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Preface

This master’s thesis was written for the Department of Industrial Economics and Technol-
ogy Management at the Norwegian University of Science and Technology, finalizing the
authors’ Master of Science. It was written during the spring of 2020 and is to some extent
a continuation of the authors’ project thesis from the autumn of 2019. All authors are spe-
cializing in financial engineering, with two having a background from computer science
and artificial intelligence, and one from energy and environmental engineering.

The work done in the thesis concerns the use of analytical methods on tracking data from
association football. After being impressed by the ongoing work with tracking data at
Hammarby IF, the authors reached out to the Swedish top division team to propose a co-
operation, and work on developing their existing models. Hence, this thesis is the result of
a cooperative initiative between the authors and Hammarby IF.





Abstract

The published analytical research on association football is growing, but several interest-
ing areas of the game are still to be explored by academic research. This master’s thesis
seeks to expand on the existing literature by analyzing off-ball decision making by players
and teams from the 2019 season of the Swedish top division, Allsvenskan.

The data used is positional tracking data provided by Signality, tracking all 22 players,
the ball and the referee, while also providing some descriptions of on-ball events. Three
existing models used for calculating pitch control, pitch impact and a combination of the
two, provided by the Swedish professional club Hammarby IF, serve as three alternative
metrics to evaluate the success of off-ball movement. Players and teams are evaluated
in relation to how well they perform compared to an optimal performance identified for
each metric. To identify and account for situational dependencies, two types of prediction
models, generalized additive models and feed-forward neural networks, are developed to
analyse performance and behaviour, and to create a situation adjusted rating in relation
to the metrics. The top ten performers on both actual and situation adjusted ratings are
presented. The ratings are also compared with existing ratings for off-ball movement, pro-
vided by a professional scouting network used in the video game Football Manager 2020.
Results show a moderate positive correlation between some of the ratings presented in this
thesis and the ratings from Football Manager 2020.

Furthermore, role specific differences in positional strategies are investigated. Findings
suggest that differences exist in positional priorities between different player roles, with
attacking players seeming to focus more on the included metrics than defensive players.
An analysis of the relations between included metrics and goals scored is also conducted,
with the most notable finding being that the highest scoring teams seem to divide posi-
tional responsibility more than other teams.

A generalized additive model and a feed-forward neural network are also developed to
predict player positions over a one second time interval. Findings show that the neural
network is better at describing the dynamics behind player movement and decision mak-
ing than the generalized additive model and other alternative benchmarks. Results also
show that player movement is harder to predict for players deviating a lot from initial
direction and velocity.
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Sammendrag

Den publiserte analytiske forskningen innen fotball er voksende, men fortsatt finnes flere
interessante aspekter ved idretten som ikke er belyst gjennom akademisk forskning. Denne
masteroppgaven søker å supplementere eksisterende litteraturen ved å analysere hvordan
spillere og lag fra øverste divisjon i svensk fotball, Allsvenskan, i sesongen 2019 foretar
beslutninger uten ball.

Denne oppgaven bruker posisjonsdata levert av Signality. Dataen inneholder bevegelsene
til alle 22 spillere, ballen og dommeren, samt noen beskrivelser av hendelser som omhan-
dler ballen. Tre eksisterende modeller, levert av den svenske klubben Hammarby IF, for
å beregne kontroll av rom på banen, posisjonsinnvirkning og en kombinasjon av disse,
brukes for å definere suksess tilknyttet bevegelse uten ball. Spillere og lag evalueres
i forhold til hvordan de presterer sammenlignet med optimale verdier beregnet for de
nevnte modellene. To typer prediksjonsmodeller, generaliserte additive modeller og feed-
forward nevrale nettverk utvikles for å redegjøre og justere for situasjonsavhengige fak-
torer når prestasjoner og adferd uten ball evalueres. En rangering av spillerne basert
på prestasjon i både faktiske og situasjonsjusterte observasjoner foretas hvor de ti beste
spillerne ifølge rangeringene blir presentert. Rangeringene blir sammenlignet med eksis-
terende rangeringer av relevante attributter, satt av dataspillet Football Manager 2020 sitt
profesjonelle speidernettverk. Resultatene viser en moderat positiv korrelasjon mellom
rangeringene fra denne oppgaven og rangeringene fra Football Manager 2020.

Videre utforskes rollespesifikke forskjeller i posisjonelle strategier. Resultatene i denne
seksjonen antyder at angrepspillere fokuserer mer på å oppnå høye verdier for kontroll og
innvirkning enn forsvarspillere. Sammenhengen mellom antall scorede mål og prestasjoner
uten ball blir analysert, med resultater som tydet at lag som scorer mange mål fordeler po-
sisjonelt ansvar mer enn lag som scorer færre mål.

En generalisert additiv modell og et feed-forward nevralt nett er utviklet for å forutsi
spillerposisjoner over et tidsintervall på ett sekund. Det nevrale nettet viser seg å være
bedre egnet til å beskrive dynamikken i spillerbevegelser og beslutningstaking enn den
generaliserte additive modellen, samt et utvalg alternative målestokker introdusert for å
evaluere modellene. Resultatene viser også at spillerbevegelse er vanskeligere å predikere
for spillere som avviker mye fra initiell retning og hastighet.
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Chapter 1
Introduction

With 265 million active participants (FIFA, 2007) and with over half of the world’s popula-
tion watching the 2018 World Cup (FIFA, 2018), association football, in this thesis referred
to as football, is considered to be the most popular sport in the world. This amount of par-
ticipation and attention has created an economic landscape where small improvements in
results can lead to significant financial gains for professional clubs. In a sport where the
difference between one spot on the league table can have such considerable implications
on revenue, it is not surprising that many clubs are looking into every opportunity that
potentially can enhance performance. In recent years, the field of sports analytics has been
on the rise, with an increasing number of clubs seeing the possibility of utilising analytical
methods to both improve performance on the field and assist in the process of scouting and
acquisitions of new players. Technological advancements have made large amounts of data
available for analysis, with comprehensive data sources on both game events and player
movement available to those willing to invest in the right equipment and technology. Us-
ing these tools, teams can now develop new perceptions on the game, showcase elements
not visible to the naked eye, and create models to describe a wide range of performance
factors.

1.1 Background and Motivation
A common way of analysing and evaluating football players is to collect aggregated statis-
tics based on goals, shots, passes and tackles. The common denominator for these statistics
is that they all measure individual players’ on-ball involvements. However, football is a
complex game of collective movement, where off-ball involvements also can have an im-
pact. With 22 players and only one ball on the pitch, players spend far more time making
off-ball decisions than they do on-ball. When not in possession of the ball, players contin-
uously have to adjust their position on the pitch to either create or defend against threats.
The legendary Dutch player and coach Johan Cruyff once famously said: "When you play
a match, it is statistically proven that players actually have the ball 3 minutes on average
(...) So, the most important thing is: what do you do during those 87 minutes when you do
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not have the ball. That is what determines whether you’re a good player or not." Evaluat-
ing players solely on their on-ball actions will, therefore, only capture parts of the players
quality and contribution to the team. When not in possession of the ball, players continu-
ously have to adjust their position on the pitch to either create or defend against threats.

With recent advances in player tracking technology, a new and rich data source, often
referred to as tracking data, has become available. Tracking players’ every move, this data
opens up the possibility of evaluating off-ball movements as the available data now con-
tains information on these actions.

An important aspect of evaluating off-ball actions is to establish measures for what consti-
tutes off-ball success. When on-ball actions are evaluated, these measures are usually quite
intuitive; a goal is better than a missed attempt, and passing the ball to a teammate is better
than passing it to an opponent. For off-ball actions, defining success is far more challeng-
ing and complicated, requiring the development of measures of success, using complex
models. This thesis uses models developed by the Swedish top division club Hammarby
IF to create measures of success for off-ball movements made by players during the 2019
season of Allsvenskan. Currently, these models are used by Hammarby IF to coach players
and analyse players’ decisions’ and movement in individual situations. These models are
modified to determine the amount of the maximum and minimum obtainable control and
impact a player achieves. An objective of this thesis is, therefore, to see if these models
can be applied to create a framework for analysing a large number of off-ball situations,
evaluating players movement and decision making abilities.

To aid in the work of comparing and evaluating positional decisions made in different
situations, models are developed to predict the outcome, using a number of features de-
signed to describe the situation accurately. The two modeling techniques used in this thesis
are generalised additive models and feed-forward neural networks, the first being a statis-
tical model, and the latter coming from the field of artificial intelligence. Both models are
introduced as they are known to deal with non-linear relations between variables. The re-
sults from the preceding project thesis (Cook et al., 2019) showed that many relationships
in football are non-linear. As these models have different advantages and disadvantages,
comparing the results from the different models can be used to infer which is most suited
to analyse off-ball actions in football. With the generalised additive model being a statisti-
cal model, the contribution of individual features is simpler to interpret and analyse, while
deep learning-based models have great abilities to deal with complex relations between
variables. Further, the models are modified to predicting player movement over short time
periods. Together, these approaches aim to shed light on aspects of how players make
positional decisions that are hard to decipher with the naked eye and the predictability of
player movement.

1.2 Research Questions
The discussion in the previous section forms the basis for the four research questions
answered in this thesis. These research questions are formulated as followed, with an
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explanation of how this thesis seeks to answer these questions:

Research Question 1: Can available state of the art off-ball metrics be used to evaluate
off-ball movement and decision making in elite-level football?

Metrics for defining off-ball success will be applied to a large set of observations, with
the results compared to existing ratings for off-ball aspects provided by the professional
scouting network of Football Manager 2020.

Research Question 2: Are there individual differences in off-ball decision making, and do
decision making vary for different player roles?

An evaluation of individual players is presented based on different off-ball success metrics,
both for their obtained score and situation adjusted score. Further, different player roles
will be compared on how their score, identifying trends for different player roles.

Research Question 3: Are players on the best attacking teams in Allsvenskan making
different off-ball positional decisions than other teams?

This question seeks to further link success on off-ball metrics up to a central objective
of football; goals scored. The 16 teams from the 2019 Allsvenskan are divided into four
groups, separated by how many goals they scored during the season, and then compared
by their performance on off-ball metrics. Visualisation of location-specific performance
will aid in interpreting the results.

Research Question 4: How well can player movement be predicted over a short time
interval, and what types of models are best suited to model this movement?

A generalised additive model and a feed-forward neural network are developed to predict
player movement one second into the future. The models are then compared on existing
benchmarks and evaluated on a number of validation metrics.

1.3 Thesis Structure
First, in Chapter 2 related work is presented to give an introduction to the existing work
and progress of sports analytics. Chapter 3 then introduces the theoretical foundation and
concepts relevant to the analyses presented in the later chapters. This chapter is followed
by Chapter 4 presenting the methodology used for defining off-ball success. The data
used in this thesis will then be introduced in Chapter 5, followed by the model set-up
and validation in Chapter 6. Applications of the models are then presented in Chapter
7, before extending the models to predict player movement in Chapter 8. In Chapter 9,
Answers to the research questions presented in this chapter are given, and finally, Chapter
10 concludes this thesis and offers suggestions for future work.
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Chapter 2
Literature Review

2.1 Introduction

Sports analytics is the use of scientific methods and analysis in sports, and the practice
dates back over a century (Memmert and Raabe, 2018). One of the earliest examples of
sports analytics is Hugh Fullerton’s 1912 paper, where he divided a baseball field into
different zones to analyse the success probabilities of balls hit into these zones. Almost
40 years later, the first systematical match analyses in football were undertaken by for-
mer Royal Air Force officer Charles Reep. In the 1950 Reep developed a notation system
to analyse football matches. Around the same time, the field of operations research also
made its entrance into the world of sports. Arguing that several American team sports,
like baseball, American football and basketball, share similarities with warfare, Mottley
(1954) proposes that the same operations research methods used in warfare can also be
used to gain tactical advantages in these sports. In the late 1980s, A.H.Ali drew attacking
patterns from 18 games in the Scottish top division by hand. By using an overlying grid to
determine the players’ movements in x- and y- coordinates, this effort is often cited as the
first analysis of tracking player movement in football (Memmert and Raabe, 2018). With
the development of new technology and statistical methods, sports analytics have become
an increasingly important part of top-level sports with research in the field becoming in-
creasingly advanced.

This literature review focuses on modern academic research using both event-based and
spatio-temporal tracking data. Following improvements in both methods and available
data sources, most of the research relevant to this thesis is relatively modern, leading to
this chapter focusing on newer research. As this thesis focuses on the sport of football,
most of the research presented analyses football. Some research conducted on other team
sports that share similarities to football is also included when the research is relevant to the
subjects covered in this thesis. The first section of this literature review focuses on research
using tracking data to analyse player movement. As off-ball movement is the main focus
of this thesis, previous studies on player movement are highly relevant. Furthermore, the
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models presented and used in this thesis uses both event-based and spatio-temporal track-
ing data, and the following sections, therefore, covers research using both types of data
separately or combined. The structure of this chapter is constructed as to give insight into
the research previously done in the areas of the game the different models used in this
thesis covers. First, some research on player movement using tracking data is presented.
In Section 2.3, an introduction to research conducted on modelling passing is presented,
showing some of the different ways this has been approached by researchers. This section
is followed by a presentation on some relevant research conducted on how players and
teams control available space. As with modelling passing, there are different approaches
to modelling space control and some of them are presented in Section 2.4. One of the
most well known and commonly used metrics in football are the expected goals metric
discussed in Section 2.5. Besides from being an interesting metric on its own, expected
goals metrics are a widely used component of more extensive player evaluation models.
These models seek to quantify a players impact or contribution to the team, and some of
these models are discussed in Section 2.6 of this chapter.

2.2 Player Movement
Research on player movement have evolved along with the technology used to track play-
ers. This section covers research done on player movement both focusing on individual
players and teams.

One way to utilise tracking data to study player movement is to aggregate positional data to
analyse properties like distance covered, speed and intensity among players. Barros et al.
(2007) used an automatic video tracking system to measure total distance covered, and
distance covered with different intensities by 55 players from the Brazilian First Division.
Relating the results to player roles the study showed that midfielders and wide defend-
ers covered more distance than forwards who again covered more distance than central
defenders. Players covered the most distances at walking or jogging speed, and the total
distance dropped by 7% from the first to the second half. Also relating player roles to
physical demands, Di Salvo et al. (2007) studied 300 top-class players during 20 games
in the Spanish top division and 10 games in the Champions League. This study found no
significant difference in the total distance covered between the two halves, and that mid-
fielders followed by wide defenders and forwards covered the most distance while central
defenders covered the shortest distance. To investigate whether high intensity movement
was related to team success, Di Salvo et al. (2009) studied positional data from 563 players
in the English Premier League. Teams where divided into three groups based on league
position with one group consisting of the top five teams, one consisting of the middle
ten teams and one group consisting of the bottom five teams. The findings suggested
that teams finishing lower in the table covered more distance with higher intensity and in
sprints than higher finishing teams. Another finding from this study was that midfield-
ers and attackers seemed to cover the most distance during high intensity running and in
sprints, and that central defenders covered the least distance in both of the same categories.

Using aggregated tracking data to study player movement and physical demands like inten-
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sity and distances covered, can be a valuable resource for for coaches and athletic trainers
when developing training regimes for players. But these types of analyses lacks deeper
insight into how players interact and cooperate during games. To study how players move
collectively as a team, Moura et al. (2012) and Moura et al. (2013) used tracking data to
create two metrics based on player positions. Total space covered by the team, calculated
as the convex hull covered by all players, and distance between the players, calculated by
the Frobenius norm of individual distances between players. (Moura et al., 2012) analysed
the difference in these properties between attack and defense, finding that teams covered
a smaller area and had smaller distances between players when defending than attacking.
Also relating these properties to attacking and defending success, the results showed that
teams were less compact in the attacks leading to a shot on goal than when they suffered
tackles. In defense the study found that teams were more compact when they made tack-
les than when they suffered shots on goal. Evaluating the frequency of time series of the
same properties, Moura et al. (2013) measured how fast teams were able to increase or
decrease their compactness during play. The study concluded that teams used longer time
to increase or decrease their compactness in the second half as the frequency decreased
from the first to the second half.

An important part of a team’s attacking structure is what types of runs and combinations
of simultaneous runs are made by players. Miller and Bornn (2017) uses Bézier curves
and a machine learning approach to cluster movement in basketball, and create topics of
simultaneous movement to group possessions with a similar structure. Gregory (2019)
used the same approach of Bézier curves to create a framework of clustering runs in foot-
ball. This framework could give insight into what types of runs players make, and what
combinations of these runs are done simultaneously.

2.3 Pass Probability
Passes are one of the most common and important events in football, and a central skill for
every player. From playmakers searching for the key passes to unlock the opponent’s de-
fence to defenders and, increasingly important in the modern game, goalkeepers initiating
attacks through forward passing, all aspects of play is significantly driven by passing the
ball. This makes passing one of the most sought after skill for players and much research
has therefore focused on this aspect of the game. As passes are discrete events, research
based only on event-based data is possible as this data often describes many features of
the pass. But as tracking data adds many important features, research based on both event
and tracking data has the possibility to add additional insight.

One key aspect of evaluating a pass, whether it was completed, failed or never tried, is
by the probability for success. If the probability of completing a certain pass is calcu-
lated, players and teams can be evaluated on several metrics related to that probability.
Was the decision to try a certain pass a good decision, was there a better option available
to the player at the time of the pass, how does a player or team’s success rate compare
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to the calculated probabilities? These are some of the questions researchers have tried to
answer through developing pass probability models. Generally, pass probability models
can be separated by two different approaches, data driven and physics-driven. Data-driven
models seeks to fit models to available passing data, while physics-based models uses
equations of motion and probability distributions to calculate possible ball and player tra-
jectories and interception probabilities.

Whether they use only event data or a combination of event and tracking data, data-driven
models seek to fit models to the available data. Some examples of this approach is the
work done by Szczepański and McHale (2016); Håland and Wiig (2018); Tovar et al.
(2017) all using event-based data. Szczepański and McHale (2016) used data from the
English Premier League and Håland and Wiig (2018) from the Norwegian top division, to
create generalised additive mixed models (GAMM) predicting probabilities for successful
passes. Using features such as the coordinates of the pass, game time and what part of
the body was used for the pass, players were then evaluated on how well they performed
compared to the models created. A GAMM was also used by Tovar et al. (2017) to create
a similar pass probability model, using event data from Colombian league and Spanish top
division (LaLiga) the purpose of this model was to use passing ability as a proxy for per-
formance in the Colombian league and predict future performance in the Spanish LaLiga
after an eventual transfer. Better predicting how players perform in new leagues can be
a useful tool for clubs in evaluating potential transfer targets. In their study of how play-
ers perform under different levels of mental pressure Bransen et al. (2019) used a Gradient
boosted tree model to compute the probability of different actions, among them passes, be-
ing successful. This was done to evaluate the expected contribution of choosing a certain
action, and thereby evaluating the player on both the choice and execution of the action.

Implementing a logistic regressor using both event and tracking based data from the En-
glish Premier League, Power et al. (2017) quantified the quality of a pass by its risk and
reward. The risk of a pass was quantified as the probability of it reaching a teammate,
and pass reward as the probability that a successful pass leads to a shot within the next 10
seconds. This was used to analyse risk and reward for teams during matches and ranking
players based on two metric called Passing Plus Minus (PPM) and Difficult Pass comple-
tion (DP%). PPM is a metric that weighs the completion percentage against how risky the
pass was, and DP% is the percentage of high risk passes, passes in the 75th percentile of
riskiest passes, a player completes. McHale and Relton (2018) implemented tracking data
from the English Premier League to create a GAMM estimating the probability of a pass
being successful, and the difficulty of the pass.

Another data-driven approach is to use machine learning techniques to create passing mod-
els fitted to large amounts of data. Fernández et al. (2019) included the probabilities of
an action being a pass and the outcome of the pass, successful pass, or a turnover, in their
Expected possession value model for football. While the outcome probability was esti-
mated using logistic regression the action likelihood was estimated using a convolutional
neural network. The data used was optical tracking data from the 2012-2013 season of the
English premier league and FC Barcelona’s matches during the 2017-2018 and 2018-2019
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seasons of the Spanish top division LaLiga. Passing is also an important type of action
in other sports than football, and one sport where passing is an integral part, considered
to be the most valuable type of action (Eager and Chahrouri, 2020), is American football.
Burke (2019) used a feed-forward artificial neural network on over 45 thousand pass at-
tempts from the 2016 and 2017 seasons of the National Football League to model passing
situations in American football. Included in the feature vector fed to the network the pos-
sible receivers were represented as vectors that included their position, velocity, distance
and angle from the quarterback (passer), their shoulder orientation and their playing roles
such as wide receiver, tight end or running back. Along with the possible receivers, the po-
sition, velocity and shoulder orientation of the two closest defenders to each receiver plus
a vector of metadata such as down and distance, yard line and if the quarterback was under
pressure was included in the full feature vector. The network then produced three types of
output, the probability that the quarterback chooses to target each receiver, the probability
that the pass would be complete, incomplete or an interception and the expected yards
gained from choosing to target the different receivers. This combined results in a model
that can evaluate both the choices made by the quarterback, by comparing the alternative
receivers and the execution of the pass by comparing the predicted and actual outcome.

Instead of fitting models to data Gudmundsson and Wolle (2014) used equations of mo-
tion to compute a surface of possible ball interception points for all players and therefore
the passable area for the ball carrier in a specific situation. Spearman et al. (2017) also
used equations of motion to compute reachable areas for players along with the possible
trajectory of the ball to compute surfaces of possible interceptions areas. Combining the
interception surface with a probability distribution modelling the likelihood of a player be-
ing able to control the ball given the player and the ball trajectory intercepts. This model is
also the inspiration behind the pass probability model in Peralta Alguacil (2019). Many of
the same equations and principals are used, with the main difference being that Peralta Al-
guacil (2019) models player motion differently to save computational resources. Details
and further explanation of this model is provided in Section 3.1.1.

2.4 Pitch Control
With the increased access to, and use of, player tracking data, the notion of space control
has become a common performance metric. Space control seeks to assess how much, or to
what extent, areas on the pitch are controlled by certain players. One common approach is
to partition the pitch into Voronoi cells, as suggested by Taki et al. (1996). Voronoi cells
partition a plane into cells where each cell represents the area that is closest to what is
called the seed of the cell. In the context of team sports like football, this means that the
pitch is divided into cells that represent the area controlled by a certain player since the
player is closer, in Euclidean distance, to any point in that cell than any other player. A
variant of the Voronoi cells approach is to include the initial velocity of players in order
to partition the pitch so that the area of the cells is all the point a player is able to reach,
given all initial velocities, faster than any other player.

Space control defined by Voronoi cells has been used in many different types of analyses
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both in football and in other sports. Because of the difficulties of attaining precise posi-
tional data from real-life games, Kim (2004) used Voronoi cells to analyse a game played
using the video game FIFA Soccer 2003 by EA Sports. By calculating the area of the
Voronoi cells of the virtual football players, the ratio of the total area of the two teams was
used to quantify each teams dominance over the other. Rein et al. (2016); Chawla et al.
(2017) used changes in space control during passing events to evaluate the quality and
effectiveness of the passes. Analysing dominant regions during both successful and un-
successful offensive performances, Ueda et al. (2014) found that narrow dominant regions
were linked to successful offensive performances. Perl and Memmert (2017); Memmert
and Rein (2018) used the amount of space controlled by a team, calculated using Voronoi
cells, as a Key Performance Indicator for offensive success. The assumption behind using
space control as a performance metric is that increased space control leads to more success.
Rein et al. (2017) used a linear mixed model to analyse the effects of space control gained,
using Voronoi cells, during passing events on goals scored, shots made and match success.
The results showed that space control gains were significantly related to both goals scored
and match result, finding that increased space control during passing events led to both
more goals scored and a more positive match results. Memmert et al. (2019) used space
control as a measure in the evaluation of two common but different formations 3-5-2 and
4-2-3-1. Modelling space control using Voronoi cells and assessing space control gain as
the change in space control during passing events, the study found no significant difference
in this measure for the two formations.

Fernandez and Bornn (2018) used a slightly different approach to measuring space con-
trol. Based on the position and velocity of all players along with the position of the ball,
each player has a degree of influence, from 0 to 1, over a position on the field. This
makes it possible for more than one player to have a degree of influence on a position of
the field, which differs from Voronoi cells where control is discrete. Adding a machine
learning approach to quantifying space value Fernandez and Bornn (2018) then created
metrics for space occupation gain and space generation gain to measure the quality of
player movement. The framework was applied to a Spanish first division match between
F.C. Barcelona and Villareal F.C in January 2017 to evaluate the F.C. Barcelona players
on how much space value they generated for themselves and their teammates. One of the
notable findings was how Lionel Messi was able to generate a lot of valuable space for
himself while moving at low velocities, while it also showed that Neymar jr. and Luis
Suarez often created valuable space for their teammates and especially for Lionel Messi.

2.5 Expected Goals
Another challenge in analysing the game of football is to quantify the value of different
actions. In other team sports like American football and baseball, many actions can be
easily quantified by their direct results. In baseball, this could be if the pitcher threw a
strike or a ball, or the amount of yard gained by the runner in American football. Some
sports like handball and basketball share many similarities with football in this regard,
but they have the advantage of a much higher number of goals, or points, scored during a
game. This is an advantage in the analytical sense since it means more actions are directly

10



quantifiable. Considering the 2018/2019 season of five major European domestic leagues,
French League 1, Spanish La Liga, Italian Serie A, English Premier League and German
Bundesliga, the average goals per game in the five leagues ranges from 2.56 to 3.18 (Kr-
ishna, 2019). With only two or three events per 90 minutes, an analysis only considering
goals and assists will, therefore, be lacking insight into much of the complexities of the
game. One way to evaluate team performance beyond just goals scored is to use the metric
commonly known as expected goals or xG. The idea behind xG is that goals are relatively
rare events that contain a lot of uncertainty. So in a single game or even over the course of
a season, goals scored and conceded may not represent the true quality of a team. Shots
are more common than goals, and an xG metric seeks to quantify the probability that a
certain shot ends in a goal, in other words, the expected amount of goals the shot should
result in.

In an article written for Optasports, Sam Green used xG as a metric to analyse players
from the 2011-2012 season of the English Premier League. Based on Opta event data,
the player’s total goals and goals per shot were compared with the results from the xG
metric created. Rathke (2017) examined shots from the 2012-2013 seasons of the German
Bundesliga and English Premier League using an xG model based on dividing the field
into zones based on distance and angle from the goal. Both teams and individual players
were assessed on actual versus expected goals finding correlations between efficiency and
final placings in the league, with top teams more efficient than lower placed teams. In
their analysis of Leicester City’s unexpected English Premier league winning 2015-2016
season with findings showing that Leicester City’s defensive efficiency was part of what
set them apart from other teams. Using tracking data from an elite team’s home matches
from the 2011-2012 to 2014-2015 seasons, Schulze et al. (2018) analysed the position of
defenders on the outcome of shots. The findings suggested that shots from tight angles
and shots close to the goal were affected by the defender’s positions.

Yam (2019) used a Post-shot xG model to evaluate the shot-stopping qualities of goal-
keepers during the 2017-2018 season of the English Premier League. Post-shot xG differs
from Pre-shot xG, or what is simply called xG in this thesis, in that Post-shot xG only
considers shots on target and not blocked and missed shots. The reasoning behind using
Post-shot xG when evaluating goalkeepers is that shots missed or blocked by a defender
leads to a positive outcome for a goalkeeper without the goalkeeper’s involvement and Pre-
shot xG could, therefore, bias the sample. The data used consisted of event-based data that
also included the coordinates of outfield players and goalkeepers at the time of the event.
An extreme gradient boosting model was used to estimate the Post-shot xG model using
features both defining the shot characteristics and the positions of defenders. Comparing
the post-shot xG model with actual outcomes of the shots, the study found Manchester
United’s David de Gea to be the best shot-stopper in the league while West Ham United’s
Joe Hart and Liverpool’s Simon Mignolet performed the worst.
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2.6 Player Evaluations
In the modern game, players are bought and sold for increasingly high transfer fees, and the
clubs that can find and acquire undervalued players can achieve large economic and com-
petitive gains. However, the complexities of the game make evaluating individual players
difficult and methods to better evaluate players are an important research question in the
field of football research. Analysing games from the 2015/2016 and 2016/2017 seasons
of the Italian top division, Serie A, Pappalardo et al. (2017) investigated which features,
some derived from event data and some contextual, affected how three major Italian sports
newspapers rated player performances. The results showed that the journalists working
for the newspapers tended to only focus on a small number of features when assigning
their ratings and that most of these features were contextual features. Humans, therefore,
seem to put a lot of importance on contextual features like the expected pre-game result
and the goal difference which arguably says less about a player’s actual performance than
event-based features like passes, shots and tackles.

One way to evaluate a players contribution to team performance is to construct a model
that values a player’s actions in how they affect the probability that an attack eventually
leads to a goal scored. By modelling possessions as a chain of actions each action can be
evaluated on its contribution to the success of the possession. Considering only the final
link in the chain, the shot, this becomes an expected goals model, and moving one link
backwards it becomes an expected assist (xA) model that evaluates the probability that a
certain pass becomes a direct assist (Worville, 2017). Dividing the xG of the final shot, or
highest xG in the possession chain, among all players involved in the possession a simple
xG-chain model can be constructed (Lawrence, 2018). An xG-chain model rewards play-
ers for being involved in the build-up but lacks the sophistication of being able to quantify
each action’s individual contribution, as not all actions in a possession are equally valuable
to the final outcome.

To evaluate all actions in a possession Singh (2019) developed an expected threat (xT)
model that assigned a threat-value to pitch location and evaluated actions on the difference
in threat-value between their start and end positions. Here, threat is defined as the proba-
bility of scoring from a shot or how easy it is to move the ball to an even more threatening
position. Modelling the possession chain as a Markov game is another way of evaluating
actions that do not directly lead to shots. Markov chains use the probabilities of transi-
tioning from one state to another to model how likely the different outcomes of events
are. In the context of football, this means that given a game state, described by features
such as ball location, the likelihood of that possession ending in a goal or a turnover can
be calculated. Rudd (2011) used Markov chains to evaluate actions and players from the
2010-2011 season of the English Premier league while Nørstebø et al. (2016); Haave and
Høiland (2017) used this approach on data from the Norwegian top division.

Following a similar idea but different approach, Mackay (2017) used ridged logistic re-
gression with a sliding window to model goal probabilities for possession chains. A gener-
alised additive model to create an xG model that was included as a feature in the possession
probability model, and the data used was event-based data from five seasons of the English
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Premier League. Findings suggested that during the 2016-2017 season Manchester City’s
Kevin De Bruyne was the player that most increased his team’s goal-scoring probabili-
ties per 90 minutes played, followed by West Ham United’s Dimitri Payet and Chelsea’s
Eden Hazard. Decroos et al. (2019) created a framework for valuing player actions called
Valuing Actions by Estimating Probabilities, or VAEP, using event-based data. The idea
behind VAEP is that the value of an action made by a player on team i is the change in
the probability of team i scoring, offensive value, minus the change in probability that
team i concedes defensive value. The model was estimated using the CatBoost algorithm,
and findings suggested that the top-performing players during the 2017-2018 season of
the English Premier league were Liverpool’s Philippe Coutinho and Mohamed Salah. The
idea of estimating the probability of scoring or conceding in a specific situation is also the
basis for the expected possession value, EPV, framework developed by Fernández et al.
(2019). Using a machine learning approach the expected value of possession is defined as
a number in the range of [−1, 1] expressing the probability of the outcome of the posses-
sion, where 1 indicates that the possession ends with a goal scored by the attacking team
and −1 indicates it ending in the defending team scoring a goal. From this framework,
players and teams can then be evaluated on how their actions in three main categories,
passes, shots and ball drives, change the expected value of that possession.

Another player evaluation approach is the plus-minus metric. The idea behind plus-minus
is to evaluate a player on how the team performs with the player compared to how it per-
forms when the player is not playing. Does the player have a positive, plus, or negative,
minus, impact on team performance. Plus-minus is a common player evaluation in sports
like ice hockey and basketball, and in its most basic form, it measures the difference in
points scored or conceded with and without the player on the court. Adjusted plus-minus
(Sill, 2010), or APM, is an extension of the basic plus-minus metric that uses a regression
model to account for teammates and opponents in the final plus-minus rating. With a lot
fewer points/goals scored and less rotation in terms of team composition during a game,
football seems to be less fitting for a plus-minus rating of players. Kharrat et al. (2020)
developed two plus-minus models for football, expected goals plus-minus and expected
points plus-minus. Expected goals plus-minus is an APM model evaluating players on
their contribution to the xG achieved while expected points plus-minus is an APM model
evaluating player contribution towards the number of league table points achieved. An
APM model using goals as the basis for the plus-minus rating was developed by Sæbø and
Hvattum (2019) with the intention of modelling the financial contributions from players.

Another type of player evaluation models follows the approach known as wins above
replacement, commonly abbreviated as WAR. Known mostly for being used in several
American sports such as basketball (Basketball-Reference, 2020), baseball (Baseball-Reference,
2020), and American Football (Eager and Chahrouri, 2020) the idea behind WAR shares
many similarities with PM ratings. It seeks to quantify a players contribution to the team,
but while PM quantifies micro properties like points, goals or xG, WAR seeks to quantify
a players contribution to the macro property of winning the game. An important aspect
of WAR models is the concept of a replacement player, someone a team could bring in
as an immediate replacement for a player currently in their roster. In a paper presenting
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their WAR model for American football, Eager and Chahrouri (2020) uses data from the
NFL to create a WAR model that can be used to compute the difference in value between
players and different positions.

Technical and physical skill are undeniable parts of the overall quality of a player, but
football is also a mental game. The quality of a player also depends on the quality of
the decisions made with and without the ball. Bransen et al. (2019) created performance
metrics that evaluate players on-ball performance during different states of mental pres-
sure. Quantifying pressure as a combination of pre-game pressure, based on such things
as league standings, form and whether it is a derby game, and in-game pressure, based
on such things as score and time left in the game, players were evaluated on decisions,
execution and total contribution.
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Chapter 3
Theoretical Foundation

This chapter introduces concepts, models, and theory that are used later in this thesis.
First, three models used by Hammarby IF for analysis and coaching is presented. These
models are important parts of the analyses in this thesis and the models are therefore
presented individually. Following the presentation of the three models, relevant theory
on generalised additive models and artificial neural networks is presented. Finally, the
concepts of centroids, compactness, and Bézier curves are presented. These concepts are
relevant for feature engineering and data processing.

3.1 Models for Creating Off-Ball Metrics
This section covers three different models currently used by Hammarby IF that are used
as parts of the further analyses conducted in this thesis. First, the pass probability model
developed by Peralta Alguacil (2019) inspired by Spearman et al. (2017) is presented,
followed by the pitch control model developed by Fernandez and Bornn (2018). Last,
the pitch impact model developed by Twelve is presented. The focus of the upcoming
section is to give an introduction, short explanation, and overview of the three models.
For a more thorough and detailed explanation, the reader is encouraged to explore the
referenced research papers.

3.1.1 Pass probability model and reachable area
Modelling the probability of a successful passing event in football is useful because it
allows for a detailed analysis of the passer’s skill level and their decision-making pro-
cess. Several approaches to modeling the probabilities of successful passes exist. One
approach is to train a regression model on a large data set of passes (Szczepański and
McHale, 2016; Håland and Wiig, 2018; Tovar et al., 2017) and estimate the probabilities
of successful passes. The model used in this thesis employs a different approach and is a
physics-based model developed by Peralta Alguacil (2019) inspired by the work done by
Spearman et al. (2017). The concept is based on modelling the motion of the ball as well
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as the reachable area for all players on the pitch. Given the positions of teammates and
opponents, a surface of the probability for a pass being hit towards a certain area being
intercepted and controlled by a teammate can be created.

Equation (3.1) is used to model the motion of the ball, with ~r being the ball’s motion
vector.

~̈r =

{
− 1

2mρCDAṙ
~̇r if t ≤ 2tmax

3

−µgr̂ if t > 2tmax
3

(3.1)

The equation is split into two parts with the assumption that two forces are acting on the
ball, aerodynamic drag force and friction between grass and ball. It is also assumed that
one of these two forces is always dominant and that the other is therefore negligible. The
Magnus force, caused by the rotation of the ball, is not included since including it would
require data on the exact spin of the ball which is not available at this time. The first part
of Equation (3.1) models ball movement influenced only by aerodynamic drag. Where
m is the mass of the ball, ρ is the density of air, CD is the drag coefficient and A is the
cross-sectional area of the ball. This part, therefore, models the forces affecting the ball
while the ball is moving above the pitch surface. The second part models the ball’s move-
ment influenced only by the friction between the ball and the pitch with µ representing the
friction factor and g the gravitational constant. In the motion model, the dominant forces
are switched at t = 2/3tmax, where tmax is the total time for the ball trajectory. The
time t when the dominant forces switch is found by Peralta Alguacil (2019) through a trial
and error experiment where t = 2/3tmax were found to yield trajectories most similar to
real-life passes.

Equation (3.2) describes the motion of the players, where ~F is the driving force of player
motion, their legs, and k~v is a drag force limiting their maximum speed.

m
d

dt
~v = ~F − k~v (3.2)

Equation (3.3) is the solution to the differential equation in (3.2)

~x− ~x0 = Vmax

(
t− 1− exp−αt

α

)
~e+

1− exp−αt

α
~v0 (3.3)

where ~x0 and ~v0 is the initial position and initial velocity of the player respectively.
Vmax = F/k is the maximum speed a player can reach, α = k/m is the magnitude
of the resistance force and the player’s direction of acceleration is represented by the unit
vector ~e. Equation (3.3) then describes a player’s reachable area as a circle with the second
part of the equation determining the center of the reachable area, and the first part deter-
mining its outer bounds. This equation for a player’s reachable area is not only used in the
pass probability model but is an important part of the optimisation procedure explained in
Chapter 4.1.

Following the equations of motion for both the ball and players, a player is deemed to
have a chance of intercepting a pass if he can reach any part of the ball’s trajectory with a
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time ∆t = tint−T ≥ 0 where tint is the time for the player, and T is the time for the ball
to reach a point along the trajectory of the ball.

An assumption is made that there exists some form of uncertainty regarding interceptions.
Therefore, the probability of a player being in a position where he is able to intercept the
ball at time tint is modelled by using a logistic distribution presented in Equation (3.4).
This uncertainty around ∆t is represented by σ.

Pint =
1

1 + exp
T−tint√

3σ/π

(3.4)

Furthermore, an assumption is made that players increase their probability to control the
ball during an interception with increased time in proximity of the ball. The probability
that a player in proximity to the ball for a time t is able to control the ball is then given by
the exponential distribution shown in Equation (3.5)

P (t) = 1− expλt (3.5)

Combining Equations (3.4) and (3.5), the probabilities for each player to receive the pass
is solved by the system of differential equations shown in Equation (3.6)

dPj
dT

=

(
1−

∑
k

Pk(T )

)
Pint,j(T )λ (3.6)

Table 3.1 shows the values used for properties in the equations used to calculate ball tra-
jectories and the reachable areas for players. All values are equal to the ones used by
Peralta Alguacil (2019). Details on the reasoning behind the exact values of all properties
are not provided in this thesis, but are found in Peralta Alguacil (2019) and Spearman
et al. (2017). An illustration of the pass probability surface can is shown in Figure 3.1. In

Property Value
m 0.42 kg
ρ 1.225 kg/m3

CD 0.25
A 0.038 m2

µ 0.55
g 9.8 m/s2

Vmax 7.8 m/s
α 1.3

Table 3.1: Values for different constants used in Equations (3.1) - (3.3).

this thesis, the pass probability model will be referred to by the abbreviation PP. Further
explanations on the PP model can be found in Peralta Alguacil (2019).

3.1.2 Pitch control model
The pitch control model proposed by Fernandez and Bornn (2018) is based on how much
influence a team is deemed to have over a certain area on the pitch. Influence, I for player
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Figure 3.1: Illustration of PP in a situation during a match between Malmö FF (green) and Ham-
marby IF (red).

i at location p and time t, is based on both the position and velocity of the player as well
as the distance between the player and the ball. Equation (3.7) shows the players influence
at the position p normalised by the players position pi.

Ii(p, t) =
fi(p, t)

fi(pi(t), t)
(3.7)

The function fi(p, t) is defined as the standard multivariate normal distribution probability
density function as shown in Equation (3.8).

fi(p, t) =
1√

(2π)2det[COVi(t)]
exp

(
−1

2
(p− µi(~si(t)))TCOVi(t)−1(p− µi(t))

)
(3.8)

From this measure of individual influence, the total pitch control of a team ,PC(p, t), at
position p and time t can be calculated using Equation (3.9).

PC(p, t) = σ
(∑

i

Ii(p, t)−
∑
j

Ij(p, t)
)

(3.9)

Here i and j are the players on the two different teams and σ is the logistic function. Equa-
tion (3.9) thereby transforms the difference in control between the two teams at a point on
the pitch to a probability range between 0 and 1. Calculated for every point on the pitch
at a time t, a surface describing the degree or probability of control for the two teams is
generated. Further details on the derivation of the equations and reasoning behind the pitch
control models can be found in Fernandez and Bornn (2018). Figure 3.2 shows the pitch
control surface during a match between Hammarby IF and Malmö FF. Areas controlled
by Malmö are colored green and have values closer to 1, while areas controlled by Ham-
marby are red and closer to 0. PC, short for pitch control, will be used when referring to
this model in this thesis.
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Figure 3.2: Illustration of PC in a situation during a match between Malmö FF (green) and Ham-
marby IF (red).

3.1.3 Pitch impact model
In general, a pitch impact model seeks to quantify the value, or impact, of possessing the
ball in a certain position on the pitch. One central question these types of models seek to
answer is therefore what the impact of moving the ball from one position to another is.
In this thesis, the pitch impact model used is developed by the Swedish company Twelve.
This model is a combination of an xG model, similar to Rathke (2017), and a model for the
probability of a possession resulting in a shot. Equation (3.10) shows how the probability
of a goal from a given pass is calculated.

Ppass(Goal) = P (goal|shot) · P (shot) (3.10)

P (goal|shot) is the probability of a shot resulting in a goal, xG while P (shot) is the prob-
ability that the possession chain the pass is a part of leads to a shot. A possession chain
is a sequence of actions by a team without losing possession. Both parts of the model
were fitted using logistic regression on data from three seasons of the English Premier
League, Spanish LaLiga, and the UEFA Champions League. First, a regression is fitted
using a value of 0 if the possession chain ends without a shot and 1 if it ends with a goal.
Possession chains that lead to a shot, but not to a goal, are valued using a second logistic
regression to find the probability of the shot ending in a goal (Peralta Alguacil et al., 2020).

Many possible applications of this model exist. One application is to evaluate teams and
individuals on their on-ball actions in terms of how they change the impact of the current
possession. This can be used to evaluate player performance or gain deeper insight, be-
yond just the final score or number of shots, into completed matches. Another application,
and the one most useful for this thesis, is to use the results from this model to evaluate the
impact of moving the ball to different locations on the pitch. Given the ball’s location, a
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Figure 3.3: PI surface for two passes with different starting coordinates (blue dot). Color intensity
gives the probability that a pass ending at that point results in a goal.

surface of the probabilities that a possession chain ends with a goal if the ball is moved to
that point can be calculated. This can give an indication if a player is in a dangerous posi-
tion for the opponent. As with the PP and PC models presented in the previous sections,
further referrals to the pitch impact model will be done by the abbreviation PI. Figure 3.3
shows the PI surface for two different ball locations.

3.1.4 PC*PI model

As both the PC and PI models are probabilistic, another metric can be generated by multi-
plying the value of PC and PI, hereby referred to as PC*PI. This metric can be interpreted
as a weighted PC model, by assigning a positive bias towards controllable areas with higher
impact. The result of combining the PC and PI models is illustrated in Figure 3.4.

Figure 3.4: Illustration of PC*PI for the same situation as in Figure 3.2.
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3.2 Bézier Curves
Gregory (2019) has previously used Bézier curves to model the runs of football players.
An advantage of modelling runs as Bézier curves is that it creates a continuous curve from
a set of discrete points so that a run can be interpreted at any point in time. Floater (2015)
states that a Bézier curve of degree n, defined on some interval [a, b], is a parametric
polynomial given by

p(t) =

n∑
i=0

ciBni (u), t ∈ [a, b] (3.11)

Here, u is the local variable, u = (t− a)/(b− a), the points ci ∈ R are control points of
p and Bni is the Bernstein polynomial

Bni (u) =

(
n
i

)
ui(1− u)n−i, u ∈ [0, 1] (3.12)

Intuitively, a Bézier curve can be interpreted as the center of a mass of a set of point
masses. By allowing these point masses to vary by a parameter t, a curve is created.

  P

  P

  P

  P

Figure 3.5: A third order Bézier curve and its corresponding four control points.

3.3 Centroid and Team Compactness
The centroid and team compactness are measures of team structure introduced in the pre-
ceding project thesis Cook et al. (2019). The centroid, or geometric center, is the arithmetic
mean of all players on the pitch. At time t the centroid in x and y direction, given by x̄t
and ȳt, is defined as

x̄t =
1

n

n∑
i=1

xit (3.13)

ȳt =
1

n

n∑
i=1

yit (3.14)

where xit, and yit is the coordinates of player i at time t, and n are the number of outfield
players on the pitch being tracked.
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To quantify the distances between players on the same team, a definition of team com-
pactness is introduced. Team compactness in x and y direction, CXt and CYt, is defined
as the standard deviation of individual player positions with respect to the team centroid:

CXt =

√∑n
i=1(xit − x̄t)2

n
(3.15)

CYt =

√∑n
i=1(yit − ȳt)2

n
(3.16)

Furthermore, the total compactness is given by the Euclidean distance of the compactness
in x- and y direction:

TCt =
√
CX2

t + CY 2
t (3.17)

3.4 Generalised Additive Models
A generalised additive model (GAM) is an extension of the generalised linear model
(GLM) where the relationship between the dependent and independent variables are changed
from the linear function

∑n
1 βiXi to a more general function

∑n
1 si(Xi). In these addi-

tive functions s(·) are non-parametric smooth functions estimated as part of the fitting
procedure (Hastie, 2017). The result of this extension is a model that allows for the inclu-
sion of non-linear relationships between dependent and independent variables. Equation
(3.18) shows a GAM where the dependent variable depends on n smooth functions and an
intercept term.

E(Y |X) = s0 +

n∑
i=1

si(Xi) (3.18)

A GAM with some explanatory variables represented as smooth functions and some as
linear functions, shown in Equation (3.19), is an alternative when some variables are as-
sumed to have linear relationships with the dependent variable while others are assumed
to have non-linear relationships.

E(Y |X) = s0 +

n∑
i=1

si(Xi) +

m∑
i=n+1

βiXi (3.19)

Depending on the problem, different distributions can be set for the conditional mean
E(Y |X) and the link function g(E(Y |X)). Several distributions and link functions are
possible through available frameworks, examples of distributions are, normal, logistic,
gamma and beta distributions while examples of link functions are, identity, logit, and
probit link functions. As the beta distribution is used later in this thesis, Equation (3.20)
describes the probability density function of the beta-distribution.

f(x;α;β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 (3.20)
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Where Γ is the gamma function, and α and β are shape parameters regulating the shape
of the distribution. A GAM with smooth and linear terms with a set distribution of the
conditional mean and a link function can, therefore, be expressed by Equation (3.21).

h(X) = g(E(Y |X)) = s0 +

n∑
i=1

si(Xi) +

m∑
i=n+1

βiXi (3.21)

3.4.1 B-Splines

One way of creating non-parametric smooth functions is to use penalised basis splines,
known as B-splines. These splines consist of connected polynomial pieces that are joined
at knots, represented in this thesis by xi for knot i. The splines can be of different de-
grees, with B-splines of the degree 1 being two linear pieces connected at one knot, xi,
B-splines of degree 2 being three quadratic pieces connected at two knots, xi and xi+1,
with splines of higher degrees following the same pattern (Eilers and Marx, 1996). Figure
3.6 is an illustration of five b-splines of degree 2. By using B-splines, a non-parametric

x1 x2 x3 x4 x5 x6 x7 x8

Figure 3.6: Illustration of 5 b-splines of degree 2

smooth function can be obtained as a linear combination of the splines. For a curve ŷ
fitted to the data (xi, yi) where the value at x for the jth B-spline of degree q is Bj(x; q)
Equation (3.22) represents the fitted curve. The estimated height or amplitude of spline j
is represented by the coefficient âj .

ŷ(x) =

n∑
j=1

âjBj(x; q) (3.22)
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An illustration of the smooth function created by five b-splines of degree 2 is shown in
figure (3.7), where the black lines are the individual splines while the blue line represents
the non-parametric smooth function that is the sum of the individual splines.

x1 x2 x3 x4 x5 x6 x7 x8

Figure 3.7: Illustration of a smooth function (in blue) created using five b-splines of degree 2

3.4.2 Model estimation

When estimating GAMs penalised likelihood maximation is used, which in practice will
be achieved with penalised iterative least squares algorithm (P-IRLS) (Wood, 2006). With
all splines of the same degree, q estimation of the curves is done by effectively minimising
the objective function shown by Equation (3.23).

S =

m∑
i=1

(
yi −

n∑
j=1

ajBj(xi)
)2

+ λ

n∑
j=k+1

(∆kaj)
2 (3.23)

Here, λ is the smoothing parameter, regulating the penalty on the differences between
coefficients of adjacent B-splines. Figure (3.8) shows how two different values for the
smoothing parameter changes the smooth function. A higher λ value penalises the differ-
ence in a values more, leading to a smoother function with less wiggliness. When building
GAMs, λ has to be selected prior to fitting the model. To estimate λ, restricted maximum
likelihood (REML) can be used (Patterson and Thompson, 1971). The REML approach
measures the fit of the variance of the parameters by finding the mean of the likelihood
over all possible values of B (Wood, 2006). Other algorithms to estimate λ exist, but the
REML is preferred as it is less prone to converging towards a local minima (Wood, 2011).
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 = 0.2

 = 8

Figure 3.8: Illustration showing the effect of the smoothing parameter for λ = 0.2 and λ = 8

3.4.3 Model selection

To ensure a final model that accurately represents the problem at hand, it is desirable
to penalise independent variables that are insignificant. This can effectively be achieved
by introducing a shrinkage term to the smoothing penalty of the smooth functions. The
shrinkage term ensures that when the smoothing penalty is large, the smooth is set to zero,
which essentially means a linear term. By doing this, it is possible to perform an automatic
feature selection by modifying the eigenvalues of these shrunk terms to a small positive
number and penalise them out of the model. These terms will appear as horizontal lines at
0 in the final model.

3.5 Artificial Neural Networks

The field of artificial neural networks (ANNs) attempts to create structures in the spirit of
neurobiology to solve computational problems of the kind that biology does effortlessly
(Hopfield, 1988). This is done by mimicking the computational mechanisms of the animal
brain. From a mathematical perspective, an ANN essentially functions as a non-linear
statistical model (Hastie et al., 2009).
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Figure 3.9: Illustration of an artificial neuron.

The core component of an ANN is the artificial neuron, hereby referred to as a node.
A node is in essence a mathematical representation of the brain’s core component, the
neuron. To explain how the ANN functions mathematically, it is convenient to consider a
single node of the network. An edge between nodes i and j propagates an activation ai
from i to j. The activation is multiplied by a weight wi,j that denotes the strength and sign
of the input. Nodes also have a dummy input a0 = 1. For every node j, the weighted sum
of inputs inj is computed and the activation function g is applied to the sum which gives
the node’s output.

aj = g(inj) = g
( n∑
i=0

wi,jai
)

(3.24)

3.5.1 Feed-forward neural network
The feed-forward neural network (FFNN) is a type of neural network, illustrated in Figure
3.10. The network is a directed network where information flows from left (input) to right
(output), without any internal cycles. Nodes are organised in layers corresponding to their
position in the network. The input and output layers handle input and output to the network
respectively, while any layer between the two is called a hidden layer. Typically, the hidden
layers and output layers have different activation functions. In the hidden layers a regularly
used activation function is the rectified linear unit (ReLU) function, r(x) = max(0, z).
The activation function most frequently used in the output layer is the sigmoid function
f(x) = 1

1+e−x . However, when using ANN’s as a regression model, it is normal to
employ a linear activation function for the output layer as the sigmoid function is bounded
x ∈ [0, 1]. When using a linear activation function in the output layer, there has to be non-
linear activation functions in the hidden layers for the ANN to be able to capture non-linear
relationships in the input data.

3.5.2 Training of ANN’s
Training of ANN’s is usually conducted by using the gradient descent approach and back-
propagation. Data is iteratively passed through the network, and the error between the
actual target and the predicted value is calculated by a loss function, often the mean
squared error (MSE). The derivatives of the loss function are calculated and propagated
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Figure 3.10: Architecture of a FFNN with two hidden layers.

back through the ANN using backpropagation. By using backpropagation, the weights of
the nodes are adjusted by calculating how much they contributed to the final error in the
loss function. An iteration of this entire process is referred to as an epoch.

When training ANN’s, an optimiser algorithm is assigned with the task of minimising the
loss function. An example is the adaptive moment estimation (ADAM) optimiser. This
is an algorithm for first-order gradient-based optimisation, based on adaptive estimates
of lower-order moments (Kingma and Ba, 2014). The training of the network is usually
finished when the loss falls below a predetermined threshold, or after a given number of
epochs have been completed.

Generalisation

One of the main goals of machine learning is to be able to create models to detect patterns
and give accurate predictions on new and unseen similar data. The concept of generalisa-
tion refers to the ability to adapt properly to new, previously unseen data, drawn from the
same distribution as the one used to create the model. The number of samples available,
the complexity of the underlying data, and network architecture are all factors impacting
the ability to generalise well. The process of training a network to generalise well is a de-
manding task with several challenges to overcome. One of the main being avoiding over-
and underfitting. Figure 3.11 illustrates this problem. The blue points show the samples
used to train the model, with the orange line as the underlying structure. The blue line
is the fitted function. Underfitting is a problem of the model not being complex enough
to capture the relationship between the features and a target variable, neither producing
accurate predictions on training data nor being able to generalise to new data. Overfitting
is the problem of a model being too complex relative to the complexity of the data, fitting
the data well on the training set, but not being able to generalise well on new data. This is
often a result of fitting to noise in the training set. The result of an overfitted model is that
it performs well on the training data, but poorly on new, unseen data.
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Figure 3.11: Example of three categories of model fits for ANN’s.

L1 and L2 regularisation

When using a complex model architecture, regularisation techniques can be used to over-
come overfitting and reduce test error. A consequence of employing regularisation is often
an increased training error. L1 and L2 regularisation work by adding a norm penalty Ω(θ)
to the loss function, limiting the capacity of the ANN to fit to the data. Equations (3.25)
and (3.26) show the different norm penalty in L1 and L2, with w referring to the weights.

Ω(θ)1 = ||w||1 (3.25)

Ω(θ)2 =
1

2
||w||22 (3.26)

L2 is commonly known as weight decay, driving weights closer to the origin by adding the
sum of squared values of the weights to the loss function. L1 on the other hand adds the
absolute value. L1 therefore has the ability to cause some of the weights to become zero,
essentially working as a mechanism for feature selection. L2 regularisation forces the
weights to be small, but does not make them zero and works best when all input features
influence the output (Goodfellow et al., 2016, p. 227-231).

Early stopping

As large models are trained, one often observes that training errors decrease steadily over
time, while the test set errors begin to rise after some training iterations. This means that
the model is starting to overfit, as it is able to describe the training data very well, but loses
the ability to generalise. Early stopping is a technique where the training is stopped when
the error of the test set is starting to rise.
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Chapter 4
Methodology

This chapter presents the methodology used to quantify and evaluate off-ball decision mak-
ing. First, a technique is presented for finding optimal positions for maximising off-ball
metrics. Then, a normalized scoring criterion is introduced to score individual movement
decisions. Last, the method for determining and identifying relevant situations are de-
tailed.

4.1 Defining Off-Ball Success

Quantifying off-ball involvements is a challenging task as there is no clear definition of
success, and the outcome space is large. Players may have great impact on the outcome
of a situation by creating space for their teammates, pressuring defenders, or positioning
themselves in positions with a high probability of receiving the ball. Being at the right
place at the right time is a task highly dependent on teammates and opposing players, as
well as the players’ assigned roles. With many ways of impacting a situation, quantifying
and measuring off-ball involvements demands breaking the problem into different aspects.
This means that no single optimal position may exist, but optimal positions can be found
for maximising specific metrics.

A technique of identifying the optimal position for the different metrics of off-ball in-
volvement will now be presented. This technique is developed by Peralta Alguacil (2019)
and used by Hammarby IF for coaching and analysis. This will be restricted to using PC,
PI, and PC*PI. As the code for computing the PP surface is not parallelised, using this
metric to analyse large numbers of situations is at this moment so computationally ex-
pensive that it is considered outside the scope of this thesis. Therefore, PP is not used in
this thesis, but as the reachable area for players is an important part of the methodology
presented in this chapter, the part of the PP model describing player motion is used.
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4.1.1 Scoring off-ball metrics
For this thesis, the off-ball metrics are restricted to the PC, PI, and PC*PI metrics, all using
numerical measures to quantify off-ball involvements. All are represented as 68 × 105
matrices, covering each square meter of a pitch following UEFA category three or four
pitch standard (UEFA, 2018). All matrices consist of probabilistic numbers, ranging from
0 to 1. In the PC-matrix a value of 0 corresponds to a position totally controlled by the
opponent, 0.5 is a neutral point and 1 corresponds to total control of the position. For PI,
the value corresponds to the probability of obtaining a goal if the ball is moved to that
point. As the PC- and PI-matrices are probabilities, the PC*PI matrix is computed from
the Hadamard product of the PC and PI matrices, also giving probabilistic numbers. The
matrices are given as

Am =


am,1,1 am,1,2 · · · am,1,105
am,2,1 am,2,2 · · · am,2,105

· · · · · ·
. . . · · ·

am,68,1 am,68,2 · · · am,68,105

 0 ≤ am,y,x ≤ 1 (4.1)

where y and x are the coordinates on the pitch, and m is the metric used. From the values
in the matrices generated from a situation, a score can be assigned to the different metrics.
In this thesis, the score player i obtains using metric m during observation j is referred to
as Si(m, j). For PI, the score is computed by simply obtaining the value in the PI-matrix
for the position (x, y) of the player:

S(PI) = ay,x (4.2)

For the PC- and PC*PI-matrices, the score is computed by summing the values in the
matrices

S(m) =

xu∑
x=xl

68∑
y=1

am,y,x, m = {PC, PC*PI} (4.3)

where xl and xu represent a lower and upper bound set on to the x axis for the area where
the sum is calculated. This is done to ensure that the pitch control is restricted to an area
of interest. This will have a substantial effect on the scores S(PC) and S(PC ∗ PI),
and therefore also the optimal position found. For this thesis, the lower bound xl is set
to the opponent player positioned second-most offensive, and the upper bound xu is set
at the opponent placed third-most defensive. This is the lower and upper bounds used by
Hammarby IF for computing the PC score in their analyses. An illustration of this can be
seen in Figure 4.1. If no such restriction is set, players will on many occasions increase
the PC score the most by moving to non controlled areas, which are the areas where the
PC-matrix value is 0.5. Non controlled areas can be observed as white areas on the pitch
in Figure 4.1. For a defender during attacking play, this means moving backwards on the
pitch, which intuitively is not optimal when attacking. On the other hand, for an attacker,
this means pushing forward past opponent defenders, which is an attacking trait better
assessed with the PI model, as the PI score increases when moving towards the goal. In
essence, the lower and upper bounds help to cope with the non-controlling areas and makes
it a tool for assessing players ability to capture areas that are controlled by the opponent.
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xl xu

Figure 4.1: Example of lower and upper bounds, xl and xu, used when calculating PC and PC*PI
matrices.

4.1.2 Reachable area and assumptions

By assessing the scores obtained from Equation (4.2) and (4.3), different positional alter-
natives can be compared by evaluating the scores obtained for each metric. The optimal
position can also be found for a metric by finding the position giving the highest score.
However, it would make little sense to uncritically optimise a player’s position given the
positions of teammates and opponents, as their position will likely be dependent on each
other. It is, therefore, more reasonable to find the optimal position on an area that is reach-
able in the short term future, given a player’s initial position and velocity. This way, the
mutual dependency between the positions of players becomes less prevalent. A central as-
sumption in this thesis regards players ability to predict future game states over short time
intervals. As the optimal position in the future is dependent on the future positions of the
other players, finding the optimal position is dependent on the player being able to predict
other players’ short term movement accurately. The assumption, therefore, becomes that
predicting the movement of other players, and adjusting their own movement in response,
is a skill that some players master better than others. This leads to some players being
better at making positional decisions as they are able to achieve higher S(m) in similar
situations.

By using initial position and speed, the reachable area of a player is computed using Equa-
tion (3.3) from Section (3.1.1). Then, 200 sample points are created inside the reachable
area using a random angle and radius stretched out from the reachable area centre. All
sample points that lead to a player being positioned outside the pitch or in an offside posi-
tion are removed. From the reachable sample points computed, the values of the different
metrics are stored with the highest and lowest scoring points working as optimal and worst
points for the different metrics. Figure 4.2 illustrates this process.
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Figure 4.2: Illustration of reachable area (dashed line) generated from a player (black dot) with an
initial position and speed. The coloured surface represents the value obtained from a chosen metric,
with associated points scoring the optimal and worst score.

4.1.3 Normalized scoring criterion
Knowing the optimal positions for a situation, and the actual position of a player, a mea-
sure can be obtained of how close the player was from achieving the optimal score. A
consequence of bounding the scoring area on movable objects, in this case, the opponents,
is that the scoring criteria are changing depending on the situation. To be able to compare
situations with one another, a normalized scoring criterion has to be introduced. Calcu-
lating the score S(m, j) for all 200 sampled points, the maximum and minimum score
are set as the optimal Smax(m, j) and the worst Smin(m, j) score respectively. Players’
performance is therefore measured relative to their ability to influence the outcome score
of the different aspects and not the actual value of the metric S(m) itself. By using the
players obtained score, and the maximum and minimum value, the relative score,R(m, j),
for observation j using metric m is defined as

R(m, j) =
S(m, j)− Smin(m, j)

Smax(m, j)− Smin(m, j)
(4.4)

bounding the score to an interval between 0 and 1. This approach makes the score uncrit-
ical of initial position, making it possible for all players, regardless of the initial position
and role, to obtain high scores on all metrics. Players are therefore evaluated on their de-
cision making in that specific situation, and not merely the outcome of the situation as this
is highly dependent on the characteristics of the situation itself.

4.1.4 Interpreting scores and strategies
From the normalized scoring criteria presented in Equation (4.4), a score close to 1 means
that a player is either located at, or close, to the optimal position, or that the player has
found an alternative position that achieves a score similar to the optimal position. A score
close to 0 means that the player is located at a position scoring close to the worst score.
The following sections introduce the fundamental trends for achieving optimal score for
the three models used in this thesis.
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Optimal point PC

When finding the optimal point for PC, it is necessary to recognise the effect of the lower
and upper bound, xl and xu, when computing the score S(PC). When a player is outside
or close to the boundaries, the player is often encouraged to move deeper into the bounded
area to increase S(PC), as only values inside the boundaries contribute to this score. For
a player already well inside the boundaries, the score increases if the player can capture
uncontrolled areas, or is able to overtake control obtained by the opponent. Hence, no
incentives to follow certain directions exists, with the individual situation deciding the
optimal direction of movement.

Optimal point PI

For the PI model, the score increases with movement towards the goal line. This can be
observed in Figure 3.3, as the value of a position increases closer to the goal. The optimal
point for PI will ,therefore, always be towards the goal, but not past the offside line. This
can therefore be considered as an attacking feature, scoring the pressure a player chooses
to put on the opponent. It is important to recognise the level of intensity that is required to
score high on this metric, as the player will have to move with maximum speed towards the
goal to reach the optimal point. For attackers positioned close to the offside line, however,
this point may be easier to reach as the point cannot move behind the offside line. A
consequence of this is that players are encouraged to move behind the offside line, as this
score exceeds the optimal score in the reachable area, giving them a R(PI, j) > 100%.
This problem is addressed and handled in Section 4.2.2.

Optimal point PC*PI

As PC*PI is a combination of PC and PI, scoring high on this metric is the ability to
increase them both. As with PC, this metric is scored by summing the values of the model
within the lower and upper boundaries. The clue is therefore not how much pressure the
player achieves in his position, but how much his position puts control over an area of
pressure, in this case, closer to the opponent’s goal. An optimal score can, therefore, be
obtained if the player is able to capture control from the opponent higher up the pitch,
encouraging moving towards the opponent’s goal, while obtaining control.

4.1.5 Identifying strategies and evaluating performance

Different player roles and situations impact the attractiveness of achieving high scores on
individual metrics. A defender may have a higher desire to focus on an aspect associated
with defending, while an attacker may choose to focus on an attacking aspect in the same
situation. From the collected scores, the aspects a player chooses to focus on can be
identified. The overall performance on the different metrics can be found by averaging
the scores from the collected data. By restricting the data set only to include situations
meeting certain conditions on game state, one can identify what aspects a player chooses
to focus on for a specific situation. As situations differ by many factors, a prediction
model can be created for situations to give an indication of how the player is expected
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to perform in a particular game state. Performance can, therefore, be evaluated by how
the player performed compared to the expected performance from the prediction model,
indicating if a player performs better or worse than what is to be expected for the different
metrics. Creating such a prediction model demands a detailed description of the game
state, a process presented in Chapter 6.

4.2 Situations of Interest
Building accurate prediction models demands collecting a training set that covers situa-
tions and outcomes that are similar to the situations chosen to model. Football is a sport
of continuous states, meaning that there exists an infinite number of unique situations.
Finding two identical situations are, therefore, unlikely. Collecting many observations is,
therefore, a necessity for creating general models, covering situations that are as similar as
possible to the chosen situations. The more observations collected, the probability of the
models having seen a similar situation increases. However, an increased number of obser-
vations demands more computational power. Computing optimal position for a player is a
computational heavy process. This is especially the case for the PC model, where Equation
3.9 has to be calculated for all 105*68 square meters of the pitch, for each of the 200 points
sampled in the reachable area. By using an external GPU1, and parallel computing, this
process is sped up. Still, collecting one observation takes approximately one second. With
a total of 1,296,000 seconds played in the 2019 Allsvenskan, and 22 players on the pitch,
an uncritical computation of optimal position for every second would take approximately
250 days with the equipment used for this thesis, collecting 28,512,000 observations. To
overcome this problem, the problem is narrowed down to a situation based approach; only
collecting observations from situations that fit a certain description.

4.2.1 Selecting situations

By specifying situational constraints in the tracking data when collecting observations, the
number of similar situations collected can be increased without running through all the
data. There are a number of different types of situations that could be analysed through
the lens of the models presented in this thesis. With football being a two-way game, the
objective for both teams is the same. Both teams seek to score goals while not conceding,
meaning that both defensive and offensive situations can be analysed through the same
lenses. Currently, the PC and PI models have primarily been used to assess performances
during offensive situations, so continuing with this focus is deemed to be the most use-
ful alternative. Passes are suitable as markers for when situations of interest occur as
they are discrete and recognisable events. Since they move the ball from one place to
another, passes are assumed to be catalysts for movement as players seek to re-position
themselves for the next situation. The assumption, therefore, becomes that passing events
are situations where players are forced to make positional decisions, and it is these types
of decisions that are deemed to be most intriguing to analyse. Passes made in the attack-
ing half of the pitch are therefore chosen as markers for the situations to be analysed in

1The GPU used in for this work: Nvidia GTX 1060 graphical processing unit
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this thesis. The initial positions of players are at the exact time of the pass, with optimal
positions computed for the following second.

4.2.2 Removing non-influential and invalid situations
Situations where the player is experiencing limited ability to influence, meaning that the
player’s decision has little impact on the PC score, are deemed to not be of interest. These
situations are, therefore removed from the data set. The reason for this is that the player
will likely focus on other aspects when not in a position to influence the PC score, e.g.
moving to an area where the player can influence. This is often the case for defenders
positioned far away from the lower and upper bound, xl and xh, for where the PC and
PC*PI score is computed. This can provide inconsistent contributions to the performance
evaluation of individual players later conducted in this thesis. A threshold is set for the
variability of the S(PC) obtained for the 200 sampled points of the reachable area. The
standard deviation is used, and the threshold set to 1. This implies that the standard devia-
tion of the S(PC) values in the reachable area must be above the equivalent of capturing
one full square meter of total control from the opponent within the lower and upper bound
of the scoring area. This process removes approximately 15% of the observations. The
distribution of R(PC) scores obtained by players before and after removing these obser-
vations can be seen in Figure 4.3.
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Figure 4.3: Illustration of the PC score distribution before and after removing observations deemed
non-influential.

Observations of goalkeepers and the player receiving the pass are removed, as they are
assumed to follow different criteria and rules for positioning. Goalkeepers’ objective is
to stay back to protect their own goal, and pass receivers follow the trajectory of the ball.
Furthermore, players scoring well above or below the score bounds of 0 and 1 are re-
moved, as they violate the score criteria. This can happen for several reasons; The main
reason being errors in the tracking data, further elaborated in Chapter 5. Another reason
is the sampling process of positions in the reachable area. As the full reachable area is not
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covered completely, the player might be able to find a position yielding a score slightly
over or under the optimal and worst points of the reachable area. These observations are
not filtered, but the scores are transformed to the closest scoring bound. A third reason is
found when attacking players move behind the offside line, scoring higher than 1 on PI.
A scoring threshold of 1.1 is used, removing the most severe cases. This is the case for
approximately 1% of the observations.
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Chapter 5
Data

The following chapter details the process of preparing the data for use in the models cre-
ated in Chapters 6 and 8. An introduction to the data sources is given, followed by an
explanation of the structuring, merging, and processing of the data.

5.1 Signality Tracking Data
The data used throughout the thesis was provided Signality. Signality provides a video-
based tracking system that automatically tracks and tags all 22 players, ball, and referees
on the field. The data used is from the entire 2019 season of the Allsvenskan, which cor-
responds to a total of 240 games. The data files provided by Signality are structured in a
folder for every half of each match i.e., 45 minutes of game time. Each folder contains the
following separate json-files; events, tracks, info, and stats. An explanation of the content
of the files is given in Table 5.1.

File Content
events.json Information about events during the game. Typically runs, passes and

interceptions.
tracks.json Gives the positions of players, ball and refferees on the pitch 25 times a

second.
info.json Details on players on home- and away teams. Mapping of player name

to tag ID in the tracking file.
stats.json Aggregated stats for both players and teams throughout the game.

Table 5.1: File types in supplied data set and the respective content of each file.

By using a video-based tracking system, Signality is able to identify the locations of all
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players on the pitch, without using wearable sensors. The system tracks the different play-
ers by linking their jersey number to a tag id, which uniquely pairs the player to the tracked
position.

5.2 Extracting Relevant Situations

As discussed in Section 4.2, a choice was made to focus on attacking passing situations.
One way to identify attacking passing situations is to go through all matches in the data
and manually label the relevant situations. But with a large number of matches to analyse
this would be an extremely time-consuming process and therefore not feasible. Instead,
a set of conditions are defined with the intention of using them to automatically identify
relevant situations and establish ball possession for players and teams. These conditions
can also be used to define the exact timing for when these situations occur, as well as the
consistency in timing and state when extracting similar situations. The following game
states and timing can be drawn from associated conditions:

i) Identifying the player with possession of ball: Ball speed under 10 m/s and at
least one player is positioned within 3 meters of the ball. If these conditions are not
met, no player has possession. If they are, the player closest to the ball is the player
with possession.

ii) Identifying the team with possession of ball: If a player is deemed to be in pos-
session of the ball, following the first condition, the team of the player is deemed
to be in possession. If no player has possession, the team of the next player with
possession of the ball has possession. One team is therefore always in possession of
the ball.

iii) Identifying passes and their exact time of occurrence: Signality provides an event
file that contains information on passes, their timing, and the players conducting
them. However, there exist small inconsistencies in the timing of the passes from
the event files to the tracking files. To cope with this, conditions are added to define
the exact timing of passes. The player making the pass has possession of the ball
within±2 seconds of the pass in the event file. The time when the player making the
pass loses possession of the ball, again following the first condition, is then deemed
to be the exact time of the pass.

A short video can be accessed from the following link1 showing an excerpt of extracted
successful passes on the opponent’s half made by Hammarby IF against GIF Sundsvall,
17. August 2019. Positions of the players and ball are gathered from tracks.json. The
player with possession of the ball is identified by being bold. The start and end coordi-
nates of passes, registered from the events.json-file, are represented by arrows, with their
appearance indicating the exact time set for the pass, found using conditions previously
presented. Hammarby is represented in red, while GIF Sundsvall is purple.

1https://drive.google.com/open?id=1JGloipK3E6SptjMrWrD1Fb0hEOn1roGS
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Figure 5.1: Two screenshots from the linked video showing a pass between player 21 and 22 during
the match between Hammarby IF and GIF Sundsvall, 17. August 2019.

5.3 Handling Errors in the Data Set
The downside of using video-based tracking systems compared to GPS or radio-based sys-
tems is the lower precision and its higher unreliability leading to some missing positional
data. The following sections present the issues identified in the work done in this thesis,
and the actions taken to resolve the problems.

5.3.1 Missing positions
Throughout the data set, there are many cases where the players positions are not captured
as the system temporarily loses track of the players. In these moments the x- and y-
coordinates are set to −1. These occurrences normally last a short time before the system
again is able to track the players’ positions. As this is a regular happening, discarding all
events where the position of a single player is missing for a short period of time would
lead to the omission of large amounts of data. Therefore, the positions of players with
missing data points are estimated using Bézier curves. The curve is created by using the
players’ positions before and after the missing data points. Missing data points can then be
estimated for a desired time, t, by using Equation 3.11. Figure 5.2 shows an example of a
situation where tracking data is missing for a part of the sequence. The Bézier curve allows
for estimation of the player’s position at any point in time throughout the interval. Another
advantage is that the Bézier curve better perseveres the shape of the trajectory compared
to a regular linear interpolation, which again means that vector components calculated for
the players’ speed are more accurate.

5.3.2 Players moving unreasonably fast
Another issue encountered with the data set was that the players occasionally seemed
to change their position on the field too fast after not being tracked for a short period
of time. Figure 5.3 shows an example where the position of the player drops out and
is reestablished. Between the blue and red dot, there are 57 frames where the player’s
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Figure 5.2: Example of a situation where a player’s position is missing from the tracking data. The
green dots are the positions of the player one second prior and post to the moment where the tracking
data is lost and the red line is the Bézier curve representation of the player’s trajectory.

position is not tracked, which equates to a total of 2.32 seconds of game time between the
two dots. The distance between the two points is ' 27.98 meters, which implies that the
player would have needed to have moved with an average speed of 12.06 m/s over the time
period where the player was not tracked. Peralta Alguacil (2019) employed a maximum
speed of 7.8 m/s when modelling player movement, and this maximum speed has also
been used in this thesis. Findings from Gregory (2019) also confirm that players rarely
reach speeds of 7.8 m/s in games, so a speed of 12.06 m/s appears to be unreasonable to
achieve. This case is believed to be due to inconsistencies in the tracking system where the
system briefly switches the id’s of two or more players, before switching them back. This
can be a result of the video-based tracking system not being able to accurately identify the
jersey number of the players in situations where several players are close to each other.
Cases like the one shown in Figure 5.3 are therefore discarded as they most likely include
errors in the tracking data.

5.3.3 Discrepancies between file types

Another issue observed in the data set is that in some matches the players’ position in the
events.json file does not conform with the corresponding position of the players found in
the tracks.json file. The issue has been partially dealt with by allowing for ±2 seconds
when searching for the pass in events.json file. However, increasing this time window
could possibly allow for the system to tag a different involvement, not necessarily a pass,
made by the same player which will lead to inconsistencies. The result of this issue is that
a substantial amount of the matches have been omitted from the final data set, as the passes
could not be identified in the events.json file. By comparing live video feeds from a few of
these games, there appeared to be a shift in the timestamps of the tracking data compared
to the event data, which lead to inconsistencies between the files.
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Figure 5.3: Illustration that shows the movement of IFK Göteborg player Tobias Sana through a 5
second interval in the game between IFK Göteborg - Östersund on 2 November 2019. The green
line shows Sana’s position, while the blue and red points show respectively the last position before-,
and the first position after his position was not tracked. Sana is running from right to left through
the entire sequence and a total of 2.32 seconds elapse between the red and blue points.

5.4 Final Data Set
The final data set used for analyses in this thesis consists of data from 144 games. From
34 208 passing situations, a total of 250 245 off-ball observation are collected, after re-
moving invalid observations. 379 players from 16 teams playing in the 2019 season of the
Allsvenskan is represented in the data set, with the average number of observation being
660 for each player and 15 640 for each team.

5.5 Player Roles
Football players are often described and grouped by the role they are assigned to within the
team. The role of every player for each match in Allsvenskan was provided by Hammarby
IF. A player often has different roles throughout the season. Therefore, the player’s most-
played role through the season is the role used in this thesis. This data is used to look for
role-specific behaviour in positioning. In some of the models introduced in the following
chapters, the role of the player is joined with associated observation, potentially providing
descriptive information regarding the player’s behaviour by serving as an indicator of areas
that the player is attracted to in a given situation. The different roles assigned to the players
in this thesis are detailed in Table 5.2.

5.6 Football Manager 2020 Player Ratings
Football Manager 2020 (FM20) is a simulation-based video game that allows the user to
take the role of the manager of a football team. The game is famous for its vast scouting
network of over 1300 scouts, and professional managers have admitted to using the game
to aid them in their job (Smith, 2015). These scouts rate and grade football players by
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Abbreviation Role
GK Goalkeeper
CB Centre back
FB Full back
MF Midfielder
AM Attacking midfielder
FW Forward

Table 5.2: The different roles that are assigned to the players.

many technical, mental, and physical attributes. The ratings for the different attributes
vary from 1 to 20, where a higher value implies that a player is better at the given attribute.
The data regarding the ratings of the player attributes in FM20 is obtained from FmDataba
and is consistent with version 20.4.0 of FM20 (FmDataba).

42



Chapter 6
Modelling of Situation Specific
Positional Strategies

This chapter presents the model set-up for analysing situation-specific positional strategies
of players, based on the metrics presented in Section 3.1. Two different classes of models,
generalised additive models, and artificial neural networks are developed with the goal of
predicting, analysing and evaluating players’ positional decisions. The specific situations
included in the analysis are passing situations in the attacking half, with the reasoning
for choosing these situations following Section 4.2. In the first part of this chapter, the
dependent and explanatory variables, and the methods for creating them, are explained.
This is followed by a presentation of the different methods used to model player decision
making. Then, the methods for validating the models and the results from this validation
process is presented, followed by a presentation of the contributions of some different
variables impacting the predicted outcome of the models. Finally, the results are discussed
and concluded before moving on to the next chapter where some applications of these
models are presented.

6.1 Dependent Variables

The three metrics PC, PI, and PC*PI, previously introduced in Section 3.1, will be used to
analyse individual positional strategies of players. They form the basis for three dependent
variables, Y (PC), Y (PI), and Y (PC ∗ PI), working as proxies for different strategies
a player can make. The purpose of modeling these dependent variables is to see how a
player performs compared to expected performance for the individual metrics.

As detailed in Section 4.1.3, the normalised scoring criterion gives players a score in the
range 0 to 1 for each metric during a situation. This is because the score S(m, j) is com-
puted relative to the maximum Smax(m, j) and minimum Smin(m, j) sampled values in
the player’s reachable area, functioning as upper and lower bounds for the possible perfor-
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mance. The score can, therefore, be seen as a score of how close, in the range 0% to 100%,
a player was of obtaining the optimal value for a metric one second into the future of an
initial position and game state. This approach makes the scoring uncritical of position on
the pitch and the role type of the player, making it possible for all players, regardless of
external factors, to achieve the whole range of values for all the metrics. Strategies can,
therefore, be identified by looking at how the player is able to perform on the different
metrics. Using metric m for situation j, the dependent variable Y (m, j) follows Equation
(6.1)

Y (m, j) = R(m, j) =
S(m, j)− Smin(m, j)

Smax(m, j)− Smin(m, j)
(6.1)

The three dependent variables are presented in Table 6.1, with their distributions illustrated
in Figure 6.1.

Dependent variable Metric Range
Y (PC) PC [0, 1]
Y (PI) PI [0, 1]

Y (PC ∗ PI) PC*PI [0, 1]

Table 6.1: Dependent variables used to model situation specific position strategies.
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Figure 6.1: Distribution of the three dependent variables for the GAMs.

6.2 Explanatory Variables
Explanatory variables are chosen based on whether or not they are believed to affect the
dependent variables, with a goal of describing the game state as well as possible. Ta-
ble 6.2 shows the initial list of explanatory variables included in the analyses. To make
the variables more interpretable for the models, a transformation to vector components
is introduced for several of the variables. This is further explained in Section 6.2.6. All
explanatory variables describe the game state at the start of the 1 second time interval, ex-
cept for the variables containing information on the optimal points, namely the locations
of optimal points and their standard deviation. These are variables generated from a future
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state. A discussion around the inclusion of the different explanatory variables follows,
explaining how they are believed to describe a specific situation.

6.2.1 Proxies of the implication of player’s position on the pitch

The initial coordinates of the player are included in variables X1 and X2, while the initial
velocity is represented by X3 and X4. The initial coordinates and velocities are thought
to be fundamental properties for the situation a player faces. They describe the position
the player has on the pitch, as well as the player’s instantaneous momentum and direction
of movement. As the game of football is constricted to a confined area, the coordinates
are bounded by an upper and lower limit, x ∈ [0, 105], y ∈ [0, 68]. The position gives an
indication of the player’s involvement and the boundaries of where the player can move
to. Certain areas on the pitch can also affect the intensity and style of play. The velocity
of the player can have an effect on the initial intensity level and the desire to move to a
different position.

6.2.2 Proxies of player’s position relative to teammates, opponents,
and ball

The positions of teammates, opponents, and the ball are represented by variablesX8−X15.
These features are represented as vector components from the player’s initial position to
the feature’s position. This process is further explained in Section 6.2.6. X8 andX9 repre-
sents the vector components, in x- and y-direction, towards the position of the ball. With
the ball being the centre of attention in the game of football, the ball position relative to
the player is an important feature describing how close the player is to the center of focus.
Further, X10 − X13 represents the vector components towards the centroid of both the
player’s own team and the opposing team. These values are calculated using Equations
3.13 and 3.14, and are the means of the teammates’ and opponents’ positions in x- and y-
direction. These features are included to describe how the player is positioned relative to
the center of both teams, possibly affecting the role a player chooses to take in a situation.
The vector component towards the nearest opponent is represented by X14 and X15 and
is included as a proxy for the pressure the player is currently under from the opposition.
This can indicate if a player is closely marked by an opponent, or not.

The velocities of team and opponent centroids are represented by X22 − X25. This is
calculated as the mean velocity of the respective players in x- and y-direction, and gives
information on the direction and momentum of play. Additional variables describing the
compactness of teammates and opponents are represented with X26 − X29. These vari-
ables indicate how much space there is between the players on the pitch, and are calculated
using Equations 3.15 and 3.16. As with variables X14 and X15 describing the closest op-
ponent, the variables describing compactness can provide information on the pressure a
player faces, as these variables represent how much space there is between players.
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Variable Description Type
X1 Position of player x-coordinate Continuous
X2 Position of player y-coordinate Continuous
X3 Velocity of player x-coordinate Continuous
X4 Velocity of player y-coordinate Continuous
X5 Standard deviation of PC Continuous
X6 Standard deviation of PI Continuous
X7 Standard deviation of PI*PC Continuous
X8 Position of ball x-coordinate Continuous vector component
X9 Position of ball y-coordinate Continuous vector component
X10 Team centroid x-coordinate Continuous vector component
X11 Team centroid y-coordinate Continuous vector component
X12 Opponent centroid x-coordinate Continuous vector component
X13 Opponent centroid y-coordinate Continuous vector component
X14 Closest opponent x-coordinate Continuous vector component
X15 Closest opponent y-coordinate Continuous vector component
X16 Optimal point control x-coordinate Continuous vector component
X17 Optimal point control y-coordinate Continuous vector component
X18 Optimal point impact x-coordinate Continuous vector component
X19 Optimal point impact y-coordinate Continuous vector component
X20 Optimal point PI*PC x-coordinate Continuous vector component
X21 Optimal point PI*PC y-coordinate Continuous vector component
X22 Team centroid speed x-direction Continuous
X23 Team centroid speed y-direction Continuous
X24 Opponent centroid speed x-direction Continuous
X25 Opponents centroid speed y-direction Continuous
X26 Team compactness x-direction Continuous
X27 Team compactness y-direction Continuous
X28 Opponent compactness x-direction Continuous
X29 Opponent compactness y-direction Continuous
X30 Game time Continuous
X31 Passing angle Continuous
X32 Direction of pass (left or right) Binary

Table 6.2: List of explanatory variables used in the situation-specific positional strategies models.
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6.2.3 Proxies of distance to optimal points
Vector components towards the optimal positions within the reachable area for PC, PI,
and PC*PI are included in variables X16 − X21. These optimal points are not visible
for the player, with the individual player’s intuition forming these points. However, they
are included to give an indication of where and how far away the player should move to
obtain a high score for the respective metric. A distance far away from the initial position
demands more movement, hence higher intensity, making it a more demanding task to
obtain an optimal score.

6.2.4 Proxies of influence on situation
The standard deviation of PC, PI, and PC*PI are included in variables X5 − X7. These
variables show the variation in the metric scores, S(m), possible to obtain within the
reachable area of a player. A high standard deviation means that there is large variation
in the possible scores, making movement highly influential on the score. A small value
indicates that the player is not in a position with the ability to impact the metric score,
and the influence on the game is lower. A high variation may give an increased desire
to obtain the optimal score, as the game state is more dependent on the player, and the
player’s contribution may be important to other players.

6.2.5 Proxies describing the time and the pass
The last explanatory variables included are variables seeking to describe aspects of time
and situation. Explanatory variable X33 describes the game time of the passing situa-
tion. Game time may affect positional decisions in several ways. Among those effects are
physical and mental fatigue that increases over time and changes in offensive or defensive
mentality as time is running out. To describe the direction of the pass, two variables are
constructed. X34, that describes the angle of the pass on a continuous 0 to 1 scale, from
straight backward to directly forward, and X35 describing the direction of the pass as a
binary left/right variable. Together, they capture the direction of the pass and could have
been joined into one variable. However, as the two aspects are interesting on their own,
they are separated into two variables.

6.2.6 Data representation
To make the data more interpretable for the models, several steps have been taken to mod-
ify the explanatory variables. These steps include vector transformation, scaling, and mir-
roring of the data.

Transforming to vector components

As involvement and contribution to the game state are heavily dependent on the player’s
initial position, variables X8 −X21, are transformed to the difference between the initial
position to the coordinate of the variable, separated on x- and y-direction. This is to
provide the game state from the perspective of the player. The transformation is illustrated
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in Figure 6.2. Testing shows that this approach gives more precise results than using
untreated coordinates.

Initial position: (x, y)

Explanatory variable

Initial position: (x, y)

Explanatory variable

∆y

∆x

(x , y )i i

i

i

Figure 6.2: Transforming an explanatory variable to a vector component from the initial position of
a player.

Feature scaling

All continuous variables are scaled to be in range zero to one. This implies finding the
highest and lowest values for each feature in the data set and set these values to one and
zero respectively. The rest of the variables are then set between 0 and 1, relative to the
maximum- and minimum values of that feature. The variables are then scaled back to
original values when interpreting the predictions.

Mirroring

The data is modified so that the attacking direction is always to the right. This means
mirroring all coordinate dependent variables on situations where the team in possession of
the ball is attacking to the left. Hence, all situations are modelled with attacking direction
facing to the right as illustrated in Figure 6.3. The direction of play relative to the camera
position is assumed to be uninteresting. Mirroring of the data is therefore done to be better
able to compare and assess situations happening with opposite attacking directions relative
to the camera.

6.3 Modeling Techniques
For this thesis, two different modeling techniques are used; generalised additive models
(GAM) and feed forward neural network(FFNN). All models are created with an intention
to predict the numerical value of the dependent variables from a set of explanatory vari-
ables. The two techniques have different properties and benefits, with this section seeking
to address these.

6.3.1 GAM
Generalised additive models are chosen for their combination of the desirable qualities of
prediction and explanation. When features are suspected to affect the dependent variable
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Attacking Direction

Figure 6.3: Illustration of attacking direction.

in non-linear ways, a GAM adds additional prediction power and flexibility by including
smooth functions compared to a generalised linear model (GLMs). As many aspects of
football are suspected to be non-linear (Cook et al., 2019), to capture these effects, GAM
is chosen over GLM as the interpretive modeling technique. Furthermore, a GAM where
all features are linear becomes a GLM, so using a GAM compared to a GLM is expected
to be an improvement both in prediction power and interpretability. As with a GLM, the
results produced by a GAM is interpretative beyond simply the model output for the de-
pendent variable. For all features, whether they are linear, categorical, binary, or non-linear
smooth functions, their contributions to the outcome of the dependent variable can be anal-
ysed. Each feature can, therefore, be analysed individually for their contributions to the
dependent variable, leading to the GAM offering insight into both the result, through its
predictive power, and the feature contributions through the interpretability of the model.

Explanatory variables used in GAM

An important part of creating a GAM is deciding how to represent the features involved
in the GAM. Using non-linear smooth terms to model relationships that are highly linear,
categorical, or binary is not ideal, and an understanding of the features involved in the
model is therefore important. Table 6.2 shows that most of the initially proposed features
are properties related to positions and movement on the pitch, properties that are suspected
to have non-linear effects. Most of the features included in the GAM will, therefore, be
represented as non-linear smooth functions to capture these non-linear effects. Further-
more, many explanatory variables, X1 and X2 as an example, describe the same proper-
ties but in different directions. As these pairs of variables are associated together, they
are represented as tensor products of smooth-terms. A representation of the features ini-
tially included in the GAMs are presented in Table 6.3, where fi(Xj , Xk) describes a 2-D
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Variable Description Type
f1(X1, X2) Position of player, x and y-coordinate 2-D smooth
f2(X3, X4) Velocity of player, x and y-direction 2-D smooth
f3(X5) Standard deviation of PC 1-D smooth
f4(X6) Standard deviation of PI 1-D smooth
f5(X7) Standard deviation of PC*PI 1-D smooth
f6(X8, X9) Position of ball, x and y-coordinate 2-D smooth
f7(X10, X11) Position of team centroid, x and y-coordinate 2-D smooth
f8(X12, X13) Position of opponent’s centroid, x and y-coordinate 2-D smooth
f9(X14, X15) Position of closest opponent, x and y-coordinate 2-D smooth
f10(X16, X17) Position of optimal PC point, x and y-coordinate 2-D smooth
f11(X18, X19) Position of optimal PI point, x and y-coordinate 2-D smooth
f12(X20, X21) Position of optimal PC*PI point, x and y-coordinate 2-D smooth
f13(X22, X23) Velocity of team centroid, x and y-direction 2-D smooth
f14(X24, X25) Velocity of opponent centroid, x and y-direction 2-D smooth
f15(X26, X27) Team compactness, x and y-direction 2-D smooth
f16(X28, X29) Opponent compactness, x and y-direction 2-D smooth
f17(X30) Game time 1-D smooth
f18(X31) Passing angle 1-D smooth
X32 Direction of pass (left or right) Binary

Table 6.3: Features used to develop positional strategies GAMs.

smooth function of variables Xj and Xk.

Model setup

Three GAMs are created for the three different dependent variables presented in Table
6.1, referred to as GAMPC ,GAMPI and GAMPC∗PI . Observable from Figure 6.1, the
dependent variables are bounded between 0 and 1, a fitting distribution for the dependent
variable is the beta-distribution referenced in Section 3.4 described by Equation (3.20).
The link function is set to the logit link function as it transforms the output to the interval
[0, 1]. Equation (6.2) describes the logit function.

g(x) = ln

(
x

1− x

)
(6.2)

The GAMs built in this thesis are created in the statistical programming language R, using
themgcv library. Features, smoothing parameters, λ, and the number of splines are chosen
using the methods described in Section 3.4.2. The shape parameters, α, β, of the beta
distribution for the dependent variables are automatically estimated by the mgcv library.

6.3.2 FFNN
The feed-forward neural network (FFNN), can be considered more of a black-box mod-
elling approach, with analysis of the importance of individual features being difficult.
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However, its handling of non-linear relationships between variables might provide ac-
curate predictions, making it a desirable modelling approach for comparing and ranking
individual players. A single network is created for modeling all 3 aspects, essentially
functioning as a multivariate regression. This model with three outputs is referred to as
FFNN . It is also possible to create three separate neural networks using each metric as an
output, but as this requires fitting an additional two models, and initial results suggested it
performed worse than the single network, so this approach is deemed unnecessary.

The structure of the problem indicates that a FFNN should be sufficient to model the
dependent variables. As the situations are modelled from single snapshots of the game
state, and not a sequence of game states, no feedback connections, found in recurrent neu-
ral networks (Sutskever et al., 2014), should be necessary to account for sequence-specific
effects.

The FFNN is implemented in Keras. Keras is an open-source neural network library writ-
ten in Python, running on top of Tensorflow, a Google developed open-source library for
machine learning. The network is built only using the Dense layer class, with weights
initialised using default Keras parameters.

Grid search

The FFNN has many tunable hyperparameters, which can have a large impact on the ac-
curacy of a trained model. Tuning these hyperparameters is often necessary to improve
accuracy. A series of problem-specific alterations is therefore made to the network ar-
chitecture to enhance the model performance, with a combination of theory and testing
forming the basis for decisions.

In the grid search, a large space of hyperparameter values is systematically explored on a
validation set, with the objective of finding the right combination of hyperparameter val-
ues. The grid search builds a model for each parameter combination wanted to explore,
searching for the combination giving the most accurate model. The combination space can
be large, making this a time-consuming process. Some hyperparameter values are there-
fore fixed and are individually tested with the obtained combination of hyperparameters
from grid search. The data set is split into a separate training and test set, consisting of
75% and 25% of the data. The model is trained with 100 epochs, storing the weights of
the network from the epoch providing the lowest MAE for the validation set.

The values of four hyperparameters are tested using grid search and can be seen in Ta-
ble 6.4. The network structure column represents the number of nodes and layers included
in the network.

Grid search findings

Results from the grid search showed that the network is sensitive to changes in hyperpa-
rameter values. Larger network structures generally demonstrated better accuracy than the
smaller ones. However, differences are small between networks with 512 nodes and 256
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Batch size Loss function Learning rate Network structure
32 MSE 0.001 64;64
64 MAE 0.0001 128;128

128 0.00001 256;256
512;512

256;256;256
512;512;512

256;256;256;256
512;512;512;512

Table 6.4: Grid search parameters for FFNN.

nodes. As training time increases with increased network complexity, 256 nodes is chosen
over 512, using four hidden layers. MSE loss function and 64 batch size is chosen with
marginally better accuracy than their alternatives. The learning rate of 0.0001 is the pre-
ferred one, giving better results than 0.001. 100 epochs is not enough when the learning
rate is set to 0.00001. This is therefore rejected as it is deemed too slow.

Additional hyperparameters and testing

Some additional hyperparameters are tested and set individually. The Adam optimiser is
utilised, a popular optimiser choice in the field of deep learning. Adam’s default parame-
ters are used, except for the learning rate, using the one found from the grid search proce-
dure. A linear decay factor is added to the learning rate, set to the learning rate divided by
the number of epochs, making the learning rate approach zero as the number of epochs in-
creases. This can ensure a more accurate training process, making smaller weight changes
as the network approaches the lower loss limit. A linear activation function is applied to
the first hidden layer, making this layer able to interpret negative contributions from spe-
cific features. The Rectified Linear Unit (Relu) is selected for the rest of the layers due to
its good properties when the gradient is backpropagated. The Relu activation function has
a lower bound on 0, an advantageous property as the output variable has the same lower
bound. Relu lacks the upper bound found in the output variables, but from training is able
to fit to the upper bound. Both L1 and L2 regularisation are also tested. However, they do
not increase the generality of the model and slows the training process. They are therefore
dropped from this model.

The final model is summarised in Table 6.5, with Figure 6.4 showing a training process.
Using early stopping, the weights are stored at the epoch with the lowest loss on the vali-
dation set, illustrated with the dotted line.

Handling random weight initialisation

The weight initialisation when training a neural network is non-deterministic, meaning that
predictions from two networks trained on the same data, using identical hyperparameters
and structures, can exhibit different behaviours. The reason for this is that the networks

52



Hyperparameter Value
Number of epochs 100
Learning rate 0.0001
Learning rate decay 0.0000067
Batch size 64
Loss function MSE
Hidden layers structure 256;256;256;256
Hidden layers activation functions Linear(1) and Relu(2-4)
Output layer activation function Relu
Additional hyperparameters Keras default values

Table 6.5: Final model FFNN

Figure 6.4: Training procedure with epoch 73 obtaining the lowest loss.

can be unfortunate with weight initialisation and get stuck in a local minimum during
gradient descent. Instead of just using a single network, a total of 10 networks are trained
on the same data, using the same hyperparameters. The median value predicted from the
10 models will form the prediction. The median is usually the preferred measure of central
tendency when the distribution is not symmetrical.

6.4 Validation
After the models are developed according to the procedure described in this chapter they
are validated on the accuracy of their predictions. With a continuous range for the depen-
dent variable, a common validation method is to investigate the errors in model prediction
on a test set. A test set of 25 % is selected randomly from the data and withheld from the
fitting and training procedures. The different models’ performance will be validated on
this test set.
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In this thesis three metrics derived from the prediction errors are used to validate the mod-
els. The four metrics are mean average error (MAE), root mean squared error (RMSE),
mean bias error (MBE), and R squared (R2), given by Equations (6.3-6.6) respectively.

MAE =
1

n

n∑
i=1

|yi − ŷi| (6.3)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (6.4)

MBE =
1

n

n∑
i=1

yi − ŷi (6.5)

R2 = 1−
∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳi)2

(6.6)

Here n is the number of predictions, ŷi are model predictions and yi are the actual values
from the test set. Both the MAE and RMSE seek to evaluate how large on average the
errors from the models are, without distinction between negative and positive errors. MAE
and RMSE are therefore two metrics used to answer the same question but are calculated
in different ways. As each individual error is squared in the RMSE, larger outliers of
individual errors will have a stronger influence on the final value than they will for the
MAE. If the absolute value of the model error is the same for all predictions in the test
set the MAE and RMSE will be equal. Therefore, by calculating and comparing both the
MAE and RMSE, an understanding of how the errors are distributed is included in the
validation. The MBE is included to see if the errors are biased in one direction, or if the
positive and negative errors cancel each other out on average. As positive errors cancel out
negative ones, the MBE is a poor indicator of model precision and should not be compared
with the results from the MAE and RMSE. If a model tends to error in its predictions in
one direction, either predicting too high or too low results, the MBE will either have a
positive or negative value. This information is not contained in the MAE or RMSE and is
the reason for the inclusion of the MBE. The R2 metric is included to see how much of
the variance in the dependent variable that is explained by the explanatory variables.

6.5 Validation Results
In this section, the results of the validation methods described in Section 6.4 are presented.
For each dependent variable, the results from both the GAMs and FFNN are reported and
compared. Plots of the different models error distributions are also included.

6.5.1 PC
The validation results for the dependent variable Y (PC) from GAMPC and the FFNN is
presented in Table 6.6. The table shows that for all validation metrics, the FFNN performs
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Figure 6.5: Error distributions for predictions of PC.

better than the GAM. The RMSE is larger than the MAE which indicates that all errors
are not of the same magnitude, but the difference is not large enough to suspect that large
outliers are mainly responsible for the errors. Figure 6.5 shows the error distributions
for GAMPC and FFNN , and the figure seems to support the assumption that the errors
are normally distributed without many large outliers. Both the GAMPC and FFNN has a
small negative bias, with the bias in theGAMPC being almost six times that of the FFNN .
Finally, FFNN has a higher R2 value than the GAMPC .

Model MAE RMSE MBE R2

GAMPC 0.1398 0.17778 -0.0087 0.4333
FFNN 0.0962 0.1312 -0.0016 0.6873

Table 6.6: Result of validation metrics for modelling Y (PC).

6.5.2 PI

The validation results for the dependent variable Y (PI) is presented in Table 6.7 and
Figure 6.6 showing the error distributions. Again FFNN performs better than theGAMPI

on all metrics, with lower MAE, RMSE and MBE, and a higherR2. FFNN performs quite
similarly on Y (PI) as Y (PC) for the MAE and RMSE, but the MBE is better and the R2

is worse. This means that the network makes errors of similar magnitudes for Y (PC) and
Y (PI), but is able to explain more of the variance for Y (PC) than Y (PI). The GAMPI

is able to perform better according to the MAE and RMSE than GAMPC , but as with the
FFNN , the GAMPI is able to explain less of the variance than GAMPC . In contrast to the
FFNN , the magnitude of the MBE for the GAMPI is higher than for its PC counterpart,
still having a negative bias.
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Model MAE RMSE MBE R2

GAMPI 0.1071 0.1411 -0.0201 0.3240
FFNN 0.0932 0.1230 -0.0002 0.4503

Table 6.7: Result of validation metrics for models using Y (PI).
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Figure 6.6: Error distributions for predictions of PI

6.5.3 PC*PI
The validation results from the dependent variable Y (PC ∗ PI) is presented in Table 6.8,
with error distributions shown in Figure 6.7. Again, both the GAMPC∗PI and FFNN
performs similarly on MAE and RMSE as their Y (PC) and Y (PI) counterparts. The
bias is small and negative for both models, with the bias being five times the size for the
GAMPC∗PI compared to the FFNN . Both models perform better according to the R2

with values similar to their Y (PC) counterparts.

Model MAE RMSE MBE R2

GAMPC∗PI 0.1251 0.1612 -0.0110 0.5095
FFNN 0.0937 0.1285 -0.0022 0.68215

Table 6.8: Result of validation metrics for models using Y (PC ∗ PI)

6.6 Feature Contributions for GAM
In this section, some of the smooth functions estimated in the three GAMs are presented.
As the shrinkage term for the smoothing penalties of some of the smooth functions is set
by the fitting algorithm to be large, these smooth terms approach zero and their contribu-
tions to the final model are negligible. This section therefore only presents and discusses
a subsection of interesting features with non-negligible contributions. Plots of all smooth
terms can be found in Appendix B. Not all combinations of feature values are present in
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Figure 6.7: Error distributions for predictions of PC*PI

the set of observations used to train the models, and in the figures below showing two
dimensional smooth surfaces, the areas without training observations are showed as gray.
The first feature presented is the contributions towards the three dependent variables by
the player’s starting position, in x- and y-direction. The contributions of this feature,
f1(X1, X2) is shown in Figure 6.8 as a two dimensional smooth surface. Generally, the
smooth functions seem to suggest that initial positions further from the goal are favourable
in terms of performing better for all three dependent variables. The GAMs offers no expla-
nation why, but one possible explanation could be that situations, where players are closer
to the opponents goal, are more complex, making positional decisions more difficult. As
players move closer to the goal, less space is generally available, and more teammates and
opponents will probably be in proximity, making positional decisions more complex, as
accurately predicting all these players’ future positions get more difficult.

The smooth surfaces f15(X26, X27) and f16(X28, X29) shown in Figures 6.9 and 6.10
shows the contributions from team and opponent compactness respectively. These smooth
surfaces indicate that low compactness, meaning closer distances between players, has a
negative contribution towards the dependent variables, especially in the x direction for the
opponent compactness. This somewhat supports the theory for why situations closer to the
goal are harder to read as a result of the area around the player being more congested.

Figure 6.11 shows the contribution of the players initial velocity towards the dependent
variable as a 2-D smooth surface f2(X3, X4). No definite conclusions can be drawn re-
garding velocity in the y-direction, but the figures seem to show that opposite relationships
exist for PC and PI in x-direction. Having an initial velocity away from goal, represented
by a negative X3-value, seems to be preferable for attaining the highest amount of PC
while velocity towards goal is preferable for PI. For PI this result is quite intuitive as the
PI metric is generally increasing towards goal and initial movement in this direction should
be an indicator that the players’ general movement is also in this direction.
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Figure 6.8: Heat map showing the contribution of smooths for the position of the player, f1(X1, X2)
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Figure 6.9: Heat map showing the contribution of team compactness, f15(X26, X27)

Another selected feature is the vector from the player to the ball position, f6(X8, X9). In
football, the center of attention is often the ball itself, and the position a player has rela-
tive to the ball is therefore often related to the player’s objective in that situation. When
Hammarby IF uses PC, PI, and PP to analyse situations, players are assigned objectives
based, among other things, on their position relative to the ball (Peralta Alguacil, 2019).
Investigating through the use of the GAMs if actual player behavior is related to position
relative to the ball is therefore interesting. Figure 6.12 shows the contribution from the rel-
ative ball position on the three dependent variables as two dimensional smooth surfaces.
One general observation from these smooth surfaces is that when the distance to the ball is
small, meaning that the ball is close to the player, the contribution towards all dependent
variables seems to be small or negative. This result is and in line with previous results from
this section. As opponents generally have some attraction towards the ball, the area around
the ball will often be more crowded than areas far from the ball. This increases complex-
ity in areas close to the ball and following the same reasoning as previously discussed,
increases the difficulty of positional decision making.
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Figure 6.10: Heat map showing the contribution of smooths for the opponent compactness,
f16(X28, X29)
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Figure 6.11: Heat map showing the contribution of smooths for the velocity of the player,
f2(X3, X4)
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Figure 6.12: Heat map showing the contribution of smooths for position of ball, f6(X8, X9)
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6.7 Discussion
Before moving on with the applications of the models, a discussion of the models is pre-
sented.

The models introduced in this chapter are seemingly unique in the way the dependent vari-
ables are defined. Therefore, it is difficult to relate the results to excising work. Predicting
decision making in football is a complex problem, showing signs of having stochastic ele-
ments. Therefore, none of the models in this thesis are expected to perfectly model player
behaviour, which is also the case. However, they are able to capture a lot of trends and
tendencies. By assuming that player performance is mean reverting, these models can
provide insights into how players perform by using a number of observations to form the
basis for evaluation.

Players do on many occasions show non-deterministic behaviour, a hypothesis that will
be further investigated in Chapter 8. Without knowing the exact amount of randomness
inherent in the problem, it is difficult to assess if the prediction models could be signifi-
cantly improved, or if they are close to the limit of possible accuracy. However, inherent
problems with the data quality suggest that the models could be improved. As mentioned
in Section 5.3, the data is in some occasions unreliable, leading to the models being fitted
and trained on some noise and missed features. Increased reliability of the data would
also open up for generating additional features describing the game state, such as physical
fatigue from distance traveled and intensity over a previous period. As such features are
generated from accumulating movement, the problem with switching and missing player
positions have to be dealt with before this is can be done reliably, a problem outside the
scope of this thesis.

A feature believed to increase the accuracy of the models is the direction the player faces,
now only included as a proxy from the direction of the velocity of the player. This feature
could capture body direction relative to the movement, possibly providing useful informa-
tion on the true focus of the player. Such a feature could be obtained using a radar-based
tracking system, with players having two separate sensors positioned horizontally on their
bodies. The National Football League (NFL), the top professional league in the sport of
American football, uses a system where players wear one sensor on each shoulder. Burke
(2019) includes the direction a player faces as a feature in the feed forward neural network
developed to investigate passing in the NFL.

An increased number of observations increases model accuracy. This accuracy moves
towards a limit, an effect discovered from training the models on data sets of different
sizes. Increasing the number of observations to model the situation described in Section
4.2.1 is therefore believed to increase the accuracy slightly, but not by a lot. This is relevant
when moving to the application of the models, as the dilemma of using many observations
and computational expenses related to creating models appears. This dilemma is further
addressed in Section 7.2.2.

Random effects could be introduced as parts of the models, increasing the ability to model
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individual players. This could be of use to assess the player with itself, i.e. a player’s
single-game performance in relation to the player’s general performance. For the GAM,
looking at the coefficients generated to account for random effects could be used to com-
pare individual player performance. This is however not so easy for the FFNN, as there
are no coefficients present to compare. For this thesis, the scope is to assess the general
overall performance of players by looking at how players perform in relation to each other,
and not necessarily to accurately predict individual player performance. Therefore, an al-
ternative way for rating players is introduced, later explained in Section 7.2.1.

Following the validation results presented in Section 6.5, the FFNN is better at predict-
ing how players make decisions for all three dependent variables. With a lot of variables
seeking to describe the situation, the FFNN seems to be better at understanding the com-
plex dynamics that influence players in the modelled situations. This is believed to come
from the model’s ability to interpret non-linear relationships between all variables, and
not only from non-linear contributions of selected variable pairs, which is the case for the
GAM. As the FFNN has better precision and less bias, the predictions from this model is
deemed to be more reliable than from the GAM. This is also backed by the R2, supporting
the notion that the FFNN is able to capture more of the variance in all three dependent
variables than the GAMs. This is an important finding for this thesis, as moving forward
to Chapter 7, the models are used to assess the PC, PI, and PC*PI performances of both
individual players and teams. The conclusion is that the FFNN is more suitable for further
analysis than the GAM for all three dependent variables. Therefore, only the FFNN will
be used in applications of the models presented in Chapter 7.
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Chapter 7
Evaluating Positional Strategies

The following chapter presents applications of the scores of the metrics from Chapter 4,
and the models developed in Chapter 6, seeking to evaluate positional strategies. First, an
investigation of player roles and positional strategies is presented, followed by a method
for ranking individual players on how well they perform relative to the optimal position.
Then comes an analysis of relations between team ratings and attacking success. The last
part of this chapter is a case study of positional strategies for two individual players. From
the validation results and discussion presented in Sections 6.5 and 6.7, the FFNN is used
in all model applications presented in this chapter.

7.1 Positional Strategies Related to Player Role
The following section investigates how player roles relate to positional strategies on the
pitch. As previously mentioned in Section 5.5, all players in the data are assigned a role
according to their most played role throughout the season and Table 5.2 shows the six
different roles the players are divided into. It is important to note that this approach does
not capture the fact that some players can be assigned different roles during the season.
Therefore, the assigned player roles are only indicative of the role a player has during the
season.

Figure 7.1 shows the average achieved value of the PC, PI and PC*PI score R(m, j),
as described in Section 4.1.3, for each player with over 100 observations during the 2019
Allsvenskan. Each dot represents a single player and the different colors of the dots repre-
sent the different roles that are assigned to the players. The figure allows for a comparison
of how different player roles perform in relation to the three metrics. When interpreting
the figure, it can be observed that FWs achieve higher average values for PI than the other
players. Remembering from Section 3.1.3, that the PI model is a goal probability model,
it is intuitive that FWs outperform the other players as their main responsibilities on the
pitch usually is to create chances and goals.
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(a) R(PC) and R(PI) (b) R(PC) and R(PC ∗ PI)

(c) R(PI) and R(PC ∗ PI)

Figure 7.1: Average PC, PI and PC*PI scores for individual players with colours representing the
role of the player. Colours: - CB, - MF, - FB, - FW, - AM

Another notable finding is that CBs seem to underperform in all of the three metrics com-
pared to the other roles. An explanation for this can be the fact that CB’s main task on the
field is not necessary to focus on maximising any of the three metrics. CB’s assignment is
to be the last line of defense between the opponent and their own goalkeeper, limiting their
ability to partake as actively in attacking situations. In a sense, their main responsibility is
not to optimise performance regarding the three metrics, but rather minimise these same
metrics for the opposing players. This result is especially interesting when contrasting
the CBs to the FBs. One could presume that FBs would perform similarly to CBs, but
it appears that they in fact score closer to MFs in regard to the metrics. The modern FB
is for many teams an important attacking resource, responsible for providing width and
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attacking support down the sidelines. In this context, it is not surprising that FBs seem to
outperform CBs, as the FB role is considered to be more attacking focused than the CB
role in the modern game of football.

When comparing the AMs to the MFs, it appears that AMs score higher in all three of
the metrics. As AMs play in a more advanced position, it is reasonable that they perform
higher on PI as it primarily measures attacking contribution. The fact that AMs also per-
form better in PC and PC*PI can be related to the fact that MFs also have defensive duties
and are not able to focus as much as AMs on gaining control.

7.2 Ranking Individual Players

This section presents a method for using the prediction models created in Chapter 6 to
rate and rank individual players on performance regarding PC, PI, and PC*PI. Firstly, an
explanation of the two methods for ranking players is given, followed by a presentation of
how the data is split to perform out of sample validation for all observations. Then, the
results showing the top performers according to the ratings are presented, and lastly, the
ratings produced in this section are compared to relevant off-ball ratings from the video
game Football Manager 2020.

7.2.1 Metrics for ranking individual players

From the metrics presented in Section 3.1 it is possible to rank individual players on
how they perform on the chosen criteria. Summing up or averaging the rating achieved
Ri(m, j), by player i in observation j using metric m, without using a prediction model is
one possible way of rating a player’s performance on off-ball metrics. This method is rela-
tively simple as it only requires averaging the Ri(m, j) on all observations j of the player
i, resulting in what is referred to as the average actual rating, shortened to AARi(m).

Comparing AAR performance across different situations could lead to an incomplete de-
scription of the true performance, as the difficulty and incentive of obtaining a high AAR
are presumed to be dependent on the situation. By using prediction models, this problem
can be solved by predicting performance for the situation using variables describing the
situation, and then compare this to the true performances of the player. A player can,
therefore, be evaluated on his performance in a specific situation compared to how the
models expect other players to perform in the same situation. It can also be used on an
entire season of situations, which is what has been done in this section. Then the aggre-
gated difference in performance between the chosen player and the rest of the league, or
other individual players, can be evaluated. WithRi(m, j) as the rating player i achieves in
situation j and Rpredicted(m, j) as the rating predicted by the model in the same situation,
the average situational adjusted rating ASARi(m) is given by Equation (7.1).

ASARi(m) =
1

N

N∑
j=1

(Ri(m, j)−Rpredicted(m, j)) (7.1)
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Both the top 10 performers in AARi(m) and ASARi(m) are presented in this section.
Even though the AARi(m) does not account for the characteristics of the situation, it is
an interesting rating as it rewards players who are able to put themselves in favourable
situations where high Ri(m, j) values are easier to obtain. Some characteristics of these
types of favourable situations are discussed in Section 6.6.

7.2.2 Training a prediction model for the situational adjusted ratings
When evaluating a player using a prediction model, the more observations included in the
training process of the model will give a better evaluation of how the player compares to
general expected performance. One approach would be to create separate models for all
players, training and validating the model on all observations except for the ones associ-
ated with the player, and use this model to evaluate the player. However, with over 300
models to be created, one for each player, this is a computationally expensive procedure
and therefore rejected. Instead, an alternative approach is used. All observations are shuf-
fled and separated into five equally large groups. Then, a model is trained and validated
using observations from four of the groups. This model is then used to predict the obser-
vations in the remaining group. A total of five models, one for each group, will therefore
have to be created. Using this approach, a lot of observations can be used to train and vali-
date the models, without having to train 300 models. A potential problem is that a player’s
observation is predicted using a model trained on the player’s own observations, as the
player’s observations can be present in all five groups. The model could therefore poten-
tially learn the player’s tendencies and take this into account in the predictions. However,
as each player only represents a small fraction of the total observations, the effect from
this is deemed negligible. Further, an advantage of this is that all players are evaluated
on all models. This way, potential biases of individual models will not influence the final
ranking of players.

7.2.3 Ranking results
To ensure that only players that frequently play and contribute to their teams success are
included, a threshold of 500 observations was set to qualify for the rankings. Using this
threshold, 201 players qualified for the rankings and the top 10 players for bothAARi(m)
andASARi(m) form = {PC,PI, PC ∗PI} is presented. Tables 7.1, 7.2 and 7.3 shows
the top 10 performers in AARi(m).

One observation made from the tables of AAR is the role of the top performers in each cat-
egory. While AMs and FBs seem to obtain the highest actual PC values, PI is dominated
by FWs with the combined PC*PI metric again dominated by AMs. These results are quite
expected, and in line with the results from the analyses done in Section 7.1. Looking at
the individuals represented in the Tables 7.1-7.3, 6 of the top 10 PC achievers are also top
10 in PC*PI, while zero of the top PI achievers are able to reach the top 10 in PC*PI. This
could indicate that the players that are most focused on PI tend to neglect PC to a higher
degree than the opposite. One explanation could be that forwards have more specialised
roles in attacking situations than AMs. A FWs primary task is, as mentioned in Section
7.1, to create shots and goals. Therefore, employing a more single-minded approach of
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# Player Team Role Obs AAR(PC)

1 Romain Gall MFF MF 633 0.6321
2 Kevin Adrian Wright ÖSK FB 1475 0.6291
3 Giorgi Kharaishvili IFK AM 1204 0.6288
4 Ahmed Yasin BKH AM 1478 0.6248
5 Felix Beijmo MFF FB 769 0.6211
6 Søren Rieks MFF FB 2290 0.6153
7 Max Svensson HIF AM 1968 0.6109
8 Nasiru Mohammed BKH AM 534 0.6072
9 Johan Blomberg GIF AM 1018 0.6027

10 Oliver Berg GIF AM 1427 0.6014

Table 7.1: Top 10 performers AAR(PC).

# Player Team Role Obs AAR(PI)

1 Vidar Örn Kjartansson HAM FW 992 0.6305
2 Carlos Strandberg ÖSK FW 910 0.6209
3 Marc Mas Costa GIF FW 670 0.6183
4 Kolbeinn Sigþórsson AIK FW 585 0.6063
5 Guillermo Molins MFF FW 1110 0.6019
6 Linus Hallenius GIF FW 671 0.5965
7 Nsima Peter FFF FW 522 0.5964
8 Alhaji Gero HIF FW 860 0.5952
9 Aron Johansson HAM FW 505 0.5875

10 Mohamed Buya Turay DIF FW 1904 0.5835

Table 7.2: Top 10 performers for AAR(PI).

# Player Team Role Obs AAR(PC*PI)

1 Max Svensson HIF AM 1968 0.6627
2 Romain Gall MFF MF 633 0.6430
3 Giorgi Kharaishvili IFK AM 1204 0.6192
4 Ahmed Yasin BKH AM 1478 0.6185
5 Maic Sema GIF AM 1186 0.6155
6 Johan Blomberg GIF AM 1018 0.6120
7 Paulo De Oliveira BKH AM 1059 0.6100
8 Oliver Berg GIF AM 1427 0.5996
9 Muamer Tankovic HAM AM 2231 0.5977

10 Francisco Wánderson HIF AM 1042 0.5969

Table 7.3: Top 10 performers AAR(PC ∗ PI).
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# Player Team Role Obs AAR(PC) Predicted ASAR(PC)

1 Alexander Farnerud HIF MF 736 0.5452 0.5232 0.0219
2 Nasiru Mohammed BKH AM 534 0.6072 0.5868 0.0203
3 Max Svensson HIF AM 1968 0.6109 0.5925 0.0184
4 Felix Beijmo MFF FB 769 0.6211 0.6039 0.0171
5 Viktor Lundberg BKH AM 837 0.5957 0.5792 0.0165
6 Tarik Elyounoussi AIK MF 1231 0.5948 0.5783 0.0165
7 Daleho Irandust BKH AM 1608 0.5957 0.5807 0.0151
8 Søren Rieks MFF FB 2290 0.6153 0.6005 0.0148
9 Adi Nalic AFC FW 845 0.5873 0.5728 0.0146

10 Elias Andersson IKS MF 524 0.5765 0.5620 0.0145

Table 7.4: Top 10 PC performers ASAR(PC).

# Player Team Role Obs AAR(PI) Predicted ASAR(PI)

1 Kolbeinn Sigþórsson AIK FW 585 0.6063 0.5689 0.0373
2 Carlos Strandberg ÖSK FW 910 0.6209 0.5852 0.0357
3 Guillermo Molins MFF FW 1110 0.6019 0.5675 0.0344
4 Vidar Örn Kjartansson HAM FW 992 0.6305 0.5990 0.0314
5 Markus Rosenberg MFF FW 1707 0.5589 0.5281 0.0307
6 Marcus Antonsson MFF FW 1592 0.582 0.5519 0.0302
7 Marc Mas Costa GIF FW 670 0.6183 0.5884 0.0299
8 Per Frick IFE FW 760 0.5814 0.5555 0.0260
9 Nikola Djurdjic HAM AM 1812 0.5385 0.5136 0.0249

10 Alhaji Gero HIF FW 860 0.5952 0.5704 0.0248

Table 7.5: Top 10 performers ASAR(PI).

# Player Team Role Obs AAR(PC*PI) Predicted ASAR(PC*PI)

1 Nasiru Mohammed BKH AM 534 0.5931 0.5663 0.0267
2 Max Svensson HIF AM 1968 0.6627 0.6385 0.0242
3 Adi Nalic AFC FW 845 0.5731 0.549 0.0241
4 Deniz Hümmet IFE FW 745 0.5634 0.5425 0.0209
5 Paulo De Oliveira BKH AM 1059 0.6100 0.5893 0.0208
6 Romain Gall MFF MF 633 0.6430 0.6227 0.0203
7 Francisco Wánderson HIF AM 1042 0.5969 0.5772 0.0197
8 Tarik Elyounoussi AIK MF 1231 0.5937 0.5757 0.0180
9 Isak Magnusson KFF FB 625 0.5456 0.5286 0.0170

10 Alexander Kacaniklic HAM AM 1753 0.5845 0.5677 0.0169

Table 7.6: Top 10 PC*PI performers ASAR(PC ∗ PI).
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obtaining a dangerous position appears to be prioritised for players in that role. The job
of an AM is on the other hand oftentimes more diverse. Often relied on to be on both
the creative and receiving end of opportunities, it is natural that these types of players are
focused on both PC and PI.

The top 10 performers in situational adjusted rating, ASAR, for PC, PI and PC*PI are
shown in Tables 7.4 - 7.6. Comparing the results from Table 7.1 and 7.4, four players
make it into the top ten on both actual and adjusted ratings, with the top ten in adjusted
rating consisting of a mix of four different positional groups compared to three for actual
rating. Looking at the PI ratings from Tables 7.2 and 7.5 there are six names common
to both top tens, but unlike the AAR(PC ∗ PI), the top ten for ASAR(PC ∗ PI) in-
cludes a non-forward in the attacking midfielder Nikola Djurdjic at number nine. As with
AAR(PC ∗ PI), there are more similarities between the top ten performers in PC and
PC*PI, four players making the top ten for both metrics, than PI and PC*PI, with no
players making both top ten lists. Four players are also able to make the top ten in both
AAR(PC ∗ PI) and ASAR(PC ∗ PI). The greater diversity of roles in the top ten lists
for the ASAR metric may be the result of this metric being able to adjust for how players
in different roles often encounter different situations.

7.2.4 Comparing results to ratings in Football Manager 2020
In this subsection, a comparison between the results from the AAR and ASAR ratings
created in this section and a few selected attributes from FM20 have been made. As FM20
evaluates many different attributes for the players, it is necessary to only include attributes
that are comparable to the ratings. As the AAR and ASAR ratings created in this thesis
seek to measure off-ball decision making, similar attributes from FM20 were identified.
The following five attributes were chosen, accompanied by a brief explanation of how
FM20 scores the attributes (guidetofm.com).

1. Aggression: How likely a player is to choose to get involved in a physical situation
and how much he exerts physical force in such situations.

2. Anticipation: How well a player can predict the movements and other actions of
his teammates and opposition players.

3. Decisions: How well a player can evaluate the options he is aware of and choose
which action to perform, when to perform it and how to perform it.

4. Off the Ball: How well a player moves and positions himself, to either provide a
passing option or create space for teammates to exploit, when he is off the ball and
his team is in possession.

5. Work Rate: How much physical effort a player puts into his actions during a match.

When analysing the correlations between the FM20 attributes and the achieved player rat-
ing in Figure 7.2 the most intriguing result is the correlation coefficients for the Off the
Ball attribute. The correlation between the FM20 off the ball attribute and the ASAR
statistics for PI and PC*PI is to be considered moderate and for PC it is considered weak
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Figure 7.2: Heatmap that shows the Pearson correlation between five selected player attributes
ratings in FM20 against the ASAR and AAR values for the PC, PI and PC*PI ratings achieved by
the 201 qualified players.

(Senthilnathan, 2019). This result shows that there is a noteworthy positive correlation
between FM20’s experts’ qualitative assessments of the Off the Ball attribute of the play-
ers in Allsvenskan and the quantitative ratings presented in this thesis. This correlation
appears to be stronger for AAR than ASAR, meaning that FM20’s off the ball attribute
has more similarities to the actual ratings the players achieve rather than their situation
adjusted ones. This is an interesting observation, but the question remains if this is the re-
sult of FM2020 not properly adjusting for the situation when they evaluate players, or that
being able to find favourable situations during attacking passing events are more important
than performing above expectations during those situations. The remaining FM20 stats all
correlate weakly with at least one of the ratings, but there appears to be no noteworthy
correlation between the ratings created and the remaining FM20 attributes.

7.3 Relation Between Positional Metrics and Attacking
Success

In this section, the relation between the metrics introduced and goal-scoring success is
investigated. The teams of the 2019 season of Allsvenskan are divided into 4 categories
based on goals scored throughout the season. The FFNN developed in Chapter 6 is used to
analyse differences in how the different groups perform according to the three off-ball po-
sitional metrics. The FFNN is trained and tested on three groups to create a model that will
be used to predict the observations for the remaining group. This is done to isolate individ-
ual effects present in the remaining group, preventing the model from accounting for these
effects. Distinct performance of a group can be identified when actual performance does
not match the model’s predictions. The four groups and teams included in each are shown
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in Table 7.7. The ASARi(m) metric proposed in Section 7.2 is used to identify distinct

Group number Teams in group Goals scored

Group 1

Hammarby IF 75
Malmö FF 56
FK Norrköping 54
Djurgården 53

Group 2

AIK 47
IFK Göteborg 46
BK Häcken 44
IF Elfsborg 44

Group 3

Örebro SK 40
IK Sirius 34
GIF Sundsval 31
Helsingborgs IF 29

Group 4

Östersunds FK 27
Falkenbergs FF 25
AFC Eskilstuna 23
Kalmar FF 22

Table 7.7: The four groups with their associated teams and goals scored.

performance for the groups i = {1, 2, 3, 4}, using metrics m = {PC,PI, PC ∗ PI}.

During attacks, different positional groups often have different roles and are instructed
by coaches to behave differently. Forwards may be instructed to try to take up positions
closer to the goal where they hope to eventually receive the ball, while defenders may be
instructed to control the opposing attackers as a preventive measure in case of a turnover.
To further investigate the details of distinct performance, players are split into two groups
based on their level of responsibility in the case of a turnover, forming the attacking group
and the midfield/defender group. Following the assigned player roles described in Section
5.5, FWs and AMs are classified as attacking players, while MFs, FBs, and CBs are clas-
sified as midfielders/defenders. This leads to the creation of eight prediction models used
to rate the four groups on performance for attacking and midfield/defending players.

To give additional insight into the four groups’ performance, a map is presented of the
attacking half of the pitch, with areas showing where the groups perform better or worse
than what is expected.

7.3.1 Performance in the four groups by attackers

Attackers performance, PC

Figure 7.3 shows how the different groups perform with respect to the PC metric. Interest-
ingly, it is Group 3 that seems to perform best according to the FFNN, followed by Group
2 and Group 4 with Group 1 performing the worst. As attackers on high scoring teams
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seem to neglect PC more than lesser teams, it may be the case that teams are better off
instructing their attackers not to focus as much on PC. No positional characteristics for the
different groups can with certainty be detected from the plots, as there seem to be no clear
areas where specific groups perform notably different from their overall performance.

Group 1 Group 2

Group 3 Group 4

ASAR1(PC): -0.0074 ASAR2(PC): 0.0037

ASAR3(PC): 0.010 ASAR4(PC): -0.0043Observations: 22200 Observations: 14743

Observations: 25879 Observations: 20087

Figure 7.3: PC performance by attackers.

Attackers performance, PI

The PI performance of the different groups is shown in Figure 7.4. Using this metric,
Group 1 performs best followed by Group 3, Group 4, and finally Group 2. With the ex-
ception of Group 2, the results seem to indicate some connection between PI performance
and attacking success. Instructing attackers to focus mainly on getting into dangerous
positions may, therefore, be more important for attacking success than teaching attackers
how to control space.

Attackers performance, PC*PI

Figure 7.5 shows the performance of the four groups on the PC*PI metric. Similarly to the
performance according to the PC metric, Group 3 performs best, now followed by Group
2, Group 1, and lastly Group 4. As with the results from other sections in this thesis, there
seems to be more similarity between the results using the PC metric and PC*PI metric
than PI and PC*PI.
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Group 1 Group 2

Group 3 Group 4

ASAR1(PI): 0.0113 Observations: 25879 ASAR2(PI): -0.0057 Observations: 20087

ASAR3(PI): -0.0023 Observations: 22200 ASAR4(PI): -0.0028 Observations: 14743

Figure 7.4: PI performance by attackers.

Group 1 Group 2

Group 3 Group 4

ASAR1(PC*PI): -0.0044 Observations: 25879 ASAR2(PC*PI): 0.0035 Observations: 20087

ASAR3(PC*PI): 0.0098 Observations: 22200 ASAR4(PC*PI): -0.0047 Observations: 14743

Figure 7.5: PC*PI performance by attackers.

7.3.2 Performance of the four groups by midfielders/defenders
Midfielders/defenders performance, PC

Figure 7.6 shows how midfielders in the two groups perform on the PC metric. Now the
best performers are Group 1 followed by Group 2, Group 4, and Group 3. Interestingly,
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midfielders and defenders on good attacking teams seem to perform better at PC than their
attackers relative to the other groups. This supports the hypothesis that good teams tend to
differentiate more in positional strategies between different roles.

ASAR1(PC): 0.0018 Observations: 54943 ASAR2(PC): 0.0015 Observations: 36729

Group 1 Group 2

Group 3 Group 4

ASAR3(PC): -0.0005 Observations: 40157 ASAR4(PC): 0.0007 Observations: 31628

Figure 7.6: PC performance by midfielders/defenders.

Midfielders/defenders performance, PI

The performance of midfielders and defenders on PI is shown in Figure 7.7. Again Group
1 is the top performer, now followed by Group 4 with Groups 2 and 3 performing equally.
In terms of ranking the different groups, the results for midfielders and attackers are quite
similar to the results for attackers. Looking deeper into the results, one observation regard-
ing Group 1 is quite interesting. Midfielders and defenders seem to perform well in most
positions except positions close to and inside the penalty box. When getting close to goal,
midfielders and defenders on the best attacking teams, seem to resist pushing further up-
wards, leaving that responsibility to their attackers which as shown in Figure 7.4 performs
well in these areas.

Midfielders/defenders performance, PC*PI

Finally, Figure 7.8 shows how the four groups of midfielders and defenders perform on
PC*PI. Using this measure Group 4 performs best with Group 1 in second, Group 3 third,
and Group 2 in fourth. Even though Group 1 in total performs worse than Group 4, mid-
fielders and defenders in Group 1 seem to perform very well in areas inside the penalty
box for this metric. Other than that, no other significant positional trends are clearly visible
from the figure, with no group seeming to perform much better than the others in clearly
defined areas outside the penalty box.
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ASAR1(PI): 0.0024 Observations: 54943 ASAR2(PI): -0.0049 Observations: 36729

ASAR3(PI): -0.0049 Observations: 40157 ASAR4(PI): -0.0016 Observations: 31628

Group 1 Group 2

Group 3 Group 4

Figure 7.7: PI performance by midfielders/defenders.

Group 1 Group 2

Group 3 Group 4

ASAR1(PC*PI): 0.0030 Observations: 54943 ASAR2(PC*PI): -0.0020 Observations: 36729

ASAR3(PC*PI): -0.0014 Observations: 40157 ASAR4(PC*PI): 0.0036 Observations: 31628

Figure 7.8: PC*PI performance by midfielders/defenders.
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7.4 Analyses of Individual Player Performance
In this section, a detailed study of the performance of two players is conducted following
the framework presented in Section 7.3. Individual player performance will be studied
using a visualisation of location specific performance.

Muamer Tanković and Alexander Kacaniklic are chosen to be analysed in this section,
both playing Attacking Midfielders for Hammarby IF during the 2019 season. They both
have a high number of observations, a requirement for creating a map to illustrate pitch
specific performance. To model their performance in relation to expected performance, all
observations from Hammarby IF are withheld from the data set that the model is trained
and validated on. This way, their performances are compared to the general performance
of all teams in Allsvenskan.

7.4.1 Muamer Tanković
Muamer Tanković is an AM who played a total of 28 games and scored 14 goals, making
him the second most scoring player in Allsvenskan during the 2019 season. 2231 obser-
vations are included to assess his off-ball performance. This is illustrated in Figure 7.9.
Notable is his general performance above expectation on all metrics. Still, his performance
is location specific, with some locations showing under-performance. This is especially
the case for PI closer to the goal. This means that he is less active in pressing when he is
closer to goal compared to others. As Tanković is one of the highest goal scoring players
in Allsvenskan, this shows that dangerous players not necessarily have to press more than
expected close to the goal.

ASAR(PC): 0.0046 Observations: 2231 ASAR(PI): 0.0029 Observations: 2231 ASAR(PC*PI): 0.0011 Observations: 2231 

PC PI PC*PI

Figure 7.9: Performance of Muamer Tancović.

7.4.2 Alexander Kacaniklic
Alexander Kacaniklic is also an AM who played a total of 25 matches and scored a total
of 10 goals during the 2019 season. 1753 observations are included to assess his off-
ball performance. His performance is illustrated in Figure 7.10. Similar to his teammate,
Tanković, he was able to achieve well over expected on all metrics, however, showing
more variability over location specific performance. As can be interpreted from his PI
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ASAR(PC): 0.0030 Observations: 1753 ASAR(PI): 0.0172 Observations: 1753 ASAR(PC*PI): 0.0173 Observations: 1753 

PC PI PC*PI

Figure 7.10: Performance of Alexander Kacaniklic.

performance, Kacaniklic shows resistance to move into the box when close to the goal.
However, he is well above expected when it comes to capturing control in the same are.
This indicates that he is good at finding space close to the goal. Further, he shows signs of
being good at putting pressure in the early stages of attacks, being well over expected on
PI further away from the goal.
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Chapter 8
Predicting Player Movement

In this chapter, the focus is shifted towards predicting movement of players one second
into the future after a situation of interest has occurred. The selected situations are the
passes in the opponents’ half, as described in Section 4.2.1. Similar to Chapter 6, two
different classes of models are used, generalised additive model and feed forward neural
network. The reasoning for choosing these specific types of models follows the discussions
in Sections 6.3.1 and 6.3.2. The purpose of creating these models is to investigate if player
movement can be accurately predicted over a short time interval and if there are differences
in the predictability of individual players and roles. Another application is to investigate if
the optimal points generated for PC, PI, and PC*PI can work as a good forecast for player
movement, a hypothesis previously investigated by Peralta Alguacil et al. (2020). This
chapter seeks to test this hypothesis on a larger scale, by using more data and comparing
them to alternative modeling techniques and benchmarks.

8.1 Experimental Setup
The experimental setup in this section is similar to the one detailed in Chapter 6, using the
same type of situations and filtering process as presented in Section 4.2. A brief summary;
player movements are predicted one second into the future after a pass is made in the
opponent’s half, with only players on the attacking team included in the prediction. The
models are in this chapter trained on 70% of the data and validated on the remaining 30%.

8.1.1 Dependent variables
The dependent variables are set to the x- and y-components of the vector between the
player’s initial position and their end position one second later. The range is set from -7.8
to 7.8 meters, as this is the maximum distance a player can move during the course of a
second, following from Section 5.3.2.

The distribution of the dependent variables are illustrated in Figure 8.1.
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Dependent variable Range (meters)
Movement in x-direction [−7.8, 7.8]
Movement in y-direction [−7.8, 7.8]

Table 8.1: Dependent variables for movement prediction models.
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Figure 8.1: Distributions of the two dependent variables in Table 8.1.

8.1.2 Explanatory variables

Some changes are made to the explanatory variables compared to the problem in Chapter
6, as the models for this problem are created without any information about the future
game state. As variables regarding PC, PI, and PC*PI are computed from a future game
state, they are considered to contain information about the future. Therefore, the related
variables are all dropped, namely the location of optimal points, and their standard de-
viation. In this section, the role of the player is added as the categorical variable X33,r

with r ∈ {FW,AM,MF,CB,FB}. The full list of explanatory variables can be seen in
Table 8.2.

8.1.3 GAM model set up

Similarly to Section 6.3.1, the GAM built in this section was constructed using the mgcv
library in R. The model is constructed as a multivariate GAM with the two dependent
variables from Section 8.1.1. When modelling a multivariate GAM in mgcv, it is only
possible to set the distribution of the conditional mean as a normal distribution. However,
when observing the distribution of the dependent variables in Figure 8.1, using a normal
distribution does not appear to be unreasonable. The explanatory variables used to predict
player movement with the GAM are presented in Table 8.2. Unlike when modelling the
features in Chapter 6, the features in this chapter are not modelled as tensor products, as
the results were better when modelling an individual smooth term for each feature and
dependent variable.
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Variable Description Type
X1 Initial position of player x-coordinate Continuous
X2 Initial position of player y-coordinate Continuous
X3 Initial velocity of player x-coordinate Continuous
X4 Initial velocity of player y-coordinate Continuous
X8 Initial position of ball x-coordinate Continuous vector component
X9 Initial position of ball y-coordinate Continuous vector component
X10 Team centroid x-coordinate Continuous vector component
X11 Team centroid y-coordinate Continuous vector component
X12 Opponent centroid x-coordinate Continuous vector component
X13 Opponent centroid y-coordinate Continuous vector component
X14 Closest opponent x-coordinate Continuous vector component
X15 Closest opponent y-coordinate Continuous vector component
X22 Team centroid speed x-direction Continuous
X23 Team centroid speed y-direction Continuous
X24 Opponent centroid speed x-direction Continuous
X25 Opponents centroid speed y-direction Continuous
X26 Team compactness x-direction Continuous
X27 Team compactness y-direction Continuous
X28 Opponent compactness x-direction Continuous
X29 Opponent compactness y-direction Continuous
X30 Game time Continuous
X31 Passing angle Continuous
X32 Direction of pass, left or right Binary
X33,r Player Role Categorical

Table 8.2: Explanatory variables for predicting player movement.
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Hyperparameter Value
Number of epochs 1200
Learning rate 0.00001
Learning rate decay 0.00001/1200
Batch size 64
Loss function MSE
Hidden layers structure 256;256;256;256
Hidden layers activation functions Linear(1) and Relu(2-4)
Output layer activation function Relu
L1 Regulariser Penalty 0.0001
Additional hyperparameters Keras default values

Table 8.3: Hyperparameters for final FFNN used to predict player movement.

Benchmark
Initial position IP
Initial direction ID
Optimal control OC
Optimal Impact OI
Optimal combined control and impact OCI

Table 8.4: Benchmarks for comparison with created models.

8.1.4 FFNN model set up
The FFNN developed to predict player movement is similar to the network developed
in Chapter 6. However, some changes are made to better fit this problem, with testing
forming the basis for these changes. An L1 regulariser is added, with the penalty set to
0.0001. This increases the model’s ability to generalise, but also slows down the training
process, making it necessary to raise the number of epochs to obtain the lower loss limit.
The learning rate and its decay are also lowered, as for this problem the accuracy of the
model is more sensitive to changes in the weights. The final model’s hyperparameters are
presented in Table 8.3. For this section, the technique of training ten separate models as
presented in Section 6.3.2 is dropped, as tests only showed marginal improvements and
the training time is ten times higher using this approach.

8.2 Benchmarks for Predictions
Player movement is a situation-dependent problem, where the situation and dynamics of
play can have a large impact on the movement of players. Some situations will be easier
to predict than others, i.e. if the player is standing still at the beginning of the situation.
It is, therefore, necessary to assess the models by comparing them to some predetermined
heuristic techniques, functioning as benchmarks. The first benchmark, IP, is simply using
the player’s initial position of the situation, a benchmark also used in Peralta Alguacil et al.
(2020). This benchmark is included to see if the models are able to add prediction power
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above just the initial position. The second benchmark, ID, uses the initial position and
predicts the movement by assuming the player follows initial direction and velocity over
the next time period. Comparing the models to this benchmark is a way to investigate if
the models are able to predict the changes in direction and velocity the players undertake
during the time interval. The points of optimal PC, PI, and PC*PI are also included as
benchmarks, following the concepts detailed in Section 4.1. These are included to assess if
players make movement decisions on optimal position, and see how these models compare
to other alternatives. The five benchmarks used are listed in Table 8.4. The accuracy of
the models and benchmarks are measured in x- and y-direction, as well as the Euclidean
distance between the true movement, and the movement predicted by the different models
and benchmarks. These benchmark and models will be evaluated as a total average on
all observations, an average for the individual players with their assigned role, and an
assessment of how often the individual models perform best compared to the others.

8.3 Results
In this section, the results from the GAM and FFNN models created to predict movement
are presented and compared with the benchmarks presented in Section 8.2. The models
are validated using the same validation metrics as presented in Section 6.4, and will also
be compared on how often they give the most accurate prediction.

8.3.1 Validation results
The results of the validation of x- and y-direction are presented in Tables 8.5 and 8.6, and
the Euclidean distance presented in Table 8.7. All measures are given in meters. Both the
GAM and FFNN outperform the alternative benchmarks on all validation metrics. This is
expected when compared to IP and ID, as both the models are fitted on information present
in IP and ID, and should be able to find a better fit with additional information as well as
the ability to scale the contributions. None of the optimal point benchmarks show signs
of being a good predictor of player movement, with all of them missing by an average of
over 3 meters.

Again, the FFNN outperforms the GAM on all validation metrics, showing a better ability
to predict player movement. As with the problem in Chapter 6, this is believed to come
from the model’s ability to interpret non-linear relationships between all variables, and
not only from non-linear contributions of selected variable pairs, which is the case for the
GAM.

An interesting observation is the differences in predictability in x- and y-direction. From
the IP benchmark, the MAE is lower in y- than x-direction, meaning that players move a
shorter distance on average in y-direction than x during the one second. However, both ID,
GAM, and FFNN shows better ability to predict the movement in x-direction. A possible
explanation is that players often tend to follow the course of the attack, moving up and
down the pitch (x-direction) collectively depending on the momentum of the attack, while
movement in y-direction is more stochastic.
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Model MAE RMSE MBE R2

IP 1.474 1.920 -0.490 0
ID 0.627 0.883 0.074 0.774
OC 2.304 2.607 0.450 -0.864
OI 2.398 2.652 2.344 0.213
OCI 2.190 2.501 1.210 -0.274
GAM 0.542 0.737 -0.001 0.842
FFNN 0.504 0.692 -0.014 0.861

Table 8.5: Validation x-direction.

Model MAE RMSE MBE R2

IP 1.300 1.680 0.032 0
ID 0.789 1.128 0.001 0.549
OC 2.023 2.405 0.024 -1.049
OI 1.523 1.860 0.018 -0.225
OCI 1.949 2.329 0.033 -0.921
GAM 0.673 0.916 0.000 0.702
FFNN 0.627 0.860 -0.002 0.738

Table 8.6: Validation y-direction.

Model MAE RMSE MBEa R2

IP 2.190 2.551 -2.190 0
ID 1.115 1.433 0.212 0.485
OC 3.396 3.547 1.090 -0.534
OI 3.078 3.239 1.369 0.012
OCI 3.272 3.417 1.277 -0.328
GAM 0.956 1.176 -0.242 0.558
FFNN 0.891 1.103 -0.225 0.588

Table 8.7: Validation Euclidean distance.
a Calculated as the bias in prediction of Euclidean
distance traveled from the initial position.

8.3.2 Evaluation and discussion
As decision making in football is very situation-dependent, the models have to be evalu-
ated beyond just their average validation score to assess their true performance. One model
may perform very well in certain situations, but worse in others, therefore impacting the
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validation metrics negatively. By assessing how often a model generates the most accu-
rate prediction, the model’s ability to best describe movement in certain situations can be
evaluated.

Table 8.8 shows the percentage of the situations where the model gave the most accu-
rate prediction of player movement in x- and y-direction, as well as Euclidean distance.
As movement in football is conducted by individual players, with different physical at-
tributes, mindsets, and roles, it is reasonable to assume that player movement is stochastic.
With enough data, it is therefore expected that all models will on some occasions deliver
the most accurate prediction, a consequence of randomness in a stochastic process. This
is observed for the prediction accuracy separated in x- and y-direction. The distribution
of the most accurate model is, therefore, more even in x- and y-direction compared to
the Euclidean distance which is a two-dimensional metric. For the accuracy on Euclidean
distance, the results show similarities to the results from the validation in Section 8.3.1.
The FFNN comes out on top, followed by the GAM, ID, and IP. The optimal points very
rarely outperform the other models and heuristics, and in the few observations where they
do, it may be the result of randomness or some very specific situations where they predict
well.

IP ID OC OI OCI GAM FFNN
x-direction 11.82% 24.99% 4.49% 4.27% 4.86% 22.66% 26.96%
y-direction 14.55% 22.32% 5.72% 10.17% 5.47% 19.11 % 23.11%
Euclidean 9.41% 26.41% 1.17% 2.26% 1.30% 24.37 % 35.13 %

Table 8.8: Percentage of test set where the model made the most accurate prediction for x-direction,
y-direction and the Euclidean distance.

8.4 Individual Predictability and Role Differences
With FFNN and ID being the best model and heuristic technique respectively to predict
player movement, these approaches will be used in this section to assess the differences
in the predictability between individual players and roles. In Figure 8.2, the MAE’s of
individual players from the FFNN are plotted against the ID benchmark. From the figure,
the differences in the predictability of the individual players can be spotted, with the MAE
ranging from 0.568 meters up to 1.236 meters. The predictive power of the model is
correlated with the ID benchmark, meaning that players that often change their movement
from initial direction and velocity are harder to predict. As can be seen from the dotted
identity line, as all players are located below this line, the FFNN outperforms the ID on
all players on average. To assess the differences in predictability for different player roles,
the MAE for each role is calculated, shown in Table 8.9. For the FFNN, CBs stands out
as easier to predict than the rest, with an MAE of 0.826 meters. The rest of the roles
shows more similar results, with AMs having the highest MAE of 0.925. These results are
correlated with the results from the ID, having a correlation coefficient of 0.894. CBs tend
to deviate less from their initial velocity and direction, making them easier to predict.

85



Figure 8.2: MAE of ID and FFNN for individual players. Colours represent the role of the players:
- CB, - MF, - FB, - FW, - AM. The dotted line is an identity line.

CB FB MF AM FW
ID 1.040 1.098 1.094 1.166 1.195

FFNN 0.826 0.881 0.902 0.925 0.920

Table 8.9: Average MAE for different roles.
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Chapter 9
Answers to Research Questions

This chapter presents answers to the research questions posed in Section 1.2. The answers
are based on the results and discussions provided in Chapters 6, 7 and 8.

RQ1: Can available state of the art off-ball metrics be used to evaluate off-ball move-
ment and decision making in elite-level football?

A central question regarding the validity of the evaluation methods and applications pre-
sented in this thesis is whether the off-ball metrics used are adequate to describe the value
of different off-ball movements. In football, there is only one commodity of value, goals,
and actions only have value if they increase your team’s probability of scoring a goal or de-
crease your opponent’s probability. As the pitch control metric is developed with input and
support from experts working in professional football clubs and the pitch impact metric
specifically uses goals to infer value, both these metrics have some support for being used
in this context. The more pressing question may ,therefore, be if there are other elements
of off-ball positional value not captured by the metrics used in this thesis. As previously
discussed, the metric calculating pass probabilities were too computationally expensive to
use on a large scale for this thesis. It is, therefore, reasonable to suspect that including this
metric could lead to a more comprehensive evaluation. There may also be other metrics
describing other important parts of off-ball movement yet to be developed, and including
these when evaluating players and teams could improve understanding of individual and
role-specific movement behaviours.

Another characteristic of the framework presented in this thesis is that each evaluation
only considers performance on one metric or an equal weighting of two. Assuming that
achieving both control and impact are valuable; are they equally valuable, or is the ratio of
value dependent on roles, position or game situation? Answering these questions would
represent another step towards a comprehensive evaluation of off-ball movement. The re-
sults of ranking the players presented in Section 7.2, seem to show some support for the
validity of the framework. The presence of several players generally considered to be top
players in Allsvenskan in the top 10, and some correlation with subjective assessments

87



made by the professional scouting network coming from FM20. The careful conclusion to
this research question, therefore, becomes that while some questions and challenges still
remain, the available metrics used in this thesis can be used to evaluate aspects of off-ball
movement. This functions as an addition to existing player evaluation metrics, with new
aspects of the game possible to be evaluated.

RQ2: Are there individual differences in off-ball decision making, and do decision
making vary for different player roles?

Evaluation of individual players show that there are differences in how the individual play-
ers perform regarding the three off-ball metrics. Further, the results presented in Sections
7.1 and 7.2 suggests that players make different positional decisions depending on their
role. Attacking players, especially forwards, seem to focus more on pitch impact than
pitch control, meaning that they prefer to seek out positions closer to the goal where the
impact of receiving the ball is higher. Another role which seems to differ in positional
strategies is central defenders who seem to a lesser extent to make decisions based on
impact and control than other players. Whether these differences are the result of differ-
ences in players instincts leading them to make different decisions and therefore makes
them suited to different roles, role-specific instructions by coaches or a combination of
these two factors is not yet known. Comparing the performance of individual players with
the characteristic performance of different roles could be a useful tool for evaluating what
roles fits the player. Further, players could be compared to asses on similarities and distinct
performance, with regards to scouting and player acquisition.

RQ3: Are players on the best attacking teams in Allsvenskan making different off-
ball positional decisions than other teams?

Section 7.3 seeks to answer this question by dividing the teams in Allsvenskan by the
number of goals scored during the 2019 season into four groups and comparing their off-
ball performance. The results did not prove that better performance on the three metrics,
in general, was an indicator of attacking success, as clear trends between the average
performance and success could not be identified. No single group appeared to consistently
outperform the other groups, as three different groups found themselves in the top spot in
one or more of the analyses. Three different groups also inhabited the bottom spot on one
or more of the analyses. However, the most interesting finding from this section seems to
be that the teams with the most goals scored divide the positional responsibility more than
less successful teams. The attackers on the best teams performed the best on pitch impact
while their midfielders and defenders performed the best on pitch control.

RQ4: How well can player movement be predicted over a short time interval, and
what types of models are best suited to model this movement?

The results presented in Chapter 8 shows that feed-forward neural networks are better able
to capture the dynamics of player movement than generalised additive models and the
other benchmarks included in this thesis, during attacking passing situations. With players
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moving on average just over 2 meters from their initial positions, predicting the positions
with an average error of approximately 0.9 meters using the feed-forward neural network
means that more than half of the movement players undertake is predictable using the
selected features. The ID benchmark, determining future positions by assuming the player
continues with the initial velocity and direction, has an error of approximately 1.1 meters.
This means that most of the information used in the FFNN to predict future movement
is obtained from the player’s initial movement. Assuming that player movement contains
stochastic elements, errorless predictions are not possible. How much of the remaining
error being a consequence of lacking information in the features used, weakness in the
modelling approach, individual differences, or randomness, is not yet known.
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Chapter 10
Conclusion and Recommendations
for Further Research

This chapter concludes this master thesis with some closing remarks of the results from
this thesis. The conclusion is followed by some recommendations for further research on
off-ball evaluation.

10.1 Conclusion

Using tracking data, a framework for analysing off-ball performance has been presented.
Metrics for defining off-ball success was introduced, with models created with the in-
tention to predict and analyse the contribution of different features. Players were then
evaluated on their obtained and situational adjusted score for off-ball performance. The
results show a moderate positive correlation to existing ratings from experts, indicating
that the ratings created capture some of the same characteristics as present off-ball ratings.
The evaluation methods presented in this thesis are therefore recommended to be used not
as a replacement, but as an addition to existing methods. As the framework only considers
off-ball involvements, it needs to be combined with other metrics describing a players on-
ball performance for a comprehensive evaluation of a player. The current framework also
only considers attacking passing situations, and it is, therefore, better suited to evaluate the
off-ball behaviour of more attacking-minded players than defenders. Evaluating players
intended to have a defensive role may lead to the player being undervalued compared to
players in other roles.

Throughout this thesis, the FFNN shows better abilities than the GAM for modelling
off-ball decision making as it delivers more accurate predictions for both player perfor-
mance and movement. Many features are present to model these aspects, and the FFNN
shows signs of being better suited for understanding non-linear relationships between the
features. However, the FFNN is less interpretable than the GAM, with no easy way of
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investigating contributions from individual features or feature pair. Further, results show
that player movement is harder to predict for players deviating a lot from initial direction
and velocity, with remaining effects yet to be discovered to better model player movement.

10.2 Recommendations for Further Research
In this section, some ideas and suggestion for further research on off-ball movement are
presented. Some suggestions are intended as possible extensions to the work done in this
thesis, while others can be considered as alternative approaches.

10.2.1 Expanding the framework
One possible approach to future research on off-ball movement is to expand on the anal-
ysis from this thesis with improved or different data and methods. The data used in this
thesis, detailed in Chapter 5, lacks some details on match events and contains tracking er-
rors. Improving the precision and adding more dimensions to the data used in the models
may improve the framework through fewer errors and the addition of new features.

As previously mentioned, another possible improvement is the inclusion of pass proba-
bility as a metric inferring positional value. The code used to compute the PP model is
currently not parallelised, making it computationally expensive to run it on large amounts
of data using relatively modest systems. Other off-ball metrics could also be developed to
describe other aspects of off-ball success. This would add further understanding towards
off-ball movement, and could be an addition to the existing framework.

Another possible expansion is to consider different types of situations than what is con-
sidered in this thesis. Instead of analysing attacking situations, defensive situations could
be used to evaluate defensive movement. Gaining pitch control means limiting your oppo-
nent’s control, so this metric could be used in the same way as in this thesis. Impact is a
different type of metric and an analysis of defensive performance could be to assess how
defenders limit the impact their opponents achieve. If pass probability could be included,
this metric could then be used to analyse how the defending team limits the total pass
probability surface available to the attacking team.

Expanding to consider not just passing events, but other events such as tackles and dribbles
is also a possibility, with the ultimate extension being a continuous evaluation of move-
ment throughout entire matches. Evaluating movement on a broader range of situations
could give a more complete picture of player movement, but increasing the number of sit-
uations comes with a computational cost.

Much of the work done in this thesis is based on the assumption that players are to some
extent able to predict the movement of teammates and opponent over short time intervals.
As measures like pitch control depend on other players’ positions, as well as the player’s
own position, finding optimal positions requires some insight into the future movement
of other players. Experimenting with the time interval of movement is, therefore, another
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possible extension. Increasing the time interval would expand the player’s reachable area
and therefore their available options, but requires the assumption of players predicting
other players’ positions to be extended further into the future. As an increased time inter-
val means a larger reachable area, more than 200 points inside the reachable may need to
be sampled to represent the player’s opportunities adequately.

10.2.2 Alternative approach to off-ball metric evaluation
An alternative approach to evaluating off-ball movement is to directly link movement to
the ultimate objective of football, scoring goals. This can be achieved with the use of
a classification model, linking actions to goals in the near future. This has previously
been done with on-ball events (Mackay, 2017; Decroos et al., 2019) and an extension
to off-ball movement could be possible. The movement would, therefore, be evaluated
on its contribution towards the probability of scoring or not conceding a goal in a given
time frame. Metrics such as impact and control, could be used as features in the model,
along with many of the same features used in this thesis. This approach requires a large
amount of data containing information on player and ball movement, along with detailed
information on on-ball events such as passes, shots and goals. The data used in this thesis
does not contain such event information for this approach to be possible, but the right data
set could be constructed by combining tracking and event data from different sources.
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Appendix A
Abbreviations

Team Abbreviation
AFC Eskilstuna AFC

AIK AIK
BK Häcken BKH
Djurgården DIF

Falkenbergs FF FFF
GIF Sundsvall GIF
Hammarby IF HAM

Helsingborgs IF HIF
IF Elfsborg IFE

IFK Göteborg IFK
IFK Norrköping IFN

IK Sirius IKS
Kalmar FF KFF
Malmö FF MFF
Örebro SK ÖSK

Östersunds FK ÖFK

Table A.1: Team names and abbreviations of teams in the Allsvenskan 2019 season.
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Appendix B
Regression results for GAMs in
Chapter 6
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B.1 Significance of terms

Smooth terms
Variable Sign
f1(X1, X2) ***
f2(X3, X4) ***
f3(X5) ***
f4(X6) ***
f5(X7) ***
f6(X8, X9) ***
f7(X10, X11) ***
f8(X12, X13) ***
f9(X14, X15) ***
f10(X16, X17) ***
f11(X18, X19) ***
f12(X20, X21) ***
f13(X22, X23) ***
f14(X24, X25) ***
f15(X26, X27) ***
f16(X28, X29) ***
f17(X33) ***
f18(X34) ***

Fixed effects
Variable Coefficient
X35 -0.002 (0.004)
Intercept 0.040***(0.003)

Table B.1: Regression results from the GAMPC model. ’ ’ p < 1; ’***’ p < 0.001.
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Smooth terms
Variable Sign
f1(X1, X2) ***
f2(X3, X4) ***
f3(X5) ***
f4(X6) ***
f5(X7) ***
f6(X8, X9) ***
f7(X10, X11) ***
f8(X12, X13) ***
f9(X14, X15) ***
f10(X16, X17) ***
f11(X18, X19) ***
f12(X20, X21) ***
f13(X22, X23) ***
f14(X24, X25) ***
f15(X26, X27) ***
f16(X28, X29) ***
f17(X33) ***
f18(X34) ***

Fixed effects
Variable Coefficient
X35 -0.010**(0.004)
Intercept 0.042**(0.003)

Table B.2: Regression results from the GAMPI model. ’**’ p < 0.01; ’***’ p < 0.001.
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Smooth terms
Variable Sign
f1(X1, X2) ***
f2(X3, X4) ***
f3(X5) ***
f4(X6) ***
f5(X7) ***
f6(X8, X9) ***
f7(X10, X11) ***
f8(X12, X13) ***
f9(X14, X15) ***
f10(X16, X17) ***
f11(X18, X19) ***
f12(X20, X21) ***
f13(X22, X23) ***
f14(X24, X25) ***
f15(X26, X27) ***
f16(X28, X29) ***
f17(X33) ***
f18(X34) ***

Fixed effects
Variable Coefficient
X35 0.011**(0.004)
Intercept -0.063***(0.003)

Table B.3: Regression results from the GAMPC*PI model. ’**’ p < 0.01; ’***’ p < 0.001.
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B.2 1-D smooth function plots

2 4 6 8 10

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

GAMPC

X5

f 3
(X

5)

(a) GAMPC

2 4 6 8 10

−
1.

0
−

0.
5

0.
0

0.
5

GAMPI

X5

f 3
(X

5)

(b) GAMPI

2 4 6 8 10

−
4

−
2

0
2

4

GAMPCPI

X5

f 3
(X

5)

(c) GAMPC∗PI

Figure B.1: 1-D smooth functions for the standard deviation of PC, f3(X5), for positional strategies
GAMs.

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

GAMPC

X6

f 4
(X

6)

(a) GAMPC

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

−
1.

0
−

0.
5

0.
0

0.
5

GAMPI

X6

f 4
(X

6)

(b) GAMPI

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

−
4

−
2

0
2

4

GAMPCPI

X6

f 4
(X

6)

(c) GAMPC∗PI

Figure B.2: 1-D smooth functions for the standard deviation of PI, f4(X6), for positional strategies
GAMs.

107



0 1 2 3 4 5 6 7

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

GAMPC

X7

f 5
(X

7)

(a) GAMPC

0 1 2 3 4 5 6 7

−
1.

0
−

0.
5

0.
0

0.
5

GAMPI

X7
f 5

(X
7)

(b) GAMPI

0 1 2 3 4 5 6 7

−
4

−
2

0
2

4

GAMPCPI

X7

f 5
(X

7)

(c) GAMPC∗PI

Figure B.3: 1-D smooth functions for the standard deviation of PC*PI, f5(X7), for positional
strategies GAMs.
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Figure B.4: 1-D smooth functions for the game time, f17(X33), for positional strategies GAMs.
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Figure B.5: 1-D smooth functions for the passing angle, f18(X34), for positional strategies GAMs.
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B.3 2-D smooth functions plots
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Figure B.6: Heat map showing the contribution of smooths functions for the position of the player,
f1(X1, X2), for positional strategies GAMs.
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Figure B.7: Heat map showing the contribution of smooths for the velocity of the player,
f2(X3, X4), for positional strategies GAMs.
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Figure B.8: Heat map showing the contribution of smooths for the position of the ball, f6(X8, X9),
for positional strategies GAMs.
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Figure B.9: Heat map showing the contribution of smooths for the position of the team centroid,
f7(X10, X11), for positional strategies GAMs.
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Figure B.10: Heat map showing the contribution of smooths for the position of the opponent’s
centroid, f8(X12, X13), for positional strategies GAMs.
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Figure B.11: Heat map showing the contribution of smooths for the position of the closest opponent,
f9(X14, X15), for positional strategies GAMs.
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Figure B.12: Heat map showing the contribution of smooths for the position of the optimal PC
point, f10(X16, X17), for positional strategies GAMs.
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Figure B.13: Heat map showing the contribution of smooths for the position of the optimal PI point,
f11(X18, X19), for positional strategies GAMs.
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Figure B.14: Heat map showing the contribution of smooths for the position of the optimal PC*PI
point, f12(X20, X21), for positional strategies GAMs.
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Figure B.15: Heat map showing the contribution of smooths for the velocity of the team centroid,
f13(X22, X23), for positional strategies GAMs.
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Figure B.16: Heat map showing the contribution of smooths for the velocity of the opponents
centroid, f14(X24, X25), for positional strategies GAMs.
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Figure B.17: Heat map showing the contribution of smooths for team compactness, f15(X26, X27),
for positional strategies GAMs.
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Figure B.18: Heat map showing the contribution of smooths for opponents compactness,
f16(X28, X29), for positional strategies GAMs.
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Appendix C
Regression results for GAM in
Chapter 8
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