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Abstract

Although traditional real options models are able to appropriately account for an uncertain

investment environment, they do not allow the decision maker to actively seek information

in order to learn about future market conditions. This opportunity to learn introduces

considerations that have received increased attention in recent literature. With active

learning, factors of the project under consideration that have traditionally been assumed

to stay constant are allowed to change as a result of observations. This thesis extends the

literature by discussing how an option holder may learn about a stochastic process that

evolves with time. The Kalman filter is applied to derive a time-varying estimate of the

process, and the option is valued as dependent on this estimation. We focus our attention

on linear stochastic processes with normally distributed noise. The resulting estimation has

a risk that is assumed to be undiversifiable. A utility model is therefore applied to model

the option holder’s relationship to risk. The main purpose of the thesis is to illustrate the

applicability of this approach and to discuss properties of the resulting optimal strategy.

With a numerical example, we find that the marginal benefit of learning decreases rapidly

over time, and that the majority of exercises occur early in the option holding period, after

the holder has realized the main benefits of learning. We also illustrate how the distribution

of exercise times varies with changes in the initial belief.
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Sammendrag

Selv om tradisjonelle realopsjonsmodeller tar hensyn til usikkerheter i markedet, åpner

de ikke for en beslutningstaker som aktivt søker ny informasjon for å lære om fremtidige

markedsforhold. Muligheten til å lære fra omgivelsene introduserer nye betraktninger som har

fått økt oppmerksomhet i nyere litteratur. Med aktiv læring tillates faktorer som tradisjonelt

sett har vært antatt å forbli konstante å endre seg med nye observasjoner. Denne oppgaven

utvider literaturen om realopsjoner ved å diskutere hvordan en opsjonsholder kan lære om

stokastiske prosesser som utvikler seg over tid. Vi anvender et Kalmanfilter til å formulere

et tidsavhengig estimat av en observert stokastisk prosess. Vi begrenser oss til lineære

stokastiske prosesser med normalfordelt støy. Den resulterende estimeringsprosessen har

en usikkerhet som antas å ikke kunne diversifiseres. Vi formulerer derfor opsjonsholderens

forhold til risiko ved hjelp av en nyttefunksjon. Hovedformålet med denne oppgaven er

å demonstrere hvordan denne metoden kan anvendes, og å diskutere egenskapene til den

optimale beslutningsstrategien. Ved hjelp av et numerisk eksempel ser vi at marginalverdien

av læring synker fort over tid, og at majoriteten av investeringsbeslutninger forekommer

tidlig i levetiden til opsjonen, etter opsjonsholderen har realisert de største læringsfordelene.

Vi viser også hvordan fordelingen av investeringsbeslutninger varierer med endringer i det

opprinnelige estimatet.
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1 Introduction

Investment decisions, such as the launch of nascent technologies, or whether to enter an emerging

market, often involve considerable uncertainty. If the investment opportunity allows for it, waiting

to invest may play a crucial role in reducing this uncertainty (Dixit & Pindyck, 1994), especially

if more information about the project presents itself over time (Dixit, 1992). By observing

and incorporating this information, the decision maker may form better grounds for decision

making, especially when the information regards factors of high sensitivity to the project value.

Often, the most pertinent underlying factor to project valuation is stochastic over time and may

consequently be modeled by a stochastic process. A decision maker with the ability to learn from

new information may form an estimation of the current value of such processes, effectively forming

an estimation that also evolves as a stochastic process. Individual observations may not give

an accurate picture of reality, and so the decision maker should account for some measurement

error. The main purpose of this thesis is to derive and analyze the optimal strategy of a decision

maker who holds a continuous time estimation of certain kinds of stochastic processes that are

not perfectly observable, but may be estimated by incorporating noisy observations.

We examine the optimal investment behavior of a firm that has the option to invest in a project

against a fixed sunk cost, and consider a situation in which the underlying variable of the project

value is assumed to be either a constant or an Ornstein-Uhlenbeck process, with parameter

values known to the firm at the beginning of the option holding period. The initial process

value is uncertain, and since the process is not perfectly observable, its value remains uncertain

throughout the holding period. The firm may engage in noisy observations of the process over

time in order to obtain an estimate of its value, and consequently, the project value. This noise

represents a firm-specific uncertainty, and the firm is consequently assumed to face an incomplete

market. We therefore resort to maximizing expected utility, assuming a firm with a known

constant relative risk aversion and rate of time preference.

We begin our analysis by formulating a continuous time subjective belief of a stochastic process

with a certain structure based on historic observations. We then apply this model to an Ornstein-

Uhlenbeck process. In order to compare the resulting estimation, another estimation is designed

with the assumption of an underlying process that is constant at the mean value of the Ornstein-

Uhlenbeck process, unless explicitly stated otherwise. We then derive the expected net present

utility of investing in the project, and proceed to discuss properties of the option value. The

optimal investment policy is derived with a simulation-based method. Finally, we present a case

study in order to demonstrate the dynamics of the model.
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Introduction 2

In contrast to investment strategies based on the net present value (NPV), traditional real options

models incorporate the flexibility of waiting to invest, and are consequently often valued at a

premium over their myopic counterparts. Seminal contributions to this field include Dixit and

Pindyck (1994) and McDonald and Siegel (1985, 1986). Recently, the real options literature has

been extended by the incorporation of learning. This new methodology considers information

acquisition as a conscious activity by the firm, and not a passive consequence of waiting to

exercise the option. In contrast to traditional models in which parameters that establish the

project value are assumed to be known at the beginning of the option holding period, a learning

firm changes its estimations throughout this period, either discretely or continuously, based on

received information. If this information is in fact an accurate representation of reality, a firm

applying “active learning” will have better grounds for decision making throughout the holding

period than a firm that remains passive, and consequently an improved investment strategy.

This additional benefit of holding the option therefore introduces another quantifiable factor to

consider when deciding whether to exercise.

There are several ways of modeling active learning. One widely applied method is by Bayesian

updating of a parameter’s prior probability distribution when new observations arrive. Examples

of this approach include Singh, Ghosh, and Adhikari (2018), who apply Bayesian updating at

discrete observations to estimate the drift and diffusion parameters of an Ornstein-Uhlenbeck

process, and Blanke and Bosq (2012) who study a similar problem in both discrete and continuous

time. Although the majority of papers that model learning in a real options setting do so through

Bayesian updating, another equally feasible estimation method is the Kalman filter algorithm,

as outlined in Øksendal (2013, p. 2). Instead of sequentially updating the entire probability

distribution of the estimated parameter, the Kalman filter algorithm is generally applied to

only update the conditional expectation, circumventing some of the analytical difficulties with

Bayesian updating. When the observations are considered to be independent of the observed

parameter, and observation noise is considered to be normally distributed, the two approaches

result in identical estimations, as demonstrated by Barker, Brown, and Martin (1995) and Soyer

(2018).

A familiar result in real options analysis is the nondecreasing relationship between uncertainty and

option value. Incorporating learning in a real options framework often reduces this uncertainty,

and a natural question is whether learning is valuable in this context. As Martzoukos and

Trigeorgis (2001) conclude, the value lost from lower uncertainty is compensated by the value

gained from better information. This may also be the case if learning is costly, as supported

by the results of Harrison and Sunar (2015) and Bellalah (2001), among others, supporting the
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notion that incorporating learning adds additional value to the traditional real options framework.

Nevertheless, the work on learning in a real options context is arguably scarce. Among the

existing literature, Kwon and Lippman (2011), Ryan and Lippman (2003), Kwon, Xu, Agrawal,

and Muthulingam (2016) and Thijssen, Huisman, and Kort (2004) take a theoretical approach

and illustrate how the optimal investment strategy is influenced by different aspects of learning

about some aspect of future project profitability when the investor is assumed to be able to

enter, exit or expand the project, or a combination of the three. Herath and Herath (2008),

Kwon (2014) and Dalby, Gillerhaugen, Hagspiel, Leth-Olsen, and Thijssen (2018) examine how

learning with real options can be applied to specific situations in industry. More specifically,

Herath and Herath (2008) consider how the framework may help in valuing certain types of

information security systems, and conclude that the incorporation of learning leads to a reduction

of upward bias in estimates, as well as a specific implications for security system management.

Kwon (2014) models the optimal decision policy of a firm that has the option to invest in order

to protect a project against disruption and may continuously learn about the probability of this

disruption from trends in the market. His model illustrates the sensitivity of optimal decision to

the probability of disruption. Dalby et al. (2018) consider a firm which may invest in a project in

the renewable energy industry that is subject to an expected adjustment of the support scheme

it is currently backed by. The firm is assumed to be able to learn about the arrival rate of

the adjustment from a continuous information stream. The authors illustrate how the optimal

investment threshold varies with the desired learning rate and the corresponding effect on option

value, and, notably, how the relative time to optimal investment decreases with learning rate. A

key contribution of this thesis in the context of the aforementioned papers is that we estimate a

stochastic process, and not a parameter that is assumed to be constant in time.

A factor that is often of interest in relation to active learning is the “rate of learning”, or, “learning

rate”, represented by Kwon et al. (2016) as a parameter that reflects the magnitude of the

difference between the prior and posterior probability distributions when applying Bayesian

updating. With a Kalman filter, the equivalent measure would be the magnitude of the difference

between the prior and posterior conditional expectations. In both cases, the learning rate may

be defined as a function of the volatility of the observation process. The volatility describes the

uncertainty of the estimate, and a higher rate of learning is intended to translate to a faster

decrease in estimator uncertainty. When learning is considered to be costly, the cost function may

be expressed in terms of this learning rate, as demonstrated in Moscarini and Smith (2001), and

the investor is consequently faced with selecting the optimal learning rate. We consider a fixed

learning rate in this thesis, but acknowledge the importance of discussing the optimal learning
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rate when considering practical applications, especially when learning is costly, as discussed in

Hagspiel, Nagy, Sund, and Thijssen (2019). We assume costless learning to simplify the analysis

and to illustrate the dynamics of the optimal strategy more clearly. For further discussion on

costly learning within a real options framework, consider e.g. Bellalah (2001); Bergemann and

Välimäki (2008); Harrison and Sunar (2015); Keller and Rady (1999); Moscarini and Smith

(2001); Pertile, Forster, and Torre (2014) and Thijssen and Bregantini (2017).

We focus our discussion on a certain class of stochastic processes known as Ornstein-Uhlenbeck

processes. These processes are mean-reverting, and have been applied to model a wide range

of scientific phenomena. Within finance, evidence for mean-reversion is abundant (Wong & Lo,

2009), and the Ornstein-Uhlenbeck process has been used to model commodity prices, as in

Schwartz (1997) and Lucia and Schwartz (2002), exchange rates, as in Jorion and Sweeney (1996),

and interest rates, as in Vasicek (1977). In a real options framework, Ekström, Lindberg, and

Tysk (2011) formulate the problem of when to liquidate a position in a pairs trade by modeling

a mean-reverting price spread with an Ornstein-Uhlenbeck process. Their model is extended by

Leung and Li (2015) with the incorporation of a strategy for optimal entry into the position. In

an industrial context, Näsäkkälä and Fleten (2005) analyse a real options problem of investment

in a power plant when the spread between the electricity price and cost of gas is assumed to

follow the sum of an arithmetic Brownian motion and an Ornstein-Uhlenbeck process, similar to

the method applied in Lucia and Schwartz (2002). Overall, if an observable underlying process of

a project is an Ornstein-Uhlenbeck, and the investor has derived an expression for the expected

value of the project, our model may be applied to devise an optimal investment strategy. As

an example of current relevance, Gray, Greenhalgh, Hu, Mao, and Pan (2011) demonstrate

that the disease transmission coefficient in an epidemiological “susceptible-infected-susceptible

(SIS)”-model may be expressed by an Ornstein-Uhlenbeck process. If an investor formulates a

project value in terms of this coefficient, our model may be applied to value the opportunity of

investing in it. We introduce a case study that assumes an industry with mean reverting prices

following an Ornstein-Uhlenbeck model. It should be noted, however, that our main concern

with this thesis is to derive a model of general applicability. The case study is intended solely to

demonstrate the properties and dynamics of the model.

Although the aforementioned literature offers meaningful insights on optimal investment decisions

and learning, it is developed under the assumption of risk neutrality, which relies on the assumption

that the underlying asset may be spanned or replicated by assets in the market. Hugonnier

and Morellec (2007) point out the following: “While assumptions of risk neutrality or market

completeness are convenient to characterize investment decisions under uncertainty, they are not
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particularly relevant to most real-world applications. In particular, corporate executives and

entrepreneurs typically have to make investment decisions in situations where the cash flows

from the project are not spanned by those of existing assets or under other constraints which

make them face incomplete markets. In such environments, we can expect their risk aversion to

affect firms’ investment decisions.” In this thesis, the stochastic process underlying the option

value consists of a volatility component that changes with time. If the firm were to attempt to

create a replicating portfolio, it would have to continuously update the portfolio composition in

order to accurately reproduce the dynamics of the process. As noted by Leland (1985) and, more

recently, Kolm and Ritter (2019), the presence of transaction costs makes a continuously updated

portfolio infinitely costly in theory. In practice, a dynamically replicating portfolio would be

updated discretely, which limits total transaction costs, at the expense of a lower replication

accuracy. Although there are ways of optimizing this trade-off, as both Leland (1985) and Kolm

and Ritter (2019) show, we have decided on a different modelling approach that avoids these

difficulties altogether. Similar to Henderson and Hobson (2002), we assume a firm with known,

constant relative risk aversion (CRRA), as well as a constant rate of time preference. Following

Hugonnier and Morellec (2007), we consider the firm’s net present utility of investing in the

project rather than its expected net present value of cash flows as the relevant condition for

investment decisions. With this approach, the risk originating from the volatility of the estimated

process is incorporated in the valuation of the investment opportunity. It should be noted that

the utility function may easily be converted to its risk-neutral equivalent by letting the firm’s

risk aversion be equal to zero, in case the estimation is in fact spanned by existing assets. Our

model therefore has wider applicability than one that expresses its exercise condition in terms of

expected NPV.

We consider our approach to model learning about a stochastic process in a utility-based real

options framework to be the main contribution of this thesis. To the best of our knowledge, this

has not yet been explored in literature. Our results show how the main benefits from learning

occur early in the option lifetime, and that the distribution of exercise times has a positive

relationship with both the mean and variance of the distribution of the initial estimate.

The remainder of this thesis is organized as follows. We outline our model in section 2, and our

solution approach in section 3, introducing different relevant concepts along the way. A case

study is then introduced and discussed in section 4, followed by a conclusion in section 5.



2 Model

We consider a firm with an option to invest in a project for a sunk, fixed cost. The option

is considered to have a known lifetime. Upon investment, the firm is assumed to receive the

entire value of the project, although the model may be extended by simple measures to allow

for a project with profit streams that arrive over time. We assume that the value of the project

depends on a single stochastic process that the firm may acquire information about through noisy

observations. Furthermore, in line with Harrison and Sunar (2015), we assume that information

is received by the firm frequently enough to be modelled to arrive continuously. The firm

accumulates this information in order to form an estimate of the process. We will refer to this

estimate as the firm’s “belief process”. At the beginning of the planning horizon, the firm holds

an initial belief about the true process value, which is assumed to be normally distributed. This

functions as the starting point of the belief process. We assume that the firm makes investment

decisions based on its subjective utility function, and that it has a constant relative risk aversion,

as well as a constant rate of time preference.

2.1 The belief process

Since the firm continuously receives information about the underlying process of the project

value, the parameters of the belief process change in time, and consequently the firm’s expected

value of the project. Because the option value depends on this expectation, we derive a stochastic

differential equation (SDE) that describes the evolution of the belief process through time. Our

method in this section is largely based on the procedure presented in Øksendal (2013, Chapter 6).

We begin by introducing the underlying process and how observations are made, and proceed

to derive a general SDE for the belief process. We then apply our model to two examples of

underlying processes.

2.1.1 State and observations

Consider the stochastic process Xt, representing the underlying process of the project value. In

the context of Kalman filters, Xt is sometimes referred to as the “state” of the observed system.

We assume that Xt ∈ R evolves according to the stochastic differential equation

dXt = µ(Xt, t)dt+ σ(Xt, t)dUt, (2.1)

6



7 2.1 The belief process

with initial value X0, where t ≥ 0 and Ut is a Brownian motion. Xt is assumed to be continuously

observable by the firm, with individual observations of the form

Ht = β(Xt, t) + γ(Xt, t)Wt, (2.2)

where Wt represents white noise, independent of Ut. We then define

Zt =

∫ t

0
Hsds (2.3)

as the “observation process”, representing the incorporation of all observations since the process

was initiated at time t = 0. The advantage of considering Zt as the observation process rather

than Ht is that the transformation makes the mathematical modelling more tractable, while in

fact no information is lost or gained by doing so (Øksendal, 2013, p. 86). We may now represent

the observation process in the following differential form

dZt = β(Xt, t)dt+ γ(Xt, t)dVt, (2.4)

where dVt = Wtdt such that Vt is a Brownian motion independent of Ut.

2.1.2 The filtering problem

Let (Ω,F , P ) be the probability space of the Brownian motions Ut and Vt. We now consider

the “filtering problem” represented in Øksendal (2013, p. 86): “Given observations Zs satisfying

equation (2.4) for 0 ≤ s ≤ t, what is the best estimate X̂t of the parameter Xt based on these

observations? In other words, what is the most accurate belief X̂t about the value of Xt?”

Formally,

• X̂t is Gt-measurable, where Gt is the σ-algebra generated by observations {Zs},

• E
[
(Xt − X̂t)

2
]

= inf
{
E
[
(Xt − X̂t)

2
]

;Y ∈ K
}

where K ≡ Kt ≡

{Y : Ω→ R;Y is Gt-measurable}, or, X̂t is an efficient estimator, having the

smallest mean squared error among estimators based on observations {Zs}.

The belief may now be expressed as X̂t = E [Xt| Gt] (Øksendal, 2013, Theorem 6.1.2), and we

may turn to the problem of finding a suitable expression for it. We apply the Kalman filter in

order to obtain this expression. The Kalman filter is a procedure for estimating the state of a

parameter or system based on a series of noisy observations (Øksendal, 2013, p. 2) and has been

applied to a wide range of estimation problems (Grewal, 2011). Generally, if observations of a
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certain parameter are subject to measurement inaccuracies that may be represented by normally

distributed “noise”, the Kalman filter allows one to identify the estimator with the smallest mean

squared error among candidate estimators. In the situation presented in subsection 2.1.1, at

measurement times s ∈ [0, t], the noise that arises when measuring β(s,Xs) is expressed by the

term γ(s,Xs)Ws from equation (2.2). Note that, depending on its structure, a measurement of

β(s,Xs) may be transformed to a measurement of Xs.

The Kalman filter represented in Øksendal (2013) only allows for observations of a linear dynamical

system, in which the aforementioned processes take the form

dZt = β(Xt, t)dt+ γ(Xt, t)dVt = G(t)Xtdt+D(t)dVt, and (2.5)

dXt = µ(Xt, t)dt+ σ(Xt, t)dUt = F (t)Xtdt+ C(t)dUt, (2.6)

where F (t), C(t), G(t) ∈ R and D(t) ∈ R \ {0}. We focus our discussion on processes with this

structure. As noted by Soyer (2018), a Kalman filter algorithm applied to linear dynamical

systems with Gaussian noise results in a Gaussian distribution that is identical to the filtering

distribution obtained by application of sequential Bayesian updating. This distribution may

consequently be used to obtain expectations of functions of the observed process at a given t,

either analytically or numerically.

If the linear dynamical system takes the form of equations (2.5)-(2.6), Øksendal (2013,

Theorem 6.2.8) shows that the application of a Kalman filter results in a stochastic differential

equation for X̂t of the form

dX̂t =

(
F (t)− G2(t)S(t)

D2(t)

)
X̂tdt+

G2(t)S(t)

D2(t)
dZt, (2.7)

where X̂0 = E[X0], and

S(t) = E
[
(Xt − X̂t)

2
]

(2.8)

satisfies the differential equation

dS(t)

dt
= 2F (t)S(t)− G2(t)

D2(t)
S2(t) + C2(t). (2.9)

Note that equation (2.9) is deterministic. If functions F (t), C(t), G(t) and D(t) are known

and equations (2.7), and (2.9) are solvable analytically, we may derive X̂t explicitly. However,

the stochastic differential equation (2.7) itself is sufficient to derive an option value, and we

will therefore focus our attention on this equation. We simplify equation (2.7) by introducing
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coefficient functions L1(t) and L2(t), given as

L1(t) = F (t)− G2(t)S(t)

D2(t)
and (2.10)

L2(t) =
G2(t)S(t)

D2(t)
, (2.11)

such that

dX̂t = L1(t)X̂tdt+ L2(t)dZt. (2.12)

We apply our model to two different situations. In the first, the observed process is assumed to

be constant. In the other, it is assumed to follow an Ornstein-Uhlenbeck process. For clarity, we

denote the coefficient functions of the first application as L1,c(t) and L2,c(t) and those of the

second application as L1,o(t) and L2,o(t). Any general discussions of the coefficients will drop

the subscripts.

2.1.3 Application I: A constant process

Consider a filtering problem in which Xt is assumed to be constant, meaning dXt = 0 and

Xt = X0. We let V [X0] = a2. Hence, at t = 0, the observer holds an estimate of X0 with a

mean of X̂0 = E [X0] and variance V [X0] = a2. Observations are assumed to be of the form

Ht = Xt +mWt (2.13)

where m ∈ R \ {0}, resulting in

dZt = Xtdt+mdVt. (2.14)

Following the steps laid out in subsection 2.1.2, we obtain the following stochastic differential

equation

dX̂t = L1,c(t)X̂tdt+ L2,c(t)dZt

= − a2

m2 + a2t
X̂tdt+

a2

m2 + a2t
dZt.

(2.15)

Derivations are given in Appendix A. Note that by expanding dZt, the process is expressed in

terms of the Brownian motion differential, such that

dX̂t = mL2,c(t)dVt. (2.16)
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2.1.4 Application II: An Ornstein-Uhlenbeck process

Now consider a filtering problem in which Xt is assumed to follow an Ornstein-Uhlenbeck process,

with dXt = −pXtdt+ qdUt, where p > q > 0. As before, the observer holds an estimate of X0

with a mean of X̂0 = E [X0] and variance V [X0] = a2. Observations are again of the form

Ht = Xt +mWt (2.17)

where m ∈ R \ {0}, resulting in

dZt = Xtdt+mdVt. (2.18)

Following the steps laid out in subsection 2.1.2, we obtain the following stochastic differential

equation

dX̂t = L1,o(t)X̂tdt+ L2,o(t)dZt

= −

(
p+ a2

m2

)√
p2 + q2

m2 +
(
p2 + q2

m2

)
tanh

(
t
√
p2 + q2

m2

)
√
p2 + q2

m2 +
(
a2

m2 + p
)

tanh

(
t
√
p2 + q2

m2

) X̂tdt

+
a2

m2

√
p2 + q2

m2 −
(
p− q2

a2

)
tanh

(
t
√
p2 + q2

m2

)
√
p2 + q2

m2 +
(
a2

m2 + p
)

tanh

(
t
√
p2 + q2

m2

)dZt,
(2.19)

for the belief process X̂t. Derivations are given in Appendix B. Again, note that by expanding

dZt, the process is expressed in terms of the Brownian motion differential, such that

dX̂t = −pX̂tdt+mL2,o(t)dVt. (2.20)

This shows that the process dX̂t takes the same form as the Ornstein-Uhlenbeck process it is

intended to estimate, dXt.

We have so far assumed that the process reverts to zero. However, certain applications require

the process to revert to a specific constant µ. Following Hull (2015, Chapter 31.7), without loss

of generality, we may shift the process by µ and analyze X̂t + µ, while still modeling X̂t as an

Ornstein-Uhlenbeck process reverting to zero. Note that by shifting the Ornstein-Uhlenbeck

in such a way, it effectively becomes structurally equivalent to the model in Vasicek (1977),

which allows for mean reversion to a nonzero constant. Furthermore, it is worth noting that by

allowing µ to be time dependent such that µ = µ(t), we may model observations of processes
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that are assumed to have a time-dependent long-run mean as the sum of µ(t) and a non-shifted

Ornstein-Uhlenbeck model. This may for example be applicable to situations in which the process

is influenced by seasonal effects.

2.1.5 Comparisons

As evident from equations (2.16) and (2.20), L2(t) plays a crucial role in how the estimates

evolve with time. The component has similar characteristics for both processes. Specifically,

i. L2(0) = a2

m2 ,

ii. 0 ≤ lim
t→∞

L2(t) <∞,

iii. L2(t) > 0 and L′2(t) < 0 when t > 0,

iv. a has a positive relationship with L2(t), and

v. m has a negative relationship with L2(t).

In short, this means that the uncertainty in the initial estimate is equally large for both processes,

and decreases strictly towards zero. The negative gradient illustrates how learning affects the

estimate, by allowing for greater certainty as time passes. Since L2(t) is strictly positive as well

as strictly decreasing, the gradient must decrease in absolute magnitude with increasing t, which

may be interpreted as a decreasing marginal benefit of additional observations.

Furthermore, it may be shown that L2,c(t) ≥ L2,o(t) for 0 ≤ t ≤ t′, where t′ represents the time

of intercept between the curves. The intercept exists due a nonzero limiting value of L2,o(t).

Specifically,

lim
t→∞

L2,c(t) = 0, and (2.21)

lim
t→∞

L2,o(t) =
a2

m2

√
p2 + q2

m2 −
(
p− q2

a2

)
√
p2 + q2

m2 +
(
a2

m2 + p
) > 0. (2.22)

This is to be expected, as the uncertainty in the observation process can never be completely

eliminated if the observed process is stochastic. Note that if q = 0, then L2,o(t) does in fact

limit to zero. However, we only consider p > q > 0 in this thesis, and the observation process

uncertainty is therefore higher for the constant process than the Ornstein-Uhlenbeck process

initially, and lower after t′. Whether t′ < T depends on parameters.
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Considering the fact that m represents the volatility of single observations, as represented in

equations (2.13) and (2.17), its negative relationship with L2(t) may be surprising. However,

when the observation process is expressed in terms of the Brownian motion differential, the

volatility is given by mL2(t), and it becomes apparent that m has an increasing relationship

with observation process volatility.

2.2 The option to invest

We define the value of the firm’s option to invest in the project as f = f(X̂t, t), and the project

value function to be known, differentiable and strictly increasing in Xt. The firm may decide

to invest in, or, “exercise” the option at any time t for a sunk, fixed cost k. The option has a

given lifetime T . If the firm does not invest at time t < T , the option value continues to evolve.

At each point in time, therefore, the firm must choose whether to exercise. At exercise, the

firm obtains a net present value of V (Xt, t)− k, where V is the present value of the project. As

noted in section 1, we consider the firm’s utility as given by the CRRA model to be the relevant

metric, and instead consider the expected net present utility Ψ = Ψ(X̂t, t) at exercise, equal to

the expectation of the utility of paying k to obtain V . Consequently, and similar to Hugonnier

and Morellec (2007), we seek to identify an investment policy which maximizes the expected net

present utility obtained from exercising the option. The “option value” is therefore a quantity

that reflects the firm’s utility holding the option.1 Since the value of the option depends on

the stochastic belief process X̂t, and the CRRA model for utility is differentiable and strictly

increasing, the optimal investment policy will be characterized by a deterministic threshold X̂∗t .

2.2.1 Risk aversion and the expected utility function

The CRRA utility function u for a cash flow w is given by

u(w) =


w1−γ

1−γ when 0 ≤ γ < 1, and

ln(w) when γ = 1,

(2.23)

for w ∈ R. The utility function is therefore concave in w, as opposed to a risk-neutral situation

in which γ = 0 and the function is linear in w. Following Hugonnier and Morellec (2007) and

Conejo, Morales, Kazempour, and Siddiqui (2016, Chapter 7.7), the utility of investing in the

1Hereafter, if not explicitly stated otherwise, we consider “value” to refer to the firm’s utility of the corresponding
cash-based value.
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project with present value V (Xt, t), at a cost of k, can therefore be expressed as

u [V (Xt, t)]− u(k) =
V 1−γ(Xt, t)− k1−γ

1− γ
. (2.24)

The firm would never accept an investment with a negative expected net present utility. We may

therefore formulate the expected net present utility of exercising the option as

Ψ(X̂t, t) = max

{
E
[
V 1−γ(Xt, t)

]
− k1−γ

1− γ
, 0

}
. (2.25)

For simplicity, we will refer to Ψ as the “exercise value” hereafter. The expectation in Ψ requires

knowledge about the distribution of Xt. We may use a simulation procedure to estimate this

distribution, based on realizations of the observation process. Further details are given in

Appendix C.

2.2.2 The Bellman equation

The Bellman equation is a necessary and sufficient condition for optimality in dynamic

programming. At each point in time, the firm maximizes the current expected net present

utility of either exercising or holding the option. Since the utility function is strictly increasing

in X̂t, the firm will exercise the option if the belief process X̂t is greater than or equal to the

threshold belief X̂∗t , and wait otherwise. We define these regions of the belief process as the

“exercise region” and “continuation region”, respectively. If the firm exercises the option, the

option value is equal to the exercise value. If the firm holds the option, however, the option value

is equal to the discounted expected future option value, which may be expressed in terms of

a differential equation in f(X̂t, t). The firm is therefore interested in identifying the threshold

belief X̂∗t such that it may know whether exercising the option is optimal at a given point in

time. Hence, the firm faces a decision problem with a Bellman equation of the form

f(X̂t, t) = max
X̂t

{
Ψ(X̂t, t),

f(X̂t, t) + E[df(X̂t, t)]

1 + ρdt

}
. (2.26)

Equation (2.26) is a sufficient condition to characterize the threshold belief X̂∗t . Rewriting the

expression for f(X̂t, t) in the continuation region, we obtain

ρf(X̂t, t)dt = E[df(X̂t, t)] when X̂t < X̂∗t . (2.27)
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Note that since f(X̂t, t) is defined by E[df(X̂t, t)], f(X̂t, t) must be deterministic.2 In order to

determine the value of the option to invest, we consider a general belief process of the form

dX̂t = L1(t)X̂tdt+ L2(t)dZt, (2.28)

with an observation process of the form

dZt = Xtdt+mdVt, (2.29)

we apply Itô’s lemma and obtain

∂f

∂t
+ [L1(t) + L2(t)]X̂t

∂f

∂X̂t

+
1

2
m2L2

2(t)
∂2f

∂X̂2
t

− ρf = 0 when X̂t < X̂∗t . (2.30)

Derivations are given in Appendix D.

2.2.3 Valuing the option to invest

The option value f(X̂t, t) is constrained by the boundary conditions

lim
X̂t→−∞

f(X̂t, t) = 0, (2.31)

f(X̂T , T ) = Ψ(X̂T , T ), (2.32)

f(X̂∗t , t) = Ψ(X̂∗t , t) and (2.33)

∂f(X̂∗t , t)

∂X̂t

=
∂Ψ(X̂∗t , t)

∂X̂t

. (2.34)

Condition (2.31) states that the option is worthless if the belief process becomes infinitely negative.

The belief process being an unbiased estimator with a finite variance, the limit implies that the

observed process also approaches negative infinity in expectation. Due to the strictly increasing

nature of the exercise value, the option value consequently approaches its minimum value, zero.

Condition (2.32) states that the firm makes a now-or-never investment decision at the expiration

time T of the option. Equations (2.33)-(2.34) are value-matching and smooth pasting conditions

that are necessary to ensure an optimal free boundary, as argued in Dixit and Pindyck (1994,

Chapter 3, Appendix C).

2As a sidenote, for a given terminal condition Ψ(X̂T , T ), equation (2.27) may be interpreted as the differential
of the Feynman-Kac formula for parabolic partial differential equations, here represented by equation (2.30), as
pointed out by Dixit and Pindyck (1994, Chapter 4, Section 3).
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t

X̂t

0

0

T

T
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inal
boundary:

(2.32)

Free boundary: (2.33)-(2.34)

Continuation region: (2.37)

Exercise region: (2.36)

X̂∗t

Figure 2.1: Domain of the option value function f(X̂t, t).

Figure 2.1 summarizes the boundary value problem. Since the free boundary X̂∗t is initially

unknown, it must be identified together with the option value function f(X̂t, t) in the solution

procedure. Rewriting equation (2.26), we obtain

max
X̂t

{
Ψ(X̂t, t)− f(X̂t, t),

E[df(X̂t, t)]

dt
− ρf(X̂t, t)

}
= 0, (2.35)

which applies across the entire domain of f . Hence, we seek to identify a free boundary X̂∗t that

satisfies

Ψ(X̂t, t)− f(X̂t, t) = 0 when X̂t ≥ X̂∗t , and (2.36)

E[df(X̂t, t)]

dt
− ρf(X̂t, t) = 0 when X̂t < X̂∗t , (2.37)

for all t ∈ [0, T ]. These constraints, together with boundary conditions (2.31)-(2.34), are

sufficient to identify the free boundary and the option value function.



3 Solution approach

As Longstaff and Schwartz (2001) point out, “[...] the valuation and optimal exercise of American

options remains one of the most challenging problems in derivatives finance, particularly when

more than one factor affects the value of the option.” Although the option considered in this

thesis only contains one factor, the nature of the belief process introduces a time-dependence

in the option value that arguably makes the problem more mathematically complex than a

multi-factor model, as the PDE governing the option value is time-inhomogeneous.

The boundary value problem introduced in subsection 2.2 is such a problem. As the PDE

(2.30) introduced in subsection 2.2.2 shows, the equation governing the option value contains a

derivative in time, and a first and second derivative in space with coefficient terms both in time

and space. Due to the coefficients being bivariate, there are no clear variable substitutions to

simplify the problem. There exist a range of numerical techniques to handle situations in which

an analytical solution is intractable. Finite difference methods, for example, segment the option

domain into discrete elements and express the derivatives of the PDE as linear approximations.

The transformed equation is then expressed as a matrix equation which is solved recursively

in time, starting at the terminal boundary. Implicit difference schemes provide the greatest

numerical stability, examples of which include the implicit Euler scheme and the Crank-Nicolson

scheme. Following Thijssen (2020), in order to identify the free boundary, an initial boundary

would be postulated, and the total absolute deviations from conditions (2.36) and (2.37) would

be checked against a specified threshold. If this error term is too large, a new boundary would be

specified such that the conditions hold, and the procedure would repeat. Upon implementation,

the implicit Euler and Crank-Nicolson schemes proved to give non-converging results. This is

thought to be caused by the aforementioned time-dependence of the PDE coefficients. We have

included our modeling approach of the Crank-Nicolson scheme in Appendix E for reference. In

formulating the temporal matrix equations, one will note that the coefficients of the discretized

option function change in time. As illustrated in Kushner and Dupois (2001, Chapter 5.1), for

continuous stochastic control problems with varying coefficients, an adaptive grid should be

applied such that the size of the time step also depends on time. Their example does not allow for

a time-varying volatility component in the underlying process, however, and it falls outside the

area of competence of this author to apply stochastic control theory in order to derive a solution

for such a case. Another approach is to apply a method of lines, which only discretizes the PDE

in time and solves the remaining ODE recursively, using the previous solution as a boundary

condition. The procedure would apply conditions (2.33)-(2.34) at each time step in order to

16
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identify the free boundary, and would therefore not require the repeating procedure described

above. This method lead to promising option surfaces for small time intervals. However, with

increasing iterations, the boundary condition becomes increasingly complex, and the resulting

ODE too time consuming to solve, either analytically or numerically.

We have consequently decided to use a simulation-based approach by applying the method

introduced in Longstaff and Schwartz (2001), in which various American options are valued by

first simulating a series of trials of the underlying stochastic process, then obtaining stopping

rules for each trial, and finally averaging over the discounted exercise values. The model begins

by first calculating the exercise values at the terminal boundary T , and thereafter stepping

backwards in time, using previously discounted exercise values as a regressand, and current

belief process values as a regressor, in order to obtain least-squares coefficients of a conditional

expectation function for the continuation value of the option at the given point in time, which is

then compared to the value of immediate exercise. As a useful comparison, this method may be

viewed as analogous to the decision problem presented by the Bellman equation in subsection

2.2.2, in which the expected continuation value is compared to the exercise value in continuous

time. As noted by Longstaff and Schwartz (2001), the functions used in the regression and the

resulting conditional expectation function need to form an orthonormal basis. By increasing the

number of orthonormal basis functions, the accuracy of the option value improves. If we denote

∆t and N = bT/∆tc as the magnitude and number of time-steps, respectively, the regression

equation at time-steps j ∈ {1, . . . , N − 1} may be represented as

Y (ωi, j∆t) =
B∑
k=0

an,jLn(X̂j), (3.1)

where ωi indicates the ith trial, Y indicates the regressand, B denotes the number of basis

functions, {an,j} the regression coefficients and Ln the nth order basis function. Further details

are provided in Appendix F.

3.1 Simulation of the belief process by the Euler method

We simulate M trials of the belief process by the Euler method, discretizing the expanded SDE

(2.28), such that

X̂j = X̂j−1 + [L1(t−∆t) + L2(t−∆t)]X̂j−1∆t+mL2(t−∆t)
√

∆t ζj , (3.2)
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where j = {1, . . . , N} and ζj ∼ N (0, 1). All trial paths begin at the initial belief X̂0. In order

to reduce the time complexity of the algorithm, we apply antithetic variates when sampling the

standard normal distribution. For each trial i with a given vector of realized standard normal

variables {ζi,j}j we design a second trial i′ with antithetical realizations {−ζi′,j}j . This results in

a negative covariance between path values of trials i and i′ at any given j, which, when applied

to all trials, reduces the variance across all path values at j, resulting in a lower required number

of trials for a desired level of accuracy.

3.2 The Longstaff-Schwartz algorithm

Following Longstaff and Schwartz (2001), we first order the simulated trials of the belief process

in a matrix Q with dimensions M ×N , such that each row of the matrix represents the values

taken by a given trial for all j = {1, . . . , N}. We also initiate C as a matrix of zeros of the same

size to store the exercise values of the option at a given belief and time, using the path values in

Q. At j = N , C is set equal to the exercise value. The algorithm then proceeds accordingly:

At 1 < j < N :

i. Trials that have a nonzero exercise value at j are selected from Q.

ii. For each selected trial, the discounted value of the first nonzero element in C at times

s > j is stored in a vector.

iii. This vector is then used as a regressand in equation (3.1), with the corresponding vector of

belief process values at j as a regressor.

iv. The regression results in a vector of estimated coefficients, which are substituted into

equation (3.1) in order to obtain the conditional expectation of the continuation value at j.

v. The continuation values obtained for each trial at j are then compared to the corresponding

exercise values at j. If the exercise value exceeds the continuation value, the exercise value

is stored in C, and any nonzero values at times s > j are set to 0.

At j = 1:

C now contains stopping times and corresponding exercise values for each trial if the option

has in fact been exercised in that trial. The option value f0 at t = 0 is estimated as the

expected sum of discounted exercise values over all paths.
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At each time-step, the free boundary X̂∗t is estimated by solving for the root of the regression

equation (3.1) after coefficients {aj} have been replaced with their respective estimations {âj},

following Longstaff and Schwartz (2001). This is done numerically, as the resulting function may

contain polynomials of a high order. A smoothing technique is then applied to obtain a graph

from the estimated free boundary points. Further details are given in Appendix F, together with

our full implementation of the algorithm.



4 Results

This section illustrates the applicability of the approach in section 3 through a case study. We

consider a situation in which the firm is planning the launch of a product. The prospective

product is assumed to be categorized as part of an industry with product prices that are mean

reverting and may be modeled by a shifted Ornstein-Uhlenbeck model around a mean µ known

to the firm. We include a model that assumes a constant price as a comparison. At the beginning

of the planning horizon, the firm holds a prior normal distribution of the price of its product

based on prices of similar products in the industry. The firm then proceeds to observe product

prices continuously throughout the option holding period in order to obtain a better estimate

at the impending time of launch. We assume that the firm obtains a one-time payment that

depends linearly on the product price at the time of launch, and that the cost of launch is fixed

throughout the holding period and paid in a single transaction.

With the given assumptions, we may express the project value function V as

V (Xt) = c (Xt + µ) , (4.1)

where c > 0 is the quantity (Q) sold at launch, Xt is expressed in terms of unit price, and µ is

the deterministic long run mean of the price process. The expected net present utility function is

consequently given as

Ψ(X̂t, t) = max

{
1

1− γ

[
Et
(

[c (Xt + µ)]1−γ
)
− k1−γ

]
, 0

}
. (4.2)

We apply the parameter values in Table 4.1 as a base, and proceed to look at how different

properties change with variations of specific parameters.3

We separate our discussion into a risk neutral and risk averse case, respectively. The risk neutral

case removes a layer of complexity by allowing for a simpler exercise value function, and is

included to better illustrate the properties of the model. The risk averse case is then discussed in

terms of deviations from the risk neutral case. We focus our attention on the free boundary, the

value of waiting to learn, and expected exercise times.

3For comparability, we have used the same random number generator seed in all sections, specifically, rng(1108)
in MATLAB v. R2020a.

20
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Table 4.1: Base parameter values under risk neutrality and risk aversion, respectively.

Parameter Value Unit Description

T 5 Years Option lifetime

k 5 000 MNOK Investment cost

c 100 MQ Proportionality of project value function

γ 0 (0.1) - Relative risk aversion

ρ 0.05 - Rate of time preference (discount rate)

X̂0 40 NOK/Q Initial belief

a 60 NOK/Q Volatility of initial belief

m 20 NOK/Q Volatility of observations

p 0.05 Years−1 Mean reversion of observed process

q 0.02 NOK/Q Volatility of observed process

µ 40 NOK/Q Mean of observed process

ε̄ 0.1% - Error tolerance

∆t 0.05 Years Magnitude of time discretizations

∆x (0.2) NOK/Q Magnitude of integral eval. discretizations

M 500 000 - Number of trials

B 5 (6) - Number of Laguerre basis functions

η 16 (10) - Order of polynomial smoothing function

4.1 Under risk neutrality

As discussed in subsection 2.2.1, the CRRA model under risk neutrality is modeled with γ = 0.

This simplifies the structure of the exercise value function and clarifies certain characteristics of

the option. Specifically,

Ψ(X̂t) = max
{
c
(
X̂t + µ

)
, 0
}
, (4.3)

which is equivalent to the expected net present value of investing.

We begin with selecting the number of Laguerre basis functions B to regress on by analyzing the

relative changes in option values for increasing B. Selecting B = 5 ensures that the simulated

option value changes by less than ε̄ = 0.1% when B = 6, which we have deemed a high enough

accuracy for the purpose of this case study. An illustrating figure is provided in Appendix

G. It should be noted that computational limitations such as the number of trials M and the

magnitude of discrete time steps ∆t naturally also affect the accuracy of the results. We have

consequently selected M iteratively, such that for ∆t = 0.05 and ∆x = 0.2, M = 500 000 trials

also gives an option value that changes by less than ε̄ = 0.1% when using M + 1 trials.
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Figure 4.1 illustrates the free boundary for both the shifted Ornstein-Uhlenbeck process and the

constant process, with initial values X̂0 equal to the long-term average µ of the processes. The

discrete points have been smoothed by a polynomial function.4 The boundaries are similar in

shape for both processes. The decreasingly negative gradient may be attributed to a diminishing

value of waiting to learn, since the observer obtains better estimates of the underlying process

as time goes by, reflected by the decreasing marginal benefit of new observations as outlined in

subsection 2.1.5. Since the value of holding the option decreases, the observer requires lower

thresholds to invest.

With a finite lifetime, the option is terminated before the observer has decreased the estimator

uncertainty to its limiting value, or, before the observer has realized the full value of waiting to

learn. We would therefore expect a discontinuity in the boundary at T such that lim
t→T−

X̂∗t 6= X̂∗T ,

since the terminal boundary condition is a now-or-never decision. This discontinuity is thought

to be the source of some numerical issues that occur close to the terminal boundary. We have

therefore plotted the boundaries for t ≤ 4.5, and stress that the characteristics and dynamics of

the boundary are obtainable from examining this region alone. Note that for an infinite lifetime

T → ∞, following the discussion in subsection 2.1.5, we would expect the free boundary to

converge smoothly towards the terminal boundary for the constant process, since the marginal

benefit of new observations approaches zero. For the Ornstein-Uhlenbeck, however, we would

expect to see this discontinuity regardless of option lifetime, since the underlying process has a

stochastic component. Intuitively, an investor who engages in noisy observations of a stochastic

process always has more to learn, due to a process uncertainty that never disappears.

The shifted Ornstein-Uhlenbeck process has a lower free boundary than the constant process,

which may be counterintuitive at first sight. We point out that t′ > T for all parameter values,

which implies that the marginal benefit of learning is greater for the constant process than the

Ornstein-Uhlenbeck process throughout the option lifetime.5 Hence, the difference between the

boundaries is thought to be due to a lower uncertainty in its estimate, as the process reverts to a

known value with time, while the constant process has no such convergence.

A quantity of interest to the observer is the value of waiting to learn, as opposed to investing

immediately. We may quantify this as the difference between the option value f0 and the exercise

value at t = 0. Figure 4.2 shows the expected value of waiting to learn for an increasing difference

between the estimated initial values X̂0 and µ, with the latter held constant. The relationship

4We have selected a polynomial order of η = 16 for the smoothing function in the risk neutral case. The
discrete points will be included in the initial free boundary plot to illustrate the fit, but will be omitted for
convenience in later sections.

5This also applies in the risk averse case of subsection 4.2.
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Figure 4.1: Exercise thresholds.

is seemingly linear, implying that the value of waiting to learn decreases with a higher initial

estimate of the underlying process. The option value alone has an increasing relationship with

X̂0, but as the figure shows, this trend is offset by an increase in the value of immediate exercise.

This becomes more intuitive when viewed in the context of our case study. If the firm has an

initial estimate that is high, its expected value of launching early will also be high, and it will

seem more lucrative to invest immediately than to hold off the launch.

The vertical gap between the processes is thought to arise because of the difference in magnitude

between the volatilities of the processes, as discussed in subsection 2.1.5. The constant process

has a higher volatility than the Ornstein-Uhlenbeck process throughout the holding period, and

the value of waiting to learn is consequently higher.

Figure 4.3 shows the expected value of waiting to learn against the standard deviation – or,

uncertainty – a of the initial estimate. The relationship is linear here as well, but increasing,

which implies that the value of waiting to learn increases with uncertainty at the beginning of

the holding period. This result is comparable to those of standard real options models, in which

option values generally increase with underlying process uncertainty.

Figure 4.4 shows the distribution of exercise times conditioned on the trial having been exercised

before option termination. With base parameter values, approximately 40.7% and 44.0% of the



Results 24

Figure 4.2: Values of waiting to learn against X̂0 − µ.

Figure 4.3: Values of waiting to learn against a.
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trials were exercised for the constant process and Ornstein-Uhlenbeck process, respectively. The

histogram shows a clear trend of early exercise, with medians 0.25 and 0.30. This result is more

intuitive when viewed in tandem with the discussion in subsection 2.1.5, which examines the

properties of the volatilities of the observation processes. Due to the structure of the volatilities,

we can conclude that most of the learning happens early in the holding period. The remaining

benefit of waiting, as opposed to exercising, is therefore generally at its highest early in the

holding period. Notice that the histograms do not start out at their maximum values, but rather

increase after some time has passed since t = 0. This illustrates how the investor is generally

too uncertain at the outset of the holding period to forego the option to wait and learn for the

base parameter values. With a high initial marginal benefit of learning, however, the estimations

improve quickly, and the remaining benefit of waiting decreases, which is thought to explain the

skewness.

With such a heavy skewness there is a significant distance between the means and medians. This

is arguably not highly relevant for the firm contemplating a product launch, but it can be an

important observation to an institution that makes policy decisions based on market trends, for

example, to not only consider the mean time to investment.

Figure 4.4: Distribution of exercise times conditioned on exercise before T , with corresponding
medians and means.
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We would expect a mean and median further to the right for lower X̂0 since the expected value

of immediate exercise is lower, as discussed in relation to figure 4.2. This trend can be seen in

figure 4.5, with corresponding means and medians in figure 4.6.

Figure 4.7 shows how the distributions change with increasing uncertainty in the initial estimate,

with corresponding means and medians in figure 4.8. Interestingly, even though the value of

waiting to learn increases with higher a as discussed in relation to figure 4.3, the means and

medians show the opposite trend, indicating that the skewness in fact shifts leftwards with

higher a. This is thought to be a consequence of the positive relationship between the initial

uncertainty and the initial marginal benefit of learning. With a higher initial uncertainty, the

firm is more susceptible to change its estimate and hence has a steeper gradient in the volatility

of observations, as early observations influences the firm to a greater extent than they would

with a lower a. We therefore expect the remaining value of waiting to learn to decrease faster

over time with higher a, and consequently result in earlier exercise times.
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(a) X̂0 − µ = 10 (b) X̂0 − µ = 15

(c) X̂0 − µ = 20 (d) X̂0 − µ = 25

(e) X̂0 − µ = 30

Figure 4.5: Changes in the distribution of exercise times under increasing X̂0 − µ.
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Figure 4.6: Means and medians of exercise times conditioned on exercise before T , against
X̂0 − µ.
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(a) a = 60 (b) a = 65

(c) a = 70 (d) a = 75

(e) a = 80

Figure 4.7: Changes in the distribution of exercise times under increasing a.
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Figure 4.8: Means and medians of exercise times conditioned on exercise before T , against a.
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4.2 Under risk aversion

When the investor is risk averse, γ > 0 and the exercise value function is derived by total

expectation, expressed as

Ψ(X̂t, t) = max

{
1

1− γ

[∫
R

[c (x+ µ)]1−γ P̂(Xt = x | Gt)dx− k1−γ
]
, 0

}
, (4.4)

where P̂ is the estimated Gaussian distribution of Xt given previous observations, with mean X̂t

and variance estimated by the simulated trials, as detailed in Appendix C. Note that Ψ now has

a direct time dependence, as opposed to the risk neutral case, due to the time dependence of

the variance in the probability distribution. We again analyze the number of necessary basis

functions, and find that the risk averse case requires B = 6 to satisfy ε̄, as illustrated in Appendix

G.

The free boundary in the risk averse case shows some fluctuations for t & 1.6 This is thought to

be caused by the inaccuracy arising from the approximation of the exercise value function. The

boundaries display similar characteristics as they do under risk neutrality, with the exception

of having lower values for early t. Interestingly, this implies that risk aversion decreases the

early investment threshold, compared to the risk neutral case. Hugonnier and Morellec (2007)

show the opposite trend for a case in which the investor is risk averse, but active learning is

not incorporated. Hence, this result is believed to illustrate that the value of learning decreases

under risk aversion, effectively outweighing the trend of an increasing boundary.

This conclusion is supported in part by figures 4.10 and 4.11, which show the initial value of

waiting to learn against X̂0−µ and in a, respectively. The curves are greater in magnitude under

risk neutrality, implying that the initial value of waiting to learn is in fact less valuable under risk

aversion than under risk neutrality in our case study. Additionally, the curves are more sensitive

towards the parameters due to greater slopes. The initial distribution is therefore generally

less critical to the value of waiting to learn under risk aversion than under risk neutrality with

equivalent parameters.

Figure 4.12 displays the histogram of exercise times for base parameters, which is largely similar

to the distribution under risk neutrality, with 41.3% and 44.0% exercised before T for the constant

process and Ornstein-Uhlenbeck process, respectively. However, early exercises are more evenly

distributed in the risk averse case. We see the same trends as under risk neutrality with regards

to sensitivity in X̂0 − µ and a, as displayed in figures 4.13 to 4.16.

6We have applied a polynomial order of η = 10 for the smoothing function under risk aversion.
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Figure 4.9: Exercise thresholds.

Figure 4.10: Values of waiting to learn against X̂0 − µ.
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Figure 4.11: Values of waiting to learn against a.

Figure 4.12: Distribution of exercise times conditioned on exercise before T , with corresponding
medians and means.
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(a) X̂0 − µ = 10 (b) X̂0 − µ = 15

(c) X̂0 − µ = 20 (d) X̂0 − µ = 25

(e) X̂0 − µ = 30

Figure 4.13: Changes in the distribution of exercise times under increasing X̂0 − µ.
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Figure 4.14: Means and medians of exercise times conditioned on exercise before T , against
X̂0 − µ.
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(a) a = 60 (b) a = 65

(c) a = 70 (d) a = 75

(e) a = 80

Figure 4.15: Changes in the distribution of exercise times under increasing a.
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Figure 4.16: Means and medians of exercise times conditioned on exercise before T , against a.



5 Conclusion

This thesis extends real options literature by introducing the flexibility to learn about a stochastic

process underlying the project value with a risk averse decision maker. We demonstrate how

the exercise threshold changes with the marginal value of learning, and how the marginal value

of learning is consistently higher for a constant process than an Ornstein-Uhlenbeck process,

within an initial time interval. Numerical results indicate that the value of waiting to learn has

a negative relationship with the initial process estimate, and a positive relationship with the

uncertainty of its distribution. We show how the skewness of the distribution of exercise times

shifts leftwards when increasing the initial estimate and the uncertainty of the initial distribution,

respectively, even if the initial value of waiting to learn increases in the latter case over the

same interval. We also show how the value of learning seemingly decreases when the investor is

assumed to be risk averse as opposed to risk neutral.

We identify three potential areas of further research. The first is to relax the continuity assumption

of observations, allowing the decision maker to incorporate observations at discrete times. This

allows the model to be applied to settings in which observations happen less frequently. The

second is to let the project value depend on multiple stochastic processes, all subject to noisy

observations. This opens a range of possible extensions such as, for example, a stochastic

investment cost that is not directly observable. Our final suggestion is to apply the model to

a logarithmic transform of a geometric Brownian motion. This allows for a greater range of

applications, as geometric Brownian motion is applied extensively within finance, notably to

model the behaviour of stock prices.
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Appendices

Appendix A Deriving the belief process for a constant parameter

We first solve the ordinary differential equation (ODE) of S(t) given in equation (2.9) with

substitutions F (t) = C(t) = 0, G(t) = 1 and D(t) = m, which simplifies to

dS(t) = − 1

m2
S2(t)dt, where S(0) = a2, (A.1)

resulting in

S(t) =
m2a2

m2 + a2t
. (A.2)

Building on equation (2.7), we obtain

L1,c(t) = − a2

m2 + a2t
and (A.3)

L2,c(t) =
a2

m2 + a2t
. (A.4)

Appendix B Deriving the belief process for a parameter

following an Ornstein-Uhlenbeck process

We first solve differential equation (2.9) with substitutions F (t) = −p, C(t) = q, G(t) = 1 and

D(t) = m. This results in

dS(t)

dt
= −2pS(t)− 1

m2
S2(t) + q2, where S(0) = a2, (B.1)

which gives

S(t) = a2

√
p2 + q2

m2 −
(
p− q2

a2

)
tanh

(
t
√
p2 + q2

m2

)
√
p2 + q2

m2 +
(
a2

m2 + p
)

tanh

(
t
√
p2 + q2

m2

) . (B.2)
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Building on equation (2.7), we obtain

L1,o(t) = −

(
p+ a2

m2

)√
p2 + q2

m2 +
(
p2 + q2

m2

)
tanh

(
t
√
p2 + q2

m2

)
√
p2 + q2

m2 +
(
a2

m2 − p
)

tanh

(
t
√
p2 + q2

m2

) and (B.3)

L2,o(t) =
a2

m2

√
p2 + q2

m2 −
(
p− q2

a2

)
tanh

(
t
√
p2 + q2

m2

)
√
p2 + q2

m2 +
(
a2

m2 + p
)

tanh

(
t
√
p2 + q2

m2

) . (B.4)

Appendix C The expected value function

As demonstrated in subsection 2.2.1, the expected net present utility of investment includes an

expectation of the project value function raised to a power, due to the firm’s risk-aversion. We

may derive this expectation by application of the law of total probability.

As noted in subsection 2.1.2, the Kalman filter applied to a system of linear state and observation

processes with Gaussian sources of uncertainty gives a Gaussian distribution that is equivalent

to the distribution of the observed process conditional on historic observations. Hence, we seek

the expectation and variance of this distribution at time t, given previous observations, for each

of the model applications.

The expected value of the observed process is already established as E[Xt|Gt] = X̂t. For both

observation processes, regardless of the initial X̂0, the variance equals the integrated volatility of

the process since observations began. This is equivalent to the variance of the observed process

conditioned on previous observations. For the constant process, we first integrate (2.16) to obtain

X̂t =

∫ t

0
mL2,c(τ)dUτ + X̂0. (C.1)

The variance may then be found by

V[Xt|Gt] = E

[(∫ t

0
mL2,c(τ)dUτ + X̂0

)2 ∣∣∣∣ Gt
]
− X̂2

0

=

[∫ t

0
mL2,c(τ)dUτ

]2

= m2

∫ t

0
L2

2,c(τ)dτ,

(C.2)

where the third equality is derived by application of Itô isometry. Similarly, for the Ornstein-
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Uhlenbeck process, using equation (2.20),

X̂t = X̂0e
−pt +

∫ t

0
mL2,ce

−p(t−τ)dUτ , (C.3)

using a variable substitution Ŷt = X̂te
pt. Variance can then be found by

V[Xt|Gt] = E

[(
X̂0e

−pt +

∫ t

0
mL2,ce

−p(t−τ)dUτ

)2 ∣∣∣∣ Gt
]
−
(
X̂0e

−pt
)2

=

[∫ t

0
mL2,o(τ)e−p(t−τ)dUτ

]2

= m2

∫ t

0
L2

2,o(τ)e−2p(t−τ)dτ

(C.4)

again by Itô isometry. Since both observation processes are Gaussian for all t, we now have all

the elements necessary to describe the distributions at a given point in time.

The integral in (C.2) is easily solvable, but this is not the case with the integral in equation (C.4),

due to the complexity of L2,o(t). We have therefore used simulated trials of the observation

process to estimate the probability distribution variances. Specifically, if P denotes the Gaussian

probability distribution of Xt given previous observations at t, we may denote the equivalent

distribution using a simulated variance as P̂. By total probability,

E
[
V 1−γ (Xt)

]
≈
∫
R
V 1−γ(x) P̂(Xt = x | Gt) dx, (C.5)

where

P̂ ∼ N
(
X̂t, V̂

)
, (C.6)

and V̂ is the sample variance of the trial data {X̂t,i}i for i = 1, . . . , M given previous observations

at t, where M is the number of trials such that lim
M→∞

P̂ = P by the central limit theorem.7

The expectation of equation (C.5) assumes that the entire project value is received at the time of

investment. As noted in the introductory paragraph of section 2, our model may be extended to

allow for profit streams that arrive over time. The utility function in equation (2.23) would then

be applied over the profit stream function, and the expectation would be taken over the integral

of discounted utilities of profits. This would simplify to an integral over expectations of utilities

of profits. However, the expectation is taken at time t for profits that arrive in the future, so

7We calculate the integral of equation (C.5) numerically, using the function integral in MATLAB v. R2020a,
and evaluate the resulting expression at discrete points of X̂t, with discretization ∆x. Exercise values across paths
are then approximated by using the value among discrete integral evaluations that is closest to the given path
value.



we would have to derive the future distribution conditioned on a starting point at the current

process estimate in order to apply total probability once again. This is not an issue, however,

since for our applications, the time dependent distribution of the processes may be derived if an

initial value is specified.

Appendix D The Bellman equation

Considering the belief and observation processes (2.28)-(2.29), and building on equation (2.27),

we obtain

ρfdt = E[df ]

= E

[
∂f

∂t
dt+

∂f

∂X̂t

dX̂t +
1

2

∂2f

∂X̂2
t

(dX̂t)
2

]

=
∂f

∂t
dt+ E

[
L1(t)X̂tdt+ L2(t)dZt

] ∂f

∂X̂t

+
1

2
E
[
L2

2(t)(dZt)
2
] ∂2f

∂X̂2
t

=
∂f

∂t
dt+ [L1(t) + L2(t)]X̂t

∂f

∂X̂t

dt+
1

2
m2L2

2(t)
∂2f

∂X̂2
t

dt

when X̂t < X̂∗t ,

(D.1)

by applying Itô’s lemma on df = df(t, X̂t). This simplifies to a partial differential equation (PDE)

that characterizes the continuation region of f ,

∂f

∂t
+ [L1(t) + L2(t)]X̂t

∂f

∂X̂t

+
1

2
m2L2

2(t)
∂2f

∂X̂2
t

− ρf = 0 when X̂t < X̂∗t . (D.2)

Appendix E A finite element method

We have added this appendix to illustrate one of the finite element methods applied in attempting

to obtain a surface for the option value. We chose this method as an example as we consider it to

be the most illustrative of the challenges that arise when attempting a numerical solution. The

notation introduced here is only intended to illustrate the method, and should not be confused

with the notation used otherwise throughout the thesis.

For convenience, we let x = X̂t. We will refer to x as the “spatial” dimension and t as the

“temporal” dimension. We let x ∈ [0, x̄], where x̄ is some large value relative to the expected

value of x, and t ∈ [0, T ]. The grid is divided into M ′ and N ′ equidistant points in the spatial

and temporal directions, with distances ∆x = x̄/M ′ and ∆t = T/N ′, respectively. Let i be the
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spatial and j the temporal indices, such that x = i∆x and t = j∆t. We discretize f and its

domain by applying a Crank-Nicolson scheme using the points displayed in Figure E.1.

(i, j + 1)

(i− 1, j + 1)

(i+ 1, j + 1)

(i, j)

(i− 1, j)

(i+ 1, j)

Figure E.1: The Crank-Nicolson stencil.

Let ui,j be the discrete approximation of f(x, t), and U = [ui,j ]. The Crank-Nicolson scheme is a

linear combination of the forward and backward Euler scheme. With a forward Euler scheme, the

spatial and temporal differences are centered around (i, j) and (i, j + 1/2), respectively, giving

∂f

∂t
≈ ui,j+1 − ui,j

∆t
, (E.1)

∂f

∂x
≈ ui+1,j − ui−1,j

2∆x
and (E.2)

∂2f

∂x2
≈ ui+1,j − 2ui,j + ui−1,j

(∆x)2
. (E.3)

Substituting these approximations into the PDE (2.30), we obtain

ui,j+1 − ui,j
∆t

+ [L1(j∆t) + L2(j∆t)]i∆x
ui+1,j − ui−1,j

2∆x

+
1

2
m2L2

2(j∆t)
ui+1,j − 2ui,j + ui−1,j

(∆x)2
− ρui,j = 0 when i(j) < i∗j ,

(E.4)

which serves as the discrete approximation of the PDE of the option value. Gathering terms,

ui,j+1 = (1 + ρ∆t)ui,j +[
−∆t

2
[L1(j∆t) + L2(j∆t)]i− ∆t

2(∆x)2
m2L2

2(j∆t)

]
ui+1,j +[

∆t

(∆x)2
m2L2

2(j∆t)

]
ui,j +[

∆t

2
[L1(j∆t) + L2(j∆t)]i− ∆t

2(∆x)2
m2L2

2(j∆t)

]
ui−1,j .

(E.5)



Similarly, with a backward Euler scheme,

(1− ρ∆t)ui,j+1 = ui,j +[
−∆t

2
[L1(j∆t) + L2(j∆t)]i− ∆t

2(∆x)2
m2L2

2(j∆t)

]
ui+1,j+1 +[

∆t

(∆x)2
m2L2

2(j∆t)

]
ui,j+1 +[

∆t

2
[L1(j∆t) + L2(j∆t)]i− ∆t

2(∆x)2
m2L2

2(j∆t)

]
ui−1,j+1.

(E.6)

We now let pui+1,j , p
s
i,j and p

d
i−1,j represent the coefficients in the last three terms of equation

(E.5), such that

pui,j =

[
−∆t

2
[L1(j∆t) + L2(j∆t)]i− ∆t

2(∆x)2
m2L2

2(j∆t)

]
, (E.7)

psi,j =

[
(1 + ρ∆t) +

∆t

(∆x)2
m2L2

2(j∆t)

]
and (E.8)

pdi,j =

[
∆t

2
[L1(j∆t) + L2(j∆t)]i− ∆t

2(∆x)2
m2L2

2(j∆t)

]
. (E.9)

Note that the coefficients change in time due to the dependence of L1 and L2 on j. Combining

equations (E.5) and (E.6), from the forward and backward Euler schemes, respectively, we obtain

pdi,jui−1,j + (2 + ρ∆t+ psi,j)ui,j + pui,jui+1,j

= − pdi,j+1ui−1,j+1 + (2− ρ∆t− psi,j+1)ui,j+1 − pui,j+1ui+1,j+1.

(E.10)

The free boundary varies across time. We represent the spatial index of the free boundary by i∗j .

At the free boundary, value-matching, from equation (2.33), is obtained by letting ui+1,j = Ψi∗j ,j
,

where Ψi∗j ,j
is the discretized exercise value function at the free boundary i∗j , when the stencil is

centered one spatial point below i∗j , meaning i = i∗j − 1. Smooth pasting, from equation (2.34), is

implemented by letting the derivative approximation of f be equal to ∂Ψi∗j ,j
/∂x with a similarly

centered stencil. We may in fact improve on the derivative approximation in equation (E.2) at

the boundary by allowing for a second order approximation, obtaining

∂f

∂x
≈ 3ui+1,j − 4ui,j + ui−1,j

2∆x
=
∂Ψi∗j ,j

∂x
. (E.11)

Hence, equation (E.11), and not (E.10), applies at points centered one spatial point below the

boundary. Ordering the spatial elements of the grid in vectors and matrices, we let uj = [ui,j ]
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for i = 1 . . . i∗j − 1 and Aj be a diagonal matrix with elements

al,l−1 = pdl,j when 1 < l < i∗j − 1, (E.12)

al,l = 2 + ρ∆t+ psl,j when l < i∗j − 1 and (E.13)

al,l+1 = pul,j when l < i∗j − 1, (E.14)

along the subdiagonal, main diagonal and superdiagonal, respectively. At the spatial point below

the free boundary, due to equation (E.11), we have

al,l−2 = 0 and (E.15)

al,l = 4pdi∗j−1,j + 2 + ρ∆t+ psi∗j−1,j , (E.16)

when l = i∗j − 1. We now define bj+1 = [bi,j+1 + ci,j ] for i = 1 . . . (i∗j − 1) such that bi,j+1

represents the right-hand side of equation (E.10), and

ci,j = 0 when i < i∗j − 1 and (E.17)

ci,j = −pdi,j

(
∂Ψi∗j ,j

∂x
· 2∆x− 3ui+1,j

)
− qui,jui+1,j when i = i∗j − 1. (E.18)

We may now express the option values for all i = 1 . . . (i∗j −1) as a solution to the matrix equation

Ajuj = bj when 1 ≤ j < N ′ − 1. (E.19)

At the terminal boundary, where j = N ′, the condition from (2.32) applies such that ui,N ′ = Ψi,N ′

for i = 1 . . .M ′. Equation (E.19) may therefore be solved recursively for j = (N ′ − 1) . . . 1.

In order to identify a suitable free boundary and corresponding option value surface, we apply the

above solution procedure for an initial matrix U0 = [Ψi,j ] and boundary i∗j = M ′ for j = 1 . . . N ′.

U1 is found by equation (E.19), after Aj and bj have been designed for the given free boundary.

The free boundary is selected such that continuation is optimal for all points i < i∗j . Accordingly,

following subsection 2.2.3, we seek a free boundary that satisfies

E[df(x, t)]

dt
− ρf(x, t) > Ψ(x, t)− f(x, t) when x < x∗ (E.20)



for all points in the continuation region, or, by approximation,

A∆f > Ψi,j − ui,j when i < i∗j and j < N ′ − 1, (E.21)

where A∆f denotes equation (2.30) approximated by applying equations (E.1)-(E.3). For all

points in the continuation region, we calculate the maximum of the absolute deviations that

equations (2.36) and (2.37) take from zero. If the deviation is found to be larger than a specified

value, the process is repeated until a satisfying free boundary is found, with corresponding option

surface Un, after n iterations.

Appendix F The Longstaff-Schwartz method

F.1 Convergence and the choice of basis functions

Longstaff and Schwartz (2001) show that the simulated option value resulting from the algorithm

outlined in subsection 3.2 is bounded by the true option value from above when the number if

trials M approach infinity, or,

f0 ≥ lim
M→∞

1

M

M∑
i=1

LSM(ωi), (F.1)

where ωi indicates the ith trial, and LSM(ωi) is the discounted exercise value of ωi when following

the algorithm investment rules. Note that any set of orthonormal basis functions may be used

in the regressions so long as their linear combination span the range of the continuation value.

Longstaff and Schwartz (2001) use Laguerre polynomials, but point to other possibilities such

as Hermite, Legindre, Chebyshev and Jacobi polynomials. They then proceed to show that the

option value resulting from following the algorithm converges to the true option value when the

number of basis functions increases. Hence, for a high enough number of trials, the simulated

option value will approach the true option value from below when the number of basis functions

increases. This result is useful in that it allows the user to iteratively increase the number of

basis functions until the estimated option value f0 increases from the previous estimation by an

amount ε̄ that is deemed acceptably small.

Following Longstaff and Schwartz (2001), we have chosen the set of Laguerre polynomials as basis

functions. Using similar notation, we denote the nth order polynomial as Ln(X̂j), expressed in

closed form by

Ln(X̂j) =

n∑
k=0

(
n

k

)
(−1)k

k!
X̂k
j . (F.2)
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The regression equation may then be written as follows, with X̂j as the regressor and Y (ωi, j∆t)

the regressand, at j = {1, . . . , N − 1},

Y (ωi, j∆t) =
B∑
n=0

an,jLn(X̂j), (F.3)

where B denotes the number of basis functions and {aj} the corresponding coefficients.

F.2 The exercise boundary

Following Longstaff and Schwartz (2001) again, we identify the exercise boundary by solving for

the belief process values that equate the regression equation – or, the conditional expectation of

the continuation value – with the exercise value, at each discrete time point j = {1, . . . , N − 1},

such that

X̂∗j = inf

{
X̂j ∈ R :

B∑
n=0

ân,jLn(X̂j) = 0

}
, (F.4)

where {âj} are the estimated coefficients resulting from the regression. The free boundary at

j = N is set equal to the indifference value of exercising the option. Since the regression functions

consist of weighted polynomials of order potentially higher than 4, and the Abel-Ruffini theorem

states that such polynomials do not have an algebraic solution when equated to zero, we find

the boundary points by a numerical solution procedure. After the boundary points have been

identified, we apply a polynomial smoothing technique that identifies the least squares coefficients

of a polynomial of user-defined order η, with fixed endpoints.8

F.3 Implementation of the algorithm

We have written our implementation of the Longstaff-Schwartz algorithm from subsection 3.2 in

MATLAB v. R2020a with parameter values as given in Table 4.1.

1 %% PARAMETERS

2 ornstein = false; % indicator of process to simulate

3 rho = 0.05; % rate of time−preference (discount rate)

4 p = 0.05; % rate of mean−reversion of OU process

5 q = 0.02; % volatility of OU process

6 m = 20; % observation volatility

7 a = 60; % initial value uncertainty

8 life = 0;

8We have applied the functions fsolve and polyfix (Mjaavatten, 2020) in MATLAB v. R2020a for the
numerical solution procedure and polynomial smoothing technique, respectively.
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9 profit = 100;

10 k = 5000; % investment cost

11 gamma = 0; % relative risk−aversion

12 T = 5; % option lifetime

13 mu = 40;

14 x_0 = 0 + mu; % initial state

15 trials = 500000;

16 dt = 0.05;

17 dx = 0.2;

18 periods = floor(T/dt);

19 basis_functions = 5; % includes constant

20 %% SIMULATIONS OF SAMPLE PATHS

21 if ornstein == true

22 % Ornstein−Uhlenbeck

23 L1 = @(t) −((p + (a/m)^2)*sqrt(p^2 + (q/m)^2) + (p^2 + (q/m)^2)*tanh(t*

sqrt(p^2+(q/m)^2)))/(sqrt(p^2 + (q/m)^2) + ((a/m)^2 + p)*tanh(t*sqrt(

p^2+(q/m)^2)));

24 L2 = @(t) ((a/m)^2)*(sqrt(p^2 + (q/m)^2) − (p − (q/a)^2)*tanh(t*sqrt(p

^2+(q/m)^2)))/(sqrt(p^2 + (q/m)^2) + ((a/m)^2 + p)*tanh(t*sqrt(p^2+(q

/m)^2)));

25

26 F = @(t, x) p*(mu − x); % this drift (combined with x_0) shifts the

process

27 G = @(t, x) m*L2(t);

28 else

29 % Constant process

30 L1 = @(t) −(a^2)/(m^2 + (a^2)*t);

31 L2 = @(t) (a^2)/(m^2 + (a^2)*t);

32

33 F = @(t, x) 0;

34 G = @(t, x) m*L2(t);

35 end

36 process = sde(F, G, 'StartTime', 0, 'StartState', x_0);

37 if ~hold_simulations
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38 default_rng = rng('default'); % save default random number

generator

39 rng(1108); % set own generator

40 [paths, times, ~] = simByEuler(process, periods, 'DeltaTime', dt, '

nTrials', trials, 'Antithetic', true); % simulate

41 rng(default_rng); % reset generator

42 paths = squeeze(paths); % remove unary dimensions

43 end

44 %% MATRICES

45 PATHS = paths';

46 psi = @(x) (((profit.*x).^(1 − gamma))./(1 − gamma)) − ((k^(1 − gamma))/(1 −

gamma));

47 if gamma > 0 % if risk averse, derive expected value by total expectation

48 for jj = 1:length(times)

49 estimated_std = std(PATHS(:, jj));

50 psi_averse = @(x) integral(@(chi) ((((profit.*x).^(1 − gamma))./(1 −

gamma)) − ((k^(1 − gamma))/(1 − gamma))).*(1/(sqrt(2*pi)*

estimated_std)).*exp(−0.5*((chi − x)./estimated_std).^2), −Inf,

Inf, 'AbsTol', 0, 'RelTol', 10^(−3));

51 matlab_fun_psi = @(x) max(psi_averse(x), 0);

52

53 x_disc = 0:dx:max(PATHS, [], 'all');

54 disc_matlab_fun_psi = zeros(1, length(x_disc));

55 for ii = 1:length(x_disc) % calculate psi at discrete points

56 disc_matlab_fun_psi(ii) = matlab_fun_psi(x_disc(ii));

57 end

58

59 disc_matrix = [x_disc; disc_matlab_fun_psi];

60 [~, closestIndex] = min(abs(x_disc' − PATHS(:, jj).')); % find

closest values to PATHS in x_disc

61 EXERCISE(:, jj) = disc_matrix(2, closestIndex); % use

corresponding discrete psi as exercise values

62 end

63 else % if risk neutral, take expectation directly
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64 matlab_fun_psi = @(x) max(psi(x), 0);

65 EXERCISE = matlab_fun_psi(PATHS);

66 end

67 EXERCISE(imag(EXERCISE) ~= 0) = zeros(size(EXERCISE(imag(EXERCISE) ~= 0)));

68 EXERCISE = max(EXERCISE, 0);

69 CONTINUATION = NaN(size(PATHS));

70 CONTINUATION(:, end) = EXERCISE(:, end);

71 CONTINUATION(CONTINUATION == 0) = NaN(size(CONTINUATION(CONTINUATION == 0)));

% convert all 0−elements to NaN

72 CASHFLOW = zeros(size(PATHS));

73 CASHFLOW(:, end) = EXERCISE(:, end);

74 laguerre = cell(1, basis_functions);

75 syms x n;

76 for i = 1:basis_functions

77 laguerre{i} = char(symsum(nchoosek(i − 1, n)*(((−1)^n)/factorial(n))*x^n,

n, 0, i − 1));

78 end

79 clear x n;

80 %% ITERATIONS

81 free = NaN(1, length(times));

82 regressand_prediction_int = NaN(2, length(times));

83 free_prediction_int = NaN(2, length(times));

84 if gamma > 0

85 matlab_fun_psi = @(x) psi_averse(x);

86 free(end) = fsolve(matlab_fun_psi, x_0, optimoptions('fsolve', 'Display',

'off'));

87 else

88 matlab_fun_psi = @(x) psi(x);

89 free(end) = fsolve(matlab_fun_psi, x_0, optimoptions('fsolve', 'Display',

'off'));

90 end

91 for j = (length(times) − 1):(−1):2

92 % Update discounted cash flows at given j

93 DISC_CASHFLOW = zeros(trials, 1);
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94 for s = length(times):(−1):(j + 1)

95 DISC_CASHFLOW = DISC_CASHFLOW + CASHFLOW(:, s).*exp(−rho*(times(s

) − times(j)));

96 end

97 % Find new regressands and regressors

98 REGRESSAND = DISC_CASHFLOW((EXERCISE(:, j) > 0)); % only

selects paths that are nonzero at j

99 REGRESSOR = PATHS(EXERCISE(:, j) > 0, j); % only selects paths

at j with exercise values that are nonzero at j

100 % Perform regression using Laguerre and update continuation

101 regression_model = fit(REGRESSOR, REGRESSAND, fittype(laguerre), '

Normalize', 'off');

102 CONTINUATION(EXERCISE(:, j) > 0, j) = regression_model(REGRESSOR);

103 % Update cash flows

104 CASHFLOW(EXERCISE(:, j) >= CONTINUATION(:, j), j) = EXERCISE(EXERCISE

(:, j) >= CONTINUATION(:, j), j);

105 CASHFLOW(EXERCISE(:, j) >= CONTINUATION(:, j), (j + 1):end) = zeros(

size(CASHFLOW(EXERCISE(:, j) >= CONTINUATION(:, j), (j + 1):end))

); % set all future cash flows to zero (option is exercised)

106 % Solve for free boundary

107 % 1. Create specific regression function

108 syms x;

109 symbolic_regression_model = subs(str2sym(char(regression_model)),

coeffnames(regression_model), coeffvalues(regression_model)');

110 matlab_fun_regression_model = matlabFunction(

symbolic_regression_model);

111 clear x;

112 % 2. Update psi (without a maximum function, following the

formulation in L&S)

113 if gamma > 0

114 estimated_std = std(PATHS(:, j));

115 psi_averse = @(x) integral(@(chi) ((((profit.*x).^(1 − gamma))

./(1 − gamma)) − ((k^(1 − gamma))/(1 − gamma))).*(1/(sqrt(2*

pi)*estimated_std)).*exp(−0.5*((chi − x)./estimated_std).^2),
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−Inf, Inf, 'AbsTol', 0, 'RelTol', 10^(−3));

116 matlab_fun_psi = @(x) psi_averse(x);

117 else

118 matlab_fun_psi = @(x) psi(x);

119 end

120 % 3. Solve the boundary equation

121 boundary_equation = @(x) matlab_fun_regression_model(x) −

matlab_fun_psi(x);

122 free(j) = lsqnonlin(boundary_equation, free(j + 1), −1000000,

1000000, optimoptions('lsqnonlin', 'Display', 'off'));

123 end

124 % Update discounted cash flows

125 j = 1;

126 DISC_CASHFLOW = zeros(trials, 1);

127 for s = length(times):(−1):(j + 1)

128 DISC_CASHFLOW = DISC_CASHFLOW + CASHFLOW(:, s).*exp(−rho*(times(s) −

times(j)));

129 end

130 % Find option value at 0

131 option_value = mean(DISC_CASHFLOW);

132 % Find exercise value at free boundary

133 if gamma > 0

134 matlab_fun_psi = @(x) max(psi_averse(x), 0);

135 exercise_free = zeros(1, length(free));

136 for ii = 1:length(free)

137 exercise_free(ii) = matlab_fun_psi(free(ii));

138 end

139 else

140 matlab_fun_psi = @(x) max(psi(x), 0);

141 exercise_free = matlab_fun_psi(free')';

142 end

143 %% OUTPUT

144 fprintf('Option value = %.2f\n', option_value);
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Appendix G Relative error against number of basis functions

Figure G.1 shows the relative error of the option values plotted against the number of basis

functions used in simulations of the base case. Note that the plots use different horizontal axis

ranges.

(a)

(b)

Figure G.1: Relative errors of option values ε against the number of basis functions B under
(a) risk neutrality, and (b) risk aversion.
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