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Sammendrag

Denne studien omhandler styring av prisrisiko i oppdrett av atlantisk laks. I dag sikrer de
fleste lakseoppdrettere mindre enn 30% av lakseprisen, mens enkelte ikke sikrer noe. I tillegg
er det for øyeblikket ingen oppdrettere som adresserer svingningene i fôrprisene eller råvarene
som brukes i produksjonen av fôr. Denne avhandlingen er det første akademiske bidraget til
reduksjon av samlet prisrisiko i en lakseoppdrettskontekst. I tillegg til laks tar vi de viktigste
råvarene i laksefôret i betraktning; soyamel, hvete og rapsolje.

Vår metode baserer seg på styring av prisrisiko for flere råvarer, kjent som multi-commodity
price hedging. Antall futures-kontrakter som bør kjøpes eller selges per enhet med ekspon-
ering i spotmarkedene, kjent som hedge ratio, estimeres ved å modellere den flerdimens-
jonale avhengighetsstrukturen mellom råvareprisene. Dette gjøres med tre forskjellige cop-
ula-modeller.

Resultatene viser at samlet prisrisiko i lakseoppdrettsnæringen kan reduseres betydelig
ved å anvende et fler-råvare-rammeverk med dynamiske copula-modeller. Den foreslåtte
rolling window copula multi hedge-modellen (RWC) reduserer variansen med opptil 53.52%,
og utkonkurrerer andre modeller. Dette er modellen som ofrer minst avkastning i forsøket
på å redusere prisrisiko. Anvendelsen av flerdimensjonal risikoreduksjon, multi-commodity
hedging, gir ytterligere risikoreduksjon for kortere perioder, og har en tendens til å forbedre
avveiningen mellom risiko og avkastning ved lengre perioder. Videre viser resultatene at å
utvide standard flerdimensjonale GARCH-modeller ved anvendelse av copulaer reduserer
prisrisikoen ytterligere i de fleste tilfeller.

Et annet nøkkelfunn er at periodens lengde har stor innvirkning på hvor mye risikoen kan
reduseres. Lakseoppdrettere må foreta en avveining der lengre perioder generelt gir bedre
risikoreduksjon og lavere kostnader, men i større grad krever planlegging av fremtidige slak-
tevolumer. Til slutt foreslår vi et kostnads-effektivitets-mål som understreker viktigheten
av å vurdere kostnadene ved risikoreduksjon opp mot hvor mye risikoen reduseres. RWC-
modellen er den mest effektive modellen når det kommer til kostnadseffektivitet for lengre
perioder. Dette bør være attraktivt for oppdrettsselskapene som for øyeblikket i stor grad
foretrekker å være eksponert mot spotprisene i frykt for å gå glipp av positiv avkastning.
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Abstract

This study addresses the joint input and output price hedging problem for Atlantic salmon
farmers. Along with salmon, we consider prices of the three most important commodit-
ies in fish feed mixtures; soymeal, wheat, and rapeseed oil. Our approach is based upon
multi-commodity price hedging using state-of-the-art of copula models. The results show
that joint price risk in the salmon farming industry can be substantially reduced by multi-
commodity hedging. The proposed rolling window copula multi-hedge reduces portfolio
variance by up to 53.52% and outperforms other models. The use of multi-commodity hedging
improves hedging effectiveness for short horizons and tends to improve the risk-return trade-
off for longer horizons. Further, our results show that extending the standard multivariate
GARCH models by applying copulas increases hedging performance in most cases. Another
key finding is that the hedging horizon greatly impacts hedging outcomes. Salmon farm-
ers face a trade-off where longer hedging horizons yield better hedging effectiveness and
lower costs but require pre-planned slaughtering volumes to a higher degree. Lastly, we pro-
pose a cost-effectiveness measure, highlighting the importance of considering the costliness
against the effectiveness of a hedge. By this measure, the RWC model is the most efficient
for longer hedging horizons. This is attractive for salmon companies, which currently prefer
spot price exposure.

Keywords: Aquaculture, Salmon farming, Salmon feed, Risk management, Multi-commodity
hedging, Cross-hedging, Futures, Copulas, GARCH



1 | Introduction

Both the demand and production of Atlantic salmon have been growing fast for the last dec-
ades, with Norwegian producers1 accounting for more than half of world production in 2017
(Brækkan, 2014; Asche et al., 2011; Misund and Asche, 2016; Berge, 2019). At the same time,
the last few years have seen a sharp increase in planning and development of land-based sal-
mon production at sites closer to key consumer markets, which could threaten the margins
of Atlantic salmon farmers (EY, 2019). Norwegian producers still have a competitive advant-
age, but the industry faces clear challenges that must be managed to maintain pole position.
One of these challenges is the substantial volatility which salmon farming profits feature.
The volatility stems from different sources with a significant portion coming from market
risk. Most farmers in Norway have acknowledged the importance of managing market risk
and try to partially mitigate it by engaging in price risk hedging with exchange traded futures
contracts on salmon (Mowi, 2020; SalMar, 2020; Lerøy Seafood Group, 2019; Grieg Seafood,
2019; Norway Royal Salmon, 2020). Such contracts can serve as means for risk transfer from
those who wish to reduce risk, typically a salmon farmer, to those with a higher risk appetite.

The salmon price, however, is not the only uncertain factor affecting the profits. Optim-
ising business performance requires successful management of costs and related risks. The
main input cost for salmon producers is fish feed (Mowi, 2019). Both the fish feed itself and
the commodities in the feed mix feature substantial price volatility, creating an opportunity
for the use of novel hedging strategies. Some feed producers have started to offer the feed
purchasers to hedge the input commodity prices. However, most farmers seem to be under
the perception that, in the long run, costs will outweigh the benefits of hedging exposure in
the feed input commodity markets, and thus remain unhedged.2 Nonetheless, findings in
several studies, e.g. Smith and Stulz (1985) and Graham and Smith (1999), suggest that re-
ducing exposure can add significant value. That being the case, there is an evident need for
an industry specific examination of joint input and output hedging. This complex hedging
problem has received limited attention among practitioners and academics. Potential reas-
ons are a history of satisfactory operating margins, a lack of standardised financial hedging
tools such as futures on the feed itself and limited knowledge of the potential and use of
financial hedging among industry players.2

In this thesis we provide a novel application of multi-commodity hedging where we model
the joint risk of input and output price movements. Our first contribution is to provide prac-
tical steps towards better risk management practices in the industry by applying advanced
techniques to a stylised scenario applicable across different value chain set-ups. We move

1The terms salmon producer, salmon farmer and salmon company are used interchangeably in the thesis,
referring to the same thing.

2This information was revealed in a phone interview with Kåre Gruven, Chief Feed Adviser at Norway Royal
Salmon, 19 May 2020.
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CHAPTER 1. INTRODUCTION 2

from traditional output price hedging to joint input and output price hedging. While hedging
the output price is already widely examined in the industry, hedging input prices such as
feed has been less straightforward in the absence of futures. We show how the contract types
used for feed purchases can be exploited to cross-hedge feed price risk. Currently, the full
input commodity price risk in salmon feed production is carried by the salmon farmer. This
enables the farmer to hedge the feed price risk by taking positions in established exchange
traded commodity futures. We provide a first application of copula GARCH3 models for es-
timating hedge ratios in the salmon industry. The study examines the share of the salmon
production price risk that can be mitigated by simultaneously hedging salmon production
input and output price risks. We obtain novel results and find that copula estimation of
hedge ratios can significantly improve the risk-return trade-off compared to unhedged port-
folios, one-to-one hedged portfolios and portfolios where hedge ratios are estimated by tra-
ditional multivariate GARCH (MGARCH) models.

Today, improvement of risk management practices in the salmon farming industry is par-
ticularly valuable. Prior to the COVID-19 outbreak, global trends as growing middle class
in emerging economies and the industry’s relatively low carbon footprint pointed towards
strong demand for Atlantic farmed salmon in the years to come (Salmon Facts, 2016; Mowi,
2019). Further, markets have seen sharp drops and increasing volatilities following the COVID-
19 outbreak. This has indeed been the case for salmon prices too, dropping close to 30 %
between late February and early April 2020, dramatically impacting salmon farming reven-
ues. Increasing volatility in prices for salmon feed input commodities such as soymeal also
contributes to higher uncertainty in salmon farming operating margins going forward. This
has further exposed the need for better risk management practices in the industry.

Independent from demand trends, the growth of the industry is limited by biological
factors (Jensen, 2019). The regulating authorities are concerned about the environmental
implications of the industry, such as fish welfare and lice transfer from farmed to wild sal-
mon. To combat this, the government has imposed strict capacity regulations. These limit
the growth potential for farmers and the Norwegian salmon industry as a whole (Fiskeri-
direktoratet, 2020). Under these circumstances, the key to achieving economic sustainabil-
ity is to ensure profitability in the industry by innovative means that help to tackle existing
inefficiencies. Proper management of revenues, costs and associated risks are thus more
important than ever before.

The biological nature of the industry leads to periods of higher mortality rates (Hovland,
Hopland and Solheimsnes, 2019) and periods of forced excessive slaughtering (Knudsen,
2019). This, together with seasonality in growth and harvesting, results in large variations
in salmon supply which feed through into financial markets and contribute to volatile prices
(Thyholdt, 2014; Oglend, 2013). The biological factors contribute to profit volatility them-
selves by affecting the quantity produced. However, management of non-market risks is
outside of the scope of this thesis.

Our second contribution is to extend the current literature on hedging salmon farming
price risk by applying a multivariate GARCH model to obtain dynamic hedge ratios for both
salmon and fish feed commodities. Additionally, we analyse the suitability of GARCH models
to capture heteroscedasticity in the time series. Salmon price risk hedging has been subject
to extensive academic research, and former studies such as Oglend (2013) has found signi-
ficant heteroscedasticity in price volatility. Hence, the use of GARCH models is necessary for

3Generalised autoregressive conditional heteroskedasticity.
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describing volatility and to obtain dynamic hedge ratios. Misund and Asche (2016) examine
hedging of salmon spot price exposure by entering salmon futures contracts. They obtain dy-
namic hedge ratios by applying a bivariate GARCH model, resulting in significant variance
reduction. Bloznelis (2018) uses a similar approach, but focuses on relaxing the assumption
of known expected prices while at the same time obtaining moderate hedging performance.
Our study goes beyond this by examining how to reduce exposure to multiple risks.

The related studies within fish feed hedging are rather limited. Among the few contribu-
tions are Vukina and Anderson (1993) and Franken and Parcell (2011). The former studied
cross-hedging of fish meal and soybean meal, while the latter provided an extension by con-
sidering both soybean meal and corn futures, obtaining improved results. Since the amount
of fish meal in modern salmon feed mixes are expected to fall below 10% in the close future,
the results have limited value for our study (BioMar Group, 2018). On the other hand, their
successful cross-hedging of fish meal suggests similar approaches should be examined for
fish feed hedging, which is what we do.

The closest related contribution to hedging input price risk is Haarstad, Strypet and Strøm
(2019). Their study is a theoretical contribution to salmon farming input hedging by applying
a structural equilibrium model and entering futures contracts on one of the feed input com-
modities in the absence of feed futures. The hedging effectiveness in terms of lowering the
variability in profit was, however, minor. This was explained by the variance in feed prices
being dominated by the variance in the salmon prices, which has grown over the past years
(Oglend, 2013). We hypothesise that a more successful hedge of input price risk requires a
simultaneous hedge of both feed and salmon prices, which we explore in our study.

Our third contribution is to extend the current salmon hedging knowledge base by in-
vestigating the potential of state-of-the-art multi-commodity hedging methods. The study
is an extension of contributions to output price hedging such as Misund and Asche (2016)
and Bloznelis (2018). Multi-commodity hedging has to the best of our knowledge not yet
been studied in the context of salmon farming. This thesis fills the gap related to modelling
of input hedging in the current aquaculture risk management literature. At the same time,
it expands the current knowledge base from solely output price hedging, not only to input
price hedging, but further to general price hedging.

We study hedging the joint risk of feed and salmon sales prices within a multi-commodity
hedging framework. Even though there is a lack of literature on simultaneous input/output
price hedging in an aquaculture business context, similar problems have been examined in
other industries. Applications to agriculture are particularly interesting, given the similarit-
ies of the two industries. Studies of multi-commodity hedging in cattle farming have yielded
good results in terms of reducing profit variability (Anderson et al., 2017) and lowering the
risk of big losses (Power et al., 2013).

Power and Vedenov (2009) study the simultaneous hedging of corn (input) and fed cattle
(output) for a Texas feedlot operator, which in principle is similar to the hedging problem for
a salmon farmer. They show that the hedge ratio for hedging extreme losses is significantly
lower than for minimising variance, which is the classical hedging framework. Our study fo-
cuses on hedging effectiveness as well. To avoid over-simplifying assumptions of multivari-
ate normality, Power and Vedenov (2009) apply a non-parametric copula (NPC) to model the
joint distributions of spot and futures prices for the two commodities considered. One of the
main challenges using NPC is the curse of dimensionality where the non-parametric density
estimation convergence diminish as dimensions increase (Nagler and Czado, 2016). Given
that our practical approach uses multiple commodities, the application of a NPC framework
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requires new methods and techniques to resolve today’s obstacles and challenges. Thus, we
use multiple parametric copulas, as applying them for describing the dependence between
two variables in many cases can be more effective than linear correlation (Patton, 2006b).

Power et al. (2013) extend the work of Power and Vedenov (2009) by comparing several
GARCH techniques in terms of lowering the joint risk of input and output price fluctuations,
again for a Texas feedlot operator. They find that the copula GARCH model outperforms both
the dynamic conditional correlation (DCC) and Baba-Engle-Kraft-Kroner (BEKK) model in
terms of lowering tail risk. Our study explores this in a salmon farming context and further
confirm that the results of Power et al. (2013) apply there.

Anderson et al. (2017) also study multi-commodity hedging in the live cattle futures mar-
ket by comparing hedge ratios of corn under both single- and multi-commodity frameworks.
They find that the hedge ratios differ because the multi-commodity hedge ratios of corn are
dominated by the cross-dependence between live cattle and corn. This is analogous to the
observations of Haarstad, Strypet and Strøm (2019). In their study of the salmon farming
industry, the effectiveness of a single-commodity hedge on fish feed are limited as a res-
ult of the variance of output prices dominating the variance of feed prices. Anderson et al.
(2017) conclude that especially the multi-commodity hedging strategy, as well as the single-
commodity hedging strategies, perform better than the non-hedging strategy when consid-
ering minimum variance and tail risk criteria. Similarly to Power and Vedenov (2009), An-
derson et al. (2017) apply a copula to obtain the joint distribution of spot and futures prices
for corn and cattle. Results show that using copula-based methods with GARCH to derive
hedge ratios can be more suitable than conventional approaches to computing risk, as these
tend to over- or underestimate the risk (Rosenberg and Schuermann, 2006). This suggests
that copulas could be useful for modelling hedge ratios in the aquaculture industry, which
is confirmed by our study. We show that hedging outcomes are significantly better on most
metrics when hedge ratios are estimated by copula methods, compared to when estimated
by the DCC model.

From the methodological perspective, our study builds on the seminal contribution in
the theory of copulas by Sklar (1959). This study showed that a joint distribution can be
transformed into marginal distributions and a copula function which describes the depend-
ence between the variables (Patton, 2006a). Vice versa, marginal distributions can be com-
bined with a copula function to form a joint multivariate distribution, which we utilise in
our study. As a measure of dependence between variables, the copula is more informative
than linear correlation when the joint distribution of the variables is non-elliptical (Patton,
2006b). The copula approach relaxes the often unrealistic assumption of joint multivari-
ate normality of traditional multivariate GARCH models (Power and Vedenov, 2008; Jondeau
and Rockinger, 2006). Copulas can therefore provide realistic joint distributions which can
be exploited in risk management by obtaining more realistic GARCH models. Power and
Vedenov (2008) describe the extension of copula theory to stochastic processes, i.e. time
series, leading to a number of empirical applications of copula theory in financial literature.

The application of copulas are to the best of our knowledge not explored in the aquacul-
ture economics literature. Successful applications in agriculture suggest they have the po-
tential to be useful in an aquaculture economics context too, which we confirm in our study.

The remainder of the paper is structured as follows: Chapter 2 presents the methodology
applied in the study. A description of our application to the salmon industry, data and estim-
ated models are presented in Chapter 3. Results are given and discussed in Chapter 4, while
Chapter 5 concludes the paper and suggests directions for further research.



2 | Methodology

In this chapter we present the methodological foundation for our models. First, we introduce
a set of hedging strategies which create hedging portfolios consisting of simultaneous posi-
tions in both spot and futures contracts in several commodity markets. Second, we present
four measures to evaluate the effectiveness of the hedged portfolios and capture important
differences in performance. Third, we analyse conventional methods used to obtain op-
timal hedge ratios, being the univariate GARCH(1,1) model and the multivariate dynamic
conditional correlation (DCC) model. These will serve as a basis for building more complex
models. Fourth, we demonstrate how copulas can be applied as an extension to GARCH
models, an approach of increasing popularity in financial econometrics. Lastly, we present
three state-of-the-art copula GARCH models, which we use to obtain optimal hedge ratios
and hedge the salmon farmer price uncertainty.

2.1 Hedging strategies

Single-hedge

A widely used technique for managing price risk is through hedging with futures contracts.
Consider a salmon company with exposure to the price of the commodity produced, and the
price of the input commodities required to produce the output. A hedge is then achieved by
taking opposite positions in spot and futures markets simultaneously, so that losses resulting
from adverse price movements in one market can to some degree be offset by a beneficial
movement in the other. The size of the position in futures contracts is determined by the
hedge ratio, denoted h, which is the number of futures contracts desirable to enter per unit
of exposure in the spot market. Following Ederington (1979), risk in this context is measured
as the volatility of the company’s portfolio of price returns, where the goal is to minimise the
portfolio variance by choosing appropriate hedge ratios.

In order to hedge price exposure we consider two commonly employed strategies. The
first strategy is the naïve hedge where h = 1. Implicit in this strategy is a view that the spot
and futures market move closely together, and is optimal only if price movements in both
markets are proportionate and exactly match each other (Butterworth and Holmes, 2001).
However, this is rarely the case. An alternative to the naïve hedge is to find the optimal hedge
ratio, h∗, which minimises the portfolio variance by taking imperfect correlations into ac-
count. The optimal hedge is then estimated under the assumption of constant volatility and
correlation, known as static hedging.1 Given that Asche, Misund and Oglend (2016) finds

1An estimation of the static hedge ratio is easily undertaken by an OLS-regression of st on ft . Variants of
this include rolling-window OLS when extending to dynamic hedge ratios, as employed by Asche, Misund and
Oglend (2016).

5



CHAPTER 2. METHODOLOGY 6

little difference between the naïve and static optimal hedge, we employ the naïve hedge as
our static benchmark. The second strategy and the focus of our thesis is dynamic hedging
under time-varying volatility and correlation. The goal is then to find the optimal time-
varying hedge ratio at time t , conditional on the information set at time t − 1. Let st , ft

denote the spot and futures log price changes (returns), and ht−1 the hedge ratio, then the
portfolio return rt is given by Equation 2.1:

rt = st −ht−1 ft . (2.1)

Following Brooks (2014, p.465-466), we derive the variance minimising dynamic hedge ratio
which is given by Equation 2.2:

h∗
t = Covt (st , ft )

V art ( ft )
, (2.2)

where Cov t (st , ft ) is the conditional covariance between spot and futures returns at time t
and V ar t ( ft ) is the conditional variance of the futures returns at time t . The problem of
finding the optimal time-varying hedge ratios then becomes estimation of the conditional-
variances and covariances for spot and futures price returns in the portfolio.

Multi-hedge

While the optimal hedge ratio of Equation 2.2 holds when considering the spot and futures
price returns of a single commodity, it is not necessarily optimal when considering a multi-
commodity problem with both input and output. Using a similar approach to Anderson et
al. (2017), we tackle this by defining a single-hedge where commodities are considered separ-
ately, and a multi-hedge which exploits the dependency between the different commodities.

First, consider the case where the return on the company’s portfolio of commodities is
a combination of the variance minimising portfolios of each commodity, hedged independ-
ently with hedge ratios as given by Equation 2.2. Here, the hedger assumes that when each
commodity is hedged separately, the combination results in a portfolio that reduces overall
risk. In this setting, the dependency between different commodities is not considered and
there are no opportunities for cross-hedging (Anderson and Danthine, 1981). This necessar-
ily prevents speculative positions when the spot and futures markets are positively correl-
ated.2 We denote the vector of optimal dynamic hedge ratios when considering i commod-
ities hedged separately as hS,t =

{
h1,t , ...,hi ,t

}
, which we refer to as the single-hedge ratio.

Second, we consider the combined returns on the portfolio of all commodities in a multi-
commodity setting, following the hedging framework of Anderson and Danthine (1981). In
this framework, the commodities are considered in unison. This implies that unfavourable
movements in one commodity spot price can be more effectively offset by movements in
a different commodity price rather than just the corresponding commodity futures price.
This entails both cross-hedging and speculative positions in different markets to obtain the
combined minimum variance portfolio. Furthermore, it depends on the spot commodity
quantities, implying that exposures are weighted higher. We denote the vector of optimal
hedge ratios hM ,t =

{
h1,t , ...,hi ,t

}
and will henceforth refer to it as the multi-hedge ratio, given

2A speculative position entails going long (or short) both the corresponding spot and futures market simul-
taneously, effectively increasing the exposure.
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by Equation 2.3:3

h∗
M,t =

[
di ag (Q)

]−1∑−1
F F (t )

∑
F P (t )Q, (2.3)

where
∑

F F (t ) is the (m×m) variance-covariance matrix of futures prices,
∑

F P (t ) is the (m×
m) variance-covariance matrix of spot and futures prices, Q is a (m ×1) vector of the quant-
ities of spot commodities4 and di ag (Q) is a diagonal matrix with Q on the main diagonal
(Fackler and McNew, 1993).

To measure the effectiveness of the different hedging strategies, we apply four measures
defined in the following section.

2.2 Measures of hedging efficiency

We consider two main aspects when comparing the effects of different hedging strategies:
return and risk, each with two accompanying measures.

The effects of hedging return are measured in two ways. First is mean return which we es-
timate from a portfolio with historical average returns (French and Fama, 1989; Fama, 1990;
Fama and French, 1992). Mean return is the profit or loss the company historically would
have received by applying the respective hedging strategies. Second, given that different
hedging strategies involve different sized positions in the futures market, we compare the
cost of the hedges by computing the transaction costs associated with each hedge. Trans-
action costs play an important role regarding choosing the optimal hedging strategy. Less
frequent rebalancing is cheaper, yet more risky, whereas frequent rebalancing is more ex-
pensive, but less risky (Toft, 1996).

The hedging effect on risk is measured by hedge effectiveness (HE) and expected shortfall
(ES). When the goal is to minimise the variance of returns, HE is measured as the percent-
age reduction of variance in the hedged portfolio against the unhedged portfolio, given by
Equation 2.4 (Ederington, 1979):

Hedge effectiveness = 1− V ar (Hedged portfolio)

V ar (Unhedged portfolio)
. (2.4)

Tail risk refers to the most extreme downside losses, of magnitude to potentially do great
damage in an economic perspective. As a proxy measure for tail risk and financial distress,
we employ ES. ES measures the average loss in the worst α = A% cases, given by Equation
2.5. While value-at-risk (VaR) is often employed for this purpose, it is not sub-additive, nor
does it consider the severity of losses in worst case scenarios. ES is therefore used as a more
coherent measure of tail risk (Acerbi and Tasche, 2001).

ESα(X ) =
(
− 1

α

)(
E
[

X IX≤xα]−xα
(
P[X ≤ xα

]−α))
. (2.5)

ES can be simplified to tail conditional expectation (TCE) when the probability distributions
are continuous:

TC Eα(X ) =−E
{

X |X ≤ xα
}

. (2.6)

3The original framework formalised by Fackler and McNew (1993) has been extended from the static to the
time-varying case by applying t subscripts.

4Positive (negative) quantities correspond to long (or short) positions.



CHAPTER 2. METHODOLOGY 8

2.3 GARCH models

In order to obtain time-varying hedge ratios and capture important characteristics such as
heteroscedasticity, dependence between variables and tail behaviour in our financial time
series data, we estimate GARCH models. In what follows we present the standard GARCH(1,1)
model and the DCC model, which serve as a basis for the more complex models introduced
later.

GARCH(1,1) model

Consider a time series of commodity prices with a sample of T observations. Letting Pt

define the time series evaluated at time t , the continuously compounded return rt is defined
as the log-change, given by Equation 2.7:

rt = lnPt − lnPt−1. (2.7)

We let the unconditional mean and variance be denoted by µ and σ2. Then, the conditional
mean and variance, µt and σ2

t , can be written as5

µt = E[rt |ℑt−1],

σ2
t = E[(rt −µt )2|ℑt−1],

(2.8)

where ℑt−1 denotes the information available at t −1. The return at time t is then given by

rt =µt +σtεt , where εt ∼ g (0,1,θ), (2.9)

εt is the standardised residual at time t and g (0,1,θ) is the assumed conditional distribu-
tion with distributional parameters θ. While the original GARCH model assumes εt to be
standard normal, we also consider the generalised error distribution (GED), the Student’s t
distribution and the skewed t distribution of Fernández and Steel (1998).

The conditional variance is modelled by

σ2
t =ω+βh2

t−1 +αu2
t−1, (2.10)

where ut =σtεt and ω,β,α are the parameters of the process. With the above specification,
the unconditional variance of ut is given as Var(ut ) = ω

1−(α+β) . To ensure stationarity, we
require the restriction (α+β) < 1 (Brooks, 2014, p. 430). While the GARCH(1,1) model can be
extended to a GARCH(p, q) model, the (1,1)-specification is generally sufficient and has been
found to perform well compared to higher order models when an appropriate distribution
for εt is specified (Brooks, 2014; Hansen and Lunde, 2005).

Next we present the DCC model, which will be the baseline multivariate GARCH model
for modelling conditional covariances.

5While conditional variance is commonly denoted as ht in financial literature, we use the σ2
t notation to

avoid confusion with the hedge ratio h.
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DCC model

In order to capture time-varying correlations between time series used in dynamic hedging,
a multivariate GARCH (MGARCH) model is needed. There exist many different specifica-
tions of MGARCH in the literature (Bauwens, Laurent and Rombouts, 2006). One of the
main challenges with MGARCH models however, is the curse of dimensionality, where the
number of parameters increase rapidly with the dimensionality of the models (Caporin and
McAleer, 2014). This is a relevant challenge for commodity processors such as a salmon
farmer, hedging against the risk of multiple commodities. For example, the general BEKK
model in the case of four commodities (8 time series), would require jointly estimating 164
parameters.6 Therefore, we will focus on specifications that allow us to use higher dimen-
sions such as the widely used DCC model proposed by Engle (2002) and Tse and Tsui (2002).

For this model family the conditional covariance estimation is simplified by estimating
GARCH(1,1) models for each commodity. The transformed residuals from each commod-
ity is used to estimate a conditional correlation estimator which is then used to modify the
standard errors for the correlation parameters. The variance-covariance matrix Ht is defined
as

Ht = Dt Rt Dt , (2.11)

where D t is a diagonal matrix containing the conditional standard deviations obtained from
Equation 2.10 for each individual series, and Rt is the conditional correlation matrix. Both
D t and Rt vary over time, producing a new variance-covariance matrix for each time step,
differentiating DCC from the constant conditional correlation (CCC) model.7

DCC models do not come without shortcomings. One of them being the requirement in
the maximum likelihood estimation (MLE) procedure that the standardised residuals follow
the multivariate normal distribution. This may not be consistent with financial data, which
often can contain features such as skewness and excess kurtosis. To address this issue, we
apply a copula approach (Patton, 2006b).

2.4 Copulas

An n-dimensional copula, C , is a distribution function with uniformly distributed margins
in [0,1]. Sklar (1959) showed that any joint distribution function F of the random vector
X = (x1, ..., xn) with margins G1(x1), ...,Gn(xn), can be decomposed as follows:

F (x1, ..., xn) =C
(
G1(x1), ...,Gn(xn)

)
, (2.12)

with the copula C being uniquely determined in [0,1]n and assuming F with sufficiently
smooth margins for derivatives to exist, obtained as

C (x1, ..., xn) = F
(
G−1

1 (u1), ...,G−1
n (un)

)
. (2.13)

6Using the R package mgarchBEKK by Schmidbauer, Roesch and Tunalioglu (2016).
7For more details on how the DCC model is estimated with the maximum likelihood estimator (MLE)

method, see Engle (2002) and Tse and Tsui (2002).
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Conversely, the joint density function f , and copula density c, is obtained as

f (x1, ..., xn) =c
(
G1(x1), ...,Gn(xn)

)× n∏
i=1

gi (xi ),

where c(u1, ...,un) = ∂nC
(
u1, ...,un

)
∂u1 · ... ·∂un

,

(2.14)

and ui =Gi (xi ) are the uniform observations in [0,1] transformed by the probability integral
transform (PIT), using its series marginal distribution. The resulting ui are typically referred
to as pseudo-observations. An alternative to using the marginal distribution is using the em-
pirical distribution function (EDF) given by Equation 2.15, to obtain pseudo-observations.8

Estimation of c using the EDF is shown to be consistent, asymptotically normal and fully
efficient under the assumption that X is i.i.d. (Genest, Ghoudi and Rivest, 1995).

Gi (x) ≡ 1

T +1

T∑
t=1

1
{

x̂i ,t ≤ x
}
. (2.15)

Different parametric copula functions are often referred to as copula families. The cop-
ula families used in this thesis belong to two main categories: (1) elliptical copulas with
symmetric dependency structures and (2) Archimedian copulas with asymmetric depend-
ency structures. We use the normal and Student’s t copula of the elliptical category and the
Clayton, Gumbel, Frank and Joe copula from the Archimedian category. In the following, we
present the density functions and discuss properties of the normal, Student’s t and Gumbel
copula which are commonly applied to financial data.9 Figure 2.1 displays normalised con-
tour plots for the normal, Student’s t, Gumbel and survival Gumbel copula with parameters
given in the upper row. The bottom row displays N = 300 simulated pseudo-observations
from the respective copulas.
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Figure 2.1: Contour plots of normal, Student’s t, Gumbel and survival Gumbel copula.

8The uniform pseudo-observations can in theory be obtained by the PIT using respective marginal distri-
butions. In our experience, the EDF often produces more uniform margins resulting in more accurate copula
estimates unless the marginal distributions are perfectly specified.

9Similar details on the Clayton, Frank and Joe copula are attached in Appendix A.2.
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The normal copula, commonly referred to as the Gaussian copula, is constructed from
the multivariate standard normal distribution. The bivariate functional form of the normal
copula density is given as

cN (ui ,u j ;ρ) = 1√
1−ρ2

exp

{
− ρ2

(
Φ−1(ui )2 +Φ−1(u j )2

)−2ρΦ−1(ui )Φ−1(u j )

2(1−φ2)

}
, (2.16)

for ρ ∈ (−1,1) where Φ−1 is the inverse cumulative distribution function (CDF) of a standard
normal random variable.

Similar to the normal copula, the Student’s t copula is based on the standard t distribu-
tion. Hence, the t copula generalises normal copula by allowing non-zero dependence in
the extreme tails, as seen in Figure 2.1.10 The bivariate Student’s t copula density is given by
Equation 2.17:

cT (ui ,u j ;ρ,ν) = Γ((ν+2)/2)/Γ(ν/2)

νπt (x;ν)t (y ;ν)
√

1−ρ2

(
1+

(x2 + y2 −2ρx y

ν(1−ρ2)

)− v+2
2

)
, (2.17)

for ρ ∈ (−1,1) and ν > 0, where t (·;ν) is the probability distribution function (PDF) of a
Student’s t random variable with ν degrees of freedom, x ≡ T −1(ui ;ν), y ≡ T −1(u j ;ν) and
T −1(·;ν) is the inverse CDF of a Student’s t random variable with ν degrees of freedom.

Lastly, the Gumbel copula is an Archimedian copula and therefore allows for asymmet-
rical tail dependence. Its bivariate density is given by Equation 2.18:

cG (ui ,u j ;ρ) =CG (ui ,u j ;ρ)(ui u j )−1 (ũi ũ j )ρ−1

(ũi
−ρ+ ũ j

−ρ)2− 1
ρ

((
ũi

−ρ+ ũ j
−ρ) 1

ρ +ρ−1
)
,

where CG (ui ,u j ;ρ) = e
−(u

ρ

i +u
ρ

j )
1
ρ

,

(2.18)

for ρ ∈ [1,∞). Specifically, the Gumbel copula displays greater dependence in the positive
tail than in the negative. Furthermore, Archimedian copulas can be be rotated by 90 degree
quadrants to exhibit different tail dependencies. For example, a 180 degree rotation, which is
denoted as a survival copula,11 would produce the mirrored asymmetry. Hence, the survival
Gumbel displays greater dependence in the negative tail than the positive, which is more
appropriate for financial data and depicted in Figure 2.1. 90 and 270 degree rotations are ne-
cessarily required to capture negative dependence when considering Archimedian copulas
(Brechmann and Schepsmeier, 2013).12

Conditional copulas

The copula theory by Sklar (1959) was developed for applications where data is assumed
to be i.d.d., and hence not typical time series data. Patton (2006a) proves that copulas can
be applied to the case of serially-dependant data if the latter satisfy the Markov Property;
Stating that future realisations of a stochastic process conditioned on both past and present

10When ν→∞, Student’s t copula approaches the normal copula.
11A definition of survival copulas and joint survival functions can be found at Cherubini (2004, p.75-80).
12Details on the 90, 180 and 270 degree rotations for the Archimedian copulas are presented in Appendix A.2.
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states depends only on the present state and not on the entire information set ℑt−1. I.e.
P(X t = xt |ℑt−1) = P(X t = xt |X t−1 = xt−1). Although the Markov Property does not hold for
typical financial time series, it is satisfied by the innovations of fitting a GARCH(1,1) model,
assuming the conditional distribution is correctly specified. Therefore, the bivariate condi-
tional joint density of standardised GARCH residuals εi ,t , ε j ,t at time t can be written as

ft (εi ,t ,ε j ,t |ℑt−1) =ct

(
Gi ,t (εi ,t |ℑt−1),G j ,t (ε j ,t |ℑt−1)

∣∣ℑt−1

)
× gi ,t (εi ,t |ℑt−1)× g j ,t (ε j ,t |ℑt−1),

where ct (ui ,t ,u j ,t |ℑt−1) = ∂2Ct
(
ui ,t ,u j ,t |ℑt−1

)
∂ui ,t∂u j ,t

,

(2.19)

gi ,t (εi ,t |ℑt−1) is the conditional marginal density of εi ,t and g j ,t (ε j ,t |ℑt−1) the conditional
density of ε j ,t .

Parameters of Equation 2.19 are estimated by a two-stage maximum likelihood frame-
work in which parameters for the density functions of εi ,t , ε j ,t and parameters for the copula
function are estimated in two steps.13 In the first stage the marginal densities are estim-
ated by the fitting of a GARCH(1,1) model for each random variable. In the second stage
the parameters of the copula is estimated by maximising the log-likelihood function given
the estimates of stage one. Estimates have been shown to be consistent and asymptotically
normal under standard conditions (Patton, 2006a).

After estimating parameters for the conditional copula, the copula is combined with the
conditional marginal distributions to obtain the conditional joint density from which the
conditional covariance can be generated by numerical integration using Equation 2.20:14

σ2
i j ,t =σi i ,tσ j j ,t

∫ ∞

−∞

∫ ∞

−∞
εi ,tε j ,t f (εi ,tε j ,t |ℑt−1)dεi ,t dε j ,t , (2.20)

where σ2
i j ,t is the conditional covariance, σi i ,t , σ j j ,t the conditional standard deviations ob-

tained from Equation 2.10 and f (εi ,tε j ,t |ℑt−1) is the conditional joint distribution of stand-
ardised residuals obtained from Equation 2.19. The resulting conditional variances and cov-
ariances are used to compute the optimal hedge ratios of Equations 2.2 and 2.3.

In the next section we present the copula models we use to obtain the conditional joint
density of Equation 2.20.

2.5 Copula GARCH models

In the following section we present three copula GARCH models which incorporate the cop-
ula theory introduced in the last section. As opposed to GARCH models, copula based meth-
ods allow for more flexible modelling of the dependence structure between variables. Most
notably, one of the main strengths is the specification of the multivariate distribution by
considering the marginal distribution and dependence structure separately.

13Details on the log-likelihood function and estimators can be found at Patton (2020a) and Patton (2020b).
14In practice, the integral is estimated by simulation from the conditional joint density, as the numerical

integration accuracy has proven to be problematic in some cases.
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Copula-DCC model

The first copula model we consider is an extension of the standard DCC model. Namely the
copula-DCC model (C-DCC), as described in Ghalanos (2019b). Given that the DCC model
implicitly assumes a normal copula by assuming a multivariate normal distribution, a rel-
atively simple extension can be made to change to the Student’s t copula and make it time
varying. In effect, by transformation using Sklar’s theorem, we relax the assumption that
the distribution of the conditional marginals are standard normal and allow a non-normal
dependency structure.

Assume we have i = 1, ...,n conditional marginal distributions estimated in the first stage
by GARCH(1,1) processes, where Gi is the conditional CDF of the i th margin. Furthermore,
the dependence structure of the margins is assumed to follow a Student’s t copula with con-
ditional correlation Rt and constant shape parameter η. Rt is assumed to follow a DCC
model as described previously. The conditional density at time t is then given by

ct (u1,t , ...,un,t |Rt ,η) =
ft

(
G−1

1 (u1,t |η), ...,G−1
n (un,t |η)

∣∣Rt ,η
)

∏n
i=1 fi

(
G−1

i (ui ,t |η)|η
) , (2.21)

where ui t = Gi ,t (x) is the PIT of each series by its EDF,15 G−1
i (ui ,t |η) is the quantile trans-

formation of the pseudo-observations given the common shape parameter, ft (·|Rt ,η) is the
multivariate density of the Student’s t distribution and fi (·|η) is the univariate margins of the
multivariate t distribution with common shape parameter η.

As a result, the joint density of the two-stage estimation is given by

ft (rt |ht ,Rt ,η) = ct (ui ,t , ...,un,t |Rt ,η)
n∏

i=1

1

σi ,t
gi ,t (εi ,t |θi ), (2.22)

where εi ,t ∼ gi (0,1,θi ) are the standardised residuals of the stage one estimation with appro-
priate conditional distributions and parameters θi . Conditional covariances are obtained
from the conditional joint density by simulation (Ghalanos, 2019b).

Time-Varying Copula model

The second model is a time-varying copula model (TVC), initially proposed in Patton (2006a)
and Patton (2006b). In this model, the time variation in the conditional copula parameter is
elected to follow a GARCH-like process in which the correlation parameter at time t is the
function of a constant ω, the lagged correlation β, and some forcing variable α. Following
Patton (2006a), the time-varying parameter for the normal, Student’s t and Gumbel copula
are modelled as:

Normal: ρt =Λ
(
ωN +βNρt−1 +αN

1

n

n∑
k=1

Φ−1(ui ,t−k )Φ−1(u j ,t−k )

)
,

Student’s t: ρt =Λ
(
ωT +βTρt−1 +αT

1

n

n∑
k=1

T −1(ui ,t−k ; v)T −1(u j ,t−k ; v)

)
,

Gumbel: θt = κ
(
ωG +βGθt−1 +αG

1

n

n∑
k=1

|ui ,t−k −u j ,t−k |
)
,

(2.23)

15Again, it is also possible to use the conditional marginal distribution for the probability integral transform.
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where Φ−1 is the inverse CDF of a standard normal random variable and T −1(·;ν) is the in-
verse CDF of a Student’s t random variable. We use a logistic transformation to ensure ρt ∈
[−1,1] with Λ(x) = 1−e−x

1+e−x = t anh( x
2 ). The function κ(x) = 1+ x2 is used to ensure θt ∈ [1,∞).

The Equations of 2.23 are estimated by maximum likelihood.16

The model therefore consists of estimating the Equations of 2.23 for each time series pair
i , j , and selecting the best fitting model by AIC. The resulting conditional copula ct with
time-varying parameter ρt or θt is combined with the conditional marginals by Equation
2.19. The conditional covariances σ2

i j ,t are then estimated by Equation 2.20.

Rolling Window Copula model

Lastly, we propose a rolling window copula model (RWC) which allows for time variation in
both the copula dependence parameter and the parametric copula family. This contrasts
with the DCC, C-DCC and the TVC model which assumes that the copula family modelling
the distribution is constant over the sample.17 Additionally, the DCC and C-DCC models spe-
cifically have the disadvantage that they in the multi-dimensional setting assume the same
parametric copula for any pair of random variables in the model. It seems questionable to
assume that all variable pairs can be modelled appropriately by the same elliptical copula,
such as the normal or Student’s t assumed in this case. To relax these assumptions, we con-
sider each variable pair individually and select the best fitting conditional bivariate copula
ct among CF ami l i es = {normal, Student’s t, Clayton, Gumbel, Frank, Joe}.18 Therefore, we al-
low different dependency structures between different variable pairs that additionally vary
through time.

More specifically, the model estimation is done in two stages. The first stage consists of
estimating the conditional marginal distributions by GARCH(1,1) models with appropriate
distributions as described in Section 2.3. The second stage consists of estimating conditional
copulas ct between variable pairs, which ultimately are used to obtain the conditional cov-
ariances of Equation 2.2 and 2.3. We apply the estimation procedure to a moving window
of N observations. I.e. t = {1, . . . , N } observations are used to estimate densities at t = N ,
t = {2, . . . , N + 1} for densities at t = N + 1, and so forth. This allows both the conditional
copula family and the dependency parameter to be time-varying. For each conditional co-
variance σ2

i j ,t , we estimate the bivariate parametric copula of each family in CFamilies given
ui ,t , u j ,t , by maximum likelihood. Pseudo-observations ui ,t , u j ,t are obtained by the EDF of
Equation 2.15 using the standardised residuals εi ,t ,ε j ,t estimated in the first stage. The best
fitting copula family is then selected by the AIC criterion, given by

AIC =−2
n∑

t=1
ln

[
c(ui ,t ,u j ,t |θc )

]+2m, (2.24)

where m = 1 for one parameter copulas and m = 2 for two parameter copulas, i.e. the Stu-
dent’s t copula. Continuing, we combine the selected copula with the respective conditional
marginal distributions Gi ,t (εi ,t |ℑt−1) and G j ,t (ε j ,t |ℑt−1) to obtain the conditional joint dens-
ity, i.e. Equation 2.19. The conditional covariance is obtained by Equation 2.20, given the
conditional joint distribution and the conditional variances.

16See Patton (2006a) and Patton (2006b) for more details.
17The DCC model implicitly assumes a normal copula when using the multivariate normal distribution.
18Including 90, 180 and 270 degree rotations of the Clayton, Gumbel and Joe copula.



3 | Estimation

In the following chapter we describe a stylised problem for a salmon producer. We present
the hedging context followed by a description of the data. Lastly, we show the estimated
models.

3.1 Application to salmon farming

In this section, we construct a conceptual hedging framework tailored to the salmon farming
industry, considering both input and output commodity prices. We consider a hypothetical
well-established salmon farming company which has an objective of reducing the price ex-
posures of its operations.1 Specifically, we make the following assumptions when construct-
ing the salmon production price hedge:

First, the company has a harvest quantity equal to the average of the Norwegian com-
panies listed in the OSLO Seafood Index (OSLSFX). This is equal to 160 000 tons according
to the companies 2018 annual reports, and is comparable to companies such as Lerøy Sea-
food Group and SalMar. The hypothetical company may have several production sites, but
operates solely in Norway.

Second, we assume the company has biomass assets in all stages of the salmon produc-
tion cycle, and harvests salmon continually. The same price is realised for all salmon sold
within the same week. The average weekly quantity sold is 3 000 tons.

Third, in practice, the salmon farmer has some flexibility in choosing when to harvest,2

but for the purpose of our study we assume a constant volume is slaughtered and sold every
week. This is consistent with related studies such as Anderson et al. (2017).

Fourth, in practice, feed consumption varies with sea temperatures, but for the purpose
of our study we assume a constant consumption throughout the year. The fact that salmon
demands more nutrition as it grows does not need to be taken into account as the company’s
production sites contain salmon in all stages of the production cycle. A feed conversion ratio
of 1.1 (Mowi, 2019) implies that the company uses 3 300 tons of feed per week. Feed is bought
weekly3and we assume that price movements in the feed input commodity markets affect
feed prices the same week.

Further, the company aims to reduce the exposure to risk associated with prices of both
fish feed and salmon. As means for risk mitigation such as futures contracts on the fish feed

1The production cycle for Atlantic salmon lasts for roughly three years (Seafish, 2012).
2Incentives to rush (delay) harvest can be to exploit (wait for) favourable prices or periods of year known for

faster biomass growth.
3This information was revealed in a phone interview with Kåre Gruven, Chief Feed Adviser at Norway Royal

Salmon, 19 May 2020.

15
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itself are unavailable, the company proceeds by cross-hedging individual fish feed compon-
ents. The assumption that fish feed can be cross-hedged by its components is reasonable,
as the feed producers traditionally have sold feed on contracts that transfer the full risk ex-
posure to the purchasing party, such as cost-plus type contracts (Mowi, 2019; BioMar Group,
2019). The worlds largest salmon production company, Mowi, controls fish feed costs by up-
stream integration of the fish feed production. In this case the company can better manage
production risks and remove the profit margin of the feed producer. However, they are still
exposed to the underlying input commodity price, making our hedging framework applic-
able across multiple value chain set-ups.

According to Aas, Ytrestøyl and Åsgård (2019), the main components of fish feed are soy
protein concentrate (19.0%), wheat and wheat gluten (17.9%), rapeseed and camelina oil
(19.8%) and fish meal and oil (24.9%). Other components individually account for less than
4% of the total feed mixture and are hence considered negligible as contributors to feed price
volatility. As stated, fish meal and fish oil are important ingredients. However, there are no
futures contracts available on these commodities. A hedge of price risk could therefore only
be achieved by cross-hedging with e.g. soymeal, similar to Vukina and Anderson (1993).
Even though this is possible from a theoretical perspective, it is difficult to do in practice,
especially since the correlation between fish meal and soymeal has been lower during recent
years (Franken and Parcell, 2011). Given the decreasing share of fish meal and fish oil in
modern feed compositions (BioMar Group, 2018), we choose to leave this out in the analysis.
We assume the price exposure for each unit of fish feed to be equivalent to 20% exposure to
prices of soymeal, wheat and rapeseed oil respectively, as feed compositions to some degree
can vary (Mowi, 2019). A feed conversion ratio of 1.1, implies that 0.22 kg of soymeal, wheat
and rapeseed oil (0.66 kg total) are required for each 1 kg of salmon produced. Further, it is
important to consider that agricultural futures contracts are different from salmon futures
as they have fixed sizes. E.g. soymeal and wheat have full-contracts of 100.0 tons and 5 000.0
bu4 respectively (Parcell and Franken, 2011). For the purpose of our analysis, we assume the
contract sizes are sufficient for the company’s hedging requirements.

In order to reduce spot price risk, it is desirable to enter a futures contract which price
changes are highly correlated to the spot price changes. For commodity futures, there is a
wide range of contract lengths to choose from. Contracts with longer time to maturity typ-
ically have small price movements and are less liquid compared to contracts closer to ma-
turity. The contract length that best matches the spot price movements is typically the one
next to expire, i.e. the front month contract. Accordingly, we use 1 month contract lengths in
our analysis, which is consistent with related studies such as Misund and Asche (2016) and
Bloznelis (2018). Hedging effectiveness typically increases for cointegrated processes, such
as salmon spot and futures returns, in ever longer horizons (Bloznelis, 2018). However, tak-
ing positions for hedging purposes is only sensible with appropriate forecasts of sales and
feed volumes. These quantities are affected by stochastic factors such as prices and biology,
which make them difficult to predict in the far future. Thus, a four-week hedging duration is
chosen, which is consistent with studies such as Misund and Asche (2016).

Next, we assume that the company fully hedges other relevant exposures, most import-
antly currency risk, in order to focus on mitigating price risk. Previous analysis has shown
that all companies in the OSLO Seafood Index hedge most of their currency exposure through
currency swaps and forward contracts (Haarstad, Strypet and Strøm, 2019). Fish feed in-

4bu = bushel. One bushel of wheat is equivalent to 27.155 kg (CME Group, 2014).
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gredients are purchased internationally in USD and EUR, so in order to remove exchange
rate effects, we assume there already is a perfect currency hedge in place. We assume the
same for interest rates.

Lastly, we assume a fixed transaction fee including trading and clearing when calculat-
ing transaction costs for all commodity futures contracts (Fish Pool, 2020a). The fixed fee is
charged as 0.15 NOK/kg for every transaction. This will be an upper bound for the transac-
tion costs when considering the input commodities, as agricultural commodity markets are
more mature and traded on international exchanges with considerably lower costs.5 This
will to some extent compensate for extra costs associated with establishing memberships
and licenses on international exchanges.

With the underlying assumptions, we define the hedged portfolio return of input and
output commodities as

π(h) =QS A(
sS A

1 − sS A
0

)−hS AQS A(
f S A

1 − f S A
0

)
−QSM (

sSM
1 − sSM

0

)+hSMQSM (
f SM

1 − f SM
0

)
−QW H (

sW H
1 − sW H

0

)+hW HQW H (
f W H

1 − f W H
0

)
−QRS(

sRO
1 − f RO

0

)+hROQRO(
f RO

1 − f RO
0

)
,

(3.1)

where superscripts SA, SM, WH, RO refer to salmon, soymeal, wheat and rapeseed oil. Q de-
notes the kg quantity of the commodity purchased (or sold) at the end of the hedged period.
h = (hS A,hSM ,hW H ,hRO) is the vector of optimal hedge ratios. s0, f0 denotes the initial ob-
servable spot and futures prices per kg when the hedge is set and s1, f1 denotes the realised
spot and futures prices when the hedge is liquidated. The general subscripts 0,1 denote the
hedge setup and liquidation times, and allow for flexible specification of different hedging
horizons.

3.2 Data

In the following, we present the data used in the study and its characteristics. Spot and fu-
tures contracts price series for Atlantic salmon are denoted in NOK/kg. The spot price is a
weighted average selling price based on multiple inputs, calculated on a weekly basis (Fish
Pool, 2016). We convert futures prices from daily to weekly by using the final price of each
week, in order to make them time consistent with the spot prices. We use the front month
salmon futures prices, as discussed in Section 3.1.

Weekly price data for salmon and fish feed ingredients are obtained from Thomson Reu-
ters Datastream for both spot and front month futures prices.6 Price series that are denoted
in bushels or tons are converted to kilograms. The feed ingredients we consider are soymeal,
wheat and rapeseed oil, as discussed in Section 3.1. All observations of feed ingredient prices
are converted from USD and EUR respectively, to NOK with an underlying assumption that
salmon farmers already have a perfect exchange rate hedge in place, as discussed in Sec-
tion 3.1. We apply fixed exchange rates of 7.0140 NOK/USD and 8.6732 NOK/EUR to obtain

5This is due to the fact that the nominal value of input commodities are much lower than salmon, warranting
lower unit transaction costs (CME Group, 2020).

6Exact name and ticker for each price series obtained are listed in Appendix B.1.
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prices in NOK. The exchange rates are the average NOK/USD and NOK/EUR rate over the
sample period, obtained from Norges Bank (2020). The resulting price series are shown in
Figure 3.1. Salmon is depicted in the top panel and soymeal, wheat and rapeseed oil in the
lower panel.
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Figure 3.1: Spot and futures price series of salmon, soymeal, wheat and rapeseed oil.

Each time series consist of 643 observations collected from January 2008 to April 2020.
There are no missing data points in the collected price series. For the purpose of our model-
ling, we use the log-transformed percentage return series which are presented in Appendix
B.1, losing one observation in the process.7 We divide the sample in two sub-samples, for
estimation and hold-out samples. The 538 observations from January 2008 to April 2018 are
used for model estimation, while the 104 observations between May 2018 and April 2020
form our hold-out sample. Visual inspection of the plotted log-returns suggests that most
returns series feature substantial volatility clustering. The only exception is the salmon fu-
tures log-return series which seem to exhibit relatively stable volatility with a few prominent
spikes evenly distributed over the sample period.

Descriptive statistics for the in-sample period are presented in Table 3.1, and show that
the returns series have distributions with large variability in terms of gap between minimum
and maximum observations, or standard deviation (SD). Jarque-Bera tests (JB), with null
hypotheses of sample data having skewness and kurtosis matching a normal distribution,

7The terms returns and log-returns will be used interchangeably, referring to the same thing.
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Returns series Mean Median Min Max SD Skewn. Exc.kur.

Salmon spot 0.1563 0.0000 −18.5730 20.5376 6.2084 0.0398 0.0294
Salmon futures 0.1927 0.0000 −23.3686 22.9628 4.4423 0.0259 5.7804
Soymeal spot 0.0317 0.1939 −34.7965 24.7295 4.8265 −0.8336 8.3339
Soymeal futures 0.0225 0.1773 −29.8246 15.0282 4.5137 −0.8586 4.4427
Wheat spot −0.0924 −0.1618 −30.9188 19.3876 5.2034 −0.3828 3.7617
Wheat futures −0.1079 −0.1364 −32.4138 21.9919 4.3154 −0.8656 9.2657
Rapeseed oil spot −0.0771 0.0000 −13.3531 8.6681 2.4672 −0.3719 2.7219
Rapeseed oil futures −0.0740 0.0000 −13.3531 8.8666 2.5003 −0.2715 2.2979

Table 3.1: Descriptive statistics for in-sample weekly spot and futures returns of salmon, soymeal,
wheat and rapeseed oil.

are performed and presented in Table 3.2. Results show that all bar one of the returns dis-
tributions differ significantly from the normal distribution. The distribution for salmon spot
returns are close to normal, however, this series feature the largest standard deviation. These
insights about the market movements that salmon farmers are exposed to highlight the need
for proper risk management.

Descriptive statistics for the out-of-sample period can be found in Appendix B.1. As op-
posed to the in-sample period, the out-of-sample salmon and soymeal mean returns are
negative, and the rapeseed mean returns are positive. Wheat mean returns are negative in
both periods. This distinction between positive and negative returns will be important in
discussions of results in Chapter 4.

The suitability of GARCH models depend on data assumptions as stationarity in vari-
ance. To verify this, augmented Dickey-Fuller tests (ADF) for unit roots are carried out on all
returns series, with results presented in Table 3.2. All quoted test statistics are for tests with
no drift and no trend.8 Test results strongly reject the null hypotheses of a unit root for any
of the returns series. These results are stable across different lag lengths.9

Additionally, we verify whether the returns series feature heteroscedasticity in the form of
autoregressive conditional heteroscedastic (ARCH) effects. The first step is to fit the returns
series to autoregressive (AR) models, with model order selection based on autocorrelation
function (ACF) and partial autocorrelation function (PACF) structures, and the model selec-
tion criterion AIC. The second step before testing the residual series for ARCH effects is to
ensure that the null hypothesis of no ARCH effects is not rejected due to bad fit of the AR
models. Visual inspection of the ACF and PACF plots of the residuals suggest that the AR
models capture the autocorrelation well. The ACF and PACF plots for salmon spot returns
can be found in Appendix B.

We formally test for autocorrelation in the residuals using Ljung-Box Q test (LBQ), and
find no evidence of autocorrelation.10 Test results are presented in Table 3.2.

Finally, we can check for ARCH effects in the residuals of the fitted AR models. Form-
ally, Engle’s Lagrange multiplier (LM) test are performed on all residuals series, with results

8Lag length k = 18 is chosen for the ADF tests based on the commonly used rule of thumb by Schwert (2002),
which is to choose k = i nt

(
12(T /100)1/4

)
, where T denotes sample size.

9KPSS tests for stationarity confirm the conclusions of the ADF tests.
10Tests performed with 25 lags. Results are stable across a wide range of lags.
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Table 3.2: In-sample test statistics.

Returns series JB ADF LBQ LM

Salmon spot 0.180 −5.61∗∗∗ 17.78 (0.852) 44.0∗∗∗

Salmon futures 757.6∗∗∗ −5.58∗∗∗ 21.23 (0.680) 222∗∗∗

Soymeal spot 1635∗∗∗ −5.65∗∗∗ 16.86 (0.887) 144∗

Soymeal futures 514.5∗∗∗ −5.92∗∗∗ 26.19 (0.398) 143∗∗∗

Wheat spot 334.7∗∗∗ −5.24∗∗∗ 21.52 (0.664) 67.1∗∗∗

Wheat futures 2011∗∗∗ −5.12∗∗∗ 29.81 (0.231) 140∗∗∗

Rapeseed oil spot 181.2∗∗∗ −4.77∗∗∗ 24.24 (0.505) 85.2∗∗∗

Rapeseed oil futures 127.1∗∗∗ −4.93∗∗∗ 28.11 (0.303) 94.1∗∗∗

Note: Tests applied are Jarque-Bera (JB), augmented Dickey-Fuller (ADF),
Ljung-Box Q (LBQ) (p-values in parentheses) and Engle’s Lagrange multi-
plier (LM) tests. ∗∗∗, ∗∗, ∗ denotes significance at the 1%, 5%, 10% level
respectively.

presented in Table 3.2,11 strongly rejecting the null hypotheses of no ARCH effects.12 This is
the case across a range of lag lengths, thus we can be confident that the returns series feature
conditional heteroscedasticity. Tests show that the out-of-sample data feature much of the
same characteristics as the in-sample data in terms of stationarity, autocorrelation and het-
eroscedasticity. These test statistics can be found in Appendix B.1. We conclude that GARCH
models are suitable for the rest of the analysis.

3.3 Estimated models

The following section presents estimated parameters for the uni- and multivariate models
described in Chapter 2, in addition to selected plots for the resulting one-ahead rolling win-
dow forecasts for conditional standard deviation and correlation.

Estimated GARCH(1,1) models

Estimated parameters and asymptotic robust standard errors (S.E.)13 of the GARCH(1,1) mod-
els are presented in Table 3.3.14 This is followed by the best fitted distribution, with shape
parameter ν̂, and skew parameter ξ̂. Furthermore, we present test statistics, critical value
and p-values for the weighted ARCH LM test, the Nyblom stability test and the adjusted
Pearsons goodness-of-fit test. The two-stage estimation procedure of Chapter 2 is depend-
ant on adequately specified distributions (Patton, 2006a). It is therefore important to test the
specifications of the GARCH(1,1) models, as they are the underlying structure on which the
multivariate models are built.

11Tests performed with 12 lags.
12Visual inspection of Figure B.4 in Appendix B, which shows the residuals of the AR model fitted to salmon

spot returns, also suggest ARCH effects are present.
13Method for obtaining robust standard errors are based on White (1982).
14ACF plot, empirical distribution plot and QQ plot for each model is attached in Appendix B.2.
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Table 3.3: Estimated GARCH(1,1) models.

Salmon S Salmon F Soymeal S Soymeal F Wheat S Wheat F Rapeseed S Rapeseed F

Model Est. S.E. Est. S.E. Est. S.E. Est. S.E. Est. S.E. Est. S.E. Est. S.E. Est. S.E.

α̂ 0.1122 0.0422 †0.0027 0.0020 0.1124 0.0289 0.1491 0.0287 †0.1202 0.0878 0.1250 0.0061 0.0857 0.0175 0.0895 0.0214
β̂ 0.4968 0.1874 0.9932 0.0006 0.8278 0.0387 0.7821 0.0491 0.8472 0.1210 0.8540 0.0047 0.8680 0.0279 0.8622 0.0327
ω̂ 15.0532 NA 0.0795 NA 1.3904 NA 1.3979 NA 0.8826 NA 0.3923 NA 0.2816 NA 0.3020 NA

Normal GED t Skewed t Skewed t t t GED

ν̂ NA NA 0.5415 0.0717 4.9027 0.9414 9.8116 3.0833 6.9182 1.4711 6.5517 1.6653 6.3924 1.3246 1.2470 0.1240
ξ̂ NA NA NA NA NA NA 0.8934 0.0498 1.1492 0.0747 NA NA NA NA NA NA

log L -1741 -1430 -1540 -1522 -1590 -1449 -1207 -1216

W-LM Stat. p-value Stat. p-value Stat. p-value Stat. p-value Stat. p-value Stat. p-value Stat. p-value Stat. p-value

Lag[3] 0.0891 0.7653 0.1081 0.7423 0.292 5.89e-01 0.00418 0.9485 0.8598 0.3538 0.4509 0.5019 0.4652 0.4952 1.025 0.3112
Lag[5] 1.1043 0.7023 4.8282 0.1126 17.31 1.02e-04 0.7552 0.8067 1.1788 0.6807 1.1096 0.7007 1.187 0.6783 1.587 0.5698
Lag[7] 1.3420 0.8524 7.0233 0.0859 21.308 2.96e-05 0.8148 0.9417 1.2562 0.8687 1.6658 0.7876 1.5084 0.8197 1.858 0.7474

NS Stat. CV Stat. CV Stat. CV Stat. CV Stat. CV Stat. CV Stat. CV Stat. CV

Joint Stat. 0.3552 0.61∗∗∗ 2.4724 1.35∗ 1.1022 0.846∗∗∗ 1.0179 1.07∗∗∗ 0.4817 1.07∗∗∗ 0.3702 0.846∗∗∗ 0.7305 0.846∗∗∗ 0.8421 0.846∗∗∗

APGoF Stat. p-value Stat. p-value Stat. p-value Stat. p-value Stat. p-value Stat. p-value Stat. p-value Stat. p-value

Group[20] 21.7 0.2993 86.24 1.53e-10 14.64 0.7452 8.022 0.9864 16.8 0.6037 4.825 0.9996 18.36 0.4987 40.59 2.74e-03
Group[30] 31 0.3656 148.65 5.04e-18 19.29 0.9137 15.829 0.9774 31.22 0.3552 15.717 0.9786 29.32 0.4483 81.96 5.96e-07
Group[40] 38.8 0.4788 206.39 1.20e-24 36.42 0.588 24.825 0.9622 48.47 0.1423 18.283 0.9981 40.88 0.3877 131.14 6.75e-12
Group[50] 49.17 0.4661 271.48 1.41e-32 38.58 0.8576 37.093 0.894 49.36 0.4587 24.268 0.9988 48.06 0.5112 177.43 1.91e-16

Note: (1) All coefficient estimates are significant at the 5% level, with the exception of estimates denoted with †. (2) W-LM: Weighted ARCH LM test for standardised GARCH residuals, the null being
an adequately fitted ARCH process (Fisher and Gallagher, 2012). (3) NS: Nyblom stability test, CV denoting critical value, the null being constant parameter values (Nyblom, 1989). ∗∗∗, ∗∗, ∗ denotes
significance at the 1%, 5%, 10% level respectively. (4) APGoF: Adjusted Pearson’s goodness-of-fit test for p-value (g − 1), described in Vlaar and Palm (1993), for groups 20-50. The null being an
adequately specified distribution.
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Model estimates are all significant at the 5% level with exception of the salmon futures
and wheat spot series, which cannot reject the null hypothesis that α̂ = 0. α̂ ≈ 0 indicates
that short term shocks have little impact on volatility, i.e. little to no volatility clustering. As
mentioned in Section 3.2, this is also indicated by visual examination of the salmon futures
log-return plot in Appendix B.1. However, this is not the case for the wheat spot log-returns,
which show clear signs of volatility clustering by visual examination. A preliminary test using
the single-hedge also show that the estimated α̂ = 0.1202 outperforms α̂ = 0, we therefore
elect to keep the model.

The weighted ARCH LM test indicates that all models adequately capture ARCH effects at
the 5% level, with exception of soymeal spot series which rejects the null of no ARCH effects
for lags ≥ 5. However, performing a weighted Ljung-Box test on standardised residuals based
on Fisher and Gallagher (2012), we cannot reject the null of no autocorrelation at the 5%
level, for lags lengths ≤ 9. The weighted Ljung-Box test is also performed on the other models
using squared standardised residuals, and confirms the results of the ARCH LM test. Hence,
we conclude that ARCH effects are for our purposes adequately captured by the models.

The Nyblom stability test indicates that the null of constant estimated parameters cannot
be rejected at the 10% level for all models, except the salmon futures and soymeal spot series.
The salmon futures rejects constant parameters at the 1% level, soymeal spot at the 10%
level. This is an indication of structural changes, for which a solution could be to include
regime shifting models (Brooks, 2014). However, as this is not crucial for the copula approach
being the focus of the thesis, we leave this for further research.

The adjusted Pearson’s goodness-of-fit test is a test of whether the specified distribution
adequately captures the empirical distribution. The test indicates that all conditional distri-
butions are adequately specified, except for the salmon futures and rapeseed futures series
which assume the GED distribution. For the salmon futures series the null is rejected at
the 1% level, which is not surprising considering the model features no volatility clustering.
However, the QQ plots attached in Appendix B.2 show that the salmon futures series are able
to capture most of the quantiles except the extreme tails. QQ plot for the rapeseed futures
series seems to indicate a decent specification with the exception of few extreme outliers,
even though the test rejects this at the 1% level. The GED distribution was decidedly the
best fitting distribution among normal, GED, Student’s t and skewed t, and QQ plots seem
reasonable by visual inspection. Hence, we elect to keep the distributions going forward.

To summarise, we find that the models are adequate for the goal for our methodology.
One could potentially estimate more complex GARCH models to achieve higher p-values for
all models. However, we consider this outside the scope of this thesis. Additionally, it will
not impact the comparison and estimation of different MGARCH models since they use the
same first stage models. For the sake of tractability, we focus on the copula models and keep
the GARCH models simple.

Figure 3.2 shows the standardised residuals obtained from the estimated GARCH(1,1)
models in Table 3.3. The matrix displays scatter plots of the resulting standardised residual
pairs below the diagonal, histograms of the empirical distribution on the diagonal, and the
Pearson correlation above the diagonal.
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Figure 3.2: Standardised residuals obtained from estimated GARCH(1, 1) models.

Figure 3.3 presents the one-ahead rolling forecast of conditional standard deviation for
the estimated GARCH(1,1) models of Table 3.3. The dashed vertical line separates the in- and
out-of-sample period. The figure shows that conditional spot and futures volatility follow
each other and show significant volatility clustering for all commodities except salmon. The
salmon spot and futures series show substantial differences, where the salmon spot is volat-
ile and changing frequently, with low long term volatility persistence (i.e. volatility spikes
fade quickly as (α̂+ β̂) << 1).
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Figure 3.3: One-ahead rolling forecasts for conditional standard deviation, σt .

Estimated dynamic models

Table 3.4 presents the estimated parameters for the DCC type models. The DCC model as-
sumes the multivariate normal distribution, and the C-DCC a time-varying multivariate dis-
tribution modelled by estimating a Student’s t copula, as described in Section 2.3 and 2.5.

The α̃ parameter indicate the effect of past innovations on correlation. Small α̃ for both
models imply short term shocks are less prominent in the models. Furthermore, α̃+ β̃ is
high and implies slow decay of correlation, which is typical for financial time series (Engle,
2009). Note that α̃+ β̃ is slightly lower in the C-DCC model (0.8604) compared to the DCC
model (0.8942). Short term effects hence have a greater impact on C-DCC correlations. η̃
is the estimated common shape parameter of the Student’s t copula assumed in the C-DCC
model. Notice that η= 21.16, indicating that the distribution features fat tails, although not
to a large degree.15 This is observable in Figure 3.2, where several time series pairs visually
looks to be approximately normally distributed. We might therefore expect small differences
when using the copula extension in the C-DCC model.

15A common rule of thumb is that the Student’s t distribution approaches the normal distribution, the differ-
ence being negligibly small for η≥ 30 and moderately large sample sizes.
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Table 3.4: Estimated parameters of the DCC(1,1) and C-DCC(1,1) model.

DCC C-DCC

Estimate S.E. Estimate S.E.

α̃ 0.0229 0.0081 0.0242 0.0093
β̃ 0.8713 0.0703 0.8362 0.0952
η̃ NA NA 21.1586 4.8714

log L -10 816 -10 486

Note: All estimates are significant at the 1% level.

Table 3.5 presents the estimated parameters and asymptotic standard errors of the TVC
model for each commodity. The second row indicates which of the TVC models described
by Equations 2.23 is used, i.e. normal, Student’s t, Gumbel or survival Gumbel. As the TVC
model is more experimental, it has inherent problems with convergence when estimating
the model for commodity pairs in which the long run correlation is weak and close to zero.16

Thus we elect to solely model the spot and futures pair for each respective commodity, im-
plying we only model the single-hedge. Additionally, we elect to use lag length n = 1 as this
during estimation has shown to yield the most reasonable models.17 Wu (2018) also uses lag
length n = 1 when hedging grain sorghum and finds reasonable results.

Series Salmon Soymeal Wheat Rapeseed oil

Normal Student’s t Normal Survival Gumbel

Model Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.

α 0.1822 0.4898 -0.0448 0.0221 0.0585 0.0515 -2.3385 0.3360

β 0.1084 1.2530 2.9605 0.1112 2.0634 1.7873 0.1588 0.0201
ω 0.7275 0.0763 0.8625 0.0856 0.1455 1.1098 1.3185 0.1120
ν NA NA 2.0888 0.3155 NA NA NA NA

log L 38 566 128 551

Table 3.5: Estimated parameters of time-varying copula models with lag length n = 1.

Lastly, we do not provide estimated model coefficients for the RWC model, as it uses a
different bivariate copula for each variable pair at each different time step, in addition to
parameters. This is impractical to show in a table, however, the results can easily be recre-
ated by accompanying R code. Regarding rolling window size, there are limited guidance
on how to select the most appropriate window. While Power et al. (2013) use a 104-week
window, Misund and Asche (2016) elect to use 20- and 52-week windows in their analysis.
While shorter windows are interesting, the copula approach requires moderate sample sizes
to converge. By trial and error, we find the 52-week window to both be feasible and provide
the best results in our analysis.

16Most attempts at estimation for different commodity pairs have been unsuccessful and lead to results
which are difficult to interpret.

17In theory, larger lag lengths act as a smoothing factor, however in practice we find it difficult to estimate
with lag lengths > 1 as the models tend to become unreasonable.



4 | Results

In this chapter we present the results obtained by applying the methodology of Chapter 2
to the application of a salmon producer presented in Chapter 3. First, we analyse the hedge
ratios obtained by different models. Second, we examine the results for the four-week hedge.
Additionally, we provide further insights by including a snapshot of a one-week hedge. Third,
we analyse sensitivities to hedging horizon. Lastly, we propose a cost-effectiveness measure
to elaborate on the risk-return trade-off.

We find that the multi-commodity price risk in the industry can be greatly reduced by ap-
plying a multi-hedge framework. The proposed RWC multi-hedge model reduces portfolio
variance by up to 53.52% out-of-sample, and results in the best risk-return trade-off. Fur-
thermore, extending the standard multivariate GARCH models by applying copulas result in
increased performance in most cases.

Hedge ratios

We begin with an introduction of dynamic hedge ratios obtained by the models proposed in
Chapter 2. Table 4.1 shows in-sample mean, minimum, maximum and standard deviation
(SD) for each model and commodity.1 For ease of comparison and consistency, all hedge
ratios are presented from the same perspective, i.e. a positive ratio indicates a futures po-
sition opposite of the spot market, and a negative ratio indicates a futures position in the
same direction as the spot market. In our context, a positive salmon ratio implies going short
the futures market, as the salmon farmer is long the spot market. In the input commodit-
ies, a positive position implies going long the futures market, as the farmer is short the spot
market.

First, we compare single-hedge ratios. All models produce relatively similar single-hedge
ratio mean for the respective commodities, the largest being a 0.087 point difference in the
salmon series. This is expected and consistent with previous studies (Haigh and Holt, 2000;
Misund and Asche, 2016; Zhao and Goodwin, 2012). Specific differences in hedge ratios are
more apparent in Figure 4.1 and 4.2, which show the plotted paths for each model. The ho-
rizontal dashed line illustrates the naïve hedge, and the vertical dashed line illustrates the
separation between in- and out-of-sample. Although hedge ratio means are similar, we do
find distinct differences in standard deviations. Specifically, single-hedge ratio SD for the
DCC and C-DCC model are in general lower than for TVC and RWC, an indication of more
stable ratios in the former models. This implies that the DCC and C-DCC single-hedge port-

1Statistics for out-of-sample hedge ratios show similar characteristics as in-sample and are attached in Ap-
pendix C.1.
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folios require fewer adjustments between each time-step than the latter.2 There is signific-
antly higher SD for the TVC model in soymeal, which is a result of extreme negative spikes in
Figure 4.2. Potentially, a result of extreme tail events which are more accurately captured by
the copula models.3 For the same reason, TVC is the only model with a significant negative
position (-1.024), as seen by examining the minimum hedge ratios. This implies that the spot
and futures price changes at these moments are estimated to be highly negatively correlated.
This is rare, but not impossible, during extreme tail events (Basu and Gavin, 2017).

Table 4.1: Statistics for estimated in-sample hedge ratios.

DCC C-DCC TVC RWC

Single Multi Single Multi Single Single Multi

Salmon
Mean 0.509 0.497 0.562 0.542 0.494 0.475 0.482
SD 0.077 0.077 0.115 0.109 0.128 0.170 0.227
Min 0.357 0.359 0.405 0.393 0.106 -0.016 -0.075
Max 0.949 0.937 1.231 1.204 1.428 1.056 1.341

Soymeal
Mean 0.926 1.223 0.967 1.110 0.961 0.978 1.472
SD 0.098 0.269 0.113 0.341 0.239 0.131 1.012
Min 0.499 0.344 0.429 -0.822 -1.024 0.527 -1.656
Max 1.287 1.938 1.417 2.112 1.714 1.627 4.557

Wheat
Mean 0.841 0.812 0.872 0.606 0.840 0.837 0.571
SD 0.183 0.432 0.207 0.461 0.190 0.192 1.914
Min 0.470 -0.510 0.409 -1.358 0.495 0.464 -4.840
Max 1.441 2.355 1.609 1.962 1.567 1.550 7.780

Rapeseed oil
Mean 0.892 0.943 0.896 0.702 0.895 0.899 0.122
SD 0.058 0.493 0.056 0.643 0.103 0.081 2.734
Min 0.705 -0.777 0.701 -3.250 -0.002 0.655 -11.699
Max 1.134 2.414 1.135 2.410 1.146 1.134 5.298

Note: Smallest and largest standard deviation (SD) for each commodity are marked red and blue respect-
ively.

Second, we compare multi-hedge ratios, which exhibit greater differences across the
models. In general, volatile multi-hedge ratios imply that the dependency between differ-
ent commodity markets is changing rapidly. Changes in dependencies lead to more favour-
able positions in different markets, hence more volatile ratios. As with single-hedge ratios,
DCC and C-DCC models have lower SD compared to the RWC model. Interestingly, the DCC

2This does not directly affect transaction costs as hedges are not adjusted during the hedging horizon. If this
was the case, higher SD would require more adjustments, resulting in higher transaction costs.

3The soymeal spot and futures pair is modelled by the Student’s t TVC model, which emphasises tail de-
pendence.
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Figure 4.1: Hedge ratios for DCC and C-DCC models.

model has significantly higher minimum hedge ratios for all input commodities, implying
more conservative ratios and less extreme events being captured. The C-DCC model has no-
ticeably more extreme values than the DCC model in general, especially for minimum hedge
ratios. This implies that the model captures more extreme events, which result in larger neg-
ative positions. Lastly, we find that the RWC multi-hedge ratio is highly volatile for all input
commodities.

Third, we compare the difference between single- and multi-hedge strategies. Most evid-
ent is the noticeable increase in SD across all models when considering the input commod-
ities. This is expected, as the multi-hedge allows for both cross-hedging and speculative
positions. Additionally, the volatility in ratios is significantly increased by the fact that de-
pendency between different commodities is mainly driven by short term, exogenous shocks.
For example, when considering soymeal and wheat, the commodities could be temporarily
correlated if market participants expect a bad harvest in both markets, resulting in appreci-
ating and correlated prices. However, if one market experience a price drop due to decreased
demand, prices become negatively correlated. This rapid change in correlation has a large
impact on optimal multi-hedge ratios and explains the high ratio volatility. This is not the
case for the single-hedge ratio. Long run correlation between spot and futures markets on
the same commodity is mainly driven by the Law of One Price,4 and not temporary exogen-
ous shocks.

Furthermore, we note that going from single- to multi-hedge barely changes the salmon
hedge ratio, which is similar to findings of Anderson et al. (2017).5 This is a crucial observa-
tion and a result of the salmon and input commodity prices being close to independent.
Evidently, it is rarely possible to offset risk in the salmon price by using cross-hedges in
agricultural commodities. This implies that the salmon price should be close to optimally
hedged when considered alone. Consequently, any benefits of multi-hedge models that we
find should come from the input commodities.

To summarise, the modelling extension of applying copulas tends to increase the stand-

4The Law of One Price states that market forces should align the prices of an asset over time, due to arising
arbitrage opportunities.

5Anderson et al. (2017) finds the multi-hedge ratio of live cattle (output) approaches the single-hedge ratio,
while the multi-hedge ratio of corn (input) is highly volatile in comparison.
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Figure 4.2: Hedge ratios for the TVC and RWC models.
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ard deviation and sensitivity of single-hedge ratios, implying standard deviations in loose
order of DCC < C-DCC < TVC ≈ RWC. This effect is further amplified when considering the
multi-hedge ratios, which are more sensitive to small changes in correlation and variance of
different commodities.

Hedging outcomes

Hedging outcomes are the result of applying Equation 3.1 to the price data of Section 3.2 and
hedge ratios of Table 4.1 and C.1. The results are a distribution of hedging outcomes, which
are summarised by the performance measures of Chapter 2.

Table 4.2 presents the hedging outcomes for the four-week hedging horizon. The upper
half shows results for in-sample data, the lower half shows results for out-of-sample data.

Table 4.2: Hedging outcomes for a four-week hedging horizon.

Unhedged Naïve DCC C-DCC TVC RWC

In-sample (N = 538) Single Multi Single Multi Single Single Multi

Return outcomes
Mean return 1 046 -5 571 553 571 545 606 657 962
Mean transaction cost 0 772 509 540 517 531 507 498 776
Min return -59 589 -42 893 -34 135 -34 632 -33 570 -34 215 -33 563 -39 239 -38 243
Max return 56 700 36 674 37 455 37 450 37 439 37 434 40 048 37 495 37 459

Variance outcomes
SD | Hedge eff. (%) 15 248 64.39% 49.04% 48.15% 49.84% 48.91% 47.70% 46.00% 45.10%
ES 05% | Reduction (%) 32 013 33.99% 26.72% 25.89% 27.33% 26.49% 26.01% 23.70% 25.31%
ES 10% | Reduction (%) 26 367 37.12% 28.90% 28.14% 29.61% 28.81% 28.61% 26.13% 27.38%

Out-of-sample (N = 104)

Return outcomes
Mean return -2 943 -641 -1 402 -1 431 -1 480 -1 541 -1 589 -1 306 -1 177
Mean transaction cost 0 772 544 589 536 560 521 582 795
Min return -57 975 -43 452 -45 451 -46 597 -45 658 -46 737 -47 645 -46 302 -45 589
Max return 55 327 40 964 41 844 41 907 42 234 42 321 43 742 38 590 41 361

Variance outcomes
SD | Hedge eff. (%) 25 646 70.07% 52.24% 51.25% 50.95% 49.93% 47.66% 57.24% 53.52%
ES 05% | Reduction (%) 51 789 36.75% 28.51% 27.62% 28.16% 27.43% 26.76% 29.07% 30.16%
ES 10% | Reduction (%) 45 333 40.62% 27.14% 26.46% 26.88% 26.16% 25.31% 29.80% 28.48%

Note: Results denoted in NOK. Lowest and highest values for mean return and hedge effectiveness are marked as red and blue respectively.

First, we compare the static and dynamic strategies. For the in-sample period, all hedges
yield a lower mean return (MR) than the unhedged strategy (1 046 NOK), which is to be ex-
pected when prices on average are appreciating. Interestingly, the naïve hedge outperforms
all hedges in terms of hedge effectiveness (HE), reducing variance by 64.39%, significantly
higher than the best dynamic model (C-DCC, 49.84%). This result is consistent with previous
findings in which the naïve hedge typically outperforms other hedges in terms of minimum
variance over longer horizons (Power et al., 2013; Misund and Asche, 2016).6 This comes
at a cost, as the naïve hedge has negative mean return, -5 NOK, in addition to the highest
transaction costs, 772 NOK. The dynamic hedges yield intermediary results between the two
extremes being the naïve hedge (highest HE, lowest MR), and the RWC (lowest HE, highest
MR). When comparing the extremes and adjusting for transaction costs, we find that going

6Power et al. (2013) finds the naïve hedge to outperform other hedges in terms of minimum variance when
hedging feeder cattle, while Misund and Asche (2016) finds the same for hedging in salmon futures.
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from naïve to RWC, one lose 19.2 percentage points in HE (45.10%−64.39%), but gain 963
in MR (186− (−777)). This highlights the risk-return trade-off, which we will discuss in more
detail.

Second, we compare the dynamic strategies. For the in-sample period, the RWC multi-
hedge results in the highest mean return of 962 NOK, but the lowest hedge effectiveness of
45.1%. Recall from Table 4.1 that this strategy yields the most volatile hedge ratio, which
also results in the highest transaction costs of 776 NOK. The most efficient models in terms
of HE are the DCC (49.04%) and C-DCC (49.84%) single-hedge models, a point difference
of up to 4.74% compared to the RWC multi-hedge. Nonetheless, they are among the worst
performing strategies in terms of MR, both yielding 571 NOK. Recall that the DCC and C-
DCC models yield relatively stable hedge ratios (low SD), and thus lower transaction costs
(509 and 540 NOK). The TVC single-hedge is somewhere in the middle, with HE of 47.7%
and MR of 606 NOK.

Evidently, there is an inverse relationship between variance reduction and return, as ex-
pected. When hedge effectiveness increases according to the minimum variance criteria,
both downside and upside risk are reduced, effectively reducing the mean return. In our
case, the trade-off between risk and return does not appear to be linear. We see that the
RWC multi-hedge yields a 68.48% increase in MR and a 9.51% decrease in HE compared to
the C-DCC model.7 When considering single-hedge mean return compared to C-DCC, RWC
has a 6.13% MR increase and a 4.29% HE decrease. TVC has a 15.06% MR increase and a
7.70% decrease. Accordingly, our results indicate a better risk-reward trade-off using the
RWC-multi hedge strategy. This is also supported by the expected shortfall measure (ES). In
general, we see that ES tends to be reduced as variance is reduced. It is therefore difficult to
discern specific differences in ES for different models. However, we do find a significant bias
toward improved ES reduction in the RWC multi-hedge model. Reduction of ES for the RWC
multi-hedge (25.31%, 27.38%)8 is greater than for the single-hedge (23.70%, 26.13%)8. At
the same time, hedging effectiveness is greater in the single-hedge (46.00%) than the multi-
hedge (45.10%). Even though HE is greater using the single-hedge, we find that the RWC
multi-hedge is more efficient at reducing ES (and hence tail risk).

In Table 4.2, we observe that the dynamic multi-hedge strategies perform worse than
their corresponding single-hedges in terms of HE, which might seem counter-intuitive. While
the multi-hedge ratio is optimal for a given time t , it is also more time-sensitive as discussed
in Section 4. The dependency estimates at time t might not hold several periods forward in
time, which is why we see the multi- underperforming the single-hedge for the t +4 horizon,
i.e. the four-week hedge. We confirm this later by examining the results of a one-week hedge.

Third, we compare the in-sample to out-of-sample results of Table 4.2. Notice that the
unhedged portfolio for the out-of-sample period has a negative mean return of -2 943 NOK.
This implies a period of overall price depreciation as described in Section 3.2, and is in con-
trast to the in-sample period. In this case, all hedging strategies perform better than the
unhedged portfolio in terms of both MR and HE. The naïve hedge performs decidedly best
by both measures. As the strategy with the highest hedging efficiency, it removes most of the
upside during appreciating periods, yet some of the downside during depreciating periods
as well. If we consider a scenario where a salmon farmer has a view on the market out-
look, one could essentially optimise by using the RWC model during good periods and the
naïve strategy during bad. Furthermore, we observe that the RWC model, which performed

7The difference becomes more extreme if we adjust for the transaction costs.
8Notation referring to (ES 5%, ES 10%).
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(a) Static and dynamic single-hedges.
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Figure 4.3: In-sample return distributions for the four-week hedging horizon.

worst in terms of HE in-sample, outperforms the other dynamic models by both HE and MR
out-of-sample. The single- and multi hedge strategies yield 57.24%, 53.52% hedge effect-
iveness and -1 177, -1 306 NOK mean return (-1 888, -1 972 NOK transaction cost adjusted),
respectively. As a result, we find indications of the RWC model outperforming on both meas-
ures for out-of-sample. One potential reason for this might be decreasing prices during the
out-of-sample period. Another reason might be related to the model specifications and dif-
ferences in performance for out-of-sample data. Lastly, we find the TVC model to be the
worst-performing on both HE and MR for out-of-sample. The TVC model tends to be highly
sensitive to the data which the estimates are based on due to the specification of Equations
2.23, also noted by Patton (2006a). Consequently, the model does not generalise well out-of-
sample.

Figure 4.3 shows the distributions of returns for different hedging strategies for the in-
sample period.9 Single-hedges are shown in the left panel and multi-hedges in the right
panel. The distributions indicate where respective hedges out- and under-perform. In gen-
eral, we find that the distributions for the dynamic hedges are relatively similar. However,
there are piecewise differences in the tails, especially for the RWC model. This is why, for
most of the models, expected shortfall (ES) tends to decrease as variance is reduced. We
find the RWC multi-hedge to be the exception, for which the distribution is below the other
models for most of the negative tail in Figure 4.3b. This results in lower ES as discussed pre-
viously.

Continuing, we note that the naïve hedge yields the lowest variance in returns (as returns
are concentrated around the centre). Yet, it sacrifices higher returns in the approximate in-
terval of 15 000 to 40 000 NOK. This shows the tendency of the naïve hedge to remove more
of the upside than the downside (as areas below other hedge distributions are greater in the
positive than the negative). Figure 4.3 reveals that while the naïve hedge yields the highest
HE, most of the additional variance reduction is a result of reduction on the upside, and not
the downside. This confirms the key take-away of our previous discussion of the risk-reward
trade-off; the naïve hedge trades slight increases in variance reduction for higher reductions

9Out-of-sample distributions plots are attached in Appendix C.2
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in return. Furthermore, we find that the dynamic models significantly reduce losses in the
approximate interval of -30 000 to -15 000, but not in the -35 000 to -30 000 interval where
they follow the unhedged distribution. In this segment, the naïve hedge captures some losses
which are not captured by any of the dynamic models. Additionally, we see in the extreme
left tail from approximately -38 000 that the naïve hedge has fatter tails than the dynamic
models. Dynamic models effectively reduce more of the extreme downside losses, a desir-
able property when hedging. The unhedged portfolio shows high variance and heavy tails in
contrast to all hedges.

Table 4.3: Hedging outcomes for a one-week hedging horizon.

Unhedged Naïve DCC C-DCC TVC RWC

In-sample (N = 538) Single Multi Single Multi Single Single Multi

Return outcomes
Mean return 244 -26 132 124 135 124 146 132 192
Mean transaction NA 772 509 540 517 531 507 498 775
Min return -32 624 -28 666 -30 869 -30 920 -30 852 -30 894 -31 405 -31 590 -32 328
Max return 31 552 43 551 38 205 38 109 38 077 37 958 36 072 39 329 38 406

Variance outcomes
SD | Hedge eff. (%) 8 148 0.87% 14.56% 14.64% 14,55% 14.68% 15.61% 15.97% 16.75%
ES 05% | Reduction (%) 17 930 1.66% 10.53% 10.44% 10.59% 10.47% 9.94% 11.51% 11.17%
ES 10% | Reduction (%) 14 190 -0.12% 10.46% 10.49% 10.46% 10.45% 10.18% 11.43% 11.37%

Out-of-sample (N = 104)

Return outcomes
Mean return -628 22 -284 -298 -306 -322 -425 -267 -263
Mean transaction cost NA 772 543 588 534 560 519 580 788
Min return -35 401 -26 638 -27 295 -27 318 -27 366 -27 358 -27 452 -26 779 -26 678
Max return 34 431 33 031 33 560 33 608 33 603 33 648 33 559 33 384 33 301

Variance outcomes
SD | Hedge eff. (%) 12 712 22.77% 26.27% 26.04% 25.97% 25.77% 26.00% 27.28% 26.36%
ES 05% | Reduction (%) 25 950 16.81% 20.37% 20.23% 20.49% 20.43% 18.98% 20.23% 19.54%
ES 10% | Reduction (%) 21 820 11.17% 15.72% 15.44% 15.74% 15.52% 13.98% 15.76% 15.78%

Note: Results denoted in NOK. Lowest and highest values for mean return and hedge effectiveness are marked as red and blue respectively.

Lastly, we discuss results for a one-week hedging horizon, which highlights different
characteristics than the four-week hedge. As the one-week hedge has a shorter duration, it
should favour dynamic hedging models. This is confirmed in Table 4.3, where dynamic mod-
els strongly outperform the static naïve hedge by all measures, both in- and out-of-sample.
Additionally, we confirm that multi-hedges outperform single-hedges in terms of HE for all
models in-sample, which is in line with the results of Anderson et al. (2017). Furthermore, we
find they are marginally worse out-of-sample, which might stem from differences in meth-
odology, market characteristics and sample period.10

To summarise, we find the RWC multi-hedge model to be the most parsimonious model.
Even though it yields the lowest HE (45.10%) in-sample, it performs best on MR (962). It
performs better out-of-sample, yielding the second highest HE (53.2%) and lowest MR (-1
177) among the dynamic models. Distribution plots indicate that lower HE in-sample stems
from less reduction of the upside, not the downside, yielding a better risk-reward trade-off.
The opposite is true for the naïve hedge. It has the highest HE, however, it performs worse
on MR due to disproportionately reducing the upside. Besides, it has fatter tails on the ex-

10Anderson et al. (2017) uses a Monte Carlo simulation approach to approximate the multi-hedge ratio using
copulas. However, they do not consider isolated in- and out-of-sample periods.
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(a) Hedge effectiveness.
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Figure 4.4: Hedging performance for different hedging horizons, full sample.

treme downside, which is undesirable when hedging. In general, we find that multi-hedging
performs better in terms of HE for the one-week horizon, as expected. Furthermore, multi-
hedging improves the RWC model significantly for the four-week horizon, in terms of ES and
MR. Finally, we look into why shorter hedging horizons are more costly as hedging effective-
ness and mean returns overall are lower, while transaction costs stay the same. There is a
trade-off for salmon farmers where longer horizons are more favourable in terms of HE and
costs, but requires pre-planned slaughtering volumes to a higher degree.

Sensitivity to hedging horizon

To analyse the sensitivity to different horizons, we provide results for horizons between 1 and
20 weeks for the full sample.11 Figure 4.4a illustrates how hedging effectiveness change with
the duration of the hedge. Both HE and MR increase with the hedge horizon, which is to be
expected as prices are allowed to deviate more from their original values (Bloznelis, 2018).
The dynamic models tend to follow each other and lead to relatively similar efficiencies, es-
pecially for hedging horizons below 4 weeks. Yet, even with a 20-week hedging horizon, there
is less than 5 percentage points difference in HE between the dynamic strategies. Moreover,
notice that multi-hedges perform worse than their respective single-hedges for longer hori-
zons, as discussed previously. This is the case for the TVC model as well, which could be a
reflection of the selected lag length n = 1.12 The model solely captures short term dependen-
cies and is also the worst-performing model in terms of HE for longer horizons. Further, we
note that the naïve hedge outperforms on HE from the two-week horizon mark. This is partly
a consequence of the over-hedging previously discussed in Section 4. Figure 4.4b clearly il-
lustrates this, showing mean return for different horizons. When adjusting for transaction
costs as shown in Figure 4.5, we find both the single- and multi-hedge RWC model outper-
forms other models in terms of MR, and that the gap increases with the horizon. The naïve

11In this section, we elect to use the full sample to focus on the sensitivity and not the specific differences
between in- and out-of-sample.

12Modelling wise, there is limited guidance for selecting an appropriate lag length (Patton, 2006a).
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hedge performs the worst, due to the low MR and high transaction costs.

5 10 15 20

−
1
0
0
0

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

Hedge horizon (weeks)

M
e
a
n
 r

e
tu

rn
 (

N
O

K
)

Unhedged Naïve DCC C−DCC TVC RWC

DCC multi C−DCC multi RWC multi

Figure 4.5: Transaction cost adjusted mean return for different hedging horizons, full sample.

Cost of hedging

In the last section we derive the implications for the trade-off between risk and return. We
do this by proposing a measure of cost-effectiveness (CE) associated with each hedge.

First, we define cost of hedge (CoH) to be the difference between the transaction cost
adjusted (TCA) mean return of the unhedged portfolio and the hedged. This is the return
the salmon farmer historically forgoes (or gains, in case of negative cost) by using a given
hedging strategy. As it also incorporates the transaction cost, we can think of it as the total
cost of a given hedging strategy. A natural extension is the ratio CoH

HE , i.e. the cost per per-
centage of variance reduction (HE), which we denote as the cost-effectiveness13 or CE. This
measure allows us to distinguish between models in terms of the risk-return trade-off. In
other words, which models yield the least costly hedge effectiveness.

13While the hedge effectiveness is a percentage reduction, the cost-effectiveness is a ratio of NOK to %, and
thus, denoted in NOK. A lower CE is preferred, in contrast to HE.
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Table 4.4: Hedging cost measures for the 4-week hedging horizon.

Unhedged Naïve DCC C-DCC TVC RWC

In-sample (N = 538) Single Multi Single Multi Single Single Multi

Mean return, TCA 1 046 -777 62 13 54 14 99 159 186
CoH 0 1 823 984 1 033 992 1 032 947 887 860
HE (%) NA 64.39% 49.04% 48.15% 49.84% 48.91% 47.70% 46.00% 45.10%
CE NA 28.31 20.07 21.45 19.90 21.10 19.86 19.29 19.07

Out-of-sample (N = 104)

Mean return, TCA -2 943 -1 413 -1 945 -2 020 -2 016 -2 101 -2 110 -1 888 -1 972
CoH 0 -1 530 -997 -923 -927 -842 -832 -1 055 -971
HE (%) NA 70.07% 52.24% 51.25% 50.95% 49.93% 47.66% 57.24% 53.52%
CE NA -21.83 -19.09 -18.01 -18.19 -16.86 -17.47 -18.44 -18.15

Note: Results denoted in NOK. TCA: transaction cost adjusted.

Second, we compare the cost-effectiveness of models for the four-week horizon as presen-
ted in Table 4.4. Recall from the previous discussion on the risk-return trade-off that the res-
ults indicated a non-linear relationship between hedge effectiveness and mean return. If the
relationship was linear, we would expect the CE to be the same for all models.14 Meaning,
an increase in HE would proportionally reduce the mean return, and thus proportionally
reduce exposure to both the return downside and upside. This is evidently not the case as
we find large differences in CE for the respective models, as shown by Table 4.4. For the
in-sample period, we find the RWC multi-hedge yields the best CE (19.07), while the naïve
hedge yields the worst (28.31). A point difference of 9.24. All the dynamic models are relat-
ively similar, being in the range of 19.07 (RWC multi) to 21.45 (DCC multi). In general, we
see that cost-effectiveness tends to increase with the hedge effectiveness. This implies that
the reason why HE increases and variance decreases is reduction on the upside, and not the
downside. The salmon farmer has to forego more return per unit of variance reduction, as
variance reduction increases.

For the out-of-sample period, we find the reverse situation. As the period has a negative
mean return, the cost is negative and is accordingly a return gain. In this case, we find the
naïve hedge has the best CE (-21.83) and the C-DCC multi-hedge the worst (-16.86). This
also confirms with our previous findings. However, notice that the naïve hedge outperforms
the RWC single- and multi-hedge only marginally, by point differences of 3.39 and 3.68. This
indicates that when the naïve hedge outperforms during periods of depreciating return, it
does so only marginally. Furthermore, one should expect the RWC to perform significantly
worse during depreciating returns as it performs well during appreciating returns.15 To the
contrary, we find the RWC multi-hedge model among the best performing dynamic models
(-18.15) even during periods of negative return, only marginally worse than the DCC (-19.09)
and C-DCC (-18.19) single-hedges.

Lastly, we examine the sensitivity of cost-effectiveness to hedging horizon. Figure 4.6
shows CE for hedging horizons between 1 and 20 weeks for in- and out-of-sample data. For
in-sample we find the RWC multi-hedge model strictly outperforms other models for hedge
horizons ≥ 4, and that the gap increases for longer horizons. The model is more expensive
for horizons between 1 and 3 weeks, due to the increased transaction cost associated with

14While the previous analysis of hedging outcomes examined mean return, in this section focus on capturing
the total cost of the hedge and hence, use the TCA mean return in the discussion. The conclusions of the
discussion are in either case the same.

15To elaborate: Low reduction of mean return gains during periods of positive return should imply low re-
duction of mean return losses during periods of negative return.
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the multi-hedge. This can be seen in Figure 4.5, where TCA mean return is lower for the
RWC multi-hedge in horizons 1-3 compared to other models. Furthermore, the naïve hedge
strictly underperforms in terms of CE for all horizons in-sample. Additionally, we find the
naïve hedge to be more cost-effective for hedging horizons 1-5 for out-of-sample. This is ex-
pected since the naïve hedge has higher returns during periods of negative return. However,
it should be clear from Figure 4.6b that the naïve hedge is only marginally better out-of-
sample during hedging horizons 1-5, and that it underperforms for hedging horizons ≥ 6.
Again, the RWC multi-hedge model outperforms the other models for longer horizons.

To conclude, these results confirm our previous discussions. While the naïve hedge is
superior in terms of hedging effectiveness and for periods of negative returns, it tends to
highly over-hedge. Meaning, when reducing variance, it predominantly does so by reducing
the upside risk and potential mean return, while being most expensive in terms of trans-
action costs. The RWC multi-hedge model does the opposite, and tends to be the most
cost-effective hedging model for longer horizons, irrespective of sample period. This is an
attractive model property for salmon companies, which currently prefer being exposed to
spot prices due to the fear of losing upside returns.16

5 10 15 20

−
2
0

0
2
0

4
0

Hedge horizon (weeks)

C
o
s
t−

e
ff
e
c
ti
ve

n
e
s
s
 (

N
O

K
)

Naïve DCC C−DCC TVC RWC

DCC multi C−DCC multi RWC multi

(a) In-sample.
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Figure 4.6: Cost-effectiveness for different hedging horizons.

16Information revealed in a phone interview with Kåre Gruven, Chief Feed Adviser at Norway Royal Salmon,
19 May 2020.



5 | Conclusion

In this study we address the price risk hedging problem for farmers of Atlantic salmon. Most
industry players acknowledge the importance of price risk mitigation by engaging in trading
of salmon futures or fixed-price contracts. Nonetheless, salmon farmers are exposed to risky
prices not solely through their output, but also through the main production input, salmon
feed. This study is the first academic contribution to hedging of joint price risk in salmon
farming.

We analyse a salmon producer that partially can hedge the risk of both input and output
price movements by trading in futures markets for feed ingredients and salmon. Salmon
companies with integrated feed production are exposed to the same market risks, making
our proposed approach applicable across multiple salmon production value chain set-ups.

Our main results can be summarised as follows. First, we find that multi-commodity
price risk in the salmon farming industry can be greatly reduced by applying a state-of-
the-art multi-commodity hedging framework using dynamic copula models. The proposed
novel RWC multi-hedge reduces portfolio variance by 45.10% (53.52% out-of-sample) for
a four-week hedging horizon. Additionally, it is the most parsimonious model sacrificing
the least return per reduction of variance, and reduces expected shortfall more efficiently in
comparison to other models. Although the use of the multi-hedge only improves hedging ef-
fectiveness for short hedging horizons, it tends to improve the risk-return trade-off for longer
horizons.

Second, our findings indicate that the benefit of multi-hedging is a result of improved
hedging of the input commodities. Using the multi-hedge, we find little changes to the op-
timal salmon hedging ratio. This implies it is rarely possible to offset risk in the salmon price
by using cross-hedges in agricultural commodities. Furthermore, it indicates that the sal-
mon price should be close to optimally hedged when considered alone.

Third, we find that extending the standard multivariate GARCH models by applying cop-
ulas increases hedging performance in most cases. The C-DCC model outperforms the DCC
model on all measures for the in-sample four-week horizon, however, slightly underper-
forms out-of-sample. The largest improvement is found with the RWC model, which greatly
improves the risk-return trade-off for longer hedging horizons.

Furthermore, our results show that hedging horizon greatly impacts hedging outcomes
and should be considered when deciding on a hedging strategy. The hedge horizon intro-
duces a trade-off for salmon farmers, where longer horizons are more favourable in terms of
hedge effectiveness and costs, but requires pre-planning of slaughtering volumes to a higher
degree.

Lastly, we propose a cost-effectiveness measure, which highlights the importance of con-
sidering the costliness of a hedge against the hedging effectiveness. The results indicate that
higher hedging effectiveness comes at a disproportionate reduction of the mean return. The
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salmon farmer has to forego more return per unit of variance reduction, as variance reduc-
tion increases. The RWC model is the most efficient model in terms of cost-effectiveness for
longer hedging horizons, irrespective of sample period. This is attractive for salmon com-
panies, which currently prefer spot price exposure due to the fear of losing upside returns.

In what follows we suggest some interesting directions for future work. First is to investig-
ate different measures for hedging effectiveness in the context of multi-commodity hedging.
One alternative is lower partial moments (LPM) by Fishburn (1977), which focus more on ex-
treme tail risk. Another measure is relative reduction in mean squared forecast error (RRMSFE)
by Bloznelis (2018), which focuses on the error of forecasted expected prices. Using different
hedging measures might yield different optimal hedge ratios and new industry insights.

Second, it would be interesting to explore different copula methods, like non-parametric
copulas (NPC) and pair-copulas. NPC has advantages such as not assuming an elliptical
dependency structure resulting in a more general copula function. Hence, it would be in-
teresting to see if NPC potentially yields better results. NPC are usually estimated by ker-
nel estimation, which is infeasible in higher dimensions. There are several other methods
worth investigating as alternatives to the common kernel estimation. For instance, the LGDE
approach using the local Gaussian correlation presented by Otneim (2016). LGDE handles
higher dimensions well and is robust against dimensionality issues, modelling error, in ad-
dition to noise introduced by irrelevant parameters (Otneim and Tjøstheim, 2018). Another
possibility is modelling the high-dimensional data by pair-copulas (Aas et al., 2009). Using
simplified pair-copulas, one can evade the curse of dimensionality and construct higher-
dimensional copulas (Nagler, Schellhase and Czado, 2017).

Another interesting direction for further research is to investigate the usage of other de-
rivatives together with, or instead of futures. For salmon, the only financial derivative avail-
able is futures. However, Fish Pool did provide the possibility to trade Asian options earlier
(Fish Pool, 2020b). The exchange has hinted that they might offer options again in the future
if they can create a more liquid market. All input commodities used in our analysis have a
large variety of derivatives to trade in, totalling in a vast number of possibilities for a salmon
farmer seeking to reduce price risk exposure.

Salmon farmers are exposed to multiple risks, both financial and non-financial, in addi-
tion to risky prices. Additionally, several salmon companies are operating on a global scale
and thus exposed to multiple exchange rates and interest rates. A natural extension is to in-
clude exchange and interest rates in the analysis, obtaining a more complete picture of the
financial risk situation. However, this would also increase the number of dimensions. An-
other possibility is incorporation of factors such as biological shocks and optimal timing of
slaughter. Finally, an interesting addition is to account for production of multiple species,
which is how some of the companies in the OSLO Seafood Index operate today.
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A | Methodology

A.1 Copula Models

Table A.1: Copula models overview of some of the most common copula models.

Parameter(s)
Parameter
space

Independence
Pos & Neg
dependency

Lower tail
dependency

Upper tail
dependency

Normal ρ (−1,1) 0 Yes 0 0
Student’s t ρ,ν (−1,1)× (2,∞) (0,∞) Yes gT (ρ,ν) gT (ρ,ν)

Clayton γ (0,∞) 0 No † 2− 1
γ 0

Rotated Clayton γ (0,∞) 0 No † 0 2− 1
γ

Gumbel γ (1,∞) 1 No 0 2−2
1
γ

Rotated Gumbel γ (0,∞) 1 No 2−2
1
γ 0

Frank γ (−∞,∞) 0 Yes 0 0

Note: The independence column show the values that lead to the independence copula.
† Clayton and the rotated versions of it allow for negative dependence for γε(−1,0), which is different from the positive
dependence case, γ> 0. See Patton (2012, p.63) for more details regarding the table.

A.2 Copula densities

Frank copula density:

cF (u1,u2;ρ) = ρηe−ρ(u1+u2)(
η− (1−eρu1 )(1−e−ρu2 )

)2 , (A.1)

for 0 ≤ ρ <∞) where η= 1−e−ρ (Joe, 1997, p.141).
Joe copula density:

c J (u1,u2;ρ) = (uρ
1 +uρ

2 −uρ
1 uρ

2 )−2+ 1
ρ uρ−1

1 uρ−1
2 (ρ−1+uρ

1 uρ
2 −uρ

1 uρ
2 ), (A.2)

for 1 ≤ ρ <∞) (Joe, 1997, p.141-142).
Clayton copula density:

cC (u1,u2, ;θ) = (1+θ)(u1,u2)−1−θ(u−θ
1 +u−θ

2 −1)−
1
θ−2, (A.3)

for 0 ≤ θ <∞) and θ 6= 0.
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Rotated versions of the Clayton, Gumbel, and Joe copulas are obtained by Equation A.4.

C90(u1,u2) = u2 −C (1−u1,u2),

C180(u1,u2) = u1 +u2 −1+C (1−u1,1−u2),

C270(u1,u2) = u1 −C (u1,1−u2).

(A.4)

Figure A.1 displays contour plots for the normal, Student’s t, Clayton, Gumbel, Frank and
Joe copula with given dependency parameters.
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Figure A.1: Contour plots of density functions for some copula families.

A.3 Copula Estimation

The log-likelihood function for all parameters of the conditional copula distribution, i.e. of
Equation 2.19:

l og
(

ft (εi ,t ,ε j ,t |ℑt−1)
)= log ct (ui ,t ,u j ,t |ℑt−1,θc )+ log gi , t (εi ,t |ℑt−1,θi )log g j ,t (ε j ,t |ℑt−1,θ j )

(A.5)
The estimator in the two-stage maximum likelihood framework, denoted θ̂ = [θ̂i , θ̂ j , θ̂c ],

assuming all samples run from t = 1 to t = T .

θ̂i = arg max
θi

T∑
t=1

log gi ,t (εi ,t |ℑt−1,θi ),

θ̂ j = arg max
θ j

T∑
t=1

log g j ,t (ε j ,t |ℑt−1,θ j ),

θ̂c = arg max
θ j

T∑
t=1

log ct (u1,t ,u2,t |ℑt−1, θ̂i , θ̂ j ,θc ).

(A.6)



B | Estimation

B.1 Data

In Table B.1 information on the price series used in the analysis is given.

Price series Name Symbol Contract size Currency

SA S Fish Pool Index Spot Salmon NOK/KG FSPWKSP NA NOK
SA F Fish Pool Salmon TRc1 NOK/KG FSPFWDM 1.0 kilogram NOK
SM S Soyameal USA 48% Protein $/MT SOYMUSA NA USD
SM F ECBOT-Soybean Meal Continuous CZMCS00 100.0 tons USD
WH S Wheat US HRS 14% Del Mineapolis/Dulut WHTHRMD NA USD
WH F MGE-WHEAT CONTINUOUS MMWCS00 5000.0 bushels USD
RO S Rapeseed Oil EU Ex Mill FOB Rdam M RPOLRDE NA EUR
RO F Rapeseed Oil Dutch FOB NWE 1mth fwd RPOLDNE 1.0 tonne EUR

Table B.1: Metadata of price series obtained from Thomson Reuters Datastream.

Table B.2 presents descriptive statistics and Table B.3 gives tests performed on the log-
returns series for the out-of-sample period.

Returns series Mean Median Min. Max. St.dev Skewn. Exc.kur.

Salmon spot −0.2433 −0.4511 −16.3797 17.2947 6.8191 0.2179 −0.4230
Salmon futures −0.2743 −0.0638 −18.4922 13.1192 5.2660 −0.7051 2.7326
Soymeal spot −0.3094 −0.4576 −6.3266 8.1932 2.4040 0.5296 1.2019
Soymeal futures −0.3004 −0.5772 −6.3569 8.2326 2.3951 0.5081 1.1899
Wheat spot −0.2704 −0.2605 −14.9733 13.7109 4.2348 −0.0391 1.6824
Wheat futures −0.1872 −0.1722 −6.4513 6.8098 2.8215 −0.0169 −0.5228
Rapeseed oil spot 0.0543 0.0071 −9.0522 5.0208 2.0762 −0.9432 3.4196
Rapeseed oil futures 0.0526 0.0000 −9.9750 6.1036 2.3236 −0.7792 3.1113

Table B.2: Descriptive statistics for out-of-sample weekly spot and futures percentage log-returns.
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Table B.3: Out-of-sample test statistics.

Returns series JB ADF1 LBQ23 LM4

Salmon spot 1.449 −2.55∗∗ 13.63 (0.968) 23.0∗∗∗

Salmon futures 43.93∗∗∗ −2.25∗∗ 25.94 (0.411) 70.8∗∗∗

Soymeal spot 12.15∗∗∗ −2.91∗∗∗ 16.11 (0.912) 40.8∗∗∗

Soymeal futures 11.62∗∗∗ −3.02∗∗∗ 18.39 (0.826) 42.3∗∗∗

Wheat spot 13.66∗∗∗ −2.85∗∗∗ 25.88 (0.414) 18.6∗∗∗

Wheat futures 0.980 −3.98∗∗∗ 23.40 (0.554) 16.0∗∗∗

Rapeseed oil spot 70.33∗∗∗ −2.10∗∗ 22.11 (0.630) 63.1∗∗∗

Rapeseed oil futures 56.06∗∗∗ −1.77∗ 28.12 (0.303) 82.9∗∗∗

Note: Tests applied are Jarque-Bera (JB), augmented Dickey-Fuller (ADF),
Ljung-Box Q (LBQ) and Engle’s Lagrange multiplier (LM) tests. ∗∗∗, ∗∗, ∗

denotes significance at the 1%, 5%, 10% level respectively.

Figure B.1 and B.2 show weekly log-returns for all commodity prices relevant in the ana-
lysis.
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Figure B.1: Spot and futures log-returns for salmon and soymeal.

1Lag length k = 12 is chosen based on the commonly used rule of thumb by Schwert (2002), which is to
choose k = i nt {12(T /100)1/4}, where T denotes sample size.

2Values in parentheses are p-values.
3Lag length 25 is chosen. However, results are stable across a wide range of lag lengths.
4Results are for lag length 4.
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Figure B.2: Spot and futures log-returns for wheat and rapeseed oil.

Figure B.3 shows the ACF and PACF plots for salmon spot returns. The panels on the left
show significant autocorrelation for lag 2 before fitting the AR model. The model seems to
capture this, as seen in the panels on the right, and there is no significant autocorrelation left
in the residuals of the AR models. We have equivalent results for all series. Figure B.4 shows
the residuals of the AR model fitted to salmon spot returns.
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Figure B.3: ACF and PACF plots of salmon spot returns (left) and residuals of AR(2) model fitted to
salmon spot returns (right).
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Figure B.4: Residuals of AR model fitted to salmon spot returns.

B.2 Estimated GARCH(1,1) models

The following figures show diagnostic plots for estimated GARCH(1,1) models in the form of
ACF of squared standardised residuals, the empirical density and QQ plots.
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Figure B.5: GARCH(1,1) diagnostic plots, salmon spot series.
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Figure B.6: GARCH(1,1) diagnostic plots, salmon futures series.
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Figure B.7: GARCH(1,1) diagnostic plots, soymeal spot series..
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Figure B.8: GARCH(1,1) diagnostic plots, soymeal futures series.
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Figure B.9: GARCH(1,1) diagnostic plots, wheat spot series.
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Figure B.10: GARCH(1,1) diagnostic plots, wheat futures series.
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Figure B.11: GARCH(1,1) diagnostic plots, rapeseed oil spot series.
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Figure B.12: GARCH(1,1) diagnostic plots, rapeseed oil futures series.
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Figure B.13: Pseudo-observations obtained from standardised GARCH(1,1) residuals by the EDF,
Equation 2.15.



C | Results

C.1 Estimated out-of-sample hedge ratios

Table C.1 shows out-of-sample mean, minimum, maximum and standard deviation (SD) for
each model and commodity. For ease of comparison and consistency, all hedge ratios are
presented from the same perspective, i.e. a positive ratio indicates a futures position opposite
of the spot market, and a negative ratio indicates a futures position in the same direction as
the spot market.

Table C.1: Statistics for estimated out-of-sample hedge ratios.

DCC C-DCC TVC RWC

Single Multi Single Multi Single Single Multi

Salmon
Mean 0.584 0.571 0.559 0.544 0.522 0.664 0.588
SD 0.076 0.073 0.072 0.069 0.141 0.095 0.136
Min 0.454 0.447 0.430 0.419 0.254 0.436 0.274
Max 0.861 0.848 0.802 0.770 1.160 0.966 0.944

Soymeal
Mean 0.951 1.078 0.977 1.141 1.000 1.044 -0.099
SD 0.033 0.251 0.034 0.224 0.083 0.039 0.911
Min 0.868 0.485 0.884 0.594 0.334 0.936 -2.027
Max 1.025 1.606 1.050 1.713 1.089 1.114 1.570

Wheat
Mean 0.874 1.006 0.886 0.908 0.903 0.838 0.943
SD 0.223 0.532 0.227 0.531 0.243 0.203 2.190
Min 0.446 -0.152 0.446 -0.193 0.440 0.454 -2.034
Max 1.529 2.154 1.550 1.986 1.620 1.423 4.607

Rapeseed oil
Mean 0.825 1.056 0.819 0.910 0.802 0.765 1.532
SD 0.067 0.490 0.086 0.525 0.147 0.092 2.011
Min 0.644 -0.421 0.597 -0.549 0.168 0.540 -2.381
Max 0.993 2.208 1.010 2.168 1.029 0.938 4.783

Note: Smallest and largest standard deviation (SD) for each commodity are marked red and blue respect-
ively.
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C.2 Various result plots

Figure C.1 shows the distributions of returns for different hedging strategies for the out-of-
sample period. Single-hedges are shown in the left panel and multi-hedges in the right panel.
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Figure C.1: Out-of-sample return distributions for the four-week hedging horizon.

C.3 Hedging paths

Figures C.2 to C.4 show the realised return paths. The dashed vertical line separates the in-
and out-of-sample period.
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Figure C.2: Hedging path of the naïve hedge for the four-week horizon.
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Figure C.3: Hedging path of the DCC and C-DCC models for the four-week horizon.
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Figure C.4: Hedging path of the TVC and RWC models for the four-week horizon.
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C.4 Software setup

Software: RStudio v.1.2.50331 (R version 3.6.3).

External R Packages used:

• abind v.1.4-5 (Plate and Heiberger, 2016).

• aTSA v.3.1.2 (Qiu, 2015).

• copula v.1.0-0 (Hofert et al., 2020).

• cubature v.2.0.4 (Narasimhan et al., 2019).

• doParallel v.1.0.15 (Plate and Heiberger, 2016).

• fgarch v.3042.83.2 (Wuertz et al., 2020).

• foreach v.1.5.0 (Ooi, Microsoft and Weston, 2019).

• forecast v.8.12 (Hyndman et al., 2020).

• psych v.1.9.12 (Revelle, 2019).

• quantmod v.0.4.17 (Ryan et al., 2020).

• RColorBrewer v.1.1-2 (Neuwirth, 2014).

• readxl v.1.3.1 (Wickham et al., 2019).

• rmgarch v.1.3-7 (Ghalanos, 2019a).

• rugarch v.1.4-2 (Ghalanos, 2020).

• skewt v.0.1 (King, 2012).

• tseries v.0.10-47 (Trapletti and Hornik, 2019).

• VineCopula v.2.3.0 (Nagler et al., 2019).

Note:
Code used to produce the estimates and results in the thesis are given upon request.

1"Orange Blossom" (330255dd, 2019-12-04), Mozilla5.0 (Windows NT 10.0 Win64 x64) AppleWebKit537.36
(KHTML, like Gecko) QtWebEngine5.12.1 Chrome69.0.3497.128 Safari537.36
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