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Abstract

As the installed capacity of variable renewable energy sources [VRES] continues
to expand worldwide due to the growing focus on climate change mitigation and
improved economic conditions of VRES, the intraday market increases its import-
ance in trading of electricity due to the uncertain nature of VRES. There is limited
literature on how forecasting errors between market stages affect investment de-
cisions in capacity expansion problem of a power system. This raises the following
research question: How does an increased amount of uncertainty introduced by
forecasting errors between a day-ahead and an intraday market affect investment
decisions in the power system, including VRES investments?

To investigate how the investment decisions are affected by forecasting errors,
a stochastic capacity expansion model was developed with two market stages, one
day-ahead stage, and one intraday stage. The model emulates the European power
system developments and aims to reduce emissions by restricting the emissions
subject to the EU emission policy towards 2050. Three separate cases were ana-
lyzed to shed light on this issue. One case was selected to represent the standard
approach to model investments in a power system. The second and third case rep-
resents cases with market sequencing, one stochastic and the other deterministic
in order to investigate the impact of uncertainty in a capacity expansion prob-
lem. Four main conclusions can be drawn from the modelling results; 1) Forecast-
ing error significantly impacts investment decisions and results in 10% less VRES
investments and 40% more investments flexible capacity. 2) Cross-border trans-
mission is a crucial contributor to flexibility and experiences a 10-20% increase in
volume when accounting for forecasting errors. 3) Investments in storage capacity
decreases significantly and are over-valued in the standard approach of capacity
expansion models. 4) A deterministic approach significantly underestimates the
total system costs and may even result in infeasible solutions if the conditions
for VRES change from the expected conditions. These results imply that there are
a significant differences between the standard approach and the approach de-
veloped in this thesis. We can therefore conclude that including forecasting errors
between markets are of significant importance when analysing a capacity expan-
sion problem. Considering the computational burden of adding a third stage, it
increases significantly. Lastly, some considerations for future work was presented.
These include research on market design, cost-recovery, demand-response and
curtailment.
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Sammendrag

De siste årene har andelen variable fornybare energikilder [VRES] økt betrakelig
i verdens energimiks, mye grunnet det voksende fokuset på klimaendringer samt
bedre økonomiske forhold for VRES. På grunn av usikkerheten tilknyttet prognose-
feil fra VRES har ført til økt bruk av intradmarkeder. Det finnes begrenset literatur
på hvordan prognosefeil for VRES mellom elektrisitetsmarkedet påvirker invester-
ingsbeslutning i et kraftsystem. Dette peker behovet på forskning som kan svare på
følgende spørsmål: Hvordan påvirker en økt grad av usikkerhet som følge av pro-
gnosefeil mellom et day-ahead marked og et intradag marked investeringsbesult-
ninger i et kraftsystem, inkludert investeringer i VRES? For å undersøke hvordan
investeringsbeslutninger i et energysystem påvirkes av disse prognosefeilene ble
en stokastisk optimiseringsmodell utviklet i denne opgaven. Modellen består av
tre steg. Ett investeringssteg og to operasjonelle steg; et operasjonelt steg for day-
ahead markedet og et steg for intradag markedet. Modellen etterligner utviklin-
gen av det Europeiske kraftsystemet og tar sikte på å redusere utslipp i tråd med
utslippsmålene til EU frem mot 2050. Tre instanser av modellen ble testet for å
belyse hvordan investeringsbeslutninger påvirkes av prognosefeil. Standard EM-
PIRE ble brukt for å teste den tradisjonelle måten å løse slike problemer. I tillegg
ble utvidelsen av EMPIRE utviklet i denne opgaven brukt til å analsyre to instanser
med to markedsteg, en stokastisk og en deterministisk, for å undersøke hvordan
usikkerhet påvirker investeringsbeslutningene. Basert på resultatene, kan fire hov-
edresultater kan trekkes frem: 1) Prognosefeil mellom markeder påvirket invester-
ingsbeslutninger betydelig og resulterte i 10% mindre VRES og 40% mer fleksibel
kapasitet. 2) International kraftoverføring er en viktig bidragsyter til fleksibilitet
og opplevde en volumøkning på 10-20% når det ble tatt hensyn til prognosefeil.
3) Investeringer i energilagring reduseres betydelig og er overvurdert i stand-
ardtilnærmingen til kapasitetsutvidelsesmodeller. 4) En deterministisk tilnærm-
ing undervurder de totale systemkostnadene, og kan resultere i umulige forhold
dersom forholdene for VRES mellom markedene. Disse resultatene innebærer en
betydlig forskjell mellom standardtilmærmingen og tilnærmingen utviklet i denne
rapporten. Vi kan derfor konkludere med at inkludering av prognosefeil er av
vesentlig betydning når et kapasitetsutvidelses problem analyseres. Derimot øker
beregningsbyrden betraktelig når et tredje steg legges til. Fremtidig arbeid for å
videreutvikle modellen inkluderer; markeds design, kostnadsgjennvinning, cur-
tailment og demand-response.
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Input data

Costs

cgen
g,i : Cost per unit of investing in generator type g ∈ G in period i ∈ I,
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Scenario input

πω: Probability of scenario ω ∈ Ω,

ξ
gen,DA
n,g,h,i,ω: Availability of generator type in day-ahead market g ∈ Gn in node n ∈N ,

in hour h ∈H, in period i ∈ I and scenario ω ∈ Ω

ξ
gen,ID
n,g,h,i,ω: Availability of generator type in intraday market g ∈ Gn in node n ∈N ,

in hour h ∈H, in period i ∈ I and scenario ω ∈ Ω

ξ
load,DA
n,h,i,ω : Demand in node in day-ahead market n ∈N in period h ∈H, i ∈ I and scenario ω ∈ Ω,

ξ
load,ID
n,h,i,ω: Demand in node in intraday market n ∈N in period h ∈H, i ∈ I and scenario ω ∈ Ω,

ξ
RegHydLim
n,s,i,ω : Max output from regulated hydro in node n ∈N in s ∈ S, i ∈ I and ω ∈ Ω,

ξHydLim
n : Max expected annual output from total hydro in node n ∈N .

Variables

Investment decision variables

xgen
n,g,i: Capacity investments in generator type g ∈ Gn in node n ∈N in period i ∈ I,

x tran
l,i : Capacity investments in interconnector l ∈ L in period i ∈ I,

x storPW
n,b,i : Capacity investments in power of storage type b ∈ Bn in node n ∈N in period i ∈ I,

x storEN
n,b,i : Capacity investments in energy of storage type b ∈ Bn in node n ∈N in period i ∈ I,

vgen
n,g,i: Existing capacity of generator type g ∈ Gn in node n ∈N in period i ∈ I,

vtran
l,i : Existing capacity of interconnector l ∈ L in period i ∈ I,

vstorPW
n,b,i : Existing capacity of power of storage type b ∈ Bn in node n ∈N in period i ∈ I,

vstorEN
n,b,i : Existing capacity of energy of storage type b ∈ Bn in node n ∈N in period i ∈ I.
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Operational decision variables

ygen,inflex
n,g,h,i,ω : Output from inflexible generator type g ∈ G in f lex in node n ∈N

in period h ∈H, i ∈ I and scenario ω ∈ Ω,

ygen,flexDA
n,g,h,i,ω : Output from Flexible generator type in day-ahead market g ∈ GF lex in node n ∈N

in period h ∈H, i ∈ I and scenario ω ∈ Ω,

ygen,interDA
n,g,h,i,ω : Output from intermittent generator type in day-ahead market g ∈ G inter in node n ∈N

in period h ∈H, i ∈ I and scenario ω ∈ Ω,

ygen,interID
n,g,h,i,ω : Output from intermittent generator type in intraday market g ∈ G inter in node n ∈N

in period h ∈H, i ∈ I and scenario ω ∈ Ω,

ygen,flexID
n,g,h,i,ω : Output from intermittent generator type in intraday market g ∈ GF lex ible in node n ∈N

in period h ∈H, i ∈ I and scenario ω ∈ Ω,

y tranDA
a,h,i,ω: Power flow over unidirectional arc in day-ahead market a ∈A in period h ∈H, i ∈ I

and scenario ω ∈ Ω,

y tranID
a,h,i,ω: Power flow over unidirectional arc in intraday market a ∈A in period h ∈H, i ∈ I

and scenario ω ∈ Ω,

ychrgDA
n,b,h,i,ω: Charging of storage type in day-ahead market b ∈ Bn in node n ∈N in period h ∈H, i ∈ I

and scenario ω ∈ Ω,

ychrg,ID
n,b,h,i,ω: Charging of storage type in intraday market b ∈ Bn in node n ∈N in period h ∈H, i ∈ I

and scenario ω ∈ Ω,

ydischrg,DA
n,b,h,i,ω : Discharging of storage type in day-ahead market b ∈ Bn in node n ∈N

in period h ∈H, i ∈ I and scenario ω ∈ Ω,

ydischrg,ID
n,b,h,i,ω : Discharging of storage type in intraday market b ∈ Bn in node n ∈N

in period h ∈H, i ∈ I and scenario ω ∈ Ω,

wstor,DA
n,b,h,i,ω: Energy content of storage type in day-ahead market b ∈ Bn in node n ∈N

in hour h ∈H, in period i ∈ I and scenario ω ∈ Ω

wstor,ID
n,b,h,i,ω: Energy content of storage type in intraday market b ∈ Bn in node n ∈N

in hour h ∈H, in period i ∈ I and scenario ω ∈ Ω

y ll,ID
n,h,i,ω: Amoumt of load shed in intraday market in node n ∈N

in period h ∈H, i ∈ I and scenario ω ∈ Ω.





Chapter 1

Introduction

Electricity markets have traditionally had large shares of dispatchable energy sources
such as coal, gas, and nuclear energy. However, recent years’ development has
shifted towards more renewable energy sources (RES) in the energy mix [1]. The
development is driven by climate change concerns and more favorable economic
conditions for RES than previously compared to its competitors in the power mix.
In order to minimize the effect of climate change and stay below the 2◦C target
[2], this development is projected to continue [3].

As the share of variable renewable energy sources [VRES] in an energy mix
grows, the uncertainty in relation to electricity production increases [4]. Weather
conditions are susceptible to forecasting errors, and thus, the forecasts for the pro-
duction of wind and solar might differ from actual production conditions. A key
issue in a power system is to balance supply and demand. Energy sources such as
wind and solar are intermittent by nature, and thus, matching supply with demand
is increasingly difficult when the share of these energy sources grows [5]. Balan-
cing mechanisms are therefore increasingly important in order to balance supply
and demand of electricity. The electricity markets have traditionally handled the
balancing with different market stages. The day-ahead market stage aims to use
the available information to balance supply and demand until the day before ac-
tual delivery. Deviations from the scheduled plan are typically handled by the
intraday market stage, which balances these deviations close to real-time. Mul-
tiple factors can contribute to the volume traded in the intraday market, such as
weather forecasting errors, demand change, and line- and generator outage. Any
deviations still remaining at the scheduled delivery time are typically handled by
a transmission system operator (TSO) in a balancing market stage.

In the last five years, the installed capacity of solar and wind (onshore and off-
shore) in Europe have increased by 41% combined, as illustrated in figure 1.1 [6].
Wind offshore has had the most significant increase, having increased by 156%,
from 20 GW installed in 2015 to 51 GW in 2019. Solar increased by 44%, from
200 GW to 287 GW, and wind onshore increased by 33% from 345 GW to 459

1
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Figure 1.1: Installed capacity of wind onshore, wind offshore, and solar in Europe
from 2015 to 2019. Data gathered from the ENTSO-e transparency platform using
the SFTP protocol [6].

GW in the same period. As seen in figure 1.2 and table 1.1, an increase of VRES
in the energy-mix entails that a larger volume of electricity was handled by the
intraday volume, percentage-vise. With this in mind, it is likely that more VRES
in the European energy mix increases the dependency on the intraday market to
balance any discrepancies between the forecasts and actual available delivery.

In line with the development of the energy-mix in recent years and the projected
increase in VRES capacity, three research questions are proposed in this thesis:

• How does an increased amount of uncertainty introduced by forecasting
errors between a day-ahead and an intraday market affect investment de-
cisions in the power system, including VRES investments?

• How are operational decisions affected when forecasting errors from market
sequencing are included?

• What is the impact of including uncertainty when analyzing the develop-
ments in a power system?

The thesis is structured as follows; Chapter 2 gives an introduction to conduc-
ted research on related subjects and the lack of research related to the objective.
Chapter 3 establishes the problem, while Chapter 4 provides the methodology
to solve the problem. In Chapter 5, the methodology is utilized in test cases for
proof of concept. In Chapter 6, large-scale cases representing the whole European
power system are developed and solved to answer the research questions and il-
lustrate the impact of the research conducted. Chapter 7 summarizes the findings



Chapter 1: Introduction 3

Figure 1.2: Intraday vs. Day-Ahead volumes for selected European electricity
markets, data retrieved from [7–9].

Table 1.1: Overview of Day-Ahead and Intraday volume for selected markets from
2015-2019. Data adapted from [7–9]

Market OMEL
Year 2019 2018 2017 2016 2015
Day-Ahead Volume (TWh) 229 237 245 238 227
Intraday Volume (TWh) 38 39 36 32 32
Market EPEX
Year 2019 2018 2017 2016 2015
Day-Ahead Volume (TWh) 593,2 567,4 534,7 529,3 506,8
Intraday Volume (TWh) 91,6 82,3 71 61,6 58,4
Market Nordpool
Year 2019 2018 2017 2016 2015
Day-Ahead Volume (TWh) 381,5 396 394 391 374
Intraday Volume (TWh) 15,8 8,3 6,7 5 5
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and propose recommendations for future work. Due to the limited research on the
topic, the results was considered to be of contribution to the field. Therefore, a
journal paper was written in parallel to the thesis. The draft of the paper is listed
in Appendix B



Chapter 2

Literature Review

In recent years, more emphasis has been put into research on how VRES are in-
fluencing decision making in a power system, much due to climate change con-
cerns. In addition, more powerful software has been developed, allowing for more
computationally heavy models and analyses. This section will provide a review of
current literature in relation to the research questions proposed in Chapter 1. The
literature review will focus on research on investment and operational decisions
in a power system and how VRES and its stochastic nature affect these decisions.

As the energy mix of the world moves towards a larger share of VRES, the
level of uncertainty in a power system increases. To maintain a balance between
supply and demand with high shares of VRES, flexible energy producers or con-
sumers are required [10]. Several papers highlight the importance of flexibility in
a power system with large shares of VRES, and the role that storage, transmission,
flexible energy sources such as hydropower and gas, and demand-side flexibility,
will have on the reliability and security of supply of such a power system [11–
13]. An NREL study indicated that energy storage would be a key component to
provide flexibility in a power system characterized by large shares of VRES penet-
ration [14]. Denholm and Hand [15] also highlight the need for energy storage in
the future and estimate storage capacity of about one day worth of load to meet
the demand without a significant curtailment portion. Child et. al. [16] did an ana-
lysis on the flexibility requirements and benefits to allow for a high penetration on
VRES. Their results indicated that, while energy storage and flexible generators
would be key contributors to flexibility, transmission provided the most value for
money flexibility vise. However, De Jonghe et. al. [17] did a similar study, which
indicated that energy storage would be the most beneficial flexibility provider.

A common approach to analyze problems concerning investments and opera-
tional decisions in a power system is to utilize mathematical optimization models.
Optimization models for power systems are typically divided into two categories:
capacity expansion models and operational models. Capacity expansion models
typically focus on investments and energy mix, while operational models typic-

5
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ally focus on market aspects.

Multi-market modeling is usually done using operational models. Zipf and
Möst [18] analyzed the direct and indirect costs of variable VRES in the German
power system by utilizing a two-stage operational optimization model with day-
ahead and intraday scheduling. Their results indicated that an increased amount
of variable VRES in an power system leads to both increased direct and indirect
cost due to the forecasting errors related to VRES. However, different studies on
multi-stage operational optimization models without an investment stage [19, 20]
have shown that an increased share of variable VRES is leading to a lower total
cost than the current energy mix. Kulakov and Ziel [21] investigated how forecast-
ing errors caused by VRES influenced electricity prices in the market stages. They
found a non-linear correlation between intraday and day-ahead prices. Abrel and
Kuntz [22] explored the impact of uncertainty from VRES on unit commitment
power dispatch. They found that an increased amount of uncertainty triggers more
unit commitment from inflexible energy sources. With the increased uncertainty,
a more diverse energy portfolio was emphasized to balance the VRES forecasting
errors between the market stages. Barth et. al. [23] also investigated the impact
of wind uncertainty on a power system by creating a five-stage stochastic market
model. The objective was to establish the reserves’ role in such a power system and
the cost associated with the reserves. The results indicated that the importance of
reserves increased in such a system, and regulated hydropower was the main con-
tributor to the reserve market. Morales et. al. [24] developed a model analyzing
the issues with conventional market design due to VRES’s stochastic nature. One
issue they identified, was the lack of a cost-recovery guarantee for flexible pro-
ducers. They proposed a solution where the day-ahead market is cleared while
also factoring in the anticipated balancing cost resulting from forecasting errors.
Borggrefe and Neuhoff [25] highlighted the need for a market design that fa-
cilitates potential improved conditions in the intraday market compared to the
day-ahead market.

In addition to multi-market modeling, capacity expansion models are also of
great interest to issues addressed in this thesis. Seljom and Tomasgaard [26] de-
veloped a model to analyze the investment decisions in the Danish power system.
Both a deterministic and a stochastic approach were utilized, and they found sig-
nificant differences between the approaches. They concluded that a stochastic
approach was a more realistic and that this approach resulted in significantly
lowered investments in VRES. Their results are also supported by Nagl et al. [27],
who concluded that VRES is typically significantly overvalued and flexible pro-
viders the opposite. Ehremann and Smeers [28] developed a capacity expansion
model addressing the issues with investment risks in a power system. They ap-
proached the issue by including stochastic properties in the discount rate to in-
corporate the risk of investing in VRES compared to dispatchable energy sources.
The results indicated that by adding risk, i.e., considering the power system’s un-
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certainty due to VRES’s unpredictable nature, the system costs increased. Sun et al.
[29] analyzed the US power system with a capacity expansion model focusing on
transmission flow between different regions. They found that transmission might
be an underestimated technology in capacity expansion models. In 2012, Giraldo
et al. [30] investigated the impact of adding emission constraints to a capacity
expansion model. Both an emission tax and an emission cap was included. They
showed that adding such constraints increased the total costs somewhat, but that
the investments and thus, the solution were applicable to a real-world scenario.
Villavicencio [31] developed a capacity expansion model aiming to encapsulate
some of the operational issues of VRES. It was concluded that proper modeling
of the system- and operational requirements increase with a large penetration of
VRES. Poncelet et al. [32] also developed a capacity expansion model aiming to
integrate the challenges with large shares of VRES in an power system. Bermudez
et. al. [33] highlights the need to consider the expected future development when
planning for investments in a power system.

In addition to models focusing on capacity expansion and market modeling,
there is some research on models combining capacity expansion and market se-
quencing. Pineda and Morales [34] developed a model with both an investment
stage as well as market sequencing. Their results indicated that forecast errors had
a major impact on investment decisions and that the installed capacity of VRES
in a power system will decrease if considerations on forecasting errors between
market stages are present. However, Pineda and Morales used a small model cov-
ering just the Danish power system, and the results did not include findings on
transmission or energy storage. Table 2.1 lists the most relevant literature used
to formulate the model developed in this thesis. The purpose of this literature
review was to evaluate relevant research on capacity expansion model and the
impact of forecasting errors. Much research has been conducted on capacity ex-
pansion model, but a better understanding on how forecasting errors affect such
a problem is necessary. From the literature review, it can be expected that invest-
igating the impact of market sequencing on investment decisions will significantly
impact the results. Importantly, it is reasonable to assume that these systems will
be more reliant on flexibility providers and that the total system costs will increase.

This thesis aims to fill a gap in the current literature concerning capacity ex-
pansion models with market sequencing. Capacity expansion models with market
sequencing is currently rarely done, and only on relatively small power systems
with limited transmission opportunities and energy storage systems. Therefore,
this paper aims to establish what the impact market sequencing has, both on in-
stalled capacity, transmission capacity, and storage capacity, in order to provide a
more accurate representation of the ideal developments in a power system.
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Table 2.1: Table of relevant literature on capacity expansion models or market
sequencing models which are similar to the model developed in this thesis.

Author and source Investments Markets
Zipf and Most [18] No Day-Ahead and Intraday
Abrell and Kunz
[22]

No Day-Ahead and Intraday

Kannavou et. al.
[20]

No Day-ahead, Intraday and Reserve

Barth et. al. [19] No 5: Day-ahead, Intraday, Day-ahead
for reserves, Intraday for spinning,
Heat

Morales et. al.
[24]

No Day-Ahead and Intraday

Pineda and Mor-
ales [34]

Yes Day-Ahead and Intraday

Seljom and Tomas-
gard [26]

Yes Operational

Poncelet [32] Yes Operational

Villavicencio [31] Yes Operational
Giraldo et. al. [30] Yes Operational

Sun et. al. [29] Yes Operational

Ehremann and
Smeers[28]

Yes Operational



Chapter 3

Problem Description

This section describes the problem of investments and operational decisions in a
power system with market sequencing under uncertainty. We specifically consider
the impact of forecasting errors in optimal investments

3.1 Problem Definition

Let us take the perspective of a capacity expansion problem in a power system.
The purpose of a power system is to facilitate delivery of electricity to poten-
tial consumers at all times. In order to supply electricity, producers of electricity
are needed. In addition to production capacity, other infrastructure components
such as transmission and possibly energy storage systems, are important parts of
a power system. Long-term investment decisions in these infrastructure compon-
ents are important in order to ensure sufficient installed capacity and guarantee
security of supply.

The delivery of electricity is normally scheduled and decided in electricity mar-
kets. Typically, these are classified as forward markets, day-ahead markets and in-
traday/balancing markets. In this report, we ignore forward markets. Day-ahead
markets schedule the production and delivery of electricity in order to meet a de-
mand, the day before actual delivery. Day-ahead markets are important parts in a
power system as they allow producers to anticipate and plan their operations in-
cluding the production of electricity. However, the actual demand and production
conditions may deviate from the projected conditions in the day-ahead market.
Load as well as production from VRES are susceptible to forecasting errors, due
to the intrinsic short-term uncertainty in weather conditions and user behavior.
In order to be able to supply the demand, an intraday market is used to balance
the deviations resulting from the forecasting errors between the market stages, or
shed load if necessary.

A capacity expansion problem in a power system aims to plan the minimal
cost investments in a power system given future demand levels and various un-

9
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certainties. To decide on the best investments in a power system, it is important
to include both the intrinsic uncertainty of VRES and load and the forecasting
errors between electricity markets. The problem can therefore be separated into
three distinct types of stages, strategic stages and two types of operational stages.
In strategic stages, the long-term investments in the power system are decided,
while the two operational stages are the day-ahead and intraday market, respect-
ively. As the forecasting errors largely depend on the energy-mix, it is particularly
important to consider the forecasting errors when analysing a capacity expansion
problem.

3.2 Objective

The objective is to identify the optimal investment decisions in a power system
with market sequencing under uncertainty at minimal costs. This implies that
power system operation must be considered. The strategic investment decisions
must take into account the operational decisions, and thereby account for the un-
certainty in VRES and load, in addition to the forecasting errors introduced by the
market stages. Given the consideration of uncertainty in a multi-stage setting for a
long planning horizon, the aim is to mimimize expected discounted system costs.
Investment costs include investment costs for all infrastructure, i.e., generation,
transmission and energy storage. Operational costs include fuel costs, operations
and maintenance costs and other variable costs.

3.3 Decisions

The decisions in a power system can be separated into strategic and operational
decisions. Strategic decisions are investments in technologies, such as generat-
ors, transmission capacity and energy storage. The strategic decisions state what
is invested in and the level of the investments in each strategic stage. The oper-
ational decisions plan respectively how all available capacity is utilized to serve
the demand based on information available in the specific operational stage. Spe-
cifically these concern generation, transmission flows, battery charging and dis-
charging, and load shedding in the intraday stage. The operational decisions in
the day ahead market are based on forecasts for load and VRES generation. The
operational decisions in the intraday market have to adjust the decisions made
in the day-ahead market, if these turn out to be inaccurate. As such, three separ-
ate groups of decisions are made. First, strategic investment decisions are made,
second operational decisions for the day-ahead market based on the best available
information (the forecast), and third, operational decisions in the intraday market
when actual information is revealed. These decisions drive the costs of operating
a power system.
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3.4 Assumptions

It is assumed that technology costs and location availability is known. For tech-
nology costs, this refers to both variable and fixed costs for all technologies, in
all strategic periods analysed. Location availability implies which technology is
available in each location, and which nodes can by connected by inter-connectors.
The system is reliable, and thus, generator- and line outage is assumed to be not
present. Operational decisions are made based on the assumption of perfect com-
petitive markets. Information concerning actual conditions for VRES and load are
always revealed one hour prior to the actual delivery. Lastly, the cross-border in-
traday market project (XBID) is fully operational, and thus, allow for additional
trading of transmission capacity in the intraday market.

A crucial assumption is the market design. It is assumed that both the day-
ahead and intraday markets will balance the full load. This implies that the intra-
day market will not balance just the deviations from the day-ahead market, but a
complete re-balance. This results in the assumption that the day-ahead market is
not completely binding in its decisions, and thus potential poor decision making
in the day-ahead market can be improved.

3.5 Restrictions

This section will first present the restrictions concerning investments before the
restriction concerning operations are presented.

The investments are restricted by maximum installed capacity, maximum build
capacity and location availability. Maximum installed capacity refers to how much
capacity can be installed in a given node of a given technology. Maximum build
capacity refers to how much capacity can be built in a single strategic period, and
location availability restrict investments of certain components in certain nodes.
The location availability also includes which nodes can be interconnected to each
other. Additionally, some energy storage technologies have restrictions on the re-
lationship between power and energy investments.

In the day-ahead market, the supply has to be equal to the demand in a given
node. In the intraday market, there is a possibility for load shedding at an addi-
tional cost. As it assumed that actual information on VRES and load is revealed
one hour prior to actual delivery, flexible generators are able to ramp up or down
their production subject to technological ramping restrictions in one hour. How-
ever, only flexible generators are able to ramp in between markets. The VRES
generators are subject to the weather conditions, and the inflexible generators
are committed by the decisions made in the day-ahead market. Ramping of gen-
erators are also restricted between operational time steps in both markets. All
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generator output are limited by the installed capacity and generator availability
for each operational point. Transmission and storage operations are also limited
by the installed capacity. The energy level of the storage is limited by the installed
capacity and the discharge- and charge volume of an operational point. Charging
and discharging are, therefore, also limited by the energy level. The energy level is
also restricted by a bleed factor, resulting in a minor loss of energy between opera-
tional points. Hydroelectric generators are limited by the volume of the reservoir.
Transmission- and discharge/charge volume are also restricted by losses due to
efficiency factors. Lastly, all operations are limited by an emission cap which span
over each strategic period.

3.6 Summary

This section has described the problem of capacity expansion of a power system
considering forecasting errors between market stages. The objective is to estab-
lish ideal investments in a power system with market sequencing restricted by
technological limitations while also considering uncertainty from VRES and load.



Chapter 4

Method

This chapter describes the methodology used on the problem. It is divided into
five separate sections. The first section gives a brief introduction to the EMPIRE
(European Model for Power System Investment with Renewable Energy) model,
serving as the framework for the model formulation. The second section describes
the additional module that was developed in this thesis. Section three describes
the model formulation while section four reflects on potential shortcomings in the
model. Finally, section five presents the method for the intraday volume calcula-
tion.

4.1 EMPIRE

The model developed in this thesis is based on the EMPIRE model, described in
[35]. Existing data for the EMPIRE model is used in this project. EMPIRE is an
existing model containing two stages: one investment stage and one operational
stage, thereby characterizing it as a capacity expansion model. Figure 4.1 illus-
trates EMPIRE graphically. EMPIRE has been used in a number of different pub-
lications [36–39]. The model represents the EU countries in addition to Switzer-
land and Norway. In total, there are 35 nodes present. Norway is also split into
five zones, according to Nordpools trading zones [40]. Export and import of elec-
tricity is possible in neighbouring countries and zones. Investment decisions in
generator capacity, energy storage and transmission are done in EMPIRE to fa-
cilitate production in order to meet the demand in each node on an hourly basis
without exceeding an emission cap. Electricity demand, technology costs, techno-
logy options and operational characteristics are inputs [37]. The output is given
as investments in technologies and operational decisions assuming a perfect com-
petition market. EMPIRE is a linear capacity expansion model, spanning over 8
periods of 5 years each. Each period is composed of 4 regular seasons, repres-
enting winter, spring, summer and autumn, and two peak seasons representing
extreme conditions. Each regular season has 168 hours and each peak season has

13
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Figure 4.1: Illustration of the EMPIRE model, illustrating its input data, objective
and constraints, and output. Adapted from [41]

24 hours. Uncertainty is included in every hour for load and generator availabil-
ity for VRES. Additionally, regulated hydro has uncertainty concerning available
capacity on a per period basis.

4.2 Explanation of the model

The existing framework for EMPIRE was used to create a three-stage stochastic
optimization model [42] with one investment stage and two operational stages,
simulating two electricity markets in order to solve the problems stated in Chapter
3. The investment stage makes investments in technologies such as generators,
transmission capacity and energy storage. The operational stages emulates a day-
ahead market and an intraday market. Both markets supply a load assuming per-
fect competition. The day-ahead market is cleared based on a best guess forecast
for load and production conditions for VRES, which is similar to the approach
used in [22]. In the intraday market, actual information on load and production
conditions are revealed, and the system re-balances based on the updated inform-
ation subject to the relationship between the market stages. As not every generator
type can change its output on short notice, these generators are committed to the
production decided in the day-ahead market. Generators that cannot alter their
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scheduled production in the day-ahead market are referred to as inflexible gener-
ators. Generators that are able to alter their output on a short notice are referred
to as flexible generators.

It is assumed that energy storage systems are fully flexible between the two mar-
kets as the ramping time of energy storage’s typically are very low [14]. Figure
4.2 illustrates the two markets graphically and how the markets are dependant on
each other. As depicted by the figure, the output from the inflexible generators is
a committed decision made in the day-ahead market while flexible generators are
dependant on the decision made in the day-ahead market by the flexibility factor.
Transmission is connected as well. The connection between the investment stage
and the operational stages are limited by the installed capacity of each generator
type in each node. Production in any of the markets are thus limited by what is
available at that specific point in time.

The generator availability is defined as a constant value for all generators
except for intermittent energy sources as described in [35]. The generator avail-
ability for intermittent generators is calculated by using a normalized value of
production per installed capacity, as shown in equation (4.1). The normalized
value ensures scalability of production per installed capacity, thus allowing for
analysis of the impact VRES has on investment- and operational decisions when
and if the energy mix changes.

Product ionn,g,h,i

Instal ledCapaci t yn,g,i
= ξgen

n,g,h,i (4.1)

4.3 Model Formulation

This section will describe the model formulation. For an explanation of the para-
meters, sets, and variables, please refer to the nomenclature.
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(4.2)

The objective function (4.2) discounts all costs at an annual rate of r, and the
investment periods are given as five year blocks. The factor ϑ =

∑4
j=0(1 + r)− j

scales annual operational costs to the five year investment periods.
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Figure 4.2: Illustration of day-ahead stage and intraday stage and its connection.

The first four terms of (4.2) relate to investment costs of the additional capa-
city of generation, transmission and storage. The last four terms relate to opera-
tional costs of generation and costs of load shedding. The terms for operational
costs are scaled with the scenario probability πω and the seasonal scaling factor
αs, where αs make sure the seasonal costs are scaled up to the length of each
season. The total generation output is calculated by summing the committed gen-
eration schedule from the day-ahead market and the actual delivery of energy
from the intraday market.

4.3.2 Constraints

Operational constraints

Constraint (4.3) balances the anticipated load with the expected generator avail-
ability. Storage discharge volume, as well as transmission, can contribute to serving
the demand. Storage can also be charged for later use, and transmission volume
can be exported. In the day-ahead market, no load shedding is allowed due to the
characteristics of a day-ahead market.
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∑

g∈Gn

(ygen,inflex
n,g,h,i,ω + ygen,FlexDA

n,g,h,i,ω + ygen,interDA
n,g,h,i,ω ) +

∑

b∈Bn

η
dischrg
b ydischrg,DA

n,b,h,i,ω +
∑

a∈Ain
n

ηtran
a y tran,DA

a,h,i,ω =

ξ
load,DA
n,h,i,ω +

∑

b∈Bn

ychrg,DA
n,b,h,i,ω +

∑

a∈Aout
n

y tran,DA
a,h,i,ω , n ∈N , h ∈H, i ∈ I, ω ∈ Ω. (4.3)

Constraint (4.4) re-balances the operations of the system after the new informa-
tion on generator availability and actual electrical load are available. The commit-
ted decisions concerning output from inflexible generators made in the day-ahead
market are present due to the characteristics of these generators not being able to
alter its output in the period between the two markets. Transmission and storage
decisions are also influencing the decisions on how the load is met.
∑

g∈Gn

(ygen,inflex
n,g,h,i,ω + ygen,FlexID

n,g,h,i,ω + ygen,interID
n,g,h,i,ω ) +

∑

b∈Bn

η
dischrg
b ydischrg,ID

n,b,h,i,ω +
∑

a∈Ain
n

ηtran
a y tran,ID

a,h,i,ω + y ll,ID
n,h,i,ω =

ξ
load,ID
n,h,i,ω +

∑

b∈Bn

ychrg,ID
n,b,h,i,ω +

∑

a∈Aout
n

y tran,ID
a,h,i,ω, n ∈N , h ∈H, i ∈ I, ω ∈ Ω. (4.4)

Constraints (4.5), (4.6), and (4.7) state the maximum allowed difference between
the day-ahead and intraday market in terms of generation output and transmis-
sion for every hour in every period, for all scenarios, and in all nodes. The para-
meter, vg , is based on variance per hour for flexible generators and is identical to
the ramping parameter.

(1+ vg) ∗ ygen,FlexDA
n,g,h,i,ω ≤ ygen,FlexID

n,b,h,i,ω

g ∈ GFlex, n ∈N , h ∈H, i ∈ I, ω ∈ Ω. (4.5)

ygen,FlexID
n,b,h,i,ω ≤ (1− vg) ∗ ygen,FlexDA

n,g,h,i,ω

g ∈ GFlex, n ∈N , h ∈H, i ∈ I, ω ∈ Ω. (4.6)

y tran,DA
a,h,i,ω ≤ y tran,ID

a,h,i,ω

a ∈A, h ∈H, i ∈ I, ω ∈ Ω. (4.7)

Production from generators are limited by the available installed capacity:

ygen,inflex
n,g,h,i,ω ≤ ξ

gen,DA
n,g,h,i,ωvgen

n,g,i , g ∈ GInflex, n ∈N
h ∈H, i ∈ I, ω ∈ Ω. (4.8)

ygen,FlexDA
n,g,h,i,ω ≤ ξgen,DA

n,g,h,i,ωvgen
n,g,i , g ∈ GFlex, n ∈N

h ∈H, i ∈ I, ω ∈ Ω. (4.9)
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ygen,interDA
n,g,h,i,ω ≤ ξgen,DA

n,g,h,i,ωvgen
n,g,i , g ∈ GInter, n ∈N

h ∈H, i ∈ I, ω ∈ Ω. (4.10)

ygen,FlexID
n,g,h,i,ω ≤ ξgen,ID

n,g,h,i,ωvgen
n,g,i , g ∈ GFlex, n ∈N

h ∈H, i ∈ I, ω ∈ Ω. (4.11)

ygen,interID
n,g,h,i,ω ≤ ξgen,ID

n,g,h,i,ωvgen
n,g,i , g ∈ GInter, n ∈N

h ∈H, i ∈ I, ω ∈ Ω. (4.12)

Constraints (4.8)-(4.12) establish the maximum amount of generator output as its
installed capacity multiplied with its generator availability. The constraints ensure
that, for any hour, in any period, in any scenario, no more than the available out-
put can be produced. The available output is based on the endogenous decision
of installed capacity of each generator type in a node and period. The generator
availability is exogenous input based on a normalized percentage value specific
for its generator type. For intermittent generators, the generator availability may
vary from one hour to the next due to the uncertain nature of these generators.
For all other generators, the generator availability is constant across all periods,
scenarios and hours. The generator availability for the intermittent generators are
established using the method described in section 4.4

For thermal generators, ramping up load in between hours is limited:

ygen,inflex
n,g,h,i,ω − ygen,inflex

n,g,h−1,i,ω ≤ γ
gen
g vgen

n,g,i , g ∈ GRamp ∩ Gn, n ∈N , s ∈ S,

h ∈H−s , i ∈ I, ω ∈ Ω. (4.13)

ygen,FlexDA
n,g,h,i,ω − ygen,FlexDA

n,g,h−1,i,ω ≤ γ
gen
g vgen

n,g,i , g ∈ GRamp ∩ Gn, n ∈N , s ∈ S,

h ∈H−s , i ∈ I, ω ∈ Ω. (4.14)

ygen,FlexID
n,g,h,i,ω − ygen,FlexID

n,g,h−1,i,ω ≤ γ
gen
g vgen

n,g,i , g ∈ GRamp ∩ Gn, n ∈N , s ∈ S,

h ∈H−s , i ∈ I, ω ∈ Ω. (4.15)

The ramping constraints (4.13)-(4.15) ensure that all generators are subject to
their respective technological restrictions concerning a change in output. The con-
straints state that the difference in output in a generator between two consecutive
hours can not exceed the installed capacity multiplied by the ramping factor.

All storages start with an initial energy level available as a percentage of in-
stalled capacity and runs a full cycle over each representative time period in each
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season:

κbvstorEN
n,b,i +η

chrg
b ychrg,DA

n,b,h1
s ,i,ω − ydiscrg,DA

n,b,h1
s ,i,ω = wstor,DA

n,b,h1
s ,i,ω, b ∈ Bn, n ∈N , s ∈ S,

i ∈ I, ω ∈ Ω. (4.16)

κbvstorEN
n,b,i = wstor,DA

n,b,|Hs|,i,ω
, b ∈ Bn, n ∈N , s ∈ S

i ∈ I, ω ∈ Ω. (4.17)

κbvstorEN
n,b,i +η

chrg
b ychrg,ID

n,b,h1
s ,i,ω − ydiscrg,ID

n,b,h1
s ,i,ω = wstor,ID

n,b,h1
s ,i,ω, b ∈ Bn, n ∈N , s ∈ S,

i ∈ I, ω ∈ Ω. (4.18)

κbvstorEN
n,b,i = wstor,ID

n,b,|Hs|,i,ω
, b ∈ Bn, n ∈N , s ∈ S

i ∈ I, ω ∈ Ω. (4.19)

Constraints (4.16)-(4.19) gives the initial energy level of a storage type based on
the installed capacity in that period. In addition, the charging and discharging
volumes are considered. It is repeated for every season in each period for all scen-
arios.

The balance of storage is ensured between operational time steps:

wstor,DA
b,n,h−1,i,ω +η

chrg
b ychrg,DA

b,n,h,i,ω − ydiscrg,DA
b,n,h,i,ω = η

bleed
b wstor,DA

b,n,h,i,ω, b ∈ Bn, n ∈N ,

s ∈ S, h ∈H−s ,

i ∈ I, ω ∈ Ω. (4.20)

wstor,ID
b,n,h−1,i,ω +η

chrg
b ychrg,ID

b,n,h,i,ω − ydiscrg,ID
b,n,h,i,ω = η

bleed
b wstor,ID

b,n,h,i,ω, b ∈ Bn, n ∈N ,

s ∈ S, h ∈H−s ,

i ∈ I, ω ∈ Ω. (4.21)

Constraints (4.20) and (4.21) balance the energy content of each storage type
every hour of every scenario in each period subject to technological restrictions of
the storage type. The constraints are essentially an inventory constraint ensuring
that what was available in the storage unit at the previous time step, the energy
coming into the storage unit at the current time step, and the energy discharged
from the storage unit in the current time step has to be equal to the energy content
of the storage unit in the current time step.

The energy content of storage is limited by capacity:

wstor,DA
n,b,h,i,ω ≤ vstorEN

n,b,i , b ∈ Bn, n ∈N , h ∈H, i ∈ I, ω ∈ Ω. (4.22)

wstor,ID
n,b,h,i,ω ≤ vstorEN

n,b,i , b ∈ Bn, n ∈N , h ∈H, i ∈ I, ω ∈ Ω. (4.23)



20 Magnus Wendelborg: Master Thesis

Constraints (4.22) and (4.22) ensure that the energy content of a storage type in a
node for every hour and scenario does not exceed the maximum storage capacity
for that particular node, storage type and period.

The amount of charging and discharging per hour is also limited by capacity:

ychrg,DA
n,b,h,i,ω ≤ vstorPW

n,b,i , b ∈ Bn, n ∈N , h ∈H, i ∈ I, ω ∈ Ω, (4.24)

ydischrg,DA
n,b,h,i,ω ≤ ρbvstorPW

n,b,i , b ∈ Bn, n ∈N , h ∈H, i ∈ I, ω ∈ Ω. (4.25)

ychrg,ID
n,b,h,i,ω ≤ vstorPW

n,b,i , b ∈ Bn, n ∈N , h ∈H, i ∈ I, ω ∈ Ω, (4.26)

ydischrg,ID
n,b,h,i,ω ≤ ρbvstorPW

n,b,i , b ∈ Bn, n ∈N , h ∈H, i ∈ I, ω ∈ Ω. (4.27)

Constraints (4.24)-(4.27) limits the charge- and discharge volume subject to the
installed capacity of the storage type in each node and period. The charging and
discharge limits are enforced for all hours in each period and are also subject to
technological limitations of the storage types in the form of discharge efficiency.

For hydroelectric generators, the energy available is restricted by season and
node:

∑

h∈Hs

ygen,FlexDA
g,n,h,i,ω ≤ ξRegHydLim

n,i,s,ω , n ∈N , g ∈ GFlex ∩ Gn,

s ∈ S, i ∈ I, ω ∈ Ω, (4.28)
∑

ω∈Ω
πω

∑

s∈S
αs

∑

h∈Hs

∑

g∈GHyd∩Gn

ygen,FlexDA
n,g,h,i,ω ≤ ξHydLim

n , n ∈N , i ∈ I. (4.29)

∑

h∈Hs

ygen,FlexID
g,n,h,i,ω ≤ ξRegHydLim

n,i,s,ω , n ∈N , g ∈ GFlex ∩ Gn,

s ∈ S, i ∈ I, ω ∈ Ω, (4.30)
∑

ω∈Ω
πω

∑

s∈S
αs

∑

h∈Hs

∑

g∈GHyd∩Gn

ygen,FlexID
n,g,h,i,ω ≤ ξHydLim

n , n ∈N , i ∈ I. (4.31)

Constraints (4.28) and (4.30) ensures the maximum available production from
regulated hydro does not exceed available hydro capacity for a given year. This
is done by summing the production of every hour of regulated hydro generators
for every scenario, period and node and ensuring that the sum of the produc-
tion is less than or equal to the available generator capacity. The maximum hydro
capacity is generated as described in 4.4. In essence, these constraints further re-
strict the production from regulated hydro as regulated hydro is also affected by
constraints (4.9) and (4.11). Constraints (4.29) and (4.31) limits the total pro-
duction in a year by ensuring that production for a given year does not exceed the
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available hydro resources for a given node. In contrast to the two previous con-
straints, these constraints do not consider the unpredictability concerning rainfall,
and thus, these constraints are a max production constraints which hold true for
all scenarios and periods.

Transmission operation is in a net transfer capacity (NTC) representation:

y tran,DA
a,h,i,ω ≤ vtran

l,i , l ∈ L, a ∈Al , h ∈H, i ∈ I, ω ∈ Ω. (4.32)

y tran,ID
a,h,i,ω ≤ vtran

l,i , l ∈ L, a ∈Al , h ∈H, i ∈ I, ω ∈ Ω. (4.33)

Constraints (4.32) and (4.33) establishes the rules for transmission volume. The
constraints ensures that the net transfer volume for each hour in each scenario in
each period does not exceed the installed transmission capacity of the particular
interconnector.

All annual emissions are limited by an emission cap:

∑

s∈S
αs

∑

h∈Hs

∑

n∈N

∑

g∈Gn

qCO2
g,i ∗ (y

gen,inflex
n,g,h,i,ω + ygen,FlexDA

n,g,h,i,ω + ygen,interDA
n,g,h,i,ω )≤QCO2

i , i ∈ I, ω ∈ Ω.

(4.34)

∑

s∈S
αs

∑

h∈Hs

∑

n∈N

∑

g∈Gn

qCO2
g,i ∗ (y

gen,inflex
n,g,h,i,ω + ygen,FlexID

n,g,h,i,ω + ygen,interID
n,g,h,i,ω )≤QCO2

i , i ∈ I, ω ∈ Ω.

(4.35)

The emission constraints, (4.35) and (4.34), limits the total emissions for a given
period. The emissions for every hour for every generator in every node and scaling
it with the seasonal scale is summed and restricted by the maximum allowed emis-
sions in each period. The constraints apply for every scenario. The total emission
for in each scenario and period can not exceed the maximum allowed emissions
stated by the EU emission policy [43].
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Investment constraints

Every generator, transmission line and storage unit have existing capacitiy avail-
able in each period:

vgen
n,g,i = x̄gen

n,g,i +
i
∑

j=i′
xgen

n,g, j , g ∈ Gn, n ∈N , i ∈ I,

i′ =max{1, i − igen
g }, (4.36)

vtran
l,i = x̄ tran

l,i +
i
∑

j=i′
x tran

l, j , l ∈ L, i ∈ I,

i′ =max{1, i − itran
l }, (4.37)

vstorPW
n,b,i = x̄ storPW

n,b,i +
i
∑

j=i′
x storPW

n,b, j , b ∈ Bn, n ∈N , i ∈ I,

i′ =max{1, i − istor
b }, (4.38)

vstorEN
n,b,i = x̄ storEN

n,b,i +
i
∑

j=i′
x storEN

n,b, j , b ∈ Bn, n ∈N , i ∈ I,

i′ =max{1, i − istor
b }. (4.39)

Constraints (4.36)-(4.39) ensures that both existing capacities, as well as in-
vested capacity, is counted for total capacity. It is repeated for every generator,
storage or transmission type in each node and for every period.

There are restrictions on investments and available capacity the technologies
have in each node:

∑

g∈Gt

xgen
n,g,i ≤ X̄ gen

t,n,i , t ∈ T , n ∈N , i ∈ I, (4.40)

x tran
l,i ≤ X̄ tran

l,i , l ∈ L, i ∈ I, (4.41)

x storPW
n,b,i ≤ X̄ storPW

n,b,i , b ∈ Bn, n ∈N , i ∈ I, (4.42)

x storEN
n,b,i ≤ X̄ storEN

n,b,i , b ∈ Bn, n ∈N , i ∈ I, (4.43)
∑

g∈Gt

vgen
n,g,i ≤ V̄ gen

t,n,i , t ∈ T , n ∈N , i ∈ I, (4.44)

vtran
l,i ≤ V̄ tran

l,i , l ∈ L, i ∈ I, (4.45)

vstorPW
n,b,i ≤ V̄ storPW

n,b,i , b ∈ Bn, n ∈N , i ∈ I, (4.46)

vstorEN
n,b,i ≤ V̄ storEN

n,b,i , b ∈ Bn, n ∈N , i ∈ I. (4.47)

Constraints (4.40)-(4.47) limit the maximum allowed capacity of a technology in
each node. For generators, this is done by summing the installed generator capa-
city in its technology group, e.g. ‘fossil gas’, in every node and period.
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Some storage technologies b ∈ B† ⊆ B have dependencies between power and
energy capacity:

vstorPW
n,b,i = βbvstorEN

n,b,i , b ∈ B† ∩Bn, n ∈N , i ∈ I. (4.48)

Constraint (4.48) states the dependencies between power and energy capacity for
some of the storage technologies. The constraint is implemented to capture the
technological limitations of storage technologies that are subject to these limita-
tions.

4.4 Scenario Generation

In order to include the unpredictable nature of VRES and load, different scenarios
are generated. The scenario data is based on historical data for load, generator
availability, and maximum hydro allowance. All data is collected from the ENTSO-
e database using the SFTP protocol [6]. Data for both day-ahead and intraday,
named forecast and actual from ENTSO-e, respectively, are collected. The data is
then put into to a scenario-generation routine. The scenario-generation routine
divides the historical data into seasons according to hours of the year. Then, for
every scenario and every season, a random hour is sampled. The hours are then
sorted, to start on Monday 00:00. In addition, any hour later than the length of
the operational period could not be selected, because the chronology is preserved
and we would not get a sufficient amount of data. All parameters generated from
the scenario routine are sampled based on the same hour for each season and
scenario, ensuring correlation between the different parameters, such as wind-PV
correlation.

Since only a small portion of the historical data sets are randomly generated,
there was a need to ensure a correlation between historical trends and the trend
generated by the scenario-generation. Securing a correlation was done by util-
izing moment matching. The moment matching routine analyzes the generated
scenarios to find the best collection of scenarios that match the statistical mo-
ments of the historical data. The procedure is as follows: First, a realization of the
stochastic data is created based on the historical data sets for each hour, season,
scenario and period. The first step is then repeated U times to generate U different
collections of scenarios, or scenario trees. Then, the first four moments (expect-
ation, variance, skewness, and kurtosis) was calculated for each season for all U
scenario trees. The seasonal moments of each scenario tree are further compared
to the seasonal moments of all historical data.

The scenario tree with the best match to the original data was identified based
on equation (4.49):
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du,s =
∑

n∈N
wn

∑

v∈V

|mall
v,s,n −mtree

v,s,n,u|

|mall
v,s,n|

, (4.49)

where u is the scenario tree, s is the seasons, n is the nodes, and v is the moment
order. The nodal weight, wn, represents how much node n should contribute to
the tree score. The values mall

v,s,n represent moment v in season s and node n for
all data, and mtree

v,s,n,u represent the moment value specific to tree u. The minimum
value of

∑

s∈S du,s yields the tree u which has moments matching best with all
historical data.

In this thesis, the seasonal moments for each scenario tree and all historical
data are calculated based on all actual load realizations as a univariate distribu-
tion of hourly values. The nodal weight is calculated based on the nodal share of
the total actual load in the whole system. Therefore, the hours best represented
in the scenario tree compared to the actual load was also used in the forecasted
load, forecasted generator availability, generator availability, and hydro availabil-
ity. By using the same hours for all parameters, we preserve the cross-correlation
between load and production, and thus, create a likely future scenario tree. In
addition, nodes are weighted differently to make sure that a correlation in lar-
ger nodes is more important than a correlation in smaller nodes. The scenario
generation approach is based on [26].

4.5 Shortcoming of the model

In order to not make a too complex and computational heavy model, some as-
sumptions were made which results in a simplification of a real-world power sys-
tem. The model presented in this thesis is a linear three-stage optimization model.
However, some components, such as transmission and power generation, are in-
herently nonlinear but converted to linear to reduce the computational efforts.
The model also utilizes a perfect market, leading to a minimization of the costs
of operating the markets at each hour. The market is cleared so that the electri-
city price is set at the point where the last contributing generator is meeting the
demand, illustrated in figure 4.3. The traditional approach does not consider the
fixed costs of production, which studies have shown is leading to unprofitable op-
erations of key generators in a power system [44]. In addition, by modelling the
markets as perfect competition, regulatory and technological limitations are pre-
valent. For instance, generators typically have a start/stop cost, minimum running
time or commitment to produce power due to regulatory responsibilities [45].
These problems are not included in this model in order to reduce computational
efforts. Another factor is the assumed perfect system development. The model
chooses the investments based on an objective to minimize the system costs. By
choosing the investments purely based on cost aspects, issues such as reliability
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on long term investments due to the unpredictable nature of VRES and load may
arise [46]. This means that dedicated reserve capacity is not included in the in-
vestments, and the model does also not consider maintenance and drop-out of the
components. This may lead to the investments in the power system being at the
absolute minimum, and in extreme cases or malfunctions on the power system,
the demand may not be met.

There is also the issue of cost recovery. The cost recovery issue is prevalent in
the generators that are required to reduce the output between the market stages.
As the generators are only paid what they are actually delivering, and not what
was planned, there might be a difference in income for these generators. This
means that if a generator is reducing its output made in the planning stage to the
delivery, there is no compensation for the change. If for instance, a fuel-driven
generator uses less fuel than what was scheduled in the day-ahead market, the
marginal cost of that generator will in fact not necessarily be covered, depend-
ant on the electricity price. There are difficulties establishing how the generators
providing flexibility, should be compensated due to market design, leading to this
feature not being implemented. An additional point is the generator availabil-
ity data derived from ENTSO-e. The data is based on the forecasted production
and actual production from 2015-2020. The data does, therefore, not use actual
wind speeds and solar irradiation, and are thus susceptible to different bidding
strategies in the markets. However, it assumed that a VRES producer would bid
what the producers predict is available for the day-ahead market.

4.6 Intraday Volume

A method for calculating the intraday volume is explained in the following sec-
tion. The intraday volume can be defined as the excess trading that is needed or
beneficial in order to supply the demand according to the actual conditions. It is
therefore based on the difference in decisions between the two market stages. The
method determines the difference between the decisions made in the day-ahead
market and intraday market for energy storage, transmission, intermittent gener-
ators, and flexible generators. First, lets define a set of components, D, that are
subject to altered decisions or conditions between the market stages:

D = {Flex, Inter, storDischrg, storChrg, tran, load}

Equation (4.50) - (4.55) illustrates how the difference in production volume
changes between the markets for each period, where δd

i is the difference in output
between the market stages in each period for the components that are able to alter
the output between market stages:
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Figure 4.3: Illustration of market clearing based on marginal costs in a electricity
market adapted from [47].

∑

s∈S
αs

∑

h∈Hs

∑

n∈N

∑

g∈Gn

πω

∑

ω∈Ω
(ygen,FlexID

n,g,h,i,ω − ygen,FlexDA
n,g,h,i,ω ) = δFlex

i , i ∈ I (4.50)

∑

s∈S
αs

∑

h∈Hs

∑

n∈N

∑

g∈Gn

πω

∑

ω∈Ω
(ygen,InterID

n,g,h,i,ω − ygen,InterDA
n,g,h,i,ω ) = δInter

i , i ∈ I (4.51)
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s∈S
αs

∑

h∈Hs

∑

n∈N

∑

b∈Bn

πω

∑

ω∈Ω
(ydischrg,ID

n,b,h,i,ω − ydischrg,DA
n,b,h,i,ω ) = δ
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i , i ∈ I (4.52)
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s∈S
αs

∑

h∈Hs

∑

n∈N

∑

b∈Bn

πω

∑

ω∈Ω
−(yChrg,ID

n,b,h,i,ω − yChrg,DA
n,b,h,i,ω) = δ

stor,Chrg
i , i ∈ I (4.53)
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s∈S
αs

∑
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From these equations, we can calculate the total difference between the de-
cisions in the day-ahead stage and the intraday stage, ref equation (4.56):

I Dvolume
i =

¨
∑

d∈D δ
d
i δd

i ≥ 0

0 otherwise
(4.56)

Note that we only consider output that has increased from the day-ahead mar-
kets in order to not double count the volumes. If a generator increases its output
between the markets, another generator has to decrease its output subject to the
deviations in load and potential losses in transmission or storage if these are util-
ized. Therefore, it is important to only sum the components that increases its
output compared to the day-ahead stage as it is a zero-sum issue.

From the intraday volume, the percentage intraday volume can be calculated
as a share of the total load that is delivered, ref equation (4.57)

I D%
i =

I Dvolume
i

∑

s∈S αs
∑

h∈Hs

∑

n∈N πω
∑

ω∈Ω ξ
load,ID
n,h,i,ω

, (4.57)

The method to calculate the intraday volume shown here does not necessarily
correlate with the historical intraday volumes illustrated in Chapter 1 due to the
market design. However, the intraday volume can still be used to illustrate the
importance of an intraday market, as it illustrates the difference in the operational
decision between the market stages.





Chapter 5

Simplified Test Case

In this chapter, three cases are investigated in order to prove the concept and
how the new additions to the EMPIRE model functions. The standard version of
EMPIRE will also be analysed to establish the impact of adding market sequencing
to the pre-existing EMPIRE model. The cases used in this chapter uses a simplified
version of EMPIRE in order to present the key results from the implementation of
market sequencing. The cases studied in this chapter uses a three node system,
with fewer periods, operational hours and scenarios. For a full explanation of the
input data, see section 5.2. Chapter 6 will present a larger case study, focusing on
the European power system.

5.1 Description of cases

5.1.1 Case 0: Reference case, Standard EMPIRE

The reference case will use the standard version of EMPIRE as described in [35].
The standard version consists of two stages, one investment stage and one oper-
ational stage. The case is run in order to be able to compare the decisions made
in each of the different cases to the reference case and investigate the impact the
modifications has on the optimal solutions.

5.1.2 Case 1: Basecase

The basecase consists of an intraday market, a day-market, and an investment
stage. The investment stage is followed by the day-ahead stage, which has three
scenarios. The day-ahead stage is followed by an intraday stage with one scenario
for each scenario in the day-ahead stage, as illustrated in figure 5.1. The connec-
tion between the market stages is based on figure 4.2 and the constraints 4.5, 4.6,
and 4.7. As seen by the transmission connection constraint, it is only allowed to
increase or remain at its scheduled operation decided in the day-ahead market.
Historically, cross-border transmission re-dispatch has not been allowed in the in-
traday market. However, in 2018, the cross-border intraday market project (XBID)

29
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Figure 5.1: Illustration of scenario-tree in the model.

went live. The XBID project is aiming to allow for cross-border transmission trad-
ing in the intraday market [48]. Currently, only some of the European energy
markets are participating in the project, but the plan is to incorporate all of the
European power market zones shortly [48]. Therefore, it was decided to allow
excess trading of transmission capacity between all nodes with an interconnector
in the intraday market in this thesis.

5.1.3 Case 2: No transmission case

The objective of the no transmission case is to analyse how the energy markets
have operated up until the XBID project was implemented, and thus analyze the
impact of intraday transmission trading on the flexibility needs of a power system.
Therefore, this case does not allow for excess trading of transmission capacity in
the intraday market, and thus constraint 4.7 is slightly altered. In this case, the
constraint is altered to ensure that no excess transmission volume can be traded
in intraday market as presented in equation 5.1:

y tran,DA
a,h,i,ω = y tran,ID

a,h,i,ω, a ∈A, h ∈H, i ∈ I, ω ∈ Ω. (5.1)

5.1.4 Case 3: Less flexibility case

The less flexibility case aims to analyse the impact of having shorter time between
the intraday trading and the actual operation. In case 1 and 2, the actual load and
generator availability is revealed one hour before delivery, meaning that the gen-
erators have one hour to alter their output. In case 3, however, the time between
the trading and delivery is changed to only 15 minutes. With only 15 minutes to
change generation output, generators becomes less flexible, and it is of interest to
investigate how this impacts investments and operational decisions. In equation
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4.5 and 4.6, the parameter Vg changes to 25% of its original value. Here, it is
assumed a linear ramping factor of the generators, which is supported by [49].

(1+
vg

4
) ∗ ygen,FlexDA

n,g,h,i,ω ≤ ygen,FlexID
n,b,h,i,ω

g ∈ GFlex, n ∈N , h ∈H, i ∈ I, ω ∈ Ω. (5.2)

ygen,FlexID
n,b,h,i,ω ≤ (1−

vg

4
) ∗ ygen,FlexDA

n,g,h,i,ω

g ∈ GFlex, n ∈N , h ∈H, i ∈ I, ω ∈ Ω. (5.3)

5.2 Input Data

The same input data is used across all of the cases. Three nodes are analysed in
these cases representing Germany, Denmark, and France. The emission cap is low,
referencing the EU policy on carbon emissions (see table 5.1) [43]. The emission
cap is scaled linearly down to account for just the nodes included in the case.
In addition, cost parameters represent projected costs in 2050, 2055, and 2060
to simulate future conditions for costs. Three periods of 10 years are analysed,
each with two regular seasons and two peak seasons. In order to evaluate in-
vestment decisions, no initial installed capacity was assumed. The initial capacity
includes generators, storage and transmission. Scenarios are generated based on
the procedure explained in chapter 4.4. Three scenarios are generated for each
hour, season, and period. For every period, season, and scenario, a random hour
was sampled. The same hour was sampled in both the intraday and day-ahead
stage, for generator availability and load. By sampling the same hour, the correl-
ation between the stochastic parameters and market stages are preserved. Table
5.2 presents the different generator types sorted into the new generator sets. For
case 0, the model resulted in 122 000 constraints and 76 000 variables. The cases
with market sequencing have 545 000 constraints and 319 000 variables. As seen
by the increased amount of variables and constraints in the cases with market
sequencing, the computational effort of solving the model increases significantly.

5.2.1 Data Gathering

The input data for both day-ahead and intraday parameters are gathered from
the ENTSO-e database using the Secure File Transfer Protocol (SFTP) [6]. The
day-ahead data is assumed to be forecasted data, while the intraday data is as-
sumed to be actual data. The data consists of hourly measures from 2015 to the
end of 2019. Some countries represented in the model are not included in various
datasets in the ENTSO-e database. These countries were therefore represented
using neighbouring countries with an assumption that conditions were similar in
the countries. This issue was only prevalent in generator availability parameters.
Another issue in the datasets from ENTSO-e is missing data for certain hours or



32 Magnus Wendelborg: Master Thesis

Table 5.1: Total emission cap in Mton CO2 equivalent in each period

Period CO2Cap [in Gton CO2eq]
2020-2030 1.2
2030-2040 0.6
2040-2050 0.24

values that are assumed to be incorrect. In order to combat this issue, a smooth-
ing algorithm was used on the datasets. The purpose of the smoothing algorithm
was to calculate a median value based on hour-day-month to replace the incor-
rect or missing values. For the generator availability parameters, the generator
availability was calculated by 4.1, where the production is the smoothed datasets
from ENTSO-e for the production from the generators, and the installed capacity
is the capacity installed at the start of the given year. The procedure was applied
on wind onshore and solar, and both the forecasted production and the actual
production. The reason why offshore wind was not include was due to a lack of
data, as only a few countries have offshore wind installed. It was therefore de-
cided to use onshore data for offshore as well to get representative data for all
countries. The identical onshore and offshore wind data is basically resulting in
offshore wind being a more expensive energy source pr installed capacity than
onshore wind. By calculating the generator availability like this, it assumed that
the correlation between production and installed capacity is representative if the
installed capacity changes. The electric load parameters were also gathered from
the ENTSO-e database and put through the smoothing algorithm to get a com-
plete dataset ranging from 2015-2019. Both forecasted and the actually delivered
load was collected from ENTSO-e using the SFTP protocol [6].

5.3 Results

This section will present the key results from the case studies in order to showcase
the developed model.

5.3.1 Objective function value

The four cases yielded significant differences in objective value. Case 2 was the
most expensive case, followed by case 3. Case 0 yielded an objective value sig-
nificantly lower than the cases with market sequencing. Table 5.3 lists the key
results derived from the test cases. As seen by the objective value, adding mar-
ket sequencing, and thus introducing forecasting errors, results in significantly
higher costs. These results are also supported by [19] and [34]. Additionally, it
appears that transmission is a key contributor to help balance the forecast errors
and provide flexibility as case 2 is the most expensive. It is also worth noting that
as the installed capacity of VRES increases, so does the intraday volume. Concern-
ing the intraday volume, transmission is contributing a significant amount to the
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Table 5.2: Overview over generators and sets

Inflexible Generators
Lignite
Coal
Nuclear
Wave

Flexible Generators
Bio 10 cofiring
Geo
Hydro regulated
Bio
Waste
Gas OCGT
Gas CCGT

Intermittent Generators
Hydro run-of-the-river
Wind onshore
Wind offshore
Solar

intraday volume, indicated by the relatively small intraday volume in case 2 com-
pared to the other cases. Other studies have also highlighted transmissions role
in providing flexibility in a power system with a lot of uncertainty [11–13, 29].

5.3.2 Investments in generator capacity

Figure 5.2 highlights the installed capacity by generator type and period across
all nodes. The results are similar across case 1-3, with only a 4% difference in in-
vestments per generator type. The difference is largest in flexible generators, with
case 3 investing 3 GW less than the other cases. As seen by the figure, the amount
of flexible and inflexible generators is stable over the period. Due to limitations
in the model on maximum installed capacity and emissions, the installed capacity
of nuclear, bio, and gas (CCGT and OCGT) are at its effective maximum installed
capacity. From 2040 to 2050, there is a drop in installed capacity. The reason for
this drop is due to a mixture of the lifetime of generators and period length as
well as an ’end-of-horizon’ effect. Due to the lifetime of the VRES, re-investments
are needed at some point in the time horizon. In order to get more value out of
the investment, it is beneficial to invest earlier than required. Investing earlier
allows for the possibility to utilize more of the RES resources over the remain-
ing period. Additionally, the model does not consider anything beyond the scope
of the horizon. Therefore, the actual value of investments that have a lifetime
beyond the horizon are underestimated. This combined leads to more favourable
re-investments options by 2040 rather than by 2050.
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Table 5.3: Overview of key results from all four cases

Cases Case 0 Case 1 Case 2 Case 3
Obj Value in billion Euros 1 635 1 805 1 822 1 810
Installed capacity of inflexible
generators in 2050 [%]

6 3.9 3.9 3.9

Installed capacity of flexible
generators in 2050 [%]

8.2 5 5 4.8

Installed capacity of intermit-
tent generators in 2050 [%]

85.8 91.1 91.1 91.3

Installed transmission cap in
2050 [GW]

50.6 59 57.5 58.7

Day-ahead demand in 2050
[TWh]

163.7 163.7 163.7 163.7

Intraday demand in 2050
[TWh]

163.8 163.8 163.8 163.8

Intraday volume in period 1
[%]

- 7.9 4.8 7.6

Intraday volume in period 2
[%]

- 21.1 11.1 21.4

Intraday volume in period 3
[%]

- 24.2 3.1 24.5

Curtailment in 2050 [TWh] 39 166.8 170.5 169.5
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Figure 5.2: Installed generator capacity for each period in case 1 of the test cases
for all nodes

Figure 5.3 illustrates the installed capacity per generator type in case 0. The
investments differ significantly when compared to the market sequencing cases.
The hypothesis of the thesis was that there will be an increased amount of invest-
ments in flexible generators when market sequencing is present. The reason why
this was not experienced in case 1-3 is likely due to the restriction concerning
maximum installed capacity and emission cap in all cases. As the cost-efficient
flexible generators (Bio, Gas) are at its maximum capacity, the model has to ac-
count for the differences between the markets by providing electricity from other
sources. However, due to both investment- and operational costs, VRES are pre-
ferred over other flexible generators even though this leads to massive curtailment
from VRES. When comparing the results with results from existing literature, it
is clear that there are some differences. Existing literature highlights the need for
flexible generators and additional generator capacity in a power system charac-
terized by large amounts of uncertainty [26, 34]. However, due to the limitations
of flexible generators in these cases, the current literature is comparable with the
results of the cases analysed in this report.

5.3.3 Generator output

In addition to the installed capacity being similar across the cases, the generator
output is also comparable and varies at most by 1% between the cases for every
period. Figure 5.4 illustrate the share of output between the generator types. Im-
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Figure 5.3: Installed generator capacity for each period in case 0 of the test cases
fo all nodes

portantly, VRES is dominating the generation, followed by inflexible generators.
However, there is more installed capacity of flexible than inflexible generators.
As the amount of inflexible production increases, so does the flexible production.
This may indicate that inflexible generators are harder to regulate than intermit-
tent generators, and not the other way around.

There are significant differences across the cases when analyzing the differ-
ences between the output in the day-ahead market versus the intraday market.
All of the cases reduce output from flexible generators between the market stages
and increases the VRES output. The reduction in flexible output may indicate bet-
ter conditions for VRES in the intraday stage than the day-ahead stage. It may
also indicate conservative scheduling for flexible and inflexible generators in the
day-ahead stage to make sure that the load in the intraday stage will be met. The
degree of change between intraday and day-ahead decisions varies slightly, with
case 2 having the largest deviations. The high deviations in case 2 is to be expec-
ted as this case is restricting the transmission dispatch between the stages, which
leaves only storage and generators to contribute to the needed balancing. There-
fore, case 2 has to alter its generators the most. The opposite result is observed in
case 3. As this case restricts the response time of generators, the degree of change
in flexible generators is reduced. Thus, there is a lower difference in generator
output between the day-ahead and the intraday markets than in the other cases.
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Figure 5.4: Generator output in all three periods in the case 1

5.3.4 Transmission and Storage in case 0

Transmission investments in standard EMPIRE is significantly lower than in the
cases with market sequencing, even though one of the interconnectors are still at
max install capacity in case 0. Investments in case 0 invest 9 GW less in transmis-
sion capacity than case 1, which further supports the importance of transmission
in regards to flexibility in a power system. Additionally, case 1 delivers 40% more
volume than case 0. It is also worth noting that case 2 is significantly more reliant
on transmission than case 0 even though there are no options to deviate from the
dispatch decisions made in the day-ahead market.

Concerning storage, case 0 is investing in more storage capacity than the other
cases. However, volume delivered by storage is significantly lower compared to
the cases with market sequencing. The reason for these results may be that with
scarcer investments in transmission, storage has to cover peak load within nodes,
thus increasing investments in storage capacity.

5.3.5 Storage

Regarding storage capacity, the three cases are similar with some minor excep-
tions. Case 1 and 3 invests in 10% less power capacity than case 2 (20 GW differ-
ence). Investments in energy storage vary by a smaller degree, with a 1% differ-
ence between the cases and case 1 having the highest investments. For reference,
the investments in power and energy are 242 GW and 1193 GWh, respectively,
for case 1. The discharge volume from storage varies between the cases. Case 3
delivers the greatest amount of energy with a total of 79 TWh over all the peri-
ods. Case 2 delivers the least amount of energy with 75 TWh across the periods.
In all of the cases, the discharge volume follows the trend of output from the in-
termittent generators in that when the total output from VRES increases, so does
the total discharge volume. In period two, when VRES has the greatest share of
production, storage covers around 30% of the total load. The results concerning
storage are in line with what is expected based on the input of the model. Case
3 is less reliant on generators to balance the forecast errors from VRES and load,
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and thus, it is reasonable to expect a greater amount of output from storage in
this case. Concerning case 2, with restricted transmission opportunities, storage
is only able to provide flexibility within a node. The limitation of intraday trading
of transmission capacity is likely leading to scarcer investments in storage and
less discharge volume due to the forecasting errors concerning load and VRES
between the nodes.

5.3.6 Transmission

Transmission show the greatest differences between the cases. Case 2, with re-
stricted transmission between the markets, has the least amount of investments
in transmission at 3% less investments than case 1. One of the two interconnect-
ors are at max installed capacity in all three cases. Concerning load coverage by
transmission, there are significant differences across the cases. Case 1 and 3 cov-
ers more of the load than case 2, ranging from 2 to 13% less load coverage in case
2. For reference, case 3 covers 16%, 25%, and 42% of the load by transmission.
The reduced load coverage by transmission in case 2 supports the claim that trans-
mission is playing a crucial role in balancing and providing flexibility of a power
system. As mentioned in section 5.3.1, a lot of existing literature highlights the
need for additional transmission capacity when adding uncertainty to an energy
model.

5.4 Conclusion

This chapter has shown that by sequencing markets in the EMPIRE model, the
solution gets more expensive due to the need for additional generator capacity,
storage, and transmission. Transmission is the key contributor to flexibility in a
power system with uncertainty from VRES and load, illustrated by both the high
objective value of case 2 and investments in transmission in the other cases. Re-
strictions on transmission also have consequences for storage, as, without the
ability to change transmission dispatch, shorts bursts of power from storage is
important, however, the total energy delivered by storage decreases due to not
being to benefit from changing conditions in neighbouring nodes. When limiting
transmission, the flexible generators also gain importance, and there are greater
deviations between the generator output in the two markets. As seen by the res-
ults, it is clear that forecasting errors originating from market sequencing do have
a significant impact on investment decisions. Furthermore, we experience change
in operational decisions due to the significantly increased transmission volume in
all three cases with market sequencing.

From the results, it is clear that existing literature supports the findings. By adding
a 3rd stochastic stage to the model, the level of uncertainty increases, which is
leading to higher system costs, which is also supported by [19]. The results yiel-
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ded significantly higher investments in transmission, which several other studies
also highlighted [11–13]. Besides, only one other has utilized a capacity expansion
model with two market stages [34]. Their results are similar to those presented
from the test case in that operations and investments are significantly impacted by
forecasting errors. The differences in investments are easily explainable by invest-
igating the maximum allowed capacity in a node, and therefore also has a great
impact on operations. To conclude, by adding forecasting errors to a capacity ex-
pansion model, flexible energy sources increases its value compared to stochastic
energy sources. Due to the cost-related aspects of the different generator types
and its altered valuation in a three-stage model, the overall cost of operating a
power system increases significantly and it gives a better representation of how
modelling of capacity expansion problem should be solved. However, the major
downside with a three-stage approach is the computational burden due to the
significantly increased number of variables and constraints.





Chapter 6

European Case Study

This chapter presents a full-scale analysis of the model to answer the research
question stated in Chapter 1. Two different cases, as well as a deterministic case
to highlight the importance of uncertainty, are presented. The cases consists of 35
nodes representing the European power system over eight periods of five years
each. Each period consists of four seasons and two peaks seasons of 168 and
24 hours, respectively. Four scenarios per investment period are generated with
the routine described in 4.4. The data used in this thesis is the same as used
in previous studies utilising EMPRIE [36, 37]. For a complete overview of the
numerical results, see Appendix A.

6.1 Description of Cases

6.1.1 Case 0: Standard EMPIRE

The standard EMPIRE case is EMPIRE without market sequencing. The model
is identical to the one developed by Christian Skar in [35]. This case represents
the traditional way of analysing the development of power systems, considering
investments and operations without market sequencing. Case 0 consists of 37 mil-
lion constraints and 24 million variables.

6.1.2 Case 1: EMPIRE with market sequencing

Case 1 represents the European power system with market sequencing. The input
data is the same as in case 0, but additional parameters are added for the day-
ahead market. These include generator availability for the day-ahead market as
well as the expected demand. Case 1 provides the baseline of how investment
decisions may change when the forecasting errors between electricity markets
are included. The model formulation is described in Chapter 4. Case 1 consists of
158 million constraints and 94 million variables

41
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6.1.3 Case 2: Deterministic market sequencing

Case 2 is a deterministic approach, focusing on the development of the European
power system based on the expected conditions. In this case, the scenarios gen-
erated for the other two cases were used to calculate the expected scenario for
each hour, season, and period. The parameters calculated in case 2 is the average
parameter value of case 1. The model used is otherwise identical to case 1. Case 2
also forms the basis when analysing the impact of uncertainty. Case 2 consists of
39 million constraints and 24 million variables. The reason why it is more compu-
tational heavy than the stochastic case 0 is due to the implementation of market
sequencing, and the number of scenarios in case 0. However, it is difficult to com-
pare the computational burden of case 0 and 2 directly since case 0 is stochastic
and without market sequencing, while case 2 is deterministic with market sequen-
cing. Thus, the computational burden heavily depends on the number of scenarios
used in a stochastic approach.

6.2 Results and Discussion

This section presents the results and discussion of the three different cases. The
section is structured as follows: First, both generator investments and expected
production are analysed for all three cases. Then, storage and transmission results
are presented and discussed. Finally, a spring week in Norway and Germany for
the investment period 2045-2050 is analysed to investigate how operations are
impacted in the European power system in the different cases.

6.2.1 General Results and Objective Value

The objective value, or the total system costs, varied significantly between the
cases. Table 6.1 lists the objective value in billion Euros, the number of constraints
and variables. As depicted by the table, the deterministic approach is the cheapest,
followed by the standard case without market sequencing. The deterministic case
is 7.3% cheaper than the standard, while case 1 is 2.1% more expensive. The
reason for the difference in costs can be attributed to the different levels of uncer-
tainty in each case, resulting in a more expensive solution the more uncertainty is
present [50]. These results imply that the implementation of market sequencing
when the forecasting errors are known for certain seems to be cheaper than con-
sidering uncertainty without market sequencing.

The differing objective values between case 0 and 2 may elucidate whether
uncertainty or market sequencing is the most important factor to include in a ca-
pacity expansion model, if only one can be included. These issues will be further
dissected in later sections, that address the impact of uncertainty. Additionally,
our findings suggests that market sequencing significantly increases the computa-
tional burden of the problem, considering the number of constraints and variables
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Table 6.1: Overview of objective value, number of constraints and variables

Case 0 Case 1 Case 2
Objective Value [Billion €] 2788 2847 2585
Number of constraints in million 37 158 39
Number of variables in million 24 94 24

in case 0 and 2. The computational burden is even further elevated by the addition
of stochastic parameters in case 1 compared to case 2.

6.2.2 Investments in generation

The general trend across all three cases is the growth of VRES over the periods.
However, there are significant differences between the cases when it comes to
investments in generation capacity. Figure 6.1 highlights the total capacity expan-
sion by generator type over the entire horizon. As seen from the figure, invest-
ments in inflexible capacity are similar for the three cases, but slightly lower in
case 1 and 2 compared to case 0. Regarding flexible generators, case 1 invests
in significantly more capacity than the other two cases, and case 2 is investing
slightly less than case 0. In terms of intermittent generators, case 0 invests the
most, and case 2 invests slightly more than case 1. In total, case 2 invests the least
in generator capacity (-10% compared to case 0), followed by case 1 (-6% com-
pared to case 0).

Figures 6.3 and 6.2 illustrates the development of installed generator capacity
over the entire period for case 1 and 0, respectively. As depicted from the figures,
there are significant differences in the investment decisions between the three
cases, both in terms of total installed generation capacity and in generator type
preference.

In case 1, the total installed capacity is about 4% lower than case 0. The re-
duced installed capacity is mostly due to the significant decrease in intermittent
capacity compared to case 0. In addition, the installed capacity of flexible generat-
ors is significantly higher in case 1 than case 0 (+41%), mainly due to increased in-
vestments in bio and gas. All cases have the same demand to supply and the same
conditions to supply the demand. However, the generator availability of VRES and
the flexible generators are different, leading to flexible generators being able to
generate more electricity per installed capacity than VRES. The differing gener-
ator availability imply that if there is an increase in flexible generators, there can
be an even larger reduction in VRES.

Regarding case 2, there are even less capacity expansion than case 0 (-10%).
Being a deterministic approach, case 2 does not have to account for extreme scen-
arios which may occur in the other cases. In turn, this is likely leading to less in-
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Figure 6.1: Invested capacity for each generator type over all periods for the three
cases

Figure 6.2: Installed capacity over the period for case 0
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Figure 6.3: Installed capacity over the period for case 1

vestments, as the model supply the expected demand with less installed capacity.
In general, we observed a decrease in installed capacity when including market
sequencing. This was especially prominent for VRES, driven by the switch from
intermittent energy sources towards flexible energy sources. The decrease in in-
stalled capacity when including market sequencing is also supported by [34].

The reason why the installed capacity is increasing over the periods is twofold.
Firstly, the demand is increasing slightly over the periods, entailing that more ca-
pacity is needed in order to supply the demand. The increase in demand does,
however, only slightly impact the installed capacity. The increase in installed ca-
pacity can be attributed to how the electricity generated is being used. In the later
period, more volume is used for both storage and transmission. How the electricity
is used will be addressed in more detail later. Additionally, as described previously,
the capacity factor for VRES is generally lower than for the competitors meaning
that in order to produce the same output, more installed capacity is needed.

6.2.3 Generator output

Even though case 1 has slightly less (4GW) installed capacity of inflexible gen-
erators compared to case 0, the production from these generators are practically
identical between all cases. The reason why the output is similar is likely tied to
uncertainty and market sequencing, which leads to a more flexible portfolio [22].
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Figure 6.4: Development of generator output in percentage over the investment
periods

The deterministic case is the case that values intermittent generators the most,
followed by standard EMPIRE. Case 2 generates 51 TWh more from VRES than
case 0, which is a significant amount. The relatively large difference in terms of
generator output is likely due to the stochastic nature of VRES, and when this is
not considered, we can experience an over-evaluation of these energy sources [26,
51]. In case 1, there are 219 TWh less production from the intermittent energy
sources, probably explained by the decreased installed capacity. Case 2 produces
the least amount of electricity from flexible generators, followed by case 0. Again,
this is tied to the uncertainty of the problem, as less uncertainty leads to an over-
evaluation of stochastic energy sources. Furthermore, it is tied to the fact that
these cases have less installed capacity of flexible generators than case 1. Figure
6.4 illustrates the development of output from the different generator types over
the period for case 1.

Concerning the differences in output between the market stages, there are
some minor differences. Since case 0 does not have market sequencing, case 0
will not be discussed here. The other cases have very similar differences in output
between the market stages. In general, flexible producers decrease their output
from the day-ahead market, while intermittent generators increase their output.
This can be justified by the need to balance the different conditions at the two mar-
ket stages. Figure 6.5 illustrates the generator availability for a week in Denmark
in winter of 2040. As depicted by the figure, there are clear fluctuations between
the forecasted and actual availability of solar and wind. Thus, there is a need to
re-balance the decisions from the day-ahead stage, resulting in different opera-
tions than scheduled. Two rationales can explain the increased production from
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Figure 6.5: Generator availability for onshore wind and solar for a week in Den-
mark, winter 2040

intermittent generators in the intraday market compared to the day-ahead mar-
ket. First, there is no consequences or benefits to changing the generation output
from flexible generators, which may result in over-dispatching of these in order
to ensure that the intraday demand is supplied. Second, conditions from VRES
may improve between the market stages. However, as seen by the figure 6.5, both
solar and wind availability are similar in the two markets and are not significantly
better or worse in either market. Still, with just slightly better conditions in the
intraday market, and with a significant amount of VRES installed, the overall con-
ditions in the intraday stage could improve significantly and thus be a plausible
explanation. Besides, VRES can also contribute to the balancing requirements in
an intraday market [52]. Borggrefe and Neuhoff [25] also highlight the need for
a market design that facilitates possible improved conditions for VRES between
market stages.

6.3 Storage investments and operational decisions

Figure 6.6 shows the development in installed energy capacity for case 0 and 1.
Case 1 and 2 are very similar in terms of investments in storage capacity with less
than 1% difference in investments in both power and energy capacity. However,
case 0 invests significantly more in both power and energy with 42% and 16%
more investments, respectively. In case 1, less VRES are installed, and the need
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Figure 6.6: Development of installed energy capacity for energy storage for case
0 and 1

for storage is reduced in this case as storage is often used as a direct balancing
mechanism for VRES [53]. With regards to case 2, the lack of uncertainty is likely
leading to less investments in storage capacity since case 2 knows the future con-
ditions for certain.

These results demonstrates that without the considerations of forecasting er-
rors due to market sequencing, energy storage is significantly overvalued. The
reason for the over-evaluation can be explained by more flexible producers with
market sequencing, which are able to deliver power instead of energy storage
systems. Research on investments in energy storage indicates that it will likely
increase significantly [14, 15, 54], and is supported by the findings presented in
this thesis. However, we deduce that energy storage will play a less significant
role in the future power system than predicted previously. This is caused by the
reduced amount of VRES, as storage investments are linked to VRES investments,
and more flexible energy producers which can fulfill parts of the role storage has
in a power system. However, there are no penalties for curtailment in the model.
If there was mechanisms to reduce or minimize curtailment, storage could con-
tribute significantly to solve this issue.

6.3.1 Operational decisions for energy storage

When evaluating discharge volume from energy storage, it is similar to that of
investments in that case 0 has significantly more discharge volume than case 1
(37%). The reduced discharge volume in case 1 supports the argument that energy
storage has traditionally been overvalued when analysed in a capacity expansion
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Figure 6.7: Load coverage by storage for the different cases.

model. The results from the deterministic case indicates a 15% higher discharge
volume than in case 1 in 2050. The higher discharge volume in case 2 is likely
explained by the lack of uncertainty in case 2, leading to a higher valuation of
storage. Figure 6.7 illustrates the load coverage in each period for all three cases.
As depicted by the figure, storage is contributing to a significant amount of the
supply, mainly driven by the high installed capacity of VRES, especially solar.

6.4 Transmission investments and operational decisions

Investments in transmission capacity are very similar across the cases with less
than 1% difference in installed capacity between case 0 and 1. Case 2 invests
the least in transmission with 4% less than case 0. The observation that the de-
terministic case invests the least in transmission is expected due to the perfect
foresight. In all three cases, there is an increase in installed transmission capacity
over the periods. It is reasonable to explain these results by highlighting the in-
creased VRES capacity in the later periods, which contributes to more emphasis
on transmission [11, 16].

Operational transmission decisions differ significantly between the cases. Case
1 has 10-20% more transmission volume than case 0 in the different periods in
the intraday market, despite a very similar capacity. Case 2 also delivers from 10-
20% more transmission volume, although there are differences for each period
between case 1 and 2. These results indicate that transmission is significantly
contributing to flexibility in a power system by balancing the forecasting errors
between nodes. Our findings appear to be well supported by existing literature
[13, 16, 29, 55]. There is also a significant increase in transmission volume in the
intraday market compared to the day-ahead market. The increase in transmission
volume is likely driven by changing forecasts between the nodes, and transmission
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Table 6.2: Overview of intraday volume in percentage of actual load

Period Case 1 (stochastic) Case 2 (deterministic)
2025 11 11.6
2030 12.5 13.9
2035 14.9 16.3
2040 17.3 17.5
2045 33.5 39.5
2050 27.1 29.4
2055 37.6 35.6
2060 32.4 34.8

is a key balancing component to solve this issue cost-effectively.

6.5 Curtailment

Concerning curtailment, there is a similar amount of electricity being curtailed
in each period in all three cases. The curtailment percentage is calculated as the
curtailed electricity in each period divided by the total possible production from
VRES. In general, case 2 curtails the least amount of electricity, except for the last
two periods. Since case 2 does not consider uncertainty, these results are justifi-
able. The reason why case 2 curtails a larger amount in the last two periods is
probably due to the conditions and the installed VRES capacity in these periods.
Case 1 is similar to case 2 in terms of curtailment percentage. In the first six peri-
ods, it curtails slightly more (2-3%) than case 2, while in the last two periods, a
slightly lower amount is curtailed (3-4%). Case 0 curtails slightly more electricity
over all the periods compared to the other case 1. These finding can be attributed
the installed capacity being lower, and thus, a higher share of the available VRES
resources has to be utilised to supply the load, even though case 1 also utilises
more flexible energy sources.

6.6 Intraday Volume

In Chapter 1, the importance of the intraday market was demonstrated. Based on
the historical development of some of the European electricity markets, it could
be argued that the importance of the intraday market would increase due to the
growing share of VRES in the energy mix. In order to analyse the future devel-
opment of the intraday market, the intraday volume was calculated for the cases
with market sequencing in each period. For an in depth explanation of the method
used to calculate the intraday volume, see section 4.6. The results from the intra-
day volumes are shown in Table 6.2.
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Figure 6.8: Contribuitions to intraday volume from load, transission, intermittent
generators and storage in percentage.

As seen by table 6.2, the intraday volume increases significantly over the peri-
ods. Intermittent generators and transmission contribute to the majority of the
volume, followed by energy storage. In addition, storage contributions grow sig-
nificantly over the time horizon. Figure 6.8 illustrates the intraday volume con-
tributions for three periods in case 1. The high transmission share in the intraday
market gives further merit to the importance of transmission for efficient market
clearing by providing flexibility between nodes. The table demonstrates a clear
correlation of the intraday volume and installed capacity of VRES. The results are
supported by [56, 57]. These findings are consistent with Ehrenmann et al. [56],
who also highlights the likelihood of cross-border intraday trading due to the im-
plementation of the XBID project. The higher share of transmission volume in case
2 compared to case 1 can be attributed to the lack of uncertainty, thus being able
to utilise more of the available VRES resources.

6.7 Hourly operations in Germany and Norway

This section presents the results of one operation week for Germany and the south-
ern part of Norway, NO2,in order to analyse how the energy markets and the op-
erational decisions functions. The results for each case is presented individually
before a comparison and discussion of the results are presented.

6.7.1 Choice of nodes and operational week

One operational week in all three cases is analysed, and both markets are ana-
lysed for case 1 and 2. The week analysed is in the spring season and in the
period 2045-2050 and was randomly selected. The same operational scenario is
used for case 0 and 1, while the expected scenario is used for case 2. In all three
cases, NO2 is characterized by large shares of regulated hydro and wind, while
large shares of VRES characterise Germany. Furthermore, both nodes have other,
smaller generators contributing to the production. NO2 was chosen as a node of
interest due to the large shares of flexible generators. NO2 exports large volumes
of electricity, and Germany is among the nodes where NO2 is exporting the most.
Moreover, Germany is a node with a lot of VRES, so these two nodes and their
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relations in the markets are of great interest in order to analyse the impact of
market sequencing and uncertainty.

6.7.2 Standard EMPIRE

Figure 6.9 and 6.10 illustrates the production by generator type in a week in
addition to load, net charging, and net transmission flow out. As seen by the fig-
ures, NO2 is dominated by regulated hydro, hydro run-of-river, and onshore wind,
while Germany is dominated by solar and onshore wind. Due to the large share
of PV in Germany, Germany may have trouble being self-sufficient during night
hours, illustrated by the load curve in figure 6.10. In night hours, Germany is
therefore reliant on contributions from storage, other generator output, and/or
imports from other nodes. On the other side, when the solar conditions are good,
Germany is exporting a significant volume of power as well as charging storage
systems. From figure 6.10, it is observed that transmission and storage operations
closely follow the trend for solar production. Bio energy is also contributing sig-
nificantly to flexibility at nighttime.

For NO2, the production is dominated by regulated hydro, followed by VRES.
The electricity generation in NO2 is correlating with the production and load in
Germany. In NO2, regulated hydro is producing a significant amount of electricity
during the night due to the large share of solar power, both in the German sys-
tem as well as the whole European power system. The large transmission volume
during these hours also supports Norway’s role as a flexibility provider in the
European power system [58]. From the results, it is observed that NO2, with its
larges share of flexible generators, are providing flexibility to other nodes with
larges shares of VRES. Norway’s role as a flexibility provider is also supported by
[59, 60]

6.7.3 Market sequencing

Figure 6.11 and 6.12 illustrate the same week as presented in section 6.7.2 in the
day-ahead stage. The results are very similar to standard EMPIRE, with production
in Norway dominated by regulated hydro and high transmission volumes during
the hours of the night, providing flexibility for nodes with high shares of solar pro-
duction. However, there are some differences between the market stages. Figure
6.13 illustrates the intraday market in NO2 in the same week. When comparing
figure 6.11 and figure 6.13, it can be observed that flexible resources (regulated
hydro) contribute significantly to balance forecast errors, as regulated hydro is
increasing its production between the market stages for a significant portion of
the hours. The altered production is also reflected in the net transmission since
the transmission volume is increasing during the same hours. Also, NO2 is im-
porting some electricity in the intraday stage which had not been scheduled in
the day-ahead market. The imports in NO2 is likely due to better conditions for
VRES generation than predicted in neighbouring nodes, and VRES can therefore
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Figure 6.9: Operational week of NO2 in standard EMPIRE.

Figure 6.10: Operational week of Germany in standard EMPIRE.
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Figure 6.11: Operational week of NO2 in EMPIRE with market sequencing, day-
ahead.

be used instead of a resource-limited generator like regulated hydro. Net charging
in NO2 is also different in the market stages. There is generally charging during
the day and discharging during the night. The increased charging is likely tied
to the installed solar capacity in Europe, allowing for more transmission volume
from NO2 when energy storages are utilised.

In Germany, the situation is a bit more nuanced as there is a wider scope of
generators in the German market. Figure 6.14 illustrates the intraday market for
Germany. Importantly, bio is the major flexible generator in Germany. Further-
more, bio is reducing its output significantly between the day-ahead market and
the intraday market. The reduction in flexible production is generally covered by
an increase in intermittent production or an increase in imports from transmission.
The results from Germany are also in line with the results from NO2. From figure
6.12 and figure 6.14 , it is observed that the intraday market re-balances the pro-
duction and transmission in order to achieve the best possible production scheme
for the intraday market, subject to the decisions made in the day-ahead market.
When evaluting differences in net charging between the two German markets,
there are some minor changes both in volume and time of charging and dischar-
ging. These are likely driven by the slightly altered VRES output in the intraday
market compared to the day-ahead market.
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Figure 6.12: Operational week of Germany in EMPIRE with market sequencing,
day-ahead.

Figure 6.13: Operational week of NO2 in EMPIRE with market sequencing, in-
traday.
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Figure 6.14: Operational week of Germany in EMPIRE with market sequencing,
intraday.

6.7.4 Deterministic

Figure 6.15 illustrates the operational decisions for the day-ahead market in NO2.
Once again, regulated hydro is used during the night hours to facilitate the supply
of load in nodes with large shares of solar capacity installed. The load in NO2 is
mostly covered by VRES, with small shares of regulated hydro in some hours and
a tiny part of imports from other nodes. Figure 6.17 illustrated the operational
decisions in the intraday market for NO2. As seen by this figure, there are some
minor differences, mostly driven by changing conditions for VRES production.
When comparing the figure 6.15 and figure 6.17, the major trends from the other
cases continues. Regulated hydro produce during the night and mostly export
to neighbouring nodes. However, the volumes are slightly different between the
markets. The change in net flow out is driven by the changing weather conditions
between the market stages in the neighbouring nodes. It is especially noticeable
in hours 127-136 and hours 151-160 in figure 6.15 and figure 6.17, where the
transmission plan is changed from exports to imports. Since these hours are dur-
ing the day when there is solar production, these changes are most likely driven
by better conditions for solar production than what was forecasted in neighboring
nodes. However, wind energy could also contribute to the change in transmission
volume. In hours 106-115, the opposite is true. Here, there is an increase in ex-
ports compared to day-ahead scheduling, probably due to worse conditions for
VRES in some neighbouring nodes.
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Figure 6.15: Operational week of NO2 in Deterministic, day-ahead.

Figure 6.16 and 6.18 illustrate an operational week in Germany for the day-
ahead market and intraday market, respectively. Once again, Germany is decreas-
ing output from flexible generators between the market stages. In the intraday
market, there is also generally an increase in production from solar, indicating
that the conditions improved from the day-ahead market. Concerning wind gen-
eration, there are improved conditions in some hours and a worse in conditions
in other hours. Transmission generally follows the same trend as the solar pro-
duction. In periods with solar generation, there are a lot more exports than in
the hours without solar generation. Net charging is also following the trend of
solar production. Concerning the difference in transmission and storage volumes
between the markets, there is generally a slight increase, although a minor one.

6.7.5 Comparison of the cases

Day-ahead analysis for Norway

By comparing figure 6.11 and 6.15, there are significant differences in the plan-
ning by using a deterministic approach versus a stochastic approach in NO2. In a
deterministic approach, there is less variation between different days in a week
compared to a stochastic approach. Another difference is seen in the relation of
production between the day and night between the cases, resulting in a stochastic
approach having a more stable production throughout the week. There is also
a significant difference in terms of planned transmission volume. In the determ-
inistic case, it is generally planned to export almost all of the production from
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Figure 6.16: Operational week of Germany in Deterministic, day-ahead.

Figure 6.17: Operational week of NO2 in Deterministic, intraday.
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Figure 6.18: Operational week of Germany in Deterministic, intraday.

regulated hydro, while in a stochastic approach, a smaller portion of the produc-
tion from regulated hydro is scheduled for transmission. In both cases, there is an
insignificant amount of scheduled storage usage in NO2.

Day-ahead analysis for Germany

The analysis of the operational decisions in the day-ahead markets for Germany,
illustrated by figure 6.12 and 6.16, further supports the differences between a
stochastic and a deterministic approach. In a deterministic approach, there is sig-
nificantly less planned generation from flexible generators compared to a stochastic
approach. Notably, bio is not used nearly as much as in a stochastic approach. The
reason for the reduced contributions from bio is tied to the installed capacity of
flexible generators between the two approaches. Transmission and storage trends
are similar in the two approaches. However, the stochastic approach generally
has slightly more variance in transmission and storage than the deterministic ap-
proach. Similarly, case 1 is scheduling for more exports than case 2. Note that the
VRES availability is different between the cases as case 2 only uses expected avail-
ability. In some hours, the availability is significantly better in one case compared
to the other, while in other hours it is worse.
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Intraday Analysis for Norway

The are also evident differences in the intraday market between the cases. Fig-
ure 6.13, 6.9, and 6.17 illustrate the operational decisions for actual delivery in
NO2. The main difference between case 0 and case 1 is the increased output of
regulated hydro in the hours mid-day. The increased hydro production is likely
the reason why the transmission volume exported are increasing in these hours.
Storage is also used significantly more in case 1 than in case 0, likely due to an
increase in exports. In hours 103-112, there are imports to NO2, likely driven by
good solar conditions in neighbouring nodes. In case 2, there are even larger dif-
ferences compared to the other two cases. In contrast to the other two cases, the
deterministic case is delivering power in a very stable cycle over the week. Fur-
thermore, in case 2, even more of the electricity generated by regulated hydro is
exported, and a negligible amount of energy is used for storage. An interesting
observation is the lower regulated hydro production in the hours 140-160 in case
1 compared to case 0. It is difficult to state a clear conclusion on this, but one
factor may be the availability of hydro resources as there is a higher production
from hydro in the other hours. Another explanation could be that neighbouring
nodes are utilising more of their flexible and VRES resources in these hours, as
the export volume in these hours from NO2 are lower in case 1 than case 0.

Intraday Analysis for Germany

Concerning Germany, there are also significant differences in the operational de-
cisions in the intraday market. Case 1 values flexible energy sources more than
case 0, which is illustrated by the increase in generator output for these energy
sources in figure 6.14 and 6.10. Moreover, it appears that production from inter-
mittent energy sources is slightly lower in case 1 than case 0. This is also reflected
by the decreased charging and discharging volumes throughout the week. In case
2, there are generally more imports of electricity to Germany than the other cases.
The increased imports is driven by the reduction in flexible energy sources and,
therefore, more utilisation of the intermittent energy sources, both in Germany
and neighbouring nodes illustrated by the significantly higher production from
wind in the first 15 hours. In case 2, the charging volumes are very similar to
those of case 1. These results illustrates that a deterministic approach can utilise
a higher portion of the installed intermittent capacity.

6.8 The Importance of Considering Uncertainty

This section demonstrates the importance of considering uncertainty in a capa-
city expansion problem. A value of stochastic solution [VVS] test was conducted
in order to investigate the impact of including uncertainty.
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Value of stochastic solution test is a test that establishes the value of using
stochastic programming as opposed to deterministic programming [61]. The VSS
test is performed by calculating the difference in objective value between using
first stage decisions optimized for an expected deterministic scenario and using a
stochastic multi-stage optimization model, ref equation 6.1. To establish the VSS,
the results from case 2 concerning the first stage variables were used as input
parameters in case 1. This allowed us to investigate the impact of having uncer-
tainty concerning load and the generator availability in both markets when the in-
stalled capacity is optimized for different scenarios as opposed to being optimized
for a single expected operational scenario. As shown in table 6.1, a deterministic
solution is a seemingly cheaper solution. Furthermore, a deterministic approach
invests in significantly less generator capacity.

VSS = zex p − zstoc (6.1)

The results of the run of case 1 with input from case 2 yielded an infeasible model.
There are many explanations why the VSS test yielded an infeasible solution. First,
by performing a deterministic run based on the expected outcome, investments
are smaller across the technologies. This leads to more stress on the operational
energy balance constraints, (4.3) and (4.4), when a scenario with poorer condi-
tions than the expected occurs. In the intraday market, this is not a problem in
terms of infeasibility, due to the ability to shed load that is not possible to cover.
However, this is not an option in the day-ahead market. Therefore, due to the in-
ability to shed load or otherwise not meet the demand in the day-ahead market,
the result is infeasible giving a seemingly infinite value to the stochastic solution.

Different market designs were tested to accommodate the infeasible solution
of the VSS test. First, the equality of constraint 4.3 was changed to an inequality,
meaning that the supply does not have to meet the demand. The change yielded
a feasible model, but due to the changed energy balance constraint and the im-
pact this had on the results, the results were deemed not comparable and not
realistic in terms of how a day-ahead market operates. As the objective function
only factors the actual delivery cost-wise and not the scheduled planning, there
is a lack of incentive to meet the demand in the day-ahead stage. This results in
a significant lack of supply in the day-ahead stage, which is not realistic in a real-
world day-ahead market. A minimum of supply was scheduled in the day-ahead
market, just so the intraday demand could be met with limited load shedding. It
was also tested to allow load shedding in the day-ahead market. Allowing for load
shedding in the day-ahead market without a cost associated yielded very similar
results to that of creating an inequality instead of an equality. This is to be expec-
ted, as making it an opportunity to shed load without a cost associated is adding
slack to the constraint, which is basically the same as changing the constraint
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from equality to inequality. A possibility is also to allow for load shedding in the
day-ahead stage, but with a cost associated. It would be expected that a similar
amount of load would be shed in both markets, which would mean that load shed-
ding would essentially be twice as expensive. This approach would likely lead to a
feasible model, but it would be difficult to compare the results to the other cases.
Lastly, it could be possible to calculate the difference in load shedding between
the markets and give a cost to the absolute total load shed. However, this is chal-
lenging to implement in the model and would increase the computational burden.
Therefore, this last option was discarded.

Even though a result for the VSS test was not achievable, the results can still
be used to estimate the error of not considering uncertainty [62], which for the
cases analysed in this thesis is significant. As seen from the objective value for
case 1 and 2, there is roughly a 10% difference in objective value. The reason for
this difference is due to an under-estimation of the need for capacity in case 2, as
this case invests based on perfect information. Thus, case 2 does not account for
the unpredictable nature of VRES and load. In addition, case 2 invests the least
in inflexible and flexible generators. When conditions are poorer than expected,
the deterministic approach is not able to supply the demand due to the limited
installed capacity, and additional capacity is needed for these hours in order to
supply the load. Therefore, we can say that a stochastic approach to a capacity
expansion problem is more robust, as the likelihood of supplying the demand in-
creases significantly. By utilising a deterministic approach, the investment costs
would be lower, but the costs of not supplying the load in hours with poor condi-
tions are much higher. We can therefore conclude that the costs saved on capacity
is significantly lower than the costs of not having sufficient capacity.
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Conclusion

This thesis presents a method to analyse the long-term developments in a power
system while considering forecast errors from intermittent energy sources between
market stages. A capacity expansion model with one investment stage and two
market stages was developed to include forecast errors and the uncertainty from
VRES in order to elucidate how this impacts investment decisions. The approach
utilised is not commonly used, but it may provide better insights into how the fu-
ture power system may develop. A simplified case study was conducted to prove
that the model is functional. In order to answer the research questions stated in
Chapter 1, three distinct cases was tested. Case 0 was used as a reference case
illustrating the traditional way to model capacity expansion of a power system.
Case 1 implements a second market stage to represent a day-ahead market and an
intraday market. Case 2 is a deterministic version of case 1, aiming to demonstrate
the impact of not considering uncertainty when modelling a capacity expansion
problem. Below, the three research question introduced in Chapter 1 are presen-
ted and answered.

How does an increased amount of uncertainty introduced by forecasting er-
rors between a day-ahead and an intraday market affect investment decisions
in the power system, including VRES investments?

Our findings demonstrate a significant difference in investment decisions between
the cases. An addition of market sequencing increases the total system costs by
2.1%. Additionally, there is a steep increase in intraday volume over the ana-
lysed period due to the increased installed capacity of intermittent energy sources.
When accounting for forecasting errors, there is a decrease in 10% of investments
in intermittent energy sources and an increase of 40% in investments of flexible
generators. Intermittent generators still dominates the installed capacity with a
share of 80% when including forecasting errors. The findings from this study in-
dicates a decreased importance of energy storage in the future power system,
reducing the installed capacity by 16%. The reduction in energy storage can be

63
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attributed to the lower investments in intermittent energy sources, but also im-
plies that energy storage is over-valued when not considering forecasting errors.
Investments in cross-border transmission capacity are almost unchanged (<1%
difference) between the cases. Our findings supported by existing literature [26,
31, 34].

How are operational decisions affected when forecasting errors from market
sequencing are included?

Operational decisions differ significantly between the cases. Concerning storage
and generation, the output follows the same trend as the installed capacity. How-
ever, when accounting for forecast errors, transmission utilisation increases with
10-20%. Transmission serves therefore as major flexibility provider to help balance
the forecast errors that occur between the market stages. Cross-border transmis-
sion have previously been assumed to be a crucial part of providing flexibility in
power systems characterised by large shares of VRES [11, 16, 29].

What is the impact of including uncertainty when analyzing the develop-
ments in a power system?

The deterministic approach is compared to a stochastic program to identify the
value of considering uncertainty. The VSS test yielded an infeasible model, indic-
ating that in order to operate a power system in a capacity expansion model, it
is crucial to consider uncertainty. Furthermore, the deterministic approach yiel-
ded a 7.3% lower total system cost, and we can therefore conclude that the lower
costs due to the reduced installed capacity does not cover the costs for potential
load shedding, should the conditions deviate from the expectations. Moreover, our
findings has led us to conclude that a deterministic approach significantly under-
values installed capacity, and thus, is not able to supply the demand if conditions
change to the worse compared to the expected conditions.

In summary, four main conclusions can be drawn from this study:

• Investments in intermittent energy sources are significantly decreased when
accounting for forecast errors.

• Transmission will be a pivotal contributor to balance the future power sys-
tem.

• Investments in storage has traditionally been overvalued and are likely to
play a less important role than anticipated.

• Considering short-term uncertainty from forecasting errors between market
stages and uncertainty of VRES is crucial when planning for investments in
a power system.
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This thesis has highlighted the importance of considering forecasting errors when
analysing a capacity expansion problem. The results proves significant differences
in investments and operational decisions compared to the traditional approach.
It should be noted that adding a third stage to the EMPIRE model, as done in this
thesis, entails a significant increase to the computational burden.

7.1 Future Work

This section will briefly state some considerations regarding future work.

Cost-recovery

A method to consider cost-recovery should be developed in order to solve the
cost-recovery issue. In the presented model, generators that are reducing their
output between the market stages are not compensated. This could imply that a
generator relying on fuel purchases does not cover its costs. An excess cost for
producing more than scheduled is also possible. As intraday prices are typically
higher than day-ahead prices for various reasons, the model could reflect this in
a better manner.

Market design

A different and more realistic real-world market design could improve the model.
The current model involves a complete system balance in each market. However,
intraday markets usually function by just balancing the errors that occur from the
day-ahead market, not a complete re-balance only limited by the flexibility from
the flexible generators. The standard market design leaves little room to improve
the decision making from the day-ahead market should the conditions for the
intermittent energy sources improve. Hence, a study on improved market design
could prove beneficial.

Demand Response

Demand response is an issue which has been implemented and tested in EMPIRE
previously [36, 39]. Thus, demand side flexibility is already present in some ver-
sions of EMPIRE. It could be of major interest to investigate how demand-side
flexibility can contribute to balance the deviations between the energy markets
due to forecasting errors, by combining the demand response module and the
model developed in this thesis. In this paper, we experienced reduced investments
in storage with market sequencing. Demand response, may have similar results,
as the purpose of both demand response and energy storage is to provide flexib-
ility [63]. However, it is of interest to investigate how demand response could be
affected by market sequencing due to the increased need for flexibility introduced
by the forecasting errors.
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Curtailment

As the model is currently, there are no mechanisms to reduce or minimize curtail-
ment and the amount of curtailment is high. Therefore, research on how to solve
this issue could be very beneficial. An idea could be a cap or a cost associated
with curtailment. By implemented a way to handle curtailment, the results may
provide better conditions for energy storage and transmission.

Branching on the intraday stage

Lastly, it could be beneficial to branch on the intraday stage as well. Branching
was not done in this thesis, due to the lack of both a method and computational
requirements. An idea for a method could be to add two more scenarios to the
intraday, with + or - a percentage difference from the actual conditions. However,
this would significantly increase the computational burden of the problem.
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Table A.1: Production of generators by generator type in each period in GWh
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Table A.2: Installed capacity of generator type for each period in MW
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Table A.3: Installed capacity of power and energy for storage systems in each
period and discharge volume for storage systems
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Table A.4: Installed transmission capacity and transmission volume
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Table A.5: Load coverage by storage and transmission
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Table A.6: Difference in volume from the day-ahead market
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Table A.7: Day-ahead and intraday load for each period

Intraday Load Day-Ahead Load
2020-2025 3278731,39 3278599,51
2025-2030 3375538,12 3375500,04
2030-2035 3453342,37 3453293
2035-2040 3601272,45 3601257,18
2040-2045 3889591,92 3889589,93
2045-2050 4119278,2 4119202,61
2050-2055 4233751,07 4233616,02
2055-2060 4520168,202 4520079,183

Table A.8: Curtailment in percantage compared to total production from VRES

Deterministic Market sequencing Standard
2020-2025 0,0144521 0,02004415 0,08054671
2025-2030 0,00883346 0,01635624 0,043715
2030-2035 0,04670292 0,06012463 0,0960002
2035-2040 0,05684638 0,06394692 0,09665971
2040-2045 0,11993638 0,14063926 0,16192179
2045-2050 0,09449687 0,12493633 0,15992754
2050-2055 0,26204119 0,20226421 0,20980723
2055-2060 0,21449895 0,1818388 0,21906594
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Abstract

The European Energy Transition envisions a high degree of deployment of variable renewable energy
sources (VRES) by 2050. Some estimates expect that 60-to-70% of power generation will be entirely
covered by VRES technologies (i.e. solar and wind). This creates challenges on balancing VRES
with conventional and flexible generations (e.g. gas and storage). That is, VRES is transforming
the way electricity markets will operate and coordinate the balancing needs between day-ahead and
intraday electricity markets. In this regard, intraday markets will grow in importance due to the
uncertain short-term nature of VRES. However, there is limited research on how forecasting errors
between market stages affect investment decisions in capacity expansion problems. In this paper,
we investigate: How does an increased amount of VRES uncertainty (forecasting errors) between
a day-ahead and an intraday market affect investment decisions in the power system? To address
this research question, we developed a multi-horizon stochastic capacity expansion model containing
both day-ahead and intraday markets under uncertainty. The model emulates the European power
system developments and aims to reduce emissions by restricting the emissions subject to the EU
emission policy towards 2050. Main results indicate that when comparing a standard single market
approach to a market sequencing case, we observe that: i) Forecasting error significantly impacts
investment decisions in 10% less VRES investments and 40% more investments flexible capacity, ii)
Cross-border transmission is a crucial contributor to flexibility and experiences a 10-20% increase
in volume when accounting for forecasting errors, and iii) investments in storage capacity decreases
significantly and are over-valued in the standard approach of capacity expansion models. The
approach and findings in the paper imply that including forecasting errors between markets are of
significant importance when analysing a capacity expansion problem.

Keywords: Capacity Expansion, Electricity markets, Energy transition, System flexibility, power system

1. Introduction

Electricity markets have traditionally had large shares of dispatchable energy sources such as
coal, gas, and nuclear energy. However, recent years’ development has shifted towards more renew-
able energy sources (RES) in the energy mix [49]. The development is driven by climate change
concerns and more favorable economic conditions for RES than previously compared to its com-5

petitors in the power mix. In order to minimize the effect of climate change and stay below the
2◦C target [28], this development is projected to continue [26].
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As the share of variable renewable energy sources [VRES] in an energy mix grows, the un-
certainty in relation to electricity production increases [5]. Weather conditions are susceptible to
forecasting errors, and thus, the forecasts for the production of wind and solar might differ from10

actual production conditions. A key issue in a power system is to balance supply and demand.
Energy sources such as wind and solar are intermittent by nature, and thus, matching supply with
demand is increasingly difficult when the share of these energy sources grows [24]. Balancing mech-
anisms are therefore increasingly important in order to balance supply and demand of electricity.
The electricity markets have traditionally handled the balancing with different market stages. The15

day-ahead market stage aims to use the available information to balance supply and demand until
the day before actual delivery. Deviations from the scheduled plan are typically handled by the
intraday market stage, which balances these deviations close to real-time. Multiple factors can
contribute to the volume traded in the intraday market, such as weather forecasting errors, demand
change, and line- and generator outage. Any deviations still remaining at the scheduled delivery20

time are typically handled by a transmission system operator (TSO) in a balancing market stage.
In the last five years, the installed capacity of solar and onshore and offshore wind have increased

by 41%, resulting in significantly more volume traded in the intraday markets [23]. With this in
mind, it is likely that more VRES in the European energy mix increases the dependency on the
intraday market to balance any discrepancies between the forecasts and actual available delivery.25

In line with the development of the energy-mix in recent years and the projected increase in
VRES capacity, the scope of this paper is to address these research questions:
• How does an increased amount of uncertainty introduced by forecasting errors between a day-

ahead and an intraday market affect investment decisions in the power system?
• How are operational decisions affected when forecasting errors from market sequencing are in-30

cluded?
• What is the impact of including uncertainty when analyzing the developments in a power system?

These questions are addressed by implementing a multi-horizon stochastic model based on the
EMPIRE model. The EMPIRE (European Model for Power System Investment with Renewable
Energy) model has been used in multiple European Union and national research projects [1]. The35

model represents hourly power system decisions of the European countries while accounting for
long-term investment decisions. In this paper, we introduce a novel model extension that takes into
consideration the split between day-ahead and intraday markets. That is, it includes the uncertainty
on information among markets (forecast errors). This method is then compared with the standard
capacity expansion model as well as the deterministic version of it.40

The paper is structured as follows; Chapter 2 gives an overview on related literature. Chapter 3
provides the methodology for the capacity expansion model containing wholesale market sequencing.
In Chapter 4, the model is applied to the European power systems and analysed to answer the
research questions and illustrate the impact of the research conducted. Chapter 5 summarizes the
findings.45

2. Related literature

As the energy mix of the world moves towards a larger share of VRES, the level of uncertainty
in a power system increases. To maintain a balance between supply and demand with high shares
of VRES, flexible energy producers or consumers are required [4]. Several papers highlight the
importance of flexibility in a power system with large shares of VRES, and the role that storage,50

transmission, flexible energy sources such as hydropower and gas, and demand-side flexibility, will
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have on the reliability and security of supply of such a power system [36, 38, 34]. An NREL study
indicated that energy storage would be a key component to provide flexibility in a power system
characterized by large shares of VRES penetration [43]. Denholm and Hand [20] also highlight the
need for energy storage in the future and estimate storage capacity of about one day worth of load55

to meet the demand without a significant curtailment portion. Child et. al. [15] did an analysis
on the flexibility requirements and benefits to allow for a high penetration on VRES. Their results
indicated that, while energy storage and flexible generators would be key contributors to flexibility,
transmission provided the most value for money flexibility vise. However, De Jonghe et. al. [19]
did a similar study, which indicated that energy storage would be the most beneficial flexibility60

provider.
A common approach to analyze problems concerning investments and operational decisions in

a power system is to utilize mathematical optimization models. Optimization models for power
systems are typically divided into two categories: capacity expansion models and operational mod-
els. Capacity expansion models typically focus on investments and energy mix, while operational65

models typically focus on market aspects.
Multi-market modeling is usually done using operational models. Zipf and Möst [53] analyzed

the direct and indirect costs of variable VRES in the German power system by utilizing a two-stage
operational optimization model with day-ahead and intraday scheduling. Their results indicated
that an increased amount of variable VRES in an power system leads to both increased direct and70

indirect cost due to the forecasting errors related to VRES. However, different studies on multi-stage
operational optimization models without an investment stage [9, 30] have shown that an increased
share of variable VRES is leading to a lower total cost than the current energy mix. Kulakov
and Ziel [35] investigated how forecasting errors caused by VRES influenced electricity prices in
the market stages. They found a non-linear correlation between intraday and day-ahead prices.75

Abrel and Kuntz [3] explored the impact of uncertainty from VRES on unit commitment power
dispatch. They found that an increased amount of uncertainty triggers more unit commitment
from inflexible energy sources. With the increased uncertainty, a more diverse energy portfolio
was emphasized to balance the VRES forecasting errors between the market stages. Barth et. al.
[10] also investigated the impact of wind uncertainty on a power system by creating a five-stage80

stochastic market model. The objective was to establish the reserves’ role in such a power system
and the cost associated with the reserves. The results indicated that the importance of reserves
increased in such a system, and regulated hydropower was the main contributor to the reserve
market. Morales et. al. [39] developed a model analyzing the issues with conventional market
design due to VRES’s stochastic nature. One issue they identified, was the lack of a cost-recovery85

guarantee for flexible producers. They proposed a solution where the day-ahead market is cleared
while also factoring in the anticipated balancing cost resulting from forecasting errors. Borggrefe and
Neuhoff [12] highlighted the need for a market design that facilitates potential improved conditions
in the intraday market compared to the day-ahead market.

In addition to multi-market modeling, capacity expansion models are also of great interest to90

issues addressed in this paper. Seljom and Tomasgaard [45] developed a model to analyze the
investment decisions in the Danish power system. Both a deterministic and a stochastic approach
were utilized, and they found significant differences between the approaches. They concluded that
a stochastic approach was a more realistic and that this approach resulted in significantly lowered
investments in VRES. Their results are also supported by Nagl et al. [40], who concluded that95

VRES is typically significantly overvalued and flexible providers the opposite. Ehremann and
Smeers [21] developed a capacity expansion model addressing the issues with investment risks in
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a power system. They approached the issue by including stochastic properties in the discount
rate to incorporate the risk of investing in VRES compared to dispatchable energy sources. The
results indicated that by adding risk, i.e., considering the power system’s uncertainty due to VRES’s100

unpredictable nature, the system costs increased. Sun et al. [47] analyzed the US power system with
a capacity expansion model focusing on transmission flow between different regions. They found
that transmission might be an underestimated technology in capacity expansion models. In 2012,
Giraldo et al. [27] investigated the impact of adding emission constraints to a capacity expansion
model. Both an emission tax and an emission cap was included. They showed that adding such105

constraints increased the total costs somewhat, but that the investments and thus, the solution were
applicable to a real-world scenario. Villavicencio [51] developed a capacity expansion model aiming
to encapsulate some of the operational issues of VRES. It was concluded that proper modeling of
the system- and operational requirements increase with a large penetration of VRES. Poncelet et
al. [42] also developed a capacity expansion model aiming to integrate the challenges with large110

shares of VRES in an power system. Bermudez et. al. [25] highlights the need to consider the
expected future development when planning for investments in a power system.

In addition to models focusing on capacity expansion and market modeling, there is some
research on models combining capacity expansion and market sequencing. Pineda and Morales
[41] developed a model with both an investment stage as well as market sequencing. Their results115

indicated that forecast errors had a major impact on investment decisions and that the installed
capacity of VRES in a power system will decrease if considerations on forecasting errors between
market stages are present. However, Pineda and Morales used a small model covering just the
Danish power system, and the results did not include findings on transmission or energy storage.
The purpose of this literature review was to evaluate relevant research on capacity expansion model120

and the impact of forecasting errors. Much research has been conducted on capacity expansion
model, but a better understanding on how forecasting errors affect such a problem is necessary.
Therefore, this paper aims to develop a three-stage mathematical optimization model in order to
encapsulate the impact forecasting errors has on investment decisions .

3. Model and methods125

3.1. The EMPIRE model

The model developed in this paper is based on the EMPIRE model, described in [46]. Existing
data for the EMPIRE model is used in this project. EMPIRE is an existing model containing two
stages: one investment stage and one operational stage, thereby characterizing it as a capacity
expansion model. Figure 1 illustrates EMPIRE graphically. EMPIRE has been used in a num-130

ber of different publications [37, 7, 18, 8]. The model represents the EU countries in addition
to Switzerland and Norway. In total, there are 35 nodes present. Norway is also split into five
zones, according to Nordpools trading zones [2]. Export and import of electricity is possible in
neighbouring countries and zones. Investment decisions in generator capacity, energy storage and
transmission are done in EMPIRE to facilitate production in order to meet the demand in each135

node on an hourly basis without exceeding an emission cap. Electricity demand, technology costs,
technology options and operational characteristics are inputs [7]. The output is given as investments
in technologies and operational decisions assuming a perfect competition market. EMPIRE is a
linear capacity expansion model, spanning over 8 periods of 5 years each. Each period is composed
of 4 regular seasons, representing winter, spring, summer and autumn, and two peak seasons repre-140

senting extreme conditions. Each regular season has 168 hours and each peak season has 24 hours.
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Figure 1: Illustration of the EMPIRE model, illustrating its input data, objective and constraints, and output.
Adapted from [1]

Uncertainty is included in every hour for load and generator availability for VRES. Additionally,
regulated hydro has uncertainty concerning available capacity on a per period basis.

3.2. Adding Day-ahead and intraday markets

The existing framework for EMPIRE was used to create a three-stage stochastic optimization145

model [11] with one investment stage and two operational stages, simulating two electricity markets
in order to solve the problems stated in Chapter 1. The investment stage makes investments in
technologies such as generators, transmission capacity and energy storage. The operational stages
emulates a day-ahead market and an intraday market. Both markets supply a load assuming
perfect competition. The day-ahead market is cleared based on a best guess forecast for load and150

production conditions for VRES, which is similar to the approach used in [3]. In the intraday
market, actual information on load and production conditions are revealed, and the system re-
balances based on the updated information subject to the relationship between the market stages.
As not every generator type can change its output on short notice, these generators are committed
to the production decided in the day-ahead market. Generators that cannot alter their scheduled155

production in the day-ahead market are referred to as inflexible generators. Generators that are
able to alter their output on a short notice are referred to as flexible generators.

It is assumed that energy storage systems are fully flexible between the two markets as the
ramping time of energy storage’s typically are very low [43]. Figure 2 illustrates the two markets
graphically and how the markets are dependant on each other. As depicted by the figure, the160

output from the inflexible generators is a committed decision made in the day-ahead market while
flexible generators are dependant on the decision made in the day-ahead market by the flexibility
factor. The flexibility factor states to what degree a flexible generator is able to alter its output
between market stages. Transmission is connected as well. The connection between the investment
stage and the operational stages are limited by the installed capacity of each generator type in each165

node. Production in any of the markets are thus limited by what is available at that specific point
in time. The model uses four different scenarios for each operational step in the day-ahead market,
and one scenario in the intraday market for each of the four scenarios in the day-ahead market, as
illustrated by figure 3.
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Figure 2: Illustration of day-ahead stage and intraday stage and its connection.

Figure 3: Illustration of scenario-tree in the model.

The generator availability is defined as a constant value for all generators except for intermit-170

tent energy sources as described in [46]. The generator availability for intermittent generators is
calculated by using a normalized value of production per installed capacity. The normalized value
ensures scalability of production per installed capacity, thus allowing for analysis of the impact
VRES has on investment- and operational decisions when and if the energy mix changes. For a full
description of the model formulation, refer to [52]175

Shortcoming of the model

In order to not make a too complex and computational heavy model, some assumptions were
made which results in a simplification of a real-world power system. The model presented in this
paper is a linear three-stage optimization model. However, some components, such as transmission
and power generation, are inherently nonlinear but converted to linear to reduce the computational180

efforts. The model also utilizes a perfect market, leading to a minimization of the costs of operating
the markets at each hour. The market is cleared so that the electricity price is set at the point where
the last contributing generator is meeting the demand. The traditional approach does not consider
the fixed costs of production, which studies have shown is leading to unprofitable operations of key
generators in a power system [31]. Additionally, by modelling the markets as perfect competition,185

regulatory and technological limitations are prevalent. For instance, generators typically have a
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start/stop cost, minimum running time or commitment to produce power due to regulatory re-
sponsibilities [13]. These problems are not included in this model in order to reduce computational
efforts. Another factor is the assumed perfect system development. The model chooses the invest-
ments based on an objective to minimize the system costs. By choosing the investments purely190

based on cost aspects, issues such as reliability on long term investments due to the unpredictable
nature of VRES and load may arise [16]. This means that dedicated reserve capacity is not included
in the investments, and the model does also not consider maintenance and drop-out of the com-
ponents. This may lead to the investments in the power system being at the absolute minimum,
and in extreme cases or malfunctions on the power system, the demand may not be met. There195

is also the issue of cost recovery. The cost recovery issue is prevalent in the generators that are
required to reduce the output between the market stages. As the generators are only paid what
they are actually delivering, and not what was planned, there might be a difference in income for
these generators. This means that if a generator is reducing its output made in the planning stage
to the delivery, there is no compensation for the change. If for instance, a fuel-driven generator200

uses less fuel than scheduled, the marginal cost of that generator will in fact not necessarily be
covered, dependant on the electricity price. There are difficulties establishing how the generators
providing flexibility, should be compensated due to market design, leading to this feature not being
implemented. An additional point is the generator availability data derived from ENTSO-e. The
data is based on the forecasted production and actual production from 2015-2020. The data does,205

therefore, not use actual wind speeds and solar irradiation, and are thus susceptible to different
bidding strategies in the markets. However, it assumed that a VRES producer would bid what the
producers predict is available for the day-ahead market.

Intraday Volume

A method for calculating the intraday volume is explained in the following section. The intraday210

volume can be defined as the excess trading that is needed or beneficial in order to supply the
demand according to the actual conditions. It is therefore based on the difference in decisions
between the two market stages. The method determines the difference between the decisions made in
the day-ahead market and intraday market for energy storage, transmission, intermittent generators,
and flexible generators. First, lets define a set of components, D, that are subject to altered decisions215

or conditions between the market stages:
D = {Flex, Inter, storDischrg, storChrg, tran, load}
For each of these components, the difference in output between the market stages is calculated,

δdi . By summing the differences, we can obtain the intraday volume:

IDvolume
i =

{∑
d∈D δ

d
i δdi ≥ 0

0 otherwise
(1)

Note that we only consider output that has increased from the day-ahead markets in order to
not double count the volumes. If a generator increases its output between the markets, another
generator has to decrease its output subject to the deviations in load and potential losses in trans-220

mission or storage if these are utilized. Therefore, it is important to only sum the components that
increases its output compared to the day-ahead stage as it is a zero-sum issue. From the intraday
volume, the parentage can by calculated as the difference in volume divided by the actual load
in a specific strategic period. The method to calculate the intraday volume shown here does not
necessarily correlate with the historical intraday volumes illustrated in Chapter 1 due to the market225
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design. However, the intraday volume can still be used to illustrate the importance of an intraday
market, as it illustrates the difference in the operational decision between the market stages.

4. Results

4.1. European case study

This chapter presents a full-scale analysis of the model to answer the research question stated230

in Chapter 1. Two different cases, as well as a deterministic case to highlight the importance of
uncertainty, are presented. Four scenarios per investment period are generated with the routine
described in the Appendix A. The data used in this paper is otherwise the same as used in previous
studies utilising EMPRIE [7, 37].

Case 0: Standard EMPIRE235

The standard EMPIRE case is EMPIRE without market sequencing. The model is identical to
the one developed by Christian Skar in [46]. This case represents the traditional way of analysing the
development of power systems, considering investments and operations without market sequencing.
Case 0 consists of 37 million constraints and 24 million variables.

Case 1: EMPIRE with market sequencing240

Case 1 represents the European power system with market sequencing. The input data is the
same as in case 0, but additional parameters are added for the day-ahead market. These include
generator availability for the day-ahead market as well as the expected demand. Case 1 provides
the baseline of how investment decisions may change when the forecasting errors between electricity
markets are included. Case 1 consists of 158 million constraints and 94 million variables245

Case 2: Deterministic market sequencing

Case 2 is a deterministic approach, focusing on the development of the European power system
based on the expected conditions. In this case, the scenarios generated for the other two cases
were used to calculate the expected scenario for each hour, season, and period. The parameters
calculated in case 2 is the average parameter value of case 1. The model used is otherwise identical250

to case 1. Case 2 also forms the basis when analysing the impact of uncertainty. Case 2 consists
of 39 million constraints and 24 million variables. The reason why it is more computational heavy
than the stochastic case 0 is due to the implementation of market sequencing, and the number of
scenarios in case 0. However, it is difficult to compare the computational burden of case 0 and 2
directly since case 0 is stochastic and without market sequencing, while case 2 is deterministic with255

market sequencing. Thus, the computational burden heavily depends on the number of scenarios
used in a stochastic approach.

General Results and Objective Value

The objective value, or the total system costs, varied significantly between the cases. Table
1 lists the objective value in billion Euros, the number of constraints and variables. As depicted260

by the table, the deterministic approach is the cheapest, followed by the standard case without
market sequencing. The deterministic case is 7.3% cheaper than the standard, while case 1 is 2.1%
more expensive. The reason for the difference in costs can be attributed to the different levels of
uncertainty in each case, resulting in a more expensive solution the more uncertainty is present [29].
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Table 1: Overview of objective value, number of constraints and variables

Case 0 Case 1 Case 2

Objective Value [Billion Euro] 2788 2847 2585

Number of constraints in million 37 158 39

Number of variables in million 24 94 24

Figure 4: Invested capacity for each generator type over all periods for the three cases

Generator investments and operational decisions265

The general trend across all three cases is the growth of VRES over the periods. However, there
are significant differences between the cases when it comes to investments in generation capacity.
Figure 4 highlights the total capacity expansion by generator type over the entire horizon. As seen
from the figure, investments in inflexible capacity are similar for the three cases, but slightly lower
in case 1 and 2 compared to case 0. Regarding flexible generators, case 1 invests in significantly270

more capacity than the other two cases, and case 2 is investing slightly less than case 0. In terms
of intermittent generators, case 0 invests the most, and case 2 invests slightly more than case 1. In
total, case 2 invests the least in generator capacity (-10% compared to case 0), followed by case 1
(-6% compared to case 0). Figure 5 illustrates the installed capacity per generator type over the
analysed period for case 1.275

In case 1, the total installed capacity is about 4% lower than case 0. The reduced installed
capacity is mostly due to the significant decrease in intermittent capacity compared to case 0. In
addition, the installed capacity of flexible generators is significantly higher in case 1 than case 0
(+41%), mainly due to increased investments in bio and gas. All cases have the same demand to
supply and the same conditions to supply the demand. However, the generator availability of VRES280

and the flexible generators are different, leading to flexible generators being able to generate more
electricity per installed capacity than VRES.

Regarding case 2, there are even less capacity expansion than case 0 (-10%). Being a deter-
ministic approach, case 2 does not have to account for extreme scenarios which may occur in the
other cases. In turn, this is likely leading to less investments, as the model supply the expected285

demand with less installed capacity. In general, we observed a decrease in installed capacity when
including market sequencing. This was especially prominent for VRES, driven by the switch from
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Figure 5: Installed capacity over the period for case 1

intermittent energy sources towards flexible energy sources. The decrease in installed capacity when
including market sequencing is also supported by [41]

Even though case 1 has slightly less (4GW) installed capacity of inflexible generators compared to290

case 0, the production from these generators are practically identical between all cases. The reason
why the output is similar can be attributed to the uncertainty and market sequencing, which leads
to a more flexible portfolio [3]. The deterministic case is the case that values intermittent generators
the most, followed by standard EMPIRE. Case 2 generates 51 TWh more from VRES than case
0. The relatively large difference in terms of generator output is likely due to the stochastic nature295

of VRES, and when not considered, we can experience an over-evaluation of these energy sources
[44, 45]. In case 1, there are 219 TWh less production from the intermittent energy sources, probably
explained by the decreased installed capacity. Case 2 produces the least amount of electricity from
flexible generators, followed by case 0. Again, this is tied to the uncertainty of the problem, as
less uncertainty leads to an over-evaluation of stochastic energy sources. Furthermore, it is tied300

to the fact that these cases have less installed capacity of flexible generators than case 1. Case
1 and 2 have very similar differences in output between the market stages. In general, flexible
producers decrease their output from the day-ahead market, while intermittent generators increase
their output. This can be justified by the need to balance the different conditions at the two market
stages. Figure 6 illustrates the generator availability for a week in Denmark in winter of 2040. As305

depicted by the figure, there are clear fluctuations between the forecasted and actual availability of
solar and wind. Thus, there is a need to re-balance the decisions from the day-ahead stage, resulting
in different operations than scheduled. Two rationales can explain the increased production from
intermittent generators in the intraday market compared to the day-ahead market. First, there
is no consequences or benefits to changing the generation output from flexible generators, which310

may result in over-dispatching of these in order to ensure that the intraday demand is supplied.
Second, conditions from VRES may improve between the market stages. However, as seen by the
figure 6, both solar and wind availability are similar in the two markets and are not significantly
better or worse in either market. Still, with just slightly better conditions in the intraday market,
and with a significant amount of VRES installed, the overall conditions in the intraday stage could315

improve significantly and thus be a plausible explanation. Besides, VRES can also contribute to the
balancing requirements in an intraday market [14]. Borggrefe and Neuhoff [12] also highlight the
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Figure 6: Generator availability for onshore wind and solar for a week in Denmark, winter 2040

need for a market design that facilitates possible improved conditions for VRES between market
stages.

Storage investments and operational decisions320

Case 1 and 2 are very similar in terms of investments in storage capacity with less than 1%
difference in investments in both power and energy capacity. However, case 0 invests significantly
more in both power and energy with 42% and 16% more investments, respectively. In case 1, less
VRES are installed, and the need for storage is reduced in this case as storage is often used as a
direct balancing mechanism for VRES [33]. With regards to case 2, the lack of uncertainty is likely325

leading to less investments in storage capacity since case 2 knows the future conditions for certain.
These results demonstrates that without the considerations of forecasting errors due to market

sequencing, energy storage is significantly overvalued. The reason for the over-evaluation can be
explained by more flexible producers with market sequencing, which are able to deliver power
instead of energy storage systems. Research on investments in energy storage indicates that it will330

likely increase significantly [43, 20, 48], and is supported by the findings presented in this paper.
However, we deduce that energy storage will play a less significant role in the future power system
than predicted previously. This is caused by the reduced amount of VRES, as storage investments
are linked to VRES investments, and more flexible energy producers which can fulfill parts of the
role storage has in a power system. However, there are no penalties for curtailment in the model.335

If there was mechanisms to reduce or minimize curtailment, storage could contribute significantly
to solve this issue. Concerning operational decision, case 1 and 2 utilizes storage significantly less
than case 0, which are in line with the investments. However, case 2 utilises slightly more storage
than case 1, which may indicate that storage benefits from a deterministic approach.

Transmission investments and operational decisions340

Investments in transmission are very similar across the cases with less than 1% difference in
installed capacity between case 0 and 1. Case 2 invests the least in transmission with 4% less than
case 0. The fact that the deterministic case invests the least in transmission is expected due to
the perfect foresight. In all three cases, there is an increase in installed transmission capacity over
the periods. Again, it is reasonable to explain this by highlighting the increased VRES capacity345
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Table 2: Overview of intraday volume in percentage of actual load

Period Case 1 (stochastic) Case 2 (deterministic)

2025 11 11.6

2030 12.5 13.9

2035 14.9 16.3

2040 17.3 17.5

2045 33.5 39.5

2050 27.1 29.4

2055 37.6 35.6

2060 32.4 34.8

in the later periods, which contributes to more emphasis on transmission [15, 36]. Operational
transmission decisions differ significantly between the cases. Case 1 has 10-20% more transmission
volume than case 0 in the different periods in the intraday market, despite a very similar capacity.
Case 2 also delivers from 10-20% more transmission volume, although there are differences for
each period between case 1 and 2. The results of transmission volume indicate that transmission350

is significantly contributing to flexibility in a power system by balancing the forecasting errors
between nodes. Our finding appear to be well supported by existing literature [34, 15, 47, 50].

4.2. Intraday Volume

In Chapter 1, the importance of the intraday market was highlighted. Based on the historical
development of some of the European electricity markets, it could be argued that the importance of355

the intraday market would increase due to the growing share of VRES in the energy mix. In order
to analyse the future development of the intraday market, the intraday volume was calculated for
the cases with market sequencing in each period. For an in depth explanation of the method used
to calculate the intraday volume, see section 3.2. The results from the intraday volumes are shown
in Table 2.360

Intermittent generators and transmission contribute to the majority of the volume, followed by
energy storage. In addition, storage contributions grow significantly over the time horizon. The
high transmission share in the intraday market gives further merit to the importance of transmission
for efficient market clearing by providing flexibility between nodes. The table demonstrates a clear
correlation of the intraday volume and installed capacity of VRES. The results are supported by365

[22, 32]. These findings are in line with Ehrenmann et al. [22], who also highlights the likelihood
of cross-border intraday trading due to the implementation of the XBID project. The higher share
of transmission volume in case 2 compared to case 1 can be attributed to the lack of uncertainty,
thus being able to utilise more of the available VRES resources.

4.3. Analysis of an operational week in Germany and Norway370

One operational week in all three cases is analysed, and both markets are analysed for case 1
and 2. The week analysed is in the spring season and in the period 2045-2050 and was randomly
selected. The same operational scenario is used for case 0 and 1, while the expected scenario is used
for case 2. In all three cases, the southern zone of Norway, NO2, is characterized by large shares of
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Figure 7: Operational week of Germany in EMPIRE with market sequencing, day-ahead.

regulated hydro and wind, while large shares of VRES characterise Germany. Furthermore, both375

nodes have other, smaller generators contributing to the production. NO2 was chosen as a node
of interest due to the large shares of flexible generators. NO2 exports large volumes of electricity,
and Germany is among the nodes where NO2 is exporting the most. Moreover, Germany is a node
with a lot of VRES, so these two nodes and their relations in the markets are of great interest in
order to analyse the impact of market sequencing and uncertainty. Figure 7 and 8 illustrates an380

operational week in the day-ahead market and the intraday for Germany in case 1. The result from
the analysis indicates that flexible generators is of significant importance when forecasting errors are
included. Specifically, flexible generators provide electricity in large shares during the night hours,
when solar production is non-existent. Transmission volumes are also high during these hours.
Additionally, there are clear deviations in the operational decisions between the market stages.385

These changes can be attributed to changing conditions for VRES. Generally, the scheduled output
from flexible generators are reduced in Germany, while intermittent generators increase their output.
In NO2, there are some hours with increased production from flexible generators likely due to the
differing conditions in VRES conditions in neighboring nodes. Considering the three cases, there
are significant differences in the operational decisions. Case 0 schedules significantly less flexible390

generation, and are relying on intermittent production to a larger degree. Being a deterministic
case, case 0 have significantly less variation in production between the different days in a week.
Similarly to case 0, case 2 also utilises VRES, at the expense of flexible production.

4.4. The Importance of Considering Uncertainty

This section illustrates the importance of considering uncertainty in a capacity expansion prob-395

lem. A Value of stochastic solution [VVS] test was conducted.
Value of stochastic solution test is a test that establishes the value of using stochastic program-

ming as opposed to deterministic programming [6]. The VSS test is performed by calculating the
difference in objective value between using first stage decisions optimized for an expected determin-
istic scenario and using a stochastic multi-stage optimization model, ref equation 2. To establish400

the VSS, the results from case 2 concerning the first stage variables were used as input parameters
in case 1. This allowed us to investigate the impact of having uncertainty concerning load and the
generator availability in both markets when the installed capacity is optimized for different scenar-
ios as opposed to being optimized for a single expected operational scenario. As shown in table
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Figure 8: Operational week of Germany in EMPIRE with market sequencing, intraday.

1, a deterministic solution is a seemingly cheaper solution. Furthermore, a deterministic approach405

invests in significantly less generator capacity.

V SS = zexp − zstoc (2)

The results of the run of case 1 with input from case 2 yielded an infeasible model. There is a
combination of reasons why that yielded an infeasible solution. First, by performing a deterministic
run based on the expected outcome, investments are smaller across the technologies. This leads to
more stress on the operational energy balance constraints, when a scenario with poorer conditions410

than the expected occurs. In the intraday market, this is not a problem in terms of infeasibility,
due to the ability to shed load that is not possible to cover. However, this is not an option in the
day-ahead market. Therefore, due to the inability to shed load or otherwise not meet the demand
in the day-ahead market, the result is infeasible giving a seemingly infinite value to the stochastic
solution.415

Different market designs were tested to accommodate the infeasible solution of the VSS test.
First, the equality of constraint in the day-ahead energy balance constraint was changed to an
inequality, meaning that the supply does not have to meet the demand. The change yielded a
feasible model, but due to the changed energy balance constraint and the impact this had on the
results, the results were deemed not comparable and not realistic in terms of how a day-ahead420

market operates. As the objective function only factors the actual delivery cost-wise and not the
scheduled planning, there is a lack of incentive to meet the demand in the day-ahead stage. This
results in a significant lack of supply in the day-ahead stage, which is not realistic in a real-world day-
ahead market. A minimum of supply was scheduled in the day-ahead market, just so the intraday
demand could be met with limited load shedding. It was also tested to allow load shedding in the425

day-ahead market. Allowing for load shedding in the day-ahead market without a cost associated
yielded very similar results to that of creating an inequality instead of an equality. This is to be
expected, as making it an opportunity to shed load without a cost associated is adding slack to
the constraint, which is basically the same as changing the constraint from equality to inequality.
A possibility is also to allow for load shedding in the day-ahead stage, but with a cost associated.430

It would be expected that a similar amount of load would be shed in both markets, which would
mean that load shedding would essentially be twice as expensive. This approach would likely lead
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to a feasible model, but it would be difficult to compare the results to the other cases. Lastly, it
could be possible to calculate the difference in load shedding between the markets and give a cost
to the absolute total load shed. However, this is challenging to implement in the model and would435

increase the computational burden. Therefore, this last option was discarded.
Even though a result for the VSS test was not achievable, the results can still be used to estimate

the error of not considering uncertainty [17], which for the cases analysed in this paper is significant.
As seen from the objective value for case 1 and 2, there is roughly a 10% difference in objective
value. The reason for this difference is due to an under-estimation of the need for capacity in440

case 2, as this case invests based on perfect information. Thus, case 2 does not account for the
unpredictable nature of VRES and load. In addition, case 2 invests the least in inflexible and
flexible generators. When conditions are poorer than expected, the deterministic approach is not
able to supply the demand due to the limited installed capacity, and additional capacity is needed
for these hours in order to supply the load. Therefore, we can say that a stochastic approach to445

a capacity expansion problem is more robust, as the likelihood of supplying the demand increases
significantly. By utilising a deterministic approach, the investment costs would be lower, but the
costs of not supplying the load in hours with poor conditions are much higher. We can therefore
conclude that the costs saved on capacity is significantly lower than the costs of not having sufficient
capacity.450

5. Conclusions

The paper has presented a methodology to analyse the long-term developments in a power
system while considering forecast errors from intermittent energy sources between market stages.
A capacity expansion model with one investment stage and two market stages was developed to
include forecast errors and the uncertainty from VRES in order to elucidate how this impacts455

investment decisions. The approach utilised is not commonly used, but it may provide better
insights into how the future power system may develop. In order to answer the research questions
stated in Chapter 1, three distinct cases was tested. Case 0 was used as a reference case illustrating
the traditional way to model capacity expansion of a power system. Case 1 implements a second
market stage to represent a day-ahead market and an intraday market. Case 2 is a deterministic460

version of case 1, aiming to illustrate the impact of not considering uncertainty when modelling a
capacity expansion problem.

Our findings demonstrate a significant difference in investment decisions between the cases. An
addition of market sequencing increases the total system costs by 2.1%. Additionally, there is a
steep increase in intraday volume over the analysed period due to the increased installed capacity465

of intermittent energy sources. When accounting for forecasting errors, there is a decrease in 10%
of investments in intermittent energy sources and an increase of 40% in investments of flexible
generators. Intermittent generators still dominates the installed capacity with a share of 80% when
including forecasting errors. The findings from this study indicates a decreased importance of energy
storage, reducing the installed capacity by 16%. The reduction in energy storage can be attributed470

to the lower investments in intermittent energy sources, but also implies that energy storage is over-
valued when not considering forecasting errors. Investments in cross-border transmission capacity
are almost unchanged (1% difference) between the cases. Our findings are supported by existing
literature [41, 45, 51].

Operational decisions differ significantly between the cases. Concerning storage and generation,475

the output follows the same trend as the installed capacity. However, when accounting for forecast
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errors, transmission utilization increases with 10-20%. Transmission is therefore a major flexibility
provider to help balance the forecast errors that occur between the market stages. Cross-border
transmission have previously been assumed to be a crucial part of providing flexibility in power
systems characterised by large shares of VRES [36, 47, 15].480

The deterministic approach is compared to a stochastic program to identify the value of con-
sidering uncertainty. A VSS test yielded an infeasible model, indicating that in order to operate a
power system in a capacity expansion model, it is crucial to consider uncertainty. Furthermore, the
deterministic approach yields a 7.3% lower total system cost, and we can therefore conclude that
the lower costs due to the reduced installed capacity does not cover the costs for potential load485

shedding, should the conditions deviate from the expectations. Moreover, it is concluded that a
deterministic approach significantly under-values installed capacity, and thus, is not able to supply
the demand if conditions change to the worse compared to the expected conditions.

In summary, four main conclusions can be drawn:490

• Investments in intermittent energy sources are significantly decreased when accounting for fore-
cast errors.

• Transmission will be a pivotal contributor to balance the future power system.
• Investments in storage has traditionally been overvalued and are likely to play a less important

role than anticipated.495

• Considering short-term uncertainty from forecasting errors between market stages and uncer-
tainty of VRES is crucial when planning for investments in a power system.

This paper has highlighted the importance of considering forecasting errors when analysing a ca-
pacity expansion problem. The results proves significant differences in investments and operational
decisions compared to the traditional approach. It should be noted that adding a third stage to the500

EMPIRE model, as done in this paper, entails a significant increase to the computational burden.
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[38] Hector Marañón-Ledesma and Asgeir Tomasgard. Long-Term Electricity Investments Account-
ing for Demand and Supply Side Flexibility. MPRA Paper 93341, University Library of Munich,
Germany, March 2019. URL https://ideas.repec.org/p/pra/mprapa/93341.html.

[39] Juan M. Morales, Marco Zugno, Salvador Pineda, and Pierre Pinson. Electricity market
clearing with improved scheduling of stochastic production. European Journal of Operational
Research, 235(3):765 – 774, 2014. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.2013.
11.013. URL http://www.sciencedirect.com/science/article/pii/S0377221713009120.
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Appendix

Appendix A: Scenario Generation

In order to include the unpredictable nature of VRES and load, different scenarios are generated.
The scenario data is based on historical data for load, generator availability, and maximum hydro
allowance. All data is collected from the ENTSO-e database using the SFTP protocol [23]. Data for
both day-ahead and intraday, named forecast and actual from ENTSO-e, respectively, are collected.
The data is then put into to a scenario-generation routine. The scenario-generation routine divides
the historical data into seasons according to hours of the year. Then, for every scenario and every
season, a random hour is sampled. The hours are then sorted, to start on Monday 00:00. In
addition, any hour later than the length of the operational period could not be selected, because
the chronology is preserved and we would not get a sufficient amount of data. All parameters
generated from the scenario routine are sampled based on the same hour for each season and
scenario, ensuring correlation between the different parameters, such as wind-PV correlation.

Since only a small portion of the historical data sets are randomly generated, there was a need to
ensure a correlation between historical trends and the trend generated by the scenario-generation.
Securing a correlation was done by utilizing moment matching. The moment matching routine
analyzes the generated scenarios to find the best collection of scenarios that match the statistical
moments of the historical data. The procedure is as follows: First, a realization of the stochastic
data is created based on the historical data sets for each hour, season, scenario and period. The
first step is then repeated U times to generate U different collections of scenarios, or scenario trees.
Then, the first four moments (expectation, variance, skewness, and kurtosis) was calculated for each
season for all U scenario trees. The seasonal moments of each scenario tree are further compared
to the seasonal moments of all historical data.

The scenario tree with the best match to the original data was identified based on equation (3):

du,s =
∑

n∈N
wn

∑

v∈V

|mall
v,s,n −mtree

v,s,n,u|
|mall

v,s,n|
, (3)

where u is the scenario tree, s is the seasons, n is the nodes, and v is the moment order. The nodal
weight, wn, represents how much node n should contribute to the tree score. The values mall

v,s,n

represent moment v in season s and node n for all data, and mtree
v,s,n,u represent the moment value

specific to tree u. The minimum value of
∑

s∈S du,s yields the tree u which has moments matching
best with all historical data.

In this thesis, the seasonal moments for each scenario tree and all historical data are calculated
based on all actual load realizations as a univariate distribution of hourly values. The nodal weight is
calculated based on the nodal share of the total actual load in the whole system. Therefore, the hours
best represented in the scenario tree compared to the actual load was also used in the forecasted
load, forecasted generator availability, generator availability, and hydro availability. By using the
same hours for all parameters, we preserve the cross-correlation between load and production, and
thus, create a likely future scenario tree. In addition, nodes are weighted differently to make sure
that a correlation in larger nodes is more important than a correlation in smaller nodes. The
scenario generation approach is based on [45].
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