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Problem Description

This thesis aims to develop a solution method capable of solving real-life instances of the Weekly
Routing and Scheduling Problem (WRSP) in the Home Health Care (HHC). The main goal of
the WRSP is to create e�cient routes concerning cost, while also considering employee- and
user convenience. To evaluate the proposed solution method, the obtained weekly route plan is
compared to the initial weekly route plan.
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Abstract

The Home Health Care (HHC) aims to assist the elderly and people in need so that they can
stay at home for as long as possible. As Norway is facing an age wave, the Norwegian HHC
providers are experiencing an increased demand for health care services. This challenge could
be managed through the application of Operational Research (OR), by identifying and reducing
ine�ciencies in existing HHC processes. The HHC providers generate routes and scheduling
plans based on the needs and preferences of their associated users. Today, most HHC providers
base the generation of these routes on the employees’ experience, and the routes are manually
created on a day-to-day basis. Despite years of experience, the numerous possibilities of com-
binations in routes make it complicated to manually obtain optimal routes, and ine�ciencies
concerning driving time or employee and user-related aspects occur. The introduction of OR
could, therefore, prove to be interesting for the HHC. This thesis examines the possibility of
utilizing OR to solve the complex problem of planning on a tactical level. The aim is to solve
the Weekly Routing and Scheduling Problem (WRSP) of the HHC by allocating jobs to days
and employees and obtain e�cient routes without violating government or patient-related con-
straining factors. The WRSP in the HHC is an extension of the acknowledged periodic Home
Health Care Routing and Scheduling Problem (HHCRSP).

A literature study related to the daily and weekly problem of routing and scheduling in the
HHC is conducted. This thesis is concerned with planning on a tactical level and focuses on
solution approaches capable of solving realistic size problems. A Mixed Integer Linear Program
(MILP) model is developed to solve the WRSP. The MILP is formulated as a multi-objective
optimization problem comprising six terms, aiming to minimize driving time while also min-
imizing employee and user inconvenience. The hindmost is ensured by implementing a fair
distribution of workload, minimize overtime, and minimize time spent performing overqualified
work. Also, minimizing violation of the time window and facilitating visit continuity is included.

An Iterative Improvement Heuristic (IIH) is proposed to solve the WRSP. The IIH is a matheuris-
tic that identifies and adds sub-optimal allocated jobs from an initial Weekly Route Plan, to an
optimization problem which is iteratively solved by the MILP. The initial Weekly Route Plan
(WRP) is compounded by a set of daily optimized routes. A function is introduced to identify
suboptimal allocated jobs concerning di�erent objectives of the WRSP. The MILP solves the
optimization problem by reallocating jobs simultaneously, which reduces the risk of reaching a
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local optimum.

The IIH is configured and validated using real-life test instances provided by Visma Optimization
Technologies. The performance of the matheuristic is validated against the initial WRP, being a
composition of daily optimized routes, exposing that the IIH consistently produces more e�cient
routes concerning all objectives of the WRSP. The IIH is also validated against the exact solution
of the MILP, revealing that the IIH outperforms the MILP when solving realistic instances. On
average, the matheuristic obtains a 67% reduction in gap compared to the MILP.
Additionally, a study of how the implementation of the IIH may a�ect the Weekly Route Plan is
conducted. The study investigates the trade-o� between improvement of- and impact on routes.
It is proven that slight alterations of existing routes may produce relative significant improve-
ments in routes, as 44.6% of the total improvement only requires 23% of the total changes in
routes, for a given instance.

Lastly, the IIH is applied to the WRSP to produce e�cient routes with respect to di�erent
aspects of the problem, to reveal trade-o�s between the stakeholders’ interests. This thesis finds
that employee- and user-related objectives can be included and considered without going at the
extent of cost-related objectives like driving time. The acquired solution decreases the share
of the workweek spent on driving time by 9.7% compared to the initial weekly routes, without
worsening the remaining objectives. This implies that the IIH can be utilized to solve realistic
size WRSPs and achieve more e�cient routes, while still taking user and employee convenient
aspects into account. This increases the capacity of the HHC providers and points out the
potential for cost-reductions in the HHC.
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Sammendrag

Hjemmetjenesten har som mål å tilrettelegge for mennesker med psykiske eller fysiske behov,
slik at de kan bo hjemme så lenge som mulig. Norge står overfor en eldrebølge, og den norske
hjemmesyketjenesten opplever en økt etterspørsel etter helsetjenester. Denne utfordringen kan
håndteres gjennom anvendelse av optimering, ved å identifisere og redusere ine�ektivitet i ek-
sisterende prosesser. Hjemmetjenesten generer ruter basert på lister som definerer behovene og
preferansene til sine brukere. I dag lager de fleste hjemmetjenesteavdelinger rutene manuelt,
basert på de ansattes erfaring med pasientene. Til tross for mange år med erfaring, gjør de
utallige mulighetene for kombinasjoner i ruter det krevende å oppnå optimale ruter, når dette
gjøres manuelt. Denne oppgaven tar utgangspunkt i dagsoptimerte ruter for å løse det ukentlige
ruteplanleggingsproblemet (Weekly Routing and Sceduling Problem, WRSP), på et taktisk nivå.

Et litteraturstudie relatert til det daglige og ukentlige ruteplanleggingsproblemet i hjemmetjen-
esten er gjennomført. Denne oppgaven fokuserer på planlegging på et taktisk nivå og løsningsme-
toder som er i stand til å løse problemer av realistisk størrelse. Et lineært blandet heltallsproblem
(Mixed Integer Linear Program, MILP) er modellert for å løse WRSP. Heltallsproblemet er for-
mulert som et fler-objektiv optimeringsproblem, som tar for seg seks objektiver. Problemet
tar sikte på å minimere kjøretid, og samtidig minimere ulemper for ansatte og brukere. Min-
imieringen av disse ulempene sikres ved å etterstrebe en rettferdig fordeling av arbeidsmengden,
minimere overtid og minimere tiden brukt til å utføre overkvalifisert arbeid. I tillegg etterstreber
modellen å minimere overstiging av tidsvinduet til oppgaver, og sikre besøkskontinuitet.

En iterativ forbedrings-heuristikk (Iterative Improvement Heuristic, IIH) foreslås for å løse
WRSP. IIH er en matematisk heuristikk som identifiserer og legger til jobber som er subop-
timalt allokert til et nytt optimeringsproblem, som iterativt løses av MILP. En initiell ukeplan
(Weekly Route Plan, WRP) brukes som utgangspunkt for heuristikken og denne er sammensatt
av et sett med daglige optimerte ruter. MILP løser optimeringsproblemet ved å simultant real-
lokere jobber, noe som reduserer risikoen for å stagnere i et lokalt optimum.

IIH kalibreres og valideres ved hjelp av testinstanser som er generert på bakgrunn av data levert
av Visma Optimization Technologies. Løsningen generert av heuristikken sammenlignes med
den initielle WRP-en, og valideringen viser at IIH produserer mer e�ektive ruter for alle inter-
essentene av WRSP. IIH er også validert ved sammenligning med den eksakte MILP-løsningen.
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Resultater fra disse testene viser at IIH utkonkurrerer MILP når WRSP er av virkelighetsnær
størrelse. I gjennomsnitt oppnår den matematiske heuristikken 67% reduksjon i gap sammen-
lignet med MILP-en.

Videre gjennomføres en studie av hvordan implementeringen av IIH kan påvirke de ukentlige
rutene. Studien undersøker avveiningen mellom forbedring og endring av ruter, hvor målet er
å gjøre få endringer for å oppnå mye forbedring i de eksisterende rutene. Resultatene viser at
små endringer i de eksisterende rutene kan gi betydelige forbedringer i ruter, da 44.14 % av den
totale mulige forbedringen kun krever 23% av de tilhørende totale endringene i de eksisterende
rutene, for en gitt instans.

IIH blir også implementert på WRSP for å generere e�ektive ruter med hensyn til forskjellige
interessenter av problemet, for å avdekke avveininger mellom de ulike objektivene. Resultatene
fra testene viser at ansatte- og bruker-relaterte objektiver kan inkluderes uten at dette i stor
grad går på bekosting av kostnadsrelaterte objektiver, eksempelvis kjøretid. Den optimerte
løsningen reduserer nemling andelen av arbeidsuken som blir brukt på kjøretid med 9.7 % sam-
menlignet med den initielle WRP-en, uten å påvirke de andre objektivene. Dette impliserer at
IIH kan brukes til å løse virkelighetsnære WRSP, som oppnår mer kostnadse�ektive ruter, og
som samtidig tar hensyn til ansatte- og brukerrelaterte objektiver. Dette vil øke kapasiteten til
hjemmetjenesten og belyser potensialet for kostnadsreduksjon i hjemmetjenesten.
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Chapter 1
Introduction

The Home Health Care (HHC) system has been a part of the Norwegian welfare state for over
70 years, aiming to provide people the opportunity of staying at home for as long as possible.
This has been a goal since the 1950s, with several action plans and granting of economic support
dedicated to the HHC (Statistisk Sentralbyrå, 2019b). The HHC providers o�er services such
as medical treatment, elderly care, and practical assistance at the users’ homes instead of in a
hospital or nursing home.

Today, population projections expose an imminent age wave that increases the need for the HHC
in the years to come. Roksvaag and Texmon (2012) state that at least one out of three students
must graduate with a health-related education to manage the increased demand, yet only 22%
of Norwegian students graduated with a health-related degree in 2018 (Statistisk Sentralbyrå,
2019c). Therefore, alternative ways to face the upcoming HHC challenge must be explored to
prepare the Norwegian welfare state for the predicted future.

The municipalities in Norway are responsible for providing HHC services to those who need
it. People receiving help from the HHC are referred to as users, and each user has a care-plan
based on the content and frequency of services needed. The aggregation of care-plans becomes
a complex database of users and their needs at di�erent times. Based on experience and local
knowledge, the administration of the HHC o�ce often manually creates routes and schedules
for the employees. The HHC o�ce must also allocate services to days, based on how often
the users need visits. Today the routes are rarely revised, only slightly altered when demand
changes, still in a manual way. This traditional and manual approach does not provide the most
e�cient routes concerning driving time and the utilization of scarce human resources. Thus, the
application of Operational Research (OR) in the routing and scheduling problem of the HHC
may benefit the Norwegian health care system.

The purpose of this thesis is to study and solve the Weekly Routing and Scheduling Problem
(WRSP) of the HHC, which concerns the allocation of jobs to employees and days on a tactical
level. The WRSP in the HHC is an extension of the acknowledged periodic Home Health Care
Routing and Scheduling Problem (HHCRSP), which is derived from the classic Vehicle Routing
Problem (VRP). The first goal of this thesis is therefore to develop a solution method to solve
real-life instances of the WRSP. The proposed matheuristic, the Iterative Improvement Heuristic
(IIH) utilizes an existing weekly route plan when solving the WRSP. Furthermore, the IIH aims
to minimize driving time, while still considering user and employee convenience, by ensuring

1



fairness in workload, comply with time windows, and ensure visit continuity. The second goal of
this thesis is to investigate the trade-o�s between improvement of- and impact on routes, with
respect to the HHC provider, the employees, and the users. Additionally, the aim is to analyze
how di�erent stakeholders’ interests may a�ect the routes.

This thesis is written in collaboration with Visma, a Norwegian software company with an op-
timization team aiming to develop a route planner for municipalities in Norway. Visma has
provided real-life data from their pilot municipalities, which is used to test the adequacy of the
model and the IIH. The work of this thesis is a continuation of previous work, Lynås and Van de
Pontseele (2019), conducted in the fall of 2019. Hence, some parts of this thesis are similar
to Lynås and Van de Pontseele (2019). In that case, this is stated in the introduction of the
prevailing chapter.

A comprehensive background for the problem in this thesis is given in Chapter 2. Furthermore,
Chapter 3 presents the reviewed literature, along with positioning this thesis in the field of op-
timization. Chapter 4 describes the problem at hand, and Chapter 5 presents the mathematical
formulation of the WRSP. The Iterative Improvement Heuristic proposed to solve the WRSP, is
presented in 6. A description of how the relevant data were extracted from the data set provided
by Visma, follows in Chapter 7, and based on this, instances of di�erent sizes are created. The
test instances are used to configure and test the proposed IIH and the computational results
are found in Chapter 8. Finally, concluding remarks and possible future research is presented
in Chapter 9.
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Chapter 2
Background

This chapter introduces the necessary background information for this thesis. Section 2.1
presents the increased need for health care caused by the population projection in Norway.
A description of the Norwegian Home Health Care (HHC) system is found in Section 2.2. The
main content of this chapter builds upon Lynås and Van de Pontseele (2019).

2.1 Population Projection

Population projections in Norway state that in 15 years there will be a larger share of people
above 65 years than people below 19, for the first time in Norwegian history (Leknes et al.,
2018). The development is likely to continue, resulting in a doubling of the age segment above
70 by 2060, compared to 2018. This shift is referred to as the age wave.

The age wave can be explained by the aftermath of the baby boom after World War II, along
with an increased life expectancy as medical services are improving. Additionally, the birth
rates are decreasing and the relative di�erence in the age of the population is enhanced by im-
migration and migration to central areas. The young generations migrate from rural districts
to central areas, leading to a larger share of elderly people and decreasing birth rates in the
rural districts. This results in major regional di�erences in the magnitude of the age wave, and
the rural municipalities are facing the greatest challenges related to future elderly care (Leknes
et al., 2018).

Naturally, the probability of age-related diseases increases with higher life expectancy, leading
to an extensive need for nursing and care. This implicates, among other things, an increased
need for skilled workers and the capacity of hospitals, nursing homes, and health care services.
However, as elderly people are healthier than before they can stay longer in their homes and
receive HHC instead of using hospitals or institutions. The ability to stay at home for as long as
possible has been a goal in Norway since the 1950s (Statistisk Sentralbyrå, 2019b). At the same
time, capacity at the HHC providers has already reached its limit and the number of people
in need of HHC services has increased by 8.8% since 2015 and is continuously rising (Statistisk
Sentralbyrå, 2019a). The use of HHC will contribute to the liberation of space in hospitals,
institutions, and nursing homes, that should be kept available for more severe cases.

There are several ways to address the issue at hand, and increasing the workforce in the HHC
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or streamline the existing HHC processes, are some of them. However, it is estimated that one
out of three students must educate themselves in health care to endure the rising demand for
health care services in Norway (Roksvaag and Texmon, 2012). Streamlining the HHC processes
could increase capacity by minimizing time spent on non-user related activities. In the HHC
in Norway, travel time between users accounts for 18 to 26% of the working time (Holm and
Angelsen, 2014). By minimizing the travel time, each employee could increase the number of
visits per day, hence increase the capacity of the HHC provider.

To reduce travel time, a reassessment of the current routes could be conducted, to possibly
reveal ine�ciencies. However, the planning problem in the HHC is very complex due to the
immense number of combinations of employees, users, and days. Finding an optimal allocation
of routes and schedules is therefore challenging. The introduction of Operational Research (OR)
tools for decision and planning, such as mathematical optimization models, has proven to create
more e�cient routes and thereby reduce travel time and increase capacity of the HHC. On the
other hand, many practical and ethical aspects must be taken into account in the planning
problem, such as continuity of care and employee satisfaction, which can be di�cult to mimic
for a mathematical model.

2.2 Home Health Care in Norway

HHC services are performed at the users’ home, and the services provided, ranging from show-
ering or vacuuming twice a week, to distributing medications daily. Even though there are
regional di�erences in the operation of the HHC centers, the overall management and planning
are similar. Important elements of the HHC follows.

Users
A user is an individual receiving HHC services at home. Users range from elderly people to
people with disabilities, mentally ill people, people in need of medical treatment, or people in
need of practical assistance. People who need rehabilitation after hospitalization or palliative
treatment can in some cases also be treated as users of the HHC. Di�erent age groups have
di�erent needs, for instance, numbers show that younger users receive a weekly average of 25
hours of practical assistance, compared to people over 67 years receiving 2-3 hours per week
(Statistisk Sentralbyrå, 2019b).

To receive HHC services, an application must be submitted to the municipality. The municipal-
ity assesses the application and the user’s need for care and grants the request if the criteria for
receiving help are met and there is available capacity. The administration, the user, and often
relatives of the user, collaborate to find a suitable care-plan. The care-plan includes the scope of
the need in terms of what should be done and how often a visit is required and is continuously
assessed and altered if needed.

Employees
An employee is defined as a person who is working part-time or full-time for the HHC provider
in the municipality. The variety of services in the HHC requires a wide set of skills, and the
HHC sta� consists of employees with di�erent levels of education and experience, ranging from
doctors to assistants. Generally, employees with higher skill levels prefer doing advanced ser-
vices, such as medical injections, rather than simple practical assistance.
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The majority of employees in the Norwegian health care work shifts, and the same accounts for
the employees in the HHC. There are mainly three shifts during a week; day, evening, and night.
Most of the advanced or demanding services are performed during the day shift, and employees
are sta�ed accordingly.

During a regular workday and workweek in the HHC, the level of workload naturally fluctuates,
as the users’ demand varies across times of day, and days of the week. To ensure predictability
and fairness for the employees, the HHC provider tries to evenly distribute the workload across
employees. Overtime and last-minute changes in the employees’ shifts are prevented as far as
possible. A service can be characterized as physically or psychologically challenging, and such
services should preferably be distributed evenly across employees.

All users are given a primary contact, who is responsible for follow-up and assessment and ad-
justments of the user’s care-plan. The primary contact is often also the main employee visiting
the user, aiming to ensure visit continuity for both employee and user. However, visit continuity
is challenged by the primary contacts’ shifts and the HHC’s general capacity. Primary contacts
are usually experienced and educated employees.

Services
The employees of the HHC provide services for users according to their care-plan or perform
administrative jobs at the HHC main o�ce. Medical treatment and giving practical assistance
at the users’ homes are examples of user-related services, while user documentation and ordering
of medicine are administrative jobs.

The skill level required to perform a job varies according to its medical complexity, ranging
from practical assistance to advanced medical treatment. Practical assistance may be vacuum-
ing, preparing meals, or assisting in dressing, while medical treatment is injections and medical
dosage. Some services may require the presence of two employees, due to the physical or psy-
chological strain. In these cases, at least one of the employees must have the skill level required
for performing the service. Some services may also require to be performed in a specific order,
such as giving insulin and preparing a meal. Generally, the scope of service di�ers according
to the required e�ort by the assigned employee, hence some services are more demanding than
others, for instance moving a paralyzed user or treating a mentally ill user.

The care-plan contains information about the duration of services and the users’ preferred time
of visit during the day. Some services are naturally performed at a certain time of the day, e.g.
getting up in the morning, while others are more flexible, such as vacuuming.

The care-plan also includes information about how often the HHC is needed. Some services
must be performed daily, for instance getting out of bed in the morning. Others need to be
performed with a given frequency, preferably evenly spread out over a period. Some examples of
frequent services are vacuuming once a week and giving medicine twice a week with a gap of a
few days in between. A user may also need several services on a single day and such services can
be performed consecutively during one visit. In the previous example, this can be illustrated
by assembling and performing the two services, distribution of medicine and vacuuming, on the
same day during the same visit.
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The HHC also o�ers the service of a safety alarm, being a triggering alarm for the user to use
if they require immediate help. If an alarm is triggered, the employees at work are notified and
must respond to the urgent need.

Routes
To provide services to the users, the employees travel between the users’ houses according to
a predefined path commonly called routes. Since not all users require daily visits, the routes
di�er from day to day. The distances between the users’ houses vary greatly both among and
within the municipalities, and this a�ects the employees’ means of transport. In central areas,
employees use walking, biking, and public transport as a mode of transport to complete their
routes, whilst in rural districts with longer distances driving is preferred. At many HHC centers,
a composition of the above transportation modes is used. The routes give the order of the vis-
its and take into account the geographical distances between the users, duration, and preferred
times of visits, as well as the employees’ and users’ preferences. Every day, the employees receive
one or several routes to complete during their shift. To reduce travel time, an employee is often
primary contact to users within the same geographical area.

The routes begin and end at the HHC center, as the employees receive their daily routes at the
HHC center in the morning and perform user documentation back at the HHC center at the
end of the shift. All employees eat lunch at the HHC center if possible, preferably at the same
time. In that way, the beginning and end of a shift, as well as the lunch break is a part of all
employees’ route, in addition to user-related and administrative jobs.

Generation of Routes in the Home Health Care Today
The age wave is inevitable, and more e�cient routes will contribute to an increase in the HHC
capacity. Today, most HHC providers create the routes of the HHC employees manually, based
on domain knowledge from years of experience and incorporated habits. The routes are mainly
generated on a daily basis, and disruptions and revision of routes are also handled manually.

As mentioned, it is challenging to manually assess the numerous possibilities of routes and ad-
vanced mathematical optimization approaches are currently being explored as an alternative.
Some HHC providers in Norway are at present testing a mathematical Route Planning system
provided by the software company Visma. The Visma Route Planner obtains e�cient routes by
solving the daily routing problem mathematically, resulting in a disruption of previously manu-
ally created routes. This disruption in incorporated working habits and visiting patterns could
negatively a�ect the everyday life of employees and users in the HHC, however, driving time is
reduced. The challenge is therefore to balance the ratio between e�ciency and consistency in
routes.

Both the manual and the mathematical approach to route generation today mainly focus on the
day-to-day problem. However, the total demand for care repeats itself on a weekly basis, and
to find e�cient routes, the perspective could be shifted to consider the week as a whole and
thereby allow services to be moved between days.
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Chapter 3
Literature Survey

Chapter 2 illustrates an increasing demand for Home Health Care (HHC) services, and along
with this, Operations Research (OR) has in recent years increased its attention towards HHC
relevant problems. There is a substantial amount of literature on the field, and this chapter
presents the literature survey conducted for this thesis. The academic search portals Oria,
owned by the Norwegian University of Science and Technology, and Google Scholar have been
used to retrieve relevant articles.

The literature refers to the challenge of making e�cient routes in the HHC as the Home Health
Care Routing and Scheduling Problem (HHCRSP), which is derived from the known Vehicle
Routing Problem (VRP). The Weekly Routing and Scheduling Problem can be seen as an ex-
tension of the HHCRSP, which is the focus of this thesis.

Section 3.1 presents four hierarchical levels of control, introducing the managerial aspects of the
HHCRSP. The basic model for this thesis, namely the general VRP is presented in Section 3.2,
while Section 3.3 explains the search strategy used. The key aspects of the HHCRSP found
in existing literature are presented in Section 3.4, and in Section 3.5 existing solution methods
are presented. Section 3.2 and Section 3.4 build upon previous work, conducted in Lynås and
Van de Pontseele (2019). Lastly, in Section 3.6 we motivate the scope of our thesis.

3.1 Hierarchical Levels of Control

HHC managers are facing the highly complex task of allocating employees to services and con-
structing e�cient routes for each employee. The formulation of the model depends on the
planning horizon of the problem, as input factors range from fixed to flexible, based on whether
the plan is short-term or long-term. The choice of time horizon for the HHCRSP also defines
the hierarchical level of control. To assess the implications of di�erent planning horizons, a
framework from Hall et al. (2012) is introduced. The framework focuses on how decision making
and planning in health care organizations is done, given di�erent time horizons. Considering
the HHC, four hierarchical levels of control are presented, each related to a time horizon:

• Strategic Level. The strategic level addresses the distribution of core resources, such as
the number of employees working, and decision making for achieving high-level goals,
e.g. reducing the number of employees working on a given day. The planning horizon is
typically long-term, e.g. a year or more.
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• Tactical Level. The tactical level addresses capacity over a medium-term, typically with
a planning horizon of several weeks. The actual health care demand is used as input, and
routes may be modified at this level, while still preserving the structure. For instance,
employees may swap services internally or services may switch days in a period.

• O�ine Operational Level. The o�ine operational level addresses the scheduling of spe-
cific users to employees and typically involves a planning horizon of a week. Short-term
decisions regarding the execution of health care processes, e.g. adding a user to one of the
routes, are addressed at this level.

• Online Operational Level. This level addresses the monitoring and control of the day-to-
day activities in health care and all uncertainty has to be dealt with immediately.

Section 3.6 discusses how the choice of Hierarchical Level of Control has shaped this thesis.

3.2 Vehicle Routing Problem and its Most Common Extensions

The most common model used to solve the HHCRSP is the classical Vehicle Routing Problem
(VRP), both with and without extensions. VRP was first introduced by Dantzig and Ramser
over 60 years ago and has ever since been the foundation of many operational research problems
(Laporte, 2009). The classical VRP defined by Laporte (2007) is reformulated to suit the HHC
problem in (3.1)-(3.6).
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A vehicle and a customer corresponds to an employee and a user respectively. The problem con-
sists of determining a set of routes for = employees, starting and ending at the depot (3.3)-(3.4),
such that each user is visited by exactly one employee (3.2), and the total travel cost, )8 9 , is
minimized (3.1). Constraints (3.5) ensure flow in and out of a node, while constraints (3.6) are
the binary constraints.

The basic VRP describes the routing as a single-period problem (SPP) in a simple manner that
is not directly applicable to real life. Ever since the introduction of VRP, there has been an im-
mense amount of extensions added to the problem, some of which have become standard models
in the literature. An example of this is the Periodic Vehicle Routing Problem (PVRP), modeling
the routing problem over a period as a multi-period problem (MPP). Furthermore, the Vehicle
Routing Problem with Time Windows (VRPTW) assesses the situation where customers have a
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predefined time window indicating their preferred time of visit, while the Vehicle Routing Prob-
lem with Split Deliveries (VRPSD) allows several vehicles to visit one customer. Depending on
the field of research, many other aspects can be included. For the HHC, break regulations, even
distribution of workload among employees, synchronized services requiring the presence of two
employees simultaneously, temporal dependencies, and incorporation of employee preferences in
the generation of routes may be included.

3.3 Literature Search Strategy

To review relevant literature for this thesis, the general terms presented in Table 3.1 are inves-
tigated and the search words are used in conjunction with VRP. The search strategy is directed
both towards possible formulations of the mathematical problem, and solution methods.
The search strategy for obtaining relevant literature is influenced by the article of Fikar and
Hirsch (2017), providing a review of the existing literature for the HHCRSP. The article presents
an overview of the most common objectives, constraints, and solution methods used in both SPP
and MPP HHC.

Table 3.1: Search Words Used in Conjunction with the Term VRP

General Terms Objective Function Constraints Solution Methods
PVRP Objective function Skill level Exact

VRPTW Multi-objective Working time Metaheuristics
PVRPTW Weights Break Matheuristics

HHC Cost Pattern Evolutionary Algorithm
Fairness Continuity Neighbourhood Search

Dependencies Integer Programming

Only the most relevant articles from the literature search are discussed in this review, mainly
being the multi-period HHCRSP. However, since the majority of previous research is related to
SPPs and the aspects of SPPs are relatable for MPPs, applicable SPP research is also included.

3.4 Routing and Scheduling in the Home Health Care

This section introduces the most frequent modeling elements of the HHCRSP. Section 3.4.1 and
Section 3.4.2 present general aspects of the SPP and MPP respectively, considering both the
problem objectives and constraints. A single-period HHC problem comprises the routing and
scheduling of a set of services on one day. The multi-period HHC problem is related to the allo-
cation of services to days over a period, and routing and scheduling within each day of the period.

3.4.1 Objectives and Constraints in Single-Period Problems

In the following section objectives and constraints of the single-period HHC problems are pre-
sented.

Objectives
A weighted multi-objective function, weighing the objectives according to their importance, is
used in the majority of the literature for SPPs. The objectives can be divided into two main
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categories, the first being monetary objectives and the second being objectives related to the
user- and employee convenience.

The monetary goal of the SPP in the HHC is to minimize costs, more specifically minimize
traveling costs. In Liu et al. (2017) and Rasmussen et al. (2012), the actual cost of traveling
is minimized, however, traveling cost can be measured by di�erent manners, which is reflected
in the articles. For instance Mankowska et al. (2014) and Nickel et al. (2012) minimize to-
tal traveling distance, and Trautsamwieser and Hirsch (2011) and Bredström and Rönnqvist
(2008) minimize total travel time. Cost minimization is also motivated by other aspects of the
HHC problem, such as cost concerning overtime. Minimization of overtime worked by employ-
ees is implemented by several articles, e.g. Braekers et al. (2016) and Hiermann et al. (2015).
Overqualified sta� is considered an expensive workforce and can be minimized in the objective
function, which is suggested by Trautsamwieser and Hirsch (2011). Long waiting times between
visits may extend the workday unnecessarily, and minimizing waiting time is, therefore, a cost-
minimizing measure, implemented by Hiermann et al. (2015) and Mısır et al. (2015).

In addition to the most common monetary objectives, the literature reviewed strives to include
other aspects that are considered relevant for the HHC problem, such as employees’ and users’
preferences. Introducing time windows as an extension to the VRP, as described in Section 3.2,
is a way of taking users’ preferences into account, by penalizing the objective function for late
starting times. Braekers et al. (2016) implement this by introducing soft time windows and
linearly penalizing for time exceeding the soft time window. Mankowska et al. (2014) propose
a di�erent approach, by penalizing the tardiness of services. Another way of taking employee
and user preferences into account is by considering visit combination preferences. A mathe-
matical model tends to treat all elements as homogeneous objects, however, the objects in the
HHC problem are employees and users, which in no sense are identical. Therefore, preferred
combinations of employees and users can be rewarded or penalized in the objective function.
Trautsamwieser and Hirsch (2011) illustrate this by introducing a penalty if a user does not
receive service from the preferred employee. Rasmussen et al. (2012), on the other hand, uses a
general employee-patient visit preference, which is added as a positive measure in the objective
function.

Constraints
The three most common constraints are time window restrictions, working time restrictions, and
temporal dependencies. All of the reviewed articles naturally include the time window extension
and a selection restricts the service to be performed within a hard time window, as presented
in Rasmussen et al. (2012) and Trautsamwieser and Hirsch (2011). Working time restrictions
are introduced as limits to how much an employee is allowed to work as done by Braekers et al.
(2016) and Rasmussen et al. (2012). Temporal dependencies in the HHC refer to a set of ser-
vices that are either classified as synchronized, meaning that they require the presence of two
employees simultaneously or temporal dependent, indicating that the order of execution mat-
ters. Bredström and Rönnqvist (2008) implement both synchronized and temporal dependent
services. Eveborn et al. (2006) account for synchronized services by duplicating the original
service and fix both starting times to be equal.
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3.4.2 Additional Objectives and Constraints in the Multi-Period Problems

Compared to the SPP, the MPP has received less attention due to the increased complexity. Fac-
tors of low importance in the SPP become significant when aggregated to an MPP as elements
can be measured over time, such as the total di�erence in workload across days. The multi-
period HHCRSP, therefore, constitutes some of the fundamental modeling choices from the SPP,
e.g. time window, with an additional number of objectives and constraints. A review of articles
regarding MPPs related to the HHC problem follows, emphasizing the distinctions from the SPP.

Objectives
The MPP manages the routing and scheduling problem over a time horizon, and depending on
the planning hierarchy level, capacity and demand may no longer be static. This increases the
number of variations of objectives compared to the SPP. Barrera et al. (2012) and Yuan et al.
(2015) addresses possible actuality that the HHC is oversta�ed and aims to optimize the number
of employees working each shift, hence minimize the size of the workforce and thereby also the
costs of the HHC providers. This can only be accounted for in a long-term perspective on a
strategic level of planning for MPPs. Furthermore, while the reduction of travel cost is the main
focus in single-period HHC problems, MPPs additionally put a greater emphasis on sta�ng and
service-related factors. These factors comprise service coverage, the fairness of work schedule,
and continuity of care.

Many articles in the literature of MPPs aim to perform all services, and the literature found
presents three main ways of formulating this objective, starting with Carello and Lanzarone
(2014). Carello and Lanzarone (2014) require all services to be performed at any cost, resulting
in penalization for overtime. Bennett and Erera (2011) on the other hand, implement the ob-
jective by maximizing the number of services that are served. Thirdly, Nickel et al. (2012) aim
to perform all services by penalizing for the non-performed services.

A fair work schedule for employees is of high importance for multi-period HHC problems and
is included in the majority of the articles reviewed. Employee satisfaction depends on the de-
gree of even distribution of the number of services, working time, and the heaviness of services.
Di�erent approaches have been assessed to take this into account. Hertz and Lahrichi (2009)
associate a heaviness weight to every service and traveling distance, to evaluate the total heav-
iness worked by each employee and minimizing this. Barrera et al. (2012) aim to maintain fair
work schedules by minimizing the di�erence in total working times on a day, for each employee.
Lastly, Cappanera and Scutellà (2013) measure the utilization factor for each employee, based
on working hours compared to shift hours, and penalizes for great di�erences among employees.

Continuity of care is a significant factor in the MPPs, which incorporates the importance of
human relations in home health care. The simplest way of ensuring continuity is by minimizing
the total number of unique employees visiting users during a period, which is presented by Nickel
et al. (2012) and Bowers et al. (2015). Similarly, a minimization of the number of times a user
receives services from a new employee is formulated by Wirnitzer et al. (2016). Carello and
Lanzarone (2014) distinguish between users who need hard, partial, or no continuity of care and
prioritizes thereafter, ensuring continuity for those who need it the most.

Constraints
As mentioned above, continuity of care is given extra attention in the MPPs, but instead of
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punishing for lack of continuity in the objective function the model may also enforce continuity
by restricting visits by the same employee, or a limited amount of employees. Among others,
this is implemented by Cappanera and Scutellà (2013) and Duque et al. (2015).

The introduction of visit patterns becomes relevant when addressing multi-period problems.
Visit patterns provide information about predefined service combinations, which define the ser-
vice frequency related to a user. Begur et al. (1997) ensure these patterns by restricting services
to be performed on a fixed set of days. A more flexible approach is proposed by both Bennett
and Erera (2011) and Nickel et al. (2012), allowing services to be performed on di�erent days,
but restricting the frequency of services with a predefined number of days in between, such as
every other day.

3.5 Solution Methods for the HHCRSP

The ability to solve the HHCRSP mathematically depends on the selection of solution method,
and numerous approaches are mentioned in the articles reviewed. Simultaneously, computa-
tional comparisons are di�cult to derive, due to great di�erences in objectives and constraints,
and the field seems to be highly heterogeneous in terms of focus areas. Section 3.5.1 and 3.5.2
present some of the variety in solution methods used, concerning SPPs and MPPs respectively.

3.5.1 Solution Methods for SPPs

The single period HHCRSP is known to be complex even in its simplest form, nevertheless, there
are plenty of studies applying an exact solution procedure, e.g. in Hansen et al. (2009). This
paper solves an assigning problem by applying column generation in a branch-and-price frame-
work. Similarly, both Rasmussen et al. (2012) and Yuan et al. (2015) apply a branch-and-price
algorithm, where the problem is modeled as a set partitioning problem with side constraints.

However, the majority of research found concerns solution approaches applying metaheuristics
to the problem. Population-based algorithms are highly popular, and are among others intro-
duced by Akjiratikarl et al. (2007), Mutingi and Mbohwa (2014) and Yalçında� et al. (2016).
Akjiratikarl et al. (2007) introduces the population-based heuristic technique "Particle Swarm
Optimization" in the HHC context. This is an optimization procedure based on the social be-
havior of groups of organizations, where the algorithm reallocates a population rather than a
single individual while looking for a solution. A fuzzy simulated evolution algorithm is presented
in Mutingi and Mbohwa (2014), using multi-objective fuzzy evaluation techniques based on the
principles of fuzzy set theory for capturing the uncertainties inherent in a system.

Another widely used procedure within the field of metaheuristics is the application of search-
based algorithms. Mankowska et al. (2014) proposes neighborhood structures along with local
search procedures for an HHCRSP, comprising a Variable Neighborhood Search. Furthermore,
Braekers et al. (2016) introduces a large neighborhood search heuristic in a multi-directional
local search framework. It is based on the idea that in order to find new e�cient solutions that
are neighbors of a solution G , it is su�cient to start a search from G in the direction on one
objective at a time only.
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A combination of the two approaches, that is exact solution methods and metaheuristics, are
also developed for the single period HHCRSP, comprising matheuristics. It is most commonly
in this type of heuristic to use set partitioning procedures to generate problem clusters, while
linear programming techniques optimize start times and enable synchronization. Allaoua et al.
(2013) proposes an integer linear programming formulation but develops a metaheuristic by
decomposing the problem into two problems, to deal with larger instances. The first problem
presents the pre-assigning of nurses to shifts as a set partitioning problem, while the second
problem is concerned with routing. In Fikar and Hirsch (2015) the solution method is also a
two-fold, where stage 1 uses set partitioning, while stage 2 applies a unified tabu search. Simi-
lar approaches are also studied in Bertels and Fahle (2006) and Bredström and Rönnqvist (2008).

3.5.2 Solution Methods for MPPs

As mentioned, the multi-period HHCRSP is less covered in literature, and the scope of reviewed
solution approaches for the problem is smaller, while the variety causing computational com-
plexity for the SSPs certainly applies to the MPPs as well. The planning horizon increases from
one day to most commonly five days, leading to a massive increase in solution space. This may
require other solution approaches than the ones utilized for SPPs.

The majority of articles found focus on the application of either exact solution methods or
metaheuristics, to solve the multi-period HHCRSP. Exact solution procedures focusing on a
Branch and Price and Cut (BPC) procedure are reviewed in among others Bard et al. (2014b).
A BPC algorithm was developed and proved capable of finding near-optimal solutions within
50 minutes for small instances. Another approach is presented by Trautsamwieser and Hirsch
(2014), where a BPC algorithm is developed to include a wide range of mandatory break and
work regulations, while still finding the global optimal solutions. Additionally, a Variable Neigh-
bourhood based solution approach is used to provide good initial upper bounds for the algorithm.

Moreover, integer programming is employed in several articles. Bachouch et al. (2011) propose
an integer linear program for deciding which employee to be allocated to a service, and when to
execute the service during the planning horizon. Cappanera and Scutellà (2013) and Cappanera
and Scutellà (2015) emphasize a fair workload distribution across employees. Cappanera and
Scutellà (2015) use pattern generation policies within an exact optimization problem to balance
the workload of employees, where the concept of pattern is introduced as a key tool to jointly
address assignment, scheduling, and routing decisions, where a pattern specifies a possible sched-
ule for visits. Two balancing functions are studied; maximizing the lowest employee utilization
factor and minimizing the highest employee utilization factor.

Considering metaheuristics, construction-based procedures, and local search-based procedures
prevail in the literature concerning MPPs. This is in contrast to SPPs where population-based
algorithms are frequently used. Shao et al. (2012) use a construction-based procedure and
solves the problem in two levels. At the first level patterns are assigned to patients, and at
the second level patients are repeatedly assigned to therapists. The algorithm used in the sec-
ond level constructs a set of candidate patients for a therapist, calculates the cost, builds the
therapist-patient assignment problem, and adds patients at their current location to a route.
This algorithm is designed to avoid time infeasibility while minimizing overtime worked. The
solution method studied in Bard et al. (2014a) is also a construction-based two-phased method,
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but the variables are assigned in a di�erent order. In the first phase, feasible solutions are con-
structed by stringing individual routes together over the period, and in the second phase, a local
optimum is found by exploring neighborhoods around the solution constructed in the first phase.

Hertz and Lahrichi (2009) present a search-based algorithm, where a mixed-integer program-
ming model with some non-linear constraints and a non-linear objective is solved using a Tabu
Search algorithm with various neighborhoods. Furthermore, Milburn and Spicer (2013) present
a metaheuristic solution approach that searches for the Pareto optimal frontier for travel cost,
nurse consistency, and balanced workload objectives.

Lastly, to tackle stochasticity in the MPPs, Rodriguez et al. (2015) introduce stochastic pro-
gramming, while Carello and Lanzarone (2014) present exact robust optimization techniques.
Dealing with dynamic events is most frequently solved by combining specific techniques with
exact or heuristic solution approaches. E.g. Koeleman et al. (2012) studies the dynamic as-
signment of clients by modeling the problem as a Markov decision process, and the objective
is to minimize the joint costs of rejecting and serving clients. Other techniques may be Monte
Carlo simulations, studied by Carello and Lanzarone (2014) and discrete event formulations, as
presented by Bowers et al. (2015).

3.6 Motivation for this Master’s Thesis

The field of HHC has received increasing attention by OR in recent years, however, the major-
ity of the research is related to the single-period problem. This thesis addresses the challenge
of allocating services to employees and days, and thereby solve the multi-period routing and
scheduling problem on a tactical level. Solution methods to the multi-period problem have been
reviewed, revealing the massive computational complexity related to a multi-period problem. To
handle this computational complexity, we aim to utilize existing, presumably good, single-period
routes, to form improved multi-period routes.

Several single-period papers reviewed present solution methods that successfully obtain more
e�cient daily routes, and the SPP in the HHC is continuously being studied with progressive
results. An assumption is therefore that single-period routes can be handily obtained, either
manually or by optimization, and compiled to form the foundation of initial sub-optimal multi-
period routes. However, we hypothesize that the initial sub-optimal multi-period routes can be
improved using a matheuristic. The mat heuristic preserves parts of the routes while wisely
selecting remaining parts of the routes to be solved exact in an iterative manner. On a tactical
level, this may contribute to improved routes with respect to e�ciency, without causing major
disruptions for the HHC providers.

The articles reviewed considering MPPs maximum account for three objectives at the same
time. In this thesis, we wish to account for a greater share of the objectives, to comply with
the complexity of the HHC problem, by including objectives related to fairness in workload,
overqualified work and visit continuity.

This thesis addresses the multi-period problem of the HHC, hereafter referred to as the Weekly
Routing and Scheduling Problem (WRSP). Moreover, single-period routes are defined as daily
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routes, and the multi-period routes are referred to as a weekly route plan.
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Chapter 4
Problem Description

This chapter describes the Weekly Routing and Scheduling Problem (WRSP) in the Home
Health Care (HHC). The WRSP is defined as the tactical problem of optimizing the Weekly
Route Plan (WRP) in the HHC by allocating services to employees and days while taking certain
restrictions into consideration.

The problem is simplified to only comprise user-related services, hereafter referred to as tasks.
Every task has a duration, constituting the workload of the task and a time window, specifying
when the task should begin and end, according to the care-plan. A task may not start before
the beginning of the time window but is allowed to exceed it, which is referred to as a time
window violation. Lastly, all tasks have an associated required skill level to ensure that the task
is performed by a competent employee. Users have di�erent needs and may require help several
times during a shift, or only a few times a week. Either way, this is represented as a set of tasks
in their care-plan. The number of repetitions of a task across a week is defined as a frequency. A
task with a frequency of twice a week may, for instance, be executed on Monday and Wednesday
or Tuesday and Thursday, representing two possible patterns. Every task is given a pattern
according to its frequency. The gap between every execution may vary, but repeating tasks
should preferably be spread out evenly across the week. Thus, a task can be seen as an overall
term, consisting of several executions across the week, hereafter referred to as jobs. An example
of a task is the distribution of medicine, with the related activity of distributing medicine twice
a week, being two jobs.

An HHC provider is responsible for serving a set of users according to the needs registered in the
associated care-plan. The tasks are performed by an HHC employee at the users’ home address.
Users may have preferences when it comes to which employees they are visited by, and these
are taken into account to ensure follow-up and ensure visit continuity. HHC employees have a
certain level of education and experience which corresponds to a skill level. Employees are not
allowed to perform tasks with requirements exceeding their skill level but can execute lower-level
tasks. Execution of lower-level tasks is referred to as overqualified work. Employees are working
shifts with a start- and end time. The current problem is limited to include day-shift only. The
actual end time of a shift may vary, and overtime is registered if the actual end time is later
than the planned end time. All employees must start and end their shifts at the HHC center.
For simplicity, all employees are assumed to use cars as a mode of transportation. Additionally,
synchronized jobs, requiring the presence of two employees at a time, and jobs with temporal
dependencies, are not included.
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The primary objective of this problem is to create e�cient routes across a period of one week,
by minimizing the total driving time between tasks. Additionally, several sub-objectives related
to employee- and user convenience, are included. With respect to employees, the amount of
overtime worked and overqualified work should be minimized. The routes should also be fair
in terms of workload distribution between employees across the week. This is accounted for
by minimizing the total of absolute greatest di�erence in workload on each day of the week.
User convenience is considered by striving to perform tasks within the related time window
by increasingly penalizing time window violations. Users have preferences regarding visiting
combinations and respecting these are rewarded to ensure visit continuity.
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Chapter 5
Mathematical Model

As the Home Health Care (HHC) problem can be interpreted as a Weekly Routing and Schedul-
ing Problem (WRSP), this chapter presents a mathematical model formulated as a Mixed Integer
Linear Program (MILP). Model assumptions are found in Section 5.1. Section 5.2 presents the
necessary definitions of the model and Section 5.3 and 5.4 present the objective function and con-
straints respectively. Lastly, Section 5.5 comprises subtour elimination constraints to strengthen
the formulation of the model while 5.6 describes the preprocessing of feasible arcs. The math-
ematical model is a result of further development and modification of the mathematical model
presented in Lynås and Van de Pontseele (2019). Appendix A shows the compressed model.

5.1 Model Assumptions

A fundamental assumption of the mathematical model is that the HHC problem can be inter-
preted as a network graph consisting of nodes and arcs. Each node corresponds to a job on a
day of the week, and an arc expresses an employee performing a job directly after another. The
path between the nodes forms the routes for each day in the period. The HHC o�ce is referred
to as the depot and is given by node 0. All other jobs are given by unique nodes, however, at
the same location, if they are related to the same user.

5.2 Definitions

This section introduces the sets and indices, parameters, and decision variables used in the
mathematical model.

Sets and Indices

D - set of days, 3 2 D
N3 - set of employees = working day 3 2 D
T - set of tasks C 2 T
J - set of all jobs 9 2 J
JT
C - set of jobs 9 in task C 2 T

A=3 - set of feasible arcs between jobs (8, 9), on day 3, for employee = 2 A=3

CT
C - set of feasible patterns for task C , 2 2 CT

C
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Parameters

�3C
92 -

(
1, if job j in task t is assigned to day d in pattern c

0, otherwise
&J

9 - skill level required at job 9

&N
= - skill level of employee =

)8 9 - driving time between job 8 and job 9
⇡ 9 - duration of job 9
) 9 - earliest starting time of job 9
) 9 - latest starting time of job 9
( - start time of any employee = on any day 3
( - end time of any employee = on any day 3
%=9 - preference score on combination between job 9 and employee =

!1 - maximum value of time window violation for stage one
, - maximum waiting time between two jobs

Decision Variables

G=38 9 -
(

1, if employee n performs job j directly after job i on day d

0, otherwise

~C2 -
(

1, if pattern c 2 CT
C is chosen for task t

0, otherwise
B 9 - start time of job j

4=3 - end time for employee n on day d

>=3 - duration of overtime worked by employee n on day d

;19 - minutes violating time window for job j, 0 - !1

;29 - minutes violating time window for job j, exceeding !1

F3 - the greatest workload on day 3 for an employee
F3 - the least workload on day 3 for an employee
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5.3 Objective Function

<8= F1
’
82J

’
9 2J

)8 9
’
32D

’
=2N3

G=38 9 (5.1)

+F2
’
9 2J

(?1;
1
9 + ?2;

2
9 ) (5.2)

+F3
’
32D

’
=2N3

>=3 (5.3)

+F4
’
82J

’
9 2J

’
32D

’
=2N3 |&J

9 <&N
=

⇡ 9G
=3
8 9 (5.4)

+F5
’
32D

(F3 �F3 ) (5.5)

�F6
’
82J

’
9 2J

’
32D

’
=2N3

%=9 G
=3
98 (5.6)

The objective function is minimized and given by expressions (5.1)-(5.6). The function consists
of one main objective (5.1), minimizing total driving time, and several sub-objectives, (5.2)-(5.6).
All of the objectives are given a weight F to set their relative importance in the model.

The sub-objective (5.2) encourages jobs to be performed within their time window, and ex-
pression (5.3) penalizes overtime. The variables ;19 and ;29 represent time window violation in
minutes, and the associated parameters ?1 and ?2 set the size of the penalty. Expression (5.4)
penalizes the function for every minute performed of overqualified work. The sub-objective (5.5)
strives for evenness in workload during a day by penalizing the absolute greatest di�erence in
workload for an employee on each day. Consistency in employee-user combination is rewarded
in term (5.6), encouraging the users’ preferred employee to perform the job.

5.4 Constraints

’
22CT

~C2 = 1, C 2 T (5.7)

’
82J

’
=2N3

G=38 9 �
’
22CT

�3C
92~

C
2  0, C 2 T , 9 2 JT

C ,3 2 D (5.8)

’
82J

’
32D

’
=2N3

G=38 9 = 1, C 2 T , 9 2 JT
C (5.9)

’
9 2J

G=309 = 1, 3 2 D,= 2 N3 (5.10)

’
9 2J

G=390 = 1, 3 2 D,= 2 N3 (5.11)

’
9 2J

G=398 �
’
9 2J

G=38 9 = 0, 8 2 J\
�
0
 
,3 2 D,= 2 N3 (5.12)

Constraints (5.7) assign one pattern to each task. Constraints (5.8) ensure that each job in a
task is performed on a day according to the chosen pattern for that task and constraints (5.9)
ensure that each job is performed only once during the period.
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Constraints (5.10) and (5.11) state that all employees must start from, and return to node 0,
which represents the HHC center. The flow in and out of a node is controlled by constraints
(5.12).

( +)09  B 9 +"1=3
9 (1 � G=309 ), 9 2 J ,3 2 D,= 2 N3 (5.13)

B8 + ⇡8 +)8 9  B 9 +"2=3
9 (1 � G=38 9 ), 8, 9 2 J ,3 2 D,= 2 N3 (5.14)

) 9  B 9  ) 9 + ;19 + ;29 , 9 2 J (5.15)

;19  !1, 9 2 J (5.16)
B 9 + ⇡ 9 +)90 �"3=3

9 (1 � G=390 )  4=3 , 9 2 J ,3 2 D,= 2 N3 (5.17)
4=3 � (  >=3 , 3 2 D,= 2 N3 (5.18)

Constraints (5.13) ensure that the starting time of the first job performed on a day is consistent
with the employee’s starting time and the time it takes to drive from depot to the job. Con-
straints (5.14) guarantee that every subsequent job has a starting time respecting the previous
sequence of jobs and driving times.

Constraints (5.15) set the value of ;19 and ;29 , penalizing late starting times in the objective func-
tion. Constraints (5.16) ensure that the maximum value of ;19 is !1, to preserve two-stage linear
penalization of the violation of time window.

Constraints (5.17) obtain the value of an employee’s actual ending time on a day, and constraints
(5.18) calculate the minutes of overtime worked by an employee on a day. Parameters "1=3

9 -
"3=3

9 in (5.13), (5.14) and (5.17) are su�ciently large coe�cients.

’
82J

’
9 2J

(⇡ 9 +)8 9 )G=38 9  F3 , 3 2 D,= 2 N3 (5.19)

’
82J

’
9 2J

(⇡ 9 +)8 9 )G=38 9 � F3 , 3 2 D,= 2 N3 (5.20)

Constraints (5.19) and (5.20) create an upper and lower boundary for the workload of an em-
ployee on a day, by adding together the duration of jobs and driving times between jobs.

G=38 9 2
�
0, 1

 
, 3 2 D,= 2 N3 , (8, 9) 2 A=3 (5.21)

~C2 2
�
0, 1

 
, C 2 T , 2 2 CT

C (5.22)
B 9 , ;

1
9 , ;

2
9 � 0, 9 2 J (5.23)

F3 ,F3 � 0, 3 2 D (5.24)
4=3 ,>=3 � 0, 3 2 D,= 2 N3 (5.25)

Constraints (5.21) - (5.22) ensure binary variables and constraints (5.23) - (5.25) ensure non-
negativity for the remaining decision variables.
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5.5 Strengthening the Formulation of the Model

Subtour Elimination (SE) constraints (5.26) are formulated to decrease the run time of the
model by eliminating subtours in the network. These are added to the model for testing in
Chapter 8.2.1

’
82S

’
9 2S

G=38 9  |S|, S ⇢ J ,= 2 N ,3 2 D, |S| � 2 (5.26)

5.6 Preprocessing of Feasible Arcs

A set of all feasible arcs, A=3 , was presented in Section 5.2 and the search space is comprised
of all the feasible arcs. Variables G=38 9 are created based on the feasible arcs, leaving out infeasi-
ble or unnecessary variables, by taking into consideration the restrictions presented in Chapter
4. Preprocessing the arcs by removing illegal combinations based on these restrictions reduces
the number of feasible arcs, thus reducing the search space and the run time of the MILP model.

Su�cient Skill Level
Skill requirements related to a task must be respected. No arcs are created for employees with
insu�cient skill levels for a given task.

Task and Jobs
Jobs within the same task can not be performed on the same day, i.e no arcs are created for
these instances. Also, no arcs between 8 = 9 are created, as it is not possible to travel from one
job back to the same job.

Possible Patterns
Each task is given a pattern, and the jobs are to be performed according to its task’s pattern.
The patterns are constructed with a predefined gap between two jobs. For example for tasks
with two jobs, a legal pattern requires a gap of one day between the execution of the jobs. Due
to symmetry in the problem some jobs should not be performed on certain days, hence no arcs
are created. This is the case for tasks with jobs performed two, three, four, and five times a
week, considering a period of five days.

• Two times a week
The first of the two jobs is restricted to not being performed on the two latest days of the
period. Similarly the second of the two jobs cannot be performed on the first two days of
the period. In both cases, no arcs are created.

• Three times a week
Due to the one-day gap requirement, a task with three jobs must be performed on the
first, third, and fifth day of the period. Hence arcs are only created for the first job on the
first day, the second job on the third day, and the third job on the fifth day of the period.

• Four times a week
Using the same argument as for tasks with frequency two times a week, the first job in the
task can only be performed on the first two days of the week. Similarly, the second job in
the task can only be performed on the second or third day of the week. The same pattern
goes on for the third and the fourth job in the task.
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• Five times a week
A task with five jobs means that one job should be performed each day. Therefore the
first job is assigned to the first day, the second to the second day, and so on.

Waiting Time and Time Window
Each task has a related starting time and ending time. If the earliest ending time of one task is
later than the latest starting time of some other tasks, jobs in these tasks cannot be performed
consecutively and no arcs are created. An arc from 8 to 9 is therefore only created if:

) 8 + ⇡8 +)8 9  ) 9

To comply with the waiting time restriction, no arcs are created if waiting time is greater than
the maximum waiting time. By way of explanation, the following must hold to create an arc:

) 9 � () 8 + ⇡8 +)8 9 ) <,
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Chapter 6
Solution Method

This chapter presents the proposed solution method for the Weekly Routing and Scheduling
Problem (WRSP) of the Home Health Care (HHC). Section 6.1 introduces an overview of the
solution method. Section 6.2 presents the solution representation and describes how initial
solutions are obtained, while Section 6.3 describes the process of the Iterative Improvement
Heuristic (IIH). Lastly, the implementation of the matheuristic is included in Section 6.4.

6.1 Overview of the Solution Method

The proposed solution method is a matheuristic, illustrated in Figure 6.1, consisting of two
stages: constructing an initial Weekly Route Plan (WRP) and the Iterative Improvement Heuris-
tic. The initial WRP in stage one is constructed using a set of daily routes, and this is used as
input in the IIH in stage two. The IIH in stage two aims to reduce the complexity of the WRSP
by iteratively solving parts of the problem and continuously updating the routes accordingly.

Figure 6.1: Overview of Solution Method
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6.2 Solution Representation and Construction of Initial Solu-
tion

A solution comprises one route for each employee = on a day 3 of the week. To imitate that all
routes start and end at the HHC o�ce, the first and last job of each route is 0, as the HHC o�ce
is represented by job 0. The order of jobs is given by index :. The routes are dynamic in the
solution method, and jobs may be added or removed due to improvements in the routes. Figure
6.2 illustrates the solution representation for a selection of a week. For simplicity, the notation
38 is used for day 8, and =8 for employee 8. In this example, employee =1 has a route on day 32
comprising six jobs in the given order of 0 - 12 - 2 - 36 - 24 - 23 - 33 - 0, decided by : = 1 to
: = 6. This representation is chosen to make the IIH easier to implement, as it permits a part
of the solution to be optimized, without majorly a�ecting the remaining part of the solution.

Figure 6.2: Solution Representation

An initial solution is used as a starting point for the IIH. The initial solution consists of daily
routes compounded into an initial Weekly Route Plan (WRP). Each daily route is created from
a daily perspective, based on a set of jobs given by a predefined allocation to days.

6.3 The Iterative Improvement Heuristic

The IIH optimizes a part of the WRP in each iteration by allowing reallocations of jobs. This
section presents possible reallocations of jobs by defining a set of operators and outlines the
process of the IIH.

6.3.1 The Operators of the Iterative Improvement Heuristic

The initial WRP is assumed to be relatively e�cient on a daily basis, however, changes to the
routes may prove to be favorable when considering the weekly problem. To investigate potential
changes and utilize the existing routes, four operators are proposed to define possible realloca-
tions of jobs; the Intra Swap Operator, the Inter Swap Operator, the Intra Move Operator, and
the Inter Move Operator.

Intra Swap Operator
The Intra Swap Operator defines swaps of two jobs within the same route, i.e. the jobs swap
indices while the rest of the route is unchanged. An example of an intra swap is illustrated in
Figure 6.3, where job 5 and 22 swap index 2 and 5.
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Figure 6.3: Example of the Intra Swap Operator

Intra Move Operator
The Intra Move Operator defines a move within the route the job currently belongs to, resulting
in a change in the index of the job. An example of an intra move is illustrated in Figure 6.4, as
job 5 moves from index 2 to index 4, resulting in a change in indices, :-1, for jobs 11 and 15, as
shown by the stippled square.

Figure 6.4: Example of the Intra Move Operator

Inter Swap Operator
The Inter Swap Operator defines two jobs swapping routes, meaning exchange in the employee,
day, or both. Figure 6.5 shows an example of an inter swap between job 5 and job 21. In this
example, job 5 swaps with job 21 from index 2 to 4, from day 1 to 2 and employee 1 to 2. The
remaining jobs are una�ected.

Figure 6.5: Example of the Inter Swap Operator

Inter Move Operator
The Inter Move Operator defines the move of a job to a di�erent route, implying a di�erent
employee, day, or both. An example of an inter move across both day and employee is shown in
Figure 6.6. The example shows how job 5 with index 2 from the route belonging to employee =1
on day 31, moves to the route belonging to employee =2 on day 32 with index 5. The figure also
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marks the jobs on 31 and 32 a�ected by the operator with a stippled square, having changed
indices : to : � 1 and :+1 respectively.

Figure 6.6: Example of the Inter Move Operator

6.3.2 The Process of the Iterative Improvement Heuristic

This section outlines the process of the IIH. The IIH optimizes parts of the WRSP while con-
tinuously updating the routes to generate improved current solutions, based on an initial WRP.

The WRSP is solved using a mathematical model that allows the reallocation of jobs according
to the operators describes in Section 6.3.1. As the mathematical model permits several realloca-
tions simultaneously, the risk of reaching a local optimum is decreased. The starting point is an
initial Weekly Route Plan, which is set to be the Current Solution. At the beginning of the IIH,
the entire Current Solution is fixed. The fixed Current Solution comprises fixed jobs, meaning
that the related preceding job, employee, and day is fixed accordingly. The set of fixed jobs
is denoted J � . Parts of this fixed Current Solution is iteratively opened up and added to the
optimization problem, which is solved by the mathematical model. The optimization problem
then comprises a set of open jobs J$ , and a set of jobs R$ in open routes, representing the
only jobs allowed to be reallocated. The process of the IIH is presented in Algorithm 1. The
algorithm consists of two steps, step one comprising lines 3-4 and step two lines 5-8.

In step one, a set of open jobs J$ of the Current Solution B⇠ , is chosen by applying the func-
tion $?4=�>1(4;42C8>=(B⇠ ) to the Current Solution. The mathematical model solves the problem
comprising only the set of open jobs J$ , allowing reallocations according to any of the moves
and swaps defined by the operators. The output from this step is a new Current Solution B⇠

containing updated routes. This is the input of step two of the IIH.

In step two, the search space is enlarged through increasing the number of possible reallocations
of the set of open jobs, by opening routes in the Current Solution. The$?4='>DC4(4;42C8>=(B⇠ ,3,=)
function is applied to the Current Solution and used to select jobs in an open route, denoted as
the set R$ . The open route is not defined as an entire route, but may also be only a selection
of jobs in a route. The jobs in the open route are still fixated to a route with a given employee
= on a given day 3 in the Current Solution, but not to the preceding job. The model now solves
the optimization problem comprising the open jobs and jobs in open routes, being the set of J$

and R$ . The reallocations of the open jobs are still allowed according to any of the operators.
In addition, the open jobs may interact with the open route by performing inter moves to the
open route. Jobs in the open routes are only permitted to be reallocated according to the intra
swap and intra move operator, as these jobs are still fixated to an employee and a day. This
process continues until all routes have been explored as open routes for the reallocation of the
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open jobs. The Current Solution, B⇠ , is updated every time a new route is opened, and the
output of step two is an improved Current Solution.

Algorithm 1: The Iterative Improvement Heuristic
Input: Initial Solution, B�
Input: Maximum Run Time ) C>C0;

Output: Current Solution, B⇠
1 B⇠ := B�

2 while run time  ) C>C0; do
3 J$ := OpenJobSelection(B⇠ )
4 B⇠  solve mathematical model with J$

5 for 3 2 D, = 2 N3 do
6 R$ := OpenRouteSelection (B⇠ , 3, =)
7 B⇠  solve mathematical model with J$ and R$

8 end
9 end

hei
One round of the heuristic search consists of multiple iterations of solving the mathematical
model until all routes of the week have been explored. The while-loop starting on line 2 illus-
trates that the heuristic search may be iteratively conducted by choosing a new set of open jobs.
In that case, the output of step two will be the input of step one, and the open jobs are chosen
by applying $?4=�>1(4;42C8>=(B⇠ ), to the new Current Solution.

Figure 6.7 illustrates how a set of open jobs and a set of jobs in open routes can be chosen from
a solution. In this example, the open jobs are jobs 5, 10, 18, and 20, and the open route is the
route belonging to employee =1 on day 33, comprising jobs 13, 4, 7, 32, 16 and 34.

Figure 6.7: Example of Two Open Jobs and an Open Route

Figure 6.8 illustrates how the mathematical model may choose a combination of moves and
swaps defined by the operators to improve the solution. This example shows an inter move of
job 5 and an intra swap of job 4 and 34.

Figure 6.8: Example of the Intra Swap Operator and the Inter Move Operator

The updated Current Solution is presented in Figure 6.9, illustrating the a�ected parts by
stippled squares. Jobs 11, 15, 22, 30, and 24 change indices to :-1 due to the inter move of job
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5. Job 5 changes index, day, and employee, while jobs 34 and 4 change indices only.

Figure 6.9: Example of Changes in Routes due to the Operators

6.4 Implementing the Iterative Improvement Heuristic

This section demonstrates how the IIH is implemented to solve the WRSP. To utilize the solu-
tion representation and explore the possible reallocations defined by the operators, adjustments
to the mathematical model in Chapter 5 have been made. A description of these adjustments
follows in Section 6.4.1 and Section 6.4.2.

6.4.1 Adjusting the Mathematical Model

To adjust the mathematical model to manage the definitions of open jobs, open routes, and
fixed jobs, the following parameters are introduced:

�=38 9 -

8>>>><
>>>>:

1, if job j in J � , and is performed by employee n on day d directly after job i in the
Current Solution

0, otherwise

$=3
9 -

8>>>>>><
>>>>>>:

1, if job j in R$ , and is performed by employee n on day d in the Current Solution
or job j is performed by employee n on day d directly after job i in J$ in the
Current Solution

0, otherwise

An important assumption of the mathematical model is that a job 9 is performed if there exists
an arc between 8 and 9 , where 8 is the preceding job of 9 . In the fixed Current Solution, all jobs
9 have a parameter �=38 9 equal to 1 and a fixed starting time B 9 . Furthermore, the parameter $=3

9
is set to 0 for all jobs 9 in the fixed Current Solution. A practical illustration of this is shown in
Figure 6.11, based on the solution presented in Figure 6.10. The nodes correspond to jobs and
both routes start at the HHC o�ce, however, the routes are only for illustration and the relative
location is fictive. The two routes are performed by di�erent employees on di�erent days, and
as this illustration shows the fixed Current Solution, all jobs 9 have a corresponding �=38 9 equal
to 1. Table 6.12 summarizes the values for �=38 9 and $=3

9 in the fixed Current Solution.
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Figure 6.10: A Compressed Version of the Solution Representation

Figure 6.11: A Practical Illustration of the Solution Representation

Figure 6.12: A Summary of the Values for �=38 9 and $=3
9 in the Fixed Current Solution

In the mathematical model, the variable G=38 9 related to each pair of jobs (8, 9) must be set accord-
ing to the introduced parameters, and this is ensured by constraints 6.1 and 6.2. Constraints
6.1 ensure that the set of fixed jobs in J � is set to be performed according to the routes in the
Current Solution. Constraints 6.2 fixate the set of jobs R$ in the open route to its respective
employee = and day 3, according to the routes in the Current Solution. This allows the preceding
job 8 to be decided by the model.

�=38 9 � G=38 9  0, 8 2 J , 9 2 J ,3 2 D,= 2 N3
�� �=38 9 = 1 (6.1)

$=3
9 �

’
82J

G=38 9  0, 9 2 J ,3 2 D,= 2 N3
�� $=3

9 = 1 (6.2)

The jobs are iteratively added to the optimization problem, by setting the parameter �=38 9 related
to open jobs or jobs in an open route to 0 and the starting time B 9 is relaxed. In addition, the
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parameter $=3
9 is set to 1 for jobs in the open routes and jobs subsequent to open jobs. If $=3

9

for a job 9 is set to 1, the related �=38 9 is always set to 0 and the starting time is relaxed. This
is illustrated by an example in Figure 6.13 and Figure 6.14. The example shows two open jobs,
10 and 18. Using the new notation, this implies that the parameters �=231

1,10 , and �=231
26,18 are set to

0. In addition $=231
29 and $=231

9 are set to 1, as they are directly subsequent to the open jobs.
Figure 6.14 also shows an open route comprising six jobs, 13, 4, 7, 32, 16, and 34, illustrated by
a route with stippled lines. The parameter $=133

9 for these jobs is set to 1. The starting times
B 9 of the a�ected jobs are determined by the mathematical model. A summary of the values of
�=38 9 and $=3

9 is found in Table 6.15.

Figure 6.13: A Compressed Version of the Solution Representation, Illustrating Two Open Jobs and an
Open Route

Figure 6.14: A Practical Illustration of the Solution Representation with Two Open Jobs and an Open
Route

Figure 6.15: A Summary of the Values for �=38 9 and $=3
9 , Illustrating Two Open Jobs and an Open Route
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6.4.2 Adjusting the Implementation of the Operators

This section describes how the operators are realized through the adjustments of the mathe-
matical model. An explanation of how the mathematical model allows the reallocation of jobs
according to each of the operators follows.

Intra Swap Operator and Intra Move Operator
The mathematical model allows reallocation of jobs according to the Intra Swap Operator and
the Intra Move Operator by setting �=38 9 to 0 for the open jobs, and $=3

9 to 1 for the jobs in the
open route. The example in 6.16 illustrates that an intra swap is performed between job 4 and
34, by setting $=133

4 , $=133
7 and $=133

34 to 1. In addition, job 16 performs an intra move by setting
$=133

16 and $=133
34 equal to 1, allowing job 16 to change index from : = 5 to : = 6.

Figure 6.16: A Compressed Version of the Solution Representation, Illustrating an Intra Swap and an
Intra Move

Inter Swap Operator and Inter Move Operator
The reallocations according to the Inter Swap Operator and the Inter Move Operator is allowed
in the mathematical model by setting the parameter �=38 9 related to the open jobs 9 to 0, and
$=3

9 to 1 for the jobs in the open route. In the example illustrated in Figure 6.17, the open job
10 performs an inter move to an open route. Similarly to the previous examples, this is allowed
by setting �=231

1,10 to 0, and the parameter $=231
29 of the subsequent job 29 to 1. As all jobs 9 in

the open route have a parameter of $=133
9 equal to 1, job 10 may be reallocated anywhere within

the open route, for instance to : = 4.

Figure 6.17: A Compressed Version of the Solution Representation, Illustrating an Inter Move
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Chapter 7
Case Study

This chapter describes the Case Study in focus of this thesis. Section 7.1 describes the collabo-
ration with Visma and Section 7.2 presents the data provided by Visma. Section 7.3 introduces
a new data structure more appropriate for this problem, as well as explaining how necessary
parameters were extracted and created from the given data. Lastly, Section 7.4 summarizes how
test instances are generated based on these constructed parameters and how initial routes are
created. The test instances and initial routes are used to conduct a computational study of the
problem in Chapter 8.

7.1 Collaboration with Visma

Visma is a Norwegian software company that in recent times has established an optimization
team working with delivering automated systems to the government and other public institu-
tions. One of these automated systems is a daily route planner based on optimization algorithms,
for HHC providers. In the past three years, Visma has collaborated with students at NTNU to
explore new aspects of the HHC problem and further develop the Visma Route Planner. This
thesis is written as a part of that collaboration, with guidance from the Visma optimization
team during the fall of 2019 and the spring of 2020.

Visma is working with several municipalities in Norway and has provided the necessary data
for this thesis. Visma also facilitated a day-visit to one of their pilot municipalities, for us to
gain insight into many of the aspects of the HHC. This thesis is limited to consider the day-shift
only, as the day-shift was found to be the busiest shift of the day with the most demanding jobs
(Lynås and Van de Pontseele, 2019). The given data comprises one anonymized day-shift of the
HHC in Oslo. As the data only includes one single day, the frequency distribution of jobs over
the course of a week is extracted from the analysis by Lynås and Van de Pontseele (2019).

7.2 Description of Data

This section presents the contents of the data provided, which is summarized in Table 7.1. The
table shows that the data provided comprises 40 employees and 300 jobs, distributed across 200
users.
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Table 7.1: Characteristics of the Data

Days Employees Users Jobs
No. in Data 1 40 200 300

Employees and Shifts
In the provided data, employees are assigned a unique employee ID and a skill level according
to their experience and education. Skill levels range from one to four, corresponding to an as-
sistant, health worker, nurse, and doctor. The data comprises one day with one shift, lasting
from 09:00 until 17:00.

Users and Jobs
According to the data provided by Visma, every user has a unique user ID with an associated
address given in coordinates. Furthermore, every job has a unique job ID with associated de-
tails. These details are starting time, latest starting time, duration, the level of skill requirement
needed, and a user ID to identify who is serviced by the job.

The starting time related to a job indicates the earliest point of time when the job can be
performed, while the latest starting time expresses the latest point of time the job should start.
The di�erence between the earliest-and latest point of starting time plus duration is referred to
as the time window of the job. Figure 7.1 illustrates how jobs are distributed based on their
related starting time. The figure shows that a large fraction of the jobs during a day have a
starting time between 11:00 and 13:00, indicating that the workload is highest in the middle of
the day.

Figure 7.1: Distribution of Jobs’ Earliest Starting Time

The duration of a job is the estimated time it takes to perform the job. The duration is given
in minutes, ranging from 5 to 60, and 42% of jobs during the day shift have a duration of more
than or equal to 45 minutes. Table 7.2 presents the distribution of jobs across durations.
By simplifying and assuming that the duration of a job can be distributed evenly across the
related time window, Figure 7.2 shows the distribution of workload across the day. This is a
gross simplification because a job’s duration obviously cannot be distributed over the period
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Table 7.2: Distribution of Jobs across Durations

Minutes 5 10 15 20 25 30 45 60
Distribution of
Jobs

9.7% 10.7% 10.0% 8.3% 10.3% 9.0% 29.3% 12.7%

it can be performed, however, it illustrates the busiest hours of the day. According to this,
the busiest hour is between 13:00 and 14:00, requiring 1609 minutes of work. As mentioned in
Chapter 2, an employee spends somewhere between 18 and 26% of their working time on driving
between users (Holm and Angelsen, 2014). This results in approximately 46 minutes of work
per hour of the day. To meet the demand of 1609 minutes, at least 35 employees must be at
work between 13:00 and 14:00. The need for employees ranges from six to 35 within the same
shift, emphasizing that certain times of the day are very busy compared to others.

Figure 7.2: Simplified Illustration of Workload in Minutes and Employees Needed Across the Day

The number of jobs concerning a specific user varies as users have di�erent needs. The data
reveals that the number of jobs concerning a specific user varies within a day, and previous
studies by Lynås and Van de Pontseele (2019) shows that the number of jobs concerning a user
also varies across the week. Lynås and Van de Pontseele (2019) calculate a frequency distribution
of jobs by using weekly HHC data and identifying the frequency of jobs based on jobs with the
same user ID, duration, starting time, and ending time. This is referred to as frequent jobs.
Examples of jobs that are frequent are the distribution of medicine, assistance in getting out of
bed, or other jobs that have to be performed either several times during a day or every day at
a specific time. 24.8% of the jobs are repeated every day while 53.8% only occur once during
the five days. The remaining 21.4% have a frequency of two, three, or four occurrences over the
period of five days, and the total distribution of frequency of jobs is shown in Table 7.3.
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Table 7.3: Distribution of Jobs across Frequencies

Frequency 1 2 3 4 5
Distribution of
Jobs

53.8% 5.7% 4.3% 11.4% 24.8%

7.3 Generating Parameters for the Test Instances

To run tests and perform a thorough analysis of the HHC problem, multiple test instances of
appropriate sizes must be generated based on the provided data from Visma. To ensure the
relevance of the analysis, the structure of the data must be preserved and relative sizes have
been used to construct parameters. In cases where the data is insu�cient or simply lacking,
parameters have been created based on common values from the literature and conversation
with the employees in one of the pilot-municipalities. Based on the characteristics described in
Section 7.2, this section presents how parameters have been generated to create test instances.

7.3.1 Transition to a New Data Structure

To generate suitable test instances for the model, an appropriate data structure must be created.
In the data set provided, all details are related to a JobID e.g. starting times and duration, but to
solve the Weekly Routing and Scheduling Problem (WRSP) e�ciently and reduce the complexity
of the problem, a new way of structuring the data is introduced. As mentioned, jobs related to a
user can be frequent, meaning that certain jobs should be performed a certain amount of times
during a week. These jobs can be viewed as completely identical, e.g. distribution of medicine
twice a week. Instead of having a set of identical jobs, we create a parenting task, where jobs
are instances of the task, and Table 7.4 shows an example of the relation between a task and
its user. This example illustrates how the distribution of medicine is a task related to a user,
consisting of two identical jobs to be performed on Monday and Wednesday.

Table 7.4: Example of Relation Between Task, User and Jobs

Example: Task 10, related to user 9, consisting of two jobs
Monday Tuesday Wednesday Thursday Friday
Job 4 Job 5

To generate these parenting tasks, jobs are set as instances of tasks, based on the shares of
frequent jobs in Table 7.3. Therefore, the only input in generating the test instances is the
number of jobs. The other parameters are either calculated by using a distribution from the
data or chosen randomly from the data. The basic idea is that all details previously related to
a job, now belong to the overall task and the data is connected in the following way:

Task = TaskID, JobIDs, UserID, DT, P, ST, LST, !() , D, SR, EU

TaskID=ID, JobID=JobID, UserID=UserID, Driving Time=DT, Pattern=P, Starting Time=ST, Latest Starting
Time=LST, Absolute Latest Starting Time=!() , Duration=D, Skill Requirement=SR, Employee-User score=EU,

An elaboration of how the parameters are created and connected to a task follows.
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Driving Times
Each task has a specific user, and every user has a home address given in coordinates. These
coordinates are used to calculate driving times in minutes between all users, and thereby tasks.
If two tasks belong to the same user, such as showering and distribution of medicine, these can
be performed consecutively with a driving time of zero between the two. Driving Time between
two tasks may be asymmetric due to, for instance, one-way roads, as the calculations respect
feasible driving patterns.

Patterns
To ensure that the jobs within a task are evenly spread over the course of five days, according to
the associated frequency, patterns are created. A pattern gives a list of days when the jobs can
be performed. There are many possible patterns, for instance, there are ten ways of choosing
two days within a five day period for a task with frequency two. To reduce the complexity of
the problem and ensure a gap of one day between each job, if attainable, the number of patterns
is limited to 15. A description of possible patterns related to frequencies is found in Table 7.5,
and a more detailed illustration is found in Appendix B.1.

Table 7.5: Possible Patterns

Frequency No. of Patterns Description
5 1 Every day of the week
4 5 Four times a week
3 1 Mon, Wed and Fri
2 3 Mon and Wed, Tue and Thu or Wed and Fri
1 5 Any day of the week

Starting Times and Duration
Every task is given a Starting Time, a Latest Starting Time, and Duration by randomly selecting
a job’s associated starting time, latest starting time, and duration from the data. Starting Time
and Latest Starting Time are given in minutes after midnight, and Duration is given in minutes.
The di�erence between the Starting Time and the Latest Starting Time is referred to as a Time
Window, given by:

Time Window = Latest Starting Time - Starting Time + Duration

Starting after the Latest Starting Time is allowed at an extra cost related to overtime, however
only until the Absolute Latest Starting Time or one hour after the shift ends at 17:00. Absolute
Latest Starting Times are given in minutes after midnight, and given by the following:

Absolute Latest Starting Time = min

n
Latest Starting Time + 60, 1080

o

Maximum waiting time is set to two hours between two jobs and the maximum driving time
between two tasks is set to 15 minutes.

A summary of the relations between the di�erent points of time concerning a task is found in
Figure 7.3.
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Figure 7.3: Relations Between Time Parameters

Skill Requirement
All tasks are given a level of skill requirement needed to perform the task. The skill requirements
are based on the distribution of skill requirements in the data given in Table 7.6.

Table 7.6: Distribution of Tasks across Skill Requirements

Level 1 2 3 4
Distribution of
Tasks

26.0% 24.0% 24.0% 26.0%

7.3.2 Generating Parameters Related to Employees

The number of employees per day is determined based on the relationship between the number
of jobs and the number of employees in the data set provided, as shown in Table 7.1. The initial
job-employee ratio of 7.5 is rounded up to 8.

Employees are given a skill level related to their education and experience, based on the dis-
tribution from the data, given in Table 7.7. To ensure that the skill level of the employees is
su�cient to serve the skill requirements of tasks on a certain day, at least one employee with
su�cient skill level must work each day.

Table 7.7: Distribution of Employees Across Skill Levels

Level 1 2 3 4
Distribution of
Employees

25.0% 25.0% 25.0% 25.0%

Compliance of user convenience is done by generating a fictive Employee-User score. The
Employee-Job preference defined in the mathematical model in Chapter 5 now belongs to a
user instead of a job, but the result is the same. The scale of convenience ranges from 0 to 1.
The combination of user and employee is chosen randomly in the creation of the test instance by
giving all tasks one preferred employee with a score of 1. Lastly, it is ensured that all employees
have approximately the same number of tasks they are preferred for.
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7.4 Generating Test Instances and a Weekly Route Plan

Based on the previous discussion, test instances are created. The characteristics of an instance
are given in Appendix B.1. All instances are constructed based on the same set of relative sizes
and parameters, and the number of jobs is the only input.

In this thesis, the Visma Route Planner is utilized to generate daily routes based on the test
instances. A test instance comprises five days that can be divided into individual days and used
as input in the Visma daily Route Planner. These daily routes can thereafter be compounded
into a Weekly Route Plan of five days, which are further studied for potential improvement in
Chapter 8.
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Chapter 8
Computational Study

This chapter presents how the Iterative Improvement Heuristic (IIH) is applied to the Weekly
Routing and Scheduling Problem (WRSP) to generate an improved Weekly Route Plan (WRP)
with respect to di�erent objectives. Section 8.1 introduces the hardware and software used in this
study. Section 8.2 forms the basis for the study, by testing and strengthening the Mixed-Integer
Linear Programming (MILP) model and preparing the configuration of the heuristic parameters.
Furthermore, Section 8.3 configures the heuristic parameters and validates the proposed IIH.
Finally, a practical study of the impact on routes relative to improvement, when considering
di�erent stakeholders, is found in Chapter 8.4.

8.1 Test Environment

The mathematical model described in Chapter 5 is implemented using the commercial opti-
mization software Xpress-Workbench. The test instances are generated using Python and are
exported as .txt-files that are used as input in the MILP, and into the Visma Route Planner.
Python is also used to implement the proposed solution method. All instances are solved on
Apple MacBook. Minor deviations may occur due to external factors, such as additional soft-
ware running on the MacBook. The software and hardware used are summarized in Table 8.1.

Table 8.1: Hardware and Software Used in Testing

Processor 1.4 GHz Dual-Core Intel Core i5
Memory 4,0 GB
Operating System macOS Catalina Version 10.15.4
Xpress-Workbench 5.0.2 64 bit
Python Version 3.8.0

8.2 Preliminary Study

This section presents the preliminary study for the IIH. First, Section 8.2.1 illustrates the com-
plexity of the WRSP and proposes a strengthening formulation of the model. Second, Section
8.2.2 presents the preparations for the configuration of the heuristic parameters.
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8.2.1 Studying the Mixed Integer Linear Programming Model

To test and strengthen the MILP presented in Chapter 5 a Base Case Weight set is needed to
solve the WRSP. The objective function consist of six terms, each with a respective weight, F ,
as Table 8.2 describes. The weights represent the valuation of the associated objective term and
routes greatly depend on the size of the weights relative to one another. In addition, the unit
of the objective terms plays an important role as the sizes of the units di�er. The objectives
Driving Time, Overtime, and Violation of Time Window, are set to be the most important as
these are directly related to cost for the HHC providers, employee- or user convenience. These
objective terms are given a weight of 1, while the remaining are set to 0.1 to still generate
realistic routes. The Base Case Weight set is presented in Table 8.3.

Table 8.2: Objectives with Weighting Variables and Units

Weight Objective Abbreviation Unit
F1 Driving Time DT Minutes
F2 Time Window TW Minutes
F3 Overtime OT Minutes
F4 Overqualified Work OW Minutes
F5 Absolute Di�erence in Workload Across Days WD Minutes
F6 Employee-User Preferences EU # of Jobs

Table 8.3: Base Case Weight Set

DT TW OT OW WD EU
Base Case Weights 1 1 1 0.1 0.1 0.1

Instances of di�erent sizes, based on the number of jobs, are created to identify the greatest size
the model can solve exact within a reasonable time. Each size was solved twice based on two
separate test instances generated as described in Chapter 7. The maximum run time was set
to one hour. Table 8.4 summarizes the results, showing that instances up until the size of 20
jobs can be solved using the model described in Chapter 5. It is therefore evident that solving
real-life instances is extremely challenging for the MILP and the need for a heuristic approach
to solve the WRSP is exposed.

Subtour Elimination (SE) constraints with a subset of size limited to two and three are added
to the model to strengthen the formulation. Table 8.4 reveals that the SE constraints (5.26)
on average reduce the run time of the smaller size instances of 20 and 25 jobs, and reduce the
gap when solving most of the instances greater than 25 jobs. The SE constraints are therefore
included in the MILP model throughout the rest of the computational study.

Table 8.4: Testing and Strengthening of the MILP

With SE Constraints
# of Jobs Run Time Gap Run Time Gap

20 50 0.00% 4 0.00%
25 >3600 0.33% 142.5 0.00%
30 >3600 8.37% >3600 5.99%
35 >3600 16.26% >3600 18.05%
40 >3600 28.09% >3600 25.12%
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8.2.2 Preparing the Configuration of the Heuristic Parameters

As mentioned in Chapter 7, the Visma Route Planner is utilized to obtain optimized daily
routes, and an initial Weekly Route Plan (WRP) is constructed based on these. To be able to
identify the improvement caused by the IIH compared to an initial WRP, the objective weights
are adjusted to imitate the Visma Route Planner. This adjusted objective weight set is referred
to as the Visma Weight Set and is presented in Table 8.5. This set of weights is used throughout
Section 8.4.2.

Table 8.5: Visma Weight Set

DT TW OT OW WD EU
Visma Weight Set 0.5 0.5 0.33 0 0 0

The parameters needed for the IIH must be configured using instances of appropriate sizes to
imitate the real-life challenges of the HHC. Therefore, three instance sizes are introduced, con-
sisting of 20, 40, and 80 jobs, referred to as micro, small, and large instances respectively. The
instances are constructed based on the discussion in Chapter 7 and the characteristics of the
instances are summarized in Table 8.6. As previously described, a task consists of one or several
identical jobs. The small and large instances are introduced to investigate whether the size of
the instance a�ects the choice of parameter set. The micro instances are only included in the
validation of the heuristic in Section 8.3.6.

Table 8.6: Characteristics of the Instances

Characteristics
Instance Size Micro Small Large
Jobs 20 40 80
Jobs per skill level: 1-2-3-4 5-5-5-5 10-10-10-10 20-20-20-20
Employees 1 1 2
Employees per skill level: 1-2-3-4 0-0-0-1 0-0-0-1 0-0-1-1
Preferred Tasks per employee 14 26 26-26
Number of days 5 5 5
Tasks per frequency: 1-2-3-4-5 11-1-1-1-0 20-2-1-2-1 41-3-2-3-3

Selecting Open Jobs
The concept of the IIH is to decrease the solution space by iteratively solving an optimization
problem consisting of only a selection of jobs from the Current Solution, as described in Chapter
6. This selection of jobs is previously referred to as open jobs and jobs in open routes. The
optimization problem is concerned with the reallocation of the selected jobs and must be of a
size that the mathematical model can solve within reasonable time. To increase the probability
of obtaining an improved solution with few heuristic searches, the selection of jobs should be
conducted wisely. The hypothesis is that some jobs may be sub-optimal allocated in the initial
WRP and that these should be identified and added to the optimization problem to generate
more e�cient routes. By adding jobs to the optimization problem, it is referred to solving the
optimization problem comprising these identified jobs, as previously described in Chapter 6.
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The identification of open jobs is executed by the $?4=�>1(4;42C8>=(B⇠ ) function presented in
Chapter 6. The function aims to identify the jobs in the Current Solution causing the most neg-
ative impact on the routes concerning di�erent objectives. Examples are jobs contributing to
long driving times, overtime, or violation of time window. Throughout Section 8.3, the function
$?4=�>1(4;42C8>=(B⇠ ) identifies jobs contributing to long driving times in the Current Solution.
This is retrieved by calculating the number of minutes saved if the job is removed from the route
it currently belongs to, illustrated in Figure 8.1. The example shows the saving of driving time if
job 2 is removed, calculated as ⇡)12 +⇡)23�⇡)13. The jobs with the largest savings are selected
to be added to the optimization problem, and the number of jobs chosen is the parameter � ,
configured in the next section.

Figure 8.1: Example of Calculating Saved Driving Time

The structure of the problem implies that the number of possible reallocations of jobs di�ers
across tasks. In Chapter 7, a task was introduced as a set of one or several jobs, with a set of
possible patterns. A pattern restricts the jobs in a task to be allocated to certain days, and the
set of patterns for a given frequency, therefore, restricts the number of possible reallocations of
the job. For example, tasks with frequency 3 and 5 have only one pattern, implying that jobs
belonging to these tasks cannot be reallocated across days. Furthermore, the jobs in tasks with
frequency 2 or 4 are dependent on other jobs, as these jobs cannot be reallocated if this is not
consistent with one of the allowed patterns. Jobs belonging to tasks with frequency 1, however,
may be performed on any day of the week and the allocation is not dependant on other jobs.
This implies that the potential for reallocation is greater for jobs belonging to frequency 1 tasks,
compared with other frequencies, and makes this a wise choice for the $?4=�>1(4;42C8>=(B⇠ ).

The number of jobs capable of reallocation also directly a�ects the potential for improvement, as
a greater number increases the probability of improvement. This supports the selection of jobs
in frequency 1 tasks, as they constitute 53.8% of all jobs in the test instances. Therefore, in the
configuration of the parameters, and the validation of the heuristic, the $?4=�>1(4;42C8>=(B⇠ )
conditionally selects jobs belonging to frequency 1 tasks and having the greatest saved driving
time potential.

8.3 Configuration and Validation of the Iterative Improvement
Heuristic

This section presents the configuration of the parameter set (� ,') needed in the IIH. Section
8.3.1 configures the heuristic parameter � denoting the number of open jobs, while Section 8.3.2
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configures the heuristic parameter ', denoting the number of jobs in an open route, in combina-
tion with � . Both parameters are configured for small and large instances, based on the average
results from five instances of each size. Finally, Section 8.3.6 validates the IIH against the MILP
and the initial WRP generated by Visma.

In the configuration, the maximum run time of the IIH is set to 30 minutes, and the registered
objective value is the best solution found within this time limit. As explained in Chapter 6, the
IIH comprises several rounds of heuristic searches, until a maximum run time is reached. One
round of the heuristic search consists of multiple iterations of solving the mathematical model
until all routes of the week have been explored as open routes.

8.3.1 Introducing and Testing the Parameter J
The parameter � in the heuristic decides the number of jobs that are added to the optimization
problem, to be reallocated by the mathematical model. The jobs are selected by the function
$?4=�>1�D=2C8>=(B⇠ ) based on the number of jobs given by � . A suitable range for this parameter
indicates an appropriate range for testing of the parameter set (� ,'), which is used in the IIH.
The study of � is completed by iteratively performing only step 1 of the IIH until the maximum
run time is reached. Preliminary testing found that values of the parameter � between 4 and 18 is
a reasonable range for testing and the ranges vary slightly between the small and large instances.

Table 8.7 presents the results from testing the IIH with di�erent values for parameter � , for
five small and five large instances. The table shows the average improvement of the objective
value compared to the initial WRP, obtained from Visma. Furthermore, the minimal objective
value improvement, as well as the maximum objective value improvement is presented, to re-
veal the ranges across the test instances. Lastly, the standard deviation of the improvement
is registered, where the unit is percentage points, but for simplicity, this is written as %. The
IIH applied to small and large instances is in most cases capable of solving the optimization
problem up until �=18 and �=14, respectively. On the other end, the solution method with a
� < 8 for small instances and a � < 4 for large instances does not provide significant improvement.

Table 8.7: Configuration of Heuristic Parameter �

Improvement of O.V. (%)
Small Instances Large Instances

J Min. Avg. Max. Std. Min. Avg. Max. Std.
4 1.12 2.61 3.51 0.99
6 2.43 3.38 4.49 0.94
8 2.25 7.52 12.56 4.27 2.43 3.35 4.08 0.77

10 3.02 9.26 14.03 4.86 2.34 4.45 6.53 1.84
12 2.78 9.34 13.51 5.06 2.61 5.05 7.31 1.96
14 0.00 8.58 18.41 6.71 0.00 2.65 5.49 2.51
16 0.00 9.13 20.21 7.33
18 0.00 3.73 9.70 5.12

In general, the results exhibit a notable improvement of the objective values, compared to the
initial WRP, for both the small and large instances. The average improvement is greater for the
small instances compared to the large instances, which can be explained by the number of iter-
ations conducted within the maximum run time. The small instances are relatively easy for the
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model to solve, and several heuristic searches are performed within the run time of 30 minutes.
This is not the case for the large instances, where the heuristic search is completed only a few
times or not completed at all. It can also be argued that the average improvement is greater for
the smaller instances as a given � constitutes a larger portion of the jobs in the smaller instances,
compared to the large. Furthermore, the degree of average improvement increases as � increases
for both instance sizes, which is rather instinctive as the optimization problem shifts towards
the exact optimization problem.

For both the small and large instances, � = 12 yields the best average improvement in objective
value. For � > 12, some of the initial WRPs related to the small and large instances are not
improved as the problem becomes too hard to solve within the time limit, resulting in a minimal
objective value change of 0%. This is also the reason for the descending average improvement
in objective value, as � increases. The standard deviation measures the degree of variation from
the average improvement, in the test instances. In general, the standard deviation is greater in
the small instances compared to the large instances, and the standard deviation increases as �
increases. Hence, an increase in � increases the average improvement of the objective value, but
also generates an increase of the standard deviation, as some instances are not solved within the
maximum run time.

The improvement potential is identified, however, only a limited number of possible realloca-
tions of the open jobs have been explored, as only step 1 of the algorithm has been conducted.
The following describes how the additional parameter ' permits additional reallocations to occur.

8.3.2 Introducing and Testing the Parameter '

Parameter ' is introduced to allow the open jobs to move to di�erent routes, as described as
step 2 of the algorithm, in Chapter 6. ' is the maximum number of jobs in an open route, i.e.
the maximum length of the open route. As explained in Chapter 7, the average length of a route
is 8, and testing of ' combined with di�erent values of � revealed that '=8 yielded the best
results. '=8 implies that the heuristic selects open routes of size up until 8. Shorter routes were
explored and improvement was registered, however, the improvement was consistently poorer.
The extensive results are found in Appendix C.1.

Figure 8.11 illustrates an example with three open routes, where '=8. An open route belongs
to an employee = on a day 3, and this implies that the entire route of an employee may be
divided into several open routes, where the maximum length is equal to 8. This is conducted
by applying the function $?4='>DC4(4;42C8>=(B⇠ ,3,=) to the Current Solution. In the figure, the
route belonging to =2, consisting of 11 jobs, is divided into two open routes of size 8 and 3,
and these are added to the optimization problem in two separate iterations. The mathematical
model solves the optimization problem in each iteration. The size of ' also a�ects the number of
iterations needed to conduct one full round of the heuristic search, directly influencing the run
time of the solution method, suggesting that greater values of ' are preferred. '=8 is therefore
chosen, and further configuration of the parameter set (� ,') is conducted by combining '=8 with
the seemingly best values for � , found in the previous testing for the small and large instances
as shown in Table 8.7.
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Figure 8.2: Example of Open Routes when '=8

8.3.3 Configuring the Parameter Set for Small Instances

Table 8.8 displays the results from the configuration of the parameter set (� , ') on small in-
stances. The numbers concerning parameter (� , 0), are presented previously in Table 8.7, while
the remaining parameter sets where ' = 8, represent the augmenting of open routes to the
optimization problem. The results show that the augmenting of ' = 8 leads to an additional
increase in the average improvement of the objective value compared to previous tests. The
only exception is for � = 16, where the average improvement is greater when not opening any
routes. This may be because the optimization problem becomes larger when the jobs in the open
routes are added, hence solving the mathematical model takes longer time, and the number of
iterations within the maximum run time is decreased.

For most parameter sets with a value of ' greater than zero, even the minimal value of the
improvement is higher than the average improvement when ' = 0. This proves that opening
routes to reallocate the open jobs is significantly enhancing the improvement compared to only
considering the open jobs. It also appears that a low value of � combined with ' = 8 yields
better results than increasing � and setting ' to 0, as (� ,') = (8,8) gives a greater average
improvement than any of the parameter sets (� ,0). The parameter set (12,8) yields the greatest
average improvement, with an average objective value increase of 15.23%. Furthermore, the
standard deviation related to this parameter set is the lowest, indicating that there are smaller
di�erences between the improvements of the instances for this parameter set, compared to the
other parameter sets.

Table 8.8: Configuration of Parameter Set (� ,') on Small Instances

Small Instances
Improvement of O.V. (%)

J R Min. Avg. Max. Std.
8 0 2.25 7.52 12.56 4.27

10 0 3.02 9.26 14.03 4.86
12 0 2.78 9.34 13.51 5.06
14 0 0.00 8.58 18.41 6.71
16 0 0.00 9.13 20.21 7.33
18 0 0.00 3.73 9.70 5.12
8 8 8.9 15.10 20.37 4.96

10 8 9.26 15.00 19.62 4.29
12 8 11.49 15.23 18.20 2.92
14 8 0.00 12.40 21.37 7.85
16 8 0.00 8.31 15.57 7.72
18 8 0.00 4.77 14.90 6.86

To further evaluate the performance of the parameter sets, an analysis of the improvement in
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objective value across time and number of heuristic searches, is conducted. The seemingly best
parameter sets, (10,8), (12,8), and (14,8), are therefore tested on one instance, and the improve-
ment in objective value is registered. Figure 8.3 and Figure 8.4 illustrate the improvement in
objective value across time and number of heuristic searches respectively. Figure 8.3 shows that
the objective value for the parameter set (12,8) linearly decreases during the first 600 seconds
and then stagnates, not obtaining any improvement in the remaining 1200 seconds. The pa-
rameter set (10,8) decreases towards its minimal objective value at 900 seconds, and parameter
set (14,8) shows no improvement in objective value at all. The latter indicates that a feasible
solution is not found within the maximum run time, and the objective value is therefore equal
to the objective value in the initial WRP obtained by Visma. After 30 minutes, parameter set
(12,8) provides the best solution for this test instance.

Figure 8.3: Development of Objective Value for Parameter Sets Across Time

Figure 8.4 shows the improvement of the objective value, considering the number of heuristic
searches. In this figure, the parameter set (14,8) is not present, as not even a single heuristic
search is conducted. For parameter sets (10,8) and (12,8) the solution is improved up until
the third heuristic search, and then it stagnates. The figure illustrates that the parameter set
(10,8) provides the best solution after one heuristic search, but is outperformed by parameter
set (12,8) as of the second heuristic search. Furthermore, results show that for the considered
parameter sets and the given test instance, three heuristic searches are su�cient to find the op-
timal solution provided by the IIH. Both parameter sets perform eight heuristic searches within
the maximum run time, implying that the di�erence between � = 10 and � = 12 is of little sig-
nificance concerning the number of iterations needed to perform one heuristic search, indicating
that the largest � is preferred.
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Figure 8.4: Development of Objective Value for Parameter Sets Across Heuristic Searches

Due to the largest average objective value improvement, as well as the lowest associated stan-
dard deviation, parameter set (� , ') = (12,8) is chosen for small instances, for the IIH. This is
supported by the study of the development of the objective value considering time and number
of heuristic searches.

8.3.4 Configuring the Parameter Set for Large Instances

The performance of the parameter set may be dependant on the size of the test instances, and
this is investigated by also configuring the parameter set for large instances. The results are
presented in Table 8.9, for di�erent values of � in combination with ' = 0 and ' = 8. The
results concerning parameter sets (� , 0) are the same as in Table 8.7, and are only repeated for
comparison with the augmenting of open routes. Once again, the average improvement of the
objective value for most of the large instances increases when the open route ' is added to the
optimization problem. It is shown that the parameter set with the lowest value of � , being (� ,')
= (4,8), yields a higher average improvement in objective value, than any of the parameter sets
(� , 0). Hence, including open routes to the optimization problem is beneficial, compared to only
including open jobs.

The parameter set generating the largest average improvement in objective value is (� , ') =
(8,8), yielding an average improvement of 8.36 %. However, the standard deviation, being equal
to 2.91%, is the third-highest across all the parameter sets. Similar to the small instances, the
standard deviation tends to increase as � increases.
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Table 8.9: Configuration of Parameter Set (� ,') on Large Instances

Large Instances
Improvement of O.V.(%)

J R Min. Avg. Max. Std.
8 0 2.43 3.35 4.08 0.77

10 0 2.34 4.45 6.53 1.84
12 0 2.61 5.05 7.31 1.96
14 0 0.00 2.65 5.49 2.51

4 8 4.90 6.39 8.64 1.40
6 8 5.02 7.19 10.67 2.23
8 8 5.17 8.36 12.58 2.91

10 8 6.33 8.33 14.04 3.22
12 8 2.91 4.95 8.03 2.15
14 8 0.00 2.98 8.20 3.39

For the parameter sets, (14,0) and (14,8), the minimal value of the improvement of the objective
function is 0%. The lack of improvement indicates that the optimization problem for at least
one of the large instances is too complex to find a feasible solution within the maximum run
time, and not even step 1 of the IIH has been conducted. In general, the average improvement
in objective value is decreasing for parameter sets when � > 12, and this can be explained
by Figure 8.5. The figure illustrates that the average number of heuristic searches conducted
decreases when � increases. For (� ,') = (12,8) and (� ,') = (14,8), the IIH is not even able to
solve a single heuristic search within the maximum run time of 30 minutes, probably because of
the execution time of each iteration. Furthermore, this implies that there are open routes in the
problem that have not been considered for reallocation of open jobs, and this obviously a�ects
the improvement of the solution for parameter sets (12,8) and (14,8). To address this challenge,
an investigation of the implementation of a time limit on the execution time of each iteration is
conducted in the following section.

Figure 8.5: Average Number of Heuristic Searches Across Parameter Sets in Large Instances

8.3.5 Adjusting the Time Limit of Each Iteration

The testing of large instances reveals the challenges related to large instances, as not even one
single heuristic search is conducted within the maximum run time of 30 minutes, for large values
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of � . Furthermore, when solving the optimization problem with the MILP, the objective value
improvement is often greater at the beginning of the execution, implying that interrupting the
execution and retrieving the best solution found at that time may be beneficial as it would save
time. Therefore, to ensure an increase in the number of iterations of the optimization problem,
as well as exploiting the fact that improved solutions are usually found early on, a time limit
of each iteration is enforced. The parameter sets of ' = 8 and � ranging from 8 to 14 is tested
again with time limits of 1 minute and 4 minutes for each iteration.

The results are found in Table 8.10, revealing an increase in the average objective value improve-
ment for all parameter sets, for both time limits. This implies that a higher number of heuristic
searches yields a greater average improvement of the objective value, as a larger portion of the
solution space is explored.

Table 8.10: Configuration of Parameter Set (� ,') with Time Limit

Large Instances
Improvement of O.V. (%)

J R Time Limit Min. Avg. Max. Std.
8 8 No limit 5.17 8.36 12.58 2.91

10 8 No limit 6.33 8.33 14.04 3.22
12 8 No limit 2.91 4.95 8.03 2.15
14 8 No limit 0.00 2.98 8.20 3.39

8 8 1 min. 6.75 8.50 12.58 2.52
10 8 1 min. 7.05 8.96 13.19 2.66
12 8 1 min. 7.55 8.77 12.62 2.16
14 8 1 min. 4.63 7.25 10.25 2.15

8 8 4 min. 6.51 8.63 12.58 2.59
10 8 4 min. 6.42 9.11 12.93 2.96
12 8 4 min. 4.95 6.90 8.19 1.31
14 8 4 min. 2.80 5.23 7.83 1.92

The largest average improvement of objective value is registered for parameter set (10,8) with
a time limit of 4 minutes, giving an average improvement of 9.11%. However, the standard de-
viation using this parameter set is the highest across all parameter sets with time limits, being
2.96%. By setting the time limit to 1 minute for this parameter set, the average improvement
decreases to 8.96%, being the second-largest average improvement of objective value. The stan-
dard deviation also decreases, however not significantly. The third-largest average improvement
of objective value is 8.77%, generated by the parameter set (12,8) and 1-minute time limit. The
standard deviation with this parameter set is 2.16%, being significantly lower than 2.96%. When
comparing (10,8) with 4-minute time limit and (12,8) with 1-minute time limit, the relative im-
provement in standard deviation is larger than the relative reduction in the average improvement
of the objective value. Hence, it can be argued that the parameter set (� ,')=(12,8) is preferred
as the standard deviation is smaller, which implies that the probability of deviation in the im-
provement of a solution is lower.

Figure 8.6 presents the average number of heuristic searches conducted within the maximum
run time of 30 minutes, where each iteration has a time limit of 1 or 4 minutes. As expected, it
shows that the average number of heuristic searches conducted is higher for all parameter sets,
when the time limit is set to 1 minute, compared to 4 minutes.
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Figure 8.6: Average Number of Heuristic Searches Across Parameter Sets

Table 8.10 shows that for parameter sets (8,8) and (10,8) the 4 minutes time limit provides the
best results. However, when � increases, the 1-minute time limit outperforms the 4-minute time
limit, indicating that the extra 3 minutes of solving each mathematical model does not justify
the lack of iterations, which are conducted when the time limit is equal to 1 minute. As previous
results of the configuration of the parameter sets favor larger values of � , and the 1-minute time
limit outperforms the 4-minute time limit as � increases, the 1-minute time limit is implemented
in the IIH.

This section reveals the potential for improvement from the initial WRP when applying the IIH.
The parameter set of (� ,') = (12,8) is chosen for both small and large instances. This implies
that � = 12 is used in step 1 of the algorithm, and that (� ,') = (12,8) is used in step 2 of
the algorithm. A time limit of 1 minute for each iteration is implemented when solving large
instances. The chosen parameter set and time limit for the IIH is summarized in Table 8.11.

Table 8.11: Chosen Parameter Set and Time Limit for Large Instances

Chosen Parameter Set
J R Time Limit
12 8 1 min.

8.3.6 Validation of the Iterative Improvement Heuristic

In this section, the IIH is validated against the results obtained by the MILP model presented
in Chapter 5. Three instance sizes, micro, small and large, are used for testing along with
the chosen parameter set presented in Table 8.11. Table 8.12 presents the average results from
running the IIH and the MILP model on five instances of each size, with a maximum run time
of one hour. The gap presented is calculated using the lower bound determined by Xpress.
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Table 8.12: Validation of the Heuristic Against the MILP

MILP Model IIH
Run Time Gap Run Time Gap

Micro 12 0.00% >3600 1.92%
Small >3600 44.02% >3600 16.42%
Large >3600 95.55% >3600 31.43%

The results in Table 8.12 from testing the IIH against the MILP reveals that the MILP proves
to be better than the IIH for the micro instances, however, the gap of the solution obtained
by the IIH is only 1.92%. The MILP solves the micro instances on an average of 12 seconds,
while the IIH is permitted to run for one hour, indicating that the MILP solves the problem
more rapidly. Despite this, analysis of the average improvement in objective value across time
for the IIH reveals that the IIH obtains the best solution within 120 seconds, indicating that
the remaining 1680 seconds of run time is excessive. For small and large instances, the IIH
consistently provides better solutions than the MILP, as the average reduction in gap between
the two, for small and large instances, is 63% and 67%, respectively.

The MILP and the IIH are also evaluated against the initial WRP, obtained by compiling a set
of Visma’s optimized daily routes. Table 8.13 presents the average change in objective value
of the solutions obtained by the MILP and the IIH, compared to the initial WRP. For micro
instances, the average improvement obtained by the MILP model compared to the initial WRP
is 20.37%, which is 8.1% better than the IIH. However, for large instances, the MILP model
performs disastrous, while the IIH can obtain an average improvement in the WRP of 7.56%.

Table 8.13: Validation of the Heuristic Against the initial WRP

MILP Model IIH
Change (%) Change (%)

Micro 20.37# 18.73#
Small 40.42" 15.95#
Large 1653.09" 7.56#

This indicates that the IIH, in opposition to the MILP, is indeed capable of solving realistic
size instances of the WRSP, and consistently produces improved routes compared to the initial
WRP. The IIH is therefore utilized with the configured parameter set and a time limit of 1
minute, to assess trade-o�s between the improvement of- and impact on the initial WRP, when
considering di�erent aspects of the HHC problem.

8.4 Impact on the Weekly Route Plan

To provide practical insight, this section aims to analyze the impact on weekly routes, when
focusing on di�erent aspects of the WRSP. The IIH is implemented to solve the WRSP of
one large instance comprising 80 jobs and generates improved routes from the perspective of
di�erent stakeholders. Section 8.4.1 and Section 8.4.2 analyze how routes may change when
focusing on reducing driving time and violation of time window respectively. These two sections
investigate the trade-o� between potential improvements of and changes in routes, by comparing
the initial WRP obtained by Visma, with the improved WRP, obtained by the IIH. Lastly,
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Section 8.4.3 reveals how di�erent stakeholders are a�ected when generating monetary routes,
employee convenient routes, and user convenient routes.

8.4.1 Focusing on Reducing Driving Time

There is a general need for increased capacity in the HHC. Driving time constitutes 18% to 26%
of the employees’ workday, hence, a reduction in driving time may contribute to the liberation
of resources (Holm and Angelsen, 2014). The HHC desires to obtain more e�cient routes by
reducing driving time with as few changes to the existing routes as possible. This study reveals
the possibility of improvement in routes concerning the driving time when using the proposed
IIH with the configured parameter set (12,8) on a large test instance. Additionally, the trade-o�
between changes in routes and reduction of driving time is evaluated by identifying and reallo-
cating the jobs with most savings potential with respect to driving time.

To analyze the impact on the WRP when implementing the IIH and focusing on driving time, a
set of open jobs for reallocation must be chosen. As the aim is to reduce driving time, the func-
tion $?4=�>1(4;42C8>=(B⇠ ) identifies and lists jobs belonging to tasks with frequency 1, and large
savings potential. Thereafter, all of these are attempted to be reallocated in sets of size 12 as �
= 12, considering one set of jobs in each round of the heuristic search. Throughout this section,
the IIH is implemented in two ways: a complete heuristic search (CHS) and a single heuristic
search (SHS). A complete heuristic search refers to solving the problem without a maximum run
time, allowing the heuristic to conduct multiple heuristic searches until the solution stagnates
and all jobs belonging to frequency 1 tasks have been attempted reallocated. A single heuristic
search means that only the first 12 jobs with the largest savings potential are attempted to be
reallocated.

Due to the process of the heuristic search, the number of jobs changing starting time relative to
other changes might seem excessively large. This is because the heuristic updates the starting
times of jobs in the open route every time an improved solution is found and thereafter fixates
this solution while moving on in the search. Ultimately, this means that if a job is reallocated
twice during the heuristic search, the starting times in both routes are changed, instead of only
the latter where the job is lastly allocated. Also, it is emphasized that a change in day or
employee always requires a change in the preceding job for at least two jobs.

Complete Heuristic Search
Table 8.14 exhibits the results from solving the WRSP with the CHS and the SHS. The change
in the objective value and driving time is compared to the initial WRP and all changes in
routes are registered, reviewing the number of jobs changing days, employees, preceding jobs,
and starting times.

Table 8.14: Improvement of- and Impact on Routes When Focusing on Driving Time

Change Changes in Routes
OV DT Day Employee Preceding Job Starting Time

Complete Heuristic Search 16.05% 15.70% 26 15 55 63
Single Heuristic Search 6.75% 7.00% 6 4 19 44
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The solution obtained by using the CHS yields an improvement in the objective value of 16.05%
compared to the initial WRP. This improvement is due to a 15.70% reduction in driving time
and 74.9% reduction of time window violation, implying that several jobs are sub-optimal al-
located in the initial WRP. This is also supported by the registered changes, revealing that 26
jobs move to a di�erent day and 15 jobs change employee. Of the 26 jobs changing day, 12 also
change employee. These types of changes are referred to as major changes to the routes, while
changes in preceding job and starting time are referred to as minor changes. The minor changes
do not significantly a�ect employees nor users. These changes only facilitate the major changes
to the routes, and it is argued that a change in the preceding job does not negatively a�ect
employees nor users. The same accounts for a change in starting time, as long as the starting
time still respects the time window of the job.

The preceding job of a job is changed for 55 of the jobs. For 22 of these jobs, the change in the
preceding job is due to a change in day, or both day and employee. This is illustrated by the
green portions in Figure 8.7. The remaining 33, comprising 60% of the jobs changing preceding
jobs, are minor changes that facilitate the open jobs to be reallocated to the existing routes.
50.9% of the jobs changing preceding job also change starting time, while only 9.1% of jobs
changing preceding job keep their initial starting time.

Figure 8.7: Jobs Changing Preceding Job

The highest number of changes is related to jobs changing starting time, a�ecting 63 jobs. As
previously mentioned, some of these changes only occur due to the process of the heuristic,
however, the majority is due to the improved solution. Figure 8.8a illustrates that 20.6% of jobs
changing starting time, only change starting time. 46% of jobs changing starting time, change
the preceding job without changing day or employee, indicating that the order within routes is
a�ected, however, this is categorized as a minor change. Only 33.4% of the changes in starting
time are due to major changes, like a change in day or day and employee, illustrated by the
green portions of the figure.

A distribution of jobs across the amount of change in starting time is illustrated in Figure 8.8b.
The figure reveals that 38.1% of jobs changing starting time are a�ected by less than 30 min-
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utes, which can be argued to be of minor significance for both users and employees of the HHC.
31.7% of the jobs changing starting time experience a change of more than 60 minutes, which
might seem like a significant change. At the same time, it is found that these specific changes
in starting time are related to the jobs already experiencing major changes, such as a change in
day or employee. It can, therefore, be concluded that the high number of changes to starting
time does not indicate a majority of major changes to the routes, as the analysis of the changes
provides a more nuanced picture.

(a) Jobs Changing Starting Time (b) Minutes Change in Starting Time

Figure 8.8: Jobs Changing Starting Time

Single Heuristic Search
In the case of the SHS, the improvement of the objective value is solely due to the reduction
in driving time of 7.0%, as time window violation increases by 24% and thereby aggravates the
objective value, as presented in Table 8.14. The number of changes in routes when implementing
the SHS is significantly lower compared to the solution of the CHS. This is natural as the CHS
has attempted to reallocate all the jobs belonging to tasks of frequency 1, while the SHS only
attempts to reallocate the 12 jobs with the largest savings potential, considering driving time.

In total, six jobs change employee, day, or both, which in other words means that six jobs change
route. This a�ects the order within the routes. The preceding job is changed for 19 jobs, and
44 jobs have changed starting time. Again, the change in starting time is only a minor practical
change. 31.6% of the jobs changing preceding jobs happen due to a change in day or employee,
while the remaining 68.4% of the jobs change preceding job to allow other jobs to move to their
respective route.

The relation between the degree of improvement and the number of changes exposes the mag-
nitude of impact required to obtain more e�cient routes. This relative improvement between
the CHS and the SHS is illustrated in Figure 8.9. The figure shows that the SHS obtains 7%
improvement in driving time, constituting 44.6% of the obtained improvement by the CHS of
15.7%. At the same time, only 23% of the required changes occur, as six instead of 26 jobs
experience major changes. By simplification, if the improvement is distributed equally across
the number of jobs changing routes, the solution obtained by the SHS yields better results than
the CHS. The relative number of improvement in driving time, per job changing route, is lower
for the solution obtained by the CHS, than for the SHS. This implies that a significant reduction
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of driving time can be obtained by only a few alterations of the initial WRP.

Figure 8.9: Relation Between Improvement of- and Impact on Routes Obtained by the Complete and
Single Heuristic Search

Reallocation of Individual Jobs
To further investigate the possibility of reducing the impact on routes while still obtaining more
e�cient routes, we attempt to identify how each reallocation of a job contributes to a reduction
in driving time. This is studied by conducting the SHS for each of the 12 jobs with most savings
potential, individually. This implies that the parameter set is equal to (1,8). For these tests,
the SHS does not conduct step 1 of the IIH, as there is only one open job. The Current Solution
is reset to the initial WRP every time the SHS is conducted with a new open job. This implies
that the solutions of the 12 heuristic searches are not additive.

Results are exhibited in Table 8.15 for a selection of the jobs, starting with the job with the
largest savings potential, considering driving time. An extensive list of results is found in
Appendix C.2. Improvement of the objective value and the reduced driving time compared to
the initial WRP is calculated. Furthermore, changes in routes concerning jobs changing day,
employee, preceding job, and starting time is registered for each of the iterations.

Table 8.15: Improvement of- and Impact on Routes when Focusing on Driving Time, reallocating Jobs
Individually

Change Changes in Routes
OV DT Day Employee Preceding Job Starting Time

Job 27 2.13% 2.14% 1 1 2 28
Job 4 2.09% 2.10% 1 1 6 27
Job 16 0.00% 0.00% 0 0 0 0
Job 18 1.24% 1.25% 1 1 2 28

It appears that job 27 and job 4 are sub-optimal allocated in the initial WRP, as the reallocation
of these jobs to new routes reduces driving time by 2.14% and 2.10% respectively. Furthermore,
it can be concluded that large savings potential does not imply that improvement is possible to
obtain, when only reallocating the respective job. This is shown by the non-improved solution
when attempting to reallocate job 16 while reallocating job 18 improves driving time by 1.25%.
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A reduction in driving time of 2.14% when reallocating only job 27 constitutes 30.8% of the im-
provement of driving time obtained by the SHS for all 12 jobs simultaneously. This is illustrated
by the relative di�erence between the improvement in driving time obtained by reallocating job
27, and the SHS for all 12 jobs, in Figure 8.10. The figure also illustrates how both implementa-
tions of the SHS impact the routes, revealing that the reallocation of job 27 only requires major
changes to 3.8% of the jobs in the instance. This implies that some jobs contribute greatly to
reducing driving time, and as few changes are required to reallocate job 27, significant improve-
ment can be obtained by few alterations.

Figure 8.10: Comparing Improvement in Driving Time and Changes to the Routes

The savings potential decreases from job 27 to 18, hence the potential for reducing driving time
by reallocation also decreases, as shown by the reduced improvement of driving time. Job 27 and
job 4 stand out as they cause a significant amount of driving time in the initial WRP. Compared
to the job with the third most savings potential, the potential for saving is 38.5% and 22.3%
greater for job 27 and 4, respectively.

The improved routes obtained by the SHS with job 27, reallocate job 27 from Tuesday to Friday
and from employee 1 to employee 2, as illustrated in the example in Figure 8.11. Job 27 is
reallocated to being between job 15 and job 10, resulting in a change in preceding jobs for job
27 and 10, and the change of starting time for 28 jobs. Preceding job and starting time is also
changed for the a�ected jobs in the route on Tuesday for employee 1. By ignoring the changes
in starting times solely due to the heuristic process, in reality, 13 jobs change starting time. Of
these jobs, the average change in starting time is 29 minutes. Most of the jobs changing starting
time are either in the same route as job 27 initially was or in job 27’s new route.
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Figure 8.11: Example of Job Changing Route

8.4.2 Focusing on Reducing Time Window Violation

An important aspect of the problem, from the perspective of the users of the HHC, is the
compliance of the time window. The HHC, therefore, strives to perform jobs within a related
time window, as this increases user convenience. A violation of a time window can also result
in overtime for the employees, causing inconvenience for employees and additional cost for the
HHC providers. Focusing on reducing time window violations therefore indirectly also reduces
overtime for employees. This section studies how routes are a�ected when aiming to reduce time
window violation, in the same manner as the previous section. The initial WRP is compared
to the solution obtained by the CHS and the SHS. Similarly, the changes in routes generating
the greatest reduction in time window violation are identified to evaluate the trade-o� between
changes in routes and reduction in time window violation.

Di�erent implementations of the IIH are applied to one large instance of 80 jobs, where six jobs
causing time window violation in the initial WRP, have been identified by $?4=�>1(4;42C8>=(B⇠ ),
and added to the optimization problem to be reallocated. The total time window violation is
13 minutes in the initial WRP, distributed across the six jobs. This is hardly a violation of any
significance, however, the concept of allowing these types of jobs to be reallocated is still relevant.

Complete Heuristic Search and Single Heuristic Search
The results in Table 8.16 reveal that the CHS obtains the same solution as the SHS, implying
that the best possible solution is found during the first heuristic search. The solution acquires
an improvement in the objective value of 0.83%, and a reduction in time window violation
of 20.72%. This implies that reducing time window violation by letting the violating jobs be
reallocated by the IIH, is successful.

Table 8.16: Improvement of- and Impact on Routes when Focusing on Time Window Violation

Change Changes in Routes
OV TW Day Employee Preceding Job Starting Time

Complete Heuristic Search 0.83% 20.72% 2 1 12 32
Single Heuristic Search 0.83% 20.72% 2 1 12 32

By further analysis of the solution, it is found that the improvement in time window violation
is caused by changing days for only two out of six of the violating jobs. This suggests that the
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remaining four jobs are not worth reallocating with respect to the other objectives, and as the
violation in minutes is rather minor, this is not surprising. For these jobs, it might be beneficial
to identify and add preceding jobs of the job with time window violation to the optimization
problem, as the reallocation of a preceding job might liberate time in the current route, and
diminish the time window violation of the job.

The reallocation of the two jobs causes a change in the preceding job for 12 jobs, and the start-
ing time is changed for 32 jobs. This indicates that relatively major changes in routes must
be conducted to reduce the time window violation, even though the violation is only caused by
a few number of jobs. However, a distribution of jobs across types of changes, given that the
starting time has changed, is found in Figure 8.12, and provides a more nuanced picture. The
figure reveals that 65.6% of the jobs with a changed starting time, only change starting time,
implying that the route itself is intact. In fact, it can, therefore, be argued that the amount
of changes needed to reduce the time window violation is only minor. Additionally, it is found
that by ignoring the change in starting time only due to the heuristic process, the real number
of jobs changing starting time is only 16.

Figure 8.12: Jobs Changing Starting Time

Reallocation of Individual Jobs
Attempting to identify whether the reduction in time window violation can be obtained by few
alterations of the initial WRP, a study of allocating each of the jobs individually is conducted.
Similar to the study in Chapter 8.4.1, the six jobs violating time windows are added to the
optimization problem individually and an SHS is applied. Results are found in Table 8.17 for a
selection of the six jobs causing time window violation. An extensive list of results is found in
Appendix C.2, revealing that only job 2 is reallocated when using this approach. This suggests
that improvement in time window violation requires the opening of more than one job, i.e.
larger impacts on the initial WRP. The reallocation of job 2 reduces the time window violation
by 2.59%, which constitutes only 12.5% of the possible improvement of time window violation
if solving the optimization problem by applying the CHS. At the same time, the di�erence in
the number of changes to the routes when performing the CHS compared to the reallocation
of job 2 only, is rather small. One additional job changes day, two more jobs change starting
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time and there is a doubling in the number of jobs changing preceding jobs when conducting
the CHS compared to the results for job 2 in Table 8.17. This implies that the improvement in
time window violation relative to the number of changes is greater when conducting the CHS
than the SHS on individual jobs.

Table 8.17: Improvement of- and Impact on Routes when Focusing on Time Window Violation, reallo-
cating Jobs Individually

Change Changes in Routes
OV TW Day Employee Preceding Job Starting Time

Job 62 0.00% 0.00% 0 0 0 0
Job 2 0.45% 2.59% 1 1 7 30
Job 38 0.00% 0.00% 0 0 0 0

8.4.3 Focusing on Maximizing Employee and User Convenience

The users and employees of the HHC are important stakeholders in the WRSP, and it should
be in the HHC providers’ interest to maximize these stakeholders’ satisfaction. As previously
described by the formulation of the MILP in Chapter 5, employee inconvenience may be dimin-
ished by minimizing Overtime, di�erence in Workload, and Overqualified Work. Similarly, user
inconvenience can be minimized by reducing Time Window violation and ensure visit continuity
by maximizing the preferred Employee-User combination. This section investigates how the
shift of focus from the HHC provider’s monetary perspective to the perspective of employees
and users, may impact the routes.

It is challenging to use a function to identify exactly which jobs are sub-optimal allocated con-
cerning user and employee convenience. Therefore, instead, improved routes with respect to
employees and users are obtained by adjusting the objective weight sets in the IIH. The IIH is
applied to the problem with the configured parameter set (12,8) and a time limit of 1 minute for
each iteration. Furthermore, $?4=�>1(4;42C8>=(B⇠ ) identifies jobs having large savings potential,
considering driving time. As studies in the previous sections have not considered all objectives
of the problem, the Base Case Weight set presented in Section 8.2.1 is utilized and modified to
mimic the generation of monetary routes, and user convenient and employee convenient routes.
The modified weight sets presented in Table 8.18 are based on preliminary sequential testing
and adjusting the initial Base Case Weights for the di�erent stakeholders.

Table 8.18: Adjusted Weight Sets

DT TW OT OW WD EU
Visma Weight Set 0.5 0.5 0.33 0 0 0
Base Case Weight Set 1 1 1 0.1 0.1 0.1
User Convenient Weight Set 0.1 1 0.1 0.1 0.1 900
Employee Convenient Weight Set 0.1 0.1 1 1 1 0.1

To analyze the impact on routes, one large test instance comprising an initial WRP is used. The
WRSP is solved by the IIH with the Visma Weight Set to obtain improved routes, and thereafter
by the IIH with the di�erent adjusted weight sets to obtain monetary, employee convenient and
user convenient routes. In all cases, the IIH uses the initial WRP obtained by Visma as an
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initial solution.

Initial Weekly Route Plan
The characteristics of the Initial WRP is found in Table 8.19. The table states a total driving
time of 647 minutes in the Initial WRP. This means that driving time constitutes 14.4% of the
employees’ workweek. A workweek consists of 7.5 hours for each employee on each day of the
week. The Initial WRP also generates a total of 25 minutes of time window violation distributed
between two jobs, which can be seen as rather insignificant. The employees work 21 minutes of
overtime during the week. The total overqualified work in minutes is calculated from the Initial
WRP and found to be 1185 minutes. As 50% of the jobs have a skill requirement lower than
the lowest skill level of the employees working, this is only 135 minutes higher than the lowest
possible value. The calculated di�erence in workload between employees based on the Initial
WRP is 321 minutes, resulting in an average of 64.2 minutes di�erence between the employees,
each day of the week. This is a significant di�erence, however, not surprising as distribution
of workload is not considered in the generation of the Initial WRP. The workload is calculated
as the sum of duration of jobs and driving time between jobs in a route, and does not include
waiting time. It is emphasized that this simplification might be misleading, as the workload
distribution is calculated as the absolute di�erence, ultimately meaning that the real di�erence
in workload might be close to zero. Lastly, the employee-user combination score is 55, which is
relatively high only by coincidence as neither this objective is considered in the creation of the
Initial WRP. The maximum value for the employee-user score objective is 80 since each job has
exactly one preferred employee.

Table 8.19: The Initial WRP

WRP DT TW OT OW WD EU
Initial 647 25 21 1185 321 55

Improved Weekly Route Plan
The IIH with the Visma Weight Set is applied to the problem to obtain an Improved WRP,
which is presented in Table 8.20. The table presents the characteristics of the solution and a
comparison of objective values, by calculating the change in objectives between the Initial and
Improved WRP.

Both the Initial WRP and the Improved WRP only consider driving time, time window violation,
and overtime, as these objectives are considered to be cost-related for the HHC provider. This
means that the solutions to the WRSP presented in the table are not optimized concerning
overqualified work, absolute di�erence in workload across days nor employee-user preferences,
and the values for these objectives are simply a result of the optimized routes, considering the
relevant objectives.

Table 8.20: Comparing the Initial WRP and the Improved WRP

WRP DT TW OT OW WD EU
Initial 647 25 21 1185 321 55
Improved 585 20 21 1185 314 56
Change in Objective # 9.5% # 20.6% 0.0% 0.0% # 2.2% " 1.8%
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When comparing the Improved WRP with the Initial WRP, an improvement in driving time,
time window violation, workload distribution, and employee-user score, is found. The two latter
are by coincidence, however, the first two objectives improve due to the reallocation of jobs
belonging to tasks with frequency 1, which are sub-optimal allocated in the Initial WRP. Total
driving time is reduced by 9.5%, yielding a value of 585 minutes a week, constituting 13% of the
workweek. The share of total work hours spent on driving has thereby been reduced by 9.7%.
Total time window violation has decreased by 20.6%, implying great improvements, however,
this only makes up 5 minutes in total across all routes of the week.

Monetary Weekly Route Plan
The Monetary WRP is found by using the Base Case Weight Set in the IIH. The monetary
objectives are still the most important in these routes, as the Base Case Weight set emphasizes
the same objectives as the two route plans described in the previous. However, unlike the
previously discussed route plans, the Monetary WRP considers the remaining objectives to
some extent, to reflect reality. To account for the new objectives added to the WRSP, an
impairment of the monetary objectives is expected, compared to the Improved WRP. Objective
values related to the result and a comparison with the Improved WRP, is presented in Table
8.21.

Table 8.21: Comparing the Improved WRP and the Monetary WRP

WRP DT TW OT OW WD EU
Improved 585 20 21 1185 314 56
Monetary 586 17 21 1140 90 57
Change in Objective " 0.1% # 12.9% 0.0% # 3.8% # 71.2% " 1.8%

It can be argued that the changes in the objective values of all the monetary objectives are
insignificant, meaning that driving time still constitutes approximately 13% of the workweek.
Even though results reveal an improvement of 12.9% in total time window violation, this only
makes up 3 minutes, which is a minor improvement. The inclusion of the last three objectives
in the model results in an improvement for all of the objectives, especially considering the total
absolute di�erence in workload between employees. The objective is improved by 71.2%, yielding
an average absolute di�erence in workload equal to 18 minutes per day of the week, between the
two employees. The improvement of the objective is a result of 14 jobs changing days, and Figure
8.13 illustrates the comparison of the di�erence in workload between the Improved WRP and
the Monetary WRP. The figure reveals the unfairness concerning workload distribution in the
Improved WRP. As the objective is reduced without majorly negatively a�ecting the remaining
objectives in the Monetary WRP, a more fair route seems to be within reach without major
changes to the routes. An analysis of the routes reveals that the real di�erence in workload
between the two employees across the week is 65 minutes. This is significantly less than in the
Improved WRP, generating a real di�erence in workload of 347 minutes, i.e. almost six hours.
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Figure 8.13: Di�erence in Workload Between Employees Across Days

In total, it can be argued that the Monetary WRP provides better routes concerning the HHC
providers, the employees, and the users, as all objectives are improved or almost unchanged
compared to the Initial WRP. The IIH is capable of finding a better solution that improves
the monetary objectives, without negatively a�ecting the user and employee-related objectives.
As the Monetary WRP is almost consistently performing better than the Improved WRP, the
Monetary WRP is used for comparison in the following generation of User- and Employee Con-
venient Weekly Route Plans.

User Convenient Weekly Route Plan
The Monetary WRP is compared to the User Convenient WRP in Table 8.22. The table shows
the objective values for both solutions obtained by the IIH, and the User Convenient WRP is
found by adjusting the objective weights to reflect the importance of user-related objectives,
being time window violation and employee-user combination, presented in Table 8.18.

Table 8.22: Comparing the Monetary WRP and the User Convenient WRP

WRP DT TW OT OW WD EU
Monetary 586 17 21 1140 90 57
User Convenient 675 15 21 1140 321 61
Change in Objective " 15.1% # 12.5% 0.0% 0.0% " 255.3% " 7.0%

The User Convenient WRP yields an improvement in the user-related objectives, as expected.
Again, it is emphasized that the reduction in time window violation only constitutes 2 minutes,
in reality, however, the improvement implies that the heuristic is capable of obtaining more user
convenient routes. The employee-user score increases by 7.0%, resulting in four more users to be
visited by their related preferred employee. These improvements come at a cost, and both total
driving time and the total di�erence in workload between employees is significantly increased in
the User Convenient WRP. As we now strive to comply with time windows, the importance of
driving time is downsized, and routes become more ine�cient as driving time increases by 89
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minutes across the week. This is mainly due to the four extra jobs being performed by their
preferred employee. This change also results in workload distribution across employees becoming
largely unfair, increasing by 255.3%. An analysis of the routes finds that the real di�erence in
workload between the two employees is equal to the absolute di�erence of 321 minutes, mean-
ing that one employee consistently works longer hours than the other. In conclusion, more user
convenient routes may be obtained, but at the expense of driving time and workload distribution.

Employee Convenient Weekly Route Plan
Furthermore, to assess how more employee convenient routes may a�ect the WRSP, the Base
Case Weight set is modified to reflect the importance of employee satisfaction. The employee
relevant objectives are overtime, overqualified work, and fair workload distribution, and the
weight set used is presented in Table 8.18. The IIH is then applied to the WRSP, and the
solution obtained is presented in Table 8.23 as the Employee Convenient WRP. A comparison
with the Monetary WRP is found, and a discussion of how the routes are a�ected follows.

Table 8.23: Comparing the Monetary WRP and the Employee Convenient WRP

WRP DT TW OT OW WD EU
Monetary 586 17 21 1140 90 57
Employee Convenient 756 59 21 1140 8 58
Change in Objective " 29.0% " 244.2% 0.0% 0.0% # 91.6% " 1.8%

The Employee Convenient WRP yields an improvement in the absolute di�erence in workload
objective of 91.6%, leading to a total of only 8 minutes across the whole week. This has a major
impact on total driving time and total time window violation, as both are significantly negatively
a�ected. Total driving time increases by 29.0% to a number of 756 minutes, constituting 16.8%
of the workweek in the Employee Convenient WRP. Even though these routes may seem fairer
concerning workload distribution, in reality, the Employee Convenient WRP comprise longer
days than the Monetary WRP. The increase in the importance of the distribution of workload
objective has generated fair routes by increasing driving time. Total time window violation has
a seemingly significant increase of 244.2%, but again it is pointed out that the increase in actual
value is only 42 minutes across the entire week. Overqualified work remains the same at a value
of 90 minutes higher than the least possible value of 1050 minutes. A reduction in overqualified
work could occur if the employee with the lowest skill level, performed all the lower-level jobs.
However, this would strongly a�ect the workload distribution objective, implying that when
considering employee-convenient routes in this specific case, these two objectives seem to be
working against each other. Lastly, overtime has remained unchanged in all of the discussed
WRPs, including the Employee Convenient WRP, even though the objective is emphasized.
Analyzing the test instance we find that the job causing overtime has a time window at the
end of the shift. Furthermore, since this period of the day is already busy, the heuristic is not
successful in reallocating this job to minimize the overtime in the solution. In total, it can
be concluded that what may seem like fair routes concerning employees, could in reality prove
to be a poorer solution for the employees, as the driving time objective is increased unnecessarily.

Practical insight concludes that improvement in routes is attainable, however, the degree of
improvement is dependant on the degree of changes allowed. Improved routes with respect to
all objectives may be obtained by applying the IIH with the Base Case Weights, acquiring the
Monetary Weekly Route Plan. Alterations to the Monetary Weekly Route Plan may improve ef-
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ficiency with respect to other stakeholders of the problem, however at the extent of the monetary
objectives.
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Chapter 9
Concluding Remarks and Future Research

This chapter highlights the findings of this thesis and outlines future research opportunities. A
summary of the findings and concluding remarks are presented in Section 9.1. Possible extensions
of the problem and potential future exploration concerning solution methods are discussed in
Section 9.2.

9.1 Concluding Remarks

This thesis examines the Weekly Routing and Scheduling Problem (WRSP) of the Home Health
Care (HHC). The problem concerns the tactical planning of allocating jobs to employees and
days, over the course of a week, while still considering aspects of the problem related to users
and employees. The aim of the WRSP is therefore to minimize driving time, while also reducing
inconvenience for users and employees, and this is formulated as a multi-objective optimiza-
tion problem consisting of six terms. The monetary objectives are related to driving time and
overtime, while employee inconvenience is accounted for by minimizing minutes of overqualified
work and absolute di�erence in workload across employees. User convenience is ensured by
minimizing violation of time window and maximize the employee-user score, striving to assure
visit continuity.

The first goal of this thesis is to develop a solution method able to solve realistic size instances of
the WRSP. A matheuristic, the Iterative Improvement Heuristic (IIH), is proposed to solve the
WRSP by utilizing an existing Weekly Route Plan (WRP) and perform reallocations of jobs.
The matheuristic iteratively selects jobs to be reallocated and adds these to an optimization
problem which is solved by a MILP implemented in Xpress. The MILP allows multiple reallo-
cations simultaneously, avoiding the risk of stagnating in a local optimum. Validating the IIH
against the initial WRP reveals that the IIH consistently outperforms the initial Weekly Route
Plan by an average of 7.56% and the MILP by 67% when solving large instances.

The second goal of this thesis is to investigate the trade-o�s between improvement of- and impact
on routes, with respect to di�erent stakeholders. This is conducted by identifying sub-optimal
allocated jobs in the initial WRP and attempting to reallocate these jobs by implementing the
IIH. It is proven that the IIH obtains significant improvement without majorly impacting the
existing routes. Additionally, the IIH is able to find improved routes compared to the initial
WRP, without aggravating any of the objectives. Results uncover that more e�cient routes with
respect to the HHC providers’ monetary objectives may be obtained while still improving the
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user and employee related objectives. The obtained solution decreases time spent on driving
time during the workweek by 9.7% without negatively a�ecting the other aspects of the problem.

In conclusion, the proposed Iterative Improvement Heuristic proves capable of solving the Weekly
Routing and Scheduling Problem for realistic size instances. This is supported by results reveal-
ing that the matheuristic performs significantly better than the exact solution method given by
the MILP when solving large instances. Additionally, the solution obtained consistently yields
more e�cient routes than the initial Weekly Route Plan, with respect to all stakeholders of the
HHC problem.

9.2 Future Research

In this section, future research opportunities for the WRSP are highlighted. Section 9.2.1
discusses possible extensions of the WRSP, which would improve the realism of the problem.
Section 9.2.2 addresses how uncertainty could be handled by considering robustness. Finally,
further development of the proposed solution method is suggested in Section 9.2.3.

9.2.1 Improving Realism of the WRSP

Throughout this thesis, several assumptions have been made for simplification, e.g. only consid-
ering one shift, one transportation mode, and a limited number of possible patterns. Increasing
the number of possible patterns and shifts would increase the flexibility of the model by enabling
jobs to switch days and shifts, which could be considered in a future study. In reality, the HHC
in Norway uses several means of transport, including driving, walking, biking, public transport
and carpooling. An extension to the model including an increased number of transportation
modes to reduce travel time could, therefore, be interesting to investigate. User preferences
are handled in a simple manner in the current model, and more advanced approaches such as
visit history or reduction in the number of unique employees visiting the same patient could
be extensions included in future research. Lastly, considering synchronized jobs and jobs with
temporal dependencies, are also possibilities for future research of the WRSP, to improve the
realism of the problem.

9.2.2 Handling Uncertainty in the WRSP

Like every real-life problem, uncertainty plays an important role in the WRSP. There may be
sudden changes in the duration of a job or an unforeseen event may occur at a user’s home, such
as a triggering alarm often used in the HHC, requiring the immediate presence of an employee.
Several methods can be used to tackle this aspect in the WRSP. One of these involves the ability
to cope with unpredictable events by constructing a more robust model. Robustness can be in-
terpreted as the capability to manage minor changes in demand or capacity, such as the addition
of an extra job or reduction in the number of employees due to illness. An interesting research
opportunity is to explore whether the weekly routes could be created with robustness in mind to
minimize the impact of disruptions in routes. This could be conducted by creating a simulation
model imitating disrupting events and iterative solve the disrupted problem and use a feed-
back loop to create more robust initial routes. Robust routes might be overly conservative and
lead to poor initial routes, but prove cost-e�cient in the long term when considering disruptions.
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9.2.3 Further Developing the Solution Method

The solution method proposed in this thesis is a matheuristic where parts of the problem are
wisely selected, and solved, iteratively. Further research of alternative algorithms for selecting
a part of the problem could be explored, for instance, a selection based on geographical sectors
or modes of transport. In addition, more advanced algorithms based on Artificial Intelligence
for selecting parts of the problem could be interesting to research. This thesis applies simple
operators to the WRSP, and alternative heuristic operators could be examined to improve the
search. Lastly, other heuristic approaches, such as genetic algorithms, could be investigated for
the WRSP, as this has proven to be successful for similar problems.
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Appendix A
Appendix - Compressed Model

A.1 Definitions

Sets and Indices

D - set of days, 3 2 D
N3 - set of employees = working day 3 2 D
T - set of tasks C 2 T
J - set of all jobs 9 2 J
JT
C - set of jobs 9 in task C 2 T

A=3 - set of feasible arcs between jobs (8, 9), on day 3, for employee = 2 A=3

CT
C - set of feasible patterns for task C , 2 2 CT

C

Parameters

�3C
92 -

(
1, if job j in task t is assigned to day d in pattern c

0, otherwise
&J

9 - skill level required at job 9

&N
= - skill level of employee =

)8 9 - driving time between job 8 and job 9
⇡ 9 - duration of job 9
) 9 - earliest starting time of job 9
) 9 - latest starting time of job 9
( - start time of any employee = on any day 3
( - end time of any employee = on any day 3
%=9 - preference score on combination between job 9 and employee =

!1 - maximum value of time window violation for stage one
, - maximum waiting time between two jobs

Decision Variables
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G=38 9 -
(

1, if employee n performs job j directly after job i on day d

0, otherwise

~C2 -
(

1, if pattern c 2 CT
C is chosen for task t

0, otherwise
B 9 - start time of job j

4=3 - end time for employee n on day d

>=3 - duration of overtime worked by employee n on day d

;19 - minutes violating time window for job j, 0 - !1

;29 - minutes violating time window for job j, exceeding !1

F3 - the greatest workload on day 3 for an employee
F3 - the least workload on day 3 for an employee

A.2 Objectives

<8= F1
’
82J

’
9 2J

)8 9
’
32D

’
=2N3

G=38 9 (A.1)

+F2
’
9 2J

(?1;
1
9 + ?2;

2
9 ) (A.2)

+F3
’
32D

’
=2N3

>=3 (A.3)

+F4
’
82J

’
9 2J

’
32D

’
=2N3 |&J

9 <&N
=

⇡ 9G
=3
8 9 (A.4)

+F5
’
32D

(F3 �F3 ) (A.5)

�F6
’
82J

’
9 2J

’
32D

’
=2N3

%=9 G
=3
98 (A.6)
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A.3 Constraints

’
22CT

~C2 = 1, C 2 T (A.7)

’
82J

’
=2N3

G=38 9 �
’
22CT

�3C
92~

C
2  0, C 2 T , 9 2 JT

C ,3 2 D (A.8)

’
82J

’
32D

’
=2N3

G=38 9 = 1, C 2 T , 9 2 JT
C (A.9)

’
9 2J

G=309 = 1, 3 2 D,= 2 N3 (A.10)

’
9 2J

G=390 = 1, 3 2 D,= 2 N3 (A.11)

’
9 2J

G=398 �
’
9 2J

G=38 9 = 0, 8 2 J\
�
0
 
,3 2 D,= 2 N3 (A.12)

( +)09  B 9 +"1=3
9 (1 � G=309 ), 9 2 J ,3 2 D,= 2 N3 (A.13)

B8 + ⇡8 +)8 9  B 9 +"2=3
9 (1 � G=38 9 ), 8, 9 2 J ,3 2 D,= 2 N3 (A.14)

) 9  B 9  ) 9 + ;19 + ;29 , 9 2 J (A.15)

;19  !1, 9 2 J (A.16)
B 9 + ⇡ 9 +)90 �"3=3

9 (1 � G=390 )  4=3 , 9 2 J ,3 2 D,= 2 N3 (A.17)
4=3 � (  >=3 , 3 2 D,= 2 N3 (A.18)’

82J

’
9 2J

(⇡ 9 +)8 9 )G=38 9  F3 , 3 2 D,= 2 N3 (A.19)

’
82J

’
9 2J

(⇡ 9 +)8 9 )G=38 9 � F3 , 3 2 D,= 2 N3 (A.20)

G=38 9 2
�
0, 1

 
, 3 2 D,= 2 N3 , (8, 9) 2 A=3 (A.21)

~C2 2
�
0, 1

 
, C 2 T , 2 2 CT

C (A.22)
B 9 , ;

1
9 , ;

2
9 � 0, 9 2 J (A.23)

F3 ,F3 � 0, 3 2 D (A.24)
4=3 ,>=3 � 0, 3 2 D,= 2 N3 (A.25)

A.4 Strengthening the Formulation of the Model

Subtour Elimination Constraints:
’
82S

’
9 2S

G=38 9  |S|, S ⇢ J ,= 2 N ,3 2 D, |S| � 2 (A.26)
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Appendix B
Appendix - Generation of Test Instances

B.1 Input Parameters
Days: 5
Jobs per Employee: 8
Starting time Employee: 540 minutes
Ending time Employee: 1020 minutes
MaxWaiting: 120 minutes
Time Window = Latest Starting Time - Starting Time + Duration
Absolute Latest Starting Time = min(Latest Starting Time + 60, 1080)

Frequency 1 2 3 4 5
Distribution of
Jobs

53.8% 5.7% 4.3% 11.4% 24.8%

Level 1 2 3 4
Skill Level Employees 25% 25% 25% 25%
Skill Requirement Jobs 26% 24% 24% 26%
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Appendix C
Appendix - Computational Results

C.1 Configuration of '

Instance Size J R Average Improvement
40 8 4 10.90%
40 8 8 11.52%
40 10 4 11.27%
40 10 8 11.63%
40 12 4 10.88%
40 12 8 11.15%
40 14 4 4.52%
40 14 8 5.05%
40 16 4 4.82%
40 16 8 5.19%
80 8 4 7.44%
80 8 8 9.87%
80 10 4 7.49%
80 10 8 10.78%
80 12 4 9.03%
80 12 8 5.91%
80 14 4 2.66%
80 14 8 4.10%
80 16 4 2.88%
80 16 8 3.16%

C.2 Results from Single Heuristic Search

Results from re-allocating Individual Jobs based on Saving Driving Time
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Change in % Changes in Routes
OV DT Day Employee Preceding Job Starting Time

Job 27 2.13% 2.14% 1 1 2 28
Job 4 2.09% 2.10% 1 1 6 27
Job 39 0.69% 0.69% 1 1 3 25
Job 14 0.00% 0.00% 1 1 6 27
Job 16 0.00% 0.00% 0 0 0 0
Job 18 1.24% 1.25% 1 1 2 28
Job 26 1.40% 1.41% 0 1 2 35
Job 15 0.00% 0.00% 0 0 0 0
Job 40 0.00% 0.00% 0 0 0 0
Job 23 0.19% 0.18% 1 1 6 31
Job 31 0.00% 0.00% 0 0 0 0
Job 19 0.47% 0.47% 0 1 2 25

Results from re-allocating Individual Jobs based on Reducing Violation of Time
Window

Change in % Changes in Routes
OV TW Day Employee Preceding Job Starting Time

Job 62 0.00% 0.00% 0 0 0 0
Job 66 0.00% 0.00% 0 0 0 0
Job 48 0.00% 0.00% 0 0 0 0
Job 2 0.45% 2.59% 1 1 7 30
Job 62 0.00% 0.00% 0 0 0 0
Job 49 0.00% 0.00% 0 0 0 0
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