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Abstract

This thesis considers problem-based scenario generation for stochastic problems with binary dis-
tributions. Stability, that is, the sensitivity of a stochastic program to the scenario set has been
studied from both mathematical and empirical perspectives to develop a new problem-based scen-
ario generation method. An output-distribution centric view of scenario generation and stochastic
programming is introduced, contrasting recent literature on the field, and is used directly for
scenario generation and as a tool to analyse stability and ‘presence of uncertainty’ in stochastic
models. Scenario generation is considered more deeply for a stochastic model in Air Traffic Flow
Management with a binary distribution to highlight the value of this contribution.



Summary

Scenario generation is about selecting which outcomes of the future are worth considering when
solving a stochastic optimization problem, and to remove redundancies in the full representation
of the stochastic phenomenon to be able to solve a decision problem.

This thesis finds that analysing a collection of output-distributions resulting from a restricted
and relevant set of first-stage decisions is sufficient to find the problem structure which makes
the formulation unstable and that these can be compensated against by constructing appropriate
scenario sets based on empirically analysing such a collection of output-distributions.

These insights are applied to make a new scenario generation method for the particular case
of binary distributions. This problem type is exceptionally well suited for problem-based scenario
generation due to the high impact of changes in the stochastic variables, and the lack of alternative
scenario generation methods for such problems makes this a valuable contribution. Three different
clustering methods suited for binary domains are suggested and compared to guide how to choose
one based on the specific problem.

The motivation for developing better scenario generation procedures is to solve large-scale,
often combinatorial, stochastic models which otherwise cannot be solved. The proposed scenario
generation method is therefore applied to a large-scale, combinatorial two-stage model in Air Traffic
Flow Management specified by a binary distribution function. The model integrates strategic
decision making across entire air traffic networks and integration between the strategic and tactical
planning stages. It was shown that the suggested scenario generation procedure gave better
and more reliable solutions than all other alternatives considered. Thus, the proposed scenario
generation procedure creates a more accurate and reliable representation of the output-distribution
to solve the given problem.
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1 Introduction

There exists a vast collection of decision problems where uncertainty is an inherent property that
is essential to consider, and neglecting the effects of uncertainty when modelling a problem can
result in poor decisions. The challenge in stochastic programming is that the stochastic version
of the problem is significantly more demanding to solve, and the added value can be difficult to
determine without implementing the model first.

The uncertainty addressed in this thesis an inherent property of the problems, and cannot be
removed by collecting more information, or without rendering the results of the model useless.
The decision could, for example, be time-sensitive and waiting for more detailed information by
letting uncertainty reveal itself would make the decision unnecessary because time has already
passed.

In our context, we specify the uncertainty by a distribution function, either based on empirical
data or by knowing the analytical distribution. Modelling these decision problems can be difficult,
and a natural question to ask is whether it is possible to collapse the probability distribution by
representing it with a single value, say the expectation, and still get an accurate solution. The
short answer is no. The real answer is that it all depends on the problem at hand. If you solve
the deterministic version of the problem, defined by using a single outcome value instead of a
distribution, you will not know by how much the solution is suboptimal in the (real) stochastic
setting. The deterministic version can solve some problems adequately but which problems this
holds for is a question of experience and research.

There are two ends of the spectrum for models considering uncertainty. On one side, there is the
deterministic version which can give inadequate solutions and on the other, there is the stochastic
version with a full description of the distribution which we cannot solve in most cases. We cannot
use the full description of the distribution function either because it is continuous, and the solution
method requires a discrete distribution, or because of an exponentially large amount of outcomes.
Discretizing and simplifying the probability distribution is a compromise between the deterministic
and exact stochastic problem formulations, and the quality of the discrete distribution determines
the impact of this compromise.

We don’t solve all problems by its stochastic version because formulating and solving stochastic
models is often more laborious, and the deterministic version is more straightforward, if a determ-
inistic counterpart exists. Additionally, stochastic programs have a higher overhead from solving
for multiple scenarios, meaning that size and complexity of the problem will catch up with you
more quickly if the problem is of large scale or high complexity. Thus, solving the model within
a reasonable time isn’t tractable. Modelling problems by considering uncertainty requires precise
modelling assumptions to reduce size. It is said in the stochastic programming research community
that they are still only solving toy-sized versions of the problems they want to solve (Sen, 2019,
in conference).

The task of making a concise discrete representation of a probability distribution is called
scenario generation. The resulting discrete distribution is called a scenario set which consists of
a set of outcomes with corresponding probabilities. One outcome, together with its probability, is
referred to as one scenario.
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The quality of the scenario set is essential to get reliable solutions from a stochastic model.
Because of this interdependence between the reliability of the final solution and the scenario set,
scenario generation is part of the modelling itself. It cannot be considered preliminary data ma-
nipulation, and we must develop it alongside the solution procedure (King & Wallace, 2012).

This thesis will explore problem-based approaches of scenario generation to construct more
concise scenario sets. Problem-based means that specific properties about the problem, and not
only the distribution, is utilized to generate higher quality scenario sets.

Rationale

Scenario generation has historically been driven by the probability distribution of the physical
phenomenon and how to convert that distribution into a statistically most accurate scenario set.
This approach does not directly take in to account the fact that the optimization model transforms
the scenario set into a completely different output-distribution, and that this output-distribution
is what determines the final solution of the model. Distribution-based scenario generation will
work as long as the number of scenarios is large enough, but if the problem is too difficult to solve,
the high number of scenarios can make it intractable.

Recent advances in optimization have enabled us to solve large-scale problems and NP-hard
combinatorial problems. The stochastic version of such problems is even larger. With a linear
increase in the number of stochastic variables, the number of dimensions of the distribution grows
linearly, which in turn causes an exponential growth in the number of possible outcomes. This
exponential growth is what makes such models unsolvable. At the same time, there is no end to the
number of applications within energy planning, transportation, logistics, finance and engineering
that require solving large-scale problems.

Developing better scenario generation procedures is one of two approaches to make these
problems tractable. The second approach is to develop more efficient solution techniques. It is
important to note that these two approaches are complementary, and thus a contribution to scen-
ario generation serve great value on top of potential improvements in solution procedures.

Problem-based scenario generation is about looking more closely at the specific problem, prob-
lem class or model formulation to generate scenarios. We can utilize this additional informa-
tion about the problem to reduce the number of scenarios further than what is possible with
distribution-based methods.

The literature on problem-based scenario generation has seen only recent advancements in the
last couple of years and is therefore still forming. Next chapter clarifies problem-based scenario
generation as a concept. Additionally, a specific problem which is of interest in itself is solved to
showcase the use of problem-based methods for scenario generation. The case study problem is
an Air Traffic Flow Management problem, which is a hard combinatorial large-scale problem with
binary input distribution.

Binary distributions are of particular interest for decision problems because of the implications
they represent. A binary stochastic variable could represent a network link failing, whether a
customer is present or not, or significant qualitative differences in operating modes of a system.
They are therefore more important than merely being a subset of general discrete distributions. In
particular, scenario generation with binary distributions is an especially appropriate application of
problem-based scenario generation since changes in a binary outcome vector represent significant
shifts in behaviour within the modelled system, and it is therefore especially advantageous to
encapsulate this behaviour when generating scenarios. Additionally, other scenario generation
methodologies such as property matching (Høyland, Kaut & Wallace, 2003) and Sampling Average
Approximation (SAA) (Shapiro, 2003) may become useless for these problems because of the
binary domain. The literature on scenario generation for binary distributions has only a few
papers, although many applications have formulations with binary distributions. This thesis seeks

2



to expand the research literature on stochastic programming with binary distributions.

Problem description

This thesis aims to understand how problem structure in stochastic problems can be exploited
to construct more concise scenario sets than would be possible by distribution-based methods.
Finding problem structure is in itself a difficult task which is not well defined for most problem
classes. Once the problem structure is found, scenario generation procedures should exploit it
appropriately to give a more concise description of the uncertainty. Successfulness of such a
procedure is determined by benchmarking the out-of-sample stability against other methods.

Contribution

This thesis finds that analysing collections of output-distributions resulting from a set of restricted
relevant first-stage solutions can be used to find problem structures in stochastic programs, and
shows that these structures can be exploited to generate scenario sets which give a more concise
representation of the uncertainty than possible by distribution-based alternatives.

We propose a new computationally tractable problem-based scenario generation procedure
which is agnostic to the particular kind of problem without the need for considerable tailoring.
The method is developed with implementation in mind, and computational experiments on a
large-scale combinatorial stochastic two-stage model in Air Traffic Flow Management (ATFM)
specified by a binary distribution illustrates its successfulness.

Extra care is needed to make sure the method can be applied to problems with binary input-
distributions, and we consider different three clustering methods for scenario generation. The
most appropriate method comes down to a consideration of the specific problem and guidance for
relevant considerations on the complexity of generating scenarios for binary distributions is given.

The newly introduced recourse deviation and analysis of collections of output-distributions give
more nuanced information about instability and can serve as a proxy for evaluating the presence
of uncertainty in stochastic problems. We exemplify how such insights can be found in particular
on the case study problem.

The exposition of previous literature on problem-based scenario generation and the simultan-
eous consideration of mathematical and empirical stability theory for stochastic programming have
not been done before in the literature and can also be considered a contribution in itself.

Outline

The thesis assumes a basic understanding of stochastic programming, which regards typical model
formulations and solution procedures. Everything regarding scenario generation is explained or
have references to relevant research literature. As a starting point, the reader is referred to
either (Kall & Wallace, 1994) or (Birge & Louveaux, 2011) for theory on stochastic programming
and solution procedures.

The structure of the thesis is as follows. Chapter 2 gives background and theory on problem-
based scenario generation and the stability of stochastic programs. Chapter 3 is a literature review
of what has been done previously with the techniques applied in this thesis, including stability
and clustering methods for scenario generation. Chapter 4 introduces the case study problem in
Air Traffic Flow Management (ATFM) for solving strategic planning of air traffic schedules by the
integration of the entire airport network and between the strategic and tactical planning stages.
Chapter 5 is an overview of how stability theory and clustering methods are combined in a new
way to generate problem-based scenario sets for stochastic problems with binary distributions.

3



Chapter 6 contains numerical experiments, results and analyses of the ATFM problem. Lastly,
Chapter 7 discusses and concludes the work.
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2 Background and theory

Decision making under stochastic uncertainty is about making decisions which are ‘well hedged’
against uncertain outcomes in the future. Two-stage stochastic problems are the prototypical
exemplifications of this problem class, and three fundamental aspects define them:

(I) A decision to be determined before some stochastic uncertainty is revealed

(II) A distribution function for the stochastic uncertainty

(III) Evaluation of the cost of the decision once the uncertainty has been revealed

A two-stage problem can be illustrated by a scenario tree as shown in Figure 2.1, where the
root node represents the first-stage decision (I), the branches represents the possible stochastic
outcomes (II), also called the scenario set, and the leaf nodes represents the cost evaluation (III)
of the first-stage decision for each possible outcome, also referred to as the second-stages. A
second-stage may also involve determining a second-stage decision.

In application, this formulation is commonly used to model strategic and tactical decisions in
a way also to incorporate operational considerations into the first-stage decision. The operations
then depend both on the first-stage strategic or tactical decision and the stochastic uncertainty. In
logistics, this may involve deciding transportation routes in advance without knowing the demand
at different stations, or determining which facilities to invest in when their utility is uncertain.

Multistage problems are an extension of two-stage problems with multiple phases of stochastic
uncertainty separated by consecutive decisions. An example from applications includes portfolio
selection where the portfolio has to be rebalanced at certain time steps considering newly revealed
information about the uncertainty at each stage. Conceptually, multistage problems can be seen
as recursive two-stage problems because the cost evaluation of stage number two in a multistage
problem involves solving another two-stage problem where the next level may or may not be
another two-stage problem. This is illustrated in Figure 2.2.

In this thesis, we consider only the two-stage setting as multistage problems are often more
complicated and require more sophisticated approximations. The essential ideas presented in the
context of two-stage stochastic programs are also relevant for more general stochastic problems
and meaningful for multistage problems. Expanding these ideas entirely to the multistage setting
could be a pertinent consideration for further research.
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First-stage

Second-stageSecond-stageSecond-stage Second-stage Second-stage

Figure 2.1: Two-stage scenario tree.

First-stage

Second-stages

Third-stages

Figure 2.2: Multistage scenario tree.

The decision problem under stochastic uncertainty is the task of selecting the first-stage decision
that yields the best distribution of costs, also referred to as the output-distribution. To find the
output-distribution is known as the distribution problem (Wets, 1996). Unfortunately, the second-
stage cost evaluation is often computationally difficult to determine and the preferred approach
to solve the distribution problem is to sample different outcomes and evaluate for those.

The response of the distribution from changing the first-stage decision is therefore in general
challenging to determine ex ante. Figure 2.3 shows the output-distribution evaluated at two
different first-stage decisions for a facility location problem where the objective is to minimize
the cost of delivering goods to customers. We see that the distribution in Figure 2.3b has a very
irregular shape characteristic and that the one in Figure 2.3a is qualitatively very different. These
variations in the output-distribution emphasize what a challenge it is to approximate these kinds
of distributions. Keep in mind that each data point in the histogram is the result of solving an
optimization problem with the stochastic outcome and first-stage decision as parameters.

To distinguish an output-distribution as better or worse, we need to consider a metric of util-
ity on the distribution. The most common one would be the expected value, followed by tail-risk
measures and others.
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Figure 2.3: The output-distribution of (a) a well chosen first-stage decision, and (b) a bad first-stage
decision. Taken from a facility location problem where the objective is to minimize the expected cost.
Evaluated for 60 000 sampled outcomes.

2.1 Problem-based scenario generation

Let us consider the two-stage decision problem with expected value as a utility metric. This is
expressed by the objective1

fP (x) = EP [f(x)(ξ)] =

∫
Ξ

f(x)(ξ)P (dξ) (2.1)

where x is the first-stage decision constrained to some feasible set X, and P is the probability
measure of the underlying probability space (Ω,F , P ). For the problems in our context, we can
decompose the objective into a deterministic cost g(x) and a stochastic cost Q(x)(ξ) known as
the recourse function. The recourse function is interpreted as the future cost of a decision in a
specific outcome, and the advantage of modelling with stochastic programs is that we take this
cost directly into account. Thus, the output-distribution is

f(x)(ξ) = g(x) +Q(x)(ξ). (2.2)

Evaluating Q(x)(ξ) typically involves solving an optimization problem in itself and the integral
QP (x) = EP [Q(x)(ξ)], referred to as the expected recourse, cannot be evaluated if the distribution
is continuous or has too many outcomes. We rely on discretizing or simplifying the distribution
function by redefining its probability measure P , resulting in a set of discrete outcomes ξs with
associated probabilities ps defined over a finite index set s ∈ S. The collection of outcomes
together with its probabilities makes a discrete distribution and is referred to as a scenario set.
The scenario set is defined by its probability measure T . Thus, we make the approximation

fP (x) ≈ fT (x), (2.3)

and solve argminx∈XfT (x) instead of argminx∈XfP (x) to get the solution to the decision problem.

The scenario set’s size is closely related to both the stability and the solution time of a stochastic
program. The approximation error typically shrinks with more scenarios, but this also involves
more evaluations of Q(x)(ξ) which can be computationally very time-consuming. The procedure
of creating the scenario set is called scenario generation. The challenge with scenario generation

1The notation f(x)(ξ) means that f(x)(·) : Ξ → R is a function which takes the argument ξ, but the func-
tion f(x)(·) also changes with different first-stage decisions x. Introduction of new notation was done to avoid
unnecessary confusion when notation from mathematical and empirical stability theory was combined.
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lies in making appropriate estimates of EP [Q(x)(ξ)] which also holds for a relatively large set of
relevant x.

Let x be fixed and consider the stochastic variable Rx(ω) = f(x)(ξ(ω)) which we refer to as
the output-distribution considering different first-stage decisions x, and ξ(ω) is referred to as the
input-distribution. The input-distribution can take familiar forms like a multivariate normal dis-
tribution or a multivariate Bernoulli distribution, while the output-distribution can have peculiar
and unfamiliar forms based on the nature of the problem.

Now, changing the distribution to a scenario set T will alter the properties of both the input-
distribution and the output-distribution. Problem-based scenario generation is at its core about
exploiting properties of Q(x)(ξ) to estimate EP [Rx(ω)] as accurately as possible by the scenario set
while still keeping the size of the scenario set as small as possible. Note that generating a scenario
set which more accurately approximates the input distribution often causes more accurate output-
distributions as well. However, it’s not the case that the best possible concise description of the
input distribution results in the best possible concise representation of the output-distribution.

The stability of stochastic problems with perturbations of its underlying distribution is a crucial
tool to determine how to appropriately compensate the approximations of the input-distribution
according to a specific problem’s characteristics.

2.2 Stability

The reliability of the solution from a stochastic program is the reason scenario generation matters.
If a perturbed scenario set results in significantly different results, then the generation procedure
is unreliable, and we cannot trust that the result of the solution procedure is the solution to the
model we formulated. In practice, we perturb a scenario set by adding slightly more or slightly
fewer scenarios or, if the generation procedure is non-deterministic, generate the scenario set
multiple times.

It has been observed repeatedly in practice that solutions to stochastic programs obtained by
using reasonable approximations of the distribution are robust to reasonable perturbations of that
distribution (Römisch & Wets, 2007b). The Fortet-Mourier probability semi-metric (2.4) is one
theoretical tool used to explore this observation.

Let P(Ξ) be the set of all Borel probability measures on Ξ. The epi-distance of the objective
function f(x)(ξ) between the probability measures P,Q ∈ P(Ξ) can then be bounded from above
by the probability semi-metric

dFρ(P,Q) = sup

{∣∣∣∣∫
Ξ

f(x)(ξ)P (dξ)−
∫

Ξ

f(x)(ξ)Q(dξ)

∣∣∣∣ : f(x) ∈ Fρ
}

(2.4)

where Fρ = {f(x)(·) : Ξ → R s.t. x ∈ X ∩ ρB} is a class of measurable functions from Ξ
to R. The set Fρ is interpreted as all possible output-distributions for each feasible first-stage
decision x ∈ X also within the ball ρB. The ball which is centred in the origin could potentially
be relatively large.2

Thus dF (Q,P ) quantifies the absolute difference between the objective value of the optimiz-
ation problem for two distributions with probability measures P,Q. The supremum means that
the bound is evaluated at the first-stage decision that makes for the largest difference between the
objective values fP (x), fQ(x).

Römisch and Wets (2007b) show formally that stochastic programs are Lipschitz continuous
with respect to the Fortet-Mourier metric for reasonable perturbations of the distribution, which

2We need ρ to be sufficiently large so that the solution set S(P ) = argminx∈X{fP (x)} is contained in the
ball S(P ) ⊂ ρB and that the optimal objective value v(P ) = minx∈X{fP (x)} fulfils v(P ) ≥ −ρ, based on the
perturbation theory in (Rockafellar & Wets, 2009, Section 7J).
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supports the empirical observation that stochastic programs are reasonably robust under perturb-
ations of the underlying distribution.

There are three kinds of distributions to be considered in this context. First, there is the ‘real’
distribution, meaning the underlying unobtainable distribution for the physical phenomenon we are
observing. Second, there is the observed distribution which is our most accurate description of the
physical phenomenon, expressed by an analytical or empirical distribution function. Lastly, there
is the scenario set used to solve the stochastic program, which is a simplification and approximation
of the observed distribution.

Römisch and Wets (2007b) argue that their result means using the observed distribution in-
stead of the real distribution will still provide reliable results. This result can also be applied to
explain why approximating the observed distribution by a scenario set often also gives reliable
results. However, at such a significant approximation the reliability can no longer be taken for
granted.

From a different point of view in the scenario generation literature, Kaut and Wallace (2007)
points out that a scenario generation method should be evaluated by its performance in practical
problems rather than on its currently provable theoretical properties as there is an evident gap
between them. As already pointed out, the reliability of stochastic programs is intuitively present
in many problems. However, as the problems we want to solve grow larger, and we start pushing
the size of the scenario sets to the bare minimum, we need criteria to evaluate if this inherent
reliability is still sufficient. Kaut and Wallace (2007) introduces some practical evaluation criteria
to determine if the solution from a given model is stable. The evaluation criteria are based on a
scenario generation procedure which generates a collection of scenario sets T1, T2, . . . which are
perturbations with respect to each other. The scenario sets are then used to find corresponding
solutions x∗1, x

∗
2, . . . of the stochastic programming model. Finally, these solutions can be evaluated

by the following criteria:

• In-sample stability determines if the solutions are stable when evaluated by the scenario set
it was solved by. The condition for in-sample stability is

fTi(x
∗
i ) ≈ fTj (x∗j ), ∀i, j. (2.5)

• Out-of-sample stability determines if the solutions are stable when evaluated by the whole
observed distribution. The condition is

fP (x∗i ) ≈ fP (x∗j ), ∀i, j. (2.6)

• Bias indicates if the generated scenario set accurately represents the expected value of the
observed distribution, and is evaluated by

fTi(x
∗
i ) ≈ fP (x∗i ), ∀i. (2.7)

Note that there is a distinction between evaluating the objective function in-sample and out-of-
sample and the use of these evaluations for the different stability properties (2.5)–(2.7).

King and Wallace (2012) explains that if in-sample stability is not present, you may not have
understood your problem properly. It need not be present for good scenario generation procedures,
but it means that something is going on in the model which is odd and you may not know why it
still gives good results or whether it will remain stable for similar problem instances.

Out-of-sample stability tells how the solution performs in the actual criteria we want to solve
for. Out-of-sample stability is the only criteria we need to fulfil since this is the evaluation of
the ‘cost in reality’. The problem with using out-of-sample evaluation is that is can be very
computationally intensive to determine, however, not intractable.

If a scenario generation procedure does not attain out-of-sample stability, but preserves in-
sample stability, then the scenario generation creates a stability which is not really there. This
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is bad. The other way around, if out-of-sample stability is present, but not in-sample stability,
then the evaluation in-sample does not give you much information but can still cause the solution
algorithm to produce reasonable solutions when evaluated out-of-sample.

King and Wallace (2012) explains that the relation between in-sample and out-of-sample sta-
bility is not simple at all, but Prochazka and Wallace (2020) provides some additional important
properties which should be fulfilled by a good scenario generation procedure:

• Appropriate ordering of solutions x, y by the relation

fP (x) < fP (y) =⇒ fT (x) < fT (y). (2.8)

• Avoidance of overconfident outliers, where if the relation (2.8) is false then we require that

fT (x) ≈ fP (x), (2.9)

meaning that the significance of a violation of ordering is not too large.

Property (2.8) ensures that an optimization procedure which aims to find argminx∈X{fT (x)}
would converge to a solution within the actual solution set S(P ) = argminx∈X{fP (x)}. If this
property is ensured for a scenario generation procedure, we would be done.

Property (2.9) is a weaker claim than property (2.8). If the implication (2.8) is false we may
require property (2.9) instead. This ensures that a violation of (2.8) would not be too severe in
terms of how wrong the solution using T would be.

Prochazka and Wallace (2020) also suggests that these properties are more important for better
first-stage decisions because an optimization procedure will converge towards better solutions. If
the representation of the output-distribution of a terrible first-stage solution is off, it may not
matter because the search algorithm disregards it to move towards much better solutions. However,
as the algorithm converges to an optimal solution, the difference between compared solutions is
smaller, and it’s more important that the evaluations are most accurate there.

2.3 Discussion

It cannot be emphasised enough that the first-stage decision is the only thing we aim to solve
for and it’s evaluated only by its out-of-sample objective value. All other quantities or decisions
variables in the problem are tools to support finding the best first-stage decision. The second-stage
evaluation and decision vectors are simply a means to evaluate how the system we model responds
to a different first-stage decision.

Now, we argue that an output-distribution centric view of stochastic problems is essential be-
cause the decision problem under uncertainty is all about hedging the first-stage decision against
some set of possible outcomes. Collapsing the output-distribution by evaluating in its utility met-
ric will rid us of much information about the problem-specific characteristics of the uncertainty.
If we can analyse the output-distribution to find clusters of outcomes where changes in the first-
stage decision manifest themselves in approximately the same way, these can be re-represented
as a single scenario with minimum loss of accuracy in the final result. The goal of scenario gen-
eration is indeed only to find out-of-sample outcomes which similarly manifest themselves in the
output-distribution.

Utilising the fact that it is only the final first-stage decision that matters provides much free-
dom when formulating the scenario set. This is because scenario generation becomes an argument
about where the solution procedure converges to, not how accurately the distribution is represen-
ted. Scenario generation based on problem insight and simple heuristics can often be helpful; if
we can check that they work. That is why the tools of empirically testing stability are so essential
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for scenario generation. They allow us to validate the effectiveness and reliability of a scenario
set, giving us the freedom to depart from statistically sound approximation and to explore how
problem-specific corrections can provide better representations of uncertainty.

Dupačová, Gröwe-Kuska and Römisch (2003) suggested that the Fortet-Mourier metric could
be used as a canonical metric to assist scenario generation. Note that the Fortet-Mourier metric
itself cannot be minimised but attempts to bound it and minimise the bound have been done in
(Dupačová et al., 2003), see details in the literature review.

Even if we could solve for the Fortet-Mourier metric, this thesis argues there is a gap between a
most effective scenario set, meaning reliable and with minimum cardinality, and the one obtained
from minimising the Fortet-Mourier metric. The discrepancy lies in the supremum over possible
output-distributions in (2.4). It may be too conservative evaluating the deviation of the utility
metric at the first-stage decision where it is largest, and a too conservative metric of stability
could result in making unnecessarily large scenario sets. This thesis aims to explore how scenario
generation can be improved to solve otherwise intractable problems by generating more concise
scenario sets.

As pointed out by Prochazka and Wallace (2020), it is at the better first-stage decisions that
the scenario approximation matters the most. In this thesis, we attempt to evaluate the stability
of stochastic programs empirically at more appropriate first-stage decisions than is accounted for
by the Fortet-Mourier metric but are also motivated by the deviation within the set of output-
distributions of these first-stage decisions, analogous to the Fortet-Mourier metric, but less con-
servatively.

Comparing the mathematical theory on the stability of stochastic programs and empirical
testing has not been done in the literature before, and this thesis builds on finding the synergies
between these to develop better approximations and tools for analysing the stability of stochastic
problems.
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3 Literature review

This review highlights previous work on various methods of scenario generation in the literature on
stochastic programming which has served as inspiration for this thesis. There are three such sources
of inspiration; stability across first-stage decisions, scenario generation with binary distributions,
and clustering methods for scenario generation. Finally, problem-based scenario generation, which
was the onset for this thesis, is briefly reviewed by an overview of previous advances.

3.1 Scenario generation by sample first-stage decisions

Prochazka and Wallace (2020) considered appropriate relations between in-sample and out-of-
sample stability and demonstrated them by implementing a heuristic to fit a scenario set to adhere
to these properties. They constructed an appropriate objective function for the fitting algorithm,
as a function of the in-sample and out-of-sample expected objective values, based on their postu-
lates of what properties a good scenario tree should exhibit. What’s especially interesting about
their contribution is that they consider stability across different first-stage decisions. These were
obtained by solving the stochastic program by a heuristic procedure multiple times.

Their approach showed promising results, lowering set sizes from 50 sampled to 3 fitted scen-
arios, but it had some caveats based on the development time of various heuristics tailored for the
specific problem to be solved. Prochazka and Wallace explicitly states that due to this overhead
their procedure is only appropriate for applications where online solution times need to be reduced
or where scenario generation is especially challenging.

The fitting algorithm in (Prochazka & Wallace, 2020) required many first-stage solutions, and
afterwards, they had to be evaluated out-of-sample. Many out-of-sample evaluations may be reas-
onable on many occasions, but if the second-stage is especially time-consuming to solve it may
take an unreasonable amount of time. For reference, the Air Traffic Flow Management problem
considered in this thesis which has a MIP second-stage can take up to 320–1280 CPU hours to
evaluate out-of-sample for a single first-stage decision. One aim of this thesis is therefore to reduce
the required number of such first-stage solutions.

The contribution of this thesis builds on (Prochazka & Wallace, 2020) by also considering
stability across different first-stage decisions. What makes it possible to use fewer first-stage
decisions is that the whole output-distribution is used instead of only the expected recourse. In a
way, this is using the same available information which must be obtained in both procedures but
exploiting it better.

We also generate a set of solutions but instead of perturbing the solutions by the solution
trajectories, i.e. letting the heuristic make for their distinctiveness, they are perturbed in the
scenarios used to find them. This way, the perturbations in the resulting output-distributions has
a relation to the stability of the model itself, not necessarily on the solution procedure to obtain
them.
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3.2 Binary distributions

The literature on scenario generation for binary distributions is very sparse. The only article found
which addresses scenario generation in particular for these problems is (Prochazka & Wallace,
2018), although there exist application papers with scenario generation for binary distributions as
part of the work. In was mentioned that the approach in (Prochazka & Wallace, 2020) may also be
effective. Otherwise, scenario reduction (see Section 3.4) is a viable distribution-based approach.

The Air Traffic Flow Management problem in (Wang & Jacquillat, 2020), which we invest-
igate closer in this thesis, is specified by a binary distribution to represent different operating
modes at airports. Additionally, Ball, Colbourn and Provan (1995) discuss network reliability on
a class of problems characterized by how failures affect the system. This problem class is natur-
ally formulated as stochastic programs with binary distributions. They mention applications in
communication, transportation, power networks and command and control systems.

Prochazka and Wallace (2018) looked at binary distributions specifically for problems where
penalty costs may or may not appear as a result of the stochastic outcome. These are analog-
ous to problems with tail risk measures, for which the continuous counterpart was considered
in (Fairbrother, Turner & Wallace, 2018, 2019).

Prochazka and Wallace argue that for such problems, only some binary outcomes cause penal-
ties for a given first-stage decision. They identified an ordering-relation between outcomes which
sorts them by whether an outcome can cause a penalty or not, given that we know the penalty for
one of the outcomes. This information is used to ease the out-of-sample evaluation significantly.
The second-stage cost is then computed recursively, starting at the worst scenario, here defined by
only 1s, and lowering the outcome variables to 0 one at a time. This recursive algorithm can be
represented by a tree where the root node is the worst outcome, and each child node has one less
1 than the parent node. This tree can be searched recursively, and a node which doesn’t cause a
penalty informs us that every child node can be ignored.

There exist a limited number of problems with this structure; therefore, this thesis considers
more general classes of problems. We use arguments on stability and relations among output-
values instead of ordering relations between binary outcomes; thus, it holds for any problem with
a binary distribution. Still, ordering relations by (Prochazka & Wallace, 2018) give exact answers,
and still maybe very large outcome sets to evaluate over, while the stability approach is only
approximate.

3.3 Clustering methods for scenario generation

Clustering is a well-known method for systematizing large sets of data points into clusters such
that all elements within a cluster exhibits similar properties and at the same time exhibit different
properties between clusters. Centroid-based clustering methods, in particular, select a centre-
point and attempt to minimize the distance between the centre-point and all other points in the
cluster. K-means is one such method where the centre-point is the average point in the cluster.
The k-median method, on the other hand, selects one of the dataset points as a centre-point.
The k-means problem can be solved approximately by an efficient greedy approximation, while
k-means is a combinatorial NP-hard problem which for large datasets must be approximated, i.e.
by forward and backward propagation (Heitsch & Römisch, 2003).

A scenario generation method based on clustering has three steps (Sun, Teng, Konstantelos &
Strbac, 2018):

• Selection of clustering variables and distance metric

• Selection of clustering technique

• Selection of a representative scenario from each cluster
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We apply this framework for the rest of this thesis.
Sun et al. (2018) tested a large variety of parameters for all of these steps on a Transmission

Network Expansion Planning (TNEP) problem. Among the considered clustering methods where
hierarchical-, centroid- and distribution-based clustering, and for the clustering variables they used
the input-distribution, objectives from solving the second stage for a given first-stage decision and
a combination of the two. Both the L1 and L2 distance metrics were tested. In both (Feng &
Ryan, 2016; Sun et al., 2018) variations of qualitatively distinguishing scenarios based on problem
characteristics were used to make the scenarios more effective or enhance the computational time
to solve the clustering problem.

It can be concluded from the work that among the various tested parameters in (Sun et al.,
2018), centroid-based clustering was effective in many contexts, while the effectiveness of the scen-
arios was more sensitive on the choice of clustering variables combined with how the qualitative
distinctions from the problem were made. See (Sun et al., 2018, Section 5.3).

The approaches in both (Feng & Ryan, 2016; Sun et al., 2018) was entirely or partly based on
clustering by problem-based clustering variables, meaning that in different ways, they solved the
problem and evaluated the second-stage score for each out-of-sample scenario. A downside of the
approaches in these papers is however that the given first-stage solution was held constant, meaning
that they did not capture how the characteristics of the output-distribution may change under
changes in the first-stage decisions. Additionally, Feng and Ryan (2016) based the clustering
variables on the solution of the deterministic formulation of the problem characterized by the
expected value scenario or, as also done in (Sun et al., 2018), they solved the problem for each
individual scenario, known as the solutions of perfect information, and based the clustering on
the stochastic costs of those solutions. Both of these approaches are lacking in that the objective
values they cluster on are based on solving the problem for only a single scenario at a time. This
results in structurally different first-stage solutions from what is obtained by solving with a set
of scenarios (Wallace, 2010), and they are therefore working within the realm of what-if analysis.
See (King & Wallace, 2012, Section 1.3) for a detailed discussion on this fallacy.

A further downside of these approaches is that the methods are heavily tailored to the specific
problem, meaning that applying the approaches to other problems may involve extensive testing
to assure they work. That said, both the scenario generation approaches in (Sun et al., 2018) and
(Feng & Ryan, 2016) proved very effective on their specific problems.

Similarly to these two approaches, we use variations of clustering variables both from the in-
put and output domains and try two centroid-based clustering approaches; k-means and k-median.
The distinction, however, is the use of stability arguments for variations in first-stage decisions
which wasn’t done in either of the mentioned approaches, and the use of more realistic scenario
sets to obtain first-stage decisions.

Variations of clustering methods for scenario generation are present in the literature where
some distribution-based alternatives include (Chen & Yan, 2018; Latorre, Cerisola & Ramos,
2007) and scenario reduction, which we discuss in more detail in the next section.

3.4 Scenario reduction

Scenario reduction is a clustering-based scenario generation method which is also motivated by
stability arguments of stochastic programs. The paper (Dupačová et al., 2003) is the original pa-
per for this approach. Scenario reduction has been used extensively in the literature on stochastic
programming, but experience has also shown that it may not be appropriate for all kinds of
problems (Sun et al., 2018) and comparing it with other approaches shows that it may result in
significant bias in the in-sample evaluation (Löhndorf, 2016).

The starting point of Dupačová et al. (2003) is that they suggest the Fortet-Mourier type
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metric (2.4) be used as a canonical metric for stability in stochastic programs. Furthermore,
they show that for stochastic programs, the Kantorovich functional is a valid upper bound for
the Fortet-Mourier metric. The Kantorovich functional, also called the Monge-Kantorovich mass
transportation problem, takes the form

µc(P, Q) = inf
η


∫

Ω×Ω

c(ω, ω̃)η(dω, dω̃) s.t.
η ∈ P(Ω× Ω),
η(B × Ω) = P (B),
η(Ω×B) = Q(B),

∀B ∈ B

 . (3.1)

where P,Q ∈ P(Ξ) are two probability measures (i.e. distributions), c(ω, ω̃) is a transportation
cost between ω and ω̃, and η is the transportation plan. The minimum transportation plan η∗

tells us how the distribution P can be transported to Q with the minimum amount of ‘effort’
determined by the cost function c(·, ·). The Monge-Kantorovich mass transportation problem is
well studied and have been used in various applications, see (Rachev & Rüschendorf, 1998, 2006).

Considering P,Q as discrete distributions with respective cardinality N,M , the Kantorovich
functional simplifies to the linear primal-dual representation

µ̂c(P, Q) = min


N∑
i=1

M∑
j=1

c(ωi, ω̃j)ηij s.t. ηij ≥ 0,

N∑
i=1

ηij = qj ,

M∑
j=1

ηij = pi, ∀i, j

 (3.2)

= max


N∑
i=1

piui +

M∑
j=1

qjvj s.t. ui + vj ≤ c(ωi, ω̃j), ∀i, j

 (3.3)

Thus, the functional µ̂c(P,Q) can be used to evaluate distances between specific discrete distri-
butions P,Q by a linear expression. The expression (3.3) is also referred to as the Kantorovich-
Rubinstein distance or the 1-Wasserstein distance in the literature.1

In scenario reduction, the Kantorovich functional guides how to remove scenarios from a large
discrete distribution, representing the historical data, to obtain a scenario set of a given cardinal-
ity. The resulting scenario set minimizes the Kantorovich functional, and to solve this for discrete
distributions translates directly to a k-median clustering problem (Heitsch & Römisch, 2007). For
reference, the Kantorovich-Rubinstein distance is equivalent to using what’s called centroid-based
distances in the context of clustering.

The advantage of using the Kantorovich distance is that we can solve the minimum transport-
ation problem by an integer linear program for reasonably sized historical data. For larger discrete
distributions, which may often be the case, approximations are needed (Heitsch & Römisch, 2003).

The disadvantage, however, is that when the bound is made on the Fortet-Mourier metric, all
problem-based notions are lost, and scenario reduction is therefore distribution-based. In other
words, the Kantorovich bound may be too loose on the Fortet-Mourier metric to be useful in all
settings. Scenario reduction may, therefore, be more lacking in problems where the scenarios are
very dependent on the problem itself.

Henrion and Römisch (2018) expanded on the scenario reduction theory to perform scenario
reduction with respect to a better, problem-based metric. However, the resulting formulation is a
generalized semi-infinite program (GSIP) which relies on evaluations of upper and lower bounds of
the recourse function for different first-stage decisions. Generalized semi-infinite programs have an
infinite amount of constraints whose index set depends on the decision, and methods to solve them
is an active area of research, see explanation in (Henrion & Römisch, 2018, Section 2). Bounds on
recourse functions exist but do not scale very well with the dimensions of the input-distribution
and can only be reasonably solved up to about ten dimensions (Kall & Wallace, 1994, Section
3.4). Thus, to the author, it seems like this formulation scales poorly for large-scale problems, and
numerical experiments to demonstrate the approach has not yet been conducted.

1see bibliographical note in (Villani, 2008, Chapter 6)
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It may not be possible to formulate a more appropriate metric for large-scale problems which
we can solve the scenario generation problem with respect to, but we may be able to get closer
by empirical stability arguments. Empirical stability arguments are what distinguishes this thesis
from the literature on scenario reduction and use of the Fortet-Mourier metric for scenario gener-
ation.

3.5 Problem-based scenario generation

The current literature on problem-based scenario generation is classified into three categories:

• Filtering outcomes

• Problem class insight

• Stability arguments

Filtering of outcomes means that some of the outcomes in the input-distribution have very low
or no impact on the objective function and can, therefore, be aggregated or ignored. Approaches
under this category include the use of ordering relations in (Prochazka & Wallace, 2018) and the
scenario generation procedures for tail-risk measures in (Fairbrother et al., 2018, 2019).

Problem class insights are the cases when application-specific knowledge and expert intuition
can be used to guide the scenario generation procedure. Typically, properties of the output-
distribution can be deducted a priori or experience with solving the problem many times has
given intuitions which can guide scenario generation. In (Feng & Ryan, 2016; Sun et al., 2018)
problem-specific distinctions of the solutions of the stochastic model was used to guide scenario
generation, Guo, Wallace and Kaut (2019) used only local dependence structures for travel times
on routes because dependence across large distances would have small effects on the solution, and
Zhao and Wallace (2016) made scenarios ‘by hand’ based on direct insight into the problem. This
category of problem-based scenario generation may also be the most common occurring in various
application papers.

Stability arguments use properties of how the mathematical formulation of the model reacts to
perturbations of the scenario set used to solve it, both theoretically and empirically. Stability of
stochastic programs was discussed in detail in Chapter 2 and the thesis’ contribution falls under this
category of problem-based scenario generation. In (Prochazka & Wallace, 2020) empirical stability
arguments were used to heuristically fit scenario sets based on a large collection of approximate
first-stage decisions. The use of the Fortet-Mourier metric is problem-based, but when used for
scenario reduction in (Dupačová et al., 2003) the minimized bound is too loose on the Fortet-
Mourier metric to explicitly consider the problem in itself. Henrion and Römisch (2018) attempted
to correct for that.
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4 Integrated Model of Scheduling and Operations
in Airport Networks

Air traffic systems have for the last few years seen increased demands while the capacity has
remained limited. This imbalance causes significant congestions and delays at airports, resulting
in high costs. Wang and Jacquillat (2020) proposed a new stochastic programming model for
air traffic scheduling named Integrated Model of Scheduling and Operations in Airport Networks
(IMSOAN) to address this problem.

Their model augments prior approaches by implementing both scale integration and scope
integration. Scale integration means that a whole network of airports is considered within one
model. Scope integration means that interdependencies between strategic scheduling decisions and
tactical decisions on delays are considered within the model. Scope integration is important due
to uncertainty in weather conditions where the effects of the strategic decision on the tactical
level cannot be known until the uncertainty is resolved. These considerations result in a model of
significant size. For the largest network considered of 30 airports and including the second stages
with 30 scenarios, the model yields 8.2 million variables (7.3 million binary) and 20.8 million
constraints. For three scenarios, the size would be 0.9 million variables (0.8 million binary) and
2.4 million constraints. The work in (Wang & Jacquillat, 2020) mainly consisted of developing
more efficient decomposition techniques to be able to solve the model.

Previous literature on air traffic flow management is rich in models for the tactical level, while
the scope and scale integration have previously not been incorporated simultaneously. Note that it
is only the strategic level planning IMSOAN improves on compared to previous literature. There
exist better models for tactical decisions, but they are also more complicated. The model for
tactical decisions in IMSOAN is only a simplification to achieve tractability of the integrated
model.

The model shows significant improvements in scheduling. Wang and Jacquillat (2020) showed
that as little as 1% change in schedules on the strategic level could have up to 30% reduction in
delays by using IMSOAN. See (Wang & Jacquillat, 2020, Section 7) for a more in-depth discussion
on the benefits of integration and the resulting spatial and temporal patterns resulting from the
model.

In this chapter, we will expand on the work in (Wang & Jacquillat, 2020) by considering
scenario generation more deeply for this problem. More specifically, the model has a binary
input distribution and is large-scale. Binary distributions offer their own set of challenges while
the large scale means that solution procedures would benefit significantly from a more efficient
scenario representation.

4.1 Model description

IMSOAN is a two-stage stochastic programming model where both stages are Mixed-Integer Prob-
lems (MIPs). The first stage considers scheduling of air traffic routes between airports based on
preferred departure and arrival times submitted by airlines, and these schedules must be determ-
ined four months ahead of time. Due to the large discrepancy between the time of scheduling and
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the time of the actual flights, bad weather on the day may cause additional unforeseen congestion
at the airports. The second stage, therefore, considers the outcome of the weather and the chosen
first-stage schedule to reschedule flights. The first-stage displacements can be both forwards and
backwards in time, which also holds for second-stage arrivals, but second-stage departures may
only be delayed.

The objective in each stage is to minimize the number of displacements and the amount of
rescheduling, respectively. Displacement of preferred schedules ahead of time and the amount of
rescheduling on the day does not compare one to one, and the problem is therefore bi-objective.
This is addressed by a linear weighting parameter ρ between the stages’ objectives.

The model considers a single day of operations, which is reasonable as flight patterns across
different days are very similar. Furthermore, a day is partitioned into 15 minute periods within
the time-span 6:00 to 24:00 (18 hours), which is when most flights are scheduled. There are 72
time periods during a day, and each departure and arrival is assigned to one such time period. It
is assumed that en-route times and connection times are quantified by an integer number of such
time periods.

The weather has two possible outcomes at a given airport, determined by two different oper-
ating modes. There are visual meteorological conditions (VMC) where pilots can separate terrain
and other air-crafts by visual means, and instrumental meteorological conditions (IMC) where pi-
lots rely on instruments. The distinction between the two is based on weather conditions. VMC is
considered ‘good weather’ and IMC as ‘bad weather’ where each of them determines the capacity
of departures and arrivals at a given airport. Thus, the stochastics in the problem are summarized
by weather outcomes at each airport for each time period during a day.

The scenarios are based on historical data for five years, which results in 1826 data points. We
assume that each of the historical outcomes has the same probability of occurring.

Lastly, schedules may be required to satisfy minimum connection times due to maintenance on
the aircraft before its next trip.

4.2 Mathematical formulation

The mathematical model should determine departure and arrival times for all flights in both
stages. The problem is combinatorial in nature, and we need to formulate it by using variables
and constraints in a slightly non-intuitive way to get a concise and efficient representation. The
representation is adapted from (Bertsimas, Lulli & Odoni, 2011; Bertsimas & Patterson, 1998).

We use a binary decision tensor with index i over the set of flights and index t over the set of
time periods, one for arrivals and one for departures. Constraints are used in the model to ensure
that the tensor is non-increasing in its time indices. Let y denote the decision tensor for either
the first stage or the second stage. The interpretation of a given value is then

y
dep/arr
it =

{
0, flight i departs/arrives before time period t

1, flight i departs/arrives in time period t or later
. (4.1)

The last time index of value 1 is thus the time of departure/arrival for flight i. Figure 4.1 shows
an illustration of the representation. The use of this representation is explained in more detail in
the following paragraphs. A reference table for all variables and parameters in the model is given
in Table 4.1.
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Time index: 1 2 3 4 5 6 7 8 9 10

Binary value: 1 1 1 1 1 0 0 0 0 0

Figure 4.1: Modelling structure of departure and arrival time with binary variables. The depar-
ture/arrival time is in period 5 since 5 is the last time index of binary value 1.

The binary variables w
dep/arr
it are the first stage decisions and x

dep/arr
it the second-stage de-

cisions. The en-route time for a flight i is within the interval [∆min
i , ∆max

i ] with scheduled en-route

time ∆sch
i defined as the difference between the scheduled departure and arrival, ∆sch

i = Sarr
i −S

dep
i

with the property that ∆min
i ≤ ∆sch

i ≤ ∆max
i . For the first-stage, there is a specified maximum

displacement δ, while in the second stage there is a maximum delay l
dep/arr
i .

By restricting the number of displacements and delays, the size of the feasible set in both
stages is significantly reduced as only a limited number of time periods need to be considered for
each flight. For the first-stage decision variables, we need only consider the time index sets

T̃ dep
i =

{
Sdep
i − δ + 1, . . . , Sdep

i + δ
}

(4.2)

T̃ arr
i = {Sarr

i − δ + 1, . . . , Sarr
i + δ} (4.3)

while for the second-stage decision variables, we need only consider the time index sets

T dep
i =

{
Sdep
i − δ + 1, . . . , Sdep

i + δ + ldep
i

}
(4.4)

T arr
i =

{
Sdep
i − δ + ∆min

i + 1, . . . , Sarr
i + δ + larr

i

}
. (4.5)

Additionally, we use the convention that

wit =

{
1, if t ≺ T̃i
0, if t � T̃i

(4.6)

and

xit =

{
1, if t ≺ Ti
0, if t � Ti

(4.7)

where the notation t ≺ T means that t is less than every element in T , and correspondingly
larger for t � T . This ensures consistency for constraints defined over all time indices. Note that
(4.2)–(4.3) also enforces the maximum displacement constraint for the first stage by not enabling
displacements beyond δ.

Using this convention, we can express various quantities for the problem by linear expressions.
Let y denote either of the decision tensors w, x. Then the en-route time for flight i is∑

t∈T
yarr
it − y

dep
it , (4.8)

and by switching departure and arrival variables, we get the on-ground time∑
t∈T

ydep
it − y

arr
it . (4.9)

The one-hot vector

(y
dep/arr
it − ydep/arr

i,t+1 ), ∀t (4.10)
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determines the time of departure/arrival for flight i, thus the number of departure/arrival events
at airport k in time period t is ∑

i∈Fdep/arr
k

y
dep/arr
it − ydep/arr

i,t+1 . (4.11)

Finally, the number of rescheduling displacements for flight i in the second stage is determined by∑
t∈T

x
dep/arr
it − wdep/arr

it . (4.12)

A scenario outcome is represented by a binary vector φkt where k is the airport and t is the time
of day. A functionQkq(·) determines the capacity for a given airport and capacity type as a function
of the weather conditions. There are three kinds capacity constraints; departures, arrivals and total
arrivals and departures. The total capacity is less than the sum of departure and arrival capacities,
thereby constructing a capacity envelope as illustrated in Figure 4.2. This is because different
waiting times apply between consecutive departures or arrivals than for alterations between them.

Departures

Arrivals

Figure 4.2: Capacity envelope at an airport.
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Table 4.1: Overview of all variables and parameters.

General parameters

T set of all time periods

F set of all flights

K set of all airports

Fdep/arr
k set of all flights departing/arriving at airport k

S
dep/arr
i scheduled departure/arrival time for flight i (as indicated by the airline)

∆
min/sch/max
i the minimum/scheduled/maximum en-route time for flight i

ρ weighting parameter between the first- and second-stage objectives such that
ρ ∈ [0, 1] where lower values of ρ puts more emphasis on the second stage

C subset of flights (i, j) ∈ F × F with an aircraft connection

τij minimum connecting time between flights (i, j) ∈ C

First-stage

w
dep/arr
it binary decision variable determining if flight i will depart/arrive at time t

or later

δ maximum displacement of a flight in the first stage

git cost of displacement when flight i is scheduled to depart at time t

T̃ dep/arr
i set of possible departure/arrival times for flight i in the first stage

Second-stage

x
dep/arr
its binary decision variable determining if flight i will depart/arrive at time t

or later under scenario s

v
dep/arr
is variable for number of periods of delay for flight i under scenario s

S index set of all scenarios

φkts binary stochastic outcome of either instrumental meteorological conditions
(0) or visual meteorological conditions (1) for airport k at time t in scenario
s

ps probability of scenario s

l
dep/arr
i maximum departure/arrival delay deviating from the first-stage decision

c
dep/arr
i unit cost of departure/arrival per time period for flight i, with the condition

cdep
i ≤ carr

i

Lk set of capacity constraints at airport k

akq, bkq, Qkq(φ) parameters of capacity envelope at airport k for constraint q ∈ Lk under
operating condition φ

T dep/arr
i set of possible departure/arrival times for flight i in the second stage
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4.2.1 First-stage formulation

IMSOAN is formulated as the following mathematical program

min
w

ρ
∑
i∈F

 ∑
t∈T̃ dep

i

git(w
dep
i,t − w

dep
i,t+1) +

∑
t∈T̃ arr

i

git(w
arr
i,t − warr

i,t+1)

+ (1− ρ)Eφ[Ψ(w)(φ)] (4.13a)

s.t. wdep
it ≤ w

dep
i,t−1, ∀i ∈ F , ∀t ∈ T̃

dep
i (4.13b)

warr
it ≤ warr

i,t−1, ∀i ∈ F , ∀t ∈ T̃ arr
i (4.13c)∑

t∈T
(warr

it − w
dep
it ) = ∆sch

i , ∀i ∈ F (4.13d)∑
t∈T

(wdep
jt − w

arr
it ) ≥ τij , ∀(i, j) ∈ C (4.13e)

wdep
it , warr

it′ ∈ {0, 1}, ∀i ∈ F , ∀t ∈ T̃
dep
i , ∀t′ ∈ T̃ arr

i (4.13f)

wdep
it , warr

it′ = 1 ∀i ∈ F , ∀t ≺ T̃ dep
i , ∀t′ ≺ T̃ arr

i (4.13g)

wdep
it , warr

it′ = 0 ∀i ∈ F , ∀t � T̃ dep
i , ∀t′ � T̃ arr

i (4.13h)

where Eφ[Ψ(w)(φ)] is the expected value of the second stage, which must be approximated by
using the decomposition formulation (4.15) discussed later.

The objective of (4.13) is to minimize the cost of changing the preferred departure and arrival
times in the schedule, weighted against the expected cost of delays. The interpretation of all
constraints is as follows:

• (4.13b)–(4.13c) is the non-decreasing condition on the binary decision variables

• (4.13d) enforces that the en-route time corresponds to the scheduled time

• (4.13e) enforces minimum connection times between flights

• (4.13g)–(4.13h) is the convention for time indices outside the considered time index sets, and
also ensures that maximum displacement is withheld

4.2.2 Second-stage formulation

The second stage problem, taking the first-stage decision w and stochastic outcome φ as arguments,
has the formulation
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Ψ(w)(φ) = min
x

∑
i∈F

(cdep
i vdep

i + carr
i varr

i ) (4.14a)

s.t.

xdep
it ≤ x

dep
i,t−1, ∀i ∈ F , ∀t ∈ T dep

i (4.14b)

xarr
it ≤ xarr

i,t−1, ∀i ∈ F , ∀t ∈ T arr
i (4.14c)∑

t∈T
(xdep
it − w

dep
it ) = vdep

i , ∀i ∈ F (4.14d)∑
t∈T

(xarr
it − warr

it ) ≤ varr
i , ∀i ∈ F (4.14e)

vdep
i ≤ ldep

i , ∀i ∈ F (4.14f)

varr
i ≤ larr

i , ∀i ∈ F (4.14g)∑
t∈T

(xdep
jt − x

arr
it ) ≥ τij , ∀(i, j) ∈ C (4.14h)∑

t∈T
(xarr
it − x

dep
it ) ≥ ∆min

i , ∀i ∈ F (4.14i)∑
t∈T

(xarr
it − x

dep
it ) ≤ ∆max

i , ∀i ∈ F (4.14j)

akq
∑
i∈Fdep

k
(xdep
it − x

dep
i,t+1)

+ bkq
∑
i∈Farr

k
(xarr
it − xarr

i,t+1)
≤ Qkq(φkt), ∀k ∈ K, ∀q ∈ Lk, ∀t ∈ T (4.14k)

xdep
it ≥ w

dep
it , ∀i ∈ F , ∀t ∈ T dep

i (4.14l)

xarr
i,t−(∆sch

i −∆min
i ) ≥ w

arr
it , ∀i∈F, ∀(t−(∆sch

i −∆min
i ))∈T arr

i (4.14m)

xdep
it , xarr

it′ ∈ {0, 1}, ∀i∈F, ∀t∈T dep
i , ∀t′∈T arr

i (4.14n)

vdep
i , varr

i ≥ 0, ∀i ∈ F (4.14o)

xdep
it , xarr

it′ = 1 ∀i∈F, ∀t≺T dep
i , ∀t′≺T arr

i (4.14p)

xdep
it , xarr

it′ = 0 ∀i∈F, ∀t�T dep
i , ∀t′�T arr

i (4.14q)

where the objective is to minimize the cost of additional delays in all airports given the outcome
of the weather and the set schedule from the first-stage. The interpretation of all constraints is as
follows:

• (4.14b)–(4.14c) is the non-decreasing condition on the binary decision variables

• (4.14d)–(4.14e) defines the variables for the delay relative the first-stage schedule, and note
that (4.14e) is an inequality since an early arrival doesn’t incur a cost

• (4.14f)–(4.14g) are the constraints for maximum delay for departures and arrivals

• (4.14h) enforces minimum connection times between flights

• (4.14i)–(4.14j) constrains the delays to adhere the minimum and maximum en-route travel
time

• (4.14k) is the capacity constraint, which is also the only place where the stochastic outcome
enters the model

• (4.14l)–(4.14m) are valid inequalities to tighten the feasible set

• (4.14p)–(4.14q) is the convention for time indices outside the considered time index sets
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4.3 Solution procedure

Both stages of IMSOAN is a Mixed-Integer Problem (MIP) with a considerable amount of vari-
ables which causes problems when the model is solved. In (Wang & Jacquillat, 2020) they reported
that the deterministic equivalent could be solved in CPLEX with no more than five scenarios, and
a decomposition procedure was proposed.

Due to the extensive feasible set of the first-stage decision, the integer L-shaped method alone
proved insufficient. Therefore, Wang and Jacquillat (2020) suggested that the linear relaxation of
the second-stage problem would be used together with a new kind of cut called dual integer cuts.
These cuts are based on the classic dual representation cuts of the LP second-stage, enhanced by
adding the reduced cost of the second-stage variables multiplied by the first-stage decision vari-
ables. Using reduced costs for cuts is motivated by the tightening constraints (4.14l) and (4.14m)
which implies that for different values of the first-stage decision w, the integer solution of the
second-stage would scale by its reduced cost of the second-stage variable due to the bounds. It
was shown (see Wang & Jacquillat, 2020, Appendix B.2–B.4) that this gives tighter valid cuts for
the given problem.

Furthermore, they used techniques from LP cuts theory called local branching and Pareto-
optimality cuts to enhance the dual integer cuts even further. Lastly, original neighbourhood
constraints were added to change from exploration to exploitation, and bounds on the optimal
solution value were derived to support the solution procedure. With the decomposition procedure,
they solved IMSOAN with up to 30 scenarios, which was shown computationally to give better
solutions than with five scenarios.

4.3.1 Decomposition formulation

To solve the model (4.13) by decomposition, the second-stage objective is relaxed into the variables
θs for a finite scenario set s ∈ S. The decomposition uses multi-cut relaxation, meaning that the
objective of the second-stage objective is relaxed for each scenario instead of relaxing the expected
value of all scenarios into a single variable. The master problem is then given by

min
w

ρ
∑
i∈F

 ∑
t∈T̃ dep

i

git(w
dep
i,t − w

dep
i,t+1) +

∑
t∈T̃ arr

i

git(w
arr
i,t − warr

i,t+1)

+ (1− ρ)
∑
s

psθs

s.t. θs ≥ Ψ(w)(φs), ∀s ∈ S
w ∈W,
θs ≥ 0, ∀s ∈ S

(4.15)

where W is the constraint set (4.13b)–(4.13h) and Ψ(w)(φs) is the sub-problem (4.14).

4.4 Scenario generation in (Wang & Jacquillat, 2020)

Wang and Jacquillat (2020) used scenario reduction to construct the scenario set, which is a
distribution-based approach. Among the 1826 historical data points they mapped all outcomes
onto a smaller set of outcomes of a predetermined size as described in Section 3.4. Once the
mapping is computed, the probabilities are set to the aggregation probability of all outcomes
which are mapped to the same point. See (Wang & Jacquillat, 2020, Section 5) for more details.

A shortcoming of this approach is that it is solely distribution-based, meaning that there is
no way for the scenario generation to consider which parts of the distribution is more critical
for the problem at hand. It is discussed later that a lot of the historical data with much good
weather result in similar recourse costs, i.e. those cases will not trigger significant bottlenecks in
the network and are therefore not qualitatively very different. Similar recourse costs hold for up
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to 50% of the data, meaning that the distribution-based approach will emphasize this part of the
distribution very much, which may be counterproductive. Furthermore, using scenario reduction,
we only consider the 1826 historical data points, while the distribution, in reality, has 2432 to 22160

possible outcomes.
It should be mentioned that (Wang & Jacquillat, 2020) was not focused on scenario generation

in detail, and using the reduction approach will get stable results as long as the number of scenarios
is large enough.

4.5 Problem characteristics

The IMSOAN model has some interesting characteristics which are worth considering for the scen-
ario analysis.

First, it can be observed that the objective is monotonically decreasing with the binary
stochastic variables. Intuitively, this means that an additional time period with good weather
can only improve the objective; otherwise, it will stay the same. The monotonicity means that
the scenarios have a particular ordering relation according to which outcomes are strictly larger
in all the binary stochastic variables.

However, since the outcomes are binary and the span in each dimension is only two outcomes,
this ordering relation isn’t beneficial. There is, however, still a notion that outcomes of more
bad weather result in higher costs than those with less bad weather but the combinatorial space
of which time periods this accounts for is very large, and the outcomes need to be evaluated to
find this out. Some variation of this property for scenario generation was tested and shown to
be less effective than scenario reduction in (Wang & Jacquillat, 2020). This property is however
observable in the results shown later.

Secondly, the weighting parameter between the different stages’ costs ρ largely determines
both the instability of the problem and the run-time of the decomposition procedure. Lower
ρ corresponds to longer run-time and more instability. This instability occurs because a lower
emphasis on the first-stage cost will open up for a broader set of relevant first-stage solutions.
If we set ρ = 0.0, the whole set of first-stage solutions are more or less relevant; therefore, the
decomposition approach which considers only one first-stage solution at a time does not converge
within a reasonable time. On the other hand, if we set ρ = 1.0 there will be no emphasis on the
second-stage and the optimal solution will be not to displace any of the scheduled departure and
arrival times. The lower ρ is, the more amount of displacements will be relevant.

For the values ρ ∈ {0.46, 0.67, 0.82, 0.95} used by Wang and Jacquillat, the decomposition
procedure will finish in reasonable time (never more than 120 hours for the largest instances),
especially for higher values of ρ. However, if ρ = 0.2, the decomposition procedure will struggle to
finish with the current implementation (smaller instances can run for more than 150 hours without
reaching the 1% tolerance gap).
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5 Scenario generation

This chapter introduces how problem-based scenario sets for binary distributions can be gener-
ated, supported by stability arguments for stochastic problems. The framework is general and
agnostic to the specific problem, and can in principle be applied to any problem specified by a
binary distribution.

The scenario generation problem is to select a set of outcomes with corresponding probabil-
ities such that the combined set represents the response of the first-stage decision in the output-
distribution well enough to solve the problem. Because of the significance of the simplification of
the scenario set, we need to find outcomes which, when hedged against, also cause the first-stage
decision to very effectively hedge against possible outcomes not included in the constructed scen-
ario set. We name this the hedging property of outcomes.

Assume for this chapter that we have an empirical discrete distribution of historical data with a
finite number of outcomes. For simplicity of exposition, we assume outcomes are equiprobable, al-
though that isn’t strictly needed. We assume that the historical data is an accurate representation
of the future. Out-of-sample evaluation is done over the empirical distribution.

The scenario set that approximates the empirical distribution is directly associated with the
specific first-stage solution that results from solving the stochastic program using that specific
scenario set. Further, a first-stage decision is directly associated with an output-distribution since
that first-stage decision is used to compute the empirical output-distribution by out-of-sample
evaluation. This relationship is essential to understand this chapter, and has been illustrated in
Figure 5.1.

Scenario set First-stage decision Output-distribution
Optimization

procedure
Out-of-sample

evaluation

Figure 5.1: Flowchart of how various quantities are obtained.

We use clustering for scenario generation and remind the reader of the three steps of scenario
generation by clustering (see Section 3.3):

• Selection of clustering variables and distance metric

• Selection of clustering technique

• Selection of a representative scenario from each cluster

where points one and three are addressed first. Similar outcomes are considered to be in the
same cluster, and each cluster should have one representative outcome. The similarity between
outcomes is determined by the hedging property, discussed in Section 5.2, and clustering techniques
are introduced in Section 5.5.
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Note on feasibility

When we solve a stochastic model with a small scenario set and afterwards evaluate out-of-sample,
it may become an issue that the first-stage solution makes the second-stage infeasible for some
outcomes. Infeasibility was never an issue for the IMSOAN model presented in Chapter 4 because
there always existed a feasible solution.

The counter-argument against having to deal with infeasibility for out-of-sample evaluation
is that the model of your system may not be very good. If it is possible to solve the problem
such that some outcomes which you first-stage solution did not hedge against could cause infinite
costs, then the issue lies in the model formulation, because infinite costs (almost) never occur in
reality. If, however, this is a well-founded concern, a robust optimization formulation may be more
appropriate for the given application, see (Ben-Tal, El Ghaoui & Nemirovski, 2009).

For stochastic optimization, we promote the use of soft constraints in second-stage formulations,
i.e. assigning a cost penalty in the objective function for feasibility violations, to disregard issues
with infeasibility within the scenario generation framework presented in this thesis. See (King &
Wallace, 2012, Section 2.4) for details on modelling with feasibility.

5.1 Departing from accurate representations of the input-
distribution

A vital distinction when doing scenario generation by problem-based methodologies is that we allow
the scenario set to depart from statistically accurate representations of the underlying stochastic
phenomenon. Leaving statistical representability is justified by the fact that, at the same time
as representing the empirical distribution, we simultaneously consider how the second-stage will
transform it. Remember, it is only the transformed distribution, the output-distribution, which is
considered by the solution algorithm. In problem-based scenario generation, we evaluate the im-
portance of including various outcomes from the empirical distribution by quite different qualities
than statistical representability of the input-distribution.

For the modeller, it may seem intuitively wrong at first to depart from statistically accurate
representations of the stochastic phenomenon. One source of confusion may be that we represent
the scenario set in the input domain but approximate something in the output domain. We re-
cognize this difficulty and explain this in more detail by looking at evidence from two papers.

Zhao and Wallace (2016) looked at the facility layout problem in a stochastic setting and es-
tablished that redundancy (duplication of machines) was needed to obtain enough flexibility to
deal with variations in demand. The continuous empirical distribution was partitioned into three
intervals, and the representative outcome of each interval was chosen to be the maximum outcome
in each interval. The rationale behind this unconventional choice is that the machine pairs used
for upper demand levels in each interval are feasible in the problem for lower demand levels as
well (Zhao & Wallace, 2016, Appendix 1). The fact that feasibility is conserved across outcomes
is precisely the hedging property of outcomes. They further comment that this is a weak repres-
entation of the statistical phenomenon, but that it works better for the given problem than any
other three-point distributions they tried because it best captures the problem characteristics.

Prochazka and Wallace (2020) found the scenario set by a ‘black box’ fitting algorithm based
on relations between in-sample and out-of-sample evaluation of the expected objective value, see
details in Section 3.1. Interestingly, they relaxed probabilities in the scenario set to ‘weights’ and
made them free variables in the fitting algorithm, meaning that they didn’t have to sum to one,
which resulted in much better results. The relaxation caused a correction of overestimation in the
in-sample expected objective of the scenario sets because the weights generally summed to below
one. The following arguments are an interpretation of the result in (Prochazka & Wallace, 2020)
by this thesis’ author.
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Relaxing probabilities to weights without constraints can be equivalently described by a more
intuitive representation we use to explain what is going on. Consider that instead of relaxing
probabilities to weights, we multiply each recourse value by a correction coefficient, expressed as∑

s

wsQ(x)(ξs) ⇐⇒
∑
s

cspsQ(x)(ξs) s.t.
∑
s

ps = 1 (5.1)

where ws are weights and cs are the suggested coefficients. The coefficient cs represents a correction
of the recourse value of the outcome ξs so that it better represents the set of outcomes which ξs

fulfils the hedging property for.
Consider the index set S ′s of all outcomes in the empirical distribution which are under the

hedging property of outcome ξs. There is no rationale supporting that the expected recourse value
within S ′s corresponds to Q(x)(ξs), mainly because S ′s is single-handedly derived from problem-
based properties based on the outcome ξs. If we change the empirical distribution’s probability
of each outcome, S ′s stays the same and the expected recourse value within S ′s will change. To
accurately represent the output-distribution, we need Q(x)(ξs) to approximate Es′∈S′

s
Q(x)(ξs

′
)

as precisely as possible; however, we have already argued that this is only coincidental if fulfilled.
To correct for the expected value, we can multiply by the correction coefficient derived from both
the problem-based properties by S ′s and the input-distribution by the probabilities ps′ ∀s′ ∈ S ′s so
that

csQ(x)(ξs) ≈
∑
s′∈S′

s
ps′Q(x)(ξs

′
)∑

s′∈S′
s
ps′

. (5.2)

The argument here is that S ′s is single-handedly problem-based and we cannot change that. If we
want an as concise and effective scenario set as possible, it is wise to pick outcomes for the scenario
set that are as mutually exclusive and collectively exhaustive as possible by their covering of the
hedging property for all possible outcomes in the empirical distribution.

We infer from the result in (Prochazka & Wallace, 2020) that the hedging property can be
covered to a great extent, but because the hedging property does not conserve expected values,
a correction coefficient may be needed to remove the resulting bias. By relaxing probabilities to
weights, they not only corrected the bias but also simultaneously opened up for the fitting al-
gorithm to explore a larger set of potential outcomes which cover the hedging property to a much
larger extent. We postulate that the larger set of potential combinations of outcomes made for
much of the improvements they experienced.

The takeaway from these arguments is that the hedging property of outcomes is essential and
should be at the centre of consideration. Correction coefficients can be useful, but we establish
that, for now, it is sufficient to determine probabilities by aggregating probabilities among the
outcomes in a cluster.1

If we, for a given problem, could determine the hedging property analytically, problem-based
scenario generation would be much easier. This is, however, often not the case, and the rest of
this chapter explains how we can find it by empirical estimation.

5.2 Proximity of outcomes

We use the notion of proximity of outcomes to estimate the hedging property of outcomes, and in
practice, this is used to perform scenario generation by clustering. Proximity of outcomes means
that for a given problem formulation, hedging the first-stage decision against one outcome causes
the first-stage decision to, partly or completely, hedge against other outcomes in that outcomes’
proximity. Three notions of proximity are introduced for this thesis in the context of general
stochastic problems:

1Bias correcting coefficients was tested numerically for the case study problem to be useful, but not enough to
be an important point in itself within the framework for the rest of this thesis.
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• Proximity in the input domain

• Proximity in the output domain

• Proximity by similar recourse response

where one notion of proximity need not imply any of the others, and all are important in their
own ways.

Proximity in the input domain is important because we represent the scenario set in that
domain. We define a connectible binary set as a set of similar binary points that can all be incre-
mentally changed to reach each of the other points while still conserving its notion of similarity.2

If a cluster is non-connectible in the input domain, it’s difficult to represent the cluster by a single
outcome without ending up outside the cluster. By using L1-distances in the input domain, we
avoid making clusters which are very highly non-connectible in the input domain. That is because
an incremental change between binary vectors is the smallest non-zero L1-distance between binary
vectors. Thus, it is more likely to keep clusters close in terms of being connectible when we com-
bine it with other notions of proximity. As a comparison, scenario reduction uses only proximity
in the input domain as a clustering variable.

Proximity in the output domain is a way of, very approximately, distinguishing the general
recourse value different outcomes will take. Simply put, only clustering by this notion of proximity
is equivalent to ‘bucketing’ the range of recourse values from an output-distribution into equally
sized intervals and using all outcomes within each interval as clusters. When combined with other
notions of proximity, the intervals will no longer be same-sized, but there will be a notion of
splitting the range of recourse values into intervals. That ensures that we incorporate into the
scenario set an accurate representation of the range of recourse values in the output domain.

In practice, we need not evaluate this notion of proximity for more than one output-distribution,
but using multiple different first-stage decisions can help with accuracy. As a comparison, the most
straightforward clustering approach in (Sun et al., 2018) using only objective values is using only
this notion of proximity.

Proximity by similar recourse response is the most important notion of proximity and is an
original contribution of this thesis. To evaluate this notion of proximity, a set of multiple output-
distributions is needed, i.e. found by many first-stage decisions. These first-stage decisions must
be of reasonable quality related to the problem at hand, which is discussed in more detail in the
next section. The rationale is that we want to capture how sets of outcomes may change recourse
value in the same way by a change in the first-stage decision.

For this we define co-deviation of outcomes over sets of first-stage decisions. Two outcomes
that change similarly in the recourse value with changes in the first-stage decision co-deviates over
that set of first-stage decisions. If they change in opposite directions, they anti-deviate.

Co-deviating outcomes are more likely to both be hedged against if one is hedged against
because they, by definition, change similarly with changes in the first-stage decision. Thus, we
define co-deviating outcomes to be in proximity to each other in the context of making effective
scenario sets.

This notion of proximity extracts the problem-based structure of changes in first-stage de-
cisions. As justified in Section 2.3, replicating how the output-distribution change with changes
in the first-stage decision is essential in scenario generation and is also the reason why proximity
by similar recourse response is the most important notion of proximity. A further explanation of
proximity by similar recourse response is given in Section 5.4.

2This is different from the topological notion of connectedness. In a continuous setting, we would have used the
notion of non-convexity. In lack of a better word, the term ‘connectible’ was invented for this purpose.
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5.3 Collections of output-distributions

This section explains the foundation for determining proximity of outcomes by problem-based qual-
ities. The main difficulty comes from the fact that we need to incorporate how output-distributions
change qualitatively with changes in the first-stage decision. This is fundamentally unavailable
for most problem formulations; therefore, we present a way of estimating it empirically and argue
for the rationale behind why it should work well.

Substantial empirical evidence supports that stochastic programs are often more stable with
perturbations of the distribution and easier to solve by approximating scenario sets than their
mathematical formulation implies, which can be induced from every paper published where reas-
onably large stochastic programs are solved in applications. No theoretical argument explains this
completely, although (Römisch & Wets, 2007a) on the Lipschitz continuity of stochastic programs
is supporting evidence. Even though there is fascinatingly high stability in stochastic programs,
some problems require larger scenario sets than others to give reliable solutions. That can, in some
cases, be the determining factor for tractability. Addressing this challenge is the role of scenario
generation.

On a high level of explanation, a good scenario set should compensate against the structure
of the problem formulation that makes it unstable. In most cases, we never know, nor can find,
such a problem structure for our problems. The underlying assumption is, however, that there
is a reasonable level of stability; otherwise, we wouldn’t be able to solve the problem at all. To
summarize, the problem is stable to a certain extent, but not enough to solve the model reliably.
It is this last bit of instability we attempt to find in the problem structure to later compensate
against in our scenario set.

We postulate that naively generated scenario sets can be used as a proxy for determining the
structure of a problem formulation which explains its stability properties. Naive, in this context,
means a reasonable scenario set which by empirical stability testing would be too unreliable to
solve the problem. Furthermore, the problem structure with respect to the stochastic variables
is inferred by the collection of output-distributions which corresponds to the first-stage solutions
from solving the problem with those scenario sets.

In this thesis, we do not attempt to prove why this is true since that would involve proving
why stochastic programs are more stable than we expect. We can, however, verify it empirically
and explain its validity by relating to other results.

First, scenario sets should approximate the output-distribution for better first-stage solutions,
argued by the fact that a solution procedure would easily disregard terrible solutions. By con-
sidering only the set of first-stage decisions which results from solving the problem with a naive
scenario set, we ignore other more or less irrelevant first-stage solutions. First-stage solutions
which cannot be obtained by even a naively generated scenario set are not relevant to consider.

Second, there is a reason why the naive scenario sets are not sufficient to solve the problem. We
want our representative set of first-stage decisions to represent the instability we need to address
as sincerely as possible.

Three alternative approaches have been observed in previous literature for finding first-stage
decisions to represent problem characteristics; the expected value solution, the solutions of perfect
information and solutions which differ by what a (bad) heuristic can find in consecutive runs (Feng
& Ryan, 2016; Prochazka & Wallace, 2020; Sun et al., 2018).

The first two are disregarded by the fact that both approaches result in only a single output-
distribution. Thus variations across first-stage solutions, which is the most important property,
is not considered. Furthermore, their first-stage solutions are only considering a single outcome
at a time which results in structurally different solutions than considering multiple scenarios at
the same time (Wallace, 2010). This puts the methods in the realm of what-if analysis, which is
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what we attempt to avoid by using stochastic programming. Thus, problem properties inferred
from such solutions may only be useful by coincident and is not necessarily transferable to other
problem classes.

The third approach considers variations across multiple first-stage decisions, but here we can
argue that the variations among them are as much due to the heuristic as to the instability of the
problem.

This thesis argues that solving the problem by the best possible solution algorithm with reas-
onable scenario sets leaves the variability in the set of resulting first-stage decisions only due to
the actual instability from the structure of the problem formulation.

The collection of first-stage decisions is referred to as the approximate solution set and the
corresponding collection of output-distributions is the object of analysis from which we extract the
problem structures by the introduced notions of proximity.

5.3.1 Minimum transportation distance from collections of output-dis-
tributions

This section introduces the notation for the proposed scenario generation method. Let U be a
collection of naively generated scenario sets from the empirical distribution. Then we consider the
approximate solution set

XU = {x : x ∈ argmin{fU (x)}, U ∈ U}, (5.3)

which is the set of first-stage solutions from solving the problem with each of the scenario sets in
U . A property of XU is that it is a subset of the feasible region

XU ⊆ X, (5.4)

and in practice much smaller. The corresponding set of output-distributions is expressed by

DU = {f(x)(·) : Ξ→ R s.t. x ∈ XU}
= {f(x)(·) : Ξ→ R s.t. x ∈ argmin{fU (x)}, U ∈ U} (5.5)

which, empirically, are the out-of-sample evaluations of the first-stage decisions in the approximate
solution set XU .

We formulate clustering variables uU (ξ) for each of the outcomes which are explicitly based on
the collection of output-distributions and define distances between them as

d(ξ′, ξ) = ‖uU (ξ′)− uU (ξ)‖ (5.6)

with ‖·‖ some norm like the L1- or L2-norm. These clustering variables are explained in Section 5.4.
Next, we generate a scenario set such that it minimizes the transportation distance between the

empirical distribution and the scenario set by the Kantorovich-Rubinstein distance with respect
to distances between the clustering variables uU (ξ)

µ̂d(P, T ) = min
η

N∑
i=1

M∑
j=1

d(ξPi , ξ
T
j )ηij (5.7)

s.t. ηij ≥ 0,

M∑
j=1

ηij = pPi ,

N∑
i=1

ηij = pTj , ∀i, j

where pPi , p
T
j are the probabilities of the discrete outcomes ξPi , ξ

T
j for the empirical distribution

and the scenario set, of sizes N,M , respectively. Thus, our scenario set is determined by

T = argmin{µ̂d(P, T ) : T a discrete distribution of cardinality M}. (5.8)
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which is non-trivial to solve, especially since the scenario set outcomes are in a binary domain.
This is discussed in detail in Section 5.5.

To summarize, the minimum transportation distance µ̂d is a suggested new metric to determ-
ine the discrepancy between the empirical distribution and scenario sets based on empirically
determining d(ξ′, ξ) based on collections of output-distributions. Since all quantities are empiric-
ally obtainable, this metric can be minimized by applying centroid-based clustering methods. We
suggest this serves as a viable alternative to scenario generation motivated by the Fortet-Mourier
metric.

It is an original contribution of this thesis to determine distances between outcomes by notions
of proximity on collections of output-distributions motivated by a combination of the literature
on both mathematical and empirical stability theory.

5.3.2 Comparison with the Fortet-Mourier probability metric

Based on the Fortet-Mourier probability metric, which has previously been suggested as the canon-
ical metric for scenario generation (Dupačová et al., 2003), we argue for the use of the approximate
solution set and the proposed notions of proximity on collections of output-distributions instead.

The Fortet-Mourier (FM) probability metric between the empirical distribution P and a scen-
ario set T is formulated as

dFρ(P, T ) = sup

{∣∣∣∣∫
Ξ

f(x)(ξ)P (dξ)−
∫

Ξ

f(x)(ξ)T (dξ)

∣∣∣∣ s.t. f(x) ∈ Fρ
}

(5.9)

where Fρ = {f(x)(·) : Ξ→ R̄ s.t. x ∈ X ∩ ρB},

and we stress that the FM metric is a theoretical tool which cannot be obtained in itself, but has
been used as motivation for alternative scenario generation methods.

First, the set of output-distributions considered in FM, Fρ, is quite large. The ball ρB is
centred in the origin, and need to contain the true optimal solution set S(P ) = argminx∈XfP (x)
as well as satisfying v(P ) = minx∈X fP (x) ≥ −ρ by the perturbation results in (Rockafellar &
Wets, 2009, Section 7J). Taking the case study problem IMSOAN as an example, such a set also
includes the first-stage decision from not considering the second-stage cost at all.

The alternative we suggest is to use the (argued) more relevant, more restricted and empir-
ically obtainable set of first-stage decisions, namely the approximate solutions set XU with the
corresponding set of output-distributions DU .

Second, we address the use of the utility metric fQ(x) = EQ[f(x)(ξ)] =
∫

Ξ
f(x)(ξ)Q(dξ) to as-

sess distances between distributions, which includes use of the supremum of the distance among the
considered set of output-distributions. We have already pointed out in Section 2.3 that matching
the exact out-of-sample and in-sample evaluation of the utility metric for a large set of first-stage
decisions is not that important. What’s important is the quality of the first-stage decision the
solution procedure converges to in the end. The supremum in FM and the use of the utility metric
on the output-distribution supposes that matching the out-of-sample utility metric is important
and that it is important for all first-stage decisions in the first-stage decision set since it is eval-
uated at the worst first-stage decision. This can be effective to make theoretical bounds on the
quality of the solution, but, we argue, not to construct scenario sets to solve the problem.

The combination of a very large first-stage decision set and conservative evaluation of the
scenario set quality means that the FM can end up telling us almost nothing of the practical
utility of a scenario set. An appropriate way of evaluating the quality of a scenario set must be
tighter on the real practical performance of the scenario set. We suggest this is better evaluated
by empirical claims on stability, also for motivating generation of scenario sets.

Thus, we relax the use of both the supremum, and the collapsing of the output-distribution
into its utility metric. Instead, we consider the distance between the empirical distribution and
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the scenario set by minimum transportation distance where the distance is determined by the
introduced notions of proximity of outcomes which directly involves evaluation on the collection
of output-distributions from the approximate solution set.

Some important distinctions from scenario reduction are that we don’t restrict ourselves to
reduce the set of points to a set of already existing outcomes in the empirical distribution and that
the determination of distances between outcomes considers problem-based properties explicitly.

What we suggest may seem similar to scenario reduction since we use minimum transportation
with a different distance metric between outcomes. It is, however, no longer evident that our
minimum transportation distance (5.8) bounds the FM metric; instead, we expect them to be
non-contained in each other. The argument for departing from scenario reduction in the manner
of (Dupačová et al., 2003) is that the bound on FM is too loose and that FM in itself may be too
conservative.

5.4 Clustering variables on collections of output-distribu-
tions

To cluster outcomes, we need to decide clustering variables and an appropriate distance metric
between them. The distance between clustering variables should reflect the three proposed no-
tions of proximity. All these notions of proximity are important, and the clustering variables are
therefore a combination to include all of them, meaning that proximity in one property and great
distance in another is not sufficient to cluster two outcomes. They must exhibit a trade-off of
proximity in all properties.

The input domain must be considered together with the other notions of proximity since the
scenario set is represented in the input domain. This is to avoid making clusters in the output
domain that are highly non-connectible in the input domain. If only the output domain is used
for clustering, the selected representative outcome may be outside the cluster or at the very edge
of the cluster in the input domain. It may therefore not represent the cluster very well.

To characterize each outcome in the empirical distribution, we use the feature vector consisting
of the concatenation of the recourse cost of each first-stage decision and the outcome in the input
domain it is evaluated by. This makes the feature vector

uU (ξ) =


cfQ(x1)(ξ)

...
cfQ(xn)(ξ)

ξ

 (5.10)

where ξ is the outcome vector in the input domain, {x1, . . . , xn} = XU and the coefficient cf bal-
ances the weighting between the input and output domains. Only the recourse cost is used to only
capture the stochastic effects of first-stage decisions. We have good control of the deterministic
cost and don’t want that to interfere with how the uncertainty is represented.

The feature vector captures all three notions of proximity. Proximity in the input domain is
conserved by using the outcome vector ξ, while the other two are captured by the recourse vector
[Q(x1)(ξ), . . . , Q(xn)(ξ)]T .

Distinctions by large differences in the recourse vector conserve proximity in the output do-
main. If we would sort the recourse vectors by being strictly less in all elements, the difference in
rank numbers is a good indication of proximity in the output-domain.

Proximity by similar recourse response is slightly more subtle to understand, and is determined
by similar relationships among elements within the recourse vector. This can be understood more

33



accurately by considering the anti-deviation of outcomes over the approximate solution set

AnDXU (ξs
′
, ξs) =

∥∥∥∥∥∥∥
 Q(x1)(ξs

′
)− Q̄(ξs

′
)

...

Q(xn)(ξs
′
)− Q̄(ξs

′
)

−
 Q(x1)(ξs)− Q̄(ξs)

...
Q(xn)(ξs)− Q̄(ξs)


∥∥∥∥∥∥∥
L1

(5.11)

where ξs
′
, ξs are two different outcomes, {x1, . . . , xn} = XU and

Q̄(ξ) =
1

|U|
∑
x∈XU

Q(x)(ξ) (5.12)

is the average recourse value among the first-stage decisions in the approximate solution set for a
given outcome ξ. The anti-deviation between outcomes is simply the pairwise L1-distance between
recourse vectors, corrected by the average recourse for each outcome. It is analogous to correlation
over the approximate solution set XU , but instead of multiplication there is the absolute value of
the difference between two elements.

A large anti-deviation between outcomes means that they change very differently with changes
in the first-stage decision. Zero anti-deviation means that they co-deviate perfectly and give the
same response in the recourse function with changes in the first-stage decision.

We may also isolate the effect of proximity by similar recourse response from proximity in the
output domain by correcting the feature vector by the average recourse values and get

uU (ξ) =


cf (Q(x1)(ξ)− Q̄(ξ))

...
cf (Q(xn)(ξ)− Q̄(ξ))

ξ

 . (5.13)

The distance matrix which contains all pairwise distances between scenarios is then computed
by using the L1-norm as a distance metric between clustering variables. Thus, the distance matrix
is expressed as

ds′s =
∑
i

|uUi (ξs
′
)− uUi (ξs)| = ||uU (ξs

′
)− uU (ξs)||L1

. (5.14)

In principle, we could make clustering variables in other ways based on collections of output-
distributions to determine problem-based distances between outcomes. The proposed clustering
variables are based on what we consider to be proximity of outcomes in a general context of
stochastic programs, and the currently proposed set-up showed promising results in the case study
problem.

Example

Consider an example two-stage stochastic programming problem where the input distribution is
one-dimensional and can take ten different values from the set {1, . . . , 10}. We now give an intu-
itive explanation of the notions of proximities on such a problem, illustrated in Figure 5.2.

We have sampled a collection U of five scenario sets and solved our model for each of them
to obtain the approximate solution set XU . Afterwards, out-of-sample evaluation is performed
using each first-stage decision x ∈ XU to obtain the collection of output-distributions DU . One
output-distribution D ∈ DU has a corresponding recourse value for each outcome in the empirical
distribution. The recourse values of the five output-distributions are plotted in Figure 5.2. The
input domain is along the first axis and the recourse value in the output domain along the second
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axis. There are ten outcomes in the empirical distribution referred to by their values in the input
domain, {1, . . . , 10}.

First, we observe that the distances in the input domain are quite regular and that by proximity
in the input domain, outcome 1 is furthest apart from outcome 10 and closest to outcome 2.

Second, we observe an even increase in recourse values best recognized by the slope of the red
dashed average line. Thus, by proximity of the output domain, outcome 1 is furthest apart from
outcome 10 and closest to outcome 2.

Lastly, we observe the very pronounced flip in recourse values across first-stage decisions
between the outcome pairs (4, 5) and (6, 7). This can be characterized by the notion of prox-
imity by similar recourse response. If we compute the co-variation over the approximate solution
set (5.11) we would discover that there are two clusters which are very close by this metric: {5, 6}
and {1, . . . , 4, 7, . . . , 10}. Had we clustered only based on proximity by similar recourse response,
these two clusters would appear.

Now, consider that we combine all notions of proximity by using the feature vector (5.10). A
very appropriate choice of the number of clusters would be three in this case which would result
in the clusters: {1, . . . , 4}, {5, 6} and {7, . . . , 10}.

Less ideally, had we chosen two clusters, the outcomes would likely be clustered into sets of
consecutive outcomes split between the outcome pairs (4, 5) or (6, 7).

Figure 5.2: Illustration of different notions of proximity, see explanation in text.

This is a simple illustration to explain the concept of measuring proximity by collections of
output-distributions. In reality, the input domain has hundreds of dimensions and with a much
less intuitive or consistent recourse function.

5.5 Clustering method

This section discusses alternatives for solving (5.8) as best as possible. An exact solution is in
most cases intractable, but viable approximations or heuristics are available. We are concerned
only with centroid-based clustering as that is the form of the problem (5.8).

Two existing clustering methods for solving (5.8) approximately are discussed, namely the k-
means and k-median clustering methods, and a third alternative, binary point centroid clustering,

35



is suggested. The most important distinctions between the different centroid-based clustering
methods are

• Which domain the centre-point is represented in, real or binary

• The number of possible values the centre-point can take, either a restricted set or the whole
input domain

• How the clusters are formed with respect to the representative outcome of each cluster

• Tractability of solving the clustering problem

Advantages and disadvantages of the different methods are laid out in this section. The methods
are tested numerically on the case study problem in Chapter 6.

5.5.1 K-median

The k-median clustering method has the advantage that the centre-point is chosen among the
available data points and is therefore binary. The clusters are also then formed with respect to
that binary outcome. A disadvantage from selecting centre-points among available data points
is that the representative outcome must be chosen among a very restricted set of points. The
representative outcome could be better if the whole space of possible outcomes is utilized because
the discrepancy between the number of possible outcomes and the size of the dataset is very
significant. This argument is most important if the set of historical data points is small, or the
number of dimensions of the outcome vector is large.

The tractability of k-median clustering can also be an issue, and the problem can be formu-
lated an integer linear program (5.15) which is NP-hard. The size of the formulation scales as
the number of historical data points squared but can be reasonably solved up to 2000 data points
based on experience from this thesis. For larger datasets, the approximations forward and back-
ward propagation can be used to solve the problem in polynomial time (Heitsch & Römisch, 2003).

For the results in Chapter 6 of this thesis, the k-median clustering problem was solved by the
integer linear program

min
x, y

∑
s

ds′sxs′s (5.15a)

s.t.∑
s

ys ≤ S (5.15b)∑
s

xs′s = 1 ∀s′ ∈ S (5.15c)

xs′s ≤ ys ∀s′, s ∈ S (5.15d)

xs′s, ys ∈ {0, 1} (5.15e)

where S is the index set of all outcomes in the dataset, S is the number of clusters, ds′s is the
distance from outcome s′ to outcome s, ys is a binary variable determining if outcome s should be
used as a centre-point and xs′s determines if outcome s′ is assigned to the cluster with centre-point
s. Constraint (5.15b) ensures the number of scenarios is less than or equal to S, (5.15c) ensures
each scenario is only assigned to one cluster and (5.15d) ensures that outcomes are only assigned
to active centre-points. Probabilities are aggregated for all outcomes which are assigned to the
same centre-point. The centre-point of each cluster is used as the representative outcome.

5.5.2 K-means

K-means clustering uses the average outcome in each cluster as the centre-point. The advantage
of this is that the whole (fractional convex hull of the) input domain can be used to represent the

36



centre-point, but the disadvantage is that this generally results in a fractional centre-point. The
centre-point have to be converted to a binary outcome which may no longer represent the cluster
very well because the clusters are no longer formed with respect to the representative outcome.
In this thesis, we choose the binary representative outcome as the one closest to the fractional
centre-point in each cluster.

Computationally, k-means is simpler to solve approximately, while solving k-median clustering
can be more time-consuming. For this thesis, the k-means clustering problem is performed by
the standard implementation in the Julia library ‘Clustering.jl’. This implementation requires
distances between clustering variables to be evaluated by the L2-norm.

5.5.3 Binary point centroid clustering

The disadvantage of k-means clustering is that the resulting centre-point is in general fractional,
while for k-median the issue is that the set of possible centre-points is very restricted. Given that
we find a binary representative point for each cluster after solving k-means, the clusters are no
longer formed with respect to that new representative point and the approximation may result in
representative points outside the clusters.

An ideal clustering method for scenario generation with binary outcomes would consider the
centre-points as decision variables in a binary domain and then form clusters with respect to those
centre-points. We call this binary point centroid clustering. This method would collect the advant-
ages of both k-means and k-median clustering and rid us of their respective disadvantages. The
issue with this clustering method is the size and complexity of solving it. Note that, if tractable,
this method solves (5.8) exactly.

The binary point centroid clustering problem can be formulated as a quadratic binary pro-
gramming problem, for which the quadratic terms can be linearised (Crama & Rodŕıguez-Heck,
2017). However, this formulation scales very fast, namely as the product of the dimensions of
the binary outcome vector, the number of scenarios and the number of historical data points.
Additionally, the linearisation of the quadratic binary terms usually is not very efficient.3

An alternative to an exact procedure with the quadratic program formulation is to solve by
a heuristic. The representation for the heuristic would be very concise, with only one vector to
represent the centre point for each cluster. The cost is evaluated greedily by assigning data points
to the closest cluster and summing the distances between points and their respective centre points.

The heuristic can be benchmarked against, or initialized with, the solutions from the k-median
or the k-means algorithms to guarantee that it gives better solutions. K-means, with an appro-
priately chosen representative outcome, is a good alternative for initialization and benchmarking
due to its ease of implementation and availability in standard software libraries.

The disadvantage of this heuristic approach is that the problem-based recourse values could
take a significant amount of time to evaluate inside the heuristic. Evaluating distances in the input
domain is very simple, and it could thus be more advantageous to make the scenarios distribution-
based by this method. It’s difficult to determine ex ante if that trade-off from departing from
problem-based methods is valuable, and this should be considered for each specific problem.

Again, binary point centroid clustering may be more valuable if the number of historical data
points is small or the dimensions of the outcome vector is large. That’s because the discrepancy
between the size of the full domain and the number available data points worsens with both fewer
historical data point and more dimensions.

If the in-sample evaluation can be done efficiently, problem-based binary point centroid clus-
tering is tractable. For the presently considered ATFM case study problem, this was intractable
and has therefore not been tested. Experimenting with binary point centroid clustering is a very

3This formulation was tested for the ATFM case study problem, and there was no chance of solving it for even
the smallest problem instances.
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relevant consideration for further research on problems with easier to evaluate second-stage for-
mulations and binary input distribution.

5.6 Recourse deviation

This section explains how analysing collections of output-distributions can provide insight into
the problem we model and can serve as a proxy for determining the presence of uncertainty for a
given problem instance.

Presence of uncertainty is defined as the impact uncertainty has on the specific problem formu-
lation, or stated differently, how rich the representation of the uncertainty by the scenario set has
to be to solve the problem reliably. It also reflects how challenging scenario generation will be for
a given problem. This property is difficult to pinpoint exactly but is nonetheless very important.
Refining the understanding of the presence of uncertainty in problem formulations is part of what
this thesis addresses. Now, we suggest one proxy for assessing it.

Define the recourse deviation as

RU (ξ) = max{|DQ(ξ)− EQ(ξ)| : D,E ∈ DU}. (5.16)

whereQ indicates the stochastic component (the recourse) of the output-distribution. The recourse
deviation quantifies the span of possible recourse values for a given outcome ξ.

Scenario generation is increasingly challenging if a given outcome can take widely different
recourse values for different first-stage decisions in the approximate solution set. The challenge
comes from the fact that large shifts in the recourse values allow substantial variations in the
entire output distribution, which also makes it difficult to represent accurately by a scenario set.
Thus, the recourse deviation within the collection of output-distributions from the approximate
solution set can be analysed to infer the presence of uncertainty for the problem.

A perfectly stable scenario generation procedure producing the collection of scenario sets U
would result in almost no recourse deviation. Evaluating the recourse deviation informs us of how
much the ranking of outcomes with respect to its recourse value is likely to change with different
first-stage decisions. If the ranking is expected to change much, the problem is unstable and larger
scenario sets might be needed to represent the uncertainty accurately.

Recourse deviation as a tool for analysis is exemplified in Section 6.2.3 for the ATFM problem
with the recourse deviation illustrated in Figure 6.1.

38



6 Numerical experiments

Numerical experiments have been conducted to showcase how the insights from this thesis can
be used for scenario generation in the Integrated Model of Scheduling and Operations in Airport
Networks (IMSOAN).

Section 6.1 is an overview of the experimental set-up and the various parameter configurations
that were used for numerical experiments, Section 6.2 is a stability analysis of two benchmarks
for scenario generation, and Section 6.3 shows the results of computational experiments with the
new suggested scenario generation method.

6.1 Experimental set-up

6.1.1 Parameter configurations

Two problem instances have been selected for the numerical experiments, one with 6 airports (K6)
and one with 30 airports (K30). We have used the same dataset as in (Wang & Jacquillat, 2020),
and some key figures are given in Table 6.2.

The weighting between the two stages was done with two values; the configuration ρ = 0.67
was used because this was one of the lower values used in (Wang & Jacquillat, 2020), while the
configuration ρ = 0.2 was added in this thesis to make the problem more unstable.

Distances are measured in the input domain, output domain or the feature vector domain (both
input and output), by the L1-norm for k-median and the L2-norm for k-means. After clustering
by k-means, the selected representative binary outcome is the one closest to the centre-point of
each cluster. For k-median, the median outcome is chosen to be the representative outcome.
Probabilities are determined by the sum of probabilities of all outcomes within a cluster.

A summary of the possible parameter configurations is also given in Table 6.1.

Table 6.1: All parameter configurations used in the numerical experiments.

Parameter Possible configurations

Problem instance K6, K30

First-stage weight, ρ 0.67, 0.2

Distance metric Input domain distance, Output domain distance, Feature vector distance

Clustering method k-median, k-means

Set sizes S03, S05, S10, S20, S30
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Table 6.2: Model constants and dataset key figures.

Quantity Value Quantity
Value

K6 K30

Cost of displacement; cd 2.0 Number of airports; |K| 6 30

Cost of ground holding; cg 1.0 Number of flights; |F| 13453 26368

Cost of airborne delay; ca 1.2 Number of aircraft connections; |C| 8512 18788

Maximum displacement; δ 1 Smallest maximum delay; mini{l
dep/arr
i } 0 0

Number of time periods; |T | 72 Largest maximum delay; maxi{l
dep/arr
i } 21 21

Number of stochastic variables 432 2160

Sampling Average Approximation (SAA) (Shapiro, 2003) is used as the naive scenario gener-
ation procedure for its ease of implementation, and the size of the sampled set can help us adjust
what a ‘reasonable’ scenario set should entail. If sampled scenario sets give only noise in the
solutions, the problem is very unstable, and we should increase the size of the sampled scenario
sets to make it slightly more stable. In principle, a different naive generation procedure could be
used.

The collection of output-distributions were found by sampling ten scenario sets of size three.
Using ten scenario sets seemed to give a uniform and consistent recourse deviation, and sets of size
three could be used to solve the problem within a reasonable time compared to larger sizes. Using
larger sampled scenario sets to construct the collection of output-distributions gave seemingly
non-significant differences in the quality of the new scenario sets made from the collection of
output-distributions.

The weighting parameter cf in the feature vector was set so that the maximum possible L1-
distance in the output domain would correspond to the maximum possible L1-distance in the
input domain. This gives approximately equal weight to each of the two respective domains.

6.1.2 Implementation details

The algorithm was implemented in the Julia programming language using the Julia Mathematical
Programming (JuMP) package (Dunning, Huchette & Lubin, 2017) with the Gurobi v9 Mixed
Integer Programming solver. The problems were solved on a computational cluster with nodes of
hardware specifications up to 2×3.5GHz Intel Xeon Gold 6144 CPU (8 core) and 384GB of RAM.
The additional computational capability compared to what was used in (Wang & Jacquillat, 2020)
meant that the deterministic equivalent could be solved up to the largest problem instance K30
with 30 scenarios with occasional failures due to insufficient memory.

The decomposition procedure was implemented and tested, but due to availability of especially
good hardware for this work, all runs are solved by the deterministic equivalent, i.e. solving one
large model with both stages together. This was done to rule out any source of error that lies
in possible inaccuracies by the relatively large convergence tolerance of 1 % that was needed for
the decomposition procedure to converge in a reasonable time. Thus, the scenario sets can be
compared with higher certainty that any differences are only due to the scenario sets themselves.
Additionally, by using the deterministic equivalent, it was possible to solve the more unstable
problem instances where ρ = 0.2 which otherwise, for the given experiments and decomposition
implementation, would have taken an unreasonable amount of time to complete.

For this model formulation, we are working at the very limit of what can be solved, meaning
that both the decomposition procedure and scenario generation are paramount to be able to solve
these problems also for larger instances than the ones solved for this thesis.

The out-of-sample evaluations for this problem are especially computationally demanding due
to the very large second-stage MIP formulation. A single second-stage evaluation could take
between 20–7000 seconds, varying between problem instances and the amount of strain an outcome
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puts on the air traffic network. More strained networks cause more difficult to solve combinatorial
problems. To speed up out-of-sample evaluations, warm-starts where used combined with heur-
istics to sort scenarios so that the most similar outcomes came in consecutive order. Parallelized
distributed computing was utilized for additional speed-ups.

6.2 Stability benchmarks

Stability analysis of the problem is presented to provide a benchmark of what can be expected of a
good scenario generation procedure for this specific problem. Three different approaches are used
to evaluate stability; in-sample stability, out-of-sample stability and bias. These are described
in detail in Section 2.2. Additionally, the recourse deviation presented in this thesis is used to
evaluate problem characteristics.

The benchmarks were computed for Sampling Average Approximation (SAA) (Shapiro, 2003)
and for the reduction scenarios used in (Wang & Jacquillat, 2020). Lastly, we show how the newly
introduced recourse deviation can be used to assess stability.

Stability is recognized in two ways for various generation procedures: (i) A stochastic scenario
generation procedure is evaluated by constructing a scenario set multiple times and evaluating
stability by the standard deviation among the results. Sample Average Approximation is the only
procedure in this thesis for which this holds. Ten sampled sets have been used to find standard
deviations. (ii) For deterministic scenario generation approaches stability must be evaluated on
whether scenario sets of similar sizes give similar results. This regards all other scenario generation
procedures but Sample Average Approximation.1

6.2.1 Sample Average Approximation

The computational results for Sample Average Approximation scenario sets are summarized in
Table 6.3. There are a few interesting points to note about these results.

1Note that there is randomness in some of the other procedures, for example in which scenarios are used to find
output-distributions to make the problem-based scenarios or in the k-means clustering algorithm. These sources
of randomness are too small to give a significant impact on the results, and are considered deterministic in this
context.
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Table 6.3: Stability of Sample Average Approximation. Mean and standard deviation of the evaluation
of the in-sample and out-of-sample expected objective values among ten sampled scenario sets of respective
sizes. “—” = memory issues.

K6

Set size

ρ = 0.67 ρ = 0.2

In-sample Out-of-sample In-sample Out-of-sample

µ σ µ σ µ σ µ σ

S03 932.652 689.236 1762.080 27.771 1449.115 1343.946 3586.296 102.858
S05 1406.257 830.252 1757.875 39.013 2523.069 1812.786 3527.265 103.277
S10 1802.120 883.423 1754.271 33.770 3320.760 1821.276 3460.731 164.079
S20 1473.303 456.266 1725.853 5.856 2684.094 1009.597 3315.479 65.817
S30 1882.894 208.462 1726.515 5.162 3562.952 421.497 3290.015 21.332

K30

Set size

ρ = 0.67 ρ = 0.2

In-sample Out-of-sample In-sample Out-of-sample

µ σ µ σ µ σ µ σ

S03 1580.607 941.178 1955.246 30.617 2615.173 1838.152 3937.784 146.783
S05 1496.570 564.953 1952.798 23.688 2450.198 1108.897 3872.433 63.825
S10 1883.778 791.222 1926.572 29.775 3346.126 1583.193 3744.710 123.278
S20 2108.888 453.404 1909.665 11.631 3911.903 1003.990 3572.293 17.265
S30 — — — — — — — —

The in-sample stability is really bad for all sampled scenario sets. This can be recognized by
the large standard deviation of the in-sample expected recourse values for both problem instances
with both configurations of ρ. It does, however, noticeably converge for larger scenario sets but
never starts to become in-sample stable.

Related to the low in-sample stability, we see that the bias can be quite high. This is recog-
nized by comparing the mean expected objective value in-sample against the out-of-sample value.
Because of the high in-sample standard deviation, the bias can also be very variable. This means
that the sampled scenario sets do not provide a very good representation of the expected value of
the output-distribution.

A very interesting point about these results is that the solutions are quite stable out-of-sample.
This is recognized by the fact that the standard deviation is low for out-of-sample objectives, at
only about 0.3% of the mean expected objective value. With scenario sets of size 20, we see
that the sampled scenario sets are starting to get out-of-sample stable, but they are not stable
in-sample with a standard deviation of about 11% of the mean expected objective value.

The instability of the instances with ρ = 0.2 is very noticeable larger than for ρ = 0.67 with
standard deviations being three to four times as high for the out-of-sample objectives, meaning
that the presence of uncertainty is higher for instances with ρ = 0.2.

6.2.2 Scenario Reduction

The computational results for scenario reduction is summarized in Table 6.4. The scenario re-
duction scenario sets seem to be much more successful in solving the problem than sampling,
recognized by the lower and more stable out-of-sample objective values.

Still, the reduction scenarios are not very stable in-sample either, inferred by the relatively
large deviations in the in-sample expected recourse values across different scenario sizes. The
deviation can be up to 8− 10% of the out-of-sample expected objective values. Thus, the bias is
significant and also highly variable.

Scenario reduction, however, also seem to converge quite well out-of-sample. It converges faster
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Table 6.4: Stability of scenario reduction.

K6

Set size
ρ = 0.67 ρ = 0.2

In-sample Out-of-sample In-sample Out-of-sample

S03 886.419 1741.458 1503.069 3493.849
S05 1891.029 1721.559 3695.687 3285.242
S10 1453.773 1720.377 2723.282 3275.846
S20 1921.877 1721.203 3735.994 3258.013
S30 1884.182 1720.080 3647.623 3253.018

K30

Set size
ρ = 0.67 ρ = 0.2

In-sample Out-of-sample In-sample Out-of-sample

S03 949.323 1921.340 1555.927 3786.156
S05 1573.296 1904.091 2963.303 3581.135
S10 1444.484 1902.571 2663.082 3571.502
S20 1618.764 1903.060 3015.574 3544.971
S30 1529.140 1902.486 2803.300 3539.716

than for sampling, to lower objective values which are at the lowest end, or below, what could be
achieved by sampling. This means that they are quite successful in solving the problem.

For scenario reduction too, the difference in instability is noticeably larger for ρ = 0.2. At
ρ = 0.67, the reduction scenario sets stabilise out-of-sample at set sizes of only five to ten, while
for ρ = 0.2 it may not have entirely converged at scenario set size 30.

6.2.3 Recourse deviation

The empirical recourse deviation for the problem is illustrated in Figure 6.1. We see that a set of
first-stage solutions obtained from solving IMSOAN with different sampled scenarios of size three
give small variations in the output-distribution. Hence, the presence of uncertainty is relatively
low for this problem. The fact that the recourse deviation is not extremely high also supports
that the approximate solution set can be used to infer problem structures because it is unlikely
that extreme changes in the output-distribution can occur for different first-stage solutions than
those in our approximate solution set.

The noticeable difference in recourse deviation in changes of ρ in Figure 6.1b also confirm
that the problem is more unstable for ρ = 0.2. A further interesting observation is that the
deviation is larger for the middle part of the plots, meaning that the costs deviate more with
changes in first-stage decisions for those scenarios. It may, therefore, be important to represent
the output-distribution more accurately for this part of the output-distribution.

6.2.4 Discussion on stability

The most interesting observations from these results are that, first, the problem seems to be very
stable out-of-sample, and second, that there is a large discrepancy between the in-sample and out-
of-sample stability. The problem is regarded as stable because of its high out-of-sample stability,
and the reason for this stability given the in-sample instability is a bit mysterious.

The high out-of-sample stability can be inferred from the results on both the reduction scenarios
and the sampling scenarios. Even though the reduction scenarios perform much better than
sampling, it is an uncommon observation that the stability is at the start of sufficient convergence
at only sized 20 scenario sets. It seems like not too much would be needed for the scenario set to
give stable results for the given problem; hence the presence of uncertainty is relatively low.
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(a) ρ = 0.67

(b) ρ = 0.2

Figure 6.1: Recourse distribution for problem instance K6. The plot shows the out-of-sample distribution
of ten first-stage solutions from solving the problem with ten sampled scenarios, and the recourse deviation
is the span between the minimum and maximum recourse value for each scenario.

This does, however, not imply that the value of solving the stochastic formulation is low. The
presence of uncertainty is high enough that a scenario set size of one would perform terribly, which
can be recognized by the large discrepancy in solution quality between a set size of three and the
larger ones. Extrapolating the change in quality to size one scenario sets, this would give very
poor solution qualities. This was also confirmed by the high value of the stochastic solution (VSS)
shown in (Wang & Jacquillat, 2020).

It is a finding in itself that this problem, for the given dataset, is inherently quite stable, and
the analyses showing why can be considered a contribution in itself. To rationalized why this is the
case, the airport network has a quite high number of connections between airports, meaning that
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the effects of weather changes at one place easily transfers to displacements in schedules at other
airports. Hence, representing the entire range of possible outcomes at each airport at each time
has a rapidly diminishing value. To summarize, the number of connections between the stochastic
variables are high within the problem, affecting how we need to represent the uncertainty.

6.3 Comparison of scenario sets

The different distance metrics and clustering methods have been combined to see how they perform
compared to each other. Since the configuration ρ = 0.2 was more unstable and thereby more
interesting, the comparison of the new scenario sets is only for ρ = 0.2. The computational results
are summarized in Table 6.5.

Table 6.5: Comparison of clustering scenario sets solved with ρ = 0.2. Objective evaluations for scen-
ario generation procedure using each distance metric and clustering method for different set sizes. The
suggested new scenario generation method using feature vector distances highlighted in green, scenario
reduction as a benchmark highlighted in blue. “—” = memory issues.

K6

Set size

Out-of-sample

k-median k-means

Input Output Feature Input Output Feature

S03 3493.849 3341.884 3310.128 3466.387 3327.264 3321.453
S05 3285.242 3317.381 3293.777 3464.289 3314.700 3320.001
S10 3275.846 3325.032 3275.387 3269.379 3311.480 3263.640
S20 3258.013 3281.324 3258.211 3263.602 3290.990 3262.025
S30 3253.018 3273.309 3257.017 3256.705 3269.304 3258.865

Set size

In-sample

k-median k-means

Input Output Feature Input Output Feature

S03 1503.069 2848.526 2686.065 1443.220 2332.781 2329.392
S05 3695.687 3047.413 2755.767 1739.846 2222.130 2388.633
S10 2723.282 3131.339 3049.227 2698.778 2504.057 2607.042
S20 3735.994 3220.478 3081.864 3577.062 2772.617 3360.884
S30 3647.623 3221.172 3112.911 3083.526 2947.899 3372.236

K30

Set size

Out-of-sample

k-median k-means

Input Output Feature Input Output Feature

S03 3786.156 3625.248 3614.400 3812.708 3612.216 3612.215
S05 3581.135 3660.674 3621.525 3740.818 3598.023 3597.707
S10 3571.502 3570.456 3562.582 3580.736 3593.968 3593.663
S20 3544.971 3559.478 3548.314 3540.837 3573.667 3561.703
S30 3539.716 3556.408 3541.756 — — 3545.366

Set size

In-sample

k-median k-means

Input Output Feature Input Output Feature

S03 1555.927 3059.009 3012.236 2206.539 2503.378 2503.378
S05 2963.303 3252.706 3210.983 1407.362 2433.186 2433.269
S10 2663.082 3438.243 3282.740 2179.492 2863.810 2799.795
S20 3015.574 3481.944 3352.507 2945.360 3163.188 3445.395
S30 2803.300 3496.734 3379.702 — — 3463.471

Most interestingly, we see that the problem-based scenarios all improve on the out-of-sample
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score considerably for scenario sets of size three. This validates the rationale behind problem-based
scenario generation showing that it can give useful corrections where distribution-based methods
are insufficient. In this case, there was a 5% improvement in the solution quality, which is expected
to be more significant for more unstable problems.

At larger sizes, the different scenario generation procedures behave more similarly. At the or-
der of differences in out-of-sample objective values of 5 units, which is 0.15 %, it is a bit arbitrary
to compare the different approaches as long as they are all within the same vicinity of each other
without any outliers.

Another interesting observation from Table 6.5 is that the in-sample stability of the problem-
based approaches is much better than for scenario reduction, as well as having a smaller and more
consistent bias. This means that the proposed feature-distance based scenarios are representing
the expected value of the output-distribution much more reliably. This didn’t have a great effect
for IMSOAN, but for other problems, this could have a considerable impact.

The purely output-distance based scenario sets perform worse than other approaches for larger
scenario sets. This was expected by the previously given argument that clusters in the output-
distribution may be highly non-connectible in the input domain. This observation validates the
claim that proximity in the input domain must also be considered.

However, at lower scenario set sizes, the purely output-distance based scenario sets are cor-
recting the distribution-based alternative considerably. This is a significant finding because the
output-distance based scenario sets are solely considering the inferred problem-based properties
and have no direct relation to the input-distribution. The fact that they make useful corrections,
are more in-sample stable and have less bias has significant implications for the rationale behind
using problem-based scenario generation.

Comparing k-means and k-median, it seems like k-median was often more effective for binary
distributions, and this is attributed to the fact that the clusters in k-means were not formed with
respect to the chosen representative outcomes. As k-means clustered outcomes does not have a
very large discrepancy with k-median, and less so for larger scenario sets, we conclude that it
can be a viable, less computationally demanding alternative to k-median for experimentations or
benchmarking, and is likely more appropriate for larger scenario sets than for small ones.

6.3.1 Average corrected feature vectors

In Section 6.2.3 we saw that the low recourse deviation rendered that the problem is quite stable
and that ranks of scenarios cannot change very much. Because of this, the effect from the third
notion of proximity, proximity by similar recourse response, is not very strong compared to the
other two. Therefore, new scenario sets have been generated by considering the average corrected
feature vectors, expressed in Equation (5.13). The results are shown in Table 6.6.

Comparing the out-of-sample scores in Table 6.6, it is evident that this kind of scenario set
performs strictly better than all other tested for this problem. This is attributed to the introduction
of evaluation across sets of first-stage decisions to extract the problem-based properties that make
for proximity by similar recourse response.

We see that bias is present, but compared to scenario reduction, the average corrected feature-
distance based scenarios are much more consistent, thus, more in-sample stable as well. The use
of bias correcting coefficients, as mentioned in Section 5.1, could be useful in such cases because
of the consistency in the bias.

6.3.2 Explanatory capabilities of output-distributions

This section compares the different scenario sets in terms of output-distributions, showing how
the output-distribution centric view of scenario generation can also explain why other scenario
generation procedures don’t work as well as the proposed new method.
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Table 6.6: Average corrected feature distance by k-median clustering for ρ = 0.2. Benchmark is scenario
reduction, also highlighted in blue in Table 6.5. The difference from the benchmark is highlighted in green.

K6

Set size
Out-of-sample

In-sample objective
Objective Benchmark diff.

S03 3305.795 −5.382% 3454.550
S05 3269.925 −0.466% 3317.953
S10 3259.181 −0.509% 3434.703
S20 3257.456 −0.017% 3515.791
S30 3256.699 +0.113% 3527.927

K30

Set size
Out-of-sample

In-sample objective
Objective Benchmark diff.

S03 3592.356 −5.119% 3241.894
S05 3582.372 +0.035% 3532.563
S10 3555.396 −0.451% 3441.910
S20 3541.440 −0.1% 3643.106
S30 3540.318 +0.017% 3556.436

Positioning of scenario sets in cumulative output-distributions and problem insight

Analysis of the output-distribution and the position of the scenarios within it illustrates why
some scenario sets have performed better than others. Figure 6.2 shows the cumulative output-
distribution from the sized three k-median clustered scenarios based on distances in the input
domain (scenario reduction) and the feature vector domain. These are the ones with the most
significant difference in out-of-sample expected values.

What is evident is that the scenario reduction scenarios are placed quite low, with two scenarios
attaining very similar objective values. The problem-based scenarios are better dispersed in the
upper end of the output-distribution, and we can see that the output-distribution has a reduced
cost in the vicinity of those scenarios. This difference is what makes for the 5% improvement in
the out-of-sample expected objective value.

The issue that comes up with scenario reduction here is that it considers all possible out-
comes as equally important, while it is reasonably evident that almost half of them cause an equal
amount of strain in the air traffic network. This means that it is reasonable to assume that all
low impact scenarios can be represented by one outcome which covers the hedging property for all
those. We see that the feature-distance based scenarios have done precisely this; only one scenario
is placed in the low impact range, with a suitably high probability to correct for the statistical
properties. This scenario has a probability of 81 %, meaning that one scenario accounts for 81
% of the input-distribution in this case. Scenario reduction, on the other hand, has placed two
scenarios in the low range, meaning that only one scenario is left to represent the high impact
range of outcomes, which is the essential range to describe in detail.

Figure 6.3 shows the same two scenario sets plotted in the input domain. We see that the
problem-based scenarios in Figure 6.3a have made a distinction between the first airport and the
others. That is because the weather at the first airport has a higher impact on the air traffic
network, and we should consider its impact in particular. That the first airport has a high impact
is also reflected in the correspondingly high cost for scenario no. 2, shown in Figure 6.2.

Another interesting observation is that for scenario no. 2 in Figure 6.3a, there are still some bad
weather outcomes during the later time periods. That corresponds exactly with the observation
in (Wang & Jacquillat, 2020) that strain from bad weather during the late hours of the day has a
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Figure 6.2: Comparison of scenario sets in-sample (dots with annotated probabilities) and out-of-sample
(line).

higher impact on the total cost in the network. The problem-based scenarios reflect this well by
including some bad weather outcomes in these time periods.

To compare, these kinds of problem insights cannot be found by analysing Figure 6.3b, which
shows the reduction scenarios. These make a distinction between airport no. 5 and the others
based on occurrences of bad weather, but that distinction is less relevant for the given problem
because the corresponding increased cost, shown in Figure 6.2, is not very significantly different
from the outcome with only good weather. Furthermore, airport no. 1, which we found out has a
high impact on the airport network, has been represented only with good weather outcomes in the
reduction scenario set, meaning that the scenario set lacks an essential property for the present
problem.

Effectiveness of simple heuristics

By the monotonicity property of IMSOAN we know that more bad weather results in higher costs,
but we cannot know how the cost changes as the specific airports and times change with the same
number of occurrences. Figure 6.4 illustrates that there is a very large spread in objective values
for each number of occurrences of bad weather.

It was suggested previously that the monotonicity property of the problem could be exploited
to construct a very simple scenario generation heuristic for the specific problem by partitioning
the empirical distribution based on occurrences of bad weather. This was tested to be significantly
less effective than scenario reduction in (Wang & Jacquillat, 2020). What is interesting is that
analysing the objective output values highlights why this simple heuristic wasn’t sufficient. The
very significant difference between objective values for the same number of occurrences of bad
weather means that the heuristic is more or less random in how it represents the output-distribution
and will result in highly variable solution quality.

For the problem, this also explains that which airports and times bad weather occurs at has
a great impact on the cost, which solidifies the rationale for why the problem should be solved
stochastically.
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(a) Feature vector distance generated scenarios

(b) Input distance generated scenarios

Figure 6.3: Comparison of scenario sets in the input domain for different generation methods. Black is
bad weather, yellow is good weather. Probabilities for each scenario is annotated above.
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Figure 6.4: Objective values plotted against occurrences of bad weather. First-stage decision from
solving with a sampled scenario set with ρ = 0.2.
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7 Discussion and conclusion

This chapter starts with a discussion about the results and advancements from this thesis, and
then we conclude the work and comment on potential future research.

7.1 Discussion

There are three interrelated main topics addressed in this thesis. First, a deep dive into the use-
fulness and purpose of problem-based scenario generation, second, mathematical and empirical
stability theory of the impact of changes in the first-stage decisions on output-distributions, and
third, binary distributions and how to generate scenario sets for them in specific. The main ar-
gument to address scenario generation with binary distributions is that problem-based scenario
generation is especially useful for these problems, although this is valid for continuous input-
distributions as well.

This section first discusses the proposed new scenario generation procedure and the results
from applying it to the Air Traffic Flow Management problem. Next, we discuss how problem-
based scenario generation can give modelling insights beyond providing more concise scenario sets
to solve the problem. Then we discuss stability in stochastic programs and the implications of the
added understanding of problem-based scenario generation, which follows from this thesis. Lastly,
we discuss these results in light of generalized problem-based scenario generation, which has been
an additional underlying research question for this thesis and the preceding project report (Narum,
2019).

7.1.1 Scenario generation using collections of output-distributions

This thesis has presented a new problem-based scenario generation method for stochastic problems
with binary distributions. The results chapter showed that the proposed method was more accur-
ate and more reliable than the alternative approach, scenario reduction. Out-of-sample stability
was good, and for small-sized scenario sets the proposed procedure gave large improvements in
solution quality. In-sample stability and bias were also significantly improved, which is promising
for the applicability of the method to other problems.

It is acknowledged that problem-based scenario generation is often more laborious than distri-
bution-based alternatives, but also more precise. When approaching a problem for the first time,
it could often be wise to apply distribution-based approaches first and analyse the stability to
determine the need for more precise problem-based methods.

The proposed scenario generation method requires a collection of output-distributions from
the solutions of a set of naively generated scenario sets. If you have first tested your problem
with distribution-based methods, that is already available to you, and the stability results can be
reused to construct problem-based scenarios instead, meaning that the present approach adds a
very marginal amount of additional work for added precision.

Another important property of the method is that the entire procedure can be done without
solving the stochastic model for very large scenario sets. The collection of output-distributions can
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be computed from scenario sets of sizes which are reasonable to solve given the available compu-
tational capabilities. This thesis has shown that significant improvement on solution quality can
be obtained without ever solving for larger scenario sets than the distribution-based alternative
was too unstable with.

Compared to (Prochazka & Wallace, 2020), the proposed method in this thesis suggests that
a smaller set of first-stage decisions is needed because analysis of the entire output-distribution
gives more detailed insights than a correspondingly large set of expected values. Additionally, the
use of k-means or k-median clustering methods circumvents the need for evaluating scenario sets
in-sample within the scenario generation procedure, which was required in (Prochazka & Wallace,
2020). We suggested the binary point clustering method where in-sample evaluations would be
necessary. We argued that IMSOAN had a too computationally demanding second-stage for this
to work, which indicates that the fitting procedure of (Prochazka & Wallace, 2020) might not
have been tractable for the considered case study problem either. Lastly, the fitting algorithm
in (Prochazka & Wallace, 2020) and selection of clustering variables and accompanying testing in
(Feng & Ryan, 2016; Sun et al., 2018) required considerable amounts of tailoring, while our pro-
posed method can in principle be applied to any problem without considerable tuning or tailoring.
To argue why this is reasonable, the advantage and significant difference lies in the evaluation of
stability across first-stage decisions on the whole spectrum of available out-of-sample outcomes
based on a restricted and more relevant set of first-stage decisions that the alternatives.

Performing out-of-sample evaluation of first-stage decisions can be computationally intensive,
especially if the set of out-of-sample outcomes is very large or if the second-stage is very compu-
tationally demanding, as for IMSOAN. The suggested scenario generation procedure in this thesis
requires out-of-sample evaluations, but we need not use the entire set of out-of-sample outcomes
to infer problem structures. To decrease computation times, we could apply distribution-based
scenario generation methods to construct a new empirical distribution for out-of-sample evalu-
ations. As long as the newly generated empirical distribution is much richer than the scenario set,
this is a perfectly sound approximation, and can significantly decrease computational times.

A direct consequence of making a new input-distribution to extract problem-based properties
from is that we can employ a large set of already existing distribution-based scenario generation
methods as a preprocessing step which specifically addresses other challenges than we have ad-
dressed directly in this thesis. We could incorporate notions of higher dependence structures by
copula sampling (Kaut, 2014; Kaut & Wallace, 2011) and aggregation sampling for tail risk meas-
ures (Fairbrother et al., 2019). Choosing an appropriate distribution-based method for reducing
the size of the input-distribution for out-of-sample evaluation is important not to lose important
characteristics of the original input-distribution. More generally, we recommend property match-
ing for continuous input domains with strong correlations (Høyland et al., 2003) and scenario
reduction for discrete input domains (Dupačová et al., 2003).

In applications, it can often ‘feel safer’ for the modeller to make scenario sets of outcomes
which are already part of the historical dataset. In this thesis, we argue explicitly against that.
Likely, the historical data is not nearly rich enough to contain the outcomes that make for the best
possible scenario set due to high dimensionality. The use of ‘non-real’ data points as a means to
reach better solutions should be seen as a necessity to get the best possible scenario sets because
the behaviour of both the distribution and the problem is captured better. As long as we do out-
of-sample testing of the solutions, it is entirely irrelevant which tools we have used to construct
them.

The second-stage of IMSOAN was too computationally demanding to incorporate in-sample
objective evaluations into a heuristic procedure to solve binary point centroid clustering, which
would illustrate the value of using the entire binary input domain for scenarios. Instead, k-means
clustering became the test case to highlight this value. The conclusion from the results section was
that k-means was worse than k-median, but not considerably, mostly attributed to the inappropri-
ate selection of representative outcomes from the fractional centre points from k-means. We can
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therefore not make conclusive arguments about the usefulness of making use of the entire input
domain. For a problem with a simpler second-stage, a binary point centroid clustering approach
would be interesting to implement within the presented framework in this thesis, which is expected
to be more effective.

The Air Traffic Flow Management was more stable in nature than preferred, which meant that
the distinctions between the different scenario generation procedures weren’t always obvious. This
does not invalidate that the new method works well but makes it is a bit more difficult to see.

The proposed new scenario generation procedure improved the solutions significantly for small
scenario sets, and at no point compromised on the quality of solutions for larger scenario sets.
The limitation is that we cannot determine how effective it could be for more unstable problems
where other approaches might not be sufficient to get reliable results. Based on the rationale
underlying the analysis of output-distributions across the approximate solution set, we expect
that it could make highly effective corrections. This thesis’ supporting evidence for this is that
the clustering scenarios based only on the output domain were comparably effective to all other
approaches, and also gave better results than scenario reduction for scenario sets of size three.
This is a significant result because the scenario set has proved effective based on a method which
is agnostic to the specific kind of problem but can still incorporate problem-based properties into
the scenario generation. The reason application-specific corrections haven’t been made in this
work is that we aimed for a method which can be useful on any problem class without tailoring.

Consider that all implemented scenario generation procedures gave very similar solutions for
larger scenario sets. It is not unprecedented to consider whether we are reaching a lower bound on
the possible solution quality for a given scenario sets size. It is known that stochastic programs
require more than one scenario; otherwise, there is no way to invest in flexibility since no options
exist (Wallace, 2010). No literature addresses such a lower bound for more than one scenario,
and this is likely because it would be problem- or even instance-specific. Problem-based scenario
generation is a framework which may lead to advancements in formulating estimates of such lower
bounds, but for now, we cannot confirm nor deny whether we have reached such a bound on
solution quality.

The monotonicity property of IMSOAN supports that changes in the output-distribution with
different first-stage solutions would be relatively stable, and a low recourse deviation also confirmed
this. Considering that binary stochastic variables often represents the presence of a customer,
failure of a link or similar, it’s inferred that this monotonicity property should be found in a
broad set of problems specified by binary distributions, which argues that other problems specified
by binary distributions could exhibit similar problem behaviour to the case study problem in this
thesis, generalizing the implications of this work.

7.1.2 Modeling insights from output-distributions

A presupposition when we model a real-world problem by a mathematical formulation is that,
hopefully, what occurs in the model would also happen in the real world, at least within the
bounds drawn around the problem when the model was formulated. In the realm of problems
so complicated that humans have no chance of apprehending its complexities, interpretation of
models is vital when it supports decision making. They are not only crucial for insight beyond
the optimal solution in itself but also for verifying that the model reflects the real-world problem
to a satisfactory degree by sanity checks.

A stable set of scenarios can be interpreted as a set of uncertain outcomes of the future that
are sufficient to consider for a given decision problem. The practical implication of this is that for
a complicated decision problem with an incomprehensible amount of potential outcomes, we can
distil the uncertainty down to a comprehensible amount and infer why the uncertainty matters
for the given application. Thus, problem-based scenario generation can not only help us solve in-
tractable problems by using smaller scenario sets, but they may also help us interpret the impact
of uncertainty for our real-world application and understand why uncertainty has an impact at
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all. This was exemplified for IMSOAN in Section 6.3.2 with the analysis accompanying Figure 6.3.

Stochastic programming is an optimization of distributions and should be analysed as such.
Solving a stochastic model without looking at the output-distribution and how it changes with
first-stage decisions is comparable to not checking the stability of your scenario sets; you have no
idea what is going on and if it works as you wish. The recourse deviation is a better tool for stabil-
ity evaluation because it gives more information than simply the continuum of stable – non-stable.
It can tell you what kind of outcomes are more or less stable. What is especially interesting about
the results from this thesis is that the output-distribution centric view of scenario generation also
gives explanatory power to argue why the other scenario generation methods did or didn’t give
reliable results. This was also exemplified in Section 6.3.2 by the analysis accompanying Figure 6.2
and Figure 6.4.

In principle, the proposed scenario generation method in this thesis is independent of the util-
ity metric that is used to formulate the problem. The utility metric itself could, for example, be
decided by analysing the output-distribution. Finding that the upper tail is heavy and shifts signi-
ficantly with first-stage decisions might mean that tail risk measures is a reasonable utility metric,
motivated by application-specific reasons for why that is not good. If the output-distribution is
mostly limited within a span of recourse values but shifts its mass for different first-stage decisions,
it might be wise to use the expected value as a utility metric.

The presence of uncertainty in a specific problem, which is equivalent to the amount of in-
stability, is a metric of how necessary it is to solve the given problem by its stochastic formulation.
Additionally, it determines how many scenarios we may need to solve the problem reliably or how
well constructed they need to be. A problem with a low presence of uncertainty could require al-
most nothing of the scenario generation procedure, or could even be solved sufficiently well by the
deterministic version of the problem. By this distinction, the tools within problem-based scenario
generation can also help to determine the degree to which a problem would need to be solved by
its stochastic formulation. The notion of lower bounds on the required number of scenarios, or
solution quality for a given scenario set size, is also related and problem-based scenario generation
could also bring us closer to insights into the existence of such lower bounds.

7.1.3 Stability driving tractability of scenario generation

A crucial observation is that the scenario sets we aim to generate are of sizes at the order of three,
five and ten to represent a binary input-distribution of 400 to 2000 dimensions. At this outstanding
level of simplification of the empirical distribution, the statistical accuracy of the scenario set’s
representation of the input-distribution should be expected to be very low. Furthermore, as this
new representation of the empirical distribution goes through as complicated a transformation
as a two-stage model, any representability in the input-domain transferred to the output-domain
usually is even worse. Still, the results in this thesis show that it can clearly be done.

The successfulness of scenario generation, in general, cannot only be explained by an ex-
traordinarily good representation of the input-distribution but rather that the stochastic pro-
gramming model is stable enough to give reliable results for a large variety of representations.
This means that stability properties of the problem formulation are what drives the tractability
of scenario generation. The theory supporting this follows from implications of the results in
(Römisch & Wets, 2007a), although this extraordinary observation of the properties of stochastic
programs cannot be entirely described by that result either. It is primarily an empirically observed
property.

Given that stability of stochastic models determines the successfulness of scenario generation,
there’s no doubt exploring the properties of problems to guide scenario generation is crucial, and
this was the motivation for the onset of this thesis. We have, in this thesis, explored more deeply
how the problem structures of a model formulation can be found, namely by examining common-
alities and differences within a collection output-distributions resulting from a restricted set of
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first-stage decisions.

Intuitively, the suggested new scenario generation method works because analysing collec-
tions of output-distribution is in practice a dimension reduction of the huge input domain of the
stochastic variables, where the input-distribution is projected onto the problem formulation for
a given first-stage decision by out-of-sample evaluation. However, the projection can be made
for each feasible first-stage decision, which for continuous problems is infinite-dimensional or for
integer programs very large dimensional. By using approximate solution sets, the number of po-
tentially considered output-distributions is significantly reduced, although, still very large. The
next crucial property we rely on is that most problem formulations we deal with exhibit reasonably
stable results with perturbations in the scenario sets used to solve the problem, meaning that the
differences in output-distributions are also relatively small. This property of stability is supported
by implications of (Römisch & Wets, 2007a), and by the fact that we can empirically verify the
stability for the specific problem. The recourse deviation indicates the distinctiveness of different
output-distributions, also referred to previously as the presence of uncertainty in a given problem.

We have argued that analysing problem behaviour with respect to changes in first-stage de-
cisions is most important, and for the rest of this section, we discuss more deeply why. Analysing
the output-distribution with respect to changes in the first-stage decision is much more essential
than merely perturbing the recourse function in ‘the other’ argument besides the stochastic vari-
ables. The first-stage decision is indeed the only thing that matters when solving a stochastic
model, while the stochastic representation and the second-stage are simply a means to model the
utility of that first-stage decision in a way that’s tractable to solve.

Furthermore, we argue that the exact representation of the whole output-distribution is also
mostly not interesting. When representing the output-distribution by a scenario set, the only thing
that matters are the qualitative changes in the recourse function with respect to the stochastic vari-
ables as we change the first-stage decision. The results in this thesis and the empirically observed
fact that stochastic programs are exceptionally stable can be inferred to mean that the number of
such qualitative distinctions are relatively few.

Efforts have been made to bound the recourse function or to approximate it more and more
accurately, for example by quadrature rules, Quasi-Monte Carlo sampling, or similar methods.
These are missing the point of what needs to be approximated, and a simple thought experiment
can make it clear why: If it is vital to represent the entire output-distribution accurately, we
would not be able to solve stochastic programs at all. The substantial empirical stability results of
stochastic programs would be not nearly as good if the solutions relied on very accurate descrip-
tions of the output-distributions because many scenario generation procedures are nowhere near
approximating the entire distribution accurately but still perform perfectly well. Hence, something
else makes for these exceptional stability results, and we should exploit those properties instead.

Representing everything more accurately is always a solution, but not a very good one when
tractability is one of the prime issues we face.

Let us describe more precisely what we mean by qualitative distinctions in the output-distri-
bution. The following arguments are a hypothesis for how changing output-distribution can be
understood, motivated by the gained insight from working with this thesis.

A qualitative distinction of changes in output-distributions with respect to the first-stage de-
cision is distinguished by different modes of change, namely, expressed by a set of primary basis
functions with range in the output domain and support in the input domain. We hypothesise
that first-stage decisions in the vicinity of the approximate solution set results in changes in the
output-distribution which can primarily be described by the components of such basis functions.

We do not know the form of these basis functions, and they are likely problem-dependent,
but we can infer them by the collection of output-distributions resulting from the approximate
solution set. The critical insight that is concluded by the empirically observed stability property
of stochastic programs is that we need only a small set of basis functions to describe most of the
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variations in the output-distribution.
After identifying the primary basis functions, we formulate a scenario set, residing in the

support of the basis functions, to cover the main modes of change, which is good enough to
distinguish first-stage decisions apart in terms of solution quality. Doing this may be non-trivial,
but it is fair to assume that it can be done with not too many more scenarios than there are
basis functions. Furthermore, this would infer a lower bound on how many scenarios you need to
represent changes in the output-distribution sufficiently.

The primary result of this thesis implies that there exists a very limited set of primary basis
functions in the output domain and that they are very much tractable, but maybe non-trivial, to
find. The basis decomposition is a more concise and precise interpretation of what we have done
in this thesis and is a promising direction to develop problem-based scenario generation further.

7.1.4 Generalized problem-based scenario generation

One of the aims from the outset of this thesis was to figure out what it is that the ‘black box’
fitting in (Prochazka & Wallace, 2020) finds. Especially interestingly, the authors highlighted that
their fitting algorithm could replicate the findings that applied to scenario generation for tail risk
measures in (Fairbrother et al., 2019), meaning that there exists a common pattern their fitting
algorithm is able to find.

The research question which emerged from this was whether it’s possible to solve generalized
problem-based scenario generation, which we define to be a scenario generation method which can
exploit problem specific properties without making assumptions on what these properties might
be, named an agnostic method, and at the same time does not rely on solving the problem first,
referred as the capability of doing scenario generation ex ante.

The implication of finding a generalized problem-based scenario generation method is that it
could be used across any problem class and would be more effective than any distribution-based
alternative. An essential assumption is that the method scales well and can be used for large-scale
and combinatorial stochastic problems, which is why the ex ante property is important. The end
goal is to be able to solve stochastic problems of a scale that are otherwise intractable.

The goal of the project report (Narum, 2019) was to see if the properties of a two-stage
stochastic linear program with respect to its stochastic variables could give useful insights so that
a problem-based scenario set could be generated directly from the mathematical formulation of
the problem itself. The goal was to see if that was possible, which is why it was simplified to linear
programs with a stochastic right-hand side (or stochastic objective).

It was established that the input domain of the distribution could be decomposed into a finite
set of partitions with respect to the problem which each represents unique problem behaviours
by differences in linearity. The caveat was that the granularity of this decomposition was far too
fine and with too high computational complexity to be found explicitly (even by more pragmatic
empirical approaches). It could therefore not be used ex ante.

What is important is how the partitioning changes with different first-stage decisions, and one
of the most interesting takeaways from (Narum, 2019) was that the partitioning of the input-
distribution with respect to the problem has a correspondence with extreme points in the dual
feasible set of the formulation. Moreover, the dual feasible set is independent of the first-stage
decision and can be directly related to the output-distribution since larger dual variable values
imply increased objective values. Thus, distinctions between outcomes of the stochastic variables
with respect to the problem formulation can be made by extreme point enumeration of the second-
stage’s dual feasible set. Note that when dual extreme points are linked with specific stochastic
outcomes, the first-stage decisions must also be included. Lastly, such extreme points will have
notions of proximity in the dual space which can be utilized to distinguish them further apart
to reach a greater span of difference in the behaviour of the second-stage formulation. Note that
these results may also hold for integer programs by relaxing them to a linear formulation. It is
not evident that this would invalidate the problem-based distinctions made about the stochastic
variables.
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The conclusion from (Narum, 2019) was that problem behaviours can be inferred by exploring
the second-stage formulation, but that we are facing high computational complexity and need to
know what we want to find.

This thesis aimed to explore how first-stage decisions change output-distributions and which
qualities in the output-distributions are important to capture in a scenario set. We pivoted
from a bottom-up approach to a top-down approach, which also involved a higher acceptance
for fundamentally approximate explorations of qualitative distinctions in problem behaviour.

This thesis answered the question of whether a problem-based scenario generation method
which is agnostic to the specific problem is possible. Additionally, the suggested metric for de-
termining discrepancy between the out-of-sample outcomes and a scenario set shows great promise,
and it can be explored further how this can be inferred without solving the two-stage model itself.

Combining the conclusions from this thesis and (Narum, 2019) there is a path forward for how
the result from this thesis on a problem-based agnostic metric of proximity between distributions
can be expanded by not relying on an out-of-sample evaluation of each first-stage decision in
the approximate solution set. By exploration of the dual feasible set of the linear relaxation
of the second-stage, we could infer qualitative distinctions between output-distributions without
explicitly solving the second-stage. Exactly how these two approaches could be combined is a
question for further research. Such an effort would be more valuable for problems with integer
second-stage which are difficult to solve, but it is not completely clear how well properties from
the linear relaxation transfers to the integer formulation in those cases.

In a longer time-horizon, it could also be explored whether we need to explicitly solve the
stochastic program with naive scenario sets to get properties of the approximate solution set or if
this can be inferred ex ante of solving the stochastic model. The way forward on this is, however,
not very clearly defined.

7.2 Conclusion

This thesis concludes that a collection of output-distributions obtained from a restricted set of
relevant first-stage decisions can be analysed to infer the structure of stochastic problems which
in turn can guide scenario generation to construct more concise scenario sets to solve stochastic
problems than possible by distribution-based methods. These stability properties are complicated,
difficult to find and have not previously been interpreted in previous literature. The proposed
approach to attain them is computationally demanding but very much tractable.

The presented scenario generation method is effective enough to guide scenario generation for
binary input-distributions. It is, by numerical experiments, shown to outperform every other al-
ternative approach to scenario generation with binary distributions on a large-scale, combinatorial
and stochastic case study problem in Air Traffic Flow Management. The monotonicity property
present in many stochastic problems with binary distributions generalizes the implications of this
result to other problems.

7.3 Future research

The most relevant continuation of the work in this thesis would be to explore further whether
approximate solution sets or similar structures, which were shown to contain sufficient information
on stability properties, can be inferred ex ante of solving the stochastic model.

Another interesting continuation would be to expand the distribution centric view of scenario
generation to multi-stage programs, which are often more complicated and require more sophistic-
ated approximations. The challenge then is to transfer the notion of an output-distribution when
there are multiple consecutive stages, all with interdependent decision variables and transitions of
uncertainty. Being able to infer approximate solution sets ex ante might be a valuable stepping
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stone for multi-stage programs because they, in principle, are recursive two-stage problems and
being able to infer solutions to decision variables at the intermediate stages could be very valuable.

This thesis has been a deep dive into scenario generation considering problem structure, but
some problems have very important dependence structures where the solution procedure imme-
diately exploits ’false’ negative correlations appearing in the scenario set. An interesting topic of
future research would be to explore how to combine scenario generation for significant dependence
structures together with very high exploitation of the problem structure. A starting point could be
to use distribution-based scenario generation as a preprocessing step as laid out in Section 7.1.1,
whose effectiveness for higher dependence structures or strong correlations would first have to be
tested numerically on a practical problem.
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Rachev, S. T. & Rüschendorf, L. (1998). Mass transportation problems: Volume i: Theory. Springer
Science & Business Media.
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