60, t = 70, and t = 80, we want to study the cumulative distribution
of Li(xt),

F(l) = Prob(Li(xt) � l�xt
i = 1), (51)

when randomizing over both i and xt, with i�unif{1,n} and xt � p(xt|y1:t). Again, we can use
our three sets of samples to construct three different estimates of (51). That is, we can construct
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F I G U R E 7 Results from the numerical experiment of Section 5.2. Estimates of F(l) = P(Li(xt) � l�xt
i = 1)

with i�unif{1,n} and xt � p(xt|y1:t). The graphs present �Fc(l) (solid), �Fq(l) (dashed), and �Fa(l) (dotted) at time
steps (a) t = 60, (b) t = 70, and (c) t = 80

�Fc(l) from the MCMC samples, �Fq(l) from the samples generated with the proposed approach,
and �Fa(l) from the samples generated with the assumed model approach. Figure 7 presents the
results. Here, we see that �Fa(l) is above �Fc(l) at all three time steps t = 60, 70, and 80, indicating
that Li(xt) typically is too small and that the assumed model approach underestimates the level
of contact between nodes. This makes sense and agrees with the behavior of �pt

a(i, j) discussed
above. According to Figure 7b,c, the estimate �Fq(l) obtained with the proposed approach appears
to do a better job since it is relatively close to �Fc(l). We note, however, that this is not the case
in Figure 7a; here, the curve for �Fq(l) is below �Fc(l), suggesting that Li(xt) typically is too high.
To investigate this further we also examined corresponding output from other time steps t. We
then observed that for smaller values of t, typically smaller than 60, the curve for �Fq(l) tends to
be below �Fc(l), while for larger values of t, it tends to be quite close to �Fc(l). This is in fact not
so unreasonable, since it is for higher values of t that the value one (i.e., water) is dominant in
xt. For smaller values of t, the value zero (i.e., oil) becomes more and more dominant, and the
length of one-valued chains is not supposed to be very high. Perhaps our optimality criterion of
maximizing the expected number of unchanged components in this case results in keeping too
much information from the prior samples.

6 CLOSING REMARKS

An approximate and ensemble-based method for solving the filtering problem is presented. The
method is particularly designed for binary state vectors and is based on a generalized view of the
well-known EnKF. In the EnKF, a Gaussian approximation f (x) to the true prior is constructed
which combined with a linear-Gaussian likelihood model yields a Gaussian approximation f (x|y)
to the true posterior. The prior ensemble is then updated with a linear shift such that the dis-
tribution of each updated sample is equal to f (x|y) provided that the distribution of the prior
samples is equal to f (x). In the proposed approach for binary vectors we instead choose f (x) as a
first-order Markov chain. Combined with a particular likelihood model, a corresponding posterior
Markov chain f (x|y) can be computed. To update the prior samples, we construct a distribution
q(�x�x, y) and simulate the updated samples from this distribution. Similarly to the EnKF, we want
to construct q(�x�x, y) so that the updated samples are distributed according to f (x|y) given that
the prior samples are distributed according to f (x). However, constructing such a q(�x�x, y) differ-
ent from f (x|y) itself is generally too intricate and we therefore consider an approximate solution.
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Specifically, instead of requiring that q(�x�x, y) retains the Markov chain model f (x|y) exactly, we
require only that it retains all the marginal distributions f (xi,xi+ 1|y), i= 1, … n� 1. Based on the
optimality criterion of maximizing the expected number of unchanged components, an optimal
solution of q(�x�x, y) is computed with dynamic programming techniques. According to the results
from a simulation experiment, the performance of the proposed updating method is promising.

The focus of this article is on binary state vectors with a one-dimensional spatial arrange-
ment. Clearly, this is a simple situation with limited practical interest since most real problems
involve at least two spatial dimensions and multiple classes for the state variables. Nevertheless,
we consider the work of this article as a first step toward a more advanced method, and in the
future we would like to explore possible extensions of the proposed method. Conceptually, most
of the material presented in the article can easily be generalized to more complicated situations.
Computationally, however, it is more challenging. A generalization of the material in Sections 3
and 4 to a similar situation with more than two possible classes, involves a growing number of
free parameters in the construction of each factor q(�xk��xk�1, xk, y). Specifically, in the case of three
classes there will be four parameters involved, while in the case of four classes there will be nine
parameters involved. We believe, however, that it is possible to cope with a situation with more
than one free parameter via an iterative procedure. Specifically, one can start with some initial
values for each of the free parameters and thereafter iteratively optimize with respect to one of
the parameters at a time, keeping the other parameters fixed. By iterating until convergence we
thereby obtain the optimal solution. How many parameters we are able to deal with using this
strategy will depend on how fast convergence is reached and, of course, how much computation
time one is willing to use.

Another possible extension of our method is to pursue a higher order Markov chain for the
assumed prior model f (x). If this is possible, a further generalization to two spatial dimensions
may be possible by choosing a Markov mesh model (Abend, Harley, & Kanal, 1965) for f (x). Being
able to cope with higher order Markov models will also allow the use of more complicated likeli-
hood models where, for example, each observation is a function of several xi’s. However, similarly
to the case with multiple classes, the computational complexity grows rapidly with the order of
the Markov chain. The higher the order, the higher the number of free parameters there will be
in the construction of each factor q(�xk��xk�1, xk, y). Computationally we can again imagine to cope
with this situation by adopting an iterative optimization algorithm as discussed above.

An optimality criterion needs to be specified when constructing q(�x�x, y). In our work we
choose to define the optimal solution as the one that maximizes the expected number of equal
components. To us this seems like an intuitively reasonable criterion, since we want to retain as
much information as possible from the prior samples. However, there may be other criteria that
are more suitable and which might improve the performance of our procedure. What optimality
criterion that gives the best results may even depend on how the true and assumed distributions
differ. One may therefore imagine to construct a procedure which at each time t use the prior
samples to estimate, or select, the best optimality criterion within a specified class.

In the future, we would also like to investigate more thoroughly the EnKF and its part within
the proposed ensemble updating framework. In the present article, we impose an optimality crite-
rion for the updating of a binary state vector, but do not focus on appropriate optimality conditions
in the EnKF. For the square root filter, the matrix B in the linear update (5) is not unique except
in the univariate case, which gives rise to a class of square root algorithms. It would be interesting
to investigate the solution of B under different optimality conditions. One possible criterion is a
continuous equivalent to the optimality criterion considered in the binary case, namely, to mini-
mize the expected change between a prior and posterior state vector. For the stochastic EnKF, the
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situation is different. Here, there is no flexibility and the filter is already optimal in some sense.
It is, however, not straightforward to understand specifically what the corresponding optimality
criterion is.
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APPENDIX A

This appendix provides an informal proof of that E�
k�n(tk), 2� k�n, is continuous piecewise linear

(CPL). Every iteration of the backward recursion, except the first, relies on this result. The proof
is an induction proof and consists of two main steps. First, in Section A.1, we consider the first
step of the backward recursion and prove that E�

n(tn) is CPL. This corresponds to the “base case”
of our induction proof. Next, in Section A2, we consider the intermediate steps and prove that
E�

k�n(tk) is also CPL, given that E�
k+1�n(tk+1) is CPL, 2� k < n. This corresponds to the “inductive

step” of our induction proof. In Section A3 of the appendix, we explain how to determine the
breakpoints of E�

k�n(tk), 2� k < n, prior to solving the corresponding parametric, piecewise linear
program. This is crucial in order to avoid a numerical computation of E�

k�n(tk) on a grid of tk-values.
Throughout the appendix, we assume the reader is familiar with all notations introduced in the
previous sections of the article.

The first iteration
The parametric linear program of the first backward iteration can easily be computed analytically.
Because of the equality constraints in (27) we can reformulate the optimization problem in terms
of two variables instead of four. More specifically, we can choose either q00

n or q01
n from (27a),

together with either q10
n or q11

n from (27b), and then reformulate the problem in terms of the two
chosen variables. Here, we choose q00

n and q10
n . By rearranging terms in (27a) and (27b) we can

write

�01
n (tn)q01

n = f 00
n � �00

n (tn)q00
n , (A1)

�11
n (tn)q11

n = f 10
n � �10

n (tn)q10
n . (A2)

Now, if we replace the terms �01
n (tn)q01

n and �11
n (tn)q11

n in the objective function En(tn,qn) in
(26) with the right-hand side expressions in (A1) and (A2), respectively, we can rewrite En(tn,qn)
in terms of q00

n and q10
n as

En(tn, qn) = 2�00
n (tn)q00

n + 2�10
n (tn)q10

n + cn, (A3)

where cn is a constant given as

cn = f (xn = 1) � f (xn = 0�y).
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Furthermore, combining (A1) and (A2) with the inequality constraints (28) allows us to reformu-
late the constraints for q00

n and q10
n as

max
�

0, f 00
n � �01

n (tn)
�00

n (tn)

�
� q00

n � min
�

1, f 00
n

�00
n (tn)

�
, (A4)

max
�

0, f 10
n � �11

n (tn)
�10

n (tn)

�
� q10

n � min
�

1, f 10
n

�10
n (tn)

�
. (A5)

To summarize, we have now obtained a linear program, where we want to maximize the objec-
tive function in (A3) with respect to the two variables q00

n and q10
n , subject to the constraints (A4)

and (A5).
If for some fixed tn � [tmin

n , tmax
n ] we consider a coordinate system with q00

n along the first axis
and q10

n along the second axis, the constraints in (A4) and (A5) form a rectangular region of feasible
solutions, with two edges in the q00

n -direction and two edges in the q10
n -direction. The optimal

solution lies in a corner point of this region. Since �00
n (tn) and �10

n (tn) are nonnegative for any
tn � [tmin

n , tmax
n ], it is easily seen from (A3) that En(tn,qn) is maximized with respect to qn when

q00
n and q10

n are as large as possible. Consequently, the optimal solutions of q00
n and q10

n must equal
the upper bounds in (A4) and (A5), corresponding to the upper right corner of the rectangular
feasible region. That is,

q�00
n (tn) = min

�
1, f 00

n
�00

n (tn)

�
,

q�10
n (tn) = min

�
1, f 10

n
�10

n (tn)

�
.

Clearly, q�00
n (tn) and q�10

n (tn) are continuous and piecewise-defined functions of tn, since �00
n (tn)

and �10
n (tn) are linear functions of tn. Specifically, for tn-values such that �00

n (tn) > f 00
n , we get

q�00
n (tn) = f 00

n ��00
n (tn), while for tn-values such that �00

n (tn) � f 00
n , we get q�00

n (tn) = 1. Likewise,
for tn-values such that �10

n (tn) > f 10
n , we get q�10

n (tn) = f 10
n ��10

n (tn), while for tn-values such that
�10

n (tn) � f 10
n , we get q�10

n (tn) = 1.
Inserting the optimal solutions q�00

n (tn) and q�10
n (tn) into (A3), returns E�

n(tn). Doing this, it is
easily seen that E�

n(tn) is a CPL function of tn, consisting of maximally three pieces, each piece
having a slope equal to either �2, 0, or 2.

The intermediate iterations
At each intermediate iteration of the backward recursion, we are dealing with a parametric,
piecewise linear program, whose analytic solution is, generally, more intricate than that of the
parametric linear program of the first iteration. However, proving that the resulting function
E�

k�n(tk) is CPL, provided that E�
k+1�n(tk+1) is CPL, is not too complicated. Below, we present a proof

which can be summarized as follows. First, for each subproblem j � �k+1 corresponding to the
jth linear piece of the previous CPL function E�

k+1�n(tk+1), we explain that the corners (or possibly
edges) of the feasible region that may represent the optimal solution yield a CPL function in tk
when inserted into the objective function E(j)

k�n(tk, qk). Second, we argue that since the boundary
of the feasible region evolves in a continuous way as a function of tk and since also E(j)

k�n(tk, qk) is
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continuous in tk and qk, any infinitesimal change in tk can only induce an infinitesimal change in
the location of the optimal solution. Third, we conclude from these observations that �E(j)

k�n(tk) is
CPL for each subproblem j � �k+1. This means that the final function E�

k�n(tk) is the maximum of
multiple CPL functions. Therefore, E�

k�n(tk) itself must be piecewise linear. The additional fact that
E�

k�n(tk) is continuous is an immediate consequence of the continuity of the whole optimization
problem and the connection between the subproblems.

As in the first backward step, the equality constraints (31) for qk allow us to reformulate the
optimization problem in terms of the two variables q00

k and q10
k . Specifically, for each subproblem

j � �k+1, we can use the equality constraints to write the objective function E(j)
k�n(tk, qk) cf. (35) in

terms of q00
k and q10

k as

E(j)
k�n(tk, qk) = ��(j)k �00

k (tk)q00
k + ��(j)k �10

k (tk)q10
k + ��(j)

k , (A6)

where

��(j)k = 2 + b(j)
k+1(�

0�0
k � �0�1

k )

and

��(j)
k = f (xk = 1) � f (xk = 0�y) + a(j)

k+1 + b(j)
k+1(f

00
k + f 10

k )�0�1
k .

The corresponding constraints for q00
k and q10

k read

max
�

0,
f 00
k � �01

k (tk)
�00

k (tk)

�
� q00

k � min
�

1,
f 00
k

�00
k (tk)

�
, (A7)

max
�

0,
f 10
k � �11

k (tk)
�10

k (tk)

�
� q10

k � min
�

1,
f 10
k

�10
k (tk)

�
, (A8)

and

tB(j)
k+1 � (�0�0

k � �0�1
k )�00

k (tk)q00
k + (�0�0

k � �0�1
k )�10

k (tk)q10
k + (f 00

k + f 10
k )�0�1

k � tB(j+1)
k+1 . (A9)

If for some fixed tk � [tmin
k , tmax

k ] we consider a coordinate system with q00
k along the first axis

and q10
k along the second axis, we see that the feasible region formed by the constraints (A7)–(A9)

is a polygon with maximally six corners. The region is enclosed by two lines in the q00
k -direction

cf. (A7), two lines in the q10
k -direction cf. (A8), and two parallel lines with a negative slope of

��00
k (tk)��10

k (tk) cf. (A9). Figure 8 illustrates some of the possible shapes that the region can
take. Clearly, the optimal solution is located in a corner of the feasible region, possibly along a
whole edge.

To understand where along the boundary of the feasible region the optimal solution is located,
we note from (A6) that if ��(j)k is positive, then E(j)

k�n(tk, qk) is maximized when q00
k and q10

k are as
large as possible, while if ��(j)k is negative, then E(j)

k�n(tk, qk) is maximized when q00
k and q10

k are as
small as possible. For simplicity, we assume in the following that the feasible region is nonempty.
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F I G U R E 8 Illustrations of some possible shapes for the feasible regions of the linear programs at the
intermediate steps of the backward recursion. The polygons are drawn in a coordinate system with q00

k in the
horizontal direction and q10

k in the vertical direction

First, consider the case with ��(j)k positive. Then, we need to check whether or not the upper of the
two lines corresponding to the two inequality constraints in (A9) forms an edge of the feasible
region. If this line does not form an edge of the feasible region, see, for example, the shapes in
Figure 8a,c,e; we observe that the point (q00(� )

k (tk), q10(� )
k (tk)), where

q00(� )
k (tk) = min

�
1,

f 00
k

�00
k (tk)

�
, (A10)

q10(� )
k (tk) = min

�
1,

f 10
k

�10
k (tk)

�
, (A11)

is a corner. Moreover, this corner represents the optimal solution, since q00
k and q10

k jointly take
their maximal values in this point. Now, if we insert the functions in (A10) and (A11) into the
objective function E(j)

k�n(tk, qk), we obtain a CPL function in tk. Thereby, given that (A10) and (A11)
represent a corner of the feasible region for all values of tk, the resulting function �E(j)

k�n(tk) is CPL
in tk. If, on the other hand, the upper of the two lines of the constraints (A9) does represent an
edge of the feasible region, see for instance Figure 8b,d,f, g; then this whole edge represents the
optimal solution. That is, any point along the edge is optimal. This result is due to that the slope of
the objective function and the slope of the line for this edge are equal, from which it follows that
the objective function takes the same maximal value anywhere along the edge. Now, if we insert
(q00

k , q10
k )-coordinates located on the edge into the objective function E(j)

k�n(tk, qk), we get a function
which is constant, and hence CPL, in tk. Thereby, given that the edge is part of the feasible region
for all values of tk, the resulting function �E(j)

k�n(tk) is CPL in tk. Next, consider the case with ��(j)k
negative. Then, the situation is equivalent to the case with ��(j)k positive, but we need to consider
the lower part of the feasible region instead of the upper. That is, we need to check whether or not
the lower of the two lines corresponding to the constraints in (A9) forms an edge of the feasible
region. If this line does not represent an edge, see, for example, Figure 8a,d,f; the optimal solution
is found in the lower left corner point, (q00(�)

k (tk), q10(�)
k (tk)), where

q00(�)
k (tk) = max

�
0,

f 00
k � �01

k (tk)
�00

k (tk)

�
, (A12)

q10(�)
k (tk) = max

�
0,

f 10
k � �11

k (tk)
�10

k (tk)

�
. (A13)
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Again, if we insert the functions in (A12) and (A13) into the objective function E(j)
k�n(tk, qk),

we obtain a CPL function in tk. Thereby, given that (A12) and (A13) represent a corner of the
feasible region for all values of tk, the resulting function �E(j)

k�n(tk) is CPL in tk. If, on the other hand,
the lower of the two lines of the constraints (A9) does represent an edge of the feasible region,
then this edge also represents the optimal solution since the objective function takes the same
maximal value anywhere along this edge. Now, if we insert (q00

k , q10
k )-coordinates located on the

optimal edge into the objective function E(j)
k�n(tk, qk), we obtain a function which is constant, and

hence CPL, in tk. Thereby, given that the edge is part of the feasible region for all values of tk, the
resulting function �E(j)

k�n(tk) is CPL in tk.
Because the objective function, E(j)

k�n(tk, qk), as well as all the constraints (A7)–(A9) are contin-
uous in tk and qk, it follows that any infinitesimal change �tk in tk can only induce corresponding
infinitesimal changes in the shape of the feasible region and the value of the objective function.
Hence, the optimal solution at any tk-value t�k must be located in the same corner (or along the
same edge) as the optimal solution at the tk-value t�k + �tk. We note, however, that it is possible that
the infinitesimal change �tk may have added or deleted an edge from the region. In this case, it is
possible that a single corner represented the optimal solution at t�k, while a whole edge represents
the optimal solution at t�k + �tk, or vice versa. However, this will not cause any discontinuities in
the resulting function �E(j)

k�n(tk) because of the continuity of the optimization problem as a whole.
We have already showed that the coordinates describing the evolution of every potentially opti-
mal corner (or edge) as a function of tk return a CPL function in tk. Hence, we understand that
�E(j)

k�n(tk) must be CPL.
Finally, we obtain the function E�

k�n(tk) by taking the maximum of the �E(j)
k�n(tk)’s. Taking the

maximum of a set of continuous piecewise linear functions necessarily produces another piece-
wise linear, but not necessarily a continuous, function. However, it is obvious without a further
proof that E�

k�n(tk) must be continuous, since all functions in the whole optimization problem are
continuous. Thereby, we can conclude that E�

k�n(tk) is CPL.
According to numerical experiments, it seems that q�00

k (tk) and q�10
k (tk) are analytically given

as q�00
k (tk) = q00(� )

k (tk) and q�10
k (tk) = q10(� )

k (tk), just as in the first backward iteration. However,
we have not proved this result, since it is not really important for our application. Yet, we note
that if this result can be proved, the computation of q(�x�x, y) becomes particularly simple.

Computing the breakpoints of E�
k�n(tk)

This section concerns computation of the breakpoints of the CPL function E�
k�n(tk) at each inter-

mediate iteration 2� k < n of the backward recursion. The breakpoints of E�
k�n(tk) should be

computed prior to solving the corresponding parametric piecewise linear program in order to
avoid numerical computation of E�

k�n(tk) on a grid of tk-values. However, it can in some cases be
a bit cumbersome and technical to compute the explicit set of tk-values representing the break-
points of E�

k�n(tk). Fortunately, it is an easier task to compute a slightly larger set of tk-values
representing potential breakpoints of E�

k�n(tk), which includes all of the actual breakpoints. For
convenience, we denote in the following the set of actual breakpoints by Ak and the larger set
of potential breakpoints by A�

k � Ak. Having computed the set A�
k, we can solve our parametric

piecewise linear program for the tk-values in this set, and afterward go through the values of the
resulting function E�

k�n(tk) to check which of the elements in A�
k that represent actual breakpoints

that must be stored in Ak, and which points that can be omitted.
As explained in Section A1, the function E�

n(tn) of the first backward iteration consists of maxi-
mally three linear pieces. Hence it has maximally two breakpoints in addition to its two endpoints
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tmin
n and tmax

n . Since at each intermediate iteration we consider a more complicated parametric
piecewise linear program, additional breakpoints can occur in E�

k�n(tk), with the number of possi-
ble breakpoints for E�

k�n(tk) increasing with the number of breakpoints for E�
k+1�n(tk) computed at

the previous step of the recursion. To compute the set A�
k of potential breakpoints for E�

k�n(tk), we
need to check for which tk-values the corners of the rectangular region formed by the constraints
in (A7) and (A8) intersect with the lines of the constraints in (A9) for each j � �k+1. Each tk-value
that causes such an intersection must be included in the set A�

k. To understand why, consider a
subproblem j � �k+1, and assume ��(j)k is positive. Furthermore, suppose that for all tk � [tmin

k , tmax
k ]

the feasible region has a rectangular shape as shown in Figure 8a, meaning that the region is only
enclosed by the constraints (A7) and (A8), while the extra constraints in (A9) do not contribute
to the shape of the region. Then, from Section A2, we know that the optimal solution lies in the
upper right corner given by (A10) and (A11) for all tk. Moreover, we know that �E(j)

k�n(tk) is CPL
with breakpoints corresponding to the breakpoints of (A10) and (A11). Now, suppose instead that
after some specific value t�k the shape of the feasible region changes from a rectangular shape as in
Figure 8a to a pentagon shape as in Figure 8f. This means that the upper of the two lines formed
by the extra constraints in (A9) at the tk-value t�k intersects with the upper right corner point given
by (A10) and (A11), while for tk > t�k the constraints results in that an extra edge is added to the
feasible region. From Section A2, we then know that for tk > t�k this extra edge represents the
optimal solution and the value of the objective function remains constant as a function of tk > t�k.
Thereby, we understand that a breakpoint may occur in �E(j)

k�n(tk), and hence possibly in E�
k�n(tk),

at the tk-value t�k. If the feasible region were to evolve in a different way than the one considered
here, similar arguments can be formulated. In A�

k, we must also include the breakpoints of the
functions in (A10)–(A13), that is, the breakpoints of the functions describing the coordinates for
the lower left and upper right corner points of the feasible region when the constraints (A9) do
not contribute.
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Abstract Fluid flow simulations are commonly used to predict the fluid displacement
in subsurface reservoirs; however, model validation is challenging due to the lack of
direct measurements. Geophysical data can be used to monitor the displacement of the
fluid front. The updating of the fluid front location in two-phase flow problems based
on time-lapse geophysical data can be formulated as an inverse problem, specifically
a data assimilation problem, where the state is a vector of binary variables represent-
ing the fluid-facies and the observations are measurements of continuous geophysical
properties, such as electrical or elastic properties. In geosciences, many data assim-
ilation problems are solved using ensemble-based methods relying on the Kalman
filter approach. However, for discrete variables, such approaches cannot be applied
due to the Gaussian-linear assumption. An innovative approach for mixed discrete-
continuous problems based on ensemble updating of binary state vectors is presented
for fluid-facies prediction problems with time-lapse geophysical properties. The pro-
posed inversion method is demonstrated in a synthetic two-dimensional simulation
example where water is injected into a reservoir and hydrocarbon is produced. Resis-
tivity values obtained from controlled-source electromagnetic data are assumed to be
available at different times. According to the results, the proposed inversion method
is to a large extent able to reproduce the true underlying binary field of fluid-facies.
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1 Introduction

Monitoring the spatial distribution of fluids in the subsurface is a challenging model-
ing problem due to the uncertainty in rock and fluid properties. If the petrophysical
properties, (e.g., porosity and permeability) and the subsurface conditions (e.g., tem-
perature and pressure) are known, the fluid volumes and their spatial distribution can
be predicted by solving partial differential equations for fluid flow in porous media
(Bear 2013). However, in practical applications, the majority of the model parameters
cannot be measured directly and can only be approximated from indirect geophysi-
cal measurements (Aki and Richards 1980; Doyen 2007). Hence, the accuracy in the
model predictions depends on the quality of the data and the approximations in the
physical models. For these reasons, it is necessary to update the fluid models every
time new geophysical data are available.

One of the main challenges in monitoring fluid flow in the subsurface is obtain-
ing accurate and precise predictions of the fluid front at different times. Geophysical
surveys, acquired at the surface, provide measurements of physical properties whose
changes in time reflect variations in rock and fluid properties. Hence, the location of
the fluid front can be updated based on time-lapse geophysical data and fluid flow sim-
ulations. Examples of time-lapse geophysical surveys include seismic data that depend
on changes in elastic properties and electromagnetic data that depend on changes in
electrical properties.

Changes in fluid saturations modify the elastic and electrical response of reservoir
rocks. Therefore, unknown fluid flow saturations can be predicted as the solution of
an inverse problem where the data are geophysical observations and the governing
equations are geophysical models (Doyen et al. 2000). However, the resolution of
geophysical data measured at the surface is generally lower than the desired resolu-
tion of the fluid distribution model due to the bandlimited nature of the signal and
the relatively low signal-to-noise ratio. Therefore, prediction of the fluid saturations is
highly uncertain and saturation models can be inaccurate. In many applications, geo-
physical data can be used to interpret the fluid phase at a specific location; however,
it is generally difficult to accurately predict fluid percentages. For this reason, rather
than using continuous variables representing fluid volumes or fluid saturations, in this
work, the inverse problem is formulated in terms of a discrete variable. For multi-
phase flow problems, the discrete variable represents fluid-facies (or fluid units), such
as water-, air-, hydrocarbon-, or CO2-saturated rocks, depending on the application.
In particular, for two-phase flow problems, fluid-facies can be represented by a binary
variable. The proposed methodology is defined in a probabilistic setting; therefore,
the model property of interest is a discrete random variable.

In this work, the focus is on fluid properties that cause changes in the electrical
response measured by electromagnetic data, such as electrical resistivity tomography
(ERT) and controlled-source electromagnetic (CSEM). The goal of this work is to
predict fluid-facies in subsurface reservoirs based on estimated resistivity values from
time-lapse geophysical data. From a mathematical point of view, this is a data assimi-
lation problemwhere the unknown state is a discrete random variable (the fluid-facies)
and the observed data are geophysical measurements (the resistivity values). The resis-
tivity of fluid-saturated porous rocks is obtained from electromagnetic measurements.
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Here, it is assumed that resistivity values have been computed from CSEM data as a
result of a preliminary inversion process. In near surface geophysics applications, ERT
data are commonly acquired to investigate the seasonal water displacement (Flinchum
et al. 2018; Kotikian et al. 2019; Claes et al. 2020). In hydrocarbon exploration and car-
bon sequestration, CSEMdata are oftenmeasured to study the fluid spatial distribution
andmonitor the fluid front location (Weitemeyer et al. 2006; Lien andMannseth 2008;
Orange et al. 2009; Constable 2010; MacGregor 2012; Lien et al. 2014). The predic-
tion of resistivity from electromagnetic data is itself an inverse problem (Gasperikova
and Hoversten 2006; Buland and Kolbjørnsen 2012; MacGregor 2012; Bhuyian et al.
2012). Probabilistic and deterministic approaches have been proposed with different
model parameterizations, in terms of resistivity or saturation. Time-lapse electrical
resistivity inversions have been proposed in several applications (Berre et al. 2011;
Shahin et al. 2012; Lien et al. 2014; Tveit et al. 2015; Commer et al. 2016; Bergmann
et al. 2017).

Classification methods for litho-facies and fluid-facies based on geophysical data
have also been proposed. Several clustering analysis methods described in Hastie et al.
(2009) have been used for facies classification in geophysics inverse problems (Doyen
2007). Classificationmethods include supervised and unsupervised techniques (Hastie
et al. 2009; Martinez and Martinez 2015). Clustering and pattern recognition methods
have been used to classify geophysical measurements. However, the majority of these
applications focuses on static characterization problems, with a spatial correlation
component (i.e. facies are spatially correlated to mimic the geological continuity) but
without a temporal component (i.e. facies are predicted at a given time step, typically
before dynamic processes start).

The focus of this work is time-dependent fluid-facies characterization problems
where the spatial distribution of fluid-facies changes in time and is monitored using
time-lapse geophysical properties. Therefore, in this study a dynamic fluid-facies clas-
sification is presented, and it is applicable to geological dynamic problems where
one fluid (e.g., water) replaces another fluid (e.g., hydrocarbon) in rock formations.
Reservoir modeling with time-lapse data is a data assimilation problem where the
model variables are predicted and updated when new measurements become avail-
able. Several stochastic optimizationmethods have been proposed for data assimilation
problems, and during the last decade, ensemble-based methods have become the most
popular stochastic data assimilation method in geoscience applications.

Data assimilation can refer to a range of different inference procedures, of which
the two most common are filtering and smoothing. In the present article, the focus is
exclusively on the filtering problem. There are two main classes of ensemble-based
filtering methods: particle filters (Doucet et al. 2001) and ensemble Kalman filters
(EnKFs) (Evensen 2009). Hybrid versions of these filters have also been proposed.
Particle filters have the advantage of being exact in the sense that as the ensemble size
goes to infinity, the ensemble representations of the series of filtering distributions
converge to the corresponding correct series of distributions. Particle filters are also
very general as they do not rely on any specific assumptions about the distributions
of the model variables. Hence, particle filter methods are, in principle, applicable to
both discrete and continuous variables. In practice, however, particle filters are known
to collapse when the dimension of the state vector is large. The EnKF is a filtering
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method which relies on a linear-Gaussian assumption about the underlying model.
Despite the linear-Gaussian assumption, studies show that the EnKF provides good
results even in non-linear, non-Gaussian problems, and unlike the particle filter it also
scales well to problems with very high-dimensional state vectors. The EnKF has been
applied to geophysical data assimilation and history matching problems using seismic
and electromagnetic data (e.g. Tveit et al. 2015; Tveit et al. 2020). Recent publications
focus on the integration of fluid flow simulation and geophysical data assimilation for
the monitoring of the fluid front location (Trani et al. 2012; Leeuwenburgh and Arts
2014; Zhang and Leeuwenburgh 2017). However, the Gaussian approximations make
the EnKF applicable only in situations with continuous variables. For problems with
discrete variables, such as fluid-facies classification, the filter is not appropriate.

Ensemble filtering of discrete variables is a challenging problemwhich has received
fairly little attention in the literature compared to filtering of continuous variables.
Oliver et al. (2008) propose a strategy where the EnKF is used to update the discrete
variables. Specifically, they propose a two-step strategy where, in the first step, the
EnKF is used to update the discrete variables as if they were continuous, and in the
second step, the updated continuous-valued variables are mapped back to the original
discrete state space using the Viterbi algorithm (Viterbi 1967). Loe and Tjelmeland
(2020) present an alternative updating method for binary vectors in one-dimensional
space based on a generalized approach of the EnKF. Instead of using a linear-Gaussian
model assumption in the ensemble update, as in the EnKF, they construct an update
based on a hidden Markov model assumption. To capture as much information as
possible from the forecast ensemble, including potential non-Markov properties, the
expected number of components of the binary state vector that remain unchanged is
maximized.

This paper presents an ensemble-based data assimilation method for a problem
where the state vector at each time step is a vector of binary variables and the obser-
vations are continuous-valued estimated resistivity values. The binary variables of the
state vector represent two different fluid-facies, for example water and hydrocarbon or
CO2, and each binary variable is connected to a continuous-valued variable represent-
ing water saturation. High water saturation values indicate the presence of the water
facies, while low saturation values indicate the presence of the other fluid-facies. The
proposed ensemble filtering method alternates between a forecast step performed in
the continuous state space of the saturation variable and an update step performed in the
discrete state space of the fluid-facies variable, and between each step an appropriate
mapping from one state space to the other is performed. The update step is performed
according to the updating procedure for binary state vectors proposed in Loe and
Tjelmeland (2020). The proposed inversion method is demonstrated in a synthetic
two-dimensional example representing a two-phase flow problem with resistivity val-
ues available at different times. According to the results, the proposed procedure is to
a large extent able to reproduce the true underlying binary field of fluid-facies. Larger
ensemble sizes provide more accurate results, but the results obtained with smaller
ensemble sizes are also satisfactory.

The remains of this paper takes the following outline. First, Sect. 2 formulates the
inverse problem more formally and presents the proposed ensemble-based inversion
method. Next, Sect. 3 presents numerical results based on a two-dimensional synthetic
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model for a two-phase fluid flow problem. Finally, a few closing remarks are given in
Sect. 4.

2 Methodology

2.1 Inverse Problem Setting

The problem addressed in this work is the prediction of fluid-facies from time-lapse
resistivity values. Consider a time series {ki }Nt

i=1 where ki = (k1i , . . . , k
Nk
i ) represents

an Nk-dimensional vector of fluid-facies at a certain time ti , i = 1, . . . , Nt in a reser-
voir. Each component k j

i of ki can take a value in the set {0, 1, . . . , K − 1}, where K
is the number of different fluid-facies. Given a corresponding series of resistivity data
{di }i∈T, where di = (d1i , . . . , d

Nd
i ) ∈ RNd is an Nd -dimensional vector of resistivity

measurements recorded at time ti , and T ⊆ {1, . . . , Nt }, the goal is, for each time step
i = 1, . . . , Nt , to assess the distribution of fluid-facies ki in the reservoir. Notice from
the set T that an observation di may be available at every time step i = 1, . . . , Nt , or
just a subset of them.

In this work, each component k j
i of ki is assumed to be connected to a continuous

variable m j
i ∈ [swi , 1] representing water saturation, where swi is an irreducible

water saturation value; that is, the fraction of water that a porous rock can retain
due to non-connected porosity, low permeability and/or capillary forces. Here, the
irreducible water saturation value swi = 0.2 is assumed. Given {mi }Nt

i=1, the resistivity
data {di }i∈T are assumed to be conditionally independent, so that the vector di at time
ti depends only on mi according to

di = f (mi , ei ), (1)

where f is a known, possibly non-linear function, and the variable ei ∈ RNe is an
Ne-dimensional vector of measurement random errors assumed to follow a known
probability distribution. Similarly, the saturation mi+1 at time step i + 1, given all
the saturation values m1, . . .mi up to time step i , depends only on mi according to a
known forward model,

mi+1 = g(mi ), (2)

for i = 1, . . . , Nt , where g is the fluid flow simulation, generally given by a system
of partial differential equations solved by finite difference methods (Aziz 1979).

The goal of this work is, for each time step i = 1, . . . , Nt , to assess the filtering
distribution p(ki |d1:i ), where d1:i =

{
d j ; j ∈ T ∩ { j ≤ i}

}
, that is, the distribution

of fluid-facies ki given all the resistivity data up to time ti . Only K = 2 fluid-facies
are assumed in this work: facies 1 represents water and facies 0 represents another
fluid-facies. The relationship between the fluid-facies k j

i ∈ {0, 1} and the saturation
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value m j
i ∈ [swi , 1] is assumed as

k j
i =

{
0, if m j

i ∈ [swi , r ],
1, if m j

i ∈ (r, 1], (3)

where r ∈ (swi , 1) is some appropriate threshold. The value of the parameter r might
vary from one application to another. A reasonable choice is to set r = 0.5 such that
each fluid facies is named after the predominant fluid component. However, from a
reservoir management perspective, the focus is generally on areas with a high con-
centration of hydrocarbon. Therefore one could choose a lower value to identify the
regions that are economically valuable.

2.2 Forward Model

The prediction of the time-dependent electrical response of a reservoir model requires
a rock-physics model to link the petrophysical properties, such as porosity and fluid
saturations, to the resistivity of the saturated porous rocks and a fluid flow simula-
tion model to compute the saturation at a given time step, given the saturation at the
previous time step. In the proposed approach, porosity and permeability are assumed
to be estimated from pre-injection geophysical measurements (e.g., seismic data).
Alternatively, multiple geostatistical simulations of porosity and permeability can be
generated to repeatedly apply the methodology to an ensemble of realizations; how-
ever, the computational cost would linearly increase with the number of realizations.

A rock-physics model is a relationship to predict the geophysical response of sat-
urated porous rocks. Assuming that the porosity φ of the porous rock is known, the
resistivity R (the measured data d in the inverse problem) of the porous rock saturated
with water saturation sw can be predicted using Archie’s law (Mavko et al. 2009),

R = Rw

φasbw
, (4)

where Rw is the resistivity of formation water, a is the cementation exponent, and b
is the saturation exponent (Mavko et al. 2009). The parameters Rw, a and b in Eq.
(4) are assumed to be constant in time. Archie’s equation is valid for clean sandstone
formations. For formations with a small to medium clay volume, Archie’s equation
can be modified to account for the conductivity of the clay mineral as in Simandoux
and Poupon-Leveaux models (Mavko et al. 2009).

The dynamic model that governs two-phase fluid flow in porous media is based on
the constitutive equations of mass and momentum balance. The model is numerically
solved using the black-oil framework to predict the saturation and pressure at each
time step, given the initial rock and fluid parameters (Aziz 1979). In this work, the
MATLAB Reservoir Simulation Toolbox (Lie 2019) is adopted.
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2.3 Inversion Method

To solve the inverse problem presented above, an ensemble-based strategy where the
forecast step is performed in the continuous domain of mi and the update step is
performed in the discrete domain of ki is adopted. At each time ti , an ensemble of
fluid-facies fields

{
k(1)i , . . . , k(M)

i

}
represents the distribution of ki given the resis-

tivity data up to time ti−1, that is d1:i−1. Likewise an ensemble of saturation fields{
m(1)

i , . . . ,m(M)
i

}
represents the distribution of mi given the same resistivity data.

Correspondingly, the distributions of ki and mi given resistivity data up to time ti ,
that is d1:i , are also represented by ensembles, which are denoted by

{
k̃(1)i , . . . , k̃(M)

i

}

and
{
m̃(1)

i , . . . , m̃(M)
i

}
, respectively. The main steps of the inversion procedure are

summarized in Algorithm 1, while each step is studied in closer detail in the following
sections.

Initialize:
{
m(1)
1 , . . . ,m(M)

1

}
.

For i = 1, . . . , Nt do

1. Update:
(a) Map m(l)

i → k(l)i , l = 1, . . . ,M , using Eq. (3).

(b) Update k(l)i → k̃(l)i , l = 1, . . . ,M , as discussed in Sect. 2.3.1.
2. Forecast:

(a) Map k̃(l)i → m̃(l)
i , l = 1, . . . ,M , as discussed in Sect. 2.3.2.

(b) Generate m(l)
i+1 = g(m̃(l)

i ), l = 1, . . . ,M , using Eq. (2).

End
Algorithm 1: Inversion method

2.3.1 The Update Step

As summarized in Algorithm 1, the update step of the proposed approach involves two
parts. First, the ensemble

{
m(1)

i , . . . ,m(M)
i

}
is mapped to a corresponding ensemble

{
k(1)i , . . . , k(M)

i

}
using the assumed relation between ki and mi in Eq. (3). Second,

{
k(1)i , . . . , k(M)

i

}
is updated to take the new observation di at time ti into account. In

the following, the two parts of the update step are discussed in more detail.
The ensemble of saturation fields

{
m(1)

i , . . . ,m(M)
i

}
is mapped to a corresponding

ensemble of fluid-facies fields
{
k(1)i , . . . , k(M)

i

}
by simply applying Eq. (3) to each

element in each of the ensemble members, that is, set

k(l), ji =
{
0, if m(l), j

i ∈ [swi , r ],
1, if m(l), j

i ∈ (r, 1], (5)
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for each location j = 1, . . . , Nk for each ensemble member l = 1, . . . ,M .
To update the ensemble

{
k(1)i , . . . , k(M)

i

}
to take the new observation di into

account, the procedure proposed in Loe and Tjelmeland (2020) is adapted to the
situation considered in the present article. In the present article, it is assumed that
the fluid-facies ki at each time step i = 1, . . . , Nt is defined on a two-dimensional
lattice. However, the method in Loe and Tjelmeland (2020) is applicable only for
vectors with a one-dimensional spatial arrangement. Therefore, in order to apply their
procedure, the updating of each column in the lattice is done independently of the
others. Of course, this is not an ideal approach since it means that some of the spatial
correlation in the horizontal direction is lost; however, since the forecast step incorpo-
rates spatial correlation in both directions, one may still obtain satisfactory results. Let
C denote the number of columns in the lattice and let k(l)i,c and k̃(l)i,c for c = 1, . . . ,C

denote the values in column number c of k(l)i and k̃(l)i , respectively. The procedure
used for the updating of k(l)i,c, l = 1, . . . ,M is inspired by the updating procedure

used in the ensemble Kalman filter (EnKF), but as the elements of k(l)i,c are binary
variables, the updating procedure is based on a first order Markov chain instead of
a Gaussian distribution as in EnKF. Thus, the update of k(l)i,c, l = 1, . . . ,M starts by
estimating a (non-stationary) Markov chain for column c. Using a Bayesian model
for this estimation, the k(l)i,c, l = 1, . . . ,M are considered as independent realizations
from the assumed Markov chain, and independent uniform priors on the unit interval
are adopted for the initial distribution and for each transition probability. The maxi-
mum a posteriori estimators are then used to estimate the initial distribution and the
transition probabilities. The estimated Markov chain is used as a prior distribution in
a new Bayesian model and combined with an assumed likelihood model for the part
of di related to column c. It is here assumed that di contains one component d j

i for
each element k j

i in ki , that the components of di are conditionally independent given
ki , and that d

j
i depends only on ki through k

j
i . The likelihood for the part of di related

to column c can then be expressed as

p(di,c|ki,c) =
∏

j in column c

p(d j
i |k

j
i ). (6)

The likelihoodmodel p(d j
i |k

j
i ) is specified by first defining d

j
i to be given by replacing

the saturation value sw in the rock physics model in Eq. (4) by an auxiliary random
variable u j

i ∈ [swi , 1], that is,

d j
i = Rw

φa
(
u j
i

)b . (7)
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The distribution of the latent u j
i should depend on the fluid-facies value k j

i , and it is
assumed that

p0(u
j
i ) = p(u j

i |k
j
i = 0) =

{
c0e−λ0r when u j

i ∈ [swi , r ],
c0e−λ0u

j
i when u j

i ∈ (r, 1],
(8)

and

p1(u
j
i ) = p(u j

i |k
j
i = 1) =

{
c1eλ1u

j
i when u j

i ∈ [swi , r ],
c1eλ1r when u j

i ∈ (r, 1],
(9)

where c0 and c1 are normalizing constants, and λ0 and λ1 are parameters specifying the
level of noise in the resistivity measurements. Small values of λ0 and λ1 reflect noisy
resistivity data, while higher of λ0 and λ1 reflect less noisy resistivity data. Essentially,
the auxiliary variable u j

i can be interpreted as a noisy realisation of the saturation value
m j

i . The logic behind the choice of distributions in Eqs. (8) and (9) is that it should
be more likely to generate u j

i -values in the correct interval and less likely to generate
u j
i -values in the wrong interval; for example, given that k j

i = 0, it should be more
likely to generate u j

i -values in [swi , r ] than in (r, 1].Moreover, the distributions in Eqs.
(8) and (9) ensure that it becomes more and more unlikely to generate u j

i -values the
further you step away from the correct interval. The parameters λ0 and λ1 determine
how fast this decrease in probability occurs and thereby the spread in the u j

i -values.
The spread in the u j

i -values, in turn, controls the spread, or the level of noise, in the
corresponding d j

i -values obtained from Eq. (6). If λ0 and λ1 are relatively large, most
of the generated u j

i -values will be located within the correct intervals, which in turn
results in d j

i -values with relatively little noise. Likewise, if λ0 and λ1 are relatively
small, many of the generated u j

i -values will be located outside the correct intervals,
which results in a larger spread in the d j

i -values and hence more noise. The left plot
in Fig. 1 shows p0(u

j
i ) and p1(u

j
i ) when λ0 = 9.8, λ1 = 5 and r = 0.3. Combining

that d j
i is a transformation of u j

i as given in Eq. (7) and that the distribution for u j
i is

as specified in Eqs. (8) and (9), the likelihood model p(d j
i |k

j
i ) can be derived. When

a = b = 2 it can be shown that

p(d j
i |k

j
i = 0)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c0
√
Rw

2φ j

(
d j
i

)−3/2
exp

{

− λ0
φ j

√
Rw

d j
i

}

when d j
i ∈

(
Rw

(φ j)2
, Rw

r2(φ j)2

]
,

c0
√
Rw

2φ j

(
d j
i

)−3/2
exp {−λ0r} when d j

i ∈
(

Rw

r2(φ j)2
, Rw

s2w(φ j)2

]

(10)
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Fig. 1 Likelihood model: Plots of Eqs. (8) and (9) to the left, and Eqs. (10) and (11) to the right, when
φ = 0.15, Rw = 0.1, λ0 = 9.8 and λ1 = 5

and

p(d j
i |k

j
i = 1)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c1
√
Rw

2φ j

(
d j
i

)−3/2
exp {λ1r} when d j

i ∈
(

Rw

(φ j)2
, Rw

r2(φ j)2

]
,

c1
√
Rw

2φ j

(
d j
i

)−3/2
exp

{
λ1
φ j

√
Rw

d j
i

}

when d j
i ∈

(
Rw

r2(φ j)2
, Rw

s2w(φ j)2

]
.

(11)

The right plot in Fig. 1 shows p(d j
i |k

j
i = 0) and p(d j

i |k
j
i = 1) when λ0 = 9.8,

λ1 = 5, a = b = 2, Rw = 0.1, φ j = 0.15 and r = 0.3.
Combining the estimated priorMarkov chain for column cwith the likelihoodmodel

specified above, the correspondingposterior distribution also becomes anon-stationary
Markov chain. The properties of this posterior Markov chain are computationally easy
to compute, and in particular the bivariate distributions for every two neighbor nodes
in column c can be found. To update the prior ensemble members of column c, a
distribution q

(
k̃(l)i,c

∣∣∣ k(l)i,c

)
which preserves these bivariate distributions is constructed.

More specifically, under the assumption that the estimated prior Markov chain for
column c is correct, k(l)i,c is updated by simulating from a conditional distribution

q
(
k̃(l)i,c

∣∣∣ k(l)i,c

)
such that the bivariate distribution for every pair of neighbor nodes in

k̃(l)i,c is equal to the corresponding bivariate distribution of the posterior Markov chain
for column c.

The chosen distribution q
(
k̃(l)i,c

∣∣∣ k(l)i,c

)
for updating the prior ensemble members of

column c can be expressed as

q
(
k̃(l)i,c

∣∣∣ k(l)i,c

)
= q1

(
k̃(i)i,(1,c)

∣∣∣ k(l)i,(1,c)

) S∏

s=2

qs
(
k̃(l)i,(s,c)

∣∣∣ k̃(l)i,(s−1,c), k
(l)
i,(s,c)

)
, (12)

where S is the number of rows in the lattice used to represent ki , and k(l)i,(s,c) and

k̃(l)i,(s,c) are the s’th elements in column c of k(l)i and k̃(l)i , respectively. Thus, given
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the prior ensemble member k(l)i,c , the distribution of the posterior ensemble mem-

ber k̃(l)i,c is a Markov chain with initial distribution specified by q1(·|·) and transition
probabilities specified by qs(·|·, ·), s = 2, . . . , S. To specify the updating pro-
cedure completely it now remains to specify q1(·|·) and qs(·|·, ·), s = 2, . . . , S.
These are specified to accomplish two goals. First, considering k(l)i,c as a sample
from the estimated prior Markov chain, the marginal bivariate distributions for every
pair

(
k̃(l)i,(s−1,c), k̃

(l)
i,(s,c)

)
, s = 2, . . . , S should be identical to the corresponding

bivariate distribution in the posterior Markov chain discussed above. This require-
ment ensures that the updated fluid-facies values reflect the new resistivity data di .
However, with only this requirement many possible solutions exist for q1(·|·) and
qs(·|·, ·), s = 2, . . . , S, so there is room for formulating another goal. Still consider-
ing k(l)i,c as a sample from the estimated prior Markov chain, the second goal for the

updating of k(l)i,c is to maximise the expected number of elements in k(l)i,c that remain
unchanged; that is, the goal is to maximize

E

[
S∑

s=1

I
(
k(l)i,(s,c) = k̃(l)i,(s,c)

)]

, (13)

where I (A ) equals one if the eventA is true, and zero otherwise, and the expectation
is taken with respect to the joint distribution of k(l)i,c and k̃(l)i,c . This requirement makes
the updating robust with respect to the a priori Markov chain assumption made for
k(l)i,c, l = 1, . . . ,M . If the true distribution of k(l)i,c, l = 1, . . . ,M is not a Markov

chain, many of its non-Markov properties will prevail into k̃(l)i,c, l = 1, . . . ,M since it

is specified that as few changes as possible should be made to k(i)i,c in the generation

of k̃(l)i,c . Numerically, it turns out that in that the maximization of the expression in
Eq. (13) under the constraints for the specified bivariate distributions for the pairs(
k̃(l)i,(s−1,c), k̃

(l)
i,(s,c)

)
, s = 2, . . . , S can be efficiently computed using a combination

of dynamic programming and linear programming. The details of the optimization
algorithm are discussed in Loe and Tjelmeland (2020).

2.3.2 The Forecast Step

The forecast step of the proposed approach also involves two parts. First, the ensem-
ble

{
k̃(1)i , . . . , k̃(M)

i

}
is mapped to a corresponding ensemble

{
m̃(1)

i , . . . , m̃(M)
i

}
.

Second, the forward model in Eq. (2) is used to generate
{
m(1)

i+1, . . . ,m
(M)
i+1

}
from

{
m̃(1)

i , . . . , m̃(M)
i

}
. In the following, the two parts of the forecast step are discussed

in more detail.
To generate the saturation field m̃(l)

i based on a given fluid-facies field k̃(l)i , the
fluid-facies indicators in k̃(l)i are first used to define a lattice of distances, δ, from each
node j to a node with the opposite value of node j . More precisely, the values in δ are
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Fig. 2 To the left: True porosity and log permeability models, with the locations of the production and
injection wells marked P and I, respectively. To the right: Assumed porosity and log permeability models

defined sequentially as follows. First, δ j = 0 is set for all nodes j that has one or more
neighbor node j ′ so that k̃(l), ji ̸= k̃(l), j

′
i . Thereafter, δ j = 1 is set for all nodes j for

which δ j is still undefined and which has a neighbor node j ′ with δ j ′ = 0. Thereafter,
δ j = 2 is set for all nodes j for which δ j is still undefined and which has a neighbor
node j ′ with δ j ′ = 1. This process is continued until δ j is defined for all nodes j . The
next step is to scale the δ j values into the [0, 1] interval. Letting $ denote the scaled
field, the value for node j is defined as

$ j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if δ j > δmax and k̃(l), ji = 0,
1
2 − δ j+ 1

2
2δmax+1 if δ j ≤ δmax and k̃(l), ji = 0,

1
2 + δ j+ 1

2
2δmax+1 if δ j ≤ δmax and k̃(l), ji = 1,

1 if δ j > δmax and k̃(l), ji = 1,

(14)

where δmax > 0 is a parameter controlling the size of the transition zone from swi to
1. The larger the value of δmax , the larger the size of the transition zone. One should
choose a value for δmax based on what one believes is a realistic transition for the
application in consideration. In the numerical examples in Sect. 3, δmax = 8 is used.
The $ field defines a trend for the m̃(l)

i values. To add noise to this trend a slightly
modified version of the so-called smootherstep function is first used to transform the
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Fig. 3 Reference model: a Fluid-facies ki , b water saturation values mi and c log resistivity values di at
time steps (from left to right) i = 6, 12, 18 and 24

$ j values over to the real line,

ν j = 2Φ−1(0.99999)
[
6
(
$ j

)5
− 15

(
$ j

)4
+ 10

(
$ j

)3]

−Φ−1(0.99999)+ Φ−1(r), (15)

where Φ(·) is the cumulative distribution function of a standard normal distribution
and Φ−1(·) is the inverse of this function. The effect of Eq. (15) is that the value ν j

is in the left tail of a normal distribution with mean Φ−1(r) and unit variance when
$ j = 0, or in the right tail of the same distribution when $ j = 1, and with a smooth
transition between these two extremes. Moreover, the last term in Eq. (15) ensures
that ν j = Φ−1(r) when $ j = 0.5. A noisy version z of ν is then defined by setting

z j =
√
1 − α2(ν j − Φ−1(r))+ αε j , (16)
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Table 1 Experimental settings for the three case studies

# of measurements Measurement noise Likelihood model parameters

Case 1 24 (every 6 months) Low λ0 = 9.8, λ1 = 5.0

Case 2 4 (every 3 years) Low λ0 = 9.8, λ1 = 5.0

Case 3 4 (every 3 years) High λ0 = 7.8, λ1 = 2.5
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Fig. 4 Log resistivity observations di at time steps (from left to right) i = 6, 12, 18 and 24, in a for cases
1 and 2, and in b for case 3

where ε is aGaussian fieldwith zeromean, unit variance and an exponential correlation
function, and α > 0 is a parameter controlling the noise level. Finally, the saturation
field is defined by transforming the z field back to the (swi , 1) interval,

m̃(i), j
t = swi + (1 − swi )Φ

(
z j + Φ−1

(
r − swi

1 − swi

))
. (17)

The second part in the forecast step, to generate the ensemble
{
m(1)

i+1, . . . ,m
(M)
i+1

}

from the ensemble
{
m̃(1)

i , . . . , m̃(M)
i

}
, is simply done by using the forward model in

Eq. (2) for each ensemble member separately; that is, by setting

m(l)
i+1 = g

(
m̃(l)

i

)
(18)

for l = 1, . . . ,M .
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(b) M = 100
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Fig. 5 Results from case 1: Images of estimated marginal probabilities p(k ji = 1|d1:i ) at time steps (from
left to right) i = 6, i = 12, i = 18, and i = 24 using three different ensemble sizes

3 Application

The proposed inversion method is tested using a synthetic reservoir model. The model
consists of a two-dimensional reservoir, 25m× 25m,with constant thickness and four
main channels with high-porosity rocks surrounded by low-porosity rocks; see Fig. 2.
The fluid system includes two fluid phases: oil and water. Therefore, two fluid-facies
are defined: oil-saturated rocks (corresponding to the value 0) and water-saturated
rocks (corresponding to the value 1). The discretized reservoir is defined on a 128×128
grid, and the well configuration includes four injectors and six producers as shown
in Fig. 2. The oil production mechanism is based on water injection simulated using
the MATLAB Reservoir Simulation Toolbox (Lie 2019) for a time period of 12 years.
The 12 year time period is discretized into 24 equidistant time points t1, . . . , t24 such
that each step of the simulation involves propagating the system six months forward in
time. During the simulation, injection rates are kept constant at the injector locations,
and bottom hole pressure is kept constant at the producer locations. Initially, the entire
reservoir is filled with hydrocarbon with the irreducible water saturation value of
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Fig. 6 Results from case 2: Images of estimated marginal probabilities p(k ji = 1|d1:i ) at time steps (from
left to right) i = 6, i = 12, i = 18, and i = 24 using three different ensemble sizes

swi = 0.2. Based on a preliminary analysis, the threshold parameter r in Eq. (3) is set
to r = 0.3. Figure 3a, b show the fluid-facies ki and saturation valuesmi , respectively,
in the reservoir at the time steps i = 6, i = 12, i = 18 and i = 24; that is, after
t6 = 3, t12 = 6, t18 = 9 and t24 = 12 years of the simulation. Figure 3c shows
corresponding reference resistivity values (in log-scale); that is, the resistivity values
one obtains by inserting the true water saturation values into Archie’s law in Eq. (4).
Pretending that the fluid-facies and saturation values used to generate the plots in Fig. 3
are unknown, the goal of the simulation experiment is to estimate the fluid-facies field
at each time step based on noisy resistivity data. In this example, the resistivity data
di at time ti includes a two-dimensional map of resistivity measurements; specifically,
the dimensionality Nd of di is equal to the dimensionality Nk of ki (and mi ) so that
an observation d j

i is available for each variable k j
i of ki . Since a 128 × 128 grid is

considered, with a fluid-facies variable k j
i in every cell j , the dimensions Nk and Nd

are Nk = Nd = 128 · 128 = 16384.
The porosity and permeability models shown in Fig. 2 (left plots) are the true

porosity and permeability models of the reservoir. These were the values used to
generate the reference model shown in Fig. 3. Since porosity and permeability are
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(b) M = 100
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(c) M = 500

Fig. 7 Results from case 3: Images of estimated marginal probabilities p(k ji = 1|d1:i ) at time steps (from
left to right) i = 6, i = 12, i = 18, and i = 24 using three different ensemble sizes

generally not known, a reservoir model of assumed porosity and permeability models
is built to mimic the resolution of a reservoir model estimated from pre-production
seismic data. The assumed porosity and permeability models are shown in Fig. 2 (right
plots).

Three case studies are presented, differing in the frequencywithwhich the resistivity
measurements are collected and the amount of noise in the measurements; see Table 1.
The first case, referred to as case 1, represents an idealized situation where resistivity
measurements are recorded frequently and the degree of noise in the data is small.
Specifically, observations are assumed to be recorded every six months, or at every
time step i = 1, . . . , Nt . Hence the setT introduced in Sect. 2.1 isT = {1, 2, . . . , 24}.
Figure 4a shows the simulated resistivity measurements di (in log-scale) at the four
time steps i = 6, 12, 18 and 24 for case 1. The resistivity data were generated with
the likelihood model specified in Sect. 2, using the true fluid-facies shown in Fig. 3a
and the assumed porosity model shown to the right in Fig. 2, and with the parameters
λ0 and λ1 set to λ0 = 9.8 and λ1 = 5. These values for λ0 and λ1 represent optimistic
noise conditions. In the second case, referred to as case 2, the same data as in case 1 are
considered, but observations are assumed to be acquired only every three years of the
simulation period; that is, an observation is recorded after 3, 6, 9, and 12 years, or at
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Fig. 8 Results from case 1: Empirical standard deviations of { p̂MA,1(k
j
i = 1|d1:i )}10A=1 at time steps (from

left to right) i = 6, i = 12, i = 18 and i = 24 using three different ensemble sizes

the time steps i = 6, 12, 18 and 24. Hence the set T is in this case T = {6, 12, 18, 24},
and the likelihood parameters λ0 and λ1 are the same as in case 1. In the third case,
referred to as case 3, observations, as in case 2, are acquired only every 3 years, but
a different set of data with a much higher level of noise is considered. Hence this
case represents the most realistic of the three cases. Figure 4b shows the simulated
resistivity measurements for case 3. Similarly to the resistivity data for cases 1 and
2, the resistivity measurements for case 3 were generated using the likelihood model
specified in Sect. 2, but with the parameters λ0 and λ1 set to λ0 = 7.8 and λ1 = 2.5.
These parameter values represent realistic noise conditions.

For all three case studies the proposed inversion method is tested using three dif-
ferent ensemble sizes: M = 20, M = 100 and M = 500. The parameters δmax and
α in Eqs. (14) and (16) are set to δmax = 8 and α = 0.2. The ensembles were ini-
tialised by first introducing an initial field of fluid facies k0 for which it is assumed
that k j

0 = 0 for every cell j in the reservoir, and thereafter generate each m(l)
1 from

k0 as discussed in Sect. 2.3.2. To evaluate the results, an estimate p̂(k j
i = 1|d1:i ) for

each marginal probability p(k j
i = 1|d1:i ), j = 1, . . . , Nk , is computed; specifically,

each p(k j
i = 1|d1:i ) is estimated as the fraction of updated k j

i -samples equal to one.

123



Math Geosci (2021) 53:325–347 343

1000 2000 3000
X(meter)

3000

2000

1000Y
(m

et
er

)

1000 2000 3000
X(meter)

3000

2000

1000

1000 2000 3000
X(meter)

3000

2000

1000

1000 2000 3000
X(meter)

3000

2000

1000

0

0.05

0.1

0.15

S
td

. d
ev

ia
tio

n

(a) M = 20

1000 2000 3000
X(meter)

3000

2000

1000Y
(m

et
er

)

1000 2000 3000
X(meter)

3000

2000

1000

1000 2000 3000
X(meter)

3000

2000

1000

1000 2000 3000
X(meter)

3000

2000

1000

0

0.05

0.1

0.15

S
td

. d
ev

ia
tio

n

(b) M = 100

1000 2000 3000
X(meter)

3000

2000

1000Y
(m

et
er

)

1000 2000 3000
X(meter)

3000

2000

1000

1000 2000 3000
X(meter)

3000

2000

1000

1000 2000 3000
X(meter)

3000

2000

1000

0

0.05

0.1

0.15

S
td

. d
ev

ia
tio

n

(c) M = 500

Fig. 9 Results from case 2: Empirical standard deviations of { p̂MA,2(k
j
i = 1|d1:i )}10A=1 at time steps (from

left to right) i = 6, i = 12, i = 18 and i = 24 using three different ensemble sizes

Mathematically, that is

p̂(k j
i = 1|d1:i ) =

1
M

M∑

l=1

k̃ j,(l)
i . (19)

Figures 5, 6 and 7 present images of these estimated marginal probabilities for cases
1, 2 and 3, respectively. Comparison between the plots in Figs. 5 to 7 and the reference
ki -values in Fig. 3a shows that the proposed inversion method to a large extent has
captured the true underlying binary field of fluid-facies in all three cases, even when
using the small ensemble size M = 20. As expected, larger ensemble sizes provide
more accurate results, but the results obtained with M = 20 are also satisfactory.
However, a few short vertical lines have a tendency to appear in some of the figures,
especially in the results from case 3 in Fig. 7. This is an inevitable spatial effect due to
the columns of the grid being updated independently of each other in the conditioning
step of the inversion method. It is reasonable that the effect is more apparent in the
results from case 3 than in the results from cases 1 and 2, since the quality of the
geophysical data in case 3 is lower (i.e., noisier).
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Fig. 10 Results from case 3: Empirical standard deviations of { p̂MA,3(k
j
i = 1|d1:i )}10A=1 at time steps (from

left to right) i = 6, i = 12, i = 18 and i = 24 using three different ensemble sizes

To evaluate how sensitive the proposed inversion method is on the ensemble size
M , ten independent runs are performed for each of the ensemble sizes M = 20,
M = 100 andM = 500 in each of the three cases. Thereafter themarginal probabilities
p(k j

i = 1|d1:i ), j = 1, . . . , Nk are estimated cf. Eq. (19). Thereby, in each of the
three cases, ten different estimates p̂(k j

i = 1|d1:i ) of p(k j
i = 1|d1:i ) are obtained

for each ensemble size. In the following, let p̂MA,B(k
j
i |d1:i ) denote the estimate of

p(k j
i |d1:i ) obtained in run number A = 1, . . . , 10 of case number B = 1, 2, 3 when

using ensemble size M = 20, 100, 500. To evaluate the accuracy of the ten estimates
p̂M1,B(k

j
i |d1:i ), . . . , p̂M10,B(k

j
i |d1:i ) of p(k

j
i = 1|d1:i ) obtained in the ten runs of case B

whenusing ensemble sizeM , the standard deviation of these ten estimates is computed.
Results are shown in Figs. 8, 9 and 10 for cases 1, 2 and 3, respectively. Similarly
to the other results presented above, the results obtained with the higher ensemble
sizes M = 100 and M = 500 are overall smoother and less noisy than those obtained
with the rather small ensemble size M = 20. A general trend, however, for all three
ensemble sizes and all three cases, is that the standard deviations tend to be higher near
the boundary of the fluid front, which is reasonable, since this is the most uncertain
areawhere changes occur.Moreover, the results from case 3 in Fig. 10 are considerably
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noisier than the results from cases 2 and 3 in Figs. 8 and 9. This means that the case 3
results tend to vary more from one run to another. Again, this is reasonable, since the
resistivity measurements in case 3 are more uncertain.

4 Conclusions

A novel method for monitoring and updating the evolution of fluid-facies from time-
lapse geophysical properties in a two-phase flow problem has been presented. The
inversion method is based on an ensemble filtering method where the updating of
the prior ensemble at each time step is performed using a particular updating method
for binary vectors. The main novelty of the work is the extension of ensemble-based
methods to mixed discrete-continuous problems to update the spatial distribution of
fluid-facies. In the proposed application, the geophysical dataset includes time-lapse
resistivity values that are assumed to have been estimated from CSEM data through a
preliminary inversion process. The proposed method is tested in a synthetic example
with a two-dimensional reservoir model. The results from this synthetic example
are accurate and support the validation of the proposed methodology. In real data
applications, the accuracy of the results depends on the quality of the data in terms
of resolution and signal-to-noise ratio, and also on the accuracy of the fluid flow
simulator. The main limitation of this work is that uncertainty in the estimation of
porosity and permeability are not taken into account. Future research directions aim
to extend the proposed method so that porosity and permeability are also treated as
random variables and so that the geophysical dataset includes measured data such as
electromagnetic amplitude and phase.
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Abstract

We propose a generalised framework for the updating of a prior ensemble

to a posterior ensemble, an essential yet challenging part of ensemble-based

filtering methods. The proposed framework is based on a generalised and

fully Bayesian view on the traditional ensemble Kalman filter (EnKF). In

the EnKF, the updating of the ensemble is based on Gaussian assumptions,

whereas in our setup the updating may be based on another parametric

family. In addition, we propose to formulate an optimality criterion and

to find the optimal update with respect to this criterion. The framework

is fully Bayesian in the sense that the parameters of the assumed forecast

model are treated as random variables. As a consequence, a parameter

vector is simulated, for each ensemble member, prior to the updating. In

contrast to existing fully Bayesian approaches, where the parameters are

simulated conditionally on all the forecast samples, the parameters are in

our framework simulated conditionally on both the data and all the fore-

cast samples, except the forecast sample which is to be updated. The

proposed framework is studied in detail for two parametric families: the

linear-Gaussian model and the binary hidden Markov model (HMM). For

the linear-Gaussian case, we prove that a particular square root filter is

optimal with respect to the criterion of minimising the expected Maha-

lanobis distance between corresponding prior and posterior ensemble mem-

bers. Simulation examples for both the linear-Gaussian model and the
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binary HMM are presented. Here, we observe that the proposed square

root filter based on the linear-Gaussian model gives a more realistic repre-

sentation of the uncertainty than the traditional EnKF and that the e↵ect

of not conditioning on the forecast sample which is to be updated can be

quite remarkable.

1 Introduction

The ensemble Kalman filter (EnKF) (Burgers et al., 1998; Evensen, 2003) is a

recursive Monte Carlo algorithm which provides an approximate solution to the

statistical filtering problem. The filter has been successfully applied to problems in

several fields of the geosciences, including reservoir evaluation, oceanography, and

weather forecasting. Although the EnKF relies on a linear-Gaussian assumption

about the underlying state-space model, it has shown to work well even in non-

linear, non-Gaussian situations, and it also scales well to problems with very

high-dimensional state vectors. The EnKF literature is extensive, and several

modifications of the traditional scheme, as presented in Burgers et al. (1998),

have been proposed and studied. Much of the literature is quite geophysical-

oriented with limited focus on the statistical properties of the filter. In recent

years, however, the EnKF has gained a lot of attention also from statisticians

(e.g., Katzfuss et al., 2016). In the current report, we take a Bayesian perspective

on the EnKF and use it to formulate a new and general class of ensemble filtering

methods which also includes filtering of categorical variables.

The EnKF alternates between a forecast step and an update step. The main

challenge, and the focus of this report, is the update step. The goal of the update

step is to condition an ensemble of (approximate) realisations from a prior, or

so-called forecast, distribution on new observations so that a new ensemble of

(approximate) realisations from the corresponding posterior, or so-called filtering,

distribution is obtained. To cope with this issue, the EnKF introduces Gaussian

approximations and updates the forecast samples in the form of a linear shift

closely related to the linear update of the mean in the traditional Kalman filter

(Kalman, 1960). Since the resulting filtering ensemble is obtained from a linear

shift of a possibly non-Gaussian forecast ensemble, non-Gaussian properties may

have been captured.

An important property of the EnKF linear update is that it implicitly in-

volves the construction of a Gaussian approximation to the forecast distribution.
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In practice, only a covariance matrix is estimated. Combined with the assump-

tion that the likelihood model is linear-Gaussian, the Gaussian approximation to

the forecast distribution yields a Gaussian approximation to the filtering distribu-

tion according to Bayes’ rule. Under the assumption that the forecast ensemble

contains independent samples from the Gaussian approximation to the forecast

model, the linear shift corresponds to conditional simulation from a Gaussian

distribution with mean and covariance so that each updated sample marginally

is distributed according to the Gaussian approximation to the filtering distribu-

tion. Loe and Tjelmeland (2021) present a generalisation of these underlying

features of the EnKF and formulate a general class of ensemble updating pro-

cedures. The overall idea behind the framework is that more generally another

parametric model than the Gaussian can be pursued when constructing an ap-

proximation to the forecast distribution. Likewise, another parametric model than

the linear-Gaussian can be pursued for the likelihood model. From Bayes’ rule,

a corresponding approximation to the filtering distribution follows. To update

the prior samples, the authors propose to simulate samples from a distribution

conditional on the forecast ensemble such that, given that the forecast samples

are distributed according to the constructed approximation to the forecast dis-

tribution, the updated samples are distributed according to the corresponding

approximation to the filtering distribution, which corresponds to the property of

the EnKF linear update.

The traditional EnKF algorithm is known to have a tendency to underesti-

mate the variances in the forecast and filtering distributions, and the filter may

in some cases even diverge in the sense that the ensemble mean drifts away from

the truth. Various modifications have been proposed to correct for these issues,

e.g. localisation (Hamill and Whitaker, 2001; Houtekammer and Mitchell, 2001;

Ott et al., 2004) and inflation (Anderson & Anderson, 1999). One contributing

reason for the unstable behaviour of the EnKF may be that uncertainty about

the estimated covariance matrix is not taken into account. That is, prior to

the ensemble update, a covariance matrix is estimated, and thereafter the linear

update proceeds as if this estimated covariance matrix were correct, which ob-

viously is not really the case even in a true linear-Gaussian situation. Myrseth

and Omre (2010) address this issue and propose a Bayesian hierarchical EnKF

(HEnKF) algorithm where the mean and the covariance of the Gaussian forecast

approximation are treated as random variables with prior distributions selected

from the Gaussian conjugate family. Prior to the linear updating of the ensem-
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ble, the covariance matrix is then simulated rather than estimated. Myrseth and

Omre (2010) present simulation examples where it is observed that their proposed

HEnKF algorithm provides more reliable results than the traditional EnKF and

that the variance underestimation problem is reduced. An improved version of

the HEnKF algorithm is presented in Tsyrulnikov and Rakitko (2017). Other

strategies for incorporating parameter uncertainty in the EnKF are proposed in

Stroud et al. (2018) and Katzfuss et al. (2020). All studies suggest that taking

parameter uncertainty into account is advantageous.

In the present report, we propose a fully Bayesian version of the framework

proposed in Loe and Tjelmeland (2021). The framework is fully Bayesian in the

sense that the model parameters of the assumed forecast distribution are treated

as random variables. While the framework of Loe and Tjelmeland (2021) can

be seen as a generalisation of the traditional EnKF, the framework proposed in

the present report can be seen as a generalisation of the HEnKF of Myrseth and

Omre (2010), with one important modification. In Myrseth and Omre (2010),

a covariance matrix is simulated for each ensemble member by simulating from

the distribution of the covariance matrix given all the forecast samples. In a

more general context, if we denote the parameters of the forecast model by ✓

and the forecast samples by x(1), . . . , x(M), where M is the ensemble size, this

would translate to simulating, for each ensemble member, a parameter vector ✓(i)

from the distribution of ✓ given x(1), . . . , x(M). In the present report, however, we

propose to adopt a Bayesian model from which it follows that also the incoming

observation, say y, must be included in the conditioning, while the forecast sam-

ple x(i) to be updated must be excluded. In other words, prior to the updating

of x(i), we propose in this report to simulate a parameter ✓(i) conditionally on

y and x(1), . . . , x(i�1), x(i+1), . . . , x(M). Similarly to Loe and Tjelmeland (2021),

we investigate the proposed framework in two situations. First, we consider the

situation where the chosen forecast and likelihood approximations constitute a

linear-Gaussian model, which corresponds to the model assumptions of the EnKF.

Second, we consider the situation where the chosen forecast and likelihood ap-

proximations constitute a hidden Markov model (HMM) with categorical states.

In contrast to Loe and Tjelmeland (2021), where the core focus is on the sit-

uation with the HMM, the current report also gives considerable focus to the

linear-Gaussian model and the EnKF. In particular, we formulate a class of (fully

Bayesian) EnKF algorithms, of which the traditional EnKF and the square root

EnKF (Tippett et al., 2003) are special cases.
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The remains of the report take the following outline. First, Section 2 provides

some background material on state-space models and the EnKF. Next, our gener-

alised ensemble updating framework is presented in Section 3. In Sections 4 and

5, we consider the proposed framework for the two situations outlined above, i.e.

in the case of a linear-Gaussian assumed model and a finite state-space HMM,

respectively. In Sections 6 and 7, we present simulation examples for the same

two cases. Finally, we finish o↵ with a few closing remarks in Section 8.

2 Preliminaries

In this section, we describe state-space models and the related filtering problem

in more detail. We also review the EnKF.

2.1 State-space models

A general state-space model consists of two discrete-time stochastic processes:

a latent process {xt}T
t=1 where xt 2 ⌦x ✓ Rn is an n-dimensional vector, called the

state vector at time step t, and an observed process {yt}T
t=1, where yt 2 ⌦y ✓ Rm

is an m-dimensional vector and a partial observation of xt. The latent xt-process,

usually called the state process, is assumed to evolve in time according to a first-

order Markov chain with initial distribution px1(x1) and transition probabilities

pxt|xt�1(xt|xt�1), t � 2. The joint distribution of x1:T = (x1, . . . , xT ) can thus be

written as

px1:T (x1:T ) = px1(x1)
TY

t=2

pxt|xt�1(xt|xt�1).

The observations y1, . . . , yT are assumed to be conditionally independent given

the states, with yt depending on x1:T only through xt. Hence, the joint likelihood

for y1:T = (y1, . . . , yT ) given x1:T can be written as

py1:T |x1:T (y1:T |x1:T ) =
TY

t=1

pyt|xt(yt|xt).

A graphical illustration of the general state-space model is shown in Figure 1.

When the variables of the state vector are categorical, the model is often called

an HMM. Following Künsch (2000), the term HMM is in this report reserved for

finite state-space state processes, while the term state-space model may refer to

either a categorical or a continuous situation.
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x1 x2 · · · xt�1 xt · · · xT

y1 y2 yt�1 yt yT

Figure 1: Graphical illustration of a state-space model.

An important inference procedure associated with state-space models, and

the main motivation for the work of this report, is filtering. The objective of

filtering is, for each time step t, to compute the so-called filtering distribution,

pxt|y1:t(xt|y1:t), that is the distribution of the unobserved state xt given all the

observations available at time t, y1:t = (y1, . . . , yt). Because of the particular

dependency structure of the state-space model, the series of filtering distributions

can be computed recursively according to a two-step procedure as follows:

pxt|y1:t�1(xt|y1:t�1) =

Z

⌦x

pxt|xt�1(xt|xt�1)pxt�1|y1:t�1(xt�1|y1:t�1)dxt�1, (1)

pxt|y1:t(xt|y1:t) =
pxt|y1:t�1(xt|y1:t�1)pyt|xt(yt|xt)Z

⌦x

pxt|y1:t�1(xt|y1:t�1)pyt|xt(yt|xt)dxt

. (2)

The first step is called the prediction step and computes the forecast distribution

pxt|y1:t�1(xt|y1:t�1). The second step is called the update step and uses Bayes’ rule

to condition the forecast (prior) distribution on the incoming observation yt to

compute the filtering (posterior) distribution pxt|y1:t(xt|y1:t).

Generally, we are unable to evaluate the integrals in Eqs. (1) and (2), and

the forecast and filtering distributions are left intractable. Approximate solutions

are therefore necessary. The most common approach is to use a simulation-based

method where a set of samples is used to empirically represent the series of pre-

diction and filtering distributions. These methods are in the literature often

referred to as ensemble methods, and the set of samples used to approximate

the distributions is called an ensemble. Starting from an ensemble of indepen-

dent realisations from the initial model px1(x1), the idea is to advance the en-

semble forward in time according to the state-space model dynamics. Similarly

to the recursion in Eqs. (1) and (2), an ensemble method may alternate be-

tween a forecast step and an update step. Assuming at time t that an ensemble

{x̃t�1,(1), . . . , x̃t�1,(M)} of M independent realisations from the previous filtering
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distribution pxt�1|y1:t�1(xt�1|y1:t�1) is available, the forecast step is then carried

out by simulating xt,(i)|x̃t�1,(i) ⇠ pxt|xt�1(·|x̃t�1,(i)) independently for each i. This

yields a forecast ensemble, {xt,(1), . . . , xt,(M)}, with independent realisations from

the forecast distribution pxt|y1:t�1(xt|y1:t�1). Typically in practical applications,

we are able to deal with this forecasting, but to a high computational cost. Af-

ter the forecast step, the forecast ensemble needs to be updated taking the new

observation yt into account, so that a new filtering ensemble, {x̃t,(1), . . . , x̃t,(M)},

with independent realisations from the filtering distribution pxt|y1:t(xt|y1:t) is ob-

tained. However, in contrast to the prediction step, there is no straightforward

way to proceed with this updating. Therefore, ensemble filtering methods require

approximations in the update step. In the present report, we propose one such

approximate updating method.

There exist two main classes of ensemble filtering methods: particle filters

(Gordon et al., 1993; Doucet et al., 2001) and variations of the EnKF. Hybrid

versions of these filters have also been proposed (e.g., Frei and Künsch, 2012,

2013). In this report, the focus is on the EnKF, and a brief review of the EnKF

follows in the next section.

2.2 The ensemble Kalman filter

The EnKF is an ensemble filtering method which relies on Gaussian approx-

imations. The filter was first introduced in Evensen (1994) and several modifi-

cations of the algorithm have been proposed in the literature since then. The

variety of EnKF methods can be classified into two main categories, stochastic

filters and deterministic filters, di↵ering in whether the updating of the ensemble

is carried out in a stochastic or deterministic manner. Deterministic filters are

also known as square root filters, and this is the term we use in this report.

To understand the EnKF, consider first a linear-Gaussian model where x ⇠
N (x; µ, Q) and y|x ⇠ N (y; Hx, R), µ 2 Rn, Q 2 Rn⇥n, H 2 Rm⇥n, and R 2
Rm⇥m. The posterior model corresponding to this linear-Gaussian model is a

Gaussian, N (x; µ⇤, Q⇤), with mean vector µ⇤ 2 Rn and covariance matrix Q⇤ 2
Rn⇥n analytically available from the Kalman filter equations as

µ⇤ = µ + K(y � Hµ) (3)
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and

Q⇤ = (In � KH)Q, (4)

respectively, where In 2 Rn⇥n is the n ⇥ n identity matrix and

K = QH> �HQH> + R
��1

(5)

is the so-called Kalman gain matrix, where we have introduced the notation

A> to denote the transpose of a matrix A. Now, suppose x ⇠ N (x; µ, Q) and

✏ ⇠ N (✏; 0, R) are independent random samples, and consider the linear transfor-

mation

x̃ = x + K(y � Hx + ✏). (6)

It is then a straightforward matter to show that x̃|y is distributed according to

the Gaussian distribution N (x; µ⇤, Q⇤) with mean µ⇤ and covariance Q⇤ given by

Eqs. (3) and (4), respectively (e.g., Burgers et al., 1998).

At a given time step t, the EnKF starts by making a linear-Gaussian as-

sumption about the true (unknown) underlying model. Specifically, the forecast

samples xt,(1), . . . , xt,(M) are assumed to be distributed according to a Gaussian

distribution N (xt; µt, Qt) where the parameters µt and Qt are set equal to the sam-

ple mean and the sample covariance of the forecast ensemble, and the likelihood

model is assumed to be a Gaussian distribution with mean H txt and covariance

Rt, H t 2 Rm⇥n, Rt 2 Rm⇥m. Under the assumption that the assumed linear-

Gaussian model is correct we have xt,(i) ⇠ N(xt; µt, Qt) for each i, and the goal

is to update xt,(i) so that x̃t,(i) ⇠ N(xt; µ⇤t, Q⇤t), where µ⇤t and Q⇤t are given by

Eqs. (3) and (4), respectively, with a superscript t included in the notations, i.e.

µ⇤t = µt + Kt(yt � H tµt) (7)

and

Q⇤t = (In � KtH t)Qt, (8)

where, similarly, Kt is given by Eq. (5), with a superscript t included,

Kt = Qt(H t)>
�
H tQt(H t)> + Rt

��1
. Stochastic and square root EnKFs ob-

tain this result in di↵erent ways. The stochastic EnKF proceeds by simulating

✏t,(i) ⇠ N (✏t; 0, Rt) independently for i = 1, . . . , M , and then exploits Eq. (6),
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which now takes the form

x̃t,(i) = xt,(i) + Kt(yt � H txt,(i) + ✏t,(i)). (9)

The square root EnKF instead performs a non-random linear transformation of

xt,(i),

x̃t,(i) = Bt(xt,(i) � µt) + µt + Kt(yt � H tµt), (10)

where Bt 2 Rn⇥n is a solution to the quadratic matrix equation

BtQt(Bt)> = (In � KtH t)Qt. (11)

If the underlying state-space model really is linear-Gaussian, the distribution

of each updated sample converges to the true (Gaussian) filtering distribution as

M ! 1. In all other cases, the update is biased. However, since the posterior

ensemble is obtained from a linear shift of a possibly non-Gaussian prior ensemble,

non-Gaussian properties of the true prior and posterior models may, to some

extent, be captured.

3 Generalised, fully Bayesian updating frame-

work

In this section, we formulate a general class of ensemble updating procedures.

Recall from previous sections that the goal is to update an ensemble of prior real-

isations, {xt,(1), . . . , xt,(M)}, to a corresponding ensemble of posterior realisations,

{x̃t,(1), . . . , x̃t,(M)}, taking the new observation yt into account. To cope with this

task, we propose to separately update each of the xt,(i) samples in the prior en-

semble to a corresponding x̃t,(i) sample in the posterior ensemble, and to base the

updating of xt,(i) on an assumed Bayesian model. As mentioned previously in the

report, the proposed framework can be viewed as a generalisation of the hierar-

chical EnKF algorithm of Myrseth and Omre (2010) with the modification that

the parameters are simulated in a di↵erent way. The key steps of the proposed

updating framework are summarised in Algorithm 1.
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Algorithm 1: General ensemble updating procedure

1. Select the assumed distributions f✓t(✓t), fxt|✓t(xt|✓t) and fyt|xt(yt|xt)
introduced in Section 3.1

2. for i = 1, . . . , M do
a) Simulate

✓t,(i)|xt,�(i), yt ⇠ f✓t|xt,�(i),yt(✓t|xt,�(i), yt)

as described in Section 3.4

b) Construct the model q⇤(x̃t,(i)|xt,(i), ✓t,(i), yt) specified in Sections 3.2 and 3.3

c) Simulate
x̃t,(i)|xt,(i), ✓t,(i), yt ⇠ q⇤(x̃t,(i)|xt,(i), ✓t,(i), yt)

end

✓t

xt,(1) xt,(2) · · · xt,(i) · · · xt,(M) xt

yt
x̃t,(i)

Figure 2: Graphical representation of the assumed Bayesian model for the updating of xt,(i)

to x̃t,(i)

3.1 Assumed Bayesian model

For the updating of the forecast sample xt,(i) we adopt an assumed Bayesian

model. A graphical illustration of this assumed Bayesian model is shown in Figure

2. The model includes an unknown parameter vector ✓t 2 ⌦✓, and the forecast

samples xt,(1), . . . , xt,(M) and the latent state vector xt are assumed to be condition-

ally independent and identically distributed given ✓t. Moreover, the observation

yt is assumed to be conditionally independent of xt,(1), . . . , xt,(M) and ✓t given xt,

and the updated sample x̃t,(i) is restricted to be conditionally independent of xt

and

xt,�(i) = {xt,(1), . . . , xt,(i�1), xt,(i+1), . . . , xt,(M)}

given xt,(i), ✓t and yt.

To distinguish the assumed Bayesian model from the true and unknown model,
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we use in the following the notation f(·) to denote distributions associated with

the assumed Bayesian model, while, as in previous sections, p(·) is reserved for

the truth. Under the assumed Bayesian model, the joint distribution of ✓t, xt,

xt,(1), . . . , xt,(M) and yt reads

f✓t,xt,xt,(1),...,xt,(M),yt(✓t, xt, xt,(1), . . . , xt,(M), yt) =

f✓t(✓t)fxt|✓t(xt|✓t)fyt|xt(yt|xt)
MY

i=1

fxt|✓t(xt,(i)|✓t),

where f✓t(✓t) is an assumed prior model for ✓t, fxt|✓t(xt|✓t) is an assumed prior

model for xt|✓t and fyt|xt(yt|xt) is an assumed likelihood model. The model

fxt|✓t(xt|✓t) can be interpreted as an approximation to the intractable forecast

model pxt|y1:t�1(xt|y1:t�1). The model f✓t(✓t) for ✓t should be chosen as a conju-

gate prior for fxt|✓t(xt|✓t), while the models fxt|✓t(xt|✓t) and fyt|xt(yt|xt) must be

chosen so that the corresponding posterior model

fxt|✓t,yt(xt|✓t, yt) / fxt|✓t(xt|✓t)fyt|xt(yt|xt)

is tractable.

3.2 Class of updating distributions

Under the assumption that the assumed Bayesian model introduced

above is correct, a näıve updating procedure is to sample x̃t,(i) from

fxt|xt,(1),...,xt,(M),yt(xt|xt,(1), . . . , xt,(M), yt). However, this procedure may be very

sensitive to the assumptions of the assumed Bayesian model. To get an updating

procedure which is more robust against the assumptions of the assumed model, a

better approach is to generate x̃t,(i) as a modified version of xt,(i) and require

fx̃t,(i)|xt,�(i),yt(xt|xt,�(i), yt) = fxt|xt,�(i),yt(xt|xt,�(i), yt). (12)

This way, we use the randomness in xt,(i) to generate randomness in x̃t,(i), and the

forecast sample xt,(i) is therefore not included in the conditioning in Eq. (12). To

generate x̃t,(i) as a modified version of xt,(i) under this restriction, we propose to

introduce a distribution q(x̃t,(i)|xt,(i), ✓t, yt) which fulfils Eq. (12), and then simu-

late x̃t,(i)|xt,(i), ✓t, yt ⇠ q(x̃t,(i)|xt,(i), ✓t, yt). To construct such a q(x̃t,(i)|xt,(i), ✓t, yt),
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we first note that the constraint in Eq. (12) can be rewritten as

Z

⌦✓

f✓t,x̃t,(i)|xt,�(i),yt(✓t, xt|xt,�(i), yt)d✓t =

Z

⌦✓

f✓t,xt|xt,�(i),yt(✓t, xt|xt,�(i), yt)d✓t.

Using that both xt and x̃t,(i) are conditionally independent of xt,�(i) given ✓t and

yt, this can be rewritten as

Z

⌦✓

f✓t|xt,�(i),yt(✓t|xt,�(i), yt)fx̃t,(i)|yt,✓t(xt|yt, ✓t)d✓t =

Z

⌦✓

f✓t|xt,�(i),yt(✓t|xt,�(i), y)fxt|yt,✓t(xt|yt, ✓t)d✓t. (13)

A su�cient condition for Eq. (13) to hold is

fx̃t,(i)|✓t,yt(xt|✓t, yt) = fxt|✓t,yt(xt|✓t, yt) (14)

for all xt, ✓t, and yt. Thereby, if for a given ✓t we can manage to con-

struct a q(x̃t,(i)|xt,(i), ✓t, yt) consistent with Eq. (14), we can update xt,(i) by

first simulating ✓t,(i)|xt,�(i), yt ⇠ f✓t|xt,�(i),yt(✓t|xt,�(i), yt) and thereafter simulate

x̃t,(i)|xt,(i), ✓t,(i), yt ⇠ q(x̃t,(i)|xt,(i), ✓t,(i), yt). How to simulate ✓t,(i)|xt,�(i), yt is dis-

cussed in Section 3.4. To construct a q(x̃t,(i)|xt,(i), ✓t,(i), yt) consistent with Eq.

(14) we note that for fx̃t,(i)|✓t,yt(xt|✓t, yt) on the left-hand-side of Eq. (14), we

have

fx̃t,(i)|✓t,yt(x̃t,(i)|✓t, yt) =

Z

⌦x

fxt|✓t(xt|✓t)q(x̃t,(i)|xt, ✓t, yt)dxt.

Thereby, from Eq. (14), it follows that q(x̃t,(i)|xt,(i), ✓t, yt) must fulfil

fxt|✓t,yt(x̃t,(i)|✓t, yt) =

Z

⌦x

fxt|✓t(xt|✓t)q(x̃t,(i)|xt, ✓t, yt)dxt (15)

for all x̃t,(i), ✓t and yt.

The criterion in Eq. (15) defines a class of updating distributions in the

sense that there may be infinitely many distributions q(x̃t,(i)|xt,(i), ✓t, yt) which

fulfil Eq. (15). If the assumed model is correct, it does not matter which

q(x̃t,(i)|xt,(i), ✓t, yt) within this class we choose; the distribution of x̃t,(i)|xt,�(i), yt

equals fxt|xt,�(i),yt(xt|xt,�(i), yt) regardless. Generally, however, the assumed model

is wrong, and the choice of q(x̃t,(i)|xt,(i), ✓t, yt) can have a substantial e↵ect
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on the actual distribution of x̃t,(i)|xt,�(i), yt. The simplest solution is to set

q(x̃t,(i)|xt,(i), ✓t, yt) equal to fxt|✓t,yt(xt|✓t, yt) which entails that we simulate x̃t,(i)

independently of xt,(i). However, this näıve approach is very sensitive to the as-

sumptions of the assumed model and is not a good way to proceed as we loose

a lot of valuable information from xt,(i) about the true (unknown) model that

we may not have been able to capture with the assumed model. As discussed

above, we want to generate x̃t,(i) as a modified version of xt,(i). That way, we

retain more information from xt,(i) about the true model. An optimal solution

q(x̃t,(i)|xt,(i), ✓t, yt) within the class of distributions can be found if an optimality

criterion is specified, which we discuss in the next section.

3.3 Optimality criterion

Generally, an optimal solution, denoted q⇤(x̃t,(i)|xt,(i), ✓t, yt), within the class

of distributions defined in the previous section can for example be defined as the

solution which minimises the expected value of some function g(xt,(i), x̃t,(i)),

q⇤(x̃t,(i)|xt,(i), ✓t, yt) = argmin
q(·)

E
⇥
g(xt,(i), x̃t,(i))

⇤
,

where the expectation is taken over the distribution

fxt|✓t(xt,(i)|✓t)q(x̃t,(i)|xt,(i), ✓t, yt), i.e. the joint distribution of xt,(i) and x̃t,(i)

given (✓t, yt) under the assumption that the assumed Bayesian model is correct.

In the present report, we propose to choose the function g(xt,(i), x̃t,(i)) as the

Mahalanobis distance between xt,(i) and x̃t,(i),

g(xt,(i), x̃t,(i)) =
�
xt,(i) � x̃t,(i)

�>
⌃�1

�
xt,(i) � x̃t,(i)

�
, (16)

where ⌃ 2 Rn⇥n is some positive definite matrix. If ⌃ equals the identity matrix,

g(xt,(i), x̃t,(i)) reduces to the squared Euclidean distance between xt,(i) and x̃t,(i),

g(xt,(i), x̃t,(i)) =
nX

j=1

⇣
x

t,(i)
j � x̃

t,(i)
j

⌘2

. (17)

Basically, the optimality criterion then states that we want to make minimal

changes to each prior sample xt,(i). To us, this seems like a reasonable criterion

since we want to capture as much information from xt,(i) as possible. Of course,

one must value the information that comes with the observation yt, but there is
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no reason to make more changes to xt,(i) than necessary.

If xt is a vector of categorical variables, xt
j 2 {0, 1, . . . , K � 1}, an alternative

is to select g(xt,(i), x̃t,(i)) as the number of corresponding elements of xt,(i) and

x̃t,(i) that are di↵erent,

g(xt,(i), x̃t,(i)) =
nX

j=1

1
⇣
x

t,(i)
j 6= x̃

t,(i)
j

⌘
, (18)

where 1(·) denotes the usual indicator function. If each component xt
j is binary,

Eqs. (17) and (18) are equal.

3.4 Parameter simulation

In this section, we describe how to simulate from f✓t|xt,�(i),y(✓
t|xt,�(i), yt) when

f✓t(✓t) is chosen as a conjugate prior for fxt|✓t(xt|✓t). Specifically, we can then

introduce xt as an auxiliary variable and simulate (xt, ✓t) from the joint distribu-

tion

fxt,✓t|xt,�(i),yt(xt, ✓t|xt,�(i), yt) / f✓t(✓t)fxt|✓t(xt|✓t)fyt|xt(yt|xt)
Y

j 6=i

fxt|✓t(xt,(j)|✓t)

by constructing a Gibbs sampler which alternates between drawing xt from the

full conditional distribution fxt|✓t,xt,�(i),yt(xt|✓t, xt,�(i), yt) and ✓t from the full con-

ditional distribution f✓t|xt,xt,�(i),yt(✓t|xt, xt,�(i), yt). Using that xt and xt,�(i) are

conditionally independent given ✓t (see Figure 2), it follows that the full condi-

tional distribution fxt|✓t,xt,�(i),yt(xt|✓t, xt,�(i), yt) is given as

fxt|✓t,xt,�(i),yt(xt|✓t, xt,�(i), yt) = fxt|✓t,yt(xt|✓t, yt).

Simulating from fxt|✓t,yt(xt|✓t, yt) should be achievable, since fxt|✓t(xt|✓t) and

fyt|xt(yt|xt) are chosen so that fxt|✓t,yt(xt|✓t, yt) is tractable. Using that ✓t and

yt are conditionally independent given xt (again, see Figure 2), the other full

conditional distribution, f✓t|xt,xt,�(i),yt(✓t|xt, xt,�(i), yt), is given as

f✓t|xt,xt,�(i),yt(✓t|xt, xt,�(i), yt) = f✓t|xt,xt,�(i)(✓t|xt, xt,�(i)).

Since f✓t(✓t) is chosen as a conjugate prior for fxt|✓t(xt|✓t), and since xt,

xt,(1), . . . , xt,(M) are independent and identically distributed given ✓t, it follows



15

that f✓t|xt,xt,�(i)(✓t|xt, xt,�(i)) is tractable and belongs to the same family of distri-

butions as f✓t(✓t). Simulating from f✓t|xt,xt,�(i)(✓t|xt, xt,�(i)) should therefore also

be possible.

4 Linear-Gaussian assumed model

In this section, we describe how the general updating procedure described in

Section 3 can be applied when the elements of the state vector are continuous

variables. As in the EnKF, one may then choose fxt|✓t(xt|✓t) as Gaussian and

fyt|xt(yt|xt) as linear-Gaussian.

4.1 Specification of the assumed model

Suppose xt = (xt
1, . . . , x

t
n) 2 Rn and yt = (yt

1, . . . , y
t
m) 2 Rm are continuous

vectors. Let ✓t = (µt, Qt) where µt 2 Rn, Qt 2 Rn⇥n, and Qt is positive definite.

Select fxt|✓t(xt|✓t) as a Gaussian distribution with mean vector µt and covariance

matrix Qt,

fxt|✓t(xt|✓t) = N (xt; µt, Qt),

and choose fyt|xt(yt|xt) as a Gaussian distribution with mean H txt, H t 2 Rm⇥n

and covariance matrix Rt 2 Rm⇥m,

fyt|xt(yt|xt) = N (yt; H txt, Rt).

For a given ✓t, this model corresponds to the linear-Gaussian model introduced

in Section 2.2. The corresponding posterior model fxt|✓t,yt(xt|✓t, yt) is then a

Gaussian distribution with mean vector µ⇤t and covariance matrix Q⇤t given by

Eqs. (7) and (8), respectively. Following Section 3, we adopt a conjugate prior

for ✓t, which in this case entails an inverse Wishart distribution for Qt,

fQt(Qt) = W�1(Qt; V, ⌫), (19)

and a Gaussian distribution for µt|Qt,

fµt|Qt(µt|Qt) = N (µt; µ0, 
�1Qt), (20)

where ⌫,  2 R, µ0 2 Rn and V 2 Rn⇥n are known hyper-parameters.
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4.2 Derivation of the class of updating distributions

The restriction in Eq. (14) now entails that the updating distribution

q(x̃t,(i)|xt,(i), ✓t, yt) must be chosen so that the integral on the right hand side

of Eq. (15) returns a Gaussian distribution with mean vector equal to µ⇤t in

Eq. (7) and covariance matrix equal to Q⇤t in Eq. (8). To obtain this, we

start by selecting q(x̃t,(i)|xt,(i), ✓t, yt) as a Gaussian distribution with mean vector

Btxt,(i) + Ctyt + dt and covariance matrix St,

q(x̃t,(i)|xt,(i), ✓t, yt) = N
�
x̃t,(i); Btxt,(i) + Ctyt + dt, St

�
, (21)

where Bt 2 Rn⇥n, Ct 2 Rn⇥m, dt 2 Rn and St 2 Rn⇥n are quantities that we

need to decide so that Eq. (15) is fulfilled. The Bt, Ct, dt and St can all be

functions of ✓t and yt. From Eq. (21), it follows that the posterior sample x̃t,(i)

can be obtained as a linear shift of xt,(i) plus a zero-mean Gaussian noise term

✏̃t,(i) ⇠ N (✏̃t; 0, St),

x̃t,(i) = Btxt,(i) + Ctyt + dt + ✏̃t,(i). (22)

Using that xt,(i) in a similar fashion can be obtained as xt,(i) = µt + !t,(i), where

!t,(i) ⇠ N (!t; 0, Qt), we can rewrite Eq. (22) as

x̃t,(i) = Btµt + Ctyt + dt + Bt!t,(i) + ✏̃t,(i).

Given (✓t, yt), the stochastic components on the right hand side of this equation

are !t,(i) and ✏̃t,(i) which are independent and Gaussian. Thereby, since x̃t,(i) is a

linear combination of !t,(i) and ✏̃t,(i), we find that x̃t,(i) given (✓t, yt) is distributed

according to a Gaussian distribution N (x̃t,(i); µ̃t, Q̃t) with mean vector µ̃t and

covariance matrix Q̃t respectively given as

µ̃t = Btµt + Ctyt + dt (23)

and

Q̃t = BtQt(Bt)> + St. (24)

The requirement in Eq. (14) now states that the mean vector µ̃t in Eq. (23)

must be equal to µ⇤t in Eq. (7) and that the covariance matrix Q̃t in Eq. (24)

must be equal to Q⇤t in Eq. (8). That is, we must have

Btµt + Ctyt + dt = µt + Kt(yt � H tµt) (25)
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and

BtQt(Bt)> + St = (In � KtH t)Qt. (26)

Solving Eq. (25) with respect to Ctyt + dt and inserting the result into Eq. (22),

we obtain

x̃t,(i) = Bt(xt,(i) � µt) + µt + Kt(yt � H tµt) + ✏̃t,(i). (27)

Thereby, we see that in order to update xt,(i) we must specify appropriate Bt and

St. To choose a procedure, one may either first choose St and thereafter compute

Bt consistent with Eq. (26), or one may first choose Bt and then compute St

consistent with Eq. (26). Below, we list three solutions that are particularly

interesting.

Example 1. By choosing all elements of Bt equal to zero, we obtain x̃t,(i) inde-

pendent of xt,(i),

x̃t,(i) = µt + Kt(yt � H tµt) + ✏̃t,(i).

We then have St = (In � KtH t)Qt, and q(x̃t,(i)|xt,(i), ✓t, yt) is simply equal to

the assumed posterior model fxt|✓t,yt(xt|✓t, yt), i.e. the Gaussian distribution with

mean and covariance given by Eqs. (7) and (8), respectively.

Example 2. By choosing all elements of St equal to zero, the update of xt,(i)

becomes deterministic and equivalent to a square root EnKF. Specifically, Eq.

(27) becomes equal to Eq. (10), and Eq. (26) becomes equal to Eq. (11). The

distribution q(x̃t,(i)|xt,(i), ✓t, yt) is then a degenerate Gaussian distribution, or a

delta function.

Example 3. By choosing

Bt = In � KtH t (28)

and

St = (In � KtH t)Qt(KtH t)> (29)

the update in Eq. (27) becomes equivalent to the stochastic EnKF update in Eq.

(9). This result is proved in Appendix A.

4.3 The optimal solution

The optimality criterion we consider for this situation is to minimise the ex-

pected value of the Mahalanobis distance g(xt,(i), x̃t,(i)) in Eq. (16) for a general

positive definite matrix ⌃. The minimisation is to be solved with respect to Bt
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and St under the restriction in Eq. (26) and, since St is a covariance matrix, the

additional restriction that St is positive semidefinite.

To compute the optimal solution with respect to these criteria, we start out

using that ⌃�1 can be factorised as ⌃�1 = A>A, A 2 Rn⇥n. Hence, the function

to be minimised, with respect to Bt and St, is

E
⇥
g(xt,(i), x̃t,(i))

⇤
= E

h�
A(x̃t,(i) � xt,(i))

�> �
A(x̃t,(i) � xt,(i))

�i
, (30)

where the expectation is taken over the joint distribution

fxt|✓t(xt|✓t)q(x̃t,(i)|xt, ✓t, yt). Using Eq. (27), we can write A(x̃t,(i) � xt,(i))

as

A(x̃t,(i) � xt,(i)) = A
�
(Bt � In)(xt,(i) � µt) + Kt(yt � H tµt) + ✏̃t,(i)

�
. (31)

Since ✓t and yt are treated as constants, the only stochastic components on the

right hand side of Eq. (31) are xt and ✏̃t,(i), which are independent and Gaussian.

Thereby, A(x̃t,(i)�xt,(i)) is Gaussian since it is a linear combination of independent

Gaussian variables. Moreover, from Eq. (31) we see that

E
⇥
A(x̃t,(i) � xt,(i))

⇤
= AKt(yt � H tµt)

and

Cov
⇥
A(x̃t,(i) � xt,(i))

⇤
= A(Bt � In)Qt(Bt � In)>A> + AStA>.

Using that for any stochastic vector w we have E
⇥
w>w

⇤
= tr[Cov(w)]+E[w]>E[w],

we can write Eq. (30) as

E
h�

A(x̃t,(i) � xt,(i))
�> �

A(x̃t,(i) � xt,(i))
�i

= tr
�
A(Bt � In)Qt(Bt � In)>A>� (32)

+ tr
�
AStA>�+

�
AKt(yt � H tµt)

�> �
AKt(yt � H tµt)

�
.

We see that the last term in this equation is constant as a function of Bt and

St. Thereby, to minimise Eq. (30) with respect to Bt and St we only need to

minimise the sum of the two traces in Eq. (32). According to the restriction in

Eq. (26) we must have

St = (In � KtH t)Qt � BtQt(Bt)>. (33)
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Using Eq. (33), we can write the sum of the two traces in Eq. (32) as a function

of Bt only,

tr
�
A(Bt � In)Qt(Bt � In)>A> + tr

�
AStA> 

= tr
�
�2ABtQtA> + 2AQtA> � AKtH tQtA> .

Here, only the first term is a function of Bt. Hence, minimising Eq. (30) with

respect to Bt is equivalent to maximising

c(Bt) = tr
�
ABtQtA> (34)

with respect to Bt under the restriction that the matrix St in Eq. (33) is positive

semidefinite.

To solve the optimisation problem stated above, we first rephrase it to a

standardised form. To do so, we start with singular value decompositions of the

two covariance matrices Qt and (In � KtH t)Qt,

Qt = V DV >, (35)

(In � KtH t)Qt = U⇤U>, (36)

where U, V 2 Rn⇥n are orthogonal matrices, i.e. UU> = U>U = I and V V > =

V >V = In, and D,⇤ 2 Rn⇥n are diagonal matrices. Inserting Eqs. (35) and (36)

into Eq. (33) and defining

S̃t = ⇤� 1
2 U>StU⇤� 1

2

and

B̃t =
⇣
⇤� 1

2 U>BtV D
1
2

⌘>

we get that Eq. (33) is equivalent to

S̃t = In � (B̃t)>B̃t (37)

and the objective function c(Bt) in Eq. (34) can be rephrased in terms of B̃t as

c̃(B̃t) = tr
n

AU⇤
1
2 (B̃t)>D

1
2 V >A>

o
= tr

n
B̃⇤

1
2 U>A>AQtV D� 1

2

o

= tr
n

B̃tZt
o

, (38)
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where

Zt = ⇤
1
2 U>A>AQtV D� 1

2 . (39)

Recognising that the matrix S̃t is positive semidefinite if and only if St is positive

semidefinite, the rephrased optimisation problem is thereby to maximise c̃(B̃t) in

Eq. (38) with respect to B̃t under the constraint that S̃t in Eq. (37) is positive

semidefinite. To solve this standardised optimisation problem we can apply the

following theorem for which a proof is given in Appendix B.

Theorem 1. For a square matrix Z 2 Rn⇥n of full rank and with singular value

decomposition Z = PGF> the maximum value for tr(B̃Z), B̃ 2 Rn⇥n under the

restriction that S̃ = In � B̃>B̃ is positive semidefinite occurs only for

B̃ = FP>.

To apply Theorem 1, we first need to argue why the matrix Zt in Eq. (39) has

full rank. Since Qt and (In�KtH t)Qt are positive definite matrices, D and ⇤ are

invertible. Thereby also D
1
2 and ⇤

1
2 are invertible. V and U are both orthogonal

and thereby invertible. Finally, as we have required ⌃ to be positive definite, ⌃

is invertible, and when ⌃ is invertible, A is also invertible. Thereby, Zt is given

as a product of invertible matrices and is therefore itself invertible and has full

rank.

According to Theorem 1 the solution to our optimisation problem in stan-

dardised form is B̃t = FP>. We thereby get that

S̃t = In � (FP>)>FP> = In � PF>FP> = 0,

i.e. all elements in S̃t, and hence all elements in St, are zero. The solution

to our optimisation problem thereby corresponds to a square root EnKF. The

corresponding optimal value for Bt is

Bt = U⇤
1
2 PF>D� 1

2 V >.

4.4 Parameter simulation

Before we can construct q(x̃t,(i)|xt,(i), ✓t, yt), we need to simulate a parameter

✓t,(i)|xt,�(i), yt ⇠ f✓t|xt,�(i),yt(✓t|xt,�(i), yt). As explained in Section 3.4, this can be
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done with a Gibbs sampler. To construct the Gibbs sampler, we need to derive the

full conditional distributions fxt|✓t,yt(xt|✓t, yt) and f✓t|xt,xt,�(i)(✓t|xt, xt,�(i)), where

now ✓t = (µt, Qt). The first distribution, fxt|✓t,yt(xt|✓t, yt), is already known and

is a Gaussian with parameters µ⇤t and Q⇤t given by Eqs. (7) and (8), respectively.

To derive the second distribution, f✓t|xt,xt,�(i)(✓t|xt, xt,�(i)), we first factorise it as

f✓t|xt,xt,�(i)(✓t|xt, xt,�(i)) = fQt|xt,xt,�(i)(Qt|xt, xt,�(i))fµt|Qt,xt,xt,�(i)(µt|Qt, xt, xt,�(i)).

Since conjugate priors are chosen for µt and Qt, and since xt, xt,(1), . . . , xt,(M)

are independent and identically distributed given ✓t, it can be shown that

fQt|xt,xt,�(i)(Qt|xt, xt,�(i)) is an inverse Wishart distribution,

fQt|xt,xt,�(i)(Qt|xt, xt,�(i)) = W�1(Qt; Ṽ , ⌫̃),

where

⌫̃ = ⌫ + M

and

Ṽ = V + Ct,(i) +
M

 + M

�
x̄t,(i) � µ0

� �
x̄t,(i) � µ0

�>
,

where

x̄t,(i) =
1

M

 
xt +

X

j 6=i

xt,(j)

!

and

Ct,(i) =
�
xt � x̄t,(i)

� �
xt � x̄t,(i)

�>
+
X

j 6=i

�
xt,(j) � x̄t,(i)

� �
xt,(j) � x̄t,(i)

�>
,

and fµt|Qt,xt,xt,�(i)(µt|Qt, xt, xt,�(i)) is a Gaussian distribution,

fµt|Qt,xt,xt,�(i)(µt|Qt, xt, xt,�(i)) = N (µt; µ̃0, ̃
�1Qt),

where

µ̃0 =
µ0 + Mx̄t,(i)

 + M

and

̃ =  + M.
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5 First-order Markov chain assumed model

In this section, we describe how the general updating procedure described in

Section 3 can be applied when the elements of the state vector xt are categorical

variables, xt
j 2 {0, 1, . . . , K � 1}, and xt is restricted to have a one-dimensional

spatial arrangement. As in Loe and Tjelmeland (2021), we then propose to let

fxt|✓t(xt|✓t) and fyt|xt(yt|xt) constitute an HMM.

5.1 Specification of the assumed model

Suppose xt = (xt
1, . . . , x

t
n) is a vector of n categorical variables, xt

j 2
{0, 1, . . . , K � 1}, and suppose xt has a spatial arrangement along a line. A

natural choice of model for fxt|✓t(xt|✓t) is then a first-order Markov chain,

fxt|✓t(xt|✓t) = f(xt
1|✓t)

nY

j=2

f(xt
j|xt

j�1, ✓
t). (40)

Moreover, suppose yt = (yt
1, . . . , y

t
n) is a vector of n variables, yt

j 2 R, so that we

have one observation yt
j for each component xt

j of xt, and assume that the yt
j’s are

conditionally independent given xt, with yt
j only dependent on xt

j,

fyt|xt(yt|xt) =
nY

j=1

fyt
j |xt

j
(yt

j|xt
j).

Given ✓t, the models fxt|✓t(xt|✓t) and fyt|xt(yt|xt) constitute an HMM. The corre-

sponding posterior model fxt|✓t,yt(xt|✓t, yt) is then also a first-order Markov chain

whose initial and transition probabilities can be computed with the the forward-

backward algorithm for HMMs (e.g., Künsch, 2000).

The parameter ✓t may in this context represent the initial and transition

probabilities of the assumed first-order Markov chain fxt|✓t(xt|✓t). In the following,

we let

✓t =
⇣
{✓t

1(i)}K�1
i=0 , {✓t,k

2 (i)}K�1
i,k=0, . . . , {✓t,k

n (i)}K�1
i,k=0

⌘
,

where ✓1(i)
t, ✓t,k

j (i) 2 (0, 1),
PK�1

i=0 ✓t,k
j (i) = 1, and

f(xt
1 = i|✓t) = ✓t

1(i)
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and

f(xt
j = i|xt

j�1 = k, ✓t) = ✓t,k
j (i),

for i, k = 0, . . . , K � 1 and j = 2, . . . , n. For convenience, we also define

✓t
1 = (✓t

1(0), ✓t
1(1), . . . , ✓t

1(K � 1))

and

✓t,k
j = (✓t,k

j (0), ✓t,k
j (1), . . . , ✓t,k

j (K � 1)).

As recommended in Section 3.4, we choose f✓t(✓t) as a conjugate prior for

fxt|✓t(xt|✓t). Specifically, we assume that all the vectors ✓t
1, ✓t,0

2 , . . . , ✓t,K�1
2 ,

✓t,0
3 , . . . , ✓t,K�1

3 , . . . , ✓t,0
n , . . . , ✓t,K�1

n are a priori independent, so that

f✓t(✓t) = f✓t
1
(✓t

1)
Y

j,k

f✓t,k
j

(✓t,k
j ).

Moreover, we choose f✓t
1
(✓t

1) as a Dirichlet distribution with (known) hyper-

parameters ↵t
1(0), . . . , ↵t

1(K � 1),

f✓t
1
(✓t

1) /
K�1Y

i=0

✓t
1(i),

and choose each f✓t,k
j

(✓t,k
j ) as a Dirichlet distribution with (known) hyper-

parameters ↵t,k
j (0), . . . , ↵t,k

j (K � 1),

f✓t,k
j

(✓t,k
j ) /

K�1Y

i=0

✓t,k
j (i)↵

t,k
j (i).

5.2 Class of updating distributions

Because of the discrete context, the criterion in Eq. (15) can be written as a

sum, i.e.

fxt|yt,✓t(x̃t,(i)|yt, ✓t) =
X

xt,(i)2⌦x

fxt|✓t(xt,(i)|✓t)q(x̃t,(i)|xt,(i), ✓t, yt). (41)

Brute force, the updating distribution q(x̃t,(i)|xt,(i), ✓t, yt) now represents a tran-

sition matrix, and there are Kn(Kn � 1) transition probabilities that need to be

specified. Even when n is only moderately large this is too computationally de-
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Figure 3: Graphical illustration of enforced dependencies between the variables in a prior
sample xt,(i) and corresponding posterior sample x̃t,(i), given ✓t and yt, when the
assumed forecast model is chosen as a first-order Markov chain.

manding to cope with. To simplify the situation, we therefore enforce a certain

dependency structure for q(x̃t,(i)|xt,(i), ✓t, yt) as illustrated in Figure 3. We can

then factorise q(x̃t,(i)|xt,(i), ✓t, yt) as

q(x̃t,(i)|xt,(i), ✓t, yt) = q(x̃
t,(i)
1 |xt,(i)

1 , ✓t, yt)
nY

j=2

q(x̃
t,(i)
j |x̃t,(i)

j�1, x
t,(i)
j , ✓t, yt). (42)

The number of quantities required to specify q(x̃t,(i)|xt,(i), ✓t, yt) thereby re-

duces to K(K � 1) + (n � 1)K2(K � 1), or more specifically K(K � 1)

quantities for q(x̃
t,(i)
1 |xt,(i)

1 , ✓t, yt) and K2(K � 1) quantities for each factor

q(x̃
t,(i)
j |x̃t,(i)

j�1, x
t,(i)
j , ✓t, yt), j = 2, . . . , n. As this is a linear, rather than an expo-

nential, function of n, n can be large without causing trouble.

According to the requirement in Eq. (41), q(x̃t,(i)|xt,(i), ✓t, yt) must

be constructed such that marginalising out xt,(i) from the joint distri-

bution fxt|✓t(xt,(i)|✓t)q(x̃t,(i)|xt,(i), ✓t, yt) returns the posterior Markov chain

model fxt|✓t,yt(x̃t,(i)|✓t, yt). However, the problem of constructing such a

q(x̃t,(i)|xt,(i), ✓t, yt), di↵erent from fxt|✓t,yt(xt|✓t, yt) itself, is generally too intricate

to solve. Therefore, we need an approximate approach. As in Loe and Tjelmeland

(2021), we propose to replace the requirement of retaining the whole Markov chain

model fxt|✓t,yt(xt|✓t, yt) with the requirement that only the bivariate probabilities

fxt
j ,xt

j+1|✓t,yt(xt
j, x

t
j+1|✓t, yt) are retained, i.e.

f
x̃

t,(i)
j ,x̃

t,(i)
j+1 |✓t,yt(x

t
j, x

t
j+1|✓t, yt) = fxt

j ,xt
j+1|✓t,yt(xt

j, x
t
j+1|✓t, yt), (43)

for j = 1, . . . , n � 1. This means that, under the assumption that the assumed

model is correct, the distribution of the updated sample x̃t,(i) given (✓t, yt) is

not equal to the first-order Markov chain fxt|✓t,yt(xt|✓t, yt), but that each pair
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(x̃
t,(i)
j , x̃

t,(i)
j+1), j = 1, . . . , n � 1, is marginally distributed according to the bivariate

distribution fxt
j ,xt

j+1|✓t,yt(xt
j, x

t
j+1|✓t, yt) of the Markov chain.

5.3 The optimal solution

The optimality criterion we consider for this situation is to minimise the ex-

pected number of components of xt,(i) that are di↵erent from their corresponding

components in x̃t,(i); that is, we want to minimise the expected value of the func-

tion g(xt,(i), x̃t,(i)) in Eq. (18). Minimising E
⇥
g(xt,(i), x̃t,(i))

⇤
is then equivalent to

maximising

E

"
nX

j=1

1(x
t,(i)
j = x̃

t,(i)
j )

#
(44)

where the expectation is taken over fxt|✓t(xt|✓t)q(x̃t,(i)|xt, ✓t, yt). We are thereby

faced with a constrained optimisation problem where we want to maximise, with

respect to q(x̃t,(i)|xt,(i), ✓t, yt), the function in Eq. (44) under the condition in Eq.

(43) and under the condition that q(x̃t,(i)|xt,(i), ✓t, yt) can be factorised as in Eq.

(42).

Loe and Tjelmeland (2021) propose a dynamic programming algorithm for

solving the optimisation problem stated above when xt
j is binary, xt

j 2 {0, 1}.

The proposed algorithm is based on that the maximum value of Eq. (44) can be

computed recursively since

max
qt
k:n

E

"
nX

j=k

1(x
t,(i)
j = x̃

t,(i)
j )

#
= max

qt
k:n

E

"
1(x

t,(i)
k = x̃

t,(i)
k ) +

nX

j=k+1

1(x
t,(i)
j = x̃

t,(i)
j )

#

= max
qt
k

E

"
1(x

t,(i)
k = x̃

t,(i)
k ) + max

qt
k+1:n

E

"
nX

j=k+1

1(x
t,(i)
j = x̃

t,(i)
j )

##
(45)

where qt
k = q(x̃

t,(i)
k |x̃t,(i)

k�1, x
t,(i)
k , ✓t, yt), qt

1 = q(x̃
t,(i)
1 |xt,(i)

1 , ✓t, yt), and qt
k:n =

(qt
k, . . . , q

t
n). The algorithm starts with a ’backward’ recursion where, for k =

n, n � 1, . . . , 1, Eq. (45) and the optimal value of qt
k are computed as functions

of qt
1:k�1 = (qt

1, . . . , q
t
k�1). At the final step of the backward recursion the whole

expectation in Eq. (44) is thereby computed, along with the optimal value for qt
1.

The algorithm then proceeds with a ’forward’ recursion where, for k = 2, . . . , n,

we recursively compute the optimal values for qt
2, . . . , q

t
n.
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5.4 Parameter simulation

To construct the Gibbs sampler described in Section 3.4, we need to be able

to simulate from the distributions fxt|✓t,yt(xt|✓t, yt) and f✓t|xt,xt,�(i)(✓t|xt, xt,�(i)).

From Section 5.1 we know that fxt|✓t,yt(xt|✓t, yt) now is a first-order Markov

chain with transition probabilities that are easy to compute. When it comes

to f✓t|xt,xt,�(i)(✓t|xt, xt,�(i)), it can easily be shown that ✓t
1|xt, xt,�(i) is Dirichlet

distributed with parameters

↵̃t
1(r) = ↵t

1(r) + 1(xt
1 = r) +

X

m 6=i

1
⇣
x

t,(m)
1 = r

⌘
,

for r = 0, . . . , K�1. Similarly, it can be shown that each ✓t,k
j |xt, xt,�(i) is Dirichlet

distributed with parameters

↵̃t,k
j (r) = ↵t,k

j (r) + 1(xj�1 = k, xj = r) +
X

m 6=i

1
⇣
x

t,(m)
j�1 = k, x

t,(m)
j = r

⌘

for r = 0, . . . , K � 1. Moreover, all the parameters are independent a posteriori,

f✓t|xt,xt,�(i)(✓t|xt, xt,�(i)) = f✓t
1|xt,xt,�(i)(✓t

1|xt, xt,�(i))
Y

j,k

f✓t,k
j |xt,xt,�(i)(✓

t,k
j |xt, xt,�(i)).

6 Simulation example with a linear-Gaussian as-

sumed model

In this section, we present a simulation example for the situation described

in Section 4. The example is based on an experimental setup previously used in

Myrseth and Omre (2010). In the following, we first describe how we generate

a reference time series and simulate corresponding observations. Thereafter, we

specify the precise assumed model we are using, and finally we present and discuss

simulation results.

6.1 Experimental setup

To generate a reference time series {xt}T
t=1 that we consider as the true unob-

served state process we adopt the same setup as in Myrseth and Omre (2010). At

each time t, we assume that the state vector xt = (xt
1, . . . , x

t
n) consists of n = 100

continuous variables so that ⌦x = R100. The latent process is defined from time
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1 to time T = 11. The values of the initial state vector, x1, is generated from a

Gaussian distribution with zero mean, where the variance of each component is

20 and where the correlation between elements r and s in x1 is

c(r, s) = exp

⇢
�3|r � s|

20

�
.

Myrseth and Omre (2010) define two deterministic ways to generate xt, t =

2, . . . , T from x1, one linear forward function and one non-linear. We adopt the

same linear forward function as used there, but not the same non-linear func-

tion. The non-linear forward function used in Myrseth and Omre (2010) induces

a light-tailed bi-modal marginal distribution for each component in the state vec-

tor at time t = T . We construct instead a forward function which produces a

heavy-tailed one-mode marginal distribution for time t > 1.

For t = 2, . . . , T , the linear forward function we use is defined by

xt = ⇠t�1xt�1,

where ⇠t�1 is an n⇥ n matrix defined so that for j = 5t� 4, . . . , 5t + 5, element j

in xt is set equal to the average of elements max{1, j�4} to j +5 in xt�1, whereas

the remaining elements in xt equal the corresponding elements in xt�1. The e↵ect

of this forward function is that the first part of the vector xt is a smoothed version

of the first part of x1, whereas the rest of xt equals the corresponding part of x1.

When the time t increases, the part that has been smoothed also increases.

For the non-linear forward function, we simply transform the Gaussian dis-

tributed elements in the state vector at time t = 1 to be from a (scaled) t-

distribution at any later time t > 1. More specifically, element j in x2 is defined

from the corresponding element in x1 by

x2
j =

p
20F�1

T

✓
�

✓
x1

jp
20

◆
, 100

◆
, (46)

where FT (·, ⌫) and �(·) are the cumulative distribution functions for a t-

distribution with ⌫ degrees of freedom and a standard normal distribution, respec-

tively. Thus, the marginal distribution of each element in x2 is a t-distribution

with 100 degrees of freedom. For later times t > 2, each element j in xt is defined
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(a) (b)

Figure 4: The reference state vector (red crosses) at time t = T for the (a) linear and (b)
non-linear forward model cases, and the simulated observations (green circles) at
the same time. Note that a few of the observations are outside the range of the
vertical axis.

from the corresponding element in xt�1 by

xt
j =

p
20F�1

T

 
FT

 
xt�1

jp
20

, ⌫t�1

!
, ⌫t

!
, (47)

where ⌫t = 100/(2t � 3). Thus, the marginal distribution for each element gets

heavier and heavier tails when the time t increases.

Having generated a reference time series {xt}T
t=1 as described above, observa-

tions are simulated for each time t = 1, . . . , T . For each time t = 1, . . . , T an

observation vector yt is simulated according to

yt|xt ⇠ N
�
yt; xt, 20In

�
. (48)

The reference state vectors for the linear and the non-linear models at time t = T

and the corresponding simulated observations at that time step are shown in

Figure 4.

6.2 Details of the assumed model

The assumed model is as specified in Section 4.1. The hyper-prior in Eqs. (19)

and (20) for ✓t = (µt, Qt) is specified by four hyper-parameters: µ0, , ⌫ and V .

We choose values for these hyper-parameters to get a vague, but proper prior for

✓t, and use the same values for all time steps. We set all the elements of µ0 2 Rn

equal to zero, and set  = 10, ⌫ = n + 1.1 and V = (⌫ � n � 1)In. Note that

this in particular gives E[Qt] = In a priori. For the likelihood fyt|xt(yt|xt) we use

the same distribution as the one we used to simulate the data, i.e. fyt|xt(yt|xt) is
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specified by Eq. (48).

6.3 Simulation results

When evaluating the performance of the proposed approach, the results are

compared with several other variants of EnKF. When updating one of the ensem-

ble members, there are two important steps. The first step is how to generate

or estimate µt and Qt based on the prediction ensemble. The second step is how

to use these µt and Qt values to update the ensemble member in question. We

consider tree variants of the first step. The first is what we propose in this report,

to sample µt and Qt from a posterior distribution given the new observation yt

and all ensemble members, except the member which is to be updated. For the

function g(xt,(i), x̃t,(i)) we here use the Eucledian distance, i.e. ⌃ = In. The second

is what Myrseth and Omre (2010) are advocating, to sample µt and Qt from a

posterior distribution given all the ensemble members, including also the member

that is going to be updated, but not given the new observation yt. The third is

the standard procedure in EnKF, to estimate µt and Qt based on all the ensemble

members. For how to update an ensemble member when values of µt and Qt are

given, we consider two variants. The first is the square-root filter we found to be

optimal in Section 4.3 and the second is the standard stochastic EnKF update

procedure specified in Eq. (9). By combining each of the three variants of how to

generate µt and Qt with each of the two variants of how to update the ensemble

members, one can define six updating procedures. We present results for all the

six combinations.

Using the linear forward model described in Section 6.1, the prediction en-

sembles at time T = 11 in one run of each of the six procedures considered, with

M = 19 ensemble members, are shown in Figure 5. The ensemble members,

drawn with solid lines in the figure, should thus be considered as (approximate)

samples from the distribution px11|y1:10(x11|y1:10). For comparison, the latent true

state vector at time T = 11 is also shown, with red crosses. The upper, middle

and lower lines show results when using our proposed procedure for generating µt

and Qt, when using the procedure in Myrseth and Omre (2010) for the same, and

when using empirical estimates, respectively. The left and right columns show re-

sults when using our optimal square-root filter to update the ensemble members,

and when using the standard stochastic EnKF update, respectively.

The most striking di↵erence between the six cases is the spread of the ensemble
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Figure 5: Gaussian linear example: Prediction ensemble at time T = 11 when using M = 19
ensemble members. The upper, middle and lower rows are when using our proposed
procedure for generating µt and Qt, when using the procedure of Myrseth and Omre
(2010) for the same, and when using empirical estimates, respectively. The left and
right columns are when updating with our optimal square-root filter and when using
the standard stochastic EnKF procedure, respectively. The ensemble members are
shown with solid lines and the latent true state is shown with red crosses.
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members. In the four lower figures in Figure 5, the spread is very small, and as a

result the latent true value is in most places outside the spread of the ensemble.

For the standard stochastic EnKF procedure, shown in the lower right figure,

this should come as no surprise as it is well known that this procedure tends

to underestimate the uncertainty. What is more surprising is that the increase

of the spread is so small when instead using the procedure proposed in Myr-

seth and Omre (2010), shown in the middle right figure. The di↵erence in the

spread of the ensemble members in each of the figures in the middle row and

the corresponding figure in the upper row is also striking, when remembering the

very small di↵erence in the procedures used to generate the figures. The only

di↵erence between the procedures is what to condition on when generating values

for µt and Qt. In the procedures used to generate the figures in the middle row

one is conditioning on all the ensemble members, but not the new data. In the

procedure for the upper row one is conditioning on the new data and all the

ensemble members except the ensemble member that is to be updated. Other

simulation runs not included in this report show that most of the di↵erence in

the results comes from not conditioning on the ensemble member that is to be

updated. The e↵ect of including the new data in the conditioning set is clearly

visible, but still small compared to the e↵ect of not conditioning on the ensemble

member that is to be updated.

In the four lower plots in Figure 5 the latent true state vector is in most

positions outside the spread of the ensemble members. As such, these ensemble

members do not give a realistic representation of our information about x11. In

the two upper plots in the same figure, the latent true state is in most positions

inside the spread of the ensemble members. These ensembles may therefore give

a better representation of the uncertainty. However, the spread in the ensemble

members is larger in the upper left plot than in the upper right plot. So an

interesting question is therefore which of the two that gives the best representation

of our information about x11. It is of course not necessarily the procedure that

gives the largest spread that gives the best representation of uncertainty. To

provide one answer to this question, one can first observe that in a perfect model,

the variables xt,(1), . . . , xt,(M), xt are exchangeable. One way to measure to what

degree the spread of the ensemble members gives a realistic representation of the
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Figure 6: Gaussian linear example: Estimated distribution for Z in Eq. (49) when using
M = 19 ensemble members. The upper, middle and lower rows are when using our
proposed procedure for generating µt and Qt, when using the procedure of Myrseth
and Omre (2010) for the same, and when using empirical estimates, respectively.
The left and right columns are when updating with our optimal square-root filter
and when using the standard stochastic EnKF procedure, respectively.

uncertainty is therefore to study the distribution of

Z =
MX

i=1

1(x
t,(i)
j  xt

j), (49)

where the index j is sampled uniformly on the integers from 1 to n. In the per-

fect model Z has a uniform distribution on the integers zero to M . Repeating

the simulation procedures leading to the plots in Figure 5 one thousand times,

randomising also over the latent state vector, the plots in Figure 6 show the esti-

mated distributions for Z for each of the six filtering procedures. The four lower

plots in this figure just confirm what we saw in Figure 5, the latent state value
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is very often more extreme than all the ensemble members. The distributions in

the two upper plots are neither perfectly uniform, but we see that the distribu-

tion in the upper left plot is slightly closer to being uniform than the upper right

one. We thereby conclude that of the six procedures tried here, it is our proposed

procedure that best represents our knowledge about x11.

Above, we presented simulation experiments for the six ensemble updating

procedures we have defined, for a linear forward model and with M = 19 ensemble

members. We have also done similar simulation experiments for both smaller

and larger ensemble sizes M , and for the non-linear forward function discussed in

Section 6.1. There are two main lessons to learn from these experiments. The first

is that the di↵erences between the six methods gradually reduce when the number

of ensemble members increases, and for M large enough they all behave essentially

the same. It should, however, be remembered that in typical applications of the

EnKF, the dimension of the state vector, n, is much larger than the number of

ensemble members, M . As one example, the plots in Figure 7 are the same type

of plots as in Figure 6, but for runs with M = 199 ensemble members.

The second lesson we learn from the simulation experiments, is that the results

when using our non-linear forward function is quite similar to what we have for

the linear forward function. As one example, Figures 8 and 9 show similar plots

as in Figures 5 and 6, but for the non-linear forward function defined by Eqs. (46)

and (47). Again we see that the upper left plot in Figure 9 is the one closest to

being uniform. Also when using the non-linear forward function the di↵erences

between the six methods gradually vanish when the number of ensemble members,

M , increases. Of course, that the results for our non-linear forward function are

similar to the results for the linear function, does not imply that this is generally

true for all non-linear forward functions. We have for example not studied how the

various procedures perform with a forward function inducing skewed distributions

for the state vector.

7 Simulation example with a Markov chain as-

sumed model

In this section, we demonstrate the proposed updating procedure in a simula-

tion example where the state vector consists of binary variables and fxt|✓t(xt|✓t)

and fyt|xt(yt|xt) constitute an HMM as described in Section 5. We first describe
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Figure 7: Gaussian linear example: Estimated distribution for Z when using M = 199 en-
semble members. The upper, middle and lower rows are when using our proposed
procedure for generating µt and Qt, when using the procedure of Myrseth and Omre
(2010) for the same, and when using empirical estimates, respectively. The left and
right columns are when updating with our optimal square-root filter and when using
the standard stochastic EnKF procedure, respectively.
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Figure 8: Gaussian non-linear example: Prediction ensemble at time T = 11 when using
M = 19 ensemble members. The upper, middle and lower rows are when using our
proposed procedure for generating µt and Qt, when using the procedure of Myrseth
and Omre (2010) for the same, and when using empirical estimates, respectively. The
left and right columns are when updating with our optimal square-root filter and
when using the standard stochastic EnKF procedure, respectively. The ensemble
members are shown with solid lines and the latent true state is shown with red
crosses.
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Figure 9: Gaussian non-linear example: Estimated distribution for Z when using M = 19
ensemble members. The upper, middle and lower rows are when using our proposed
procedure for generating µt and Qt, when using the procedure of Myrseth and Omre
(2010) for the same, and when using empirical estimates, respectively. The left and
right columns are when updating with our optimal square-root filter and when using
the standard stochastic EnKF procedure, respectively.
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the experimental setup of the simulation example in Section 7.1, and thereafter

we present and discuss the simulation results in Section 7.2.

7.1 Experimental setup

The simulation example involves a state process {xt}T
t=1 with T = 100 time

steps, and the state vector xt at each time step is a vector of n = 400 binary

variables, xt
j 2 {0, 1}. The initial distribution px1(x1) and the forward model

pxt|xt�1(xt|xt�1) of the unobserved xt-process are the same as in the simulation

example of Loe and Tjelmeland (2021). For simplicity, we do not discuss the

technical details of this model here, but one should note that the generated state

vector xt at any time t is not a first-order Markov chain. Moreover, the process

is inspired by how water comes through to an oil-producing well in a petroleum

reservoir. In this context, we let the t in xt
j represent time and j the location in

the well, and the values zero and one represent oil and water, respectively. Hence,

the event xt
j = 0 indicates the presence of oil in location j at time t, while the

event xt
j = 1 indicates the presence of water.

An image of a state process {xt}T
t=1 generated using the true model specified

above is shown in Figure 10(a), where the colours black and white represent

the values zero (oil) and one (water), respectively. Based on this reference state

process, a corresponding observation process {yt}T
t=1 is generated by simulating,

independently for each time step t = 1, . . . , T and for each node j = 1, . . . , n,

an observation yt
j from a Gaussian distribution with mean xt

j and variance �2 =

22. Figure 10(b) shows a grey-scale image of the generated observation process.

Pretending that only the observations are available, the goal is to assess the

filtering distribution pxt|y1:t(xt|y1:t) for each time step t = 1, . . . , T .

As described in Section 5, the assumed model fxt|✓t(xt|✓t) is a first-order

Markov chain, and the parameter ✓t represents its initial and transition prob-

abilities. Moreover, ✓t is a vector of the Dirichlet distributed random variables

✓t
1 = (✓t

1(0), ✓t
1(1)),

✓t,0
j = (✓t,0

j (0), ✓t,0
j (1)),

and

✓t,1
j = (✓t,1

j (0), ✓t,1
j (1)),

for j = 2, . . . , n. The corresponding hyper-parameters ↵t
1(0), ↵t

1(1), ↵t,0
j (0),
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(a) (b) (c) (d)

j

t

Figure 10: First-order Markov chain simulation example: (a) the latent state process, (b)
the observations, (c) estimates of marginal filtering probabilities obtained with
the proposed Bayesian updating approach, and (d) estimates of marginal filtering
probabilities obtained with the standard updating approach. In all figures, the
colour black represents the value zero and the colour white represent the value
one.

↵t,0
j (1), ↵t,1

j (0), ↵t,1
j (1) are all set equal to 2 at every time step t. For the assumed

likelihood fyt|t(yt|xt) we use the same distribution as the one used to simulate the

data; that is, each distribution fyt
j |xt

j
(yt

j|xt
j) is a Gaussian with mean xt

j and vari-

ance �2 = 22. In the Gibbs simulation of ✓t,(i)|xt,�(i), yt, 100 iterations are used.

Finally, as in Loe and Tjelmeland (2021), we use the ensemble size M = 20.

7.2 Simulation results

To evaluate the performance of the proposed approach, we compare our results

with corresponding results obtained using the method of Loe and Tjelmeland

(2021). For simplicity, we refer in the following to the method proposed in the

present report as the Bayesian approach, and the method proposed in Loe and

Tjelmeland (2021) as the non-Bayesian or the standard approach.

Figures 10(c) and (d) show grey-scale images of estimated values p̂(xt
j = 1|y1:t)

of the marginal filtering probabilities pxt
j |y1:t(xt

j = 1|y1:t), j = 1, . . . , n, t = 1, . . . , T

obtained with the Bayesian and the non-Bayesian approach, respectively, where
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the estimate p̂(xt
j = 1|y1:t) is the empirical mean of the x̃

t,(i)
j -samples,

p̂(xt
j = 1|y1:t) =

1

M

MX

i=1

x̃
t,(i)
j . (50)

From a visual inspection, the output from the two approaches look very similar.

To investigate this further, we perform five independent runs of each method

and estimate the marginal filtering probabilities in each run. For each of the

two methods, we thereby obtain five samples, p̂(r)(xt
j = 1|y1:t), r = 1, . . . , 5, of

p̂(xt
j = 1|y1:t) in Eq. (50). Figure 11 shows plots of the empirical means of these

five samples for locations j = 1 to 100 at the (arbitrarily chosen) time step t = 50,

along with the corresponding minimum and maximum values of the five samples.

Equivalent output from other time steps t and for other locations j follow the

same trend and are therefore, for simplicity, not included. As seen in Figure 11,

the results from the two methods look very much the same. This may suggest that

the Bayesian approach o↵ers no considerable advantage over the standard, non-

Bayesian approach, at least not when it comes to estimating marginal filtering

probabilities.

Methodologically, the main di↵erence between the Bayesian and the non-

Bayesian approach is that ✓t is treated as random in the Bayesian approach.

More specifically, the Bayesian approach simulates a parameter value ✓t,(i) for

each ensemble member xt,(i), while the standard approach instead computes an

estimate, ✓̂t, and this same estimate ✓̂t is used to update all the forecast samples.

Therefore, since the Bayesian approach incorporates randomness in ✓t, one would

expect the spread, or the variability, in the samples from the Bayesian approach to

be greater than the variability in the samples from the standard approach, which

is also what we observed in the simulation example with the linear-Gaussian

model presented in the previous section. However, it appears that this is not the

case for the binary simulation experiment studied here. For continuous variables,

variability is easy to measure and visualise, but for categorical variables, other

techniques are necessary. To study the variability of the results in the categorical

context of this example, we consider the coe�cient of unalikeability (CU) of Kader

and Perry (2007). Given a set of independent random samples taking values in a

categorical sample space, the CU provides a measure for how unalike the samples

are. In the present simulation example, we are interested in computing the CU

of the filtering ensemble {x̃t,(1), . . . , x̃t,(M)} at each of the time steps t = 1, . . . , T .
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Figure 11: First-order Markov chain simulation example: The left plot shows the empirical
means (solid red line) of five estimated values p̂(xt

j = 1|y1:t) for the marginal

filtering probability pxt
j |y1:t(xt

j = 1|y1:t), j = 1, . . . , 100 obtained from five inde-

pendent runs of the Bayesian approach, along with the corresponding minimum
and maximum values (dotted black lines) of the five estimates. The right plot
shows corresponding output from the standard, non-Bayesian approach.

Hereafter, we denote the CU of {x̃t,(1), . . . , x̃t,(M)} by ut. Since x̃t,(i) is a vector

of n = 400 binary variables, there are 2400 possible configurations for x̃t,(i). Each

configuration can be interpreted as a (unique) category. Hence, each realisation

x̃t,(i) of the posterior ensemble corresponds to one of the 2400 possible categories.

However, we only have M = 20 ensemble members, which is not enough to give

an informative value for ut when the number of categories is so high. Therefore,

we consider first each four-tuple xt
j:j+3 = (xt

j, x
t
j+1, x

t
j+2, x

t
j+3), j = 1, . . . , n�3, of

xt separately. The number of possible configurations for each such four-tuple is

24 = 16, and from the posterior samples x̃
t,(1)
j:j+3, . . . , x̃

t,(M)
j:j+3 we can compute a co-

e�cient of unalikeability ut
j. After having computed ut

j for each four-tuple xt
j:j+3

of xt, we compute the mean, ūt, of all of them. This ūt then serves as an approxi-

mation for the actual CU, ut, of {x̃t,(1), . . . , x̃t,(M)}. Figure 12 shows a plot of the

values of ūt, t = 1, . . . , T , obtained with the Bayesian approach (red line) and the

standard approach (blue line). As one can see, the values of ūt from the Bayesian

approach very much coincide with the values from the standard approach, which

indicates a similar variability in the samples.

After several additional tests, both with di↵erent data {yt}T
t=1, di↵erent values



41

Figure 12: First-order Markov chain simulation example: Plots of the approximated coe�-
cients of unalikeability, ūt, computed at each time step t = 1, . . . , 100, for the
Bayesian approach (red) and the standard approach (blue).

for the observation noise �, and di↵erent values for the ensemble size M , it seems

that the variability in the results from the two approaches, and the results from

the two approaches in general, are very much alike. One possible reason for this,

is the optimality criterion for q(x̃t,(i)|xt,(i), ✓t, yt), i.e. the criterion of maximising

the expected number of unchanged components of xt,(i). Basically, the optimality

criterion states that we want to make minimal changes to the forecast samples,

and this results in that the distributions q(x̃t,(i)|xt,(i), ✓t,(i), yt), i = 1, . . . , M , from

the Bayesian approach and the distribution q(x̃t,(i)|xt,(i), ✓̂t, yt) from the standard

approach are all drawn towards each other. Consequently, the generated posterior

samples from the two approaches will be similar to each other. Another possible

reason for the lack of di↵ering variability is the binary nature of the problem.

More specifically, since both approaches capture the mean of xt
j quite well, they

must also capture the variance, as there is a one-to-one relationship between the

mean and variance for a binary random variable.

8 Closing remarks

In this report, a general framework for the updating of a prior ensemble to

a posterior ensemble is presented. Being able to update a prior ensemble to a

posterior ensemble is a crucial step in ensemble-based solutions to the filtering,

or data assimilation, problem. The proposed method is based on an assumed

Bayesian model and a proposed optimality criterion.

The general framework is investigated in two situations, one where the ele-

ments of the state vector are continuous variables and one where the elements
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are binary variables. In the continuous case, an assumed Gaussian distribution

is adopted for the state vector and a linear-Gaussian model for the observation.

This results in a class of updating methods where a fully Bayesian version of the

EnKF is a special case, and we prove that a particular square root filter is optimal

with respect to the optimality criterion of making minimal changes to each en-

semble member. In the binary case, the state and observation vectors are instead

assumed to constitute a binary HMM. The updating procedure is then essentially

the same as the one for binary vectors proposed in Loe and Tjelmeland (2021),

except now the transition probabilities of the assumed Markov chain model are

treated as random.

When studying the results of the simulation example with the linear-Gaussian

model, the most striking result is that the proposed approach is considerably

better than the traditional EnKF and the hierarchical EnKF of Myrseth and

Omre (2010) in representing the uncertainty. According to our analyses, the main

reason for this behaviour is that we do not condition on the ensemble member

which is to be updated when we simulate a corresponding vector of parameters.

That we do not observe the same dramatic e↵ect in the example with the HMM

may be because in that model the same parameters control both the mean and

the variance. As the non-Bayesian ensemble filtering method seems to capture

the mean quite well, it must also give a good representation of the variance.

Computational e�ciency is not a main focus in the present report. The dy-

namic programming procedure developed for the assumed HMM requires com-

puting time proportional to the number of elements in the state vector and is

thereby computationally e�cient. The updating procedure of the assumed linear-

Gaussian model requires inversion of n ⇥ n matrices, where n is the dimension

of the state vector, so this procedure is only computationally feasible for su�-

ciently small values of n. In typical applications of the EnKF, the state vector is

very large and computational e�ciency is therefore essential. In the EnKF, the

prior covariance matrix is estimated by the empirical covariance matrix of the

prior ensemble. The rank of the (estimated) covariance matrix is thereby limited

by the number of ensemble members, which is typically much smaller than the

dimension of the state vector. The low rank of the covariance matrix makes it

possible to rephrase the EnKF updating equation so that e�cient computation is

possible. In the proposed approach for the assumed linear-Gaussian model, the

generated covariance matrices are by construction of full rank. It should, however,

be possible to get computational e�ciency by restricting the inverse covariance
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matrices, i.e. precision matrices, to be sparse. To achieve this, a prior tailored to

produce sparse precision matrices must be constructed and the class of updating

distributions must be restricted to ensure that all necessary computations for the

updating can be performed on sparse matrices. The details of this is a direction

of future research.

In the present report, we have studied in detail two applications of the pro-

posed framework. In the future, it is of interest to explore also other assumed

models and other optimality criteria. It would in particular be interesting to

consider a situation where the state vector represents a two-dimensional lattice

of categorical variables. A possible assumed prior model is then a Markov mesh

model (Abend et al., 1965). It would also be interesting to apply the proposed

framework in a mixed discrete and continuous situation, i.e. a model where the

state vector consists of both discrete and continuous variables.
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A Proof of Example 3

Here, we prove the result of Example 3, i.e. that when Bt and St are as

specified in Eqs. (28) and (29), the linear update in Eq. (27) corresponds to the

stochastic EnKF update in Eq. (9).

We start by inserting the expression for Bt in Eq. (28) into Eq. (27). This

gives

x̃t,(i) = xt,(i) + Kt(yt � H txt,(i)) + ✏̃t,(i). (51)

Comparing Eq. (51) with the stochastic EnKF update in Eq. (9) we see that

it remains to show that the distribution of ✏̃t,(i) in Eq. (51) is identical to the

distribution of Kt✏t,(i) in Eq. (9). As both ✏̃t,(i) and ✏t,(i) are Gaussian with zero

mean, the distributions of ✏̃t,(i) and Kt✏t,(i) are equal if

Cov
⇥
✏̃t,(i)

⇤
= Cov

⇥
Kt✏t,(i)

⇤
.

Since we have Cov[✏̃t,(i)] = St, with St given by Eq. (29), and Cov[Kt✏t,(i)] =

KtRt(Kt)>, this means that we need to show that

(In � KtH t)Qt(Kt(H t)>) = KtRt(Kt)>,

or rather

(In � KtH t)Qt(H t)> = KtRt. (52)

In order to prove Eq. (52) we first prove that

�
(Qt)�1 + (H t)>(Rt)�1H t

��1
(Qt)�1 = In � KtH t (53)

and �
(Qt)�1 + (H t)>(Rt)�1H t

��1
(H t)>(Rt)�1 = Kt. (54)

To prove Eqs. (53) and (54) we make use of the following two formulations of the

Woodbury matrix identity,

�
(Qt)�1 + (H t)>(Rt)�1H t

��1
= Qt + Qt(H t)>

�
Rt + H tQt(H t)>

��1
H tQt, (55)
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�
Rt + H tQt(H t)>

��1

= (Rt)�1 � (Rt)�1H t
�
(Qt)�1 + (H t)>(Rt)�1H t

��1
(H t)>(Rt)�1. (56)

To prove Eq. (53), we start by inserting Eq. (55) on the left hand side in Eq. (53)

and use that the Kalman gain is given as Kt = Qt(H t)>
�
H tQt(H t)> + Rt

��1
,

�
(Qt)�1 + (H t)>(Rt)�1H t

��1
(Qt)�1

=
⇣
Qt + Qt(H t)>

�
Rt + H tQt(H t)>

��1
H tQt

⌘
(Qt)�1

= In � KtH t.

Thereby, we see that the left-hand-side and the right-hand-side in Eq. (53) are

equal, and Eq. (53) is thereby proved. To prove Eq. (54) we start by considering�
(Qt)�1 + (H t)>(Rt)�1H t

�
Kt, insert that Kt = Qt(H t)>

�
H tQt(H t)> + Rt

��1
,

and use the Woodbury identity in Eq. (56). Specifically,

�
(Qt)�1 + (H t)>(Rt)�1H t

�
Kt

=
�
(Qt)�1 + (H t)>(Rt)�1H t

�
Qt(H t)>

�
H tQt(H t)> + Rt

��1

=
�
(Qt)�1 + (H t)>(Rt)�1H t

�
Qt(H t)>

·
⇣
(Rt)�1 � (Rt)�1H t

�
(Qt)�1 + (H t)>(Rt)�1H t

��1
(Rt)�1

⌘

=
�
(H t)> + (H t)>(Rt)�1H tQt(H t)>

�

·
�
(Rt)�1 � (Rt)�1H t((Qt)�1 + (H t)>(Rt)�1H t)�1(Rt)�1

�

= (H t)>(Rt)�1 + (H t)>(Rt)�1H tQt(H t)>(Rt)�1

� (H t)>(Rt)�1H t
�
(Qt)�1 + (H t)>(Rt)�1H t

��1
(H t)>(Rt)�1

� (H t)>(Rt)�1H tQt(H t)>(Rt)�1H t
�
(Qt)�1 + (H t)>(Rt)�1H t

��1
(H t)>(Rt)�1

= (H t)>(Rt)�1 � (H t)>(Rt)�1H tQt

·
h
�In +

�
(Qt)�1 + (H t)>(Rt)�1H t

� �
(Qt)�1 + (H t)>(Rt)�1H t

��1
i
(H t)>(Rt)�1

= (H t)>(Rt)�1.

Hence, we have shown that

�
(Qt)�1 + (H t)>(Rt)�1H t

�
Kt = (H t)>(Rt)�1.

Multiplying by
�
(Qt)�1 + (H t)>(Rt)�1H t

��1
on both sides, we get Eq. (54). Now,

to prove Eq. (52) we insert Eq. (53) on the left hand side of Eq. (52) and insert
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Eq. (54) on the right hand side of Eq. (52). Specifically, the left hand side of Eq.

(52) then reads

(In � KtH t)Qt(H t)> =
�
(Qt)�1 + (H t)>(Rt)�1H t

��1
(Qt)�1Qt(H t)>

=
�
(Qt)�1 + (H t)>(Rt)�1H t

��1
(H t)>, (57)

while the right hand side reads

�
(Qt)�1 + (H t)>(Rt)�1H t

��1
(H t)>(Rt)�1Rt

=
�
(Qt)�1 + (H t)>(Rt)�1H t

��1
(H t)>. (58)

We see that the expressions in Eqs. (57) and (58) are equal, and the proof is

complete.

B Proof of Theorem 1

For any real matrices M and N of equal dimension, let hM, Ni denote the

Frobenius inner product,

hM, Ni = tr(MN>)

The Cauchy-Schwarz inequality, |hM, Ni|2  hM, MihN, Ni, then gives

tr(MN>)2  tr(MM>)tr(NN>)

with equality if and only if there exists a constant c 2 R such that M = cN .

Using the singular value decomposition of Z, i.e. Z = PGF>, we can write

tr(B̃Z) = tr(B̃PGF>) = tr(B̃PG
1
2 (FG

1
2 )>).

The Cauchy-Schwarz inequality for tr
⇣
B̃PG

1
2 (FG

1
2 )>
⌘

with M = B̃PG
1
2 and

N = FG
1
2 then gives

tr
⇣
B̃Z
⌘2

 tr
⇣
B̃PG

1
2 (B̃PG

1
2 )>
⌘

tr
⇣
FG

1
2 (FG

1
2 )>
⌘

(59)

with equality if and only if there exists a number c 2 R such that

B̃PG
1
2 = cFG

1
2 () B̃ = cFP>.
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Using basic trace properties and that B̃>B̃ = In � S̃ and F>F = P>P = In, the

right hand side in (59) can be rewritten as

tr
⇣
B̃PG

1
2 (B̃PG

1
2 )>
⌘

tr
⇣
FG

1
2 (FG

1
2 )>
⌘

= tr
⇣
B̃PGP>B̃>

⌘
tr
�
FGF>�

= tr
⇣
PGP>B̃>B̃

⌘
tr
�
GF>F

�

= tr
⇣
PGP>(I � S̃)

⌘
tr (G)

=
⇣
tr
�
PGP>�� tr

⇣
PGP>S̃

⌘⌘
tr(G)

=
⇣
tr(G) � tr(PGP>S̃)

⌘
tr(G).

When S̃ = 0, we see that the Cauchy-Schwarz inequality yields

tr(B̃Z)2  tr(G)2

with equality if and only if there exists c 2 R such that B̃ = cFP>. The condition

that S̃ = In� B̃>B̃ = 0 gives restrictions on the allowed values for c. Specifically,

In � B̃>B̃ = In � (cFP>)>(cFP>) = In � c2PF>FP>

= (1 � c2)In = 0 () c = ±1.

Hence, when S̃ = 0, the maximum value of tr(B̃Z)2 is tr(G)2 and this occurs only

for B̃ = ±FP>. The maximum value of tr(B̃Z) is thereby tr(G) which occurs

when c = 1, i.e. for B̃ = FP>.

When S̃ 6= 0, we need to study the sign of tr
⇣
PGP>S̃

⌘
. Since G is a diagonal

matrix we get

tr
⇣
PGP>S̃

⌘
= tr

⇣
GP>S̃P

⌘
=

nX

i=1

Gii(P
>S̃P )ii.

We have assumed Z to have full rank, so all singular values of Z are strictly

positive, i.e. Gii > 0 for each i. Let S̃ have singular value decomposition S̃ =



49

WJW>. We then get

(P>S̃P )ii =
�
P>WJW>P

�
ii

=
�
(W>P )>JW>P

�
ii

=
nX

k=1

Jkk

�
W>P

�2
ki

.

Since we have assumed S̃ 6= 0 at least one of the singular values of S̃ must be

strictly positive, i.e. we have at least one Jkk > 0. Without loss of generality

we assume in the following that J11 > 0. Since both P and W are orthogonal

matrices W>P is also orthogonal. Thereby there exists at least one index i such

that (W>P )1i > 0. For this value of i we then have

(P>S̃P )ii � J11(W
>P )2

1i > 0.

Thereby, since P>S̃P is positive semidefinite,

tr
⇣
PGP>S̃

⌘
� Gii(P

>S̃P )ii > 0.

Thus,

|tr(B̃Z)| 
r⇣

tr(G) � tr(PGP>S̃)
⌘

tr(G) < tr(G).

We thereby see that the maximum value of tr(B̃Z) when S̃ 6= 0 is smaller than

its maximum value when S̃ = 0. The maximum value of tr(B̃Z) must therefore

occur when S̃ = 0 and B̃ = FP>, and the proof is complete.
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Abstract

An ensemble updating method for categorical state vectors is presented.

The method is based on a Bayesian and generalised view of the ensemble

Kalman filter (EnKF). In the EnKF, Gaussian approximations to the fore-

cast and filtering distributions are introduced, and the forecast ensemble is

updated with a linear shift. Given that the Gaussian approximation to the

forecast distribution is correct, the EnKF linear update corresponds to con-

ditional simulation from a Gaussian distribution with mean and covariance

such that the posterior samples marginally are distributed according to the

Gaussian approximation to the filtering distribution. In the proposed ap-

proach for categorical vectors, the Gaussian approximations are replaced

with other parametric models, appropriate for the categorical context, and

instead of a linear update, we characterise, for each forecast ensemble mem-

ber, a class of decomposable graphical models (DGMs) for simulating a

corresponding posterior ensemble member. To make the update robust

against the assumptions of the assumed forecast and filtering distributions,

an optimality criterion is formulated. The proposed framework is Bayesian

in the sense that the parameters of the assumed forecast distribution are

treated as random. We study in detail the proposed framework when a

(possibly higher-order) Markov chain is adopted for the forecast model.

The optimal DGM can then be constructed by solving a linear program. A
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simulation example where each variable of the state vector can take three

di↵erent values is presented.

Keywords: Bayesian statistics; Data assimilation; Ensemble updating; Markov chains

1 Introduction

State-space models are widely used to analyse dynamic data in a broad range

of scientific disciplines, e.g. in finance, reservoir modelling, weather forecasting,

and signal processing. A general state-space model consists of an unobserved

process {xt}T
t=1 and a corresponding observed process {yt}T

t=1 where yt is a partial

observation of xt. The unobserved xt-process, usually called the state process, is

assumed to be a first-order Markov process, and the observations y1, . . . , yT of

the observed process are assumed to be conditionally independent given {xt}T
t=1

with yt only depending on xt. The main objective of state-space modelling is

some type of inference about the state process given the observations. There are

many inference procedures associated with state-space models, among which one

of the most common is filtering. Filtering, which is the problem addressed in the

present article, refers to the task of computing, for each time step t = 1, . . . , T ,

the distribution of the state xt given all observations y1:t = (y1, . . . , yt) available

at time t. In some fields, filtering is known as sequential data assimilation. Other

common terms are history matching and online inference. However, in the present

article, we use the term filtering throughout.

Because of the particular dependency structure of the general state-space

model, the series of filtering distributions can be computed recursively according

to a recursion which alternates between a forecast step and an update step. Gen-

erally, however, apart from a few simple special cases, the exact solution to the fil-

tering recursions is intractable due to complex and/or high-dimensional integrals.

Approximate strategies are therefore required, and simulation-based methods, or

ensemble methods, represent the most popular approach. An ensemble-based

solution may, similarly to the original filtering recursions, alternate between a

forecast step and an update step. Instead, however, of computing the forecast

and filtering distributions explicitly, the distributions are represented empirically

with an ensemble of realisations. The main challenge in this context is the update

step where, at time step t, an ensemble of (approximate) realisations from the so-

called forecast distribution pxt|y1:t�1(xt|y1:t�1) needs to be conditioned on the new
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observation yt so that an updated ensemble of (approximate) realisations from the

filtering distribution pxt|y1:t(xt|y1:t) is obtained. Since there is no straightforward

way to approach this task, ensemble methods require approximations in the up-

date step. This ensemble updating problem is the core focus of the present paper.

In particular, we address the problem of updating an ensemble of categorical state

vectors and we present in detail an approximate ensemble updating method for

this situation.

Among the ensemble filtering methods that have currently been proposed in

the literature there are two main categories; particle filters (Gordon et al., 1993;

Doucet et al., 2001) and ensemble Kalman filters (EnKFs) (Burgers et al., 1998;

Evensen, 2003; Tippett et al., 2003). Particle filters are based on importance

sampling while EnKFs rely on a linear-Gaussian assumption about the underlying

state-space model. Particle filters have the advantage of being asymptotically

exact in the sense that as the ensemble size goes to infinity, the filters converge

to the exact filtering solution. In practical applications, however, computational

resources often restrict the ensemble size to be quite small, and particle filters are

known to collapse unless the ensemble size is very large compared to the state

dimension (Snyder et al., 2008). For the EnKF, the solution is always biased

unless the underlying state-space model really is linear-Gaussian. Despite this

fact, the EnKF often performs remarkably well also in non-linear, non-Gaussian

situations and, unlike the particle filter, also scales well to problems with very

high-dimensional states. The filter is, however, inappropriate in situations with

categorical vectors, as considered in the present paper.

Loe and Tjelmeland (2021a), in a follow-up study to Loe and Tjelmeland

(2021b), present an alternative solution to the ensemble updating problem based

on a generalised view of the EnKF. Specifically, they describe a general updating

framework where the idea is to first introduce assumed models for the intractable

forecast and filtering distributions and thereafter to update the prior samples

by simulating samples from a distribution which, under the assumption that the

assumed forecast distribution is correct, preserves the corresponding assumed fil-

tering distribution. To make the update robust against the assumptions of the

assumed forecast and filtering models, the distribution from which the posterior

samples are simulated is also required to be optimal with respect to a chosen

optimality criterion. More specifically, the updating distribution is required to

minimise the expected value of a certain distance, or norm, between a prior (fore-

cast) and posterior (filtering) ensemble member. The framework is also Bayesian
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in the sense that the parameters of the forecast distribution are treated as ran-

dom variables. Uncertainty about these parameters are thereby incorporated into

the updating. Two particular applications of the proposed framework are inves-

tigated, one continuous and one categorical. In the continuous case, the assumed

forecast and filtering models are chosen as Gaussian distributions and the op-

timality criterion is to minimise the expected Mahalanobis distance between a

prior and posterior ensemble member. The framework then leads to a Bayesian

version of square root EnKF (Bishop et al., 2001; Whitaker and Hamill, 2002;

Tippett et al., 2003). In the categorical case, the assumed forecast and filtering

distributions are instead chosen as first-order Markov chains and the optimality

criterion is to minimise the expected number of variables of a prior state vector

that change their values. An optimal transition matrix for simulating a posterior

ensemble member from a corresponding prior ensemble member is constructed

using a combination of dynamic and linear programming.

There are three important limitations about the updating procedure for cat-

egorical state vectors proposed in Loe and Tjelmeland (2021a). Firstly, the pro-

cedure is di�cult to implement except in the binary case where there are only

two possible values for each variable of the state vector. Consequently, the au-

thors only demonstrate the method in binary numerical experiments. Secondly,

the approximation to the forecast distribution is restricted to be a first-order

Markov chain. This means that models with higher-order interactions, for exam-

ple a higher-order Markov chain, cannot be considered. Thirdly, the procedure

is not applicable in two- or three-dimensional problems since it requires that the

state vector has a one-dimensional spatial arrangement. In the present article, we

address the first and second of these three issues. Specifically, we present a mod-

ified and improved version of the updating procedure applicable also for K > 2

classes and which allows the use of a higher-order Markov chain as the approx-

imate forecast distribution. In the procedure described in Loe and Tjelmeland

(2021a), a model with respect to a directed acyclic graph (DAG) is put forward

to update each forecast realisation. The chosen structure of the DAG allows the

corresponding optimal updating distribution to be computed recursively using

a dynamic programming algorithm where a piecewise-linear programming prob-

lem is solved in each recursive step. In the present article, the starting point

is, instead of a DAG model, an undirected graphical model. By choosing the

underlying graph as decomposable (Cowell et al., 1999), we get a model with

many convenient computational properties, and the optimal updating distribu-
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tion can be computed by solving a linear program derived from a series of local

computations on the undirected graphical model.

The remains of this paper take the following outline. In Section 2, we re-

view state-space models and the associated filtering problem in more detail, and

we also present some basic graph theory required to understand the proposed

approach. In Section 3, we present a slightly modified version of the general en-

semble updating framework in Loe and Tjelmeland (2021a), restricting the focus

to categorical state vectors. In Section 4, we describe in detail how the general

framework can be applied when a Markov chain model, possibly of higher order, is

adopted for the assumed forecast distribution. Thereafter, we present in Section

5 a simulation example where each element of the state vector can take K = 3

values. Finally, we finish o↵ with a few closing remarks in Section 6.

2 Preliminaries

This section describes the filtering problem in more detail and also reviews

some graph-theoretic concepts related to the proposed approach. The section

also introduces notations that we use throughout the paper.

2.1 The filtering problem

A general state-space model consists of an unobserved process {xt}T
t=1, x

t 2 ⌦x,

called the state process, and a corresponding observed process {yt}T
t=1, y

t 2 ⌦y,

called the observation process, where yt is a partial observation of xt at time t.

The unobserved state process {xt}T
t=1 is modelled as a first-order Markov chain

with initial distribution px1(x1) and transition probabilities pxt|xt�1(xt|xt�1), t =

2, . . . , T . Throughout this paper, we use the notations xs:t = (xs, . . . , xt) and

ys:t = (ys, . . . , yt), s  t, to denote the vector of all states and the vector of all

observations, respectively, from time s to time t. The joint distribution of x1:T

follows from the first-order Markov assumptions as

px1:T (x1:T ) = px1(x1)
TY

t=2

pxt|xt�1(xt|xt�1).

For the observation process, it is assumed that y1, . . . , yT are conditionally inde-

pendent given x1:T , with yt only depending on xt. The conditional distribution
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of y1:T given x1:T thereby follows as

py1:T |x1:T (y1:T |x1:T ) =
TY

t=1

pyt|xt(yt|xt).

It is possible to adjust the state-space model formulated above so that observa-

tions are only recorded at a subset of the time steps from 1 to T . However, for

simplicity, we assume in this work that an observation is recorded at every time

step t = 1, . . . , T .

The objective of the filtering problem is, for each time step t = 1, . . . , T , to

compute the so-called filtering distribution, pxt|y1:t(xt|y1:t), i.e. the distribution of

the latent state xt given all the observations y1:t available at time t. Because of the

particular structure of the state-space model, the series of filtering distributions

can be computed recursively according to a recursion which alternates between a

forecast step,

pxt|y1:t�1(xt|y1:t�1) =

Z

⌦x

pxt|xt�1(xt|xt�1)pxt�1|y1:t�1(xt�1|y1:t�1)dxt�1, (1)

and an update step,

pxt|y1:t(xt|y1:t) =
pxt|y1:t�1(xt|y1:t�1)pyt|xt(yt|xt)

pyt|y1:t�1(yt|y1:t�1)
, (2)

where

pyt|y1:t�1(yt|y1:t�1) =

Z

⌦x

pxt|y1:t�1(xt|y1:t�1)pyt|xt(yt|xt)dxt. (3)

The distribution pxt|y1:t�1(xt|y1:t�1) computed in the forecast step is called the

forecast distribution of xt. In the update step, this distribution is conditioned

on the new observation yt in order to compute the filtering distribution of xt,

pxt|y1:t(xt|y1:t). The update step is essentially a standard Bayesian inference prob-

lem with the forecast distribution becoming the prior and the filtering distribution

the posterior.

There are two important special cases where the filtering recursions can be

computed exactly. The first is the linear-Gaussian model where the initial distri-

bution px1(x1) is Gaussian and where pxt|xt�1(xt|xt�1) and pyt|xt(yt|xt) are Gaus-

sian with mean vectors being linear functions of xt�1 and xt, respectively. The

forecast and filtering distributions are then also Gaussian and Eqs. (1) and (2)

lead to the famous Kalman filter (Kalman, 1960). The second situation where the
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filtering recursions are tractable is the finite state-space hidden Markov model for

which the state-space ⌦x consists of a finite number of values. The integrals in

Eqs. (1) and (3) then reduce to finite sums. If, however, the number of states in

⌦x is large, for example if xt is a high-dimensional vector of categorical variables,

the summations become too computer-demanding to cope with, and the filtering

recursions are left computationally intractable.

Generally, the integrals in Eqs. (1) and (3) make the recursive solution to the

filtering problem intractable, and approximate solutions therefore become neces-

sary. The most popular approach is the class of ensemble-based methods, where a

set of samples, an ensemble, is used to empirically represent the sequence of filter-

ing distributions. A great advantage of the ensemble context is that it simplifies

the forecast step. Specifically, if an ensemble {zt,(1), . . . , zt,(M)} of independent

realisations from the filtering distribution pxt|y1:t(xt|y1:t) is available, a forecast

ensemble {xt+1,(1), . . . , xt+1,(M)} with independent realisations from the forecast

distribution pxt+1|y1:t(xt+1|y1:t) can be obtained by simulating

xt+1,(i)|zt,(i) ⇠ pxt+1|xt(·|zt,(i))

independently for i = 1, . . . , M . The consecutive updating of the ensemble, how-

ever, remains challenging. There is simply no straightforward way to condition

the forecast ensemble {xt+1,(1), . . . , xt+1,(M)} on the new observation yt+1 so that

a new filtering ensemble {zt+1,(1), . . . , zt+1,(M)} of independent realisations from

the filtering distribution pxt+1|y1:t+1(xt+1|y1:t+1) is obtained. In the present article,

we propose an approximate way to do this when the elements of the state vector

are categorical variables.

2.2 Decomposable graphical models (DGMs)

This section introduces decomposable graphical models (DGMs), a certain

type of undirected graphical models, or Markov random fields (Kindermann and

Snell, 1980; Cressie, 1993; Cowell et al., 1999). For simplicity, the focus is re-

stricted to discrete DGMs. In the following, we start with a brief review of some

basic theory on undirected graphs in Sections 2.2.1 and 2.2.2. Thereafter, discrete

DGMs are introduced in Section 2.2.3, while Sections 2.2.4 and 2.2.5 consider sim-

ulation from discrete DGMs. A more thorough introduction to graph theory and

graphical models can be found in, e.g., Cowell et al. (1999).
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1

2 3

4

Figure 1: An undirected graph with four vertices

2.2.1 Undirected graphs

An undirected graph G is an ordered pair G = (V, E) where V is a set of

vertices, or nodes, and E ⇢ {V ⇥ V } is a set of edges. The elements of the

edge set E are pairs of distinct nodes, {i, j}, i, j 2 V , i 6= j. If {i, j} 2 E then

node i and node j are said to be neighbours, or adjacent. Figure 1 illustrates a

simple undirected graph with four vertices where, as per convention, vertices are

represented by labelled circles and edges by lines between the circles. For this

graph we have V = {1, 2, 3, 4} and E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}.

If there is an edge between every pair of nodes in a graph G, the graph is

said to be complete. A subgraph of G is a graph GA = (A, EA) where A ✓ V

and EA ✓ E \ {A ⇥ A}. If a subgraph GA = (A, EA) of G is complete, its

set of nodes A is called a clique. A clique is called a maximal clique in G if

it is not a subset of another clique. Throughout this article, we denote the set

of maximal cliques by C. For the graph pictured in Figure 1, the empty set ;
and {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {2, 3}, {3, 4}, and {1, 2, 3} are cliques, while

{1, 2, 3} and {3, 4} are maximal cliques.

A path of length n from node i to node j is a sequence (↵0, . . . , ↵n) of distinct

nodes where ↵0 = i and ↵n = j and {↵k�1, ↵k} 2 E, k = 1, . . . , n. Note that this

means that if there is a path from node i to node j in an undirected graph, there

is also a path from node j to node i. For the graph pictured in Figure 1, there are

two paths from node 1 to node 4: (1, 2, 3, 4) and (1, 3, 4). Two nodes i and j are

said to be connected if there is a path from node i to node j, and an undirected

graph is said to be connected if every pair of vertices are connected. A tree is a

connected undirected graph with the additional property that the path between

every pair of vertices is unique. The graph in Figure 1 is thus not a tree since

there are di↵erent paths between some of the vertices.
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{1, 2, 3} {3} {3, 4, 5} {4, 5} {4, 5, 6}

(a) (b)

Figure 2: (a) A decomposable graph, and (b) a corresponding junction tree representation

2.2.2 Decomposable graphs and junction trees

An undirected graph G = (V, E) is decomposable if the set of maximal cliques

C = {c1, . . . , c|C|}, where |C| denotes the number of maximal cliques, can be

ordered as (c1, . . . , c|C|) so that for each i = 1, . . . , |C| � 1 there is a j > i such

that

si = ci \ (ci+1 [ · · · [ c|C|) ✓ cj. (4)

The property in Eq. (4) is called the running intersection property, and the sets

s1, . . . , s|C|�1 are called the separators of the graph. The set of all separators,

S = {s1, . . . , s|C|�1}, and the set of maximal cliques, C, are uniquely determined

by the structure of the graph G; however, the ordering (c1, . . . , c|C|) is generally

not unique. Figure 2(a) shows a simple decomposable graph with six vertices.

The maximal cliques of this graph are {1, 2, 3}, {3, 4, 5} and {4, 5, 6}, and the

separators are {3} and {4, 5}. If we order the maximal cliques as (c1, c2, c3) =

({1, 2, 3}, {3, 4, 5}, {4, 5, 6}), we find the corresponding ordering (s1, s2) of the

separators as s1 = {3} = {1, 2, 3} \ ({3, 4, 5} [ {4, 5, 6}) ✓ c2 and s2 = {4, 5} =

{3, 4, 5} \ {4, 5, 6} ✓ c3.

From a decomposable graph, a corresponding junction tree can be derived. A

junction tree J for a decomposable graph G is a tree with C = {c1, . . . , c|C|} as

its node set and the additional property that for every pair ci, cj 2 C every node

on the unique path between ci and cj in J contains the intersection ci \ cj. In a

visual representation of a junction tree, it is common to include the separators as

squared labels on the edges. This is illustrated in Figure 2(b) which shows one of

the possible junction tree representations for the decomposable graph in Figure

2(a).

A junction tree is a nice way to organise a decomposable graph, and many com-

putations are easier to perform on the junction tree. Depending on the structure
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of the graph, however, it can be a complicated task to construct a corresponding

junction tree. There exist several algorithms for this purpose, see Cowell et al.

(1999). In all the examples we encounter in the present article, the decomposable

graphs have a structure which makes it particularly simple to construct junction

trees, and therefore we do not focus on the problem of constructing junction trees

in this paper.

2.2.3 Discrete decomposable graphical models

A discrete decomposable graphical model (DGM) is a probabilistic model con-

sisting of a decomposable graph G = (V, E), a random vector x = (xi, i 2 V ) of

categorical variables xi 2 {0, 1, . . . , K � 1}, and a probability distribution px(x).

Alternatively, a discrete DGM can be defined as a discrete Markov random field

whose underlying graph is decomposable. In the following, the notation xA is used

to denote the variables of x associated with the subset A ✓ V , and ⌦xA
✓ ⌦x

denotes the sample space of xA. Taking 0/0 = 0, the distribution px(x) of a

discrete DGM can be expressed as

px(x) =

Q
c2C pxc(xc)Q
s2S pxs(xs)

, (5)

where C is the set of maximal cliques in G and S is the set of separators (Cowell

et al., 1999). DGMs support several e�cient algorithms and are fundamental for

the work of this article. In particular, it should be noted that, if (c1, . . . , c|C|) is

an ordering of the maximal cliques fulfilling the running intersection property in

Eq. (4) and (s1, . . . , s|C|�1) is the corresponding ordering of the separators, we

have

pxsi
(xsi

) =
X

xci\si

pxci
(xci

) =
X

xci+1\si

pxci+1
(xci+1

) for all xsi
2 ⌦xsi

. (6)

2.2.4 Simulation from discrete DGMs

Consider a discrete DGM px(x) with respect to a graph G = (V, E). To simu-

late a realisation from px(x), a recursive procedure can be adopted, which goes as

follows. First, px(x) is decomposed into pxi|xV \{i}(xi|xV \{i}) and pxV \{i}(xV \{i}) for

some i 2 V . Thereafter, pxV \{i}(xV \{i}) is decomposed into pxj |xV \{i,j}(xj|xV \{i,j})

and pxV \{i,j}(xV \{i,j}) for some j 2 V \ {i}. Then, pxV \{i,j}(xV \{i,j}) is decomposed

into pxk|xV \{i,j,k}(xk|xV \{i,j,k}) and pxV \{i,j,k}(xV \{i,j,k}) for some k 2 V \{i, j}. Con-
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tinuing in this manner, we ultimately end up with only one variable xl and cor-

responding marginal distribution pxl
(xl). A realisation x ⇠ px(·) can then be

generated by recursively simulating from the series of conditional distributions,

in the reverse order as they were computed. Without loss of generality, suppose

that the vertex set is V = {1, . . . , n} and that the nodes have been numbered so

that nodes are removed in the order from n to 1. This means that we make us of

the following factorisation of px(x):

px(x) = px1(x1)
nY

i=2

pxi|x1:i�1
(xi|x1:i�1). (7)

Having computed all the factors in Eq. (7), simulation from px(x) follows easily

by first simulating x1 ⇠ px1(·), thereafter x2|x1 ⇠ px2|x1(·|x1), and so on. The

recursive procedure described above, as well as the factorisation in Eq. (7), is

general and holds for any distribution px(x), not necessarily a discrete DGM.

However, for many models, it is not convenient to factorise px(x) in this manner,

since it can be a complicated task to compute all the factors. If the model is a

DGM, however, and a corresponding junction tree J is available, computations

become particularly easy and e�cient, as we discuss in the following.

First, note that the distribution in Eq. (5) can be expressed as

px(x) / exp

(X

c2C

Vc(xc)

)
, (8)

where Vc(xc) in this context is called a potential function for clique c. With the

junction tree J given, it is convenient to start the decomposition of px(x) in a

leaf of J . Denote the clique to which the chosen leaf corresponds by c⇤. Since

c⇤ is a leaf of J , there is at least one node i 2 V which is only present in c⇤.

Suppose, without loss of generality, that the nodes have been numbered so that

this is the case for node n, i.e. that node n is only contained in clique c⇤. We

can then easily decompose px(x) into pxn|x1:n�1(xn|x1:n�1) and px1:n�1(x1:n�1) as

follows. Since node n is only contained in clique c⇤, the variable xn only enters

the right-hand-side expression in Eq. (8) through the potential function Vc⇤(xc⇤).

This means that pxn|x1:n�1(xn|x1:n�1) can be computed as

pxn|x1:n�1(xn|x1:n�1) =
exp {Vc⇤(xc⇤)}P
xn

exp {Vc⇤(xc⇤)}
. (9)
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The other part, px1:n�1(x1:n�1), can be computed, up to a constant of proportion-

ality, by summing out xn from Eq. (8),

p(x1:n�1) /
X

xn

0
@exp

8
<
:
X

c2C\c⇤

Vc(xc)

9
=
; exp {Vc⇤(xc⇤)}

1
A .

Using that node n is only contained in clique c⇤, we can rewrite this expression

as

px1:n�1(x1:n�1) / exp

8
<
:
X

c2C\c⇤

Vc(xc)

9
=
;
X

xn

exp {Vc⇤(xc⇤)} . (10)

That is, we only need to sum over xn in exp {Vc⇤(xc⇤)}. Now, if we define a new

potential function for the clique c⇤ \ {n},

Vc⇤\{n}(xc⇤\{n}) = log

 X

xn

exp {Vc⇤(xc⇤)}
!

,

we can rewrite Eq. (10) in the more convenient form

px1:n�1(x1:n�1) / exp

8
<
:
X

c2C\c⇤

Vc(xc)

9
=
; exp

�
Vc⇤\{n}(xc⇤\{n})

 
. (11)

It is not necessary to compute the normalising constant in Eq. (11) in order for

the remaining computations to proceed.

Next, we must split px1:n�1(x1:n�1) into pxn�1|x1:n�2(xn�1|x1:n�2) and

px1:n�2(x1:n�2). For this, consider first the junction tree JV \{n} we obtain after

removing node n from c⇤ in J . Removing node n from c⇤ can a↵ect the structure

of JV \{n} in two di↵erent ways: either JV \{n} has the same number of nodes as J ,

or it has one node less. To understand why, consider the clique c⇤ \ {n} that we

obtain after removing node n from c⇤. Moreover, let c̃ denote the neighbour of c⇤

in J and let GV \{n} denote the graph obtained by removing node n from G. For

the clique c⇤ \ {n}, there are now two possibilities: either it is a subset of c̃, i.e.

c⇤\{n} ✓ c̃, or it is not a subset of c̃, i.e. c⇤\{n} 6✓ c̃. If c⇤\{n} 6✓ c̃, then c⇤\{n}
is a maximal clique in the graph GV \{n}, and JV \{n} is essentially the same tree

as J except that c⇤ is replaced with c⇤ \{n}. The clique c⇤ \{n} then represents a

leaf in JV \{n}, and we can decompose px1:n�1(x1:n�1) into pxn�1|x1:n�2(xn�1|x1:n�2)
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and px1:n�2(x1:n�2) in the same manner as we decomposed px(x) above. If, on the

other hand, c⇤ \ {n} ✓ c̃, we must merge c⇤ \ {n} and c̃ before we can proceed.

Specifically, this entails that we need to define a new clique potential for c̃, namely

as the sum of the potential function for c⇤\{n} and the current potential function

for c̃,
eVc̃(xc̃) = Vc̃(xc̃) + Vc⇤\{n}(xc⇤\{n}).

We can then rewrite Eq. (11) as

px1:n�1(x1:n�1) / exp

8
<
:

X

c2C\{c⇤,c̃}
Vc(xc)

9
=
; exp

n
eVc̃(xc̃)

o
. (12)

After merging the cliques, we can decompose px1:n�1(x1:n�1) in Eq. (12) into

px1:n�2(x1:n�2) and pxn�1|x1:n�2(xn�1|x1:n�2) in the same manner as we decomposed

px(x) into px1:n�1(x1:n�1) and pxn|x1:n�1(xn|x1:n�1) above. Notice, however, that

it is possible that c̃ is not a leaf in JV \{n}. If so, we must move to a clique

which does represent a leaf, and decompose px1:n�1(x1:n�1) by removing a node

and corresponding variable from this clique.

Ultimately, we end up computing px1(x1). A realisation from px(x) can then

be obtained by first simulating x1 ⇠ px1(·), thereafter x2|x1 ⇠ px2|x1(·|x1), then

x3|x1, x2 ⇠ px3|x1,x2(·|x1, x2), and so on.

2.2.5 Conditional simulation from discrete DGMs

Suppose again that px(x) is a discrete DGM with respect to a graph G =

(V, E), and let J be a junction tree for G. In the previous section, we described

how to simulate from px(x). Now, we address the closely related problem of how

to simulate from the conditional distribution pxA|xV \A
(xA|xV \A), A ⇢ V . First,

note that

pxA|xV \A
(xA|xV \A) / pxA,xV \A

(xA, xV \A) = px(x). (13)

By inserting values for xV \A in Eq. (13), we obtain an expression

for pxA|xV \A
(xA|xV \A) up to a constant of proportionality. Thus, since

pxA|xV \A
(xA|xV \A) is also a discrete DGM, we can simulate from pxA|xV \A

(xA|xV \A)

using the recursive procedure described in Section 2.2.4, as this procedure only re-

quires that pxA|xV \A
(xA|xV \A) is known up to a constant of proportionality. Before

starting the computations, however, a new graph GA and corresponding junction

tree JA must be constructed for pxA|xV \A
(xA|xV \A), and the clique potentials for
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Figure 3: (a) The subgraph GA with A = {1, 2, 5, 6} for the graph in Figure 2, and (b) the
corresponding junction tree JA

the maximal cliques of GA must be computed. The graph GA is simply obtained

by removing the nodes V \ A from V and all edges {i, j} from E where i 2 V \ A

and/or j 2 V \ A.

As an illustrative example, consider a DGM with respect to the graph in

Figure 2(a). Suppose values for x3 and x4 are given and that we want to simulate

from the conditional distribution p(x1, x2, x5, x6|x3, x4),

px1,x2,x5,x6|x3,x4(x1, x2, x5, x6|x3, x4)

/ exp{V{1,2,3}(x1, x2, x3) + V{3,4,5}(x3, x4, x5) + V{4,5,6}(x4, x5, x6)}.

For this toy example, we have A = {1, 2, 5, 6} and V \ A = {3, 4}. The graph GA

is shown in Figure 3(a) and the junction tree JA is shown in Figure 3(b). The

graph GA only has two maximal cliques, {1, 2} and {5, 6}, and the separator is

simply the empty set ;. The potential functions corresponding to the maximal

cliques {1, 2} and {5, 6} become, respectively,

eV{1,2}(x1, x2) = V{1,2,3}(x1, x2, x3)

and
eV{5,6}(x5, x6) = V{3,4,5}(x3, x4, x5) + V{4,5,6}(x4, x5, x6),

where now x3 and x4 are constant values. With GA, JA and these potential

functions given, we can simulate from

px1,x2,x5,x6|x3,x4(x1, x2, x5, x6|x3, x4) / exp
n
eV{1,2}(x1, x2) + eV{5,6}(x5, x6)

o

using the procedure described in Section 2.2.4.
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3 General updating framework for categorical

vectors

In this section, we describe a general ensemble updating framework for categor-

ical state vectors. The framework is a slightly modified version of the framework

presented in Loe and Tjelmeland (2021a) and involves the following steps. First,

for each sample xt,(i) of the prior ensemble, a Bayesian model is adopted for the

updating of xt,(i) to zt,(i). Then, a class of ’updating distributions’, specifically a

class of DGMs, for simulating the posterior sample zt,(i) conditionally on xt,(i), is

characterised. Finally, an optimality criterion is formulated so that a correspond-

ing optimal updating distribution can be computed. The optimality criterion

is chosen to make the updating robust against the assumptions of the assumed

Bayesian model.

3.1 Assumed Bayesian model

To update the forecast ensemble, we propose to update each forecast sample

xt,(i) separately and to adopt a Bayesian model for this update. Figure 4 shows a

graphical illustration of the assumed Bayesian model that we adopt for the updat-

ing of xt,(i). The assumed Bayesian model includes an unknown parameter vector

✓t 2 ⌦✓ for which a prior model f✓t(✓t) is adopted. Moreover, the latent state vec-

tor xt and the prior samples xt,(1), . . . , xt,(M) are all assumed to be conditionally

independent and identically distributed given ✓t, i.e.

fxt,xt,(1),...,xt,(M)|✓t(xt, xt,(1), . . . , xt,(M)|✓t) = fxt|✓t(xt|✓t)
MY

i=1

fxt|✓t(xt,(i)|✓t),

where fxt|✓t(xt|✓t) is an assumed prior model for xt given ✓t. The observation yt

is assumed to be conditionally independent of ✓t and xt,(1), . . . , xt,(M) given xt,

and distributed according to an assumed likelihood model fyt|xt(yt|xt). Given

xt,(i), ✓t and yt, the posterior realisation zt,(i) is conditionally independent of

xt,(1), . . . , xt,(i�1), xt,(i+1), . . . , xt,(M) and xt. For simplicity, we denote in the fol-

lowing the set of prior samples except the sample xt,(i) by xt,�(i),

xt,�(i) = {xt,(1), . . . , xt,(i�1), xt,(i+1), . . . , xt,(M)}.

Conceptually, the assumed models fxt|✓t(xt|✓t) and fyt|xt(yt|xt) can be any
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✓t

xt,(1) xt,(2) · · · xt,(i) · · · xt,(M) xt

yt
zt,(i)

Figure 4: Graphical illustration of the assumed Bayesian model for the updating of xt,(i)

parametric distributions. In order for the framework to be useful in practice,

however, they must be chosen so that the corresponding posterior model

fxt|✓t,yt(xt|✓t, yt) / fxt|✓t(xt|✓t)fyt|xt(yt|xt) (14)

is tractable. Moreover, f✓t(✓t) should be chosen as conjugate for fxt|✓t(xt|✓t).

3.2 Class of updating distributions

Based on the Bayesian model introduced above, we characterise in this section

a class of updating distributions for generating zt,(i) from xt,(i). First, we derive

in Section 3.2.1 a class of updating distributions which are exact in the sense

that, under the assumption that the forecast samples are distributed according

to the assumed prior model fxt|✓t(xt|✓t), the posterior sample zt,(i) is distributed

according to the corresponding assumed posterior model in Eq. (14). Thereafter,

we introduce in Section 3.2.2 a class of approximate updating distributions which

can be easier to deal with in practice.

3.2.1 Derivation of a class of updating distributions

A natural minimal restriction for the updating of xt,(i) to zt,(i) is to require that

the procedure is consistent with the assumed model. One can then say that the

updating is correct under the assumed model. In addition to this first restriction,

one would also like the updating to be robust against the assumptions made in

the assumed model.

A näıve updating procedure that is consistent with the assumed model is

simply to set zt,(i) equal to a sample from fxt|xt,(1),...,xt,(M),yt(·|xt,(1), . . . , xt,(M), yt).

This procedure may, however, be very sensitive to the assumptions of the as-

sumed model. To get a more robust updating procedure, a better alternative
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is to generate zt,(i) as a modified version of xt,(i), as indicated by the graph in

Figure 4. In such a setup, the role of xt,(i) is as a source of randomness in the

generation of zt,(i). One should therefore remove xt,(i) from the conditioning set

in the näıve updating procedure and instead require that zt,(i) is a sample from

fxt|xt,�(i),yt(·|xt,�(i), yt) under the assumed model. Thus, the updating of xt,(i) to

zt,(i) should be such that

fzt,(i)|xt,�(i),yt
(xt|xt,�(i), yt) = fxt|xt,�(i),yt(xt|xt,�(i), yt) (15)

for all xt, xt,�(i) and yt. Exactly how the generation of zt,(i) from xt,(i) should be

performed to get an updating procedure that is robust against an error in the

assumed model is discussed in Section 3.3. In the following, we first focus on the

implications of the restriction in Eq. (15) under the assumed Bayesian model

illustrated in Figure 4.

Having introduced the parameter ✓t, the criterion in Eq. (15) can be rewritten

as

Z

⌦✓t

f✓t,zt,(i)|xt,�(i),yt(✓t, xt|xt,�(i), yt)d✓t =

Z

⌦✓t

f✓,xt|xt,�(i),yt(✓t, xt|xt,�(i), yt)d✓t.

This can further be rewritten as

Z

⌦✓t

f✓t|xt,�(i),yt(✓t|xt,�(i), yt)fzt,(i)|✓t,yt(xt|✓t, yt)d✓t =

Z

⌦✓t

f✓t|xt,�(i),yt(✓t|xt,�(i), yt)fxt|✓t,yt(xt|✓t, yt)d✓t. (16)

A su�cient condition for Eq. (16) to hold is

fzt,(i)|✓t,yt(xt|✓t, yt) = fxt|✓t,yt(xt|✓t, yt) (17)

for all xt, ✓t and yt. Thereby, we understand that xt,(i) can be updated by first

simulating

✓t,(i)|xt,�(i), yt ⇠ f✓t|xt,�(i),yt(·|xt,�(i), yt)

and thereafter simulate

zt,(i)|xt,(i), ✓t,(i), yt ⇠ fzt,(i)|xt,(i),✓t,(i),yt(·|xt,(i), ✓t,(i), yt),

where fzt,(i)|xt,(i),✓t,(i),yt(zt,(i)|xt,(i), ✓t,(i), yt) is a distribution which fulfils Eq. (17).
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Generally, a class of updating distributions fzt,(i)|xt,(i),✓t,(i),yt(zt,(i)|xt,(i), ✓t,(i), yt)

consistent with the requirement in Eq. (17) exists. The simplest option is to

use the assumed posterior model fxt|✓t,(i),yt(xt|✓t,(i), yt) and simulate zt,(i) indepen-

dently of xt,(i). However, this means that we possibly loose valuable information

from xt,(i) about the true forecast and filtering distributions that we may not

have been able to capture with the assumed model. To preserve more of this

information from xt,(i), it is important to simulate zt,(i) conditionally on xt,(i).

Conceptually, an updating distribution fzt,(i)|xt,(i),✓t,(i),yt(zt,(i)|xt,(i), ✓t,(i), yt)

can be constructed by first constructing a joint distribution

fxt,(i),zt,(i)|✓t,(i),yt(xt,(i), zt,(i)|✓t,(i), yt), and thereafter condition this distribution on

xt,(i). This joint distribution can be factorised as

fxt,(i),zt,(i)|✓t,(i),yt(xt,(i), zt,(i)|✓t,(i), yt)

= fxt|✓t,(i)(xt,(i)|✓t,(i))fzt,(i)|xt,(i),✓t,(i),yt(zt,(i)|xt,(i), ✓t,(i), yt). (18)

To be consistent with the requirement in Eq. (17), the joint distribution in Eq.

(18) must fulfil

X

xt,(i)

fxt,(i),zt,(i)|✓t,(i),yt(xt,(i), zt,(i)|✓t,(i), yt) = fxt|✓t,(i),yt(zt,(i)|✓t,(i), yt), (19)

that is, when marginalising out xt,(i) we end up with the assumed posterior model.

Moreover, to be consistent with the assumed Bayesian model, and so that the

factorised form in Eq. (18) holds, the distribution must also fulfil

X

zt,(i)

fxt,(i),zt,(i)|✓t,(i),yt(xt,(i), zt,(i)|✓t,(i), yt) = fxt|✓t,(i)(xt,(i)|✓t,(i)), (20)

that is, when marginalising out zt,(i) we end up with the the assumed prior model.

In principle, infinitely many distributions fxt,(i),zt,(i)|✓t,(i),yt(xt,(i), zt,(i)|✓t,(i), yt) con-

sistent with the requirements in Eqs. (19) and (20) may exist. In practice,

however, it is generally di�cult to assess one of these distributions, except the

näıve solution discussed above where fzt,(i)|xt,(i),✓t,(i),yt(·|xt,(i), ✓t,(i), yt) is set equal

to the assumed posterior model fxt|✓t,(i),yt(·|✓t,(i), yt). Therefore, we must resort to

approximations, which we consider in more detail below.
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3.2.2 A class of approximate updating distributions

In this section, we introduce approximations to the criteria in Eqs. (19) and

(20) and characterise a corresponding class of DGMs which fulfil these modified

requirements. We denote in the following a distribution within this class by

q(xt,(i), zt,(i); ✓t,(i), yt), where the semicolon does not represent a conditioning, but

that the distribution is a function of ✓t,(i) and yt.

Let q(xt,(i), zt,(i); ✓t,(i), yt) be a DGM with respect to a graph G with vertex

set V = {1, . . . , 2n} and maximal clique set C = {c1, . . . , c|C|} where |C| is the

number of maximal cliques. Associate the n variables of xt,(i) with the nodes

1, . . . , n and the n variables of zt,(i) with the nodes n + 1, . . . , 2n, so that, for

j = 1, . . . , n, the variable x
t,(i)
j is associated with node j and the variable z

t,(i)
j is

associated with node j +n. Next, let A1, . . . , A|C|, B1, . . . , B|C| denote a sequence

of subsets of V1:n = {1, . . . , n} such that the nodes of V that are associated with

(x
t,(i)
Aj

, z
t,(i)
Bj

) form clique cj. Mathematically, that is

Aj = {i 2 cj; i  n} (21)

and

Bj = {i � n; i 2 cj, i > n}. (22)

Thereby, q(x
t,(i)
Aj

, z
t,(i)
Bj

; ✓t,(i), yt) represents the distribution of the variables

(x
t,(i)
Aj

, z
t,(i)
Bj

) associated with clique cj, j = 1, . . . , |C|. For example, if c1 =

{1, 2, n+1}, then A1 = {1, 2} and B1 = {1}, and q(x
t,(i)
1:2 , z

t,(i)
1 ; ✓t,(i), yt) represents

the distribution for the variables (x
t,(i)
1 , x

t,(i)
2 , z

t,(i)
1 ) associated with the nodes of

clique c1.

From Section 2.2 we know that since q(xt,(i), zt,(i); ✓t,(i), yt) is a DGM it is fully

specified by its clique probabilities and can be expressed as

q(xt,(i), zt,(i); ✓t,(i), yt) =

Q|C|
j=1 q(x

t,(i)
Aj

, z
t,(i)
Bj

; ✓t,(i), yt)
Q|C|�1

j=1 q(x
t,(i)
Aj\Aj+1

, z
t,(i)
Bj\Bj+1

; ✓t,(i), yt)
.

Hence, in order to specify q(xt,(i), zt,(i); ✓t,(i), yt), all we need to do is to appropri-

ately specify each of the clique probabilities q(x
t,(i)
Aj

, z
t,(i)
Bj

; ✓t,(i), yt), j = 1, . . . , |C|.
Recall that the goal is to specify q(xt,(i), zt,(i); ✓t,(i), yt) such that it approximately

represents the joint distribution in Eq. (18) subject to the constraints in Eqs. (19)

and (20). To construct such a q(xt,(i), zt,(i); ✓t,(i), yt), we replace the requirements
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in Eqs. (19) and (20) by

X

x
t,(i)
Aj

q(x
t,(i)
Aj

, z
t,(i)
Bj

; ✓t,(i), yt) = fxt
Bj

|✓t,(i),yt(z
t,(i)
Bj

|✓t,(i), yt), j = 1, . . . , |C|, (23)

and

X

z
t,(i)
Bj

q(x
t,(i)
Aj

, z
t,(i)
Bj

; ✓t,(i), yt) = fxt
Aj

|✓t,(i),yt(x
t,(i)
Aj

|✓t,(i)), j = 1, . . . , |C|, (24)

respectively. That is, instead of requiring that q(xt,(i), zt,(i); ✓t,(i), yt) fully pre-

serves the assumed models fxt|✓t(xt|✓t) and fxt|✓t(xt|✓t, yt), as required in Eqs.

(19) and (20), we only require that the marginal distributions fxt
Aj

|✓t(xt
Aj

|✓t) and

fxt
Bj

|✓t,yt(xt
Bj

|✓t, yt) are preserved.

Another constraint we need to take into account when specifying

q(xt,(i), zt,(i); ✓t,(i), yt) is that the clique probabilities must be consistent in the

sense that, if we let (c1, . . . , c|C|) denote an ordering of the cliques in C which

fulfils the running intersection property in Eq. (4), the probabilities for two con-

secutive cliques cj and cj+1 must return the same marginal distribution for the

separator sj = cj \ cj+1. Mathematically, this can be written as

X

x
t,(i)
Aj\{Aj\Aj+1}

X

z
t,(i)
Bj\{Bj\Bj+1}

q(x
t,(i)
Aj

, z
t,(i)
Bj

; ✓t,(i), yt)

=
X

x
t,(i)
Aj+1\{Aj\Aj+1}

X

x
t,(i)
Aj+1\{Aj\Aj+1}

q(x
t,(i)
Aj

, z
t,(i)
Bj

; ✓t,(i), yt).(25)

Assuming we are able to construct a DGM q(xt,(i), zt,(i); ✓t,(i), yt) consistent with

the requirements discussed above, we can condition this DGM on xt,(i) and sim-

ulate zt,(i)|xt,(i) as described in Section 2.2.5.

3.3 Defining an optimal solution

There may be infinitely many distributions q(xt,(i), zt,(i); ✓t,(i), yt) which fulfil

the requirements in Eqs. (23) to (25). For us, however, it is su�cient with one

solution and preferably an optimal solution. To preserve as much information

from xt,(i) as possible, we propose to define the optimal solution as the solution

which maximises the expected number of variables of xt,(i) that remain unchanged,
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Algorithm 1: Summary of general updating procedure

1. Select the distributions f✓t(✓t), fxt|✓t(xt|✓t) and fyt|xt(yt|xt) introduced in
Section 3.1

2. for i = 1, . . . , M do
a) Simulate

✓t,(i)|xt,�(i), yt ⇠ f✓t|xt,�(i),yt(·|xt,�(i), yt)

as described in Appendix A

b) Construct a DGM q(xt,(i), zt,(i); ✓t,(i), yt) which fulfils Eqs. (23) to (25) and
maximises Eq. (26)

c) Simulate
zt,(i)|xt,(i) ⇠ q(zt,(i)|xt,(i); ✓t,(i), yt)

as described in Section 2.2.5

end

i.e. the solution which maximises the function

g(xt,(i), zt,(i)) = E

"
nX

j=1

1
⇣
x

t,(i)
j = z

t,(i)
j

⌘#
, (26)

where the expectation is taken over q(xt,(i), zt,(i); ✓t,(i), yt). Intuitively, this seems

like a reasonable optimality criterion which should make the update robust with

respect to the assumed models fxt|✓t(xt|✓t) and fxt|✓t,yt(xt|✓t, yt). By making min-

imal changes to xt,(i), the updated sample zt,(i) may be able to capture properties

of the true filtering distribution pxt|y1:t(xt|y1:t) that we may not have captured

with the assumed posterior model fxt|✓t,yt(xt|✓t, yt). The key steps of our general

updating procedure are summarised in Algorithm 1.

4 Updating procedure with a Markov chain as-

sumed prior

In this section, we consider the general framework described in Section 3 when

the vector xt = (xt
1, . . . , x

t
n) is restricted to have a spatial arrangement in one-

dimensional space (i.e., along a line) and a ⌫’th order Markov chain model is

adopted for fxt|✓t(xt|✓t). For this situation, we propose to choose the maximal

cliques of the DGM q(xt,(i), zt,(i); ✓t, yt) such that the optimal solution can be

computed by solving a linear optimisation problem.
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4.1 Model specifications

Assuming the vector xt has a one-dimensional spatial arrangement, we propose

to choose fxt|✓t(xt|✓t) as a Markov chain of order ⌫ � 1,

fxt|✓t(xt|✓t) = fxt
1:⌫ |✓t(xt

1:⌫ |✓t)
nY

j=⌫+1

fxt
j |xt

j�⌫:j�1,✓t(xt
j|xt

j�⌫:j�1, ✓
t).

For the likelihood model fyt|xt(yt|xt), we assume that yt = (yt
1, . . . , y

t
n) contains n

conditionally independent observations, with yt
j depending only on xt

j,

fyt|xt(yt|xt) =
nY

j=1

f(yt
j|xt

j). (27)

This choice of prior and likelihood yields a posterior model fxt|✓t,yt(xt|✓t, yt) which

is also a Markov chain of order ⌫. The initial and transition probabilities of

this posterior Markov chain can be computed with a forward-backward recursive

procedure (e.g., Künsch, 2000).

A natural interpretation of ✓t in this context is that it represents the initial

and transition probabilities of the assumed prior Markov chain. For a Markov

chain of order ⌫, there are n � ⌫ + 1 transition matrices to specify, each matrix

consisting of K⌫ rows and K columns. Denote in the following these transition

matrices by ✓t
1, . . . , ✓

t
n�⌫+1. Furthermore, let ✓0 be a vector representing the initial

probabilities of the Markov chain, and consider

✓t = (✓t
0, ✓

t
1, . . . , ✓

t
n�⌫+1).

Following the recommendations of Section 3.1, we choose f✓t(✓t) as conjugate

for fxt|✓t(xt|✓t). Here, this entails adopting a Dirichlet distribution for ✓t
0 and a

Dirichlet distribution for each of the K⌫ row vectors in each transition matrix ✓t
j,

j = 1, . . . , n�⌫+1, and to let all these Dirichlet distributed parameters be a priori

independent. For simplicity, the remaining technical details of the specification

of f✓t(✓t) are presented in Appendix A. In the same appendix, it is also described

how to simulate ✓t|xt,�(i), yt ⇠ f✓t|xt,�(i),yt(✓t|xt,�(i), yt).
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1 2 3 4 5

6 7 8 9 10

(a)

{1, 2, 6, 7} {2, 6} {2, 3, 7, 8} {3, 7} {3, 4, 8, 9} {4, 9} {4, 5, 9, 10}

(b)

Figure 5: (a) Underlying graph for the DGM q(xt,(i), zt,(i); ✓t, yt) of Section 4 when d = 2 and
n = 5, (b) a corresponding junction tree representation

4.2 Class of updating distributions

Having specified the distributions f✓t(✓t), fxt|✓t(xt|✓t) and fyt|xt(yt|xt) of the

assumed Bayesian model, the next task is to characterise the class of DGMs

q(xt,(i), zt,(i); ✓t, yt) introduced in Section 3.2. For this, we need to specify the

cliques of the underlying decomposable graph of q(xt,(i), zt,(i); ✓t, yt) or, equiva-

lently, the Aj and Bj-sets in Eqs. (21) and (22). For some integer d � 1, we

specify Aj and Bj as

Aj = Bj = {j, j + 1, . . . , j + d � 1} (28)

for j = 1, . . . , n � d + 1. Visually, the decomposable graph G can then be rep-

resented as a two-dimensional grid with two rows and n columns, or as a 2 ⇥ n

matrix. The first row is associated with the nodes 1, . . . , n and the second row

is associated with the nodes n + 1, . . . , 2n. Each maximal clique is formed by d

consecutive columns, hence we call it a 2⇥d clique. The variables associated with

each 2⇥d clique are x
t,(i)
j:j+d�1 and z

t,(i)
j:j+d�1. Figures 5(a) and 6(a) illustrate G when

d = 2 and d = 3, respectively, when the state vector xt contains n = 5 variables.

Figures 5(b) and 6(b) show corresponding junction tree representations. The

structure of G makes it fairly trivial to construct corresponding junction trees.

The criteria in Eqs. (23) to (25) can now be rewritten as

X

x
t,(i)
j:j+d�1

q(x
t,(i)
j:j+d�1, z

t,(i)
j:j+d�1; ✓

t,(i), yt) = fxt
j:j+d�1|✓t,(i),yt(z

t,(i)
j:j+d�1|✓t,(i), yt), (29)
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1 2 3 4 5

6 7 8 9 10

(a)

{1, 2, 3,

6, 7, 8}
{2, 3,

7, 8}
{2, 3, 4,

7, 8, 9}
{3, 4,

8, 9}
{3, 4, 5,

8, 9, 10}

(b)

Figure 6: (a) Underlying graph for the DGM q(xt,(i), zt,(i); ✓t, yt) of Section 4 when d = 3 and
n = 5, (b) a corresponding junction tree representation

X

z
t,(i)
j:j+d�1

q(x
t,(i)
j:j+d�1, z

t,(i)
j:j+d�1; ✓

t,(i), yt) = fxt
j:j+d�1|✓t,(i)(x

t,(i)
j:j+d�1|✓t,(i)), (30)

and

X

x
t,(i)
j

X

z
t,(i)
j

q(x
t,(i)
j:j+d�1, z

t,(i)
j:j+d�1; ✓

t,(i), yt) =
X

x
t,(i)
j+d

X

x
t,(i)
j+d

q(x
t,(i)
j+1:j+d, z

t,(i)
j+1:j+d; ✓

t,(i), yt),

(31)

respectively.

4.3 Computing the optimal solution

When the maximal cliques of q(xt,(i), zt,(i); ✓t,(i), yt) are as specified in Sec-

tion 4.2, the optimal solution of q(xt,(i), zt,(i); ✓t,(i), yt), i.e. the solution which

maximises the expected value in Eq. (26), can be computed by solving a lin-

ear optimisation problem where the unknowns are all the clique probabilities

q(x
t,(i)
Aj

, z
t,(i)
Aj

; ✓t, yt), j = 1, . . . , n�d+1. To see this, notice first that the objective

function in Eq. (26) can be written as

E

"
nX

j=1

1
⇣
x

(i)
j = z

(i)
j

⌘#
=

K�1X

k=0

nX

j=1

q(x
t,(i)
j = k, z

t,(i)
j = k; ✓t,(i), yt).
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Further,

E
hPn

j=1 1
⇣
x

(i)
j = z

(i)
j

⌘i
=
PK�1

k=0

Pn�d
j=1 q(x

t,(i)
j = k, z

t,(i)
j = k; ✓t,(i), yt)

+
PK�1

k=0

Pn
j=n�d+1 q(x

t,(i)
j = k, z

t,(i)
j = k; ✓t,(i), yt).

All the terms in this expression can be computed by summing out variables from

a corresponding clique distribution q(x
t,(i)
Aj

, z
t,(i)
Aj

; ✓t,(i), yt). More precisely, term

number j in the sum from 1 to n� d can be computed by summing out variables

from q(x
t,(i)
Aj

, z
t,(i)
Aj

; ✓t,(i), yt), while each term in the sum from n � d + 1 to n can

be computed by summing out variables from q(x
t,(i)
An�d+1

, z
t,(i)
An�d+1

; ✓t,(i), yt). This

leads to an objective function which is a linear function of q(x
t,(i)
Aj

, z
t,(i)
Aj

; ✓t,(i), yt),

j = 1, . . . , n � d + 1. The objective function is to be maximised subject

to the constraints in Eqs. (29) to (31), which are also linear functions of

q(x
t,(i)
Aj

, z
t,(i)
Aj

; ✓t,(i), yt). Because q(xt,(i), zt,(i); ✓t,(i), yt) is a probability distribution,

we must also include the constraint that q(x
t,(i)
Aj

, z
t,(i)
Aj

; ✓t,(i), yt) sums to one,

X

x
t,(i)
Aj

X

z
t,(i)
Aj

q(x
t,(i)
Aj

, z
t,(i)
Aj

; ✓t,(i), yt) = 1, (32)

and that it can only take values between zero and one,

0  q(x
t,(i)
Aj

, z
t,(i)
Aj

; ✓t,(i), yt)  1. (33)

These constraints are also linear functions of q(x
t,(i)
Aj

, z
t,(i)
Aj

; ✓t,(i), yt). Thus, we have

a linear optimisation problem, or a linear program, which can be e�ciently solved

with standard linear programming techniques.

5 Simulation example

In this section, the updating procedure described in Section 4 is demonstrated

in a simulation example. The example involves a filtering problem where the

unobserved Markov process {xt}T
t=1 consists of T = 100 time steps, the dimension

of xt is n = 200, and there are three classes for each element xt
j of xt: 0, 1, and 2.
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5.1 Experimental setup

To specify an initial distribution px1(x1) and a forward model pxt|xt�1(xt|xt�1)

for the latent Markov process {xt}T
t=1, we use a modified version of the binary

simulation example in Loe and Tjelmeland (2021b). As for the example in that

article, we let us inspire from the process when water comes through to an oil

producing well in a petroleum reservoir. It should be stressed, however, that we

do not claim that our model is really realistic for such a process. The t in xt
j then

represents time and j the location in the well, with j = 1 being at the top of the

well and j = n at the bottom. We let the events xt
j = 0 and xt

j = 1 represent the

presence of porous sand stone filled with oil and water, respectively, in location

j of the well at time t, while the event xt
j = 2 represents non-porous shale in the

same location. One should note that the spatial distribution of sand stone and

shale does not change with time, whereas the fluid in a sand stone may change.

Therefore, if xt�1
j = 2, the forward model should be specified so that also xt

j = 2

with probability 1, and correspondingly, if xt�1
j = 0 or xt�1

j = 1, the forward

model should have probability zero for xt
j = 2. In the start, t = 1, we want oil to

be present in all the sand stone. Thereafter, water should gradually displace the

oil and at time t = T water should be the dominating fluid.

To simplify the specification of the forward model, we let xt given xt�1 be a

first-order Markov chain, so that

pxt|xt�1(xt|xt�1) = pxt
1|xt�1(xt

1|xt�1)
nY

j=2

pxt
j |xt

j�1,xt�1(xt
j|xt

j�1, x
t�1). (34)

Moreover, for j = 2, . . . , n�1 we assume that xt
j in pxt

j |xt
j�1,xt�1(xt

j|xt
j�1, x

t�1) only

depends on (in addition to xt
j�1 of the vector xt) the three elements xt�1

j�1, xt�1
j

and xt�1
j+1 of the vector xt�1. Thereby,

pxt
j |xt

j�1,xt�1(xt
j|xt

j�1, x
t�1) = pxt

j |xt
j�1,xt�1

j�1,xt�1
j ,xt�1

j+1
(xt

j|xt
j�1, x

t�1
j�1, x

t�1
j , xt�1

j+1) (35)

for j = 2, . . . , n � 1. For j = 1 and j = n we correspondingly assume

pxt
1|xt�1(xt

1|xt�1) = pxt
1|xt�1

1 ,xt�1
2

(xt
1|xt�1

1 , xt�1
2 ) (36)

and

pxt
n|xt

n�1,xt�1(xt
n|xt

n�1, x
t�1) = pxt

n|xt
n�1,xt�1

n�1,xt�1
n

(xt
n|xt

n�1, x
t�1
n�1, x

t�1
n ). (37)
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In the following, we first discuss the specification of Eq. (35). To obtain a model

where the spatial distribution of sand stone and shale does not change in time we

set for all xt
j�1, x

t�1
j�1, x

t�1
j+1 2 {0, 1, 2},

pxt
j |xt

j�1,xt�1
j�1,xt�1

j ,xt�1
j+1

(xt
j|xt

j�1, x
t�1
j�1, x

t�1
j = 2, xt�1

j+1) =

(
1, for xt

j = 2

0, otherwise,
(38)

and

pxt
j |xt

j�1,xt�1
j�1,xt�1

j ,xt�1
j+1

(xt
j = 2|xt

j�1, x
t�1
j�1, x

t�1
j , xt�1

j+1) = 0, for xt�1
j 2 {0, 1}. (39)

For the remaining probabilities in Eq. (35), we adopt the same values as used

in Loe and Tjelmeland (2021a), see Table 1. The reasoning behind these proba-

bilities is that if xt�1
j = 1 the probability for having xt

j = 1 should be high, and

in particular this probability should be high if also xt
j�1 = 1. If xt�1

j = 0 the

probability for having also xt
j = 0 should be high unless xt

j�1 = xt�1
j�1 = xt�1

j+1 = 1.

The probabilities in Eqs. (36) and (37) we simply define from the values set

for the probabilities in Eq. (35) by defining the values lying outside the simulated

lattice to be zero. For x1 we define that all the elements should be equal to 0

or 2, and assume the elements to be independent with px1
j
(x1

j = 2) = 1/40 and

px1
j
(x1

j = 0) = 1� 1/40. This results in a vector x1 with a few (typically one node

thick) layers of shale, with the remaining elements being oil filled sand stone. One

realisation from the specified Markov process for {xt}T
t=1 is shown in Figure 7(a).

This realisation is also used to simulate the observations used in the simulation

example.

For the likelihood fyt|xt(yt|xt), we know from Section 4 that it is su�cient

to specify fyt
j |xt

j
(yt

j|xt
j) since the elements of yt are assumed to be conditionally

independent given xt, with yt
j only depending on xt

j. To avoid that the likelihood

involves an ordering of the three possible values of xt
j, we let yt

j be a vector with

two components, yt
j = (yt

j,1, y
t
j,2), and choose fyt

j |xt
j
(yt

j|xt
j) as a bivariate Gaussian

distribution N (yt
j; µ(xt

j),⌃) with a mean vector

µ(xt
j) =

8
>>><
>>>:

(0, 0) if xt
j = 0,

(1, 0) if xt
j = 1,

(1
2
,
p

3
2

) if xt
j = 2,

(40)

and covariance matrix ⌃ = �2I. As illustrated in Figure 8, the mean vectors
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Table 1: Simulation experiment: Probabilities defining the true forward model
pxt|xt�1(xt|xt�1) of the Markov process {x}T

t=1 that are not specified in Eqs.
(38) or (39).

xt
j�1 xt�1

j�1 xt�1
j+1 p(xt

j = 1|xt
j�1, x

t�1
j�1, x

t�1
j = 0, xt�1

j+1) p(xt
j = 1|xt

j�1, x
t�1
j�1, x

t�1
j = 1, xt�1

j+1)

0 0 0 0.0050 0.9800
0 0 1 0.0400 0.9800
0 0 2 0.0050 0.9800
0 1 0 0.0100 0.9900
0 1 1 0.0400 0.9800
0 1 2 0.0100 0.9800
0 2 0 0.0050 0.9900
0 2 1 0.0400 0.9800
0 2 2 0.0050 0.9800
1 0 0 0.0100 0.9900
1 0 1 0.0400 0.9999
1 0 2 0.0100 0.9999
1 1 0 0.0400 0.9999
1 1 1 0.9800 0.9999
1 1 2 0.0400 0.9999
1 2 0 0.0100 0.9999
1 2 1 0.0400 0.9999
1 2 2 0.0100 0.9999
2 0 0 0.0050 0.9999
2 0 1 0.0400 0.9999
2 0 2 0.0050 0.9999
2 1 0 0.0100 0.9999
2 1 1 0.0400 0.9999
2 1 2 0.0100 0.9999
2 2 0 0.0050 0.9999
2 2 1 0.0400 0.9999
2 2 2 0.0050 0.9999

µ(0), µ(1) and µ(2) are chosen to lie at the vertices of an equilateral triangle

with unit sides. This is to avoid an ordering of the three classes. We assume

in this simulation experiment that the true likelihood model pyt|xt(yt|xt) and the

assumed likelihood model fyt|xt(yt|xt) are equal. As such, the assumed likelihood

model fyt|xt(yt|xt) is used to generate the observation process {yt}T
t=1. Specifically,

using the simulated Markov process shown in Figure 7(a) and setting � = 1.0,

we generate {yt}T
t=1 by simulating, independently for each j = 1, . . . , 200 and

t = 1, . . . , 100,

yt
j ⇠ fyt

j |xt
j
(·|xt

j).

An image of {(yt
j,1, j = 1, . . . , n)}T

t=1 is shown in Figure 7(b) and an image of

{(yt
j,2, j = 1, . . . , n)}T

t=1 is shown in Figure 7(c).

When running the proposed updating procedure, we need to set a value for
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Figure 7: Simulation experiment: (a) The latent Markov process {xt}100
t=1, (b) the first coor-

dinates {(yt
j,1, j = 1, . . . , 200)}100

t=1 of the observation process {yt}T
t=1, and (c) the

second coordinates {(yt
j,2, j = 1, . . . , 200)}100

t=1

(0, 0) (1, 0)

( 1
2 ,

p
3

2 )

yt
j,2

yt
j,1

N (yt
j ; µ(0),⌃) N (yt

j ; µ(1),⌃)

N (yt
j ; µ(2),⌃)

Figure 8: Simulation experiment: Illustration of assumed likelihood model fyt
j |xt

j
(yt

j |xt
j)

⌫, the order of the assumed Markov chain model fxt|✓t(xt|✓t), and a value for

the integer d in Eq. (28) which determines the structure of q(xt,(i), zt,(i); ✓t, yt).

High values for ⌫ and d, and high values for d especially, make the construction

of q(xt,(i), zt,(i); ✓t, yt) computer-demanding. Below, we investigate the two values

⌫ = 1 and ⌫ = 2, and for each of these we consider the three values d = 1, d = 2

and d = 3. Thereby, we have six combinations, or cases, for (⌫, d). For each of

these six cases, we perform five independent runs, using ensemble size M = 20.

For each run, an initial ensemble {x1,(1), . . . , x1,(M)} is generated by simulating

independent samples from the initial model px1(x1) of the Markov process specified

above. The hyper-parameters at
0(0), . . . , at

0(K
⌫ � 1), at,j

i (0), . . . , at,j
i (K � 1) of the

prior distribution f✓t(✓t) for ✓t (cf. Section A.1 in in Appendix A) at each time
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Table 2: Results from simulation experiment: Proportion of correctly classified variables xt
j

obtained with the MAP estimates in Eq. (41) computed in five independent runs

d = 1, ⌫ = 1 d = 2, ⌫ = 1 d = 3, ⌫ = 1 d = 1, ⌫ = 2 d = 2, ⌫ = 2 d = 3, ⌫ = 2
0.8649 0.8903 0.8912 0.8472 0.8831 0.8688

step t are all set equal to one, and 500 iterations are used in the MCMC simulation

of ✓t,(i)|xt,�(i), yt (cf. Section A.2 in Appendix A).

5.2 Results

To evaluate the performance of the proposed approach, we first compute, for

each of the five runs of each of the six combinations of (⌫, d), the maximum a

posteriori probability (MAP) estimate x̂j
t of xt

j, t = 1, . . . , T , j = 1, . . . , n,

x̂t
j = argmax

k

�
p̂t

j(k)
 

, (41)

where

p̂t
j(k) =

1

M

MX

i=1

1(z
t,(i)
j = k), k = 0, 1, 2, (42)

is an estimate of the marginal filtering probability pxt
j |y1:t(k|y1:t). Figure 9 shows

images of the computed MAP estimates {x̂t
j, j = 1, . . . , n}T

t=1 from one of the

five runs performed for each of the six cases. From a visual inspection, it seems

that we in all cases manage to capture the main characteristics of the true xt-

process in Figure 7(a), but the MAPs shown in Figures 9(a) and (d), which are

obtained using d = 1, are possibly a bit noisier than the others. Table 2 lists

the ratio of correctly classified variables xt
j based on the MAPs obtained from

the five independent runs of each case. According to Table 2, we classify around

85-90% of the variables correctly, and the best results are obtained when using

the combinations ⌫ = 1, d = 2 and ⌫ = 1, d = 3, i.e. when adopting a first-order

Markov chain (⌫ = 1) for fxt|✓t(xt|✓t) and using 2⇥2- or 2⇥3-cliques (d = 2 or

d = 3) in the construction of q(xt,(i), zt,(i); ✓t,(i), yt).

To further investigate the performance of the proposed approach, we estimate

for each j and t the probability that z
t,(i)
j is equal to the true value xt

j, and we

do this for each of the classes k = 0, 1, 2. Specifically, for each run and for each
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Figure 9: Results from simulation experiment: MAP estimates of {xt
j , j = 1, . . . , 200}100

t=1

j = 1, . . . , n, t = 1, . . . , T , we compute, if xt
j = 0,

⇡0|0 =
1

M

MX

i=1

1(z
t,(i)
j = 0),

while if xt
j = 1, we compute

⇡1|1 =
1

M

MX

i=1

1(z
t,(i)
j = 1),

and if xt
j = 2, we compute

⇡2|2 =
1

M

MX

i=1

1(z
t,(i)
j = 2).
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Table 3: Results from simulation experiment: Estimated probabilities for observing z
t,(i)
j equal

to the true value xt
j for each class k = 0, 1, 2

d = 1, ⌫ = 1 d = 2, ⌫ = 1 d = 3, ⌫ = 1 d = 1, ⌫ = 2 d = 2, ⌫ = 2 d = 3, ⌫ = 2
⇡̄0|0 0.8210 0.8685 0.8687 0.8151 0.8587 0.8848
⇡̄1|1 0.7558 0.7837 0.7964 0.7508 0.7840 0.7590
⇡̄2|2 0.7423 0.7480 0.7412 0.6935 0.7285 0.6985
⇡̄ 0.7730 0.8001 0.8021 0.7531 0.7904 0.7808

There are, in the latent xt-process shown in Figure 7(a), 11929 variables xt
j taking

the value 0, 7271 variables taking the value 1 and 800 variables taking the value

2. Thereby, since we run each of the six (⌫, d) combinations five times, we obtain

for each (⌫, d) combination 5 · 11929 samples of ⇡0|0, 5 · 7271 samples of ⇡1|1 and

5 · 800 samples of ⇡2|2. We denote the corresponding sample means by ⇡̄0|0, ⇡̄1|1

and ⇡̄2|2, and we let ⇡̄ = 1
3

�
⇡̄0|0 + ⇡̄1|1 + ⇡̄2|2

�
. Figure 10 presents histograms

constructed from the samples of ⇡0|0, ⇡1|1 and ⇡2|2 for each case, and Table 3

summarises the corresponding computed values for ⇡̄0|0, ⇡̄1|1, ⇡̄2|2 and ⇡̄. The

values for ⇡̄ indicate that, again, we obtain the best results using ⌫ = 1, d = 2

and ⌫ = 1, d = 3. Computationally, using d = 3 is more demanding, and since

the improvement it o↵ers over d = 2 is only minor, the best approach may be to

use ⌫ = 1, d = 2.

6 Closing remarks

An ensemble updating method for categorical state vectors is proposed. The

proposed procedure is an improved version of the updating procedure for cat-

egorical vectors described in Loe and Tjelmeland (2021a). What is new is

mainly in how the optimal solution of q(xt,(i), zt,(i); ✓t, yt) is computed. Loe and

Tjelmeland (2021a) construct the conditional distribution q(zt,(i)|xt,(i); ✓t, yt) di-

rectly based on a directed acyclic graph (DAG) for the dependency properties of

q(xt,(i), zt,(i); ✓t, yt). The chosen structure of the DAG allows the optimal solution

of q(zt,(i)|xt,(i); ✓t, yt) to be computed recursively using a combination of dynamic

and linear programming. This strategy works well when the elements of xt are

binary, but the algorithm is di�cult to generalise to situations with more than

two classes. Moreover, fxt|✓t(xt|✓t) is restricted to be a first-order Markov chain,

and it is di�cult, or essentially impossible, to generalise the algorithm to allow for

more complicated models with higher-order interactions. In the present article,

we start with an undirected, decomposable graph instead of a DAG, and the re-
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(a) d = 1, ⌫ = 1

(b) d = 2, ⌫ = 1

(c) d = 3, ⌫ = 1

(d) d = 1, ⌫ = 2

(e) d = 2, ⌫ = 2

(f) d = 3, ⌫ = 2

Figure 10: Results from the simulation experiment: Histograms of ⇡0|0 (left), ⇡1|1 (middle)
and ⇡2|2 (right)
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sult is a more flexible and e�cient updating procedure. The proposed procedure

is demonstrated in a simulation example with three classes, and the results look

promising.

In Section 3.2, we introduced an exact and an approximate class of distribu-

tions for the updating of a forecast ensemble member xt,(i). Although it may seem

disadvantageous to pursue an approximate approach over an exact one, we believe

that in this case the approximate approach actually provides better results. The

constraints of the approximate approach are less restrictive and allows the opti-

mality criterion to a↵ect the solution to a larger extent. This may in turn result

in an optimal updating distribution which is more robust against the assumptions

of the assumed Bayesian model. That is, even if the assumed Markov chain mod-

els fxt|✓t(xt|✓t) and fxt|✓t,yt(xt|✓t, yt) are far from the truth, the optimal updating

distribution q(xt,(i), zt,(i); ✓t,(i), yt) may still provide reasonably good results.

Future work naturally includes to extend the proposed procedure to two di-

mensions. Assuming xt is defined on a two-dimensional grid, a possible choice

of model for fxt|✓t(xt|✓t) is then a Markov mesh model (Abend et al., 1965).

However, the two-dimensional situation makes it more di�cult to construct

q(xt,(i), zt,(i); ✓t, yt), and it is probably necessary to introduce some sort of ap-

proximations to overcome these di�culties.
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Nielsen, D. R. Cox, & C. Klüppelberg (Eds.), Complex stochastic systems.

Chapman and Hall/CRC, Chap. 3, p. 109-174.

Loe, M. K., & Tjelmeland, H. (2021a). A generalised and fully Bayesian framework

for ensemble updating [arXiv:2103.14565 [stat.ME]].

Loe, M. K., & Tjelmeland, H. (2021b). Ensemble updating of binary state vec-

tors by maximising the expected number of unchanged components [DOI:

10.1111/sjos.12483]. Scandinavian Journal of Statistics, To Appear.

Snyder, C., Bengtsson, T., Bickel, P., & Anderson, J. (2008). Obstacles to high-

dimensional particle filtering. Monthly Weather Review, 136, 4629–4640.

Tippett, M. K., Anderson, J. L., Bishop, C. H., & Hamill, T. M. (2003). Ensemble

square root filters. Monthly Weather Review, 131, 1485–1490.

Whitaker, J. S., & Hamill, T. M. (2002). Ensemble data assimilation without

perturbed observations. Monthly Weather Review, 130, 1913–1924.

A Appendix

This appendix provides some additional details about the specification of

f✓t(✓t) for the assumed Bayesian model in Section 4.1, and explains how to sim-

ulate a realisation from the distribution f✓t|xt,�(i),yt(✓t|xt,�(i), yt).

A.1 Parameter specification

Here, we specify the distribution f✓t(✓t) of Section 4.1 in more detail. Re-

call from Section 4.1 that fxt|✓t(xt|✓t) is a Markov chain of order ⌫ and that

✓t is a vector, ✓t = (✓t
0, ✓

t
1, . . . , ✓

t
n�⌫+1), where ✓t

0 represents the probabilities of

fxt
1:⌫ |✓t(xt

1:⌫ |✓t) and ✓t
i , i = 1, . . . , n � ⌫, represents the K⌫ ⇥ K transition matrix
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fxt
i+⌫ |xt

i:i+⌫�1,✓t(xt
i+⌫ |xt

i:i+⌫�1, ✓
t). To simplify some of the following notations, we

will make use of the notation

N(v) =
VX

j=1

KV �jvj

where v = (v1, . . . , vV ) is a vector of V categorical variables vj 2 {0, 1, . . . , K�1}.

Each configuration of the vector v thereby corresponds to an integer N(v) 2
{0, . . . , KV � 1}. Now, let

✓t
0 = (✓t

0(0), ✓t
0(1), . . . , ✓t

0(K
⌫ � 1))

and

✓t
0(N(xt

1:⌫)) = fxt
1:⌫ |✓t(xt

1:⌫|✓t).

Hence, if for example fxt|✓t(xt|✓t) is a Markov chain of order ⌫ = 3, then

✓t
0(N(0, 0, 0)) = ✓t

0(0) is the probability that (xt
1, x

t
2, x

t
3) = (0, 0, 0), while

✓t
0(N(0, 0, 1)) = ✓t

0(1) is the probability that (xt
1, x

t
2, x

t
3) = (0, 0, 1). Next, let

✓t
i = (✓t,0

i , . . . , ✓t,K⌫�1
i )T and ✓t,j

i = (✓t,j
i (0), . . . , ✓t,j

i (K � 1))

so that ✓t,j
i , j = 0, . . . , K⌫�1 represents row number j+1 of the transition matrix

✓t
i , and

✓
t,N(xi:i+⌫�1)
i (xt

i+⌫) = fxt
i+⌫ |xt

i:i+⌫�1,✓t(xt
i+⌫ |xt

i:i+⌫�1, ✓
t).

Hence, if for example ⌫ = 3, then ✓
t,N(0,0,0)
1 (0) is the probability that xt

4 = 0

given that (xt
1, x

t
2, x

t
3) = (0, 0, 0), while ✓

t,N(0,0,1)
1 (0) is the probability that xt

4 = 0

given that (xt
1, x

t
2, x

t
3) = (0, 0, 1). To obtain a prior f✓t(✓t) which is conjugate for

fxt|✓t(xt|✓t) when fxt|✓t(xt|✓t) is a Markov chain, we start by assuming that ✓t
0,

✓t,0
1 , ✓t,1

1 , . . . , ✓t,K⌫�1
n�⌫ are all independent a priori,

f✓t(✓t) = f✓t
0
(✓t

0)
n�⌫Y

i=1

K⌫�1Y

j=0

f✓t,j
i

(✓t,j
i ).

Next, we adopt a Dirichlet distribution for each of the vectors ✓t
0, ✓

t,0
1 , ✓t,1

1 , . . . ,

✓t,K⌫�1
n�⌫ . Specifically, we adopt for ✓t

0 a Dirichlet distribution with known hyper-

parameters at
0(0), . . . , at

0(K�1), and for each ✓t,j
i we adopt a Dirichlet distribution
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with known hyper-parameters at,j
i (0), . . . , at,j

i (K � 1). Then,

f✓t
0
(✓t

0) /
K�1Y

k=0

�
✓t
0(k)

�at
0(k)

and

f✓t,j
i

(✓t,j
i ) /

K�1Y

k=0

�
✓t,j

i (k)
�at,j

i (k)
.

A.2 Parameter simulation

A necessary step of the proposed ensemble updating procedure is to simulate a

parameter ✓t,(i)|xt,�(i), yt. Generally, for the assumed Bayesian model introduced

in Section 3.1, this can be achieved by introducing xt as an auxiliary variable and

construct a Gibbs sampler which simulates (xt, ✓t) from the joint distribution

fxt,✓t|xt,�(i),yt(xt, ✓t|xt,�(i), yt) / f✓t(✓t)fxt|✓t(xt|✓t)fyt|xt(yt|xt)
Y

j 6=i

fxt|✓t(xt,(j)|✓t).

The Gibbs sampler alternates between drawing xt and ✓t from the full conditional

distributions fxt|✓t,xt,�(i),yt(xt| ✓t, xt,�(i), yt) and f✓t|xt,xt,�(i),yt(✓t|xt, xt,�(i), yt), re-

spectively. From the dependency assumptions of the assumed Bayesian model

(see Figure 4), it follows that

fxt|✓t,xt,�(i),yt(xt|✓t, xt,�(i), yt) = fxt|✓t,yt(xt|✓t, yt) (43)

and

f✓t|xt,xt,�(i),yt(✓t|xt, xt,�(i), yt) = f✓t|xt,xt,�(i)(✓t|xt, xt,�(i)). (44)

Both of these distributions are tractable, so the Gibbs sampler can be imple-

mented without complications.

Suppose now that fxt|✓t(xt|✓t) and fyt|xt(yt|xt) are as specified in Section 4.1,

and that f✓t(✓t) is as specified in Section A.1 above. The distribution in Eq. (43)

then becomes a Markov chain whose initial and transition probabilities can be

computed with a forward-backward recursive procedure. For the distribution in

Eq. (44), it can easily be shown that ✓t
0, ✓

t,k
j , j = 1, . . . , n � ⌫, k = 0, . . . , K⌫ � 1

are all independent given xt and xt,�(i), i.e.

f✓t|xt,xt,�(i)(✓t|xt, xt,�(i)) = f✓t
0|xt,xt,�(i)(✓t

0|xt, xt,�(i))
Y

j,k

f✓t,k
j |xt,xt,�(i)(✓

t,k
j |xt, xt,�(i)).
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Moreover, ✓t
0|xt, xt,�(i) is Dirichlet distributed with parameters

ãt
0(r) = at

0(r) + 1
�
N(xt

1:⌫) = r
�

+
X

m 6=i

1
⇣
N(x

t,(m)
1:⌫ ) = r

⌘
,

for r = 0, . . . , K⌫ � 1, and each ✓t,k
j |xt, xt,�(i), for j = 1, . . . , n � ⌫ and k =

0, . . . , K⌫ � 1, is Dirichlet distributed with parameters

ãt,k
j (r) = at,k

j (r) + 1
�
N(xt

j:j+⌫�1) = k
�
1
�
xt
⌫+j = r

�
+
X

m 6=i

1
⇣
N(x

t,(m)
j:j+⌫�1) = k

⌘
1
⇣
x

t,(m)
⌫+j = r

⌘
,

for r = 0, . . . , K � 1.
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