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Abstract

We examine the performance and map the risk-taking behaviour of incentive fee equity
funds registered on the Oslo Stock Exchange in the period 2000-2018. We map risk proper-
ties by a self-organizing map, which is an unsupervised neural network, and cluster its out-
put using the k-means and the hierarchical clustering algorithms. Some incentive fee fund
managers increase volatility and market beta in attempt to earn positive fees. In contrast,
others take nuanced exposure to systematic or unsystematic factors to beat their benchmark,
perhaps in the belief of possessing skill. Assessing risk-changing behaviour, we find indi-
cation that incentive contracts add to the convexity of flow-related incentives. For perfor-
mance, we find no verification of any theoretical inclination that incentive fee funds attract
the best or hardest-working managers.





Sammendrag

Vi undersøker prestasjon og kartlegger måten aksjefond med resultatbasert forvaltnings-
godtgjørelse som er registrerte på Oslo Børs i perioden 2000-2018 tar risiko på. Vi kartleg-
ger risikoegenskaper ved et selvorganiserende kart, som er et uovervåket nevralt nettverk,
og klynger utdataen fra kartet ved k-means- og hierarkisk gruppering. Noen forvaltere av in-
sentivfond øker volatiliteten og markedsbetaen i forsøk på å tjene positive resultatavhengige
honorarer. I kontrast til det, tar andre nyansert eksponering for systematiske eller usystem-
atiske faktorer for å slå sin referanseindeks, kanskje i troen på egen dyktighet. Når vi
vurderer atferd for risikoendring, finner vi indikasjon på at insentivkontrakter forsterker
konveksiteten fra tegningsinsentiver. Når det gjelder prestasjon, finner vi ingen verifikasjon
av noen teoretisk tilbøyelighet for at insentivfond tiltrekker seg de beste eller hardest arbei-
dende forvalterne.
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1 Introduction

Mutual funds manage a pool of assets on behalf of their investors for a fee. These fees are
usually paid yearly and given as a fraction of assets under management, but fee structures
vary across funds. The structure of the fee has implications for the way fund managers
take on risk. On the other side of the relationship, the mutual fund investor is interested in
the maximization of risk-adjusted net returns on their assets regardless of any fees accrued.
In this thesis, we study the implication that the contracts of so-called incentive fee mutual
funds have on the relationship between these parties.

Incentive fee funds are mutual funds that charge a fee given as a function of the difference
in the performance of the fund and its reference index. This fee supplements the conven-
tional fraction fee structure. The reference index is chosen by the mutual fund to reflect
the general movements in the investment universe of the fund, such as the geographical or
industrial sector. Incentive fee funds can generally be partitioned into two subgroups by
the structure of their variable fee, namely symmetric and asymmetric incentive fee funds.
For symmetric incentive fee funds, the variable component is positive when the fund return
is higher than that of the index and negative in the opposite. This usually applies within
some range of the fixed component of the fund fee. For asymmetric incentive fee funds,
the variable component is positive when the fund return is higher than the index return but
zero otherwise, resembling the payoff of a call option. For instance, the yearly fees earned
by the incentive fee fund Skagen Kon-tiki A is 2.00% of its total assets plus an asymmetric
incentive fee of 10% of the excess performance compared to the index MSCI Emerging
Markets.

The structure of mutual fund fee schedules does, in concept, leave room for a disparity
in the incentives of the mutual fund investor and their manager. As a result, in order to
maximize their payoff function, the fund manager might use their private information to take
actions that deviate from those that would maximize the payoff for the investor. Throughout
this thesis, we write as if the incentive fees obtained by the fund mirrors the employment
contract of the fund manager. That is, the fund manager is not trying to optimize with
respect to their employment contract or any incentives in that regard. As a consequence, a
mutual fund manager should invest to maximize the value of future fund fees.

In theory, there are various common-sensical arguments for the existence of incentive fee
funds. From the perspective of an investor, the variable payoff structure should, to some
extent, align the investor and fund manager’s incentives. The fund manager should increase
efforts to maximize the return of their portfolio, as predicted by agency theory (e.g. Jensen
and Meckling, 1976). Besides, the fund should attract the best managers, as any manager
capable of generating excess return would be best renumerated for their services in such
a fund. From the perspective of a manager, the same argument implies that an incentive
structure would induce a signalling effect, which, coupled with any excess performance of
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the fund, leads to positive net investment flows (e.g. Berk and Green, 2004). In practice, the
intricacies of an incentive contract add to any existing agency effects in delegated portfolio
management.

There is a considerable body of theoretical work on how different contract structures in
mutual funds impact the behaviour of the fund manager, and as a consequence, how well
investor and fund manager interests are aligned. Starks (1987) compare different contract
structures among incentive fee funds. Despite not eliminating agency costs, they find that
the symmetric contract dominates the asymmetric. Ou-Yang (2003) arrives at the same con-
clusion, provided that the fund benchmark is appropriate. Notably, this is a significant as-
sumption in the eyes of Admati and Pfleiderer (1997), who find that commonly used bench-
mark schemes among mutual funds are inconsistent with optimal risk-sharing. Regardless,
equitable distribution of risk seems to remain the major advantage that symmetric contracts
have over asymmetric ones. For example, Grinblatt and Titman (1989) show, given that
managers can hedge their compensation, that the convex schedule in asymmetric contracts
induce managers to increase leverage as much as possible. They note that while greater
leverage also increases the probability for liquidation of the fund, the net effect remains
positive. While Carpenter (1989) reports ambiguous findings when removing the manager
opportunity to hedge compensation, she agrees that managers with asymmetric fees weigh
the gains of overperforming heavier than the implicit impact of underperformance. While
other researchers agree that asymmetric incentive contracts lead to managers engaging in
strategies with high variance around their benchmark, they show for their configurations
that option-like contracts align interests better than both linear (Stoughton (1993); Li and
Tiwari (2009)) and symmetric contracts (Das and Sundaram, 2002). The model of (e.g.
Stoughton, 1993) emphasizes the benefits of the contractual incentives that managers have
to make an effort in acquiring private information. While they identify considerable agency
costs, they argue that the asymmetric contract remains dominant as long as the investor is
risk-tolerant.

Turning away from the purely theoretical side, the empirical side of contract structure eval-
uation has also received attention in the literature of financial economics. Notably, there
has been considerable interest in the topic among U.S. researchers. In underlying terms,
this is due to both the maturity and size of the U.S. mutual fund market. The interest for
research on incentive fee funds in delegated portfolio management was however sparked in
1971 with legislation that prohibited the use of asymmetric incentive fees in U.S. mutual
funds.

There is some evidence that managers of incentive fee funds outcompete fraction fee funds
in generating excess returns. Massa and Patgiri (2009) find that greater incentives not only
increase the risk-adjusted return of the fund but that the performance is persistent. In line
with this, Elton et al. (2003) show that managers of symmetric incentive fee funds exhibit
significantly better ability in generating risk adjusted net returns than their fraction fee coun-
terparts, even when adjusting for incentive fee funds in their sample charging lower fees.
Importantly, they find that even the incentive fee funds do not on average outperform their
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benchmark indices. The idea that greater incentives motivate managers to generate superior
returns is backed by Ibert (2018), by showing a correlation between abnormal fund returns
and amount of personal wealth in the fund (that is, they have great incentives).

Even if incentive fee fund managers deliver better results net of fees and seem to act solely
in the interests of their investors, the agency issues of imperfect contracts persist. There are
signs that the investment strategies that incentive fee fund managers employ are designed
to maximize the income of the fund, and not necessarily to maximize the return of the
investor. Before discussing the strategies that incentive fee fund managers are found to use,
it is vital to remember that they are also affected by any existing agency effects, such as flow
incentives (e.g. Gruber, 1996). For example, even though an option-like contract increases
strictly in value with volatility when we consider one period in isolation, no manager is
of infinite risk tolerance when they regard multiple periods. Still, researchers have found
differences in how incentive and fraction fee fund managers invest.

First, an incentive contract should lead managers to seek greater volatility around their
reference index. The fund manager reward structure does not penalize large market beta
and the option-like payoff of the fee increases in value from volatility. As long as reference
index returns are non-negative, a beta greater than one would earn positive incentive fees.
Elton et al. (2003) argue that this logic holds for symmetric in addition to asymmetric funds,
as they can be shown to have mathematically equivalent convexity features to a capped
asymmetric fee fund, given that the incentive component of the fund fee only holds within
the capped range. They find that U.S. funds with symmetric fee structures do take on more
systematic risk than fraction fee mutual funds, although the average incentive fee fund has
a beta below unity. Cuoco and Kaniel (2010) find similar results in terms of market beta.
They point to risk-aversion among managers in funds with symmetric incentive contracts
as a possible explanation for the tendency for symmetric incentive fee funds to follow their
benchmarks more closely.

Second, incentive fee fund managers should allocate more money outside of their reference
index. They should especially take more exposure to assets they believe yield positive dif-
ferential expected return, such as e.g. small-capitalization stocks. The reason is that the in-
centive fee reward structure does not penalize the priced increase in risk. Elton et al. (2003)
find that U.S. symmetric incentive fee funds act on this logic and do employ a higher track-
ing error to their benchmarks. Golec and Starks (2004) find that managers of asymmetric
incentive fee funds deviate more from their benchmarks than those of symmetric incentive
fee funds. They show that a sample of U.S. funds that were forced to change the structure
from asymmetric to symmetric in 1971 reduced their tracking error in the subsequent pe-
riod. An alternative method of achieving benchmark deviation is to assign a reference index
that takes exposure to different risk factors than those of the fund. For example, Ervik and
Qvale (2017) point to the equity mutual fund Pareto Global A comparing its performance
to an international bond index.
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Third, incentive fee fund managers should be more willing to change the level of risk within
an evaluation period. That is because incentive structures add to the convexity of the fee
schedule. While this evidently holds for asymmetric incentive fee funds, Elton et al. (2003)
similarily to above argue that this also holds for capped symmetric incentive fee funds.
Depending on the performance in the first segment of the evaluation period, convexity in
the fund income schedule may lead fund managers to increase the risk to finish ahead of
their benchmark or decrease risk to lock in gains, as documented by Grinblatt and Titman
(1992), Basak et al. (2007) and Kempf et al. (2009). Furthermore, the adverse effects of
spurious risk-changing to beat a benchmark are shown by Chen and Pennachi (2005) and
Huang et al. (2011), as funds that increase risk intra-period tend to perform worse than
others. As an extension, Massa and Patgiri (2009) find that the risk-seeking nature of funds
with greater incentives lead to them having a lower chance of survival.

These insights provide a clear connection between the findings of those that study mathe-
matical contracts and those that have observed the empirical characteristics of incentive fee
funds. However, the broader literature in the strategic characterization of funds explores
more general approaches.

As a start, the concept of style analysis was brought to the forefront by Sharpe (1992), who
characterized mutual fund investment styles by linear regression against a set of bench-
marks. In a similar vein, others have used extended CAPM and other multi-factor models to
theorize on the strategies employed by fund managers (Blake et al. (1999); Gruber (2001)).
In parallell with the continued pervasiveness of linear multi-factor models as a vehicle to de-
scribe the behaviour of mutual funds since the work of Fama and French (1993), increased
efforts have been made to delve deeper into statistics to explore useful methodology for
classification of fund behaviour. The techniques used for factor identification range from
principal component analysis (Brown and Goetzmann, 1997), option-like return representa-
tive strategies (Fung and Hsieh (2001); Agarwal and Naïk (2000)), cluster analysis (Marate
and Shawky (1999); Gruber (2001); Lisi and Otranto (2010); Sun et al. (2012)), hierar-
chical tree (Mantegna, 1998), to genetic algorithms (Pattarin et al., 2004) and network-like
approaches such as self-organizing maps (Maillet and Rousset, 2003).

Research that characterizes the behaviour and performance of incentive fee funds registered
on the Oslo Stock Exchange (OSE) is a relevant issue. In 2017, the Norwegian Financial
Supervisory Authority repealed 2001 regulation that prohibited registration of asymmetrical
incentive mutual funds in Norway. Since, there has been an uptick in the number of such
funds marketed towards Norwegian investors. For example, DNB, the largest Norwegian
consumer bank, opened ten asymmetrical incentive fee funds in 2019. Previous work with
a similar sample and focus is to our best knowledge sparse. Ervik and Qvale (2017) find
that a sample of Norwegian incentive fee funds charges higher fees than a small sample of
large Norwegian fraction fee funds. They do not address risk-adjusted performance or risk
characteristics.
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In this thesis, we study performance and risk-taking aspects for 409 fraction fee funds and
13 incentive fee funds registered on the OSE in the period 2000-2018. We investigate the
existence of well-known risk characteristics for a new sample and map their risk-taking
characteristics in the mutual fund universe.

We generally do not distinguish between symmetric and asymmetric incentive fee funds.
The size of our data set does not allow such granularity. Our focus is thus to study incen-
tive fee funds as a gross class compared to fraction fee funds. We find solace in the fact
that asymmetric incentive fee funds that cap their payoff are mathematically equivalent to
symmetric incentive fee funds.

We investigate the risk-adjusted performance of aggregate portfolios of incentive fee funds
by the measure of Jensen’s alpha (Jensen, 1968). We employ the regression framework of
Carhart (1997) and assign factor data based on geographical investment regions in the spirit
of Fama and French (2012). We further explore our data set for the existence of skilled in-
dividual managers using the bootstrapping methodology of Fama and French (2010), which
adjusts for sampling variation and non-normality in the aggregated distribution of cross-
sectional regression intercepts.

As a first step for understanding the risk properties of the incentive fee funds in our sam-
ple, we investigate their systematic exposure to the market portfolio and tracking error to
benchmark indices. As a second step, we test whether explicit incentive fee contracts add to
the convexity of the payoff schedule. In our tests, we make assumptions similar to those of
Chevalier and Ellison (1997). For the second analysis, we consider a fund’s tracking error
to their stated benchmark index.

In a third effort to gauge to the risk-taking behaviour of incentive fee funds, our approach is
both more explorative and comprehensive. We use a self-organizing map, which is a two-
layer neural network, to map the patterns in risk properties of the funds in our sample. We
further cluster the output of the map to obtain fund classes in an objective manner.

Self-organizing maps have been used in various problem domains1, while application in
finance is sparse and focused on style analysis of mutual and hedge funds2. Our approach
differs from previous work in finance in two ways. First, we cluster the output of our self-
organizing map, instead of taking the map as the final output. Second, we train our network
purely on risk measures, and not on all available fund features.

A notable consequence of deviating from previous literature on feature selection is that
we surrender external means for direct comparison of results. If we chose to map funds on
investment style, we would be able to measure the validity of our methodology externally by
comparison to the pre-defined investment style classes from a commonly used data provider
(e.g. Refinitiv Eikon). While we employ a range of criteria to test the internal validity of
our model, the lack of a direct external comparison to our results implies that we alter

1Recent examples: Robotics (Zhu et al., 2017); geology (Huang et al., 2017); natural language processing
(Lokesh et al., 2019); image recognition (Chen et al., 2017).

2Noteable examples: Deboeck (1998); Maillet and Rousset (2003); Baghai-Wadji et al. (2006).
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our perspective slightly. Our work in this area hence serves a dual purpose. For one, we
categorize incentive fee funds in risk property classes and compare them to the tendencies
found in previous work. Secondly, we give an example of the use of a non-linear, robust
and intuitive tool for exploring patterns in fund behaviour.

The rest of the thesis is structured as follows. In Chapter 2, we describe our data sources and
the steps taken to construct our sample of funds. In Chapter 3, we compare the performance
of funds as groups and individuals. For individual funds, we run tests to distinguish fund
manager skill from luck. In Chapter 4, we explore the risk-taking characteristics of the funds
in our sample by methods that follow previous empirical work with a focus on incentive fee
funds. In Chapter 5, we train a neural network for mapping the funds registered on the OSE
by risk characteristics. Chapter 6 concludes.
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2 Data

In this chapter, we describe the data sources we use, the filtering and the processing of the
data to obtain our final sample.

2.1 Data sources

We download monthly time series for Net Asset Value (NAV), Total Net Assets (TNA),
Technical Indicators (TI) and Fund Manager Benchmark (FM) from Refinitiv Eikon for
1462 equity mutual funds that were present in the registries on the Oslo Stock Exchange
(OSE) at any time from 2000 to 2018. We retrieve all time series in USD. We focus on
equity funds as incentive fee structures are most prominent in this segment. Table A.1
shows explicit fund selection criteria.

By including liquidated, merged and active funds, we limit the amount of survivorship bias
in our sample. A sample solely consisting of funds that existed at a certain in time would
likely lead to overestimation of risk-adjusted performance, as there is a correlation between
underperformance and discontinuation of mutual funds Brown (1992).

OSE has provided an incomplete list of 54 equity funds that employ incentive fees.1 These
records contain funds that have been de-listed or changed their fee structure in the period
considered. We further categorize 12 funds as incentive fee funds by reading fund prospec-
tus, resulting in a gross sample of 66 incentive fee funds. In the sample of 1462 funds
retrieved from Refinitiv Eikon, 56 of these are present. In the cases where funds change the
fee structure, we treat the fund time series as two separate funds, split on the date of the
change.

We collect pre-computed monthly Fama-French regression factors and risk-free rates for
funds that invest in Norwegian and various international equity categories from the web
pages of Ødegaard (2020) and French (2020), respectively. The latter source characterizes
international funds by the categories Asia Pacific (hereinafter referred to as Asia), Emerg-
ing, Europe, Global, Japan, Norway and U.S.2 Our approach of assigning factor data by
fund classification is motivated by Fama and French (2012). They find that locally adapted
models have greater explanatory power of returns and that patterns in risk anomalies vary
between the international markets. The risk-free rate of Ødegaard is a one-month forward-
looking rate constructed from a combination of the NIBOR and government securities,
while the one of French is the one month T-bill rate. Both sources follow Fama and French
(2015) in creation of risk factor returns.

1These records are the most comprehensive overview of the use of incentive fees among mutual funds traded
on the OSE. Other sources for such overviews are not known to the authors at the time of writing.

2A full list of countries included in each factor set can be found in Table A.4.
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To complete the factor data for Norwegian funds, we download time series data for the Oslo
Stock Exchange Mutual Fund Index (OSEFX) from TITLON.3 Norwegian law requires
mutual funds to invest in at least 16 different equities, where the weight of each asset cannot
exceed 10%, and the OSEFX reflects these requirements. Using a different reference for
the funds in this category could cause misleading results. For example, the performance
of Norwegian mutual funds as a gross group would likely seem weaker in comparison to a
Norwegian index with fewer constraints.

2.2 Data filtering and processing

In line with our ambition of measuring how individual fund managers behave, we filter the
fund sample to ensure fair comparisons across time series of funds. For the following steps,
we note that we base many exclusions on fund names. We argue that it does not lead to any
systematic bias aside from what is pointed out below, as all funds are filtered through the
same set of rules.

First, we exclude passive funds such as index funds, as we aim to compare actions taken
by active managers. In the same step, in a similar vein, we exclude fund-of-funds, as their
performance is derivative of decisions made by other fund managers. Second, we exclude
funds that require an initial purchase of at least USD 100 000 or more. Our focus is the
perspective of all Norwegian investors, and funds with large buy-ins are outside of their
investment universe. Third, for each set of share classes, we exclude all but the oldest,
to ensure that manager decisions are counted only once. We note that although the time
series net of fees for different share classes of the same fund are slightly different, they are
the result of the same risk exposure. Fourth, to ensure that we compare fund time series
to factor portfolios that represent their investment universe, we exclude any fund that we
cannot assign regression factor data based on the fund classification by Refinitiv Eikon.4 For
completeness in data, we make sure that all funds have an assigned TI.5 Finally, we exclude
any funds that have less than 24 months of observations between 2000 and 2018.

For the Norwegian funds, we compute their time series for NAV, TI and FM in NOK to
match the NOK-denominated time series for both the OSEFX and the Norwegian factor
data. For one fund that lacked one observation in their time series, we interpolate NAV
linearly.

We calculate monthly arithmetic returns from the NAV of each fund. Despite the smoothing
and symmetric properties of logarithmic returns, we use arithmetic returns, as the time
series for the risk pricing factors we use are derived in the framework of French (2020) and
of Ødegaard (2020), who both employ arithmetic returns.6

3The TITLON database provides data reported from OSE. The University of Tromsø manages the database.
4Criteria for factor assignment is shown in Table A.3.
5A full list of reference indexes can be found in Table A.2.
6This has been verified through direct communication with Mr Ødegaard.
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Table 2.1 shows an overview of the filtering process. The process is intended to return funds
that are available to the majority of investors, make decisions with just an incentive share
class in mind and that has time series fit for analysis. The filtering steps reduce the sample
size for the incentive fee fund category remarkably. Including more funds would perhaps
make it easier to obtain statistically significant figures in various analyses. Those figures
would however be a less precise description of the issues we focus on.

Table 2.1: Data filtering process.

The table shows an overview of the data filtering process. The second and third columns
show the number of incentive fee funds and the total number of funds in each step, respec-
tively. The fourth to seventh columns show the first four moments of the Compounded An-
nual Growth Rate (CAGR). Numbers are in per cent per annum. Kurtosis follows Fisher’s
definition (standard of 0). The last two rows show the final sample split into fraction and
incentive fee funds.

Filter Ninc Ntot Mean St. dev. Skewness Kurtosis

Initial sample 56 1462 4.97 6.1 1.98 15.96

Passive funds 53 1394 4.96 6.17 2.01 15.98

Institutional funds 46 1194 4.89 6.14 2.16 18.06

One share class 20 511 4.09 5.47 1.84 9.82

Factor portfolios 15 463 4.31 5.37 2.03 11.54

Time series length 13 422 3.82 4.05 -0.21 -0.06

Fraction fee - 409 3.79 4.02 -0.2 -0.05

Incentive fee - 13 4.58 4.31 -0.46 -0.11

9



3 Performance

In this chapter, we investigate manager performance. We examine our data set for signs
of incentive fee fund managers differing from their fraction fee competitors in generating
excess returns for investors. We study differences across the groups as a whole and later
explore the cross-section of funds for skilled individual fund managers.

3.1 Risk-adjusted return

Through a linear regression approach that has been the standard in the literature since Fama
and French (1993), we here explore the risk-return characteristics of our fund sample.

3.1.1 Regression framework

Linear regression models that explain the return of some asset by some set of systematic risk
factors have long been the standard way of measuring risk-adjusted return within financial
literature. The regression takes the form

re
i,t = ai +bbb

0

iXXXi,t + ei,t , (3.1)

where for some asset i at time t, re
i,t is the return in excess of the risk-free rate, ai is the in-

tercept, bbb
0

i is the vector of factor loadings, XXXi,t is the vector of returns on a set of systematic
risk factors and ei,t is the residual. Assuming that the set of risk factors explain the move-
ment of dependent variable well, one interprets the intercept as the risk-adjusted abnormal
performance of the asset (e.g. a mutual fund). The magnitude of each beta coefficient
represents the systematic risk exposure to the respective risk factor.

Sharpe (1964) introduced the Capital Asset Pricing Model (CAPM). It was further devel-
oped by Lintner (1965) and Mossin (1966). They found that much of the risk of an asset
can be explained by the returns on a broad market portfolio. Assuming that investors diver-
sify away idiosyncratic risk, they argue that only systematic risk should affect asset prices.
Building on this, Jensen (1968) was the first to describe a as a performance measure. Fama
and French (1993) extended the CAPM to by adding factors that adjust for risk by firm size
(SMB) and book-to-market (HML). As so-called small capitalization and value stocks his-
torically outperformed large capitalization and growth stocks respectively, they argue that
this risk too should be priced to determine to what extent the performance of a portfolio was
attributable to these factors.

Since Fama and French (1993), there has been much research in pursuit of identifying ad-
ditional systematic risk factors. Perhaps most notably, Carhart (1997) extended the three-
factor model by adding the momentum factor (MOM) of Jegadeesh and Titman (1993). The
momentum factor has its empirical reasoning in the short-term overperformance of those
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assets that have performed well in the previous months. Recently, Fama and French (2015)
extended their three-factor model by adding both a profitability factor (RMW) and an in-
vestment factor (CMA). They find increased explanatory power on data from the New York
Stock Exchange (NYSE). In the Norwegian setting, the most recent extensive research is by
Grimeland (2018). He finds that a combination of the Fama-French three-factor model and
a liquidity factor (LIQ) outperforms even the Fama-French five-factor model for Norwegian
stocks.

An unfavourable aspect of these extensions to the CAPM is that their inclusion has little
theoretical foundation. The origins of the risk factors are not very clear, aside from their
empirical existence. Fama and French (1993) argue that the components are proxies for
common risk factors and that they may appropriately account for risk despite their uncertain
source.

While we note recent development in multivariate regression configuration, we face prac-
tical limitations in accessing pre-computed data for every relevant factor, such as RMW,
CMA and LIQ. In this thesis, we opt for the regression of Carhart (1997). The setup may be
written as

re
i,t = ai +bi,MKT MKTi,t +bi,SMBSMBi,t +bi,HMLHMLi,t +bi,MOMMOMi,t + ei,t , (3.2)

where re
i,t is the return of fund i at time t in excess of the risk free rate, and the risk factors are

denoted by MKT (market portfolio), SMB (size portfolio), HML (book-to-market portfolio)
and MOM (momentum portfolio). All the risk factors represent investable strategies that are
structured as zero-investment portfolios. a is the intercept, bi,MKT , ...,bi,MOM are the factor
loadings, and ei,t is the residual.

We employ the Carhart four-factor regression assuming that it is suited to finding risk-
adjusted mutual fund returns, as many before us. However, financial data from a cross-
section of mutual funds is often hard to reconcile with standard Gauss-Markov assumptions
(e.g. Bickel and Freedman (1984); Hall and Martin (1988)). As we are working with a
self-constructed sample of funds, we take steps to ensure that our parameter estimates and
thus, potential inferences are reliable.

We test for non-constant variance in residuals using the heteroskedasticity test of Breusch
and Pagan. We find that 40.0% of the funds in our sample exhibit heteroskedasticity with
a confidence of 95% or higher. We further find signs of autocorrelation in a number of
time series using the test of Durbin and Watson. Test results in form of a histogram of
the test statistics are listed in Figure B.1. To account for heteroskedasticity and autocorrela-
tion, we perform our regressions using Newey-West heteroscedasticity- and autocorrelation-
consistent standard errors. Testing for normality in residuals with the Shapiro-Wilk test, we
reject normality in residuals with a confidence of 95% for 49.5% of the funds.

In order to alleviate the fact that residuals from regressions on individual funds are non-
normal, we employ a bootstrapping procedure for generating confidence intervals for each
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parameter estimate. We account for anomalies by not imposing an ex-ante parametric distri-
bution for our parameters. We use the chosen regression framework to simulate an empirical
distribution for each parameter, where we assume each simulated observation to be equally
likely. To perform the bootstrap, we first estimate the Carhart four-factor model for the time
series of each portfolio i.1 We save the coefficient estimates {âi, b̂i,MKT , b̂i,SMB, b̂i,HML, b̂i,MOM}
and the estimated residuals êi = [êi,1, ..., êi,T ], for each portfolio i 2 I, I denoting the set of
portfolios, and T denoting the set of months the portfolio has registered data. For every
portfolio, we draw a sample with replacement from the portfolio residuals saved from the
original regression, creating a pseudo time series of resampled residuals, [eb

i,1 ...,eb
i,T ], where

b is the bootstrap index. We use sampled residuals to construct a new time series of pseudo
monthly excess returns r̃e

i,t :

r̃e
i,t = âi + b̂i,MKT MKTi,t + b̂i,SMBSMBi,t + b̂i,HMLHMLi,t + b̂i,MOMMOMi,t + êi,t . (3.3)

We further regress the Carhart four-factor model on the pseudo time series and save the pa-
rameters estimated for each portfolio. Repeating this for all bootstrap iterations, b= 1, ...,B,
we build an empirical distribution for each parameter. We use the empirical distribution to
construct confidence intervals.

We use this bootstrapping method to gauge the significance of our parameter estimates when
we compare the performance of fund groups in Section 3.1.2. In Section 3.1.3, we shift the
focus to comparing the performance of individual funds in the tails of the cross-sectional
distribution of alphas. Before we proceed, we note that we there extend the described
bootstrap method to distinguish manager skill from luck. First, however, we explore the
performance of funds in groups.

3.1.2 Equally weighted regressions

We regress the Carhart four-factor model for equally weighted portfolios of funds with and
without incentive fees for seven geographical regions from 2000 to 2018. Regression results
are presented in Table 3.1.

For fraction fee funds, although magnitude and significance varies, the regressions show that
alphas are negative across all geographies. For the equally weighted portfolio of Japanese
funds, the alpha is significantly different from zero at the 5% level. For Asian, Global
and U.S. fraction fee funds, the results are even stronger with significance at the 1% level.
In contrast, most equally weighted portfolios of incentive fee funds show positive, albeit
insignificant, alphas across the geographies where they are present in our sample.

1Such a portfolio may represent an equally weighted portfolio of a selection of funds, while for regression
on just one fund it will consist of just the individual fund.
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Table 3.1: Carhart four-factor regression.

The table shows regression parameters for the funds in the categories Asia, Emerging, Eu-
rope, Global, Japan, Norway and U.S., separated on fraction and incentive fee funds. For
each category, the Carhart four-factor model is computed from an equally weighted portfo-
lio of funds. R2 denotes fit, and N denotes the number of funds in each portfolio. The re-
gression is performed using Newey-West heteroscedasticity- and autocorrelation-consistent
standard errors. Alphas are annualized by multiplication.

a(%) bMKT bSMB bHML bMOM R2 N

Panel A: Asia.
Fraction fee -4.42⇤⇤⇤ 0.95⇤⇤⇤ 0.09⇤⇤ 0.18⇤⇤⇤ 0.03 0.92 34

(1.43) (0.02) (0.04) (0.04) (0.03)

Incentive fee - - - - - - -
- - - - - - -

Panel B: Emerging.
Fraction fee -1.28 0.99⇤⇤⇤ -0.04 0.11⇤⇤ -0.02 0.96 94

(1.15) (0.02) (0.05) (0.05) (0.03)

Incentive fee 1.37 1.04⇤⇤⇤ 0.11 -0.04 -0.03 0.9 2
(2.38) (0.03) (0.11) (0.13) (0.07)

Panel C: Europe.
Fraction fee -1.13 1.01⇤⇤⇤ 0.25⇤⇤⇤ -0.14⇤⇤⇤ -0.02 0.98 99

(0.7) (0.01) (0.03) (0.02) (0.01)

Incentive fee 1.28 1.17⇤⇤⇤ 0.35⇤⇤⇤ -0.29⇤⇤⇤ -0.11⇤⇤⇤ 0.9 5
(1.83) (0.03) (0.08) (0.06) (0.04)

Panel D: Global.
Fraction fee -2.76⇤⇤⇤ 1.02⇤⇤⇤ 0.11⇤⇤⇤ 0.0 0.02 0.97 88

(0.67) (0.01) (0.03) (0.02) (0.01)

Incentive fee 1.63 1.25⇤⇤⇤ 0.43⇤⇤⇤ 0.06 -0.03 0.9 5
(1.6) (0.03) (0.07) (0.06) (0.03)

Panel E: Japan.
Fraction fee -2.36⇤⇤ 0.94⇤⇤⇤ 0.08⇤⇤ -0.16⇤⇤⇤ 0.05⇤⇤ 0.93 24

(1.07) (0.02) (0.03) (0.03) (0.02)

Incentive fee - - - - - - -
- - - - - - -

Panel F: Norway.
Fraction fee -0.98 0.96⇤⇤⇤ 0.12⇤⇤⇤ -0.04⇤⇤⇤ 0.01 0.97 33

(0.84) (0.01) (0.02) (0.02) (0.02)

Incentive fee -5.3 0.99⇤⇤⇤ 0.1 -0.02 -0.06 0.8 1
(6.15) (0.12) (0.18) (0.16) (0.17)

Panel G: USA.
Fraction fee -2.23⇤⇤⇤ 0.98⇤⇤⇤ 0.16⇤⇤⇤ -0.06⇤⇤⇤ -0.03⇤⇤ 0.97 37

(0.68) (0.01) (0.03) (0.02) (0.01)

Incentive fee - - - - - - -
- - - - - - -

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Figure 3.1: Bootstrapped distribution of t-statistics.

Subfigure (a) shows the empirical distribution for the t-statistic of alpha for Norwegian
fraction fee funds. Subfigure (b) displays the corresponding quantile-quantile-plot.a B =
100 000.

aBootstrapping on funds with other geographical focus shows similar results and may be provided upon
request.
(a) Norway: Empirical distribution of t-statistics. (b) Norway: QQ-plot for t-statistics.

To ensure the validity of our coefficient estimates, we build empirical distributions for each
parameter using a bootstrap method as described in Section 3.1.1. We show the empirical
distribution for the t-statistic of alpha and its quantile-quantile plot for Norwegian fraction
fee funds in Figure 3.1. We list 95% bootstrapped confidence intervals for the fund groups
for each of the coefficients in Table B.2. Despite evidence of non-normality from the Jarque-
Bera test, and deviations in the tails from the QQ-plot, the distribution shares the shape with
a normal distribution to the extent that it yields the very same conclusions as those we come
to from Table 3.1.

The measures computed in Table 3.1 are from the time series for fund NAV, which is stated
after fees.2 The implication is that a negative alpha means that a fund manager is not able to
generate an excess return from the perspective of the investor. The results are thus generally
in line with the fundamental theory of equilibrium accounting (Sharpe, 1991), where funds
participate in a zero-sum alpha game pre-fees. For fraction fee funds, this means that the
alpha is negative by the magnitude of the fund fees. For reference, Gallefoss et al. (2015)
find that the average fee for Norwegian funds is 1.7% annually. For incentive fee funds, the
interpretation of pre-fee performance depends on a variable fund fee, and we do not have
access to its historical size. As a result, the post-fee performance of incentive fee funds may
look better if the incentive fee funds charge a smaller fraction fee than the average of that of
pure fraction fee funds while simultaneously being beaten by their benchmark index. This
was the case for the sample studied by Elton et al. (2003).

2Irregular fees such as for front-end and back-end loads are exceptions to this. We do not have access to
data that incorporates this. The discussion is thus on the implied assumption that investors of corresponding
funds follow a buy-and-hold strategy.
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The exception of our results being in line with Sharpe (1991) is arguably the evidence
from the Asian and Global fraction fee fund groups, as these groups show more negative
alphas than one likely may explain purely by fund fees. We touch on this in the following
paragraphs.

For Asian fraction fee funds, the 14 of 34 funds that exist before 2006 perform especially
poorly. In this period, this minority of funds alone make up the monthly observations that
are taken as input into regression of the equally weighed portfolio of Asian funds. As
a result of the skewness in existence for the Asian funds in our data set, these 14 funds
impact the regression disproportionally. In unreported tests, we regress the portfolio of
equally weighed Asian fraction fee funds from 2006 to 2018 and find alpha at -1.44%. We
hypothesize that there may have been a skewness in which Asian funds were registered on
the OSE in the early 2000’s and that these funds had a tendency to invest in assets that
underperformed the local market in that period.

For the Global fraction fee funds, the slightly low alpha estimate is due to a subgroup of
funds that both deviate from and underperform the global factor set. The low explanatory
power of global factors on this subgroup is a symptom of two underlying issues. First, the
assignment of the global fund category by Refiniv Eikon has some inconsistencies.3 Sec-
ond, French (2020) includes only developed countries when constructing the global factor
portfolios (Table A.4). Funds that correctly invest globally may have broader exposure, for
example to emerging or frontier markets.

The comparison of Global fraction fee funds that deviate from the factor set to the factors
themselves is punishing. In unreported tests, we perform individual regressions on every
Global fraction fee fund and find that the low-fit funds systematically invest differently than
those with high fit. The 28 funds with regression fit R2 below 0.8 produce an average post-
fee alpha of �4.78%, while the 60 remaining funds yield �2.3%. To see this tendency in
a broader context, we compare the performance of widely used equity indices for devel-
oped countries (MSCI World) and emerging markets (MSCI Emerging Markets). When we
consider the period from 2000 to 2018, the connection is not apparent, as the latter outper-
forms the first. However, taking into account that more funds are present in the latter half
of our sample than our first, the link is evident. Counting from any year post-2005, MSCI
World outperforms MSCI Emerging Markets over the remaining years in our considered
period.

To test the robustness of our regression choice, we exclude the momentum factor from Equa-
tion 3.2 and re-run the regression for the three-factor model of Fama and French (1993). The
results are listed in Table B.1. For fraction fee funds, we find very similar results to those
listed in Table 3.1. For the equally weighted portfolios of incentive fee funds, the alphas
are reduced as their negative exposure to the momentum factor no longer is explained. For
European incentive fee funds, this change sees incentive fee fund alpha go below zero. Al-

3Examples are "Nomura Funds Ireland-NEWS EM Small Cap Eq A EUR" (R2 = 0.6, a =�11.7) and "Odin
Maritim" (R2 = 0.69, a =�8.9). These belong among funds that invest in emerging markets and the maritime
sector, respectively.
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phas for all incentive fee fund categories remain insignificantly different from zero at the
10% significance level. For all fund groups, we note slight changes in coefficient estimates,
indicating that the various factor portfolios are not entirely orthogonal to the momentum
portfolio.

We test for any currency issues from data processing of the Norwegian fund set. In unre-
ported tests, we download fund data for Norwegian funds from a source that offers time
series in NOK (TITLON) and re-run the regression in Table 3.1. The differences in coeffi-
cient estimates are negligible.

In summary, we find no evidence of any fund portfolio being able to generate significantly
positive alpha net of fees. The tendency holds across both incentive and all geographical
categories. While various fraction fee fund portfolios produce significantly negative alpha,
we are for the incentive fee fund portfolios not able to reject the hypothesis of zero post-
fee alpha. Thus, we cannot say certainly whether groups of incentive fee funds over- or
underperformed in risk-adjusted terms. In the next subsection, we explore the individual
performance of incentive fee funds. This setting allows us to compare funds across geo-
graphical segments.

3.1.3 Individual regressions

Figure 3.2: Distribution of individual fund alphas and t-statistics.

The figure shows histograms of regressed alphas and t-statistics from the Carhart four-
factor model for individual funds in the sample. Incentive fee funds are highlighted.

(a) Alpha for individual funds. (b) t-statistic of alpha for individual funds.

Even if aggregated groups of funds perform on the norm (that is, in the vicinity of zero
pre-fee alpha), equally weighted portfolios tell us little about the distribution of fund al-
phas within each group. We present the distributions of alpha and the t-statistic of alpha
for regressions on individual funds in Figure 3.2. The t-statistic can be interpreted as a
normalized coefficient, as it scales inversely by the standard error. Importantly, this lets us
compare coefficients more reliably, as we account for different levels of idiosyncratic risk
and number of observations between funds (Brown, 1992).
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Before we put the performance of individual funds under the magnifying glass, we test
for the similarity between the distributions for the t-statistic of alpha between fraction fee
and incentive fee funds. We have already seen that various equally weighted portfolios
of fraction fee funds rejected the hypothesis of zero post-fee alpha, while incentive fee
funds gave insignificant results. Here, the question is whether the geographically aggregated
distributions of individual fund t-statistics share statistical properties. For this, we use the
two-sided Kolmogorov-Smirnov test, for which the null hypothesis is that the two sample
sets are drawn from the same distribution. The test returns a p-value of 0.43. In words,
we cannot conclude that incentive and fraction fee fund t-statistics are drawn from different
distributions. Elton et al. (2003) find that samples of the incentive and fraction fee fund
alphas are significantly different at the 10% level. The higher level of significance may
both be due to different properties of the funds in their sample, and that the small size of
our incentive fee fund sample makes it hard to obtain statistical significance from such tests
even when a similar trend is present in the data.

Gauging the distributions in Figure 3.2 we note that there are both incentive and fraction
fee funds in the right and left tails of either distribution. If one were to assume that alpha is
drawn from a distribution that closely resembles a normal distribution, t-statistics crossing
1.96 (-1.96) would indicate that a fund manager generates positive (negative) alpha for their
investors significant at the traditional threshold of 95% confidence. In the right tail of the
t-statistics, we find one incentive fee fund and four fraction fee funds, while we in the left
tail find one incentive fee fund in company with 86 fraction fee funds.

In summary, from analyzing regressions of equally weighted portfolios and individual funds,
we find slight but insignificant indications that incentive fee fund managers outperform frac-
tion fee fund managers. If these indications are symptoms of a broader trend, our results
would be in line with the empirical work on incentive fee funds of ((Elton et al., 2003);
(Massa and Patgiri, 2009); (Ibert, 2018)) and the theoretical work of those that find incen-
tive contracts to best align investor-manager interests (e.g. Stoughton, 1993).

Even if there is a weak trend of incentive fee fund managers outperforming fraction fee
managers in generating alpha for their investors, we do not know from this whether that
outperformance is due to skill or luck. In the following section, we follow Fama and French
(2010) and investigate the existence of skill among the individual fund managers in our
sample in a more robust manner.

3.2 Fund manager ability

Even if some managers produce significant post-fee alphas at various thresholds under nor-
mality assumptions, we cannot yet conclude that they are skilled in generating excess returns
for their investors. In this section, we test for this by employing a bootstrap method adapted
by Fama and French (2010).
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3.2.1 Bootstrapping to distinguish skill from luck

Good performance does not unequivocally equate skill. For a setup with long individual
regressions where we measure performance by regression intercept and its t-statistic as in
Section 3.1.3, Kosowski et al. (2006) point out two reasons why. First, when we exam-
ine a sufficiently large sample of funds, we increase the chance of recording significant
performance due to sampling variation (luck). That is, even if the null hypothesis of no
significant fund manager ability is correct, we increase the chance of drawing a sample in
the tails of the distribution (Type I error). Second, the regressions assume above the ag-
gregate distribution of fund alphas is normal, while it likely is not. If we e.g. draw fund
alphas from an aggregate distribution that has fat tails, as seems to be the case in the alpha
distribution of Figure 3.2, we overestimate the extremity of those observations when we
compare it to the quantiles of a normal distribution. For the second reason, non-normality
in the aggregate distribution of alphas can be a result of individual fund returns not being
normally distributed (83% were not at a significance level of 5%) or due to different levels
of idiosyncratic risk between funds.

To account for these issues, Kosowski et al. (2006) propose a bootstrap method to distin-
guish skill from luck. They simulate empirical distributions of alpha for each fund while
imposing true alpha equal to zero. They then compare every alpha from the original regres-
sion with the correspondingly ranked alphas from each of the simulated runs. For example,
we compare the best fund from the original regression to the distribution consisting of the
highest alphas from each simulation. Similarly, we compare the worst fund to the distribu-
tion of worst-performing funds across the simulations. If a fund performs well (poorly) in
comparison to the distribution of equally ranked alphas, we conclude that the fund manager
is skilled (incompetent).

Fama and French (2010) modify the procedure slightly. Kosowski et al. (2006) sample only
the residuals and use the historical sequence of explanatory returns in each simulation. Fama
and French jointly sample factor and fund returns. This way, they take into account cross-
correlation of alpha between funds that arise when a benchmark model does not capture all
common variation in fund returns. A second benefit of joint sampling of the sample fund and
explanatory returns is capturing correlation in heteroskedasticity of the explanatory returns
and disturbances of a benchmark model.

The alternate procedure has drawbacks. First, while the method by Kosowski et al. (2006)
generates pseudo time series with the same length as the original series, the length varies
in the modified method. Fama and French (2010) sample random dates, and for each fund,
include data points present at the sampled dates, resulting in varying length of the sampled
time series. When considering the alpha, the result depends on the number of data points in
regression, meaning that funds with shorter time series risk producing thicker tails. Fama
and French (2010) argue that the use of t-statistics mitigate this issue. Secondly, the random
sampling of dates ignores the potential effects of autocorrelation. Third, random sampling
of results risk losing the effects of variation through time.
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We implement both methods. Results from the Fama French procedure are presented in
Section 3.2.3. Results from the method of Kosowski et al. (2006) are discussed briefly in
Section 3.2.4 and listed in Table B.3.

3.2.2 Bootstrapping procedure

The bootstrapping procedure proceeds as follows. As in Section 3.1.1, we first estimate
the Carhart four-factor regression for the time series of each fund. We save the coefficient
estimates {âi, b̂i,MKT , b̂i,SMB, b̂i,HML, b̂i,MOM} and the estimated residuals êi = [êi,1, ..., êi,t ],
for each fund i 2 I, I denoting the set of funds, and t denoting each month the fund has
registered data. Starting from the sampling method we use to generate pseudo time series
in Section 3.1.1, this approach is different. Here, for each simulation b = 1, ...,B, we build
pseudo time series that are of the same length for each fund i. We do so by random sampling
(with replacement) from all the months in our timeframe and then jointly sampling factor
returns and residual for each fund at that time.4 The funds that do not span the entire
timeframe only extend their pseudo time series when they have data for the chosen month.
We require that each pseudo time series is at least 24 months, and re-run the simulation if
not. Together with the estimated betas, we construct pseudo time series of monthly excess
returns. We impose the null hypothesis of a = 0 by construction:

r̃e
i,t = b̂i,MKT MKTi,t + b̂i,SMBSMBi,t + b̂i,HMLHMLi,t + b̂i,MOMMOMi,t + êi,t , (3.4)

where the meaning of the parameters is the same as in equation 3.3, noted for each fund
i. Setting alpha to zero when using time series net of fees is equivalent of imposing a
null hypothesis that the fund managers are able to generate abnormal returns that cover
all investment-related costs for the investor, such as investment fees and transaction cost.
We further regress Carhart four-factor model on the pseudo time series and save the alpha
estimated for the cross-section of individual funds i= 1, ...,N. We repeat this for B bootstrap
iterations, which yields B cross-sections of N alphas. We rank each simulated cross-section,
as well as the cross-section of original alphas. We then compare each original alpha with
its corresponding vector of B simulated alphas. To avoid ambiguity, we emphasize that
this means that the highest real alpha competes with the highest simulated alpha from each
bootstrap simulation. For the top (bottom) performers, the fraction of simulated alphas
for which the original is higher (smaller) in absolute value is equivalent to a p-value. For
the right (left) tail of the original alpha distribution, we use this to infer chances of skill
(inability) in our sample of mutual fund managers. We repeat the procedure of ranking and
comparing using the t-statistic of alpha, due to its property of controlling for the varying
precision of alpha estimates across funds (due to different length of pseudo time series or
different idiosyncratic risk levels) Kosowski et al. (2006).

4Note that the factor returns are not sampled in historical order, and that we allow for cross-correlation of
alpha by not separating residuals from their factor returns.
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3.2.3 Results from the bootstrap of Fama and French (2010)

We present the results from the bootstrap in Table 3.2. We focus on t-statistics in interpre-
tation, and include alpha for completeness.

We find that only a handful of the top performers produce t-statistics in the vicinity of the
cross-section of equally ranked t-statistics. Only the top funds exhibit skill that is average
or better in post-fee terms. In order to reject the null hypothesis of managers not generating
abnormal post-fee performance for the top performers at, e.g. the 5% significance level,
we would require a win rate of 95%. There are no funds in the sample, regardless of the
incentive fee structure, where this is the case. This also holds when considering the alpha
measure directly. When we consider the bottom performers, the story is less nuanced. In
terms of t-statistics, every fund descending from the 80th percentile record a win rate below
1%. For the alpha measure, the worst funds are not beaten as decisively by the equally
ranked simulated distributions. We hypothesize that this is due to a subset of funds have
traits in their return series that may generate poor alpha when we are unlucky in sampling
months for building pseudo-time series. If these fund alphas average high standard devia-
tion, it explains why the effect is slight when considering t-statistics.

We plot the t-statistics for the most, third and fifth extreme funds against their simulated
distribution of cross-sectionally ranked equivalents in Figure 3.4. Under the assumption
of zero post-fee alpha, the probability of the best fund t-statistic being drawn from the
distributions we compare them with is likely. The t-statistic of the worst-performing funds
lie far to the left of the probability mass, indicating that the distributions they are drawn
from represent funds that do not perform to the standard of zero post-fee alpha.

The results achieved here are generally in line with those of Fama and French (2010). They
investigate the performance of U.S. mutual funds from 1984 to 2006 and find that net fund
returns have the same characteristics as they do for our sample. In the 80th percentile in
terms of t-statistics of alpha, Fama and French (2010) find win rates above 1%, whereas we
find the same for the for the 90th percentile for our sample. Hence, our results too contradict
the claims of Berk and Green (2004) that most fund managers are skilled enough to gen-
erate positive risk-adjusted returns for their investors. For the Norwegian fund universe in
isolation, previous studies find the same patterns that we find in our results. For Norwegian
funds, both Sørensen (2009) and Børsheim and Eilertsen (2016) show that it is easier to
detect inability among the poor performers than skill among the top performers.

Figure 3.3 compares the cumulative distribution functions (CDFs) for actual and simulated
t-statistics. For the simulated t-statistics, we plot the mean of each ranked distribution
from the bootstrap. The CDF for actual fund statistics lies to the left of the simulated
mean for nearly every quantile with exceptions only in the tails. While this tells much
of the same story as the numbers presented in Table 3.2, it offers visual intuition for the
fact that using the null hypothesis of zero post-fee alpha is a strong and perhaps unrealistic
assumption. While the median of the simulated CDF lies near zero, the median of the actual
CDF is drawn to the left by a combination of management fees and incompetence in making
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Table 3.2: Results from the bootstrapping procedure of Fama and French (2010).

The table shows original regression values and simulated means displayed as Act and Sim
for the alphas and their t-statistic. The leftmost columns list the five best and worst values
for alphas and their t-statistics, as well as deciles. The top performer in terms of alpha is
not necessarily the same fund as the top performer in terms of t-statistic. The fourth and
seventh columns show the win-rate of the original regression values to the distribution
of 1000 simulations of alphas and t-statistics. In the upper (lower) part of the table, high
(low) win rates translate to low p-values. Monthly alphas are annualized.

Alpha t-statistic

Act(%) Sim(%) %<Act Act Sim %<Act

Best 8.61 12.48 11.3 2.82 3.08 32.8
2 8.48 10.32 24.1 2.34 2.74 16.0
3 8.35 9.22 39.3 1.96 2.57 4.6
4 8.23 8.55 48.5 1.85 2.45 3.5
5 7.9 8.01 52.6 1.77 2.35 3.8
90 % 2.15 3.3 7.2 0.8 1.31 2.3
80 % 0.46 1.96 0.2 0.18 0.85 0.0
70 % -0.65 1.14 0.0 -0.26 0.53 0.0
60 % -1.31 0.52 0.0 -0.61 0.25 0.0
50 % -2.0 -0.03 0.0 -0.9 -0.02 0.1
40 % -2.56 -0.59 0.1 -1.23 -0.28 0.1
30 % -3.4 -1.22 0.1 -1.59 -0.56 0.1
20 % -4.44 -2.04 0.3 -1.98 -0.89 0.1
10 % -5.97 -3.47 1.6 -2.49 -1.35 0.1
5 -8.9 -9.49 54.7 -4.09 -2.53 0.5
4 -9.28 -10.31 60.2 -4.1 -2.66 0.8
3 -9.46 -11.56 73.6 -4.63 -2.85 0.4
2 -11.34 -13.66 70.8 -5.4 -3.18 0.6
Worst -11.69 -17.68 96.0 -6.45 -4.53 4.5

investment decisions that generate positive risk-adjusted returns.

These results bring nuance to those we find for incentive fee funds in Section 3.1.3. One
incentive fee fund manager beats the correspondingly ranked simulated mean, and the re-
maining incentive fee funds lie to the left of the simulated CDF. As mentioned previously,
we are not able to separate the figurative data-generating processes for individual t-statistics
of alpha between incentive and fraction fee funds by statistical tests, perhaps due to too
small a sample. With these results, we can state that incentive fee funds, in addition, share
the property of generally not having the skill to cover costs. We again note that management
fees in incentive fee funds are variable and that they may unknowingly distort the perfor-
mance of incentive fee funds in our analysis. The notion that incentive fee fund managers
do not have enough skill to generate positive risk-adjusted return for their investors conflicts
slightly with the findings of positive and significant difference in alphas between fraction
and incentive fee funds by Elton et al. (2003). A potential explanation may be that our
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Figure 3.3: Cumulative distribution functions for actual and simulated t-statistics.

This figure shows the empirical cumulative distribution functions for the actual and simu-
lated t-statistics. Incentive fee funds are highlighted.

analysis extends further. Elton et al. (2003) do not account for luck, non-normality in alpha
distributions nor the size of standard errors in individual alpha estimates.

We re-run our analysis for the Fama-French three-factor model. Results are listed in Table
B.1. Fama and French (2010) find that this configuration yields a stronger indication of skill
amongst managers in this bootstrap procedure. The difference stems from the excess return
generated by momentum exposure is transferred to the alpha. Here, the results are very
similar, as there is no clear trend for the entire sample of funds having positive or negative
exposure to the momentum factor. We also test for robustness by altering our bootstrap
procedure to match that of Kosowski et al. (2006). We discuss our findings in Section
3.2.4.

The results in this section are more nuanced than those in Section 3.1.3 because we take
luck and non-normality of alpha distributions into account. We find that only a few top
performers may exhibit skill to cover costs, while the majority of fund managers decisively
are unable to produce risk-adjusted returns that exceed their management fees. For our
data set, fraction and incentive fee funds generally share these properties. These results are
in slight contrast to those of the equally weighted regressions in Section 3.1.2 which do
not reject the null hypothesis of zero post-fee alpha for incentive fee fund categories. This
disputes any trend in incentive fee fund managers outperforming fraction fee fund managers
due to skill.
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Figure 3.4: Parametric t-statistics compared to equally ranked simulated
distributions.

The figures show actual t-statistics plotted against the empirical distributions of equally
ranked t-statistics by the bootstrapping procedure of Fama and French (2010). An actual
t-statistic being far to the right (left) in its distribution indicates skill (inability).

(a) Worst fund performance. (b) Best fund performance.

(c) Third worst fund performance. (d) Third best fund performance.

(e) Fifth worst fund performance. (f) Fifth best fund performance.
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3.2.4 Comparison to the procedure of Kosowski et al. (2006)

To account for differences in the simulation method, we adjust our bootstrap procedure to
match that of Kosowski et al. (2006). We present the results and distribution plots in Table
B.3 and Figure B.2. The results are nearly identical, and the conclusions from the previous
chapter hold here as well.

Kosowski et al. (2006) find different results than we do when adjusting our simulation
method to match theirs. They similarly reject that the worst performers have the ability
to generate zero post-fee alpha, but they differ in that they find evidence that top performers
exhibit skill. As pointed by Fama and French (2010), there are likely two reasons for this.
First, Kosowski et al. (2006) remove funds from the data sample containing less than 60
months of returns, possibly implying a survivorship bias. Second, the time series investi-
gated by Kosowski et al. (2006) ranges from 1975 to 2002, for which large subperiods the
investment environment was less professionalized than it is today. Interestingly, the second
argument does not separate our results from those of Fama and French (2010), although our
data set is more recent than theirs.

For both simulation methods, the conclusion suggested is thus that all funds but the very top
performers with near certainty lack skill in covering their management fees. Incentive fee
funds share those properties with fraction fee funds. For an investor that wishes to maximize
the risk-adjusted returns on their assets through investments in actively managed funds, this
gives little guidance. In the following sections, we switch our focus from investigating risk-
adjusted performance to exploring the risk implications that an investor faces when pooling
their money in incentive fee funds.
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4 Risk

As discussed in Chapter 1, previous theoretical and empirical work has lead to various hy-
potheses about the risk-taking behaviour of incentive fee funds. In this section, we examine
whether those hypotheses hold for our data set. We first consider a selection of descriptive
measures in Section 4.1, and secondly investigate intra-period risk changing behaviour in
Section 4.2.

4.1 Risk over time

In this section, we address the differences in Carhart market beta, regression fit and track-
ing error to Technical Indicators and Fund Manager Benchmarks between fraction fee and
incentive fee funds. Tracking error to an index is the standard deviation of the difference in
returns. We present the statistics in Table 4.1. While some tendencies are clear, we interpret
the results with caution. Our sample of incentive fee funds is small, and there is thus a
chance that we have unintentionally cherry-picked funds with certain characteristics. For
some reassurance, we run column-wise Kolmogorov-Smirnov tests to quantify dissimilarity
per measure between samples. We also note that calculating tracking error using post-fee
data distorts the measures by the fees. For incentive fee funds, the fee level is furthermore
more uncertain than for fraction fee funds.

Incentive fee funds invest with a higher average market beta than fraction fee funds. The
difference is significantly positive at the 1% level. Average beta levels over unity for in-
centive fee funds is in line with theoretical literature (e.g. Grinblatt and Titman, 1989). For
an option-like contract, the increasing volatility of the underlying (in this case, the market
portfolio) is beneficial. There is also a more straightforward argument for incentive fee
funds employing beta over unity. In rising markets, an incentive fee fund manager holding
a portfolio with beta over unity would earn positive incentive fees. Our findings are in con-
trast to those of Elton et al. (2003). They study a sample of symmetric incentive fee funds
in the period 1990-2000 and are surprised to find levels of market beta under one.

R2 is a measure of unsystematic risk in the sense that it measures the percentage of variabil-
ity in the dependent variable for which the regression accounts.1 For our sample, incentive
fee funds recorded an average value of R2 that is higher than that of fraction fee funds and
significantly different at the 10% level.2 Importantly, our regression accounts for returns
that correlate with any of the four-factor portfolios, including that of the general market.
High regression fit for incentive fee funds may be due to their returns are explained well
by SMB-, HML- or MOM-portfolios. The compensation of an incentive fee fund is not

1R2 is referred to as tracking error by others (e.g. Elton et al., 2003). While the set-up is not different in our
case, we refer to it as unsystematic risk to avoid ambiguity.

2The value for all funds might be affected by the misassignment of factor sets as discussed in Chapter 2.
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Table 4.1: Risk over time.

The table showns risk estimates for each fund category. b̄MKT is the average market beta
and R2 the average fit from the Carhart four-factor regression (Equation 3.2). T ET I and
T EFM denote the average tracking error to Technical Indicators and Fund Manager Bench-
marks, respectively. The estimate for FM applies only to the 293 funds for which Refinitiv
Eikon state such a benchmark. N is the total number of funds.

b̄MKT R2 T ET I T EFM N

Fraction fee 0.95 0.79 2.83 2.97 409
(0.19) (0.16) (2.36) (2.38)

Incentive fee 1.13 0.84 2.17 2.46 13
(0.12) (0.1) (0.53) (0.89)

Difference 0.18*** 0.05* -0.67 -0.51

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

measured directly in terms of exposure to such factors, and managers are free to use them
in attempts to beat their benchmark indices.

For our sample, the average tracking error to the Technical Indicator is lower for incentive
fee funds than for fraction fee funds. The difference is not significant, as the estimate for
fraction fee funds has a high standard deviation. One might expect incentive fee funds
to deviate more from their index in an attempt to beat it. From this, we are not able to
draw any conclusions. The fourth column in Table 4.1 measures tracking error to the Fund
Manager Benchmark, and the results are mostly similar to those for the Technical Indicator.
The measures are slightly higher for both incentive and fraction fee categories. The fact
that fund returns deviate more from the benchmarks that were chosen by the funds may be
due to managers selecting benchmarks strategically. It is not uncommon for managers to
select benchmarks that set the performance of the fund in a favourable light (Sensoy, 2009).
Despite receiving fees based on differential performance, this jump is not markedly higher
for the incentive fee fund group.

Across the categories considered, we see indications that the two fund groups take on risk
in slightly different ways. We see a clear indication of incentive fee funds leveraging their
convex contracts using the market beta. We find that incentive fee funds as a gross group
owe more of their returns to sources inside of the regression portfolios assigned in Chapter
2. For tracking error to indices, the groups are hard to separate. We take these findings as
a fundament for a slightly more nuanced approach to risk mapping of the fund universe in
Chapter 5.
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4.2 Risk changing

Particular effects influence the way a fund manager takes on risk based on the position
within some time frame. These effects have in common that they are irrational for a manager
with the simple goal of generating risk-adjusted returns for the investor. Chevalier and
Ellison (1997) find that the relationship between yearly fund performance and yearly inflows
is convex. The intuition is that funds which generate good performance statistics for a
calendar year attract inflows from investors, which in turn increases the base for calculation
of fraction fees. This results in a convex payoff schedule. A fund manager that near the
end of the evaluation period is out-of-the-money, should increase tracking error relative
to the benchmark. Similarly, a fund that is in-the-money will be less willing to hold risk
outside of the benchmark to lock-in the achieved gains. Funds far in the right tail may even
increase risk, however. Kempf and Ruenzi (2007) find that funds act as if they compete in
a tournament to finish among the best performercer within a year. Previous work suggests
that the existence of an incentive fee contract adds an extra layer of convexity of the payoff
schedule (Elton et al., 2003). In this section, we test for this added convexity.

We measure risk change in terms of tracking error to the benchmark of the fund, following
both Chevalier and Ellison (1997) and Elton et al. (2003). 293 of the 422 funds in our
sample state such a benchmark. We assume that fraction fee funds invest on the assumption
of yearly implicit incentive schedules, which is similar to the assumption made by Chevalier
and Ellison (1997). We make this assumption on the grounds that yearly data is the most
readily available to the investor, and thus often is used to make investment decisions. For
our incentive fee funds, six from 13 funds do not load incentive fees yearly. We exclude
those funds from our main results.

For each fund year, we only include it if the fund has return data for the full year. Moreover,
we take as a proxy that the fund managers reexamine their position after exactly nine and
twelve months and adjust the risk of their portfolio accordingly.3 We present the results for
testing for added risk-changing behaviour in Table 4.2.

For fraction fee funds, the top quintile performers after the first subperiod exhibit positive
change in average tracking error, while the bottom quintile shows a decrease. The difference
in tracking error change between top and bottom performers is negative and significant at
the 10% level. It seems the yearly implicit flow incentives of Chevalier and Ellison (1997)
are not the dominant force.

The increase in tracking error for the top funds may be due to managers gambling to finish
among the very top performers (Kempf and Ruenzi, 2007). When we toggle the percentage
threshold for being included in the top group, we find in unreported tests that the funds in
top decile primarily drive the difference in average tracking error change to the entire fund
set. This supports the tournament hypothesis. For the worst-performing funds, Basak et al.
(2007) find that fund managers who shift risk to beat their benchmarks only do so to the

3In unreported tests, we find that the results are not sensitive to the intra-year split by toggling it two months
in either direction. The material is available upon request.
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Table 4.2: Intra-period change in tracking error.

The table shows an overview of the change in tracking error between the first nine and final
three months of each fund calendar year for fraction and incentive fee funds in Panels A
and B, respectively. Funds are ranked on their absolute differential return to their Technical
Indicator in the first nine months. The rightmost column shows the average absolute change
in tracking error. The fourth row of each subpanel displays the difference between the top
and bottom quintiles.

First subperiod Second subperiod

Ri �Rm(%) T E(%) Ri �Rm(%) T E(%) D T E

Panel A: Fraction fee.
Top 20% 9.87 2.74 1.46 3.1 0.36
All -0.92 2.17 -0.18 2.34 0.16
Bottom 20% -11.12 3.1 -1.22 2.72 -0.38

Difference -20.99⇤⇤⇤ 0.37 -2.68⇤⇤⇤ -0.38 -0.74⇤

Panel B: Incentive fee.
Top 20% 15.84 2.93 2.15 2.33 -0.6
All -0.29 2.34 -0.28 2.17 -0.18
Bottom 20% -11.16 3.28 -2.7 2.83 -0.45

Difference -27.0⇤⇤⇤ 0.35 -4.85⇤ 0.5 0.14

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

limit of their risk tolerance. These funds may have operated above that risk tolerance in the
first subperiod and be unwilling even to maintain it for the second subperiod.

For incentive fee funds, both top and bottom performers decrease tracking error to the
benchmark in the second subperiod. The difference between the groups is small and non-
significant. The fact that top quintile incentive fee funds seem to lock-in gains is in line
with the results of Elton et al. (2003) and might be a sign that the incentive fee contract
alters the shape of the payoff schedule. If one considers such behaviour hazardous, one
would disagree with those that argue for the incentive alignment dominance of asymmetric
contracts (Das and Sundaram (2002); Palomino and Prat (2003); Li and Tiwari (2009)). For
the bottom quintile, a possible explanation for the similarity to the bottom fraction fee funds
may be that incentive fee contracts lose importance when the fund is far out-of-the-money.
Both incentive groups contain few observations, and we are thus hesitant to interpret this as
more than indicators.

In contrast to Chevalier and Ellison (1997), we see little difference in overall results when
filtering funds by size and age at various thresholds. Results filtered at seven years of prior
existence and maximum size of USD 100 million can be found in Table C.1. The top
quintile of incentive fee funds decrease risk more in this instance, but the sample is even
smaller than in Table 4.2.
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In unreported tests, we include the remaining six incentive fee funds and re-run the analysis
for both the gross and filtered sample. The results broadly follow the same trends as those
in Table 4.2. Barring any effects of a potentially unrepresentative sample, this indicates
that incentive fee funds share features that motivate risk-changing behaviour and are not
entirely explained by the explicit investor-fund contract. For instance, there may to a greater
extent exist yearly explicit incentives in the employment contracts of incentive fee fund
managers.

Figure 4.1: Intra-period change in tracking error.

The figure shows year-to-date absolute excess return against the benchmark for the first
nine months plotted against changes in tracking error. The tracking error is computed
against the benchmarks chosen by the funds (FM). Each data point represents a fund-year.
Subfigure (a) shows the fund-years with less than 100 million dollars total net assets and
fewer than seven years of prior existence. Subfigure (b) shows the entire fund-year sample.
Incentive fee funds are highlighted.

(a) Small and young funds. (b) All funds.

Any inclination of risk-changing behaviour we find is of smaller magnitude and less sys-
tematic than those by the similar tests of Chevalier and Ellison (1997). As can be seen in
Figure 4.1, any tendencies are not apparent. We hypothesize that funds have adapted to
increasingly sophisticated investors. As investors have access to better data today than two
decades ago, the assumption of implicit flow incentives matching the one-year time frame
is weaker. Similarly, investors may more easily become aware that funds are toggling risk
levels in the short term. For incentive fee funds, we do find indication that top perform-
ers lock-in gains and thus that the incentive contract adds to any convexity in the payoff
schedule. For other incentive fee funds, results are ambiguous. It may be that incentive
fee funds, as well as a majority of fraction fee funds, are more concerned about investing
with some particular strategy than varying their risk levels in the short term to exploit their
contracts. In the next section, we employ unconventional methodology to explore where the
risk-taking behaviour of incentive fee funds place them in the universe of funds registered
on the OSE.
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5 Mapping funds on risk features

We employ self-organizing maps (SOM) to investigate clusters of risk-taking behaviour.
Self-organizing maps were first proposed by Kohonen (1990). They are neural networks
that belong to the class of unsupervised classification methods. From the time series from
each fund, we calculate risk measures and attempt to discriminate incentive and fraction
fee funds by mapping them in a SOM. As an extension, we perform both partitive and
agglomerative cluster analysis on the map output.

The map analogy of a SOM comes from the fact that the neurons in its output layer usually
are arranged in a two-dimensional grid. A SOM assigns input vectors to output vectors
of the same dimensionality. Through the training process, the output neurons adjust their
position relative to their neighbouring nodes dictated by a so-called neighbourhood func-
tion. The output layer neurons self-organizes in an unsupervised manner. In contrast to
supervised learning, where a network learns from rewards and penalties from comparing its
output to a known correct solution, unsupervised networks form groups of its input based
on similar patterns in their attributes. The classification is non-linear. Intuitively, this allows
for deviation from hyperplanar surface separation and instead facilitates a flexible fit on the
data structure. We note that both the neighbourhood notion and inherent non-linearity of
this approach separates it from other dimensionality reduction methods like e.g. principal
component analysis.

A core property of the SOM is that the dimension reduction from d to two dimensions is de-
signed to preserve the topology of the data. An implication of this is that points of data that
land close on the output map lie close in the original data structure. While traditional clus-
tering methods yield one fixed solution when grouping a set of high-dimensional features,
the SOM yields a continuous mapping in dimensions that are conceivable to a human. With
this, the SOM offers flexibility in choosing from multiple grouping alternatives. Applica-
tions of SOM are also more robust to outliers than those of traditional clustering methods,
which increases in importance when training on high-dimensional feature sets (e.g. Koho-
nen, 1990).

While the SOM generates a continuous map of the input data where the topology is pre-
served, it does not offer a way to methodically place borders on the map to separate the data
points into distinct groups. In addition, in most cases, as well as in ours, the desired number
of clusters is smaller than the number of neurons in the output layer. For these reasons, we
extend our procedure by a clustering step, as done by Vesanto and Alhoniemi (2000). In
our two-step approach, the idea is first train the SOM and second cluster the neurons in the
output layer. This gives us a way to generate candidate solutions for a sensible number of
clusters consistently. Furthermore, as argued by e.g. Kiang (2001), clustering neurons that
are topologically consistent still favours grouping those that are closely related. Moreover,
because we have the map in the intermediate step, we gain intuition on the position of a
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fund within a cluster. We cluster by both partitive (k-means) and agglomerative (hierarchi-
cal) means and compare the results.

5.1 Method

In this section, we lay out the SOM set-up and describe the k-means and hierarchical clus-
tering algorithms. We later discuss selection of features for training, as well as the process
of selection and tuning of hyperparameters.

5.1.1 Self-organizing maps

The SOM is a two-layer feed-forward neural network, visualized in Figure 5.1. The input
layer takes as input a vector x(t) of dimension d. Its output layer is a two-dimensional
grid with a total number of neurons M, where each neuron is represented by a vector
w j = [w j,1, ...,w j,d ] of dimension d. The lattice of the grid is usually rectangular or hexag-
onal. We opt for the former. The input layer units are fully connected; that is, each input
layer unit is connected to every neuron in the output layer. The training process is one of
online stochastic learning, in that we iteratively present one randomly selected input.

Figure 5.1: Flattening of the SOM.

For each input vector x(t) fed to the network, the weights (edges) in the network are
adjusted for the output neurons to fit the data. The output layer forms a torus. The torus
is projected onto a two-dimensional plane by cutting it open to first form a cylinder and
cutting it again to form a sheet.

Each output neuron is initialized as a random vector. For each training iteration t = 1, ...,T ,
we draw a fund i randomly from our sample (with replacement). We calculate its set of
features and construct its feature vector x(t), as more thoroughly described in Section 5.1.4.
We locate the best-matching unit (BMU) by finding the output-layer neuron c with the
smallest distance:

c = argmin
j

||x(t)�w j||, j 2 {1, ...,M}. (5.1)

The distance measure we use is the euclidean distance, which is standard in the literature
(e.g. Kohonen, 1990). We define the kernel neighbourhood function h j,c(t) at time t to
dictate the rate of weight updates for node j 2 {1, ...,M}. The kernel is a non-increasing
function of time. This means that the weight updates for neighbouring units of c too are
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decaying in time, aiding convergence of the map. We take the kernel function as a Gaussian
function,

h j,c(t) = e�(m( j,c)
s(t) )2

, (5.2)

where s(t) is the kernel width and is given by s(t) = s0e
t
T at iteration t of total T iterations,

s0 being the initial kernel width and m( j,c) the manhattan distance between neuron j and c.
The kernel function penalizes distance from the BMU exponentially, and thus the magnitude
of change for neighbouring neurons is inverse of the exponential. Given the best-matching
unit c, we write the weight update function as

w j(t +1) = w j(t)+h(t)h j,c(t)(x(t)�w j(t)), (5.3)

where h(t) = h0e
t
T is the learning rate at iteration t of total T iterations, and h0 is the

initial learning rate. Both the learning rate and the kernel width decay monotonically in
time. Intuitively, this means that the changes we make to the output layer are of decreasing
magnitude and width. Using the analogy of throwing a stone in a pond, regardless of where
the stone hits the water (BMU) at time t, the stones become gradually lighter such that both
the impact (h(t)) and the reach of its rings (h j,c(t)) are smaller than in previous iterations.
We comment further on our choice for hyperparameters in Section 5.1.5.

Schmidt et al. (2011) highlight the issue of the so-called edge effect in traditional SOM.
They argue that having edge neurons with fewer neighbours set unnecessary constraints
on the network. Motivated by this, we extend the vanilla SOM procedure by allowing
neighbourhood relations to cross the edges of the rectangular map, illustrated in Figure 5.1.
As such, our solution candidates live in a modified two-dimensional plane similar to a ’Pac-
Man’-world. This modification of borders relax the optimization problem and potentially
allows for more flexibility when folding a high-dimensional structure onto a plane. In our
application, this extension improves our chances of finding similarity in patterns lying close
to the edges of the map.

After training, the map has divided the hyperspace into M regions. The notion of neighbour-
hood relation is crucial for topology preservation. Whenever a neighbouring node is the
best-matching unit, the current node is pulled in a similar direction. As a result, nodes that
are close in the high-dimensional space tend to lie close in the two-dimensional projection.
Distances between the neurons show similarity between items. The map is topologically
ordered in the input space (Kohonen, 2014). As Kiang (2001) puts it, the SOM behaves like
a net that folds onto a cloud.

For our purposes, interpretation of fund groups is the most interesting for a number of
groups that is both flexible and smaller than the number of neurons in the map. The SOM
does not suggest a way of methodically drawing borders. As mentioned, to produce con-
sistent and smaller groups, we extend our procedure by both partitive and agglomerative
clustering algorithms. In this setting, we interpret the neurons in the output-layer as proto-
cluster centres, to again be clustered into larger groups. The task of the clustering algorithms
is then to identify homogeneous disjoint sets of output from the SOM.
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5.1.2 K-means clustering

We first briefly present the k-means clustering algorithm. It was introduced by MacQueen
(1967) and is one of the most used clustering methods due to its simplicity and intuitiveness.
K-means clustering is a partitive clustering algorithm; that is, we initially consider the data
set as one group and iteratively split it into subgroups. The device for doing so is minimizing
the euclidean distances from cluster centres to each of the data points that are members of
the cluster. The procedure is described in Algorithm 1. As earlier, w j, for j 2 {1, ...,M},
are the output neurons from the SOM.

Algorithm 1: K-means
Input: Number of clusters k
Output: k centroid positions
Data: Neurons w j, j 2 {1, ...,M}, from the SOM
Initialize k clusters with random values for each feature in the feature range.
while centroid change do

1. Assign each data point to its most similar centroid, forming a cluster.
2. Calculate new centroid positions as mean of the fund features in each cluster.

While the k-means algorithm seems appealing for its simplicity, the approach has several
drawbacks to keep in mind in application. First, the number of clusters k is defined ex-ante
in Section 5.1.5. We tackle this with the widely used Davies-Bouldin index (Davies and
Bouldin, 1979). Second, the random initialization of centroids may lead runs of the algo-
rithm to different local optima. A popular way to mitigate this issue is to test for sensitivity
by running the algorithm a number of times.

Because the k-means algorithm finds its new centroids per iteration by averaging the data
points that belong to it, a third characteristic is that the procedure is sensitive to outliers in
the data. The sensitivity is less of an issue when using the k-means algorithm as an extension
to a SOM (Kiang, 2001), due to the neighbourhood weight updates. Even if certain output-
layer neurons in the SOM that are the best-matching units for outlier feature vectors and
thus adjust their weights starkly, neighbouring neurons will consequently pull them closer
whenever non-outlier feature vectors are fed to the network.

A final drawback of the k-means approach is that considering just the distance of each
data point to a centroid when assigning clusters makes the algorithm identify only hyper-
spherical groups of neurons. While it is hard to gauge the validity of such clusters in
isolation, hierarchical clustering methods lend some diagnostic tools for alleviating these
concerns.
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5.1.3 Hierarchical clustering

We briefly present hierarchical clustering. For a more extensive overview, we refer to Kauf-
man and Roussew (1990). Hierarchical is an agglomerative clustering approach; that is, we
initially consider every data point as a cluster and recursively merge two groups until one
group remains. In each step, the merging decision is a greedy function of the current state
and the chosen merging criterion. Greediness, in this context, signifies that the decision of
an optimal move is made only considering the current state. The procedure is described in
Algorithm 2.

Algorithm 2: Hierarchical clustering
Input: Number of clusters k
Output: k sets of neurons
Data: Neurons w j, j 2 {1, ...,M}, from the SOM
Let each data point w j be a member of a singleton group such that there are n = M
groups.

while n > k do
1. For each pair of groups A and B, compute the chosen merging criterion.
2. Merge the pair that optimizes the criterion.

As one may read from the description in Algorithm 2, both the initialization and iterations
of hierarchical clustering are non-random. Given some data set as input, in our case the
neurons w j for j 2 {1, ...,M}, as well as the merging criterion, the algorithm is deterministic.
We thereby mitigate the issue of varying results per simulation run. A noteworthy con of
this method is that it is static (whereas k-means is dynamic), which means that data points
cannot change membership between groups while the algorithm runs. This property may
let outliers distort the final image.

We still have to choose the desired number of clusters k, but we here do so ex-post. There is
little guidance on choice of k, outside the rule of thumb that is considering jumps in cluster
distances for various steps. In Section 5.1.5, we use a dendrogram for this. The final degree
of freedom is the merging criterion. For clustering of a SOM, Wu and Chow (2004) find
that variance minimization criteria outperform minimization of various linkage and distance
criteria. For our main results, we use the most commonly used variance minimization cri-
terion, which is the Ward criterion. The cost of merging two clusters is expressed as the
global increase in variance:

D(A,B) = Â
j2A[B

||w j �µA[B||2 � Â
j2A

||w j �µA||2 � Â
j2B

||w j �µB||2

=
mAmB

mA +mB
||µA �µB||2,

(5.4)

where mA is the number of data points for cluster A, and µA is the cluster centre in cluster
A. D is the merging cost for clusters A and B, which is to be minimized per iteration.
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5.1.4 Feature extraction and selection

In the following section, we reason on feature selection for our purposes and discuss the set
of features that we use as input for our network in Section 5.2.

As mentioned earlier, we cluster on risk features exclusively, and not on any full set of
available fund features. The reason for this is our aim of understanding whether an incen-
tive fee fund customer takes exposure to patterns of risk in a different way than one of a
fraction fee fund. If we clustered on all available fund features, we would find groups per
investment style, such as funds that invest in a particular sector or area. This restriction
means that features that otherwise are commonly seen in various approaches for clustering
funds (e.g. Deboeck, 1998) are not used as input here. One set of examples are performance
measures such as absolute return against a fund’s benchmark, the factor-regressed alpha, or
the Treynor ratio.

Features used for training are listed in Table 5.1. For clarity, we first note that we include
Carhart-regression coefficients as features, even though an important motivation by choice
of clustering procedure is to detach the following analysis from the linear factor analysis
paradigm that permeates the current financial literature. Our choice of including these coef-
ficients as features means that we do not disregard the factor analysis paradigm completely,
as factor analysis has a robust empirical track record and has proven a useful framework
for analyzing fund returns. We instead shift focus and look for non-linear patterns between
them and other features by unconventional means. In addition to the regression coefficients,
we include regression goodness of fit, R2, as a measure of systematic risk exposure to the as-
signed factor set. The regression outputs used as features are coefficient means from T �24
rolling window regressions of length 24, where T is the total number of months in the time
series.

The remaining set of features are included because they describe some aspect of risk-taking
behaviour in mutual fund returns. The standard deviation of returns gives absolute volatility,
which is the most common measure of risk in fund returns. Semivariance is a measure of
downside risk, defined as the average of the sum of squared differences for observations
below the mean. We include tracking error from a fund’s Technical Indicator as assigned by
Refinitiv Eikon. Tracking error is the standard deviation of the difference in return between
two time series. Motivated by the considerations in Section 4.2, we include the standard
deviation of rolling estimates of tracking error to account for variation in risk level. As
previously, we use monthly data intervals. We further preprocess the set by scaling each
feature vector to zero mean and unit variance. This aids in dealing with outliers in the
data.
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Table 5.1: Input features to the SOM.

The table shows a list of the features used as input to the SOM.

Notation Feature description

tbMKT t-statistic of loading to market portfolio
tbSMB t-statistic of loadingto small-minus-big portfolio
tbHML t-statistic of loading to high-minus-low portfolio
tbMOM t-statistic of loading to momentum portfolio
R2 Goodness of fit
sr Standard deviation of returns
g Semivariance
T ET I Tracking error to Technical Indicator
sT E Standard deviation of tracking error

5.1.5 Choice and tuning of model parameters

In this subsection, we discuss our approach for tuning the hyperparameters of our SOM and
ensuring the internal validity of the clustering of its output.

Training a self-organizing network requires selection of sensible hyperparameters for map
size M (dimensionality of the neural network), initial learning rate h0 and kernel width
s0, as well as the number of training iterations T . Even then, the training procedure has
stochastic elements, and networks trained with equal hyperparameters will vary slightly, as
we randomly select input vectors in each training iteration. For the subsequent clustering
we in addition select number of clusters k.

There exist several measures to quantify map validity, among which quantization error (QE)
and topographic error (TE) are most commonly used in the literature (Pölzlbauer, 2004).
Quantization error is a measure of map resolution, defined as the average euclidean distance
between each data vector and its best-matching unit (BMU). For n data points in the training
data and the mapping of fund feature vector xi from the input space to the SOM, q(xi), we
write:

QE =
1
n

n

Â
i=1

||q(xi)� xi||. (5.5)

Topographic error is a measure of topology preservation, defined as the proportion of all
data vectors for which the first and second BMUs are not neighbouring units. We write this
below using c as the first BMU and c0 for the second:

T E =
1
n

n

Â
i=1

r(xi) (5.6)

r(x) =

(
0 if c and c0 are neighbouring nodes
1 otherwise

(5.7)
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While these measures are useful indicators for map validity, they should not be trusted
blindly. Comparing values across data sets makes little sense as the mathematical possibility
for a map to fit the data is a function of the high-dimensional data structure. Regarding one
data set in isolation, the indicators generally give better results for large maps (Kohonen,
1990).

There is no definitive method for choice of map size M. Widely used software packages such
as SOM Toolbox (Vatanen, 2015) suggest that M is a function of N, with M = 5 ⇤

p
N set

as standard. The literature deviates substantially from this (Vesanto and Alhoniemi (2000),
Wu and Chow (2004), Rajanen (Marghescu), Solidoro et al. (2007)), recognizing that M
depends greatly on the structure and not only the number of elements of the data set. Maillet
and Rousset (2003) analyze hedge funds and choose M = 49 for N = 1358. They argue that
their choice of M is fitting in their implementation as there are few neurons for which no
data points are mapped. For N = 422, we use M = 100 (10x10) , which roughly matches
the norm. Increasing the map size to M = 144 (12x12) we find that the fraction of unused
neurons jump from 3% to 10%. Increasing the map size further to e.g. M = 196 (14x14)
sets unused neurons of 14%. Correspondingly, we see drops in QE and TE as M increases.
We present alternative configurations in Section 5.2.5.

We use QE and TE for guidance in choosing initial values for the learning rate h(t) and the
neighbourhood width s(t). The learning rate controls the magnitude of change per iteration.
The neighbourhood width sets the radius for which the weight of neighbours to the BMU
are affected. Throughout training, they both decay exponentially. In a SOM, the outcome
in terms of QE and TE depends not only on the values of each of the hyperparameters, but
on the relationship between them.

Setting the learning rate high and the neighbourhood width small, we observe a slight im-
provement in QE at the cost of worsening in TE. In such a situation, the output-layer neurons
are less often pulled towards a winning neuron and sparsely updated when they are not the
winning neuron themselves. This imbalance hurts topology preservation in the network.
In the converse scenario, with a low learning rate and a wide initial neighbourhood, more
neurons are pulled towards each other for a higher number of iterations. At the point when
the pull on a neuron is more seldom, the learning rate might be too low for any meaning-
ful perturbations away from the current local minima. The settings that lead to the second
scenario mean that topology is better preserved, but hurts network resolution. Methods for
determining optimal learning rate and sigma are not known (Deetz et al., 2009). We attempt
to balance the two measures.

In our clustering extension, choosing a suitable number of clusters k is both a matter of the
inherent structure of our data as well as the information value it gives in presentation. In
other words, it depends on the number of meaningful fund groups that can be separated by
clustering on risk features.
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For k-means clustering, we measure validity by the Davies-Bouldin index (Davies and
Bouldin, 1979), which optimizes for intra-cluster similarity and inter-cluster distance. We
show the index for the SOM configuration presented in Chapter 5.2 in Figure 5.2.1 To ad-
dress the randomness in the initialization of the k-means algorithm, we iteratively toggle
the computers’ pseudo-randomness setting and re-run the clustering of the map configu-
ration 100 times. The clusterings are largely similar, and we, therefore, do not present a
comparison of them. A likely explanation for this is that the SOM mitigates the issue of
outliers. The clusters presented in the following sections are from random initializations.
For the hierarchical clustering algorithm, we select k from gauging a dendrogram (Figure
5.2b). There is no strictly correct procedure for this. We select an intersection that, in our
opinion, seems clear and that partitions the map in a number of clusters that is in a similar
range to that implied by the Davies-Bouldin index.

Figure 5.2: Choosing k.

Subfigure (a) shows the Davies-Bouldin index and elbow plot for k-means clustering. Sub-
figure (b) shows the dendrogram from hierarchical clustering using the Ward distance
(Equation 5.4) as merging criteria. Vertical line lengths grow with merging cost. The in-
put data is the neurons of the trained SOM in depicted in Figure 5.3.
(a) Davies-Bouldin index. (b) Dendrogram.

1In addition, we display the elbow plot, which shows the explained variation among the clusters. A change
in slope signifies good cluster validity. The latter does not suggest a specific value of k but is provided for
completeness.
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5.2 Results

In this section, we present and discuss results from clustering a SOM of mutual equity funds.
We first describe the results from the SOM. We then present and compare inferences drawn
on the strategy employed in delegated fund management from the clustering procedures.
Finally, we discuss sensitivity in Section 5.2.5.

5.2.1 The self-organizing map

Figure 5.3: Self-organizing map.

The figure shows the distance plot of the trained SOM. Funds are plotted as dots in the
square corresponding to their best-matching neuron. Incentive fee funds are plotted in
blue. Randomness is added to each fund to show the varying number of funds that belong
to each neuron. Cell colours indicate the normalized sum of distances from each neuron to
all other neurons. M = 100, h0 = 0.01, s0 = 50 and I = 50 000.

Figure 5.3 shows the normalized distance plot from the SOM trained on the features de-
scribed in Table 5.1. Funds are scattered next to their best matching unit. The shade in each
cell indicates the normalized distance from each neuron to all other neurons. Funds that
lie in dark regions are likely far away from most funds in high-dimensional space. Funds
positioned in lighter areas are closer to the average position of all funds.

We incorporate a third axis to visualize colour shade as height in Figure 5.4. The darker
regions visibly form a mountain that stretches from the south-eastern corner and extends
over borders to the other corners of the map. We observe a valley that stretches from the
east and splits north and south in the central region of the map, where funds lie the closest
to the weighted centre of fund features in high-dimensional space.
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Figure 5.4: Visualization of the self-organizing map in three dimensions.

The figure shows the self-organizing map plotted in three dimensions using the normalized
sum of distances from each neuron to all other neurons as height. Incentive fee funds are
coloured blue. Incentive funds with the same BMU overlap.

The fraction of funds for which the second-best matching neuron is not one of four direct
neighbours to the best matching neuron (topographic error) for the map is 17%. Topology
preservation means that funds that are close on the map lie close also in high-dimensional
space. In a hypothetical case where the topology is not preserved, we could obtain maps
where neurons could both lie close in the two-dimensional map and appear to have similar
distances to the rest of the neurons, despite being dissimilar in the high-dimensional space.
In such a case, interpreting a clustered map could yield spurious inferences.

The incentive fee funds in our sample are spread in both hilly and flat areas of the map.
Incentive fee funds in the elevated regions of the map have feature sets which deviate from
the most common patterns. To understand which feature sets lie the closest and how they can
be characterized in groups, we employ clustering algorithms on the neurons in the map. We
characterize clusters of mutual funds by the fraction of funds in that cluster which employs
incentive fees.
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Figure 5.5: Self-organizing maps with cluster borders.

The figures show the distance plot with cluster borders drawn by (a) the k-means algo-
rithm and (b) the hierarchical algorithm. Incentive fee funds are coloured blue. Darker
shades of orange signify higher normalized distance to all other neurons. M = 100,
h0 = 0.01, s0 = 5, I = 50 000 and k = 7.
(a) K-means clustering. (b) Hierarchical clustering.

5.2.2 K-means clustering

We present the cluster borders from clustering the SOM in Figure 5.5a. The clusters consist
of neurons that neighbour each other directly (with one exception). This is a further indica-
tion that topology is preserved. When the relative positions of neurons on the map reflect the
those from high-dimensional spaces, a clustering algorithm will construct coherent groups
also on the map. We also see a tendency for the cluster borders to follow the slopes around
the hilly areas on the map. This tendency is a reflection of distant funds in tall terrain being
separated from other groups.

Figure 5.6 gives an overview of the descriptive statistics for clusters A0-A6. The actual
values are listed in Panel A in Table 5.2. Incentive fee funds appear in four of seven clusters
(A0, A2, A5, A6). We discuss these, before we briefly describe the remaining groups (A1,
A3, A4).

Cluster A0 contains four incentive fee funds. For this group, the best differentiator seems
to be positive and negative loadings to the HML- and MOM-portfolios, respectively. For
the HML-loading, we note that its significance stands much more out when mapping on
t-statistics instead of directly on loading coefficients. A qualitative categorization of the
strategy employed by this group could be mostly tracking the benchmark with a tendency
of investing in undervalued and ill-performing stocks.

The cluster borders of A2 encircle a hill of neurons that are of higher relative distance.
The clear separation from the pack of neurons is likely due to the significant loading to the

41



Figure 5.6: Radar plots of k-means cluster feature averages.

The radar plots show the linearly normalized cluster feature averages from Panel A in Ta-
ble 5.2. 0% (100%) is equivalent to the lowest (highest) feature value average among the
clusters. The fraction of incentive fee funds is shown in each figure header. Incentive fee
fund averages are plotted as a grey outline.
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Figure 5.7: Radar plots of hierarchical cluster feature averages.

The radar plots show the linearly normalized cluster feature averages from Panel B in Ta-
ble 5.2. 0% (100%) is equivalent to the lowest (highest) feature value average among the
clusters. The fraction of incentive fee funds is shown in each figure header. Incentive fee
fund averages are plotted as a grey outline.
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SMB-portfolio for the funds in this area. The cluster contains two incentive fee funds, both
of which are state in their prospects that they are small-capitalization funds. This group of
funds moreover exhibits the most negative HML-loading and the highest market beta. It
seems that the stocks selected by the small-capitalization funds in this cluster tend to have
small book-to-market ratios and fluctuate strongly with movements in the overall market.
While there may be other small-capitalization funds in bordering regions in A5 or A6, this
pattern interestingly holds for a considerable fraction of the funds with large SMB-loadings
in our sample.

A5 is situated on the south-western plains of Figure 5.5a and is characterized by market
beta below unity, low regression fit and slight exposure to the HML- and MOM-portfolios.
The combination of beta and fit could mean that managers prefer taking on considerable
unsystematic risk to beat their benchmarks, which in theory is an expected characteristic
among incentive fee fund managers (Carpenter, 1989).2 Taking loadings to both HML- and
MOM-portfolios indicate a strategy of investing in well-performing stocks that are cheap
in terms in book-to-market ratio, perhaps in the hope of timing investment in a distressed
company that is about to recover.

A6 covers the neurons on the slopes south and west of the mountain dominated by A3 in
Figure 5.5a. From clustering by the k-means algorithm, this is the cluster that contains the
largest fraction of incentive fee funds. While none of the single measures of risk is of ab-
normal size, the overall pattern is one that suits expectations one might have for incentive
fee fund behaviour. The loading to the market beta is second-highest among the clusters,
the regression fit is on the lower end, and both the unconditional volatility in returns and
the semivariance measures are high. This pattern points to two a priori hypotheses on in-
centive fee funds. First, market beta and volatility levels indicate that managers leverage
their returns against their benchmarks to take advantage of an option-like payoff function
(Grinblatt and Titman, 1989). Secondly, low regression fit point to managers looking out-
side of the conventional factor portfolios for differential returns, perhaps in the belief of
possessing skill in employing some unorthodox strategy. For both behaviours, the high
level of semivariance shows that they present the fund investor with considerable downside
risk.

From clustering the map by the k-means algorithm, groups A1 and A3 are two of three clus-
ters that contain no incentive fee funds. Neurons in both groups share low regression fit. A1
is separated from the pack by loadings to the t-statistic of market beta far out in the left tail.
The funds in A3 have the most volatile returns and very high tracking errors. While there is
no doubt that there may be funds which invest far away from the index (A1) or with extreme
volatility (A3), we fear that the clear separation may be a result of misassignment of factor
portfolios and benchmark indices, respectively. The fact that A3 contains no incentive fee
funds might be surprising, as an option-like payoff function motivates increased volatility
around the benchmark. Gauging Figure 5.5a, we note that some of the incentive fee funds
in A6 have patterns that border A3 also in high-dimensional space.

2Low regression fit may also be a sign of slight misassignment of factor portfolios. See Chapter 2.
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The neurons in A4 exhibit the smallest and least varying tracking error together with market
beta levels near unity and high regression fit. Together with an inclination to invest in
large-capitalization stocks, it might seem that funds in this group are investing close to a
large-capitalization stock index.3 An investor that intends to pay for active management is
hopefully aware of any tendency of ’closet-indexing’.

It seems that any contrast introduced by an incentive fee fund contract by no means is
easily partitioned from a backdrop of fraction fee funds. Some incentive fee funds belong
to groups with traits that are in line with conclusion patterns from contract theory, while
others follow nuanced and non-extreme strategies. Before discussing implications for the
investor, we explore the shape of the high-dimensional data set that the neurons of the map
represent by an alternative clustering procedure.

5.2.3 Hierarchical clustering

We present the hierarchical clustering of the SOM in Figure 5.5b. Aside from hierarchical
clustering being a bottom-up approach, the most notable difference between the clustering
methods is that hierarchical clustering is more permissive to clusters non-hyperspherical
shapes. While the underlying map remains the same, the alternative methodology of clus-
tering thus draws borders in a different manner than the k-means algorithm. In other words,
hierarchical clustering considers different partitions of neurons on the map to form natural
groups.

The descriptive stats for clusters B0-B6 are listed in Panel B in Table 5.2, and visualized in
Figure 5.7. The clusters broadly retain their feature patterns and are similar to the equally
numbered clusters from A0-A6. Here, we focus on the regions where borders have changed
and how they affect the interpretation of classes that contain incentive fee funds.

We first note that B2, in comparison with A2, gains neurons from A0 and A6. As a re-
sult, the cluster contains three incentive fee funds. The added funds slightly moderate the
pronounced loadings to the SMB- and HML-portfolios that were present in A2. The new
categorization of border neurons indicates that the added funds by the hierarchical algo-
rithm share overall patterns. For the added incentive fee fund, the new categorization may
have been helped by similarity in high market beta and tracking error. Nonetheless, the
alternative clustering approach maintains that incentive fee funds are present in a high-beta
small-capitalization fund group.

The hierarchical clustering algorithm considers B6 far larger than A6, pushing the cluster
borders of B6 past neurons in the north and south of A0, in the east of both A4 and A5. The
cluster expansion is primarily over low-lying areas of the map, which are the most similar
to average feature patterns. As a result, the bulk of characteristics that separated A6 from
other groups are diluted. B6 averages slight loadings to the market and SMB-portfolios,
while regression fit and semivariance remain low and high, respectively.

3We remind the reader that we omit any funds with a stated strategy of replicating an index from the data
set.
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Interestingly, B6 contains seven incentive fee funds. Although the individual risk proper-
ties of each incentive fee fund remain static, the hierarchical clustering algorithm considers
them similar in terms of feature pattern to a group that averages feature values that tend
towards the generic. Important deviations from the norm for the group are the low regres-
sion fit and high semivariance measures, still. Interpretation of this configuration requires
generalizing the hypotheses made from A6. From this, it seems a large portion of incentive
fee funds belongs to a group that employs strategies which rely on subtle exposure outside
of conventional factor portfolios to generate differential return. Common to those strategies
is a market beta just above unity and chance for moderately high losses.

B0 changes in size but maintains the risk-taking profile of A0. B0 contains two incentive fee
funds, in comparison to the four of A0.

Similarly, B5 is smaller than A5. The hierarchical clustering algorithm instead classifies the
incentive fee funds in this region into B4 and B6. This clustering thus does not consider
any incentive fee funds to be similar in pattern to a group that invests in well-performing
and high book-to-market stocks. Although one incentive fee fund lies in B4, the fact that it
lies on the edge of the cluster signals that it might be dissimilar from the broad group. This
effect is illustrated in Figure 5.7.

5.2.4 Interpretation of incentive fee fund positions

Clustering of the self-organizing map gives some insight into the risk-taking classes and
perhaps motivations of incentive fee fund managers. In our exploratory approach, we cluster
by two methods for robustness, and some trends hold for both procedures.

For one, there are incentive fee funds that belong to groups which primarily are charac-
terized by factor strategies, such as in A0, A5 and A6. The fact that incentive fee funds
share risk properties with a large number of fraction fee funds might imply that the in-
centive fee fund managers are confident in their assumed stock-picking skills to beat the
competition.

The two clustering methods, in addition, agree that incentive fee funds do not belong among
the funds that most closely follow their index.4 While one might have expected incentive
fee funds to have more extreme positions on the map, there is little doubt that they rarely
share risk properties with the group that invests the most passively. This is in line with e.g.
Elton et al. (2003). For the incentive fee fund investor, this should alleviate any concern that
the fund manager is not taking active bets.

For the classification of incentive fee funds in a group that relies on high market beta and
unconditional volatility, the two clustering approaches disagree somewhat, and we draw in-
ference with corresponding nuance. Class A6 by the k-means algorithm implies that a large
portion of incentive fee funds belongs in a group that exhibits a tendency of high market beta

4The one exception in Figure 5.5b lies in the outskirts of cluster B4, indicating relative dissimilarity to the
cluster averages.
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and volatility. For an incentive fee fund manager, this is analogous to ’gaming’ the option-
like contract to earn positive fees. While such behaviour is expected from the literature (e.g.
Grinblatt and Titman, 1989), it points to incentive contracts misaligning investor-manager
interests.

In contrast, classification by the hierarchical algorithm categorizes the risk properties of
the incentive fee funds in question with a broader group of fraction fee funds. From this
clustering, these incentive fee funds belong to a strategic group that attempts to beat their
benchmark mainly by deviating from factor portfolios. With less clear separation from sam-
ple averages, one would assume that the incentives aside from the explicit contract, such as,
e.g. implicit flow incentives, weigh the heaviest in determining a fund’s risk profile.

Another look at the map in Figure 5.5b gives nuance to the inferences drawn from the
average feature values for neurons in B6. The incentive fee funds predominantly lie in the
north-east of the cluster and are in effect, perhaps not well represented by average values
from such a broad group. Comparing the feature means of the class to the outline formed
by the incentive fee fund subsample in Figure 5.7, this seems evident. In any case, although
a tendency to ’game’ the contract is present for some of these incentive fee funds, it is
not strong enough to separate those funds from a wider group of fraction fee funds by our
chosen risk-taking features by hierarchical clustering.

From examining descriptive statistics for measures that were not clustered on in Table 5.2,
we find it interesting to note that incentive fee funds tend to lie in the best-performing
fund groups.5 While results from Section 3.2.3 imply that incentive fee fund managers
do not possess skill, we see here that many took risk in ways that generally outperformed
other strategies in the period we consider. Simultaneously, it implies that incentive fee fund
manager performance was less a result of stock-picking and more of general risk exposure.
In addition, it seems that any investors who were subject to incentive fee fund managers
levering contract pay-off coincidentally were exposed to a well-performing section of the
risk map. This sets the work of Stoughton (1993) into perspective, who argues that incentive
contracts share risk suboptimally but still are optimal for the investor.

We note with interest that these results are more nuanced regarding the metrics that were
discussed in Section 4.1. First, even though incentive fee funds average high market beta
as a gross group, it does not mean that it is the most potent descriptor of the risk properties
for every fund in sample. Second, we observe that the high levels of tracking error in the
fraction fee category stem from funds in clusters corresponding to A1 and A3.

5Notably A6, B2 and B6.
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Figure 5.8: Self-organizing maps of size 8x8 with cluster borders.

The figures show the distance plot with cluster borders drawn by (a) the k-means algo-
rithm and (b) the hierarchical algorithm. Incentive fee funds are coloured blue. Darker
shades of orange signify higher normalized distance to all other neurons. M = 64, h0 =
0.01, s0 = 4, I = 50 000 and k = 7.
(a) K-means clustering. (b) Hierarchical clustering.

5.2.5 Sensitivity to network dimension

We plot the distance maps for self-organizing maps of size 8x8 for k-means and hierarchical
clustering in Figures 5.8a and 5.8b, respectively. Corresponding maps for size 12x12 are
plotted in Figures 5.9a and 5.9b. The tables describing the features for each of the fund
clusters can be found in Appendix D. We keep the notation from the previous section and
name the 8x8 cluster sets C0�C6 and D0�D6, and 12x12 sets E0�E6 and F0�F6. We
assign cluster numbers by similarity to clusters in our main results.

The internal validity measures for the map of size 8x8 are inferior to those of the map of size
10x10. This is a result of having less two-dimensional space to unfold a high-dimensional
data structure. By tweaking the hyperparameters, we are with this map unable to produce
comparable values for QE or TE without sacrificing one. In order to achieve comparable
QE, the value for TE shoots toward 50%, which means that half the second best-matching
neurons are not adjacent to the first. In such a scenario of poor topology preservation, any
spatial interpretation of the original data structure from the map is not reliable. In Figure
5.8a we opt for a configuration where TE is bearable (20%) at the cost of lower map resolu-
tion (QE = 1.4). Here, the validity measures point to a lack of granularity in representation
consequently and that we attempt to model the original data set too sparsely.

Although the orientation and relative positioning of neurons are different, the 8x8 map
shares the most recognizable properties with the map of size 10x10. The funds with the
lowest regression fit and highest tracking error form the tallest peak. Funds where large
loadings to the SMB-factor dominate form a smaller peak. The area that has the small-
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est relative distance to the rest of the map is dominated by funds that seem to manage the
most passively. Incentive fee funds are, concerning the discussed map features, positioned
broadly similarily in comparison with our main results. As in Figure 5.5a, we, for example,
find that most of the incentive fee funds cluster around one side of the tallest area of the
map (in this case, the north-western corner).

The cluster borders drawn from the k-means algorithm are similar to our main results, with
each of clusters C0�C6 roughly matching one of A0�A6. A notable difference is that the
borders around C6 traverse farther up towards the top of the mountain, yielding an interpre-
tation of the cluster as more extreme in terms of unconditional volatility, semivariance and
tracking error. Here, the clustering also considers one more incentive fee fund to be part of
C2, which is characterized by a significant loading to the SMB-portfolio and some market
beta.

For the output layer in the 8x8 SOM, the hierarchical clustering algorithm draws borders
that extend the tendencies we see for hierarchical clustering of the 10x10 map in Figure 5.5b
somewhat. The cluster borders differ the most for D3 and D6. In this configuration, more
of the northern slope from the centre peak is considered as part of D3. As a result, we find
two incentive fee funds in a group that is mainly characterized by very high volatility and
activity. Examining D6, we see that the cluster has grown in similar directions as for B6,
but to a greater extent. As a result, the feature averages of the cluster are less pronounced.
Interpretation of incentive fee fund behaviour in this instance would require even more
nuance than for the hierarchical clustering in our main results. We also note that D4 and D5
have redistributed a few neurons between the two groups.

Increasing the map size beyond 10x10, we find that the validity measures tend to decrease,
but do so at a progressively slower rate. A larger amount of neurons on the map allows
for increased granularity and makes it easier to preserve topology. In Figure 5.9a QE and
TE decrease to 1.15 and 17%, respectively. Increasing map size to game these parameters
is analogous to overfitting in supervised learning. The cost of large map size is that the
distinction between pairs of neurons is too small and that more neurons are unused (Maillet
and Rousset, 2003). Here, 6% of squares are empty, compared to 3% in Figure 5.5a.

As for the 8x8 map, clustering the 12x12 map by the k-means algorithm reveals that it
shares core properties with the 10x10 map. The map similarily contains areas and clusters
for neurons that broadly are dominated by high tracking error (E1), SMB-loading (E2),
low market beta and low regression fit (E3), positive HML-loadings and negative MOM-
loadings (E0), and some loading to market beta and considerable volatility (E6). The most
notable difference is that the borders in the flat regions of the map have shifted, yielding to
two clusters that are characterized by quite passive management with an influx of various
factor loadings (E4 and E5). Incentive fee funds belong to similar groups, as well. A
considerable portion of the incentive fee funds land in E6, while other funds lie in E0 and
E2, and one fund lands in E5.
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Figure 5.9: Self-organizing maps of size 12x12 with cluster borders.

The figures show the distance plot with cluster borders drawn by (a) the k-means algo-
rithm and (b) the hierarchical algorithm. Incentive fee funds are coloured blue. Darker
shades of orange signify higher normalized distance to all other neurons. M = 144,
h0 = 0.03, s0 = 6, I = 50 000 and k = 7.
(a) K-means clustering. (b) Hierarchical clustering.

Hierarchical clustering of the 12x12 map yields results that are broadly similar to the clus-
ters A0�A6 and B0�B6 for the pronounced regions of the map. For F0 and F5, borders
are shifted in comparison to the 10x10 map. Here, F4 is again a large area characterized
by passive management. For F5, the more active neurons are given to F0 and F6, resulting
in the cluster averaging at feature values that less distinctly point in a direction. As four
incentive fee funds lie in F0 and two lie in F5, this configuration seems to argue that there
are incentive fee fund managers who rely on strategies inside or outside of factor sets rather
than market beta and volatility.

To summarize, clustering of the SOM seems robust in categorization for most areas of the
map across grid sizes and clustering methods. The grouping of fraction fee and incentive
fee funds into clusters that correspond to A1, A2, A3 and A6 are mostly consistent. Perhaps
the most notable difference is the hierarchical algorithm used on a small map implies more
strongly than other maps that incentive fee funds follow strategies that are only a nuance
away from general fraction fee funds. While we note this tendency, we keep in mind that
its presence diminishes with the improvement of internal validity measures.

For certain regions of the map that are predominantly flat, clustering of the SOM less con-
sistently leads to invariable results. The neurons that belong to clusters A0, A4 and A5 are,
for differing map sizes and clustering algorithms, shifted between groups. We hypothesize
that this tendency is a function of the structure of the feature space. It may be the case
that the data points often represented by central neurons lie in the feature space in a way
that yields different shapes of neurons in the area when the number of neurons available for
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representation changes. While the topographic error measure tells us that relative positions
of neurons on the map remain quite consistent across map sizes, changes in shapes formed
by neurons in the high-dimensional space would explain the difference in clustering output
seen for various configurations. Because of this, we have to be more cautious when drawing
inference from the cluster affiliations for incentive fee funds that lie in the flattest areas of
the map. In addition, for the cases when incentive fee funds land near the edge of such a
cluster, orientation on feature averages of neighbouring clusters grows in importance.
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6 Conclusion

Incentive fee funds are growing in importance in the Norwegian fund universe. The struc-
ture of the contracts inclines an investor to assume that managers of these funds are better
and harder-working than other managers. Simultaneously, the contract structure may moti-
vate the manager to take risk exposure that is against the interests of the investor. For the
investor, a thorough understanding of these issues seems a priority. In this thesis, we study
the performance and risk-taking behaviour of 409 fraction fee funds and 13 incentive fee
funds using monthly data for the fund set registered on the OSE in the period from 2000 to
2018.

For groups of incentive fee funds, we are not able to reject the null hypothesis of zero
post-fee alpha. If managers produce positive risk-adjusted returns, any significant alpha is
accrued by the fund fees. For fraction fee funds, the results are slightly grimmer; several
groups generate alphas for their investors that are significantly negative. The level of perfor-
mance for funds, in general, is in line with seminal works in financial literature such as that
of, e.g. Sharpe (1991). For incentive fee funds, Elton et al. (2003) and Massa and Patgiri
(2009) conclude more positively that incentive fee fund managers outperform fraction fee
managers.

A vast majority of fund managers decisively do not exhibit skill in producing positive alpha
for their investors. In other words, nearly all fund managers that generate positive alpha are
lucky. This holds for both fraction and incentive fee funds and is similar to what Fama and
French (2010) find for a U.S. sample. From the perspective of a Norwegian investor, our
results for fraction fee funds are similar to those of e.g. Sørensen (2009), although compa-
rable studies generally disregard funds outside of those that invest in primarily Norwegian
equities. In this setting, we find no verification of the theoretical inclination e.g. (Jensen and
Meckling, 1976) that incentive fee fund managers as a general tendency exhibit skill.

We examine whether explicit incentive fee contracts add to the convexity of the payoff
schedule in the spirit of Chevalier and Ellison (1997). For fraction fee funds, a risk-changing
effect from annual implied incentives is not present. For incentive fee funds, we find indi-
cations that top performers, especially among young and small funds, lock in gains. This
behaviour is a sign that investor-manager incentives are not aligned. For their sample in
the period from 1990 to 2000, Elton et al. (2003), in addition, find evidence that the poorly
performing incentive fee funds increase tracking error to their benchmark.

In an explorative approach, we map the risk properties of the funds in our sample by a self-
organizing map (Kohonen, 1990). We cluster the output of the map by both a partitive and
an agglomerative algorithm. By doing this, we not only study risk-taking characteristics
of our set of funds but also give a thorough example within finance for the use of an intu-
itive, non-linear method for data exploration. The self-organizing map reveals a nuanced
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picture of the risk properties of incentive fee funds in relation to the fraction fee funds in
our sample.

As expected from the literature (e.g. Grinblatt and Titman, 1989), we find that a considerable
portion of incentive fee funds belongs in a group of funds that tend to have high market
beta and volatility in returns. The average beta for the class as a whole is greater than
unity and significantly different from that of fraction-fee funds. For an incentive fee fund
manager, this is analogous to abusing the option-like contract to earn positive fees and
likely a symptom of agency issues. Similarly, we see that the incentive funds in our sample
generally are easily separated in risk properties from the subset of funds that manage the
most passively. The incentive fee fund investor can feel confident that their manager is not
replicating an index.

Interestingly, we find that there are many incentive fee fund managers on the spectrum
between the two extremes of very active and passive management. This set of managers
takes moderate exposure to factor portfolios or unsystematic risk to beat their benchmark,
perhaps from stock-picking in the belief of possessing skill. For this group of incentive fee
funds, investor-manager incentives seem to be better aligned than in the group that beats
their contract by exploitation of its option-like element.

For another perspective on performance, we find that most incentive fee funds share risk
properties with the fund groups that exhibit the best average four-factor regressed post-fee
alpha. Even if incentive fee fund managers do not possess skill in picking stocks, for our
sample and considered period, they show a tendency of outperforming the average fraction
fee manager in selecting beneficial risk exposure. This insight helps in characterizing the
manager but is of less relevance for the investor. As incentive fee funds seem to nonetheless
generate post-fee alpha non-significantly different from zero, a risk-averse investor will
likely achieve comparable returns by investing in a fund that replicates the corresponding
benchmark index at a low cost.

Our work points to various avenues for future research. First, it would be of interest to
run similar analyses to those in this thesis for a larger sample, given that incentive fee
categorizations are available. For the funds registered on the OSE, for this we suggest the
construction of suitable sets of factor portfolios for industrial sectors. Second, we believe
that obtaining a comprehensive set of fund manager employment contracts would aid in
shedding more light on the principal-agent relationship in question. Such a set would allow
for removal of, or at the very least insight on, the assumption that managers act on fund
fees. Third, we prompt future research, building on our work, to continue the exploration
of the usefulness of self-organizing maps for mapping financial data.

54



A Data

Table A.1: Fund selection criteria.

The table shows the explicit search criteria we use to collect the initial sample of funds
mentioned in Chapter 2. The criteria above the dashed line are used in the fund screener
to retrieve the names and ISIN of the funds. The criteria below the dashed line are used
to collect the time series for NAV and TNA from the formula builder in the Excel module
provided by Refinitiv Eikon.

Parameter Value

Countries Registered for sale Norway

Lipper Global Equitya

Fund Active, Liquidated, Merged & Primary fund

Asset Universe Mutual funds

Currency United States Dollar (USD)

Exchange The Oslo Stock Exchange (OSE)

aAll equity categories.
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Table A.2: Assignment of Technical Indicators (TI).

The table shows an overview of the Technical Indicators for the fund sample. N is the
number of funds assigned to each respective Technical Indicator.

Technical Indicator (TI) N Technical Indicator (TI) N

BOVESPA (Ibovespa) TR 3 Bombay Stock Exchange 100 Index 10

CAC 40 CR 1 DOW JONES U.S. SELECT dividend tot ret 1

Dow Jones US Select Dividend Total Return Index 1 EURO STOXX 50 TR EUR 1

FTSE 100 TR 6 FTSE AW/Industrials TR 1

FTSE AW/Oil & Gas TR 2 FTSE Bursa Malaysia KLCI TR 1

FTSE Singapore Straits Times TR 1 FTSE Turkey TR 2

Hang Seng CR 1 KOSPI Composite CR 3

MOEX Russia 5 MSCI AC ASEAN TR USD 1

MSCI AC Asia Pacific TR USD 3 MSCI AC Asia Pacific ex Japan TR USD 24

MSCI BRIC Daily TR 1 MSCI China TR USD 6

MSCI EM Small Cap NR USD 1 MSCI EM Small Cap TR USD 1

MSCI EM (Emerging Markets) TR USD 18 MSCI EMU Small Cap TR USD 1

MSCI Emerging Markets Eastern Europe TR 20 MSCI Emerging Markets Latin America TR 8

MSCI Europe High Dividend Yield TR 4 MSCI Europe Small Cap NR USD 1

MSCI Europe Small Cap TR USD 10 MSCI Europe Value NR USD 1

MSCI Europe ex UK TR USD 2 MSCI Golden Dragon TR US 1

MSCI Golden Dragon TR USD 11 MSCI Indonesia TR 2

MSCI Italy TR 1 MSCI Nordic Countries TR USD 21

MSCI Norway TR 35 MSCI Pacific Small Cap TR 2

MSCI Sweden Small Cap TR 2 MSCI World NR USD 1

MSCI World Small Cap TR USD 8 MSCI World TR USD 85

OMX Stockholm All Share CR 4 Russell 2000 TR 7

S&P 500 TR 25 S&P Africa 40 CR EUR 2

SBF 120 TR 1 STOXX Europe 50 CR EUR 17

STOXX Europe 50 TR EUR 27 STOXX Europe 600 NR 1

STOXX Nordic Small NR EUR 2 Swiss Performance Index TR 1

TAIEX TR 1 Tokyo SE 2nd Section CR 1

Tokyo SE 2nd Section TR 2 Topix TR 21
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Table A.3: Criteria used to assign sets of regression factor data.

The table shows the criteria used for assigning sets of regression factor portfolios to funds
in Chapter 2. The Lipper categorization of funds is required to contain one of the phrases
in one of the lists in the second column to be assigned the respective factor set.a We select
keywords by manual inspection of the Lipper categorization for our fund sample.

aThe categorization is provided by Refinitiv Eikon.

Factor set List of words to be contained in Lipper categorization

Asia ex. Japan factors Asean, Asia, Ex Japan, Singapore, Hong Kong

Emerging markets factors Brazil, China, Emerging Markets Global,
Emerging Mkts Europe, Emerging Mkts Global,
Emerging Mkts Latin, Emerzging Mkts Other,
India, Indonesia, Korea, Malaysia, Russia,
Taiwan, Thailand, Turkey

European factors Nordic, Iberia, Equity Euro, France, UK,
Germany, Sweden, Italy, Switzerland,
Spain, Finland

Global factors Equity Global

Japanese factors Equity Japan

Norwegian factors Norway

U.S. factors US
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Table A.4: Country data used in construction of factor portfolios.

The table shows the countries included by French (2020) when calculating factor returns
for various developed regions. The table is adapted from French (2020).

Country Global Europe Japan Asia U.S.

Australia x x

Austria x x

Belgium x x

Canada x

Denmark x x

Finland x x

France x x

Germany x x

Great Britain x x

Greece x x

Hong Kong x x

Ireland x x

Italy x x

Japan x x

Netherlands x x

New Zealand x x

Norway x x

Portugal x x

Singapore x x

Spain x x

Sweden x x

Switzerland x x

United States x x

For calculation of factor portfolio returns in the Emerging category, French (2020) uses a set
of countries that is disjoint from those in Table A.4. The countries included are Argentina,
Brazil, Chile, China, Colombia, Czech Republic, Egypt, Greece, Hungary, India, Indonesia,
Malaysia, Mexico, Pakistan, Peru, Philippines, Poland, Qatar, Russia, Saudi Arabia, South
Africa, South Korea, Taiwan, Thailand, Turkey and the United Arab Emirates.
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B Performance

Figure B.1: Distribution of Durbin-Watson test statistics.

The figure shows the histogram of Durbin-Watson test statistics for the funds in our sam-
ple. Values that deviate from 2 in the negative (positive) direction indicate negative (posi-
tive) autocorrelation in residuals.
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Table B.1: Fama-French three-factor regression.

The table shows regression parameters for the funds in the categories Asia, Emerging, Eu-
rope, Global, Japan, Norway and U.S., separated on fraction and incentive fee funds. For
each category, the Fama-French three-factor model is computed from an equally weighted
portfolio of funds. R2 denotes fit, and N denotes the number of funds in each portfolio.
The regression is performed using Newey-West heteroscedasticity- and autocorrelation-
consistent standard errors. Alphas are annualized by multiplication.

a(%) bMKT bSMB bHML R2 N

Panel A: Asia.
Fraction fee -4.03⇤⇤⇤ 0.95⇤⇤⇤ 0.1⇤⇤ 0.18⇤⇤⇤ 0.91 34

(1.37) (0.02) (0.04) (0.04)

Incentive fee - - - - - -
- - - - - -

Panel B: Emerging.
Fraction fee -1.49 0.99⇤⇤⇤ -0.04 0.12⇤⇤ 0.96 94

(1.1) (0.01) (0.05) (0.05)

Incentive fee 1.1 1.05⇤⇤⇤ 0.11 -0.03 0.9 2
(2.28) (0.03) (0.11) (0.12)

Panel C: Europe.
Fraction fee -1.32⇤ 1.02⇤⇤⇤ 0.24⇤⇤⇤ -0.14⇤⇤⇤ 0.98 99

(0.68) (0.01) (0.03) (0.02)

Incentive fee -0.1 1.21⇤⇤⇤ 0.33⇤⇤⇤ -0.29⇤⇤⇤ 0.9 5
(1.78) (0.03) (0.08) (0.06)

Panel D: Global.
Fraction fee -2.62⇤⇤⇤ 1.01⇤⇤⇤ 0.12⇤⇤⇤ -0.0 0.97 88

(0.66) (0.01) (0.03) (0.02)

Incentive fee 1.47 1.26⇤⇤⇤ 0.42⇤⇤⇤ 0.06 0.9 5
(1.59) (0.03) (0.07) (0.05)

Panel E: Japan.
Fraction fee -2.42⇤⇤ 0.94⇤⇤⇤ 0.1⇤⇤⇤ -0.16⇤⇤⇤ 0.92 24

(1.07) (0.02) (0.03) (0.03)

Incentive fee - - - - - -
- - - - - -

Panel F: Norway.
Fraction fee -0.89 0.96⇤⇤⇤ 0.12⇤⇤⇤ -0.04⇤⇤⇤ 0.97 33

(0.81) (0.01) (0.02) (0.02)

Incentive fee -6.07 0.99⇤⇤⇤ 0.11 -0.03 0.8 1
(5.63) (0.12) (0.18) (0.15)

Panel G: USA.
Fraction fee -2.35⇤⇤⇤ 0.99⇤⇤⇤ 0.15⇤⇤⇤ -0.05⇤⇤⇤ 0.97 37

(0.69) (0.01) (0.03) (0.02)

Incentive fee - - - - - -
- - - - - -

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table B.2: Boostrapped confidence intervals.

The table shows bootstrapped confidence intervals for the coefficients from the Carhart
four-factor regression. The bootstrap is described in Section 3.1.1. B = 10 000.

a(%) bMKT bSMB bHML bMOM

Panel A: Asia.
Fraction fee -4.42⇤⇤⇤ 0.95⇤⇤⇤ 0.09⇤⇤ 0.18⇤⇤⇤ 0.03

[-7.08, -1.76] [0.91, 0.99] [0.01, 0.17] [0.1, 0.26] [-0.03, 0.09]

Incentive fee - - - - -
- - - -

Panel B: Emerging.
Fraction fee -1.28 0.99⇤⇤⇤ -0.04 0.11⇤⇤ -0.02

[-3.35, 0.88] [0.96, 1.02] [-0.13, 0.06] [0.03, 0.2] [-0.08, 0.04]

Incentive fee 1.38 1.04⇤⇤⇤ 0.11 -0.04 -0.03
[-2.79, 5.7] [0.98, 1.11] [-0.11, 0.32] [-0.27, 0.19] [-0.16, 0.11]

Panel C: Europe.
Fraction fee -1.13 1.01⇤⇤⇤ 0.25⇤⇤⇤ -0.14⇤⇤⇤ -0.02

[-2.43, 0.21] [0.99, 1.03] [0.19, 0.3] [-0.19, -0.1] [-0.05, 0.01]

Incentive fee 1.27 1.17⇤⇤⇤ 0.34⇤⇤⇤ -0.31⇤⇤⇤ -0.11⇤⇤⇤

[-2.16, 4.77] [1.11, 1.23] [0.2, 0.49] [-0.43, -0.19] [-0.18, -0.03]

Panel D: Global.
Fraction fee -2.76⇤⇤⇤ 1.02⇤⇤⇤ 0.11⇤⇤⇤ 0.0 0.02

[-3.98, -1.47] [1.0, 1.05] [0.05, 0.17] [-0.04, 0.05] [-0.01, 0.05]

Incentive fee 1.49 1.25⇤⇤⇤ 0.47⇤⇤⇤ 0.04 -0.02
[-1.44, 4.58] [1.19, 1.31] [0.32, 0.61] [-0.06, 0.15] [-0.09, 0.04]

Panel E: Japan.
Fraction fee -2.36⇤⇤ 0.94⇤⇤⇤ 0.08⇤⇤ -0.16⇤⇤⇤ 0.05⇤⇤

[-4.37, -0.32] [0.9, 0.97] [0.01, 0.15] [-0.21, -0.1] [0.0, 0.09]

Incentive fee - - - - -
- - - -

Panel F: Norway.
Fraction fee -0.98 0.96⇤⇤⇤ 0.12⇤⇤⇤ -0.04⇤⇤⇤ 0.01

[-2.6, 0.66] [0.93, 0.98] [0.08, 0.16] [-0.07, -0.01] [-0.02, 0.04]

Incentive fee -5.3 0.99⇤⇤⇤ 0.1 -0.02 -0.06
[-16.21, 5.25] [0.77, 1.2] [-0.24, 0.41] [-0.3, 0.27] [-0.37, 0.24]

Panel G: USA.
Fraction fee -2.23⇤⇤⇤ 0.98⇤⇤⇤ 0.16⇤⇤⇤ -0.06⇤⇤⇤ -0.03⇤⇤

[-3.55, -0.98] [0.95, 1.0] [0.12, 0.2] [-0.09, -0.03] [-0.05, -0.01]

Incentive fee - - - - -
- - - -

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table B.3: Results from the boostrap of Kosowski et al. (2006).

The table shows original regression values and simulated means displayed as Act and Sim
for the alphas and their t-statistic. The leftmost columns list the five best and worst values
for alphas and their t-statistics, as well as deciles. The top performer in terms of alpha is
not necessarily the same fund as the top performer in terms of the t-statistic. The fourth
and seventh columns show the win-rate of the original regression values to the distribution
of 1000 simulations of alphas and t-statistics. In the upper (lower) part of the table, high
(low) win rates translate to low p-values. Monthly alphas are annualized.

Alpha t-statistic

Act(%) Sim(%) %<Act Act Sim %<Act

Best 9.23 17.04 8.4 2.82 3.04 32.3
2 8.48 10.45 17.5 2.76 2.72 60.8
3 8.35 9.07 35.2 2.73 2.54 79.3
4 8.23 8.29 52.8 2.34 2.42 37.4
5 7.9 7.71 62.1 1.96 2.33 0.9
90 % 1.78 3.04 0.0 0.76 1.28 0.0
80 % 0.35 1.78 0.0 0.14 0.84 0.0
70 % -0.77 1.05 0.0 -0.38 0.53 0.0
60 % -1.36 0.49 0.0 -0.69 0.25 0.0
50 % -2.06 0.0 0.0 -0.96 0.0 0.0
40 % -2.6 -0.49 0.0 -1.28 -0.25 0.0
30 % -3.47 -1.05 0.0 -1.65 -0.53 0.0
20 % -4.39 -1.77 0.0 -2.01 -0.85 0.0
10 % -5.98 -3.06 0.0 -2.49 -1.3 0.0
5 -8.77 -7.33 6.6 -4.08 -2.28 0.0
4 -8.9 -7.82 13.7 -4.09 -2.37 0.0
3 -9.28 -8.44 23.4 -4.1 -2.47 0.0
2 -9.46 -9.34 40.7 -4.63 -2.6 0.0
Worst -11.34 -11.01 36.6 -5.4 -2.8 0.0
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Figure B.2: Parametric t-statistics compared to equally ranked simulated
distributions.

The figures show actual t-statistics plotted against the empirical distributions of equally
ranked t-statistics by the bootstrapping procedure of Kosowski et al. (2006). An actual
t-statistic being far to the right (left) in its distribution indicates skill (inability).

(a) Worst fund performance. (b) Best fund performance.

(c) Third worst fund performance. (d) Third best fund performance.

(e) Fifth worst fund performance. (f) Fifth best fund performance.
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C Risk

Table C.1: Intra-period change in tracking error for small and young funds.

The table shows an overview of the change in the tracking error between the first nine and
final three months of each fund calendar year for young and small fraction fee and incen-
tive fee funds in Panels A and B, respectively. Young funds are funds with prior existence
of fewer than seven fund-years. Small funds have a lower average TNA than USD 100
million. Funds are ranked on their absolute differential return to their Technical Indica-
tor in the first nine months. The rightmost column shows the average absolute change in
tracking error. The fourth row of each sub-panel displays the difference between the top
and quintiles.

First subperiod Second subperiod

Ri �Rm(%) T E(%) Ri �Rm(%) T E(%) D T E(%)

Panel A: Fraction fee.
Top 20% 10.31 2.91 1.81 3.35 0.44
All -1.4 2.33 -0.43 2.6 0.27
Bottom 20% -12.99 3.53 -2.06 3.07 -0.46

Difference -23.3⇤⇤⇤ 0.62 -3.87⇤⇤⇤ -0.28 -0.9
Panel B: Incentive fee.
Top 20% 9.88 2.62 2.47 1.81 -0.81
All -1.6 1.94 -0.77 1.91 -0.02
Bottom 20% -10.23 2.57 -2.98 2.49 -0.08

Difference -20.11⇤⇤ -0.05 -5.45⇤⇤ 0.69 0.73

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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