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Abstract

Recent technological developments have enabled us to explore new modes of operations.

It is believed that the changed cost structures due to the utilization of a fully autonomous

�eet, allows for the design of �exible, cost-e�cient, and climate-friendly mobility services.

Through the project CAPTin Kiel, this thesis aims to study the opportunity to provide an

on-demand ferry service with autonomous ferries in the Kiel Fjord. The intended �eet

will utilize smaller autonomous ferries for replacing conventional large ferries in order to

achieve greater �exibility.

In this thesis, the Dynamic Dial-a-Ride Problem with Autonomous Ferries (DDARP-AF)

is studied through simulation. The problem concerns the design of an on-demand ferry

service, where incoming requests with potentially very short call ahead times are made

known to the service provider after the initial routing and scheduling of ferries. The

highly dynamic nature entails that the operational planning procedure needs to e�ciently

determine if the requests can feasibly be served in an online manner and update the ferry

schedules accordingly. It is essential that the new ferry service must be designed in a

way that can meet the expected demand while being able to maintain an adequate level

of service perceived by the passengers. The main challenge is being able to balance the

desired service level against the cost of operating the service.

A simulation model is developed to evaluate the e�ects of changing various character-

istics of the service. An insertion heuristic is chosen to solve the operational planning,

as it is essential that the operational planning problem can be solved e�ciently. Feasi-

ble insertions are determined by pickup time window constraints, maximum ride time
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constraints, and ferry capacity constraints. The performance of di�erent services can

be measured through key performance indicators de�ned from the simulation output,

re�ecting both the perspective of both the operator and passengers. The e�ciency of

various con�gurations can further provide insight and decision support in recommending

the �eet con�guration and overall design of the ferry service.

The simulation model is implemented in Python with the process-oriented discrete-event

simulation framework Simpy. Test instances were characterized by parameter values for

pickup time window widths, maximum ride time coe�cient, �eet con�gurations, and the

choice in the objective function. The test instances were simulated for three di�erent

demand scenarios over a planning horizon of 500 hours to assure long-term steady-state

performance.

The results indicate that the insertion heuristic is not able to exploit increased planning

�exibility through wider time window widths e�ciently. The average excess ride time is

signi�cantly a�ected by the value of the maximum ride time coe�cient, regardless of other

service-related parameters. Generally, the combinations of service-related parameters

performed similarly for di�erent �eets and demand scenarios. A wider time window

width combined with a high maximum ride time coe�cient provided the overall best

performance with regards to demand met at the expense of a higher, but still acceptable

level of average excess ride time. The change of objective function in favor of minimizing

average distance traveled per ferry provided a positive impact of up to 39 % in the service’s

ability to accommodate requests. The result implies that that excessive consideration

towards minimizing excessive ride times limits the overall performance.

A sensitivity analysis of the �eet size suggested an almost linearly proportional relation

between increased �eet size and demand met at the peak demand scenario for a given

setting. Varying �eet size for a given setting does not seem to a�ect other key performance

indicators signi�cantly. Given the preference of the service provider, a �eet of at least 13

ferries is found to provide a su�ciently acceptable level of service in the peak demand

scenario.
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Sammendrag

Nylige teknologiske framskritt har muliggjort nye operasjonsmoduser. Man ser for seg

at en endret kostnadsstruktur gjennom bruk av en helautonom �åte, gjør det mulig for

å designe �eksible, kostnadse�ektive, og klimavennlige transporttjenester. Gjennom

prosjektet CAPTin Kiel, sikter denne masteroppgaven på å utforske muligheten til å tilby

et on-demand fergetilbud med autonome ferger i Kielfjorden. Den tiltenkte �åten skal

benytte mindre autonome ferger for å erstatte konvensjonelle større ferger, og dermed

oppnå større �eksibilitet.

I denne masteroppgaven vil det Dynamiske Dial-a-Ride Problemet med Autononome

Ferger (DDARP-AF) studeres gjennom simuleringer. Problemstillingen tar for seg designet

av et on-demand fergetilbud, hvor innkommende forespørsler med potensielt meget kort

innringingstid blir gjort kjent for tjenesteleverandøren etter at den initielle rute- og tid-

splanleggingen av fergene har skjedd. Det karakteristiske dynamiske trekket medfører at

den operasjonelle planleggingsprosedyren må kunne e�ektivt avgjøre om forespørsler

kan imøtekommes fortløpende, og oppdatere ruteplanleggingen deretter. Det er særlig

viktig at det nye fergetilbudet blir designet på en måte som gjør at det dekker forventet

etterspørsel, og samtidig opprettholder et tilstrekkelig oppfattet servicenivå for passas-

jerene. Hovedutfordringen er å balansere ønsket servicenivå mot kostnaden til tjenesten

sett fra operatørens perspektiv.

En simuleringsmodell er utviklet for å evaluere e�ektene av å endre forskjellige karakter-

istike innstillinger for fergetilbudet. En innsetningsheuristikk er valgt for å løse operasjon-

splanleggingen, ettersom det er kritisk at operasjonsplanleggingsproblemet kan løses
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e�ektivt. Mulige innsetninger er begrenset av betjeningsvindurestriksjoner, maksimal

reisetidsrestriksjoner, og fergekapasitetsrestriksjoner. Ytelsen til de ulike fergetilbudene

kan måles med nøkkelindikatorer gitt av simuleringsresultat. Disse gjenspeiler både

operatørens og passasjerenes perspektiv. E�ektiviteten til forskjellige kon�gurasjoner

kan videre gi innsikt og beslutningsstøtte for anbefalt �åtekon�gurasjon og overordnet

design av fergetilbudet.

Simuleringsmodellen er implementert i Python med det prosessorienterte diskret hen-

delsessimuleringsrammeverket Simpy. Testinstansene er karakterisert av forskjellige

parameterverdier for størrelsen på betjeningsvinduet, maksimal reisetidskoe�sient, �åte-

sammensetning, og valg av objektivfunksjon. Testinstansene var simulert for tre forskjel-

lige etterspørselsscenarioer med en tilsvarende planleggingshorisont på 500 timer for å

forsikre en stabil ytelse og rapportert resultat.

Resultatene indikerer at innsetningsheuristikken ikke klarer å e�ektivt utnytte økt plan-

leggings�eksibilitet gjennom større betjeningsvinduer. Den gjennomsnittlige over�ødige

varigheten av en reise er særlig påvirket av verdien for maksimal reisetidskoe�sient,

uavhengig av andre servicerelaterte parametere. Generelt var det lik ytelse for de forskjel-

lige kombinasjonene av parameterverdier med ulike �åter og etterspørselsscenarioer.

Større betjeningsvindu kombinert med en høy maksimal reisetidskoe�sient ga den

generelt beste ytelsen med hensyn på møtt etterspørsel til tross for en høyere, men

fortsatt akseptabelt nivå på gjennomsnittlig over�ødig reisetid. Endringen i objektiv-

funksjonen i favør av å minimere gjennomsnittlig distanse seilet per ferge ga en positiv

innvirkning på opp til 39 % på tjenestens evne til å imøtekomme forespørsler. Resultatet

indikerer at overveldende betraktning til å minimere over�ødig reisetid begrenser den

generelle ytelsen til hele fergetilbudet.

En sensitivitetsanalyse av �åtestørrelsen antyder en nesten lineær proporsjonal relasjon

mellom økt �åtestørrelse og møtt etterspørsel ved det høyeste etterspørselsscenarioet

for en gitt kon�gurasjon. Variasjon av �åtestørrelsen for en gitt kon�gurasjon påvirker

tilsynelatende ikke andre nøkkelindikatorer signi�kant. Gitt preferansen til tilbyder av

tjenesten, ble det funnet at en �åtestørrelse på minst 13 ferger kan tilby et tilstrekkelig

akseptabelt fergetilbud ved det høyeste etterspørselsscenarioet.
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Chapter 1

Introduction

The majority of the world’s population growth is anticipated to occur in urban areas

for the next 30 years. Urban areas already account for 60-80 % of the global energy

consumption and greenhouse gas emissions, and a proportional increase in tra�c would

lead to signi�cant increments in pollution and tra�c congestion (European Commission,

2017). Recent technological developments in the �elds of, e.g., arti�cial intelligence,

machine learning, 5G, and cloud computing have enabled us to explore new modes of

operations. With this in mind, it is, therefore, of high interest to study e�cient and

sustainable mobility systems that can cope with future growth.

It is believed that the changed cost structures due to the utilization of a fully autonomous

�eet, allows for the design of high service level o�erings that could change the travel

pattern of day-to-day commuters (Kretschmann, Burmeister & Jahn, 2017). This is due

to the fact that autonomous systems eliminate the need for careful considerations of the

sta� roster, �xed work-hours, and related facilities – potentially providing great �exibility

in developing sustainable and energy-e�cient systems. This thesis presents and discusses

the possibility of introducing a demand-responsive service with autonomous ferries in

the Kiel Fjord.
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2 CHAPTER 1. INTRODUCTION

1.1 The Kiel Fjord

Kiel is a seaport city in the northern parts of Germany, with a population of about 250 000

people. The city is split into a western and eastern shoreline by the Kiel Fjord. After World

War II, the city infrastructure was rebuilt to mainly facilitate cars and buses, while the

fjord was primarily intended for transportation of industrial commodities. Recently, as

issues of air pollution and environmental concerns have increased, new political incentives

are focused on sustainable and e�cient means for transportation.

Every day, several cruise ships, local ferries, and industrial cargo ships constitute the fjord

tra�c. The northern parts of the fjord consist of beaches and are popular destinations for

recreational purposes during summer. In contrast, the inner parts located near the city

center are crowded during commuting times. There are also several military zones and

facilities along the fjord, and the Kiel Canal, which is the busiest arti�cial waterway in

the world, is directly linked with the fjord on the western shore. This diversity in tra�c

and demand should be considered when conducting studies related to transportation and

logistics in the Kiel Fjord.

Today, there is an existing ferry service provided by Schlepp- und Fährgesellschaft Kiel

(SFK). SFK operates a regular �xed-route service with the deployment of non-autonomous

ferries. The ferries are rather large, with vessel capacities of 300 passengers (SFK, 2020).

The maximum capacity is rarely exploited, with the exception being during the annual

sailing festival, Kieler Woche. As can be seen in Figure 1.1, there are a total of ten regular

ports which is served by two routes. The Förde-Fährlinie is the main route and covers the

ports from Bahnhof up to Laboe. During the summer, the route is extended to include the

ports of Falckenstein, Schilksee, and Strande. The Schwentine-Fährlinie serves as a more

direct line across the fjord for commuters, linking the eastern shore to the central areas

of the city.

Despite having a seemingly functional ferry service, several factors make the current

o�ering less suitable as a means for day-to-day transportation across the fjord. Firstly,

as can be noted in Figure 1.1, most ports do not have a direct connection. This results

in very long transit times, with the trip from Bahnhof to Laboe potentially taking up to
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Figure 1.1: The current ferry service in the Kiel Fjord, operated by SFK.



4 CHAPTER 1. INTRODUCTION

almost an hour. Further, the schedules do not include all the possible ports in the route

consistently throughout the day, resulting in varying departure times. The frequency of

departures is relatively low, with at most one ferry departure every hour for all ports. The

need for careful planning and adaption by the passenger in advance makes travel by ferry

not a viable option for most commuters.

1.2 Clean Autonomous Public Transport in Kiel

Clean Autonomous Public Transport in Kiel (CAPTin Kiel) is a joint project initiated

by the Christian-Albrecht University of Kiel (CAU) in 2017. The project constitutes a

transdisciplinary innovation platform with several academic institutions, private �rms, as

well as local and federal governments involved. Through the project, the City of Kiel seeks

to establish an innovative urban transport infrastructure, utilizing autonomous vessels to

provide cost-e�cient, �exible and climate-friendly mobility services in a user-friendly

way (Pankratz & Müller-Lupp, 2020). The platform consists of di�erent project groups

with an emphasis on varied aspects concerning implementing and designing the new

mobility system. Some are concerned with the technical implementation and testing of

autonomous technology, while another group from the Muthesius University of Fine Arts

and Design has been working on conceptual designs for the new autonomous ferries, as

seen in Figure 1.2.

Sørensen (2017) de�nes a hierarchy to distinguish di�erent levels of autonomy, but the

concept of autonomy can be summarized as machines operating processes automatically

without human in�uence (Cross & Meadow, 2017). A fully autonomous �eet without the

need of crew members on-board could enable the design of more cost-e�cient demand-

responsive services, as sta� costs can make such services up to three times more expensive

than similar �xed-route services (Anderson et al., 2014). Even though a positive environ-

mental e�ect cannot be guaranteed through autonomous mobility services without further

insight into future technical and regulatory development, it is reasonable to believe that

these aspects will be made clear with the growing adoption of the technology (Pitera &

Marinelli, 2017). Several successful demonstrations and ongoing trials include the world’s

�rst autonomous ferry with passengers by Rolls-Royce and Finferries in 2018, and Yara
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Birkeland as the world’s �rst commercial autonomous container ship (Kongsberg, 2019;

Rolls-Royce, 2018).

Figure 1.2: Conceptual designs of autonomous ferries (Pankratz & Müller-Lupp, 2020).

The work presented in this thesis is part of CAPTin Kiel as an R&D activity in cooperation

with CAU to look into optimization and simulation of an autonomous ferry service in

the Kiel Fjord. The central idea is to replace the conventional large ferries with smaller

autonomous ferries in order to achieve greater �exibility. This thesis studies a demand-

responsive shared-ride service with autonomous ferries. More speci�cally, the problem

is modeled as a dynamic dial-a-ride service, where demand is unknown beforehand,

and incoming customer requests need to be processed in an online manner. The speci�c

problem of this thesis is referred to as the Dynamic Dial-a-Ride Problem with Autonomous

Ferries (DDARP-AF). As previously mentioned, the current ferry service is not able to

provide commuters with a su�cient and reliable means of day-to-day transportation.

Thus, the new on-demand ferry service must be designed in a way that can meet the

expected demand while being able to maintain an adequate level of service perceived

by the passengers. As such, the typical characteristic of dial-a-ride problems (DARP) is

to balance the desired service level against the cost of operating the service. Hence, the

designs of the ferry service must be evaluated in terms of this. The output of a simulation

model can be used as metrics to provide insight into how di�erent system designs and

ways of operation a�ect the overall performance and e�ciency of the service under

various conditions.
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1.3 Contribution and Purpose

The motivation for this thesis is to study the DDARP-AF to provide decision support in

designing a demand-responsive service with autonomous ferries in the Kiel Fjord. The

problem is examined through an operations research point of view; thus, the legal, safety,

and technical aspects regarding the use of autonomous ferries are not studied.

The service provider faces a trade-o� between �exibility and costs in deciding the �eet

composition. Dial-a-ride services are usually quite costly, as a higher number of vessels

make the service more capable of serving requests with very short call ahead times.

Overall, a larger �eet provides great �exibility in designing services that can maintain

a high level of service for the passengers. However, utilizing a smaller �eet with higher

capacities could provide economies of scale in terms of lower cost per passenger.

The purpose of this thesis is to provide managerial insight in determining an optimal �eet

composition through a simulation study. Hence, the main contributions of the thesis are

thus:

• A literature survey of relevant solution methods to evaluate the DDARP-AF.

• A mathematical model to solve the DARP-AF over a static planning horizon.

• A simulation model to evaluate the DDARP-AF through real-world performance

metrics.

• A methodology to evaluate di�erent ferry service designs, i.e., policies and �eet

mix, under di�erent demand scenarios.

1.4 Structure of Thesis

The outline of the thesis is as follows. First, in Chapter 2, a literature review concerning

demand-responsive services, evaluation of dial-a-ride systems, as well as appropriate

heuristic methods is conducted. Next, the problem description of the DDARP-AF is pre-

sented in Chapter 3, and the mathematical formulation of the DARP-AF is presented in

Chapter 4. Chapter 5 describes the simulation model to evaluate the real-world perfor-
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mance of a ferry service, while Chapter 6 considers the procedure of handling incoming

requests. In Chapter 7, the generation of data used in this study is described, and a compu-

tational study is conducted and presented. Lastly, concluding remarks with a discussion

of further research are given in Chapter 8.
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Chapter 2

Related Literature

There has been a renewed interest in dial-a-ride systems driven by environmental concerns

and recent technological advances that enables new modes of operations. The various

decisions related to the DDARP-AF can be categorized into di�erent planning levels. As

can be seen in Table 2.1, relevant decisions at the strategic level include the location and

characteristics of ports. At the tactical level, decisions involving optimal �eet con�guration

and service policy are made. The operational level is concerned with the planning and

scheduling of the service. This study mainly focuses on the decisions made within the

tactical and operational levels of the DDARP-AF.

The chapter presents and discusses relevant literature for analyzing the DDARP-AF. First,

an overview of the characteristics and applications of dial-a-ride problems is listed in

Section 2.1. Section 2.2 elaborates on the literature describing solution methods for

the operational planning problem. Section 2.3 presents how simulation studies have

been conducted to study the e�ects of di�erent changes in dial-a-ride services. Lastly, a

summary of the literature survey is provided in Section 2.4. In practice, since there exist

many di�erent dial-a-ride services depending on the intended application, the literature

review mainly highlights the relevant features to study the DDARP-AF further. For a

more general and extensive literature survey of dial-a-ride problems, the work of Cordeau

and Laporte (2007) and Ho et al. (2018) is recommended.

9
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Table 2.1: Categorization of planning levels for the DARP with ferries.

Strategic Number of ports

Location of ports

Size of ports

Tactical Fleet size

Ferry types

Booking system

Operational Ferry routing

Scheduling

Maintenance / Recharging

2.1 Dial-a-Ride Services

Dial-a-ride problems (DARP) are typically classi�ed in terms of the mode in which the

service is operated by. The static mode de�nes the case where all the requests are known,

allowing for the planning of vehicle schedules before the start of the given planning

horizon. In contrast, the problem is considered dynamic if the planning starts before all

requests are known, and the operator can update the schedules for a �eet as the number

of known requests are increasing. Ho et al. (2018) further extend the taxonomy to include

the certainty of information at the time of planning, i.e., deterministic or stochastic. This

taxonomy di�ers slightly from that of Pillac, Gendreau, Guéret and Medaglia (2013) for

vehicle routing problems, by considering the possibility of imperfect information. The

four categories of DARP is displayed in Table 2.2. For practical reasons, the deterministic

mode is assumed when referring to the static or dynamic DARP, unless otherwise stated.

Real-world applications are always the basis for modeling DARPs, and thus varied prob-

lems are modeled explicitly to re�ect the realistic features. It is typical to distinguish

the literature in terms of main characteristics, such as whether the model considers a

single-vehicle problem or multi-vehicle problem, and also if the �eet is homogeneous or

heterogeneous. Common early studies of the DARP considers the application in paratran-
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sit of elderly or disabled people. The static mode of these services is, for instance, described

by Toth and Vigo (1996), which consider a heterogeneous �eet with multiple depots and

non-depot-based vehicles, while Madsen, Ravn and Rygaard (1995), Cordeau and Laporte

(2007), Pillac et al. (2013) and Häll, Lundgren and Voß (2015) consider the dynamic case.

Another important application includes ambulance services described by Hanne, Melo

and Nickel (2009), Gendreau, Laporte and Semet (2001), and Beaudry, Laporte, Melo and

Nickel (2010). The most recent studies have focused on the use of demand-responsive

services in public transport. Both van Engelen, Cats, Post and Aardald (2018) and Hyland

and Mahmassani (2018) suggest new methods and strategies for rerouting vehicles under

a stochastic environment that can potentially reduce vehicle mileage and increase the

service level, ideally aimed towards the utilization of autonomous vehicles.

Table 2.2: Taxonomy of DARP.

Deterministic Stochastic

Static Decisions are made a priori, and

the information is known with cer-

tainty.

Decisions are made a priori, but the

certainty of the information is un-

determined at the time of decision.

Dynamic Decisions are made in response

to new information received, and

the information is known with cer-

tainty.

Decisions are made in response to

new information received, but the

certainty of the information is un-

determined at the time of decision.

2.2 Solution Methods

Exact solution methods, primarily based upon branch-and-bound approaches, have been

developed for the static DARPs. Such methods were �rst introduced by Cordeau (2006),

which added cutting planes to a three-index mixed-integer programming formulation in a

branch-and-cut algorithm. Ropke, Cordeau and Laporte (2007) provide a further tightened

two-index formulation with new classes of valid inequalities. Although exact methods

provide solutions of the highest quality, �nding optimal solutions for extended models
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with large instances is very di�cult due to the problem being NP-hard. For this reason,

most solutions approaches are inclined towards heuristic methods.

The most common metaheuristic approach for solving DARPs is tabu search. Recent

studies involving tabu search, such as Beaudry et al. (2010), are typically inspired by

Cordeau and Laporte (2003), which combines simple neighborhood operators with the

penalization of frequently made moves and the possibility to accept temporarily infeasible

solutions. Tabu search is often used to study extensive models that incorporate complicated

real-life constraints. Other metaheuristics include genetic algorithms (e.g., Uchimura,

Takahashi and Saitoh, 2002), simulated annealing (e.g., Braekers, Caris and Janssens, 2014),

and variable neighborhood search (e.g., Parragh, Doerner, Hartl and Gandibleux, 2009).

However, due to the nature of some dynamic systems requiring feasible solutions to be

found in a very timely manner, variations of simple insertion heuristics are most often

used to study these in diverse contexts. The general greedy procedure of the ADARTW

heuristic developed by Jaw, Odoni, Psaraftis and Wilson (1986) is often the basis for

such insertion heuristics. ADARTW considers a static DARP with a heterogeneous �eet

and inserts new requests to a position in the vehicle route by the cheapest insertion

criterion, i.e., minimizing the additional incremental cost caused by the insertion. Madsen

et al. (1995) propose the insertion-based REBUS algorithm to solve the dynamic planning

paratransit problem in Copenhagen, Denmark. Modern state-of-the-art heuristics, such as

the online dynamic insertion algorithm with demand forecasts proposed by van Engelen

et al. (2018), uses insertion heuristics in combination with demand forecasts to develop

demand-anticipatory capabilities. Braekers et al. (2014) use an insertion heuristic to

construct an initial solution for the proposed simulated annealing heuristic. Even though

insertion heuristics are considered quite simple, the ability to e�ciently provide feasible

solutions makes these methods suitable to evaluate various operational policies and

strategies (e.g., Hyland and Mahmassani, 2018).

Madsen et al. (1995) identify that the time-consuming part of insertion heuristics is to

check the feasibility of an insertion. A feasible solution must be evaluated with regards

to ful�lling standard �ow and precedence constraints for a vehicle, as well as checking

the speci�c modeling constraints, such as maximum ride time constraints, time window
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constraints, waiting time constraints, and vehicle capacity constraints. As such, e�ciently

determining whether a solution is feasible or not is crucial in a dynamic setting, as the

schedule planner has limited time. It should be noted that this line of research is not

concerned with the solution quality, but rather the worst-case complexity that de�nes

computational time. Hunsaker and Savelsbergh (2002) propose a three-pass algorithm for

a static DARP with a homogeneous �eet that determines the feasibility of a schedule in

linear time. This study recognizes that service-related constraints signi�cantly complicates

the construction of high-quality schedules, and calculates the earliest feasible departure

and arrival times to ensure that the constraints are ful�lled. There is, however, a known

�aw with this algorithm, which for some individual cases, fails to identify a feasible

solution even though it exists. This issue has been addressed among Tang, Kong, Lau and

Ip (2010) and Haugland and Ho (2010). Tang et al. (2010) propose a revised algorithm with

a quadratic worst-case time and de�ne the development of e�cient algorithms with linear

time complexity as a promising issue for future research.

2.3 Simulation of Dial-a-Ride Services

It is essential to be able to solve DARPs e�ciently, but it is also of interest to study how

di�erent ways of operating the service a�ect the customer and operator. The e�ects of

how di�erent service characteristics and policies a�ects the performance and e�ciency of

dial-a-ride services are often studied through simulation. The performance of the service

is observed through key performance indicators (KPIs) that re�ect both the customer’s

and operator’s point of view. The earliest models were proposed by Heathington, Miller,

Know, Ho� and Bruggeman (1968), Wilson, Sussman, Hiconnet and Goodman (1969), and

Gerrard (1974) to study many-to-many DARPs. Newer simulation systems have been

proposed by De�orio (2011) and Häll, Högberg and Lundgren (2012). De�orio (2011)

accounts for possible stochastic events caused by drivers and passengers, while Häll

et al. (2012) present the general-purpose simulation framework DARS to evaluate services

with short call ahead times. Diana, Dessouky and Xia (2006) conduct a simulation study

to determine �eet sizes given a level of service. The e�ects of time window settings

and zoning versus no-zoning are studied through simulation in Quadrifoglio, Dessouky
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and Ordóñez (2008), while Häll et al. (2015) identify main parameters to consider for

designing dynamic dial-a-ride services through a case study of the paratransit service in

Norrköpping.

Bailey and Clark (1987) and Noda, Ohta, Shinoda, Kumada and Nakashima (2003) study

the demand conditions for which dial-a-ride services perform better than �xed-route

services. Bailey and Clark (1987) consider the relation between demand, service rate,

and various policies in a taxi service, while Noda et al. (2003) consider alternative bus

services. These studies found that the usability of the services degrades more rapidly

for dial-a-ride services with an increased number of requests if the number of vehicles

remained unchanged. In contrast, by increasing the number of vehicles while �xing the

ratio of requests and vehicles, more possible combinations of vehicle schedules ensured

that the usability increased faster for these services.

Other simulation studies have tried to de�ne the impact of new technology on dial-a-ride

services. Fu (2002) describes a model to observe how automatic vehicle locations a�ect the

system. Hyland and Mahmassani (2018) explore various optimization-based strategies that

fully autonomous vehicles allow for, and found operational e�ciency gains for periods

with high �eet utilization but also signi�cantly profound e�ects for periods with low �eet

utilization. van Engelen et al. (2018) use simulation to compare heuristic methods, and

found that the proposed online insertion heuristic with demand forecasts can provide

a higher level of service in terms of a reduced number of rejected requests and reduced

waiting times, but with signi�cantly increased vehicle distance driven.

2.4 Summary of Literature Review

There has been a re-emergence of studies related to dial-a-ride problems recently, especially

within the area of public transportation. An overview of selected relevant simulation

studies is listed in Table 2.3. As discussed, it is computationally demanding to �nd exact

solutions to DARPs. In practical terms, very short call ahead times puts hard constraints

on the computation time available for creating feasible vehicle schedules. For this reason,

insertion heuristics are commonly used in simulation studies to evaluate di�erent designs
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of dynamic dial-a-ride services. A general challenge with insertion heuristics is to �nd

feasible solutions e�ciently, especially with service-related constraints, such as maximum

ride time constraints.

The characteristics of the DDARP-AF di�er slightly from traditional problems found in the

literature in that trips are not de�ned by a start and return to a depot, as it is assumed that

the autonomous ferries can be found idle anywhere in the fjord. However, The DDARP-AF

shares many of the complicating characteristics of DARPs described in the literature. The

study of this problem contributes to the investigation of a dynamic dial-a-ride service with

autonomous vehicles in a maritime environment. It will, therefore, comprise of describing

a speci�c simulation model that can e�ciently solve the dynamic operational planning

problem. The study aims to analyze how di�erent parameter settings a�ect the service

level and the operational cost, to further provide decision support at the tactical level, i.e.,

recommendations about the �eet con�guration.
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Table 2.3: Overview of selected simulation studies related to DARPs.

Author Year Title

Bailey and Clark 1987 “A simulation analysis of demand and �eet size

e�ects on taxicab service rates”

De�orio 2011 “Simulation of requests in demand responsive

transport systems”

Diana, Dessouky and Xia 2006 “A model for the �eet sizing of demand respon-

sive transportation service with time windows”

van Engelen, Cats, Post and

Aardald

2018 “Enhancing �exible transport services with

demand-anticipatory insertion heuristics”

Fu 2002 “A simulation model for evaluating advanced

dial-a-ride paratransit systems”

Gerrard 1974 “Comparison of taxi and dial-a-bus services”

Häll, Högberg and Lundgren 2012 “A modeling system for simulation of dial-a-ride

services”

Häll, Lundgren and Voß 2015 “Evaluating the performance of a dial-a-ride

service using simulation”

Heathington, Miller, Know,

Ho� and Bruggeman

1968 “Computer simulation of a demand scheduled

bus system o�ering door-to-door service”

Hyland and Mahmassani 2018 “Dynamic autonomous vehicle �eet operations:

Optimization-based strategies to assign AVs to

immediate traveler demand requests”

Noda, Ohta, Shinoda, Ku-

mada and Nakashima

2003 “Evaluation of usability of dial-a-ride systems

by social simulation”

Quadrifoglio, Dessouky and

Ordóñez

2008 “A simulation study of demand responsive tran-

sit system design”

Wilson, Sussman, Hiconnet

and Goodman

1969 “The use of simulation in the design of a dial-

a-ride... of a computer aided routing system

(CARS)”



Chapter 3

Problem Description

This chapter provides a description of the speci�c problem that is studied in this thesis,

namely the Dynamic Dial-a-Ride problem with Autonomous Ferries in Kiel (DDARP-AF).

The corresponding static mode of the problem, which was studied by Bui and Nguyen

(2019), is referred to as the DARP-AF. The characteristics of the DDARP-AF is elaborated

in Section 3.1. An illustrative example is presented in Section 3.2 to further assist the

understanding of the reader.

3.1 Dynamic Dial-a-Ride Problem with Autonomous

Ferries

The operation of DDARP-AF deals with a port-to-port ride-sharing service. More speci�-

cally, the problem deals with the assignment of a heterogeneous �eet of ferries to accom-

modate a set of requests in a planning period. The planning starts before all demand is

known, entailing that the operator needs to update the ferry schedules in response to new

incoming requests. If a request is accepted, the customer is provided with a planned pickup

time, and the operator is not allowed to cancel already accepted requests. The arrival

time at which a request is made known to the operator is referred to as the call-in time.

A customer can book a request specifying the number of passengers to be transported

17
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from a speci�ed pickup port to a delivery port with a time window for when the pickup

is desired. Furthermore, the dynamic feature of very short call ahead times gives high

�exibility for the customer, but imposes hard constraints on the available computation

time for �nding feasible solutions. For this reason, it is imperative that the planning

procedure can determine if the request can be served or not in a fast manner while also

ensure e�cient deployment.

Operationally, the system aims to maximize the number of accepted requests for a planning

period given that these can be feasibly served. Feasible solutions must ful�ll the time

window constraints and maximum ride time constraints of the requests, and ensure that

the maximum ferry capacity constraints are not violated. The objective function typically

re�ects the perspective of the passengers or the operators. For the operator, this can be

viewed as minimizing the ferry distance traveled. For the passengers, minimizing excess

ride time can be considered. Overall, the design of the DDARP-AF service needs to balance

the objectives of the customer and the operator. These can be understood as con�icting

objectives, as improving the level of service can be directly solved with the increase in

�eet size. However, this improvement in perceived service quality can be too costly for

the operator. In summary, the performance of a design needs to be evaluated in terms of

an acceptable level of service while limiting the costs of operation. These e�ects can be

studied in a simulation model to provide decision support with regards to a recommended

�eet con�guration.

Two important considerations that can a�ect the provided service level is the allowed

pickup time window width and allowed maximum ride time. From a practical view, a

wider time window width makes it less likely that the customer is served close to the

actual desired pickup time. In return, this provides greater �exibility in planning for the

operator. Likewise, an increase in maximum ride time for a trip provides operational

�exibility but leads to a potential increase in excess ride times. The operator can take

these considerations into account through the booking system or by relaxing the routing

policy. Generally, an increase in the allowed pickup time window width and maximum

ride time is e�cient for the operator but undesirable by the passengers. It is, therefore,

essential to �nd reasonable values considering the aforementioned con�icting objectives.
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The modeling of DDARP-AF assumes no depots, no en-route rerouting, and no transfer.

The latter assumption means that it is not possible to deliver the passengers to an inter-

mediate stop to be then served by another ferry. It is also assumed that if waiting occurs,

the waiting happens at the origin node for the pair of nodes linked in a ferry route. As

observed in the depicted example in Figure 3.1, the ferry will leave node 1 at the time

such that it arrives at the destination node at the planned time of service for that node.

Alternatively, the ferry could travel to node 4 at the �rst opportunity and wait for the start

of service. However, the former is chosen to provide schedule �exibility if a new request

could be served in-between the period that the ferry would have waited. Intuitively, the

latter would result in an increased ferry mileage as it makes an unnecessary detour, e.g.,

the route 1-4-2-4 rather than 1-2-4.

1 4
10

PPT4 = 25

Figure 3.1: Waiting occurs at the origin node for connected nodes in a ferry route. Here,

node 4 represents a pickup node with a planned pickup time at T = 25. The ferry waits

until T = 15 to leave node 1.

3.2 Illustrative Example of the DDARP-AF

To further grasp the operational challenges that the operator faces when planning routes

and scheduling ferry itineraries in the DDARP-AF, Figure 3.2 illustrates an example of

the problem. Here, the system is represented by the two similar ferries F1 and F2 at time

T = 5. Pickup nodes are displayed as circles, and the corresponding delivery nodes for the

same requests are displayed as triangles in the same color. The brackets de�ne the time

window in which the passenger desires to be picked up. There are currently two requests

known for the time being. Ferry F1 has already been assigned to serve request 1 and is

en-route to the corresponding pickup node. Ferry F2 is currently idle at an arbitrary point

in the fjord. At T = 5, request 2 is called in, and both ferries can feasibly serve it. For

the remaining example outline, it is assumed that the ferry capacity constraints are not
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violated at any given point.

Since both ferries can feasibly serve the new request, the solution choice is based on the

operator’s routing policy re�ected in the objective function. As previously stated, the

objective could typically be to minimize the excess ride time for each request. With this in

mind, the preferred solution would be that the idle ferry F2 serves request 2. If otherwise,

the passengers associated with request 1 would experience an increase in excess ride time

due to visiting the pickup node (2) before the delivery node (4). The route for ferry F2 is

updated accordingly, as illustrated in Figure 3.3.

(4)

(1): [10, 40]

(2): [15, 45]

(5)

T = 5

F2

F1

Figure 3.2: Ferry F1 is en-route to pickup

node 1, while F2 is currently idle in the

fjord. Request 2 is called in atT = 5 with a

desired pickup time window. Both ferries

can feasibly serve the new request.

(4)

(1): [10, 40]

(2): [15, 45]

(5)

F2

F1

T = 5

Figure 3.3: The idle ferry F2 is scheduled

to serve request 2, and the route is updated

with the corresponding pickup node (cir-

cle) and delivery node (triangle).

Furthermore, Figure 3.4a presents another incoming request at T = 10. However, due

to the combination of the desired pickup time window and max ride time constraints

for the passengers already on board, neither F1 nor F2 can feasibly serve the request.

Consequently, the request is rejected. Figure 3.4b illustrates the case where all three

requests can be served by changing only the preference for picking feasible solutions.

Here, the same instance is considered, but the objective at each decision point is to

minimize the total ferry distance traveled. The incremental increase in total ferry distance
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traveled is less for serving with ferry F1 than F2, and this would make F1 the preferred

choice to accommodate request 2, known at T = 5. At time T = 10, the idle ferry F2

can serve request 3 within the desired pickup time window, and the route is updated

accordingly.

(4)

(1): [10, 40]

(2): [15, 45]

(5)

T = 10

(3): [15, 45 ]

(6)

F1

F2

(a) Minimize excess ride time

(4)

(1): [10, 40]

(2): [15, 45]

(5)

T = 10

(3): [15, 45]

(6)

F1

F2

(b) Minimize ferry distance traveled

Figure 3.4: Request 3 is called in at T = 10. Figure (a) shows the routing policy with

minimizing excess ride rime as the objective. The system is forced to reject request 3,

as it cannot be feasibly served by F1 nor F2. Figure (b) shows the same instance where

the feasible solutions are chosen according to minimizing overall ferry distance traveled.

In this case, request 2 would have been assigned to F1 at T = 5, and request 3 could be

feasibly served by F2.

It is important to note that even though the policy change illustrated in Figure 3.4b

made it possible to serve all three requests, it does not necessarily yield better long-term

performance. Another scenario in a later period could, for instance, make the change

unfavorable and vice versa. Short-term performance does not necessarily imply an equally

long-term performance of a system. In this case, the operator de�nes a deliberate strategy

to make the best decision based on the presented information at the time of decision. The

long-term performances of the service need to be studied under the same conditions, to

determine whether a design choice is preferable over another. As previously mentioned,

the performance is not only judged by the demand met, but the operator tries to balance a
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varied set of performance indicators re�ecting the customers’ perceived service level and

operational costs. This consideration exempli�es why simulation as a tool is suitable and

necessary to evaluate the e�ects of speci�c service characteristics under di�erent demand

scenarios for the DDARP-AF.



Chapter 4

Mathematical Formulation

In this chapter, a mathematical formulation of the DARP-AF is presented. The modeling

approach and assumptions are described in 4.1. The notation used to formulate the model

is introduced in Section 4.2. The objective function and constraints are presented in

Section 4.3 and Section 4.4. Finally, the relevance of the model with regards to the DDARP-

AF is discussed in Section 4.5. It is emphasized that the mathematical model presented in

this chapter is equivalent to the one formulated by Bui and Nguyen (2019).

4.1 Modeling Approach and Assumptions

A three-index formulation of the DARP-AF is necessary to keep track of the initial load on

board, time windows, origin, and destination speci�cally for each ferry in the �eet. The

modeling approach builds on a structurally similar problem from the maritime industry,

namely the tramp ship routing and scheduling problem described by Christiansen and

Fagerholt (2014). However, the main di�erence that needs to be considered is the trans-

portation of passengers rather than cargoes. The distinction is expressed in the presented

model by introducing passenger inconvenience through both hard and soft constraints.

Excessive ride time duration is the main disutility considered in this model.

Some underlying assumptions are made to reduce the complexity of the model. First, it is

23
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assumed that all types of ferries and multiple ferries can berth at all ports for any given time,

even though this could depend on the port characteristics, e.g., port size. As the system has

a limited �eet in disposal, the requests with a higher number of passengers are prioritized.

This assumption can be understood as more cost-e�cient to the operator, as sailing time

per passenger would be higher for feasibly serving the same number of passengers spread

out on several requests. If a request has been accepted, the operator cannot cancel it, as it

would be highly inconvenient for the passengers. Also, new passengers cannot exceed

the maximum capacity of the ferry, and the passengers associated with a speci�c request

cannot be split between several ferries. The assumption is considered reasonable from a

practical point of view, as a group of passengers disallowed to travel together represents an

apparent inconvenience for the passengers. Lastly, deterministic conditions are assumed,

i.e., sailing times are, for instance, not a�ected by ferry breakdown or weather conditions.

Consequently, passenger no-shows and passenger cancellations are not considered.

4.2 Notation

Let each request be represented by an index i . Each request i has an associated pickup

node i and delivery node n + i , where n denotes the number of requests that might be

handled during the planning horizon. Each node represents a port, but it is imperative to

note that di�erent nodes may correspond to the same physical port. For instance, given

two requests, the associated pickup nodes i = 1 and i = 2 can both correspond to Bahnhof.

This would imply that the distance and travel time between the nodes would equal zero,

and could represent a servicing of two requests at the same physical port. Moreover,

let NP = 1, 2...,n be the set of pickup nodes, and ND = n + 1,n + 2, ..., 2n be the set of

delivery nodes. The set of pickup nodes is further partitioned into two subsets; a set of

already accepted requests NA, that is mandatory to ful�ll, and a set of optional requests

NO .

Further, let V be the set of ferries. Each ferry v has an associated network (Nv ,Av ).

Nv denotes the set of nodes that can be visited by ferry v , including the origin o(v) and

arti�cial destination d(v) for ferry v . Practically, the origin o(v) can geographically be a

port or any location in the fjord, while the arti�cial destination d(v) represents the last
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planned delivery port for ferry v . Accordingly, d(v) re�ects the same location as o(v) if

ferry v is not used. The set Nv is used to improve solving time, as the nodes that ferry v

cannot service in time due to its current location are excluded from the set. Here, the sets

of pickup and delivery nodes that ferry v may visit can be derived asNP
v = N

P ∩Nv and

ND
v = N

D ∩Nv , respectively. The setAv contains all the feasible arcs for ferry v , which

is a subset of Nv × Nv .

For each ferry v ∈ V and each arc (i, j) ∈ Av , letT S
i jv denote the sailing time from node i

to node j , whileT B
i jv represents the berthing time (including embarking and disembarking)

at node i . If node i and j corresponds to the same port, the berthing time is equal to zero.

Each request i has an associated number of passengers Pi that needs to be transported, and

a time window
[
T iv ,T iv

]
for ferry v associated with pickup node i . T iv and T iv de�nes

the earliest and latest possible time for starting service at node i for ferry v , respectively.

In practice, the time window is speci�c to the request, but the index v accounts for a

heterogeneous �eet. Thus, a ferry with a higher sailing speed would have a smaller time

window than a slower ferry and vice versa. T R
i ,n+i denotes a reference direct ride time

from the pickup node i to the delivery node n + i . Further, let TMAX
i de�ne a maximum

ride time coe�cient associated with request i , such that the maximum allowed ride time

is proportional to the direct sailing time. The capacity of ferry v is denoted Kv .

The binary variable xi jv is assigned the value 1 if ferry v sails directly from node i to

node j, and 0 otherwise. Likewise, the binary variable yi is assigned the value 1 if the

optional request i is accepted, and 0 otherwise. Lastly, the variable tiv represents the time

for starting service at node i for ferry v , whereas the variable liv signi�es the load, i.e.,

the number of passengers on board ferry v when leaving node i .
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Indices
i, j Nodes for pickup and delivery associated with a request

v Ferry

Sets
V Set of ferries

NA Set of accepted requests

NO Set of optional requests

Nv Set of nodes that ferry v can visit

NP
v Set of pickup nodes that ferry v can visit

Av Set of feasible arcs for ferry v

Parameters
T S
i jv Sailing time from node i to node j for ferry v

T B
i jv Berthing time at node j for ferry v . If node i and j corresponds to the

same port, the berthing time is equal to zero.

Pi Number of passengers for request with pickup node i

T iv Earliest possible start of service at node i for ferry v

T iv Latest possible start of service at node i for ferry v

T R
i ,n+i Reference direct ride time from pickup node i to delivery node n + i

TMAX
i Coe�cient for maximum ride time for request with pickup node i

Kv Capacity of ferry v

Variables

xi jv =


1, if ferry v sails directly from node i to node j

0, otherwise

yi =


1, if request with pickup at node i is accepted

0, otherwise

tiv Time for starting service at node i for ferry v

liv Number of passengers on board when ferry v is leaving node i
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4.3 Objective Function

The objective function (4.1) maximizes the total number of passengers transported,

weighted by the direct sailing time associated with each optional request to prioritize

longer trips. Thus, a request with a direct ride time of, e.g., 30 minutes, is prioritized over

another with �ve minutes, as it is assumed less inconvenient for the passengers to �nd

alternative transportation for the latter. The second term represents a weighted penalty

for excessive ferry trip durations. The binary �ow variable xi ,n+1,v assures that the second

term is only active when the request is served, and ferry v does not sail directly from

node i to node n + i . For each request i , the weighted penalty coe�cientWi should be

determined such that PiWi (tn+i ,v − tiv −T
R
i ,n+1xi ,n+i ,v ) < PiT

R
i ,n+iyi , to ensure a higher

emphasis on the �rst term. The objective function incentivizes acceptance of requests, as

a better objective value cannot be achieved by rejecting a request.

max
∑
i ∈NO

PiT
R
i ,n+iyi −

∑
v ∈V

∑
i ∈NO∪NA

PiWi (tn+i ,v − tiv −T
R
i ,n+ixi ,n+i ,v ) (4.1)

4.4 Constraints

The following section presents the di�erent types of constraints related to the DARP-AF.

Firstly, the constraints related to �ow of the network are presented in Section 4.4.1. The

load and time constraints are presented in Section 4.4.2 and Section 4.4.3, respectively.

Linearization of relevant constraints is also discussed in the respective subsections. Lastly,

the non-negativity and binary constraints are given in Section 4.4.4.

4.4.1 Flow Constraints

The constraints de�ned in this section are concerned with the �ow into and out of the nodes.

Constraints (4.2) state that all accepted requests must be ful�lled by a ferry v , likewise

the constraints (4.3) ensures the same for optional requests if accepted. Constraints (4.4) –

(4.6) describe the �ow on the sailing route used by ferry v , from the origin node to the

arti�cial destination node. Lastly, constraints (4.7) ensure that the same ferry v visits both

the pickup node i and the delivery node n + i .
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v ∈V

∑
j ∈Nv

xi jv = 1, i ∈ NA (4.2)∑
v ∈V

∑
j ∈Nv

xi jv − yi = 0, i ∈ NO (4.3)∑
j ∈Nv

xo(v)jv = 1, v ∈ V (4.4)∑
j ∈Nv

xi jv −
∑
j ∈Nv

x jiv = 0, v ∈ V, i ∈ Nv\{o(v),d(v)} (4.5)∑
i ∈Nv

xid (v)v = 1, v ∈ V (4.6)∑
j ∈Nv

xi jv −
∑
j ∈Nv

xn+i , jv = 0, v ∈ V, i ∈ NP
v (4.7)

4.4.2 Load Constraints

Constraints (4.8) and (4.9) keep track of the number of passengers on board a ferry v after

visiting the pickup and delivery nodes, respectively. Constraints (4.8) imply that if ferry v

sails arc (i, j) from a node i to a pickup node j, the load after visiting node j is equal to

the number of passengers on board after leaving node i including the passengers picked

up at node j. The corresponding relation for delivery nodes are stated by constraints

(4.9). Similarly, constraints (4.10) and (4.11) ensure that the capacity of ferry v is not

violated after visiting the pickup and delivery nodes, respectively. It should be noted that

constraints (4.11) state that the load after visiting a delivery node must lie between zero

and the ferry capacity less the number of passengers delivered at node n + i (rather than

the ferry capacity), which provides a tighter formulation.

(liv + Pj − ljv )xi jv ≤ 0, v ∈ V, (i, j) ∈ Av |j ∈ N
P
v (4.8)

(liv − Pj − ln+j ,v )xi ,n+j ,v ≤ 0, v ∈ V, (i,n + j) ∈ Av |j ∈ N
P
v (4.9)∑

j ∈Nv

Pixi jv ≤ liv ≤
∑
j ∈Nv

Kvxi jv , v ∈ V, i ∈ NP
v (4.10)

0 ≤ ln+i ,v ≤
∑
j ∈Nv

(Kv − Pi )xn+i , jv , v ∈ V, i ∈ NP
v (4.11)
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Linearization of Load Constraints

Constraints (4.8) and (4.9) are nonlinear and need to be linearized to e�ciently solve the

model in a commercial optimization solver. Big M formulations are used to linearize these

constraints. The Big M values should be set as small as possible (but su�ciently large)

to provide a tight formulation. The load after visiting a pickup node j can at most equal

the capacity of ferry v . Hence, the ferry capacity Kv is chosen as the Big M coe�cient.

Note that the load constraints could be formulated as a combined set of constraints, but

is kept separate with regards to pickup and delivery nodes. This provides a somewhat

stronger formulation with increased solvability at the expense of some readability. The

reformulated linearized load constraints are given by constraints (4.12) and (4.13).

liv + Pj − ljv − Kv (1 − xi jv ) ≤ 0, v ∈ V, (i, j) ∈ Av |j ∈ N
P
v (4.12)

liv − Pj − ln+j ,v − Kv (1 − xi ,n+j ,v ) ≤ 0, v ∈ V, (i,n + j) ∈ Av |j ∈ N
P
v (4.13)

4.4.3 Time Constraints

Constraints (4.14) ensures that the time for starting service at node j must be greater

than the departure time from the previous node i plus the sailing time between the nodes.

Constraints (4.15) force ferry v to visit pickup node i before the corresponding delivery

node n+i . Constraints (4.16) ensure that the time it takes from starting service at node i to

starting service at node n + i does not exceed a maximum allowed ride time, expressed as

a value proportional to the berthing time and direct sailing time between the nodes. The

time window within which service at pickup node i must start is de�ned by constraints

(4.17). The sum of binary variables xi jv is included to prevent the time variables taking

an arbitrary value within the time windows for that (i,v)-combination, e�ectively forcing

the starting time to zero if node i is not visited by ferry v . This careful consideration

is necessary to prevent numerical errors in calculating the objective value given by the

objective function (4.1).

(tiv +T
B
i jv +T

S
i jv − tjv )xi jv ≤ 0, v ∈ V, (i, j) ∈ Av (4.14)
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tiv +
∑
j ∈Nv

(T B
i jv +T

S
i ,n+i ,v )xi jv − tn+i ,v ≤ 0, v ∈ V, i ∈ NP

v (4.15)

tn+i ,v − tiv ≤ (T
B
i jv +T

S
i ,n+i ,v )T

MAX
i , v ∈ V , i ∈ NP

v (4.16)∑
j ∈Nv

T ivxi jv ≤ tiv ≤
∑
j ∈Nv

T ivxi jv , v ∈ V, i ∈ NP
v (4.17)

Linearization of Time Constraints

Constraints (4.14) are nonlinear, and are linearized through a Big M formulation. Similar to

the linearized load constraints, the value of the Big M coe�cient should be set with regards

to a tight formulation. The reformulated linearized form are then given by constraints

(4.18), where the Big M coe�cient can be calculated asMi jv =max(0,T iv+T
B
i jv+T

S
i jv−T jv ).

tiv +T
B
iv +T

S
i jv − tjv −Mi jv (1 − xi jv ) ≤ 0, v ∈ V, (i, j) ∈ Av (4.18)

4.4.4 Non-negativity and Binary Constraints

The non-negativity requirements for the time and load on board ferry v are given by

constraints (4.19) and (4.20). Constraints (4.21) and (4.22) impose the binary requirements

on the �ow and optional request variables, respectively.

tiv ≥ 0, v ∈ V, i ∈ Nv (4.19)

liv ≥ 0, v ∈ V, i ∈ Nv (4.20)

xi jv ∈ {0, 1}, v ∈ V, (i, j) ∈ Av (4.21)

yi ∈ {0, 1}, i ∈ NO (4.22)
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4.5 Relevance to the DDARP-AF

The modeling of the DDARP-AF is similar to the modeling of the DARP-AF. In the dynamic

case, the mathematical model can be solved for the set of optional requestsNO , containing

the single incoming request. The set NA contains the existing accepted requests in the

system, and the corresponding decision variables are �xed accordingly. These are treated

as mandatory to ful�ll by constraints (4.2). However, as supported by the literature,

optimal solutions are challenging to �nd within a relatively short amount of time. In other

words, exact methods for solving the DDARP-AF does not scale well due to the number

of constraints growing exponentially as more requests or ferries are introduced to the

system.

Even though a dynamic dial-a-ride service is considered, some requests can be known

depending on the determined policy of the ferry service. For instance, consider a case

where the ferry service does not operate during the night, but bookings can be made for

the following morning. Bui and Nguyen (2019) found that the DARP-AF can be solved for

instances up to 100 requests and 30 ferries with reasonably small optimality gaps within

half an hour. Given the requests at hand, an initial solution to the DDARP-AF can then be

obtained by solving the initial static case.
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Chapter 5

Simulation Model

This chapter presents the a process-oriented discrete-event simulation model to evaluate

the performance of the DDARP-AF. The notation to further describe the simulation model

and processes are presented in Section 5.1.1. Section 5.2 describes the simulation �ow,

and Section 5.3 describes the performance metrics that are derived from the simulation

output.

5.1 Model Introduction

There are two main processes in this simulation model: Incoming request process and

Operate ferry process. Furthermore, as can be seen in Figure 5.1, the structure of the

simulation model consists of di�erent components. The Input manager handles the

initialization of the simulation based on the input provided. The Request handler controls

the scheduling of each incoming request by triggering the replanning procedure Incoming

request process. The process ensures that that the request is feasibly inserted based on

the system state provided by the Simulation controller. If a request is scheduled to be

served by a ferry v , the process Operate ferry process v is triggered. This process serves

as an event controller for each ferry v in the �eet, updating the system state at every

scheduled pickup and delivery event. When the simulation has ended, theOutput generator

33
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provides statistics based on the �nal observed system state. The modular structure of the

simulation model is intended to ease the implementation of potential model extensions,

as the components divide the processes by separate functions.

Simulation controller

Simulation controller

Input manager

Request handler

Output generatorOperate ferry 
process 1

Operate ferry 
process 2

Operate ferry 
process V

...

Incoming
request 

process 1

Incoming
request 

process 2 ...

Incoming
request

process n

Figure 5.1: Modular structure of the simulation model.

5.1.1 Notation

Additional notation is introduced to further describe the processes of the simulation model.

The notation presented in Section 4.2 is further kept, unless otherwise stated.

CAT Earliest call ahead time

CAT Latest call ahead time

PPTi Planned pickup time for request i

TWi Pickup time window width for request i

RTi Ride time for request i

MRTi Max ride time associated with request i

Lv Current location of ferry v

Rv Route for ferry v

CTv Current time for ferry v

Qv Number of passengers on board ferry v
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Dv Total distance associated with travelling route Rv for ferry v

T P
i Earliest start of service at the pickup node for request i for ferry v

T
P
i Latest start of service at the pickup node for request i for ferry v

TD
i Earliest start of service at the delivery node for request i for ferry v

T
D
i Latest start of service at the delivery node for request i for ferry v

PMAX Maximum number of passengers associated with a request

λ Mean arrival rate of requests

5.1.2 Simulation Rules

In addition to the assumptions made in Chapter 3, some simulation rules are de�ned to

e�ciently model the ferry service. In reality, these simulation rules can be interpreted as

some general routing and booking policy of the ferry service.

Rule 1 A request is either accepted or rejected.

Rule 2 If a request i is accepted, the scheduled ferry cannot deviate from the given

planned pickup time PPTi .

Rule 3 A customer can book a trip at latestCAT prior to the earliest desired pickup

time.

Rule 4 A customer can book a trip at most CAT time in advance.

Rule 5 An idle ferry is always preferred if it can feasibly serve a new request.

Rule 6 If the next node in the ferry route Rv is a delivery node, ferryv sails directly

to the next node after visiting the current node.

The �rst rule entails that the response provided by the operator is either acceptance or

rejection. Consequently, the customer has to book a new request if the initial trip was

rejected. The second rule provides the customer with a planned pickup time PPTi if

request i has been accepted. The scheduled ferry cannot deviate from the PPTi to limit

passenger inconvenience. Rules three and four de�ne the bounds for how early and late

the customer is allowed to book a trip, e.g., the passenger cannot expect to be served two

minutes after booking a trip or book a trip two years ahead. As requests are known in an
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online matter throughout the planning period, the �fth rule intends to limit excess ride

times through higher �eet utilization. Lastly, for the same reason, if the next node is a

delivery node, the ferry is not allowed to wait at the current node as this would cause

an increase in excess ride times. Note that this rule does not mean that waiting is not

allowed if passengers are on board a ferry.

5.2 Simulation Flow

The simulation �ow can be observed through the �owchart presented in Figure 5.2.

First, the network is given as a distance matrix. The travel times between the nodes are

calculated based on the distance and average speeds of the ferries on the links. Demand

is represented as a set of requests generated beforehand, with the interarrival times

generated by a Poisson process with mean arrival rate λ. Parameters describing the �eet,

potential initial solutions, and the objective function for the replanning procedure are

also given as inputs.

Given the inputs, the simulation model is initialized accordingly. Given that the set of

requests is not empty, the �rst event is always the �rst incoming request i with the earliest

call-in time. The replanning procedure is then triggered, and the DARP is solved according

to the insertion heuristic, described in Chapter 6. If a feasible solution is found, the trip is

inserted in the route Rv for the scheduled ferry v , and the total sailing distance of ferry v ,

Dv , is updated. PPTi is updated for the newly inserted request i . If no solution is found,

the request is added to a list of rejected requests. The simulation then checks for the next

event in the event queue. Next events are either a new incoming request as previously, or

a pickup/delivery event. If the next event is a pickup/delivery event, RTi is updated for all

requests i if the corresponding pickup node i has been visited. Correspondingly, the route

Rv , location Lv , current time CTv , number of passengers on board Qv , and total route

distance Dv are updated to re�ect the current state of ferry v . The simulation progresses

in the same loop until the event queue is empty, and the simulation is ended. The output

of the simulation is re�ected in the �nal system state, providing information such as the

ferry routes, the set of rejected requests, ride times, ferry distances traveled, and ferry

idle times.
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4. New event?

5. Next 
 event type?

13. End.

6. Pickup / delivery of
passengers

7. Generate network 
(Nv, Av)

8. Solve DARP

Yes

No

New requestPickup/delivery

10. Feasible? 12. Insert trip

12. Update ferry
schedules

12. Update event list with
new pickup and delivery

14. Output:
Ferry routes

# Rejected requests
Request ride times

Ferry distances traveled
Ferry idle times

1. Input
Distance matrix

Demand (requests)
Fleet configuration

Initial simulation state
Objective function

2. Start
3. Initialize ferries and
next incoming request

event

11. Reject request

YesNo

Figure 5.2: Overview of the simulation �ow.
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5.3 Simulation Output

The output of a simulation run provides general statistics about the system that can further

be used to formulate various key performance indicators (KPIs) as evaluation metrics. The

computational study conducted in Chapter 7 measures the e�ciency of the ferry service

with regards to the following KPIs.

• Percentage rejected requests. The number of rejected requests, divided by the

total number of generated requests.

• Percentage rejected passengers. The number of passengers associated with every

rejected requests, divided by the the total number of passengers generated with

each request.

• Average excess ride time per request. The ride time less the associated direct

sailing time for each accepted request, divided by the total number of accepted

requests.

• Average distance per ferry. The total distance traveled by all ferries, divided by

the number of ferries.

• Average distance per request. The total distance traveled by all ferries, divided

by the number of accepted requests.

• Average idle time per ferry. The total operating time for all ferries, less the total

�nal simulation time.



Chapter 6

Insertion of Requests

This chapter describes the insertion heuristic used to solve the planning problem at each

incoming request. Section 6.1 describes the details of the overall procedure of handling

an incoming request. The constraints needed to be ful�lled for feasible insertions are

presented in Section 6.2, and lastly Section 6.3 discusses how the objective function is

used to determine which of the feasible insertions is carried out.

6.1 Insertion Heuristic

As discussed in Chapter 3, the highly dynamic nature of the DDARP-AF makes insertion

heuristics a viable solution method due to the ability to promptly �nd feasible solutions.

The approach proposed in this chapter follows the same general greedy procedure �rst

developed by Jaw et al. (1986). Each time a new request is called in, the procedure tries to

insert the request into the existing ferry schedules in the most cost-e�cient manner. Note

that an insertion consists of adding two nodes, i.e., the pickup and delivery node of the

request, into a ferry route. The insertion heuristic is performed according to these steps:

1. For each ferry, a time window check is �rst performed and then the max ride time

and ferry capacity constraints are checked for feasible insertions into the route. For

all feasible insertions, the objective value is computed according to an objective

39
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function described in Section 6.3.

2. Insert the two nodes of the given request in the insertions with the lowest incre-

mental cost added to the objective value.

3. If no feasible insertion exists, the request is added to a list of rejected requests.

When checking for schedule feasibility, the time for the start of service at the delivery

nodes must be within [TD
i ,T

D
i ] for feasible insertions. Figure 6.1 illustrates how the

delivery time window is constructed before a request i has been accepted. The earliest

possible start of service at the delivery node is given as the earliest start of service at the

pickup node plus the direct sailing time between the nodes after leaving the pickup node.

Correspondingly, the latest start of service at the delivery node is calculated as the latest

start of service at the pickup node plus the maximum ride time after leaving the pickup

node. Figure 6.2 illustrates the construction of the delivery time window after a request

i has been accepted. If request i has been accepted, the customer is provided with the

planned pickup time PPTi , and the delivery time window is calculated from the planned

pickup time plus the direct sailing time or maximum ride time after leaving the pickup

node.

t

TPiv TPiv

TWi

TDivTDiv

TSi,n+i,v · TiMAX + TBijv

TSi,n+i,v + TBijv

Figure 6.1: Relations for calculating the delivery time window for request i .

6.2 Feasibility Testing

This section presents the procedures for feasibility testing with respect to pickup time

window constraints, max ride time constraints, as well as ferry capacity constraints. The

insertion of a request requires the constraints to be checked for all requests already

accepted, such that schedule feasibility is maintained for the a�ected requests as well. The
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PPTi TDivTDiv

TSi,n+i,v 	· TiMAX + TBijv

TSi,n+i,v + TBijv

Figure 6.2: Relations for calculating the updated delivery time window after acceptance

of request i .

overall combined procedure for feasibility testing performs at O(n2) worst-case complexity,

matching the performance of the revised method of Tang et al. (2010). Here, n denotes the

number of requests.

Hunsaker and Savelsbergh (2002) point out that it is not clear how to quickly verify the

feasibility of an insertion at the presence of complicating constraints, such as maximum

ride time restrictions. However, the procedure presented in this section leverages the sixth

rule presented in Section 5.1. Since ferryv does not wait if the next node in Rv is a delivery

node, the earliest possible departure and arrival time at the delivery node can be calculated

from the nearest prior pickup node. Figure 6.3 illustrate how this is calculated from PPTi

of a pickup node i , which the ferry cannot deviate from. This relation is used in both

the procedure to verify time window feasibility and maximum ride time feasibility. The

following subsections present the procedures of the three feasibility checks, respectively.

o(v) 1 2 5 4 3 6 d(v)

PPT1 PPT2 PPT3[TD4,TD4] [TD6,TD6]

TS25v + TB25v TS54v  + TB54v TS36v  + TB36v

[TD5,TD5]

Figure 6.3: Route for a ferryv . The illustration depicts how feasibility is ensured through

calculating the earliest possible arrival time at a delivery node (white) by using the nearest

prior pickup node (green).
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Time window feasibility

The pickup time window constraints ensure that the time for the start of a service at

a pickup node is within the speci�ed period provided by the customer. The procedure

for the time window feasibility check is performed in quadratic worst-case time and is

presented in Algorithm 1. First, a copy of the ferry route Rv is initialized, and the pickup

node i and delivery node n + i for a request i is inserted in the copied route. The planned

pickup time PPTi for the request i is updated with a pickup time within the pickup time

window [T P
i ,T

P
i ]. The procedure then iterates through all the pickup nodes in the copied

route and identi�es the position for each pickup node i . If the node before the pickup

node i is a delivery node, it �nds the nearest prior pickup node for use as a reference.

This incident corresponds to the evaluation of pickup node 3, illustrated in Figure 6.3.

Here, the pickup node 2 is used as a reference, and the earliest arrival time is calculated

by adding the sailing and service times at each node in-between the evaluated node and

the reference node. Similarly, if the node before the pickup node i is another pickup node,

this corresponds to the evaluation of pickup node 2 with pickup node 1 as a reference. As

long as the calculated earliest arrival time at the evaluated pickup node i is less or equal

to the planned pickup time PPTi , the insertion is feasible.

Maximum ride time feasibility

The maximum ride time constraints ensure that the passengers associated with a request

at most experience a tolerable excess ride time. The procedure for the maximum ride

time feasibility check is performed in quadratic worst-case time and is presented in

Algorithm 2. The essence of this procedure resembles the procedure of the pickup time

window feasibility. First, a copy of Rv is initialized, and the corresponding nodes for a

request i are inserted accordingly. PPTi is updated with a pickup time within the pickup

time window [T P
i ,T

P
i ]. The procedure then iterates through all the pickup nodes i in the

copied route and �nds the position of the corresponding delivery node n + i . If the node

before the delivery node n + i is a delivery node, it �nds the nearest prior pickup node

for use as a reference. This incident corresponds to the evaluation of the delivery node 4

in Figure 6.3 with the pickup node 2 as a reference. The added ride time is calculated by
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Algorithm 1: Time window feasibility
Initialize a copy of the ferry route Rv and insert the pickup node and delivery node for

request i . Update PPTi for the corresponding pickup node i to a pickup time within

[T P
i ,T

P
i ]. Calculate the updated delivery time window [TD

i ,T
D
i ].

for all pickup nodes i in the copied route do

Find position of i in the route

f erryTime ← CTv

travelTime ← 0

if i is the next node then

travelTime ← travelTime+sailing time from Lv to i

else

nodeBe f orePnode ← node before i

travelTime ← sailing time from nodeBe f orePnode to i

if nodeBe f orePnode is a pickup node then

f erryTime ← PPT for nodeBe f orePnode +T B
i jv

else

Find position of lastPnode before i

f erryTime ← PPT for lastPnode +T B
i jv

for all nodes between lastPnode and i do

f erryTime ← f erryTime+sailing time between the nodes + T B
i jv

end

end

end

if PPTi − (travelTime + f erryTime) < 0 then
return False

end

end

return True
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adding the sailing and service times at each node in-between the evaluated node and the

reference node. If the node before the delivery node n+i is a pickup node, this corresponds

to the evaluation of delivery node 5 with pickup node 2 as a reference. As long as the

calculated ride time RTi is not higher than the max ride time MRTi for each request i , the

insertion is feasible.

Capacity feasibility

The ferry capacity feasibility check is noticeably easier to compute than for the previous

constraints described. As can be seen in Algorithm 3, the procedure is performed in linear

worst-case time due to being independent of time. The current number of passengers Qv

is used as a reference for the initial load of ferry v at the time of the check. Feasibility is

determined by progressing chronologically through the copied route and correspondingly

adding or subtracting the number of passengers Pi from the calculated capacity, depending

on if the next node is a pickup or a delivery node. As the number of passengers on board

cannot exceed the ferry capacity Kv , the procedure deems insertion infeasibility only if

this is the case. Otherwise, the insertion is feasible in terms of ferry capacity.

Algorithm 3: Capacity feasibility
Initialize a copy of the ferry route Rv and insert the pickup node and delivery node

for request i .

capacity ← Qv

for all nodes i in the copied route do

if i is a pickup node then

capacity ← capacity + Pi

if capacity > Kv then
return False

end

else
capacity ← capacity − Pi−n

end

end

return True
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Algorithm 2: Max ride time feasibility
Initialize a copy of the ferry route Rv and insert the pickup node and delivery node for

request i . Update PPTi for the corresponding pickup node i to a pickup time within

[T P
i ,T

P
i ]. Calculate the updated delivery time window [TD

i ,T
D
i ].

for all pickup nodes i in the copied route do

Find position of n + i in the route

rideTime ← CTi

if n + i is the next node then

rideTime ← rideTime+sailing time from Lv to n + i

else

nodeBe f oreDnode ← node before n + i

travelTime ← sailing time from nodeBe f oreDnode to n + i

if nodeBe f oreDnode is a pickup node then
rideTime ← (PPT for

nodeBe f oreDnode +T B
i jv + travelTime) − (PPTi +T

B
i jv )

else

Find position of lastPnode before n + i

rideTime ← PPT for lastPnode +T B
i jv + travelTime

for all nodes between lastPnode and n + i do

rideTime ← rideTime+sailing time between the nodes + T B
i jv

end

rideTime ← rideTime − (PPTi +T
B
i jv )

end

end

if rideTime > MRTi then
return False

end

end

return True
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6.3 Objective Function

The insertion heuristic picks the feasible insertion with the lowest incremental cost,

determined by the value of a given objective function. In practice, the objective function

can comprise of indicators from the perspective of the operator’s and the passengers’ point

of view. It can be interesting to evaluate how the preference in choosing feasible insertion

a�ect the overall service level, when other characteristics inclined towards the same

perspective are present in form of hard constraints. Therefore, two objective functions

that re�ects the perspective of the operator and passengers are used in the computational

study conducted in Chapter 7, respectively. The objective function (6.1) minimizes the

excess ride time for each request, while the objective function (6.2) minimizes the total

ferry distance traveled. Here, F denotes the set of feasible insertions.

min
f ∈F

[∑
v ∈V

∑
i ∈NO∪NA

Pi (tn+i ,v − tiv −T
S
i ,n+i ,v )

]
(6.1)

min
f ∈F

[∑
v ∈V

Dv

]
(6.2)



Chapter 7

Computational Study

In this chapter, con�gurations of the ferry service are studied through the simulation

model described in Chapter 5. The proposed simulation model is implemented in Python

with the process-based discrete-event simulation framework Simpy. By simulating various

settings of the service with di�erent demand scenarios, the performance and e�ciency

of the service can be observed through KPIs with regards to balancing operational cost

with service levels. It is emphasized that the aim of this computational study is not to

justify individual parameter values for the instances used, but instead, study how certain

parameters are likely to a�ect the service with regards to balancing operational costs with

a high service level. Each test instance was simulated over a planning horizon re�ecting

500 hours of a given demand scenario to ensure that steady-state output could be reported.

Firstly, a description of the generation of test instances and data used in this study is

provided in Section 7.1. Section 7.2 discusses and evaluates how the main service-related

parameters associated with a high level of service, a�ect the service. Section 7.3 compares

the results from using an objective function from the perspective of the operator and the

customer, respectively. Lastly, Section 7.4 conducts a sensitivity analysis of the �eet size

to further provide insight in the recommendation of the �eet con�guration.

47
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7.1 Generation of Test Instances

This section describes how the test instances for the computational study are generated.

Since the environment in which the service of autonomous ferries operates within is the-

oretical, several considerations are made to the modeling and generation of test instances.

In particular, these considerations are mainly given by the uncertainty in how the new

ferry service a�ects demand. For this reason, three demand scenarios have been de�ned

to evaluate the impacts in the performance of di�erent designs of the service re�ected in

low, normal, and high demand. The demand scenarios are given as the mean arrival rate

of requests per hour, as listed in Table 7.1. As the study of the DDARP-AF aims to provide

a reliable service for day-to-day commuting, the computational study is conducted as if

no other public transportation o�erings exist, and demand needs to be ful�lled by the

proposed service. As such, the study emphasizes on being able to meet demand in the

peak period. However, the provided discussions of the test instances are seen in lights

of the performances in all demand scenarios, as it is assumed that the demand during

peak periods mainly occurs before and after work hours. In contrast, the other demand

scenarios re�ect the o�-peak periods, with low demand practically indicating evening

hours.

Table 7.1: Demand scenarios.

Scenario Notation Mean arrival rate

Low λL 15 requests per hour

Normal λN 20 requests per hour

Peak λP 30 requests per hour

7.1.1 Generation of Customer Demand

As described in Chapter 5, the list of requests is generated a priori to the simulation

execution. The procedure of generating the set of incoming requests is described in

Algorithm 4. The call-in times for the requests are generated according to a Poisson

process, where the interarrival times follow an exponential distribution. Note that a
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speci�c desired pickup time is generated for the request, even though the customer

provides a pickup time window in practice. This is simply an implementation measure to

prevent another corresponding set of requests being generated when evaluating the same

demand scenario with respect to di�erent time window widths. Consequently, the time

window attribute is de�ned as [T P
i ,T

P
i +TWi ] in the Request data structure.

The number of passengers associated with each request is uniformly sampled from a

distribution skewed towards a smaller number of passengers. Figure 7.1 depicts the

probability mass function of this distribution, and it can be observed that there is a 50

% probability that the incoming request regards a trip for a single person. The expected

value is 2.45, which implies that for the peak demand scenario with a mean arrival rate

λP = 30, it can be expected that 73.5 passengers on average want to travel with the ferry

service every hour.

Algorithm 4: Generation of requests
Input :n, λ, portDistribution, passenдerDistribution

Output :listRequests

listRequests ← empty

arrivalTime ← 0

for i : 1 to n do

randPortPair ← U (0, |portDistribution |)

randNumPassenдers ← U (0, |passenдerDistribution |)

portPair ← portDistribution[randPortPair ]

numPassenдers ← passenдerDistribution[randNumPassenдers]

interarrivalTime ← exp(λ)

arrivalTime ← arrivalTime + interarrivalTime

pickupTime ← arrivalTime +U (CAT ,CAT )

request ← Request(portPair ,numPassenдers,pickupTime,arrivalTime)

listRequest ← listRequest ∪ request

end

return listRequests
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Figure 7.1: Distribution of the number of passengers associated with a request. The

expected value is 2.45.

Port pair demand

The demand between ports is determined to re�ect that some ports are more likely to

experience customer tra�c. The method for de�ning demand for each port pair is inspired

by the approach presented in Aslaksen and Svanberg (2019). Here, the port attributes

form a basis to determine the demand between a port pair. As presented in Table 7.2,

ports are characterized in terms of size, and two nearby ports are de�ned as neighbors.

Seasonal ports are excluded in the generation of customer demand, as it is assumed that

the demand is highly seasonal.

Furthermore, the port size speci�es factor values for each origin port and destination

port, speci�cally. For the origin ports, small is set to factor 0.75, medium is set to 1.0, and

large is set to 1.25. Correspondingly, 0.5, 1.0, and 1.5 are set for the small, medium, and

large destination ports. An additional factor of 0.1 is associated with neighbor pair ports.

Moreover, the corresponding factors for a given port pair are then multiplied to provide a

weight. Lastly, each weight value is divided by the total sum of weights to compute the

probability of the port pair. In Algorithm 4, the port pair is uniformly sampled from this

new distribution. The numerical demand probabilities computed for each port pair are

provided in Appendix A.
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Table 7.2: Description of the port attributes used to determine demand between a port

pair.

Port id. Port name Size Neighbor

0 Laboe Large -

1 Möltenort Medium -

2 Mönkeberg Medium -

3 Dietrichsdorf Large 4

4 Wellingdorf Large 3

5 Bahnhof Large 6, 7

6 Seegarten Small 5, 7, 8

7 Reventlou Large 5, 6, 8

8 Bellevue Small 6, 7

9 Friedrichsort Medium -

7.1.2 Test Instances

The test instances are de�ned by the combination of the key characteristics listed in

Table 7.3. Each key characteristics is given an instance name for ease of reference. As

described in Section 6.3 two objective functions are considered in this study. The objective

function OF1 refers to that of the passengers’ point of view, minimizing excess ride times

according to the objective function (6.1). Correspondingly, OF2 refers to the objective

function (6.2). The key setting of time window width refers to the parameter TWi , and is

set for all requests i to TWi = 20 and TWi = 30 for TW1 and TW2, respectively. Similarly,

the max ride time coe�cient is set for all requests i toTMAX
i = 1.5 for MRT1 andTMAX

i = 2

for MRT2.

The �eet con�guration is characterized by the �eet size, i.e., the number of ferries V ,

and the capacity Kv of each ferry. This study considers two speci�c �eets, representing

a small (F1) and a large (F2) �eet, as given by Table 7.4. Generally, it is expected that

the larger �eet will provide a higher service level as the operator has more �exibility in

deployment, but at a higher cost. As such, the smaller �eet is provided with a higher
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Table 7.3: Key settings and naming convention for test instances.

Key setting Mode Instance name

Objective function Passenger OF1

Objective function Operator OF2

Fleet Small F1

Fleet Large F2

Time window width Small TW1

Time window width Normal TW2

Max ride time coe�cient Small MRT1

Max ride time coe�cient Normal MRT2

total and individual ferry capacity to o�set this assumption. Furthermore, other ferry

attributes are assumed �xed, such as the sailing speed of each ferry. The sailing speed

is based on the average sailing speed calculated from the current timetable of the ferry

service provided by SFK, and the corresponding transit times are given as a matrix in

Appendix B.

Table 7.4: Attributes of the �eets considered in the computational study.

Fleet Fleet size Ferry capacity Total �eet capacity

Small 10 30 300

Large 15 15 225

The parameters which are independent of the di�erent test instances are �xed for all

instances according to the numerical values listed in Table 7.5.
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Table 7.5: Fixed parameter values for all test instances.

Parameter Notation Value Unit

Call ahead interval [CAT , CAT ] [30, 180] min

Berthing time T B
i jv 3 min

Max passengers per request PMAX 10

The instance OF1-F1-TW2-MRT2 will serve as the base setting for comparing the test

instances for the corresponding demand scenarios. As can be seen in the computed

performance of the base setting presented in Table 7.6, this combination performs poorly

at peak demand but can accommodate most requests at low demand. The percentage of

accepted requests is referred to as the demand met. When evaluating the design with

regards to a high level of service, the demand met is de�ned to be at least 70 % as a bare

minimum threshold.

Table 7.6: Summary of KPIs for the base setting at di�erent demand scenarios.

KPI Low Normal Peak

Rejected requests (%) 8.97 25.08 49.31

Rejected passengers (%) 8.81 24.43 49.06

Avg. excess ride time (min.) 1.45 2.56 3.69

Avg. distance per ferry (km.) 5798 5888 5478

Avg. distance per request (km.) 8.49 7.86 7.20

Avg. idle time per ferry (min.) 3386 1670 727

7.2 E�ects of Service-Related Parameters

In this section, OF1 is used as the setting for the objective function to study the e�ects of

the service-related parameters. Generally, for the low demand scenario, all combinations of

the time window widths and max ride time coe�cients are found to provide an acceptable

level of demand met given either �eet. However, at low demand, the large �eet is able to

ful�ll all requests with few exceptions. As such, the idle times are almost twice as much
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compared to the small �eet, with up to 90 % demand met. For the normal demand scenario,

the same case can be observed with regards to the larger �eet. In contrast, the performance

of the small �eet is able to provide a su�cient level of demand met. The performance

at low demand for each instance with the small �eet is summarized in Table 7.7. It can

be observed that the base setting overall provides better performance with regards to

cost-e�ciency and service quality.

Table 7.7: The performance of di�erent combinations of service-related parameters with

the small �eet at normal demand. The relative performance compared to the base setting

is given in the parentheses.

Fleet: F1

Demand: Normal

KPI TW1-MRT1 TW1-MRT2 TW2-MRT1 TW2-MRT2

Rejected requests (%) 29.20 (+16%) 25.55 (+2%) 28.15 (+12%) 25.08

Rejected passengers (%) 28.69 (+17%) 25.20 (+3%) 27.35 (+12%) 24.43

Avg. excess ride time (min.) 1.01 (-60%) 2.98 (+16%) 0.84 (-67%) 2.57

Avg. distance per ferry (km.) 5562 (-5%) 5627 (-4%) 5878 (-0%) 5888

Avg. distance per request (km.) 7.86 (+0%) 7.56 (-4%) 8.18 (+4%) 7.86

Avg. idle time per ferry (min.) 2952 (+77%) 2545 (52%) 1903 (14%) 1670

At peak demand, the instances with the large �eet give similar results as for the small

�eet at the normal demand scenario. The performance of these instances is presented

in Table 7.8. As expected, due to the increase in the number of ferries, the large �eet

vastly outperforms the base setting. Some interesting features can be observed for both

the considered demand scenarios with given �eets. For instance, the combinations TW1-

MRT2 and TW2-MRT2 tend to provide the least rejected requests at the same level, but

the latter combination produces signi�cantly lower average idle time per ferry. Intuitively,

a high level of service combined with low idle times would indicate an e�cient use of the

�eet. However, in theory, the feasible solutions found in the TW1-MRT2 instance should

be feasible in TW2-MRT2, given that the same insertions are performed accordingly

throughout the simulation. The reason for this is that the same demand scenario is

regarded, and the di�erence lies in that TW1 yields a tighter time window constraint
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for the same feasible region. Therefore, the increase in idle time with the same level of

service provided indicates a more e�cient use of the �eet in this case. The simulation

results show that the implemented insertion heuristic gravitates towards more e�cient

deployment with this setting, although a wider time window in practice should provide

more �exibility in this matter.

Table 7.8: The performance of di�erent combinations of service-related parameters with

the large �eet at peak demand. The relative performance compared to the base setting is

given in the parentheses.

Fleet: F2

Demand: Peak

KPI TW1-MRT1 TW1-MRT2 TW2-MRT1 TW2-MRT2

Rejected requests (%) 31.63 (-36%) 27.63 (-44%) 30.51 (-38%) 27.69 (-44%)

Rejected passengers (%) 31.36 (-36%) 27.68 (-44%) 30.07 (-39%) 27.97 (-43%)

Avg. excess ride time (min.) 1.04 (-72%) 3.06 (-17%) 0.96 (-74%) 2.68 (27%)

Avg. distance per ferry (km.) 5305 (-3%) 5269 (-4%) 5499 (+0%) 5489 (+0%)

Avg. distance per request (km.) 7.76 (+8%) 7.28 (+1%) 7.91 (+10%) 7.59 (+5%)

Avg. idle time per ferry (min.) 1801 (+147%) 1617 (+122%) 1099 (+51%) 923 (+27%)

Another observation includes that the MRT2 setting is the main contributor to the increase

in excess ride time, regardless of the combined parameter. It should be noted that the

doubled increase in ride times due to this setting still provides low values, as one could

argue that three minutes in excess ride times are still acceptable. Also, in providing the

least percentage rejected requests, allowing for higher values of maximum excess ride

times seem to be more e�cient than providing the operator with wider time windows.

Of the four combinations of service-related parameters, the TW1-MRT1 setting provides

the least �exibility for the operator, and the expected relative performance of the service

with this setting is observed accordingly. Furthermore, the average distance traveled per

ferry is generally on the same level for all combinations varying between instances and

demand scenarios.
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7.3 E�ects of the Objective Function

This section considers the test instances with the setting OF2 for the objective function.

The impacts of the changed objective function seem to a�ect the performances of the

test instances similarly for di�erent �eet and demand scenarios. Generally, the same

combinations of service-related parameters are still favorable. However, the change in

objective function in favor of minimizing total ferry distance traveled provides much

greater e�ciency in deployment in all test instances. The relative change in performance

for the corresponding test instances considered, can be observed in Table 7.7 and Table 7.8.

The change for corresponding test instances are more prevalent for the test instances with

the large �eet and peak demand, but seems to a�ect test instances with di�erent �eet and

demand scenarios in an equal manner.

Table 7.9: The performance of di�erent combinations of service-related parameters with

the small �eet at normal demand with OF2. The relative performance compared to the

corresponding OF1 instance is given in the parentheses.

Fleet: F1

Demand: Normal

KPI TW1-MRT1 TW1-MRT2 TW2-MRT1 TW2-MRT2

Rejected requests (%) 24.20 (-17%) 18.75 (-27%) 21.86 (-22%) 16.46 (-34%)

Rejected passengers (%) 23.40 (-18%) 18.04 (-28%) 21.01 (-23%) 15.47 (-37%)

Avg. excess ride time (min.) 3.02 (+199%) 8.23 (+176%) 3.11 (+270%) 8.19 (+219%)

Avg. distance per ferry (km.) 5335 (-4%) 5186 (-8%) 5627 (-4%) 5378 (-9%)

Avg. distance per request (km.) 7.04 (-10%) 6.38 (-16%) 7.20 (-12%) 6.44 (-18%)

Avg. idle time per ferry (min.) 3337 (+13%) 3441 (+35%) 2307 (+21%) 2720 (+63%)

The TW2-MRT2 combination receives the biggest impact in the reduction of percentage

rejected requests, and is the setting that yields the highest demand met for all scenarios.

With the changed objective, it can be observed that this setting receives a drastic increase

in average idle time per ferry, but still provides the least average idle time compared

to the other combinations. However, this comes at the cost of much higher passenger

inconvenience in terms of increased excess ride times. An interesting note is that the
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test instances with the TW2-MRT1 have the highest increase in excess ride times, even

though the max ride time coe�cient is set with the lowest value. Overall, the average

total distance is reduced as expected, but the e�ect is limited. The relative increase in

demand met compared to the reduced average distance traveled suggests that a balanced

design provides a more overall bene�cial service in terms of both the perspective of

the operator and customer. For instance, the operator could prefer the setting TW2-

MRT2 to provide a service that can meet more demand. Alternatively, the change in

objective function makes the setting TW2-MRT1 outperform all the combinations with

OF1, reducing rejected requests while reducing average travel distance traveled per ferry

with the same acceptable excess ride times of about three minutes.

Table 7.10: The performance of di�erent combinations of service-related parameters

with the large �eet at peak demand with OF2. The relative performance compared to the

corresponding OF1 instance is given in the parentheses.

Fleet: F2

Demand: Peak

KPI TW1-MRT1 TW1-MRT2 TW2-MRT1 TW2-MRT2

Rejected requests (%) 24.32 (-23%) 19.33 (-30%) 22.39 (-27%) 16.87 (-39%)

Rejected passengers (%) 24.14 (-23%) 19.43 (-30%) 22.06 (-27%) 16.94 (-39%)

Avg. excess ride time (min.) 3.42 (+229%) 8.87 (+191%) 3.57 (+272%) 8.93 (+233%)

Avg. distance per ferry (km.) 5034 (-5%) 4860 (-8%) 5245 (-5%) 5025 (-8%)

Avg. distance per request (km.) 6.65 (-14%) 6.03 (-17%) 6.76 (-15%) 6.04 (-20%)

Avg. idle time per ferry (min.) 2174 (+21%) 2373 (+29%) 1407 (+28%) 1683 (+83%)

7.4 Sensitivity of the Fleet Size

The operator faces a trade-o� between ferry capacity and �eet size, as these main attributes

determine the overall service capacity. It is assumed that the cost of increasing the �eet

size is signi�cantly higher than for increasing the capacity of a ferry. Generally, a smaller

�eet is a more desirable option for the operator, provided that a high level of service can

still be maintained. Therefore, given a speci�c setting for the design of the ferry service,

it is in the interest of the service provider to assess the impact in the performance of
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varying the �eet size. As discussed in the previous sections, the large �eet was identi�ed

as necessary to provide a su�cient level of service in the peak demand scenario. The test

instance OF2-F2-TW2-MRT2 is chosen as the basis for the conducted sensitivity analysis,

due to being able to provide a performance with a low percentage of rejected requests at

high demand. The total �eet capacity is kept constant to investigate the sensitivity of the

�eet size by reducing or increasing the �eet size or the ferry capacity accordingly.

As can be seen in Figure 7.2, the demand met seem to be almost linearly proportional

to the �eet size. This relation makes the increase in �eet size a decisive in�uence on

the ability to serve a more substantial proportion of requests. This makes sense as the

characteristics of time windows and ride time requirements generally make larger �eets

better suited for �exible on-demand services. The minimum acceptable level of service can

be achieved with 13 ferries, and some diminishing returns can be observed by introducing

more ferries. This is further expressed in the increased rate of average idle times. As the

simulations represent a planning horizon of 500 hours, it can be added that the observed

average time each ferry spent being idle accounts for only 4.5-8.5 % of the total time. The

modest increase in idle times can be understood as the service’s inability to e�ciently

exploit the increased �exibility provided by a larger �eet, resulting in the diminishing

returns.
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Figure 7.2: Sensitivity of the �eet size
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time.
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In Figure 7.3, it can be observed that the average distance traveled per ferry generally

decreases with the number of ferries. However, this should be seen in relation to the

increased average idle times, as a positive rate in average idle time when increasing the

�eet size indicates a less e�cient deployment. Thus, it is expected that the average distance

traveled per ferry decreases with the increase in the number of ferries. In fact, the distance

traveled per request seems to increase with the �eet size. The increase is likely due to

the planning procedure not being able to exploit the increased �exibility e�ciently. This

observation points out that more e�cient routing could potentially provide economies

of scale in terms of increased demand met and decreased average distance traveled per

request. Also, from a practical view, the observed changes in the average distance traveled

per request is arguably negligible in deciding the �eet size. Since varying the �eet size

yields minor changes to this performance indicator, altering other service characteristics

are more e�cient in reducing the distance traveled, e.g., the presented change in the

objective function.

Figure 7.4 shows no signi�cant deviation between the percentage rejected requests and

percentage rejected passengers. This correlation is expected due to the passenger dis-

tribution in which the set of requests are generated. However, for the depicted �eet

con�gurations, this implies that the ride-sharing capabilities are not the limiting cause

for accepting requests. In other words, the ferry capacity is generally not binding when

�nding feasible insertions. That implies that the requirements in terms of ful�lling the

time windows and maximum ride time puts an upper bound on how many requests can

practically be served by the same ferry simultaneously. However, since the customers

are allowed to book trips for groups of ten people, the �eet cannot consist of ferries with

lower capacities than this number. The maximum number of passengers associated with

a request should serve as a lower bound to the ferry capacities to prevent the need for

split passenger loads. Furthermore, as for the average distance traveled per request, the

average excess ride times are practically not a�ected by the adjustments in �eet size.

Consequently, an acceptable level of excess ride times should be determined through the

study of other service-related parameters, before determining the �eet size with regards

to the �nal intended demand met.
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Figure 7.4: Sensitivity of the �eet size considering percentage rejected requests/passen-

gers and the average excess ride time.

Overall, other than the percentage of rejected requests/passengers, the sensitivity analysis

of the �eet size shows that the performance indicators are not signi�cantly a�ected by

varying the �eet size. Depending on the service provider’s preference in determining a

reasonable level of service, the �eet size of at least 13 ferries with the presented settings

can ensure that the appropriate passenger demand can be catered in the peak demand

scenario. One of the main bene�ts of autonomous ferries is the removal of costs related

to personnel. For instance, the primary cost associated with increased average idle time

for autonomous ferries is a higher cost per passenger trip, re�ected by the initial �xed

investment cost. As such, the operator should balance the cost of acquiring the �eet with

the intended provided service level. Furthermore, a high utilization rate could potentially

lead to increased depreciation rates and the need for frequent maintenance due to strained

use. At the presence of these events, the short-term performance and availability of the

service are likely to be a�ected. Therefore, the value of redundancy should be considered

in determining the �eet con�guration.



Chapter 8

Concluding Remarks

This chapter concludes the thesis. Section 8.1 provides closure of the study related to

investigating the DDARP-AF. Section 8.2 outlines possible approaches for future research

based on the amassed knowledge of the topic and overall hindsight.

8.1 Conclusion

This thesis has presented and examined the Dynamic Dial-a-Ride Problem with Au-

tonomous Ferries (DDARP-AF). The problem concerns the design of an on-demand ferry

service, where incoming requests with potentially very short call ahead times are booked

throughout the planning period. As such, the operational planning procedure needs to

e�ciently determine if the requests can feasibly be served in an online manner, and plan

the routing and scheduling of the ferries accordingly. The thesis contributes to the project

CAPTin Kiel, which seeks to explore how autonomous ferries can be utilized to provide a

cost-e�cient, sustainable and energy-e�cient service with great �exibility. Therefore,

the design of the on-demand ferry service must be evaluated in terms of providing a

high level of service perceived by the passengers, as well as balancing the concern with

the operating costs. Typically, from the passenger’s point of view, minimizing excess

ride times is considered. In contrast, from the perspective of the operator, minimizing

61
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average distance traveled per ferry is of interest due to induced transport externalities,

i.e., congestion and emissions.

A simulation model is proposed to measure the performance of di�erent service charac-

teristics. The output from the simulation model is used to formulate KPIs, which de�nes

metrics to compare the performance of the services. The simulation model solves the

operational planning problem through the procedure of an insertion heuristic due to

the ability to e�ciently provide feasible solutions. Feasible insertions are determined

by pickup time window constraints, maximum ride time constraints, and ferry capacity

constraints.

The proposed simulation model was implemented to conduct a computational study of

di�erent key parameter settings de�ning the ferry service. As the e�ects of changing

demand due to introducing the new ferry service are unknown, several considerations

were given in the modeling of demand for the test instances. Speci�cally, the e�ects of

service-related parameters given by the pickup time window width and the maximum

ride time coe�cient were investigated under three demand scenarios. The results indicate

that some settings were more favorable in all scenarios. It was found that higher �exibility

for the operator in terms of wider time window width could not e�ciently be exploited.

Generally, the TW2-MRT2 setting performed better in terms of demand met at the expense

of higher average excess ride time, but still at an arguably acceptable level. The change in

objective function overall increased the performance of the service up to 39 % in being able

to serve requests, implying that excessive consideration towards minimizing excessive

ride times limits the overall performance. The sensitivity analysis shows that the increase

in �eet size does not signi�cantly a�ect the KPIs, other than the demand met. Given

the preference of the service provider, a �eet of at least 13 ferries is found to provide a

su�ciently acceptable level of service in the peak demand scenario.

In conclusion, more e�cient deployment through other routing strategies can likely be

achieved. Regardless, these e�ects can be further studied similarly through the proposed

simulation model. The study of the operational performance for various settings can

provide decision support in determining the �eet con�guration and overall design of the

dial-a-ride service with autonomous ferries in Kiel.
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8.2 Future Research Opportunities

The following section highlights the research opportunities that can provide further

insight and decision support concerning the design of a demand-responsive ferry service

with autonomous ferries in the Kiel Fjord. Firstly, improvements to the heuristic method

for solving the operational planning problem are discussed in Section 8.2.1. Furthermore,

Section 8.2.2 presents potential extensions to the simulation framework to better re�ect

real-world scenarios. Finally, Section 8.2.3 considers how the ferry service could bene�t

from integrating the on-demand system with a �xed-route system.

8.2.1 Improving the Heuristic Solution

Improvements to the heuristic solution method can be made to provide more e�cient

deployment of the given �eet potentially. Generally, the solutions produced by an insertion

heuristic tend to be of poor quality as no e�ort is provided for improving the current

schedules. As such, a reoptimization procedure can be included in the request handler

of the simulation model, as illustrated in Figure 8.1. Several improvement procedures

can be suggested, such as simple iterative reinsertions or comprise of more advanced

metaheuristics. Regardless, it is important to note that the available computational time

for reoptimization is limited in a practical aspect. The reason is that the procedure must

be able to provide new feasible solutions between the time after applying the insertion

heuristic and the arrival time of a new request. This can make it challenging to develop

e�cient and e�ective procedures. Alternatively, the insertion heuristic can be combined

with demand-anticipatory capabilities such as presented in van Engelen et al. (2018).

The look-ahead could potentially counteract the myopic view of insertion heuristics by

in�uencing the preferred choice of feasible insertions in long-term planning. At the same

time, simpler reoptimization approaches can be used for short-term replanning. As the

solutions provided by heuristic methods are likely in a local optimum, the study of these

should be similarly conducted as presented in this thesis, to assure the overall performance

of the ferry service.
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process n

Reoptimization
process

Reoptimization
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Figure 8.1: A reoptimization procedure can be included as a as part of the request handler.

8.2.2 Extensions to the Simulation Framework

Several extensions can be made to the simulation model that allows for more advanced

policies to be studied. Such features could, for instance, include revised planned pickup

times and postponed response to allow for bundling of requests. Moreover, as the simula-

tion model intends to evaluate di�erent service characteristics, real-world uncertainty

would likely a�ect the performance of the service. Stochastic events such as arrival times

uncertainty, passenger no-shows, and cancellation may lead to schedules of poor quality or

infeasible solutions. Due to the dynamic and stochastic environment in real-life planning,

an extended simulation-optimization framework could be developed to study the e�ects

of real-world uncertainties further and provide robust schedules with regards to these.

8.2.3 The Integrated DARP-AF

Due to varying demand throughout the day, it would be interesting to combine the on-

demand service with a �xed-route service. As previously discussed in this thesis, a �eet

with substantial size would be needed to provide a su�cient level of service in the peak

periods. Since it is assumed that the high demand mainly occurs around work-hours, the

redundant �eet size would lead to ferries spending a high proportion of time being idle
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during the rest of the day. Therefore, an integrated dial-a-ride service with autonomous

ferries could provide �xed schedule departures that could overtake certain percentages

of the demand during peak hours. The �eet size for the on-demand service can then

be catered accordingly to re�ect the experienced demand level during most of the day.

As illustrated in Figure 8.2, the integrated service combines the cost-e�ciency of the

�xed-route service and limits the necessary �eet size needed to provide �exibility in

on-demand services. The bene�ts of this integrated solution could lower the cost per

passenger trip while maintaining a high level of service. However, the complex planning

at the strategic, tactical, and operational level for each service would need to be studied,

but also considered in relation to each other.

Level of service

Cost per passenger 

Fixed-route
service

Integrated DARP
service

DARP service

Figure 8.2: Potential bene�t of the integrated DARP-AF.
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Appendix A

Demand Data

Table A.1: Probability that a request is generated with a speci�c (regular) port pair (%).

Port no. 0 1 2 3 4 5 6 7 8 9

0 0 1.27 1.27 1.91 1.91 1.91 0.64 1.91 0.64 1.27

1 1.53 0 1.02 1.53 1.53 1.53 0.51 1.53 0.51 1.02

2 1.53 1.02 0 1.53 1.53 1.53 0.51 1.53 0.51 1.02

3 1.91 1.27 1.27 0 0.19 1.91 0.64 1.91 0.64 1.27

4 1.91 1.27 1.27 0.19 0 1.91 0.64 1.91 0.64 1.27

5 1.91 1.27 1.27 1.91 1.91 0 0.06 0.19 0.64 1.27

6 1.14 0.76 0.76 1.14 1.14 0.11 0 0.11 0.04 0.76

7 1.91 1.27 1.27 1.91 1.91 0.19 0.06 0 0.06 1.27

8 1.14 0.76 0.76 1.14 1.14 1.14 0.04 0.11 0 0.76

9 1.53 1.02 1.02 1.53 1.53 1.53 0.51 1.53 0.51 0

71
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Appendix B

Transit Times Data

Table B.1: Sailing times between regular ports for a ferry. Longest possible link is 32

minutes.

Port no. 0 1 2 3 4 5 6 7 8 9

0 0 10 18 30 32 30 27 25 20 10

1 10 0 10 20 22 25 22 20 13 5

2 18 10 0 10 12 15 13 9 5 13

3 30 20 10 0 2 15 10 7 10 25

4 32 22 12 2 0 17 12 9 12 27

5 30 25 15 15 17 0 5 8 14 30

6 27 22 13 10 12 5 0 5 10 26

7 25 20 9 7 9 8 5 0 6 20

8 20 13 5 10 12 14 10 6 0 15

9 10 5 13 25 27 30 26 20 15 0
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Appendix C

Simulation Results for Low

Demand

Table C.1: The performance of di�erent combinations of service-related parameters with

the small �eet at normal demand with OF1. TW2-MRT2 provides the most balanced

performance. Note that the higher average distance per ferry is due to higher utilization.

All instances provide relative low average excess ride times.

Fleet: F1

Demand: Low

KPI TW1-MRT1 TW1-MRT2 TW2-MRT1 TW2-MRT2

Rejected requests (%) 14.01 10.57 11.65 8.97

Rejected passengers (%) 13.67 10.05 11.16 8.81

Avg. excess ride time (min.) 0.57 1.83 0.46 1.45

Avg. distance per ferry (km.) 5491 5527 5756 5798

Avg. distance per request (km.) 8.52 8.24 8.69 8.49

Avg. idle time per ferry (min.) 4614 4325 3660 3386
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