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Abstract

As a consequence of the increased amount of human-generated greenhouse gas
emissions, the EU has decided to reduce the CO2-emissions by 80% from 1990
levels until 2050. The European power system is believed to contribute significantly,
potentially becoming completely decarbonized by 2050. Optimization modeling is
used for guiding policymakers by calculating optimal pathways to how this may be
achieved. These optimization models often includes uncertain parameters which
can be difficult to quantify and the model results can thereafter be questioned. In
the transition towards a decarbonized power sector, a methodology which yields
reliable and stable results is therefore of great interest.

In this thesis, a case-study of three different scenario generation routines have been
conducted. The routines proposes different approaches to represent the stochas-
ticity of the renewable energy sources being used in the stochastic programming
model, EMPIRE (European Model for Power system Investment with Renewable
Energy). The routines have been tested for both bias and convergence using in-
sample and out-of-sample stability, in addition to having performed a data analysis
study on the renewable energy sources and the general performance on the scenario
routines.

The motivation for studying scenario generation routines is generating scenarios
which better approximates the true distribution and better understand the span of
the potential costs of investing in the respective renewable power generators with
uncertain production. Having models which output biased solutions may mislead
policymakers by miscalculating the opportunity cost and lead to significant loss.
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Sammendrag

Som en konsekvens av den økte mengden av menneskeskapte klimagassutslipp har
EU besluttet å redusere CO2-utslippene med 80 % i forhold til nivået fra 1990 innen
2050. Det europeiske kraftsystemet antas å ha en betydelig innvirkning på dette
ved å potensielt bli fullstendig dekarbonisert innen 2050. Optimeringsmodellering
brukes for å veilede beslutningstakere ved å beregne optimale beslutningsstier for
hvordan dette kan oppnås. Disse modellene inkluderer ofte usikre parametere som
kan være vanskelige å kvantifisere, og modellresultatene kan dermed ofte stilles
spørsmålstegn ved. I overgangen mot en avkarbonisert kraftsektor er derfor en
metodikk som gir pålitelige løsninger som reduserer denne usikkerheten av stor
interesse.

I denne oppgaven er det gjennomført et studie av tre forskjellige scenariogener-
ingsrutiner. Rutinene har ulike tilnærminger for å representere stokastisiteten til
de fornybare energikildene som brukes i den stokastiske programmeringsmodellen,
EMPIRE (European Model for Power system Investment with Renewable Energy).
Rutinene er testet for både bias og konvergens ved bruk av in-sample og out-of-
sample stabilitet, i tillegg til at det er utført en dataanalysestudie for de fornybare
energikildene og den generelle ytelsen til scenariogenereringsrutinene.

Motivasjonen for å studere scenaregenereringsrutiner er å generere scenarier som
bedre approksimerer den virkelige distribusjonen og bedre forstå de potensielle
kostnadene ved å investere i de respektive fornybare kraftgeneratorene med usikker
produksjon. Å ha modeller som gir løsninger med en bias kan villede politikere ved
å feilberegne alternativkostnaden og føre til betydelig tap.
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Chapter 1
Introduction

Modeling has ever since the development of mathematics been central for decision
making and for gaining a better understanding of a problem. Approximating the
costs for large investment projects can have have a significant impact on whether
it is worth doing. Assumptions and restrictions have to be clarified for the model
to yield realistic estimates. This task can be demanding as the model environment
can be uncertain and difficult to quantify.

In 2011 the European Union (EU) published the document Energy Roadmap 2050
which outlined the EUs long-term ambition towards a 80-95 % reduction in emis-
sions from 1990-levels, and a complete decarbonization of the power sector (Com-
mission et al., 2011). This is in line with the Paris Agreement from 2015, in which
the goal is to keep the global temperature well below 2 degrees Celsius relative to
pre-industrial levels and not surpass 1.5 degrees Celsius (United Nations, 2020).
As seen from Figure 1.1, this is likely to require a complete removal of the GHG
emissions- and a decarbonization of the Power sector, and will require huge invest-
ments into renewable generators. Optimization models can be applied here to find
the optimal investment decisions under uncertainty using stochastic programming
and scenario generation. This implies finding the renewable investment opportuni-
ties with the least investment cost for each country, given the respective generator
efficiency for each country. Renewable generators may vary in efficiency in seasons
due to geographical position and other trends which affects countries differently.

Mathematical optimization has with the rise of distributed computer systems be-
come more popular in the recent years. Using commercial optimization frameworks
such as FICO Xpress, Cplex and Gurobi, computational intensive models has be-
come more applicable. In addition, the data available has become increasingly more
accurate, which in return makes the model output correspondingly more reliable.
This makes it possible to estimate planning costs for large investment projects with
significantly greater certainty than before.
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Chapter 1. Introduction

Scenario generation is a methodology in mathematical optimization for generating
a limited discrete distribution as input to a stochastic program. The purpose is
to create a limited set of scenarios which reflects the underlying distribution of
the stochastic model variables, which in return will yield correspondingly stable
solutions. The aim of this thesis is to study how different scenario generation rou-
tines perform on the EMPIRE-model, which is a multi-horizon stochastic program
that incorporates both short-term and long-term system dynamics and operational
uncertainty (Skar et al., 2016). The model minimizes investment costs while re-
stricting the power sector to be completely decarbonized by the end of the last
investment period.

Figure 1.1: EU GHG emissions towards an 80% reduction domestic reduction relative
to 1990.

The thesis is structured as follows: Chapter 2 discusses relevant topics to scenario
generation and modeling the European power system. Chapter 4 reviews and
summarizes previous literature. Chapter 3 discusses related theoretical concepts
for optimization modeling of investment decisions under uncertainty. Chapter 5
describes the problem of analyzing scenario generation routines and why it is of
interest. Three different procedures for generating scenarios for EMPIRE is out-
lined in Chapter 6. Data visualization and computational results from the stability
analysis are outlined in Chapter 7 and Chapter 8 respectively. Chapter 9 discusses
the key takeaways in the results. Lastly, Chapter 10 highlights potential extensions
to this thesis.

2



Chapter 2
Background

This chapter introduces relevant aspects for modeling the European power system.
Section 2.1 gives an introduction to the system dynamics in the European energy
ecosystem. Section 2.2 gives an contextual introduction to the EMPIRE model,
while Section 2.3 gives a brief introduction to what scenario generation is and
different ways to construct scenarios.

2.1 Power Markets
A power system consists of fundamentally three parts, as illustrated in Figure 2.1:

• The transmission grid

• Production

• Supply and Demand

The transmission grid connects producers and consumers on a national level. The
production is usually located far from the consumers, which requires the trans-
mission grid to be able to transport the electricity throughout the given region.
Variations in electricity demand and production set constraints making it neces-
sary to have sufficient capacity in the transmission grid. Trading occurs when there
is an need to account for sudden changes in supply or demand. This might also
be affected by the different electricity generators as they possess different char-
acteristics regarding the ability to respond to load variation (Energifakta Norge,
2019).

The transmission grid is usually operated by a trusted entity called an transmission
system operator (TSO). Due to the relative high costs of maintaining and estab-
lishing power lines compared to the market size, the TSO is usually denoted as a

3



Chapter 2. Background

natural monopoly. In addition, the TSO is usually subjected to regulation. As an
example, the TSO in Norway is Statnett.

Figure 2.1: Illustration of how the electricity market is usually structured(50 Hertz,
2020).

2.1.1 The European Power System
The European power system has evolved and become more interconnected since
1951, when the Union for the Coordination of Production and Transmission of
Electricity (UCPTE) started to coordinate the operational and planning recom-
mendations for companies in Switzerland, France and Germany (ENTSO-E, 2018).
The goal has originally been to ensure a reliable supply of electricity on the conti-
nental Europe, but has grown over the years to include other countries such as the
United Kingdom, Iceland and Cyprus as well.

Today, the European power system consist of a synchronous grid which was pre-
viously called Union for the Coordination of Transmission of Electricity (UCTE).
This became in 2008 part of the European Network of Transmission System Opera-
tors for Electricity (ENTSO-E) at the same time as the Third Energy Package was
introduced (European Commission, 2019). This grid connects together a total of
42 transmission system operators (TSOs) from 35 different countries (ENTSO-E,
2019). The goal is to liberalize the gas and the electricity market in and outside of
the borders of the EU, with the goal of achieving a 10% electricity interconnection
between the countries (ENTSO-E, 2015). This is believed to contribute to more
affordable electricity prices in Europe as a whole, as it will result in better market
efficiency and higher electricity supply security (Commission, 2015).

The European power market is currently undergoing big changes with attempting to
decarbonize the power sector, in line with their ambition to reduce their greenhouse
gas emission with 85-90% relative to 1990-levels. Figure 2.2 shows that carbon
heavy fuel such as coal, lignite, oil and natural gas represents around 43% of the
current electricity production in Europe. This will require larger investments into
both renewable and nuclear generators, and some studies have estimated the costs
for EU to range between 139 and 633 €2010(Jägemann et al., 2013).

The electricity grid consists of three layers: the transmission grid, the regional grid
and the distributed grid. The transmission grid connects producers and consumers
across different regions within the country, in addition to connect the transmission

4



2.1 Power Markets

Figure 2.2: Distribution of the electricity production in Europe for 2016(European
Environment Agency, 2020).

Table 2.1: Overview of the three types of layers in the Norwegian power grid(Energifakta
Norge, 2019).

Grid type Voltage (kV) Length (km)
Distribution layer 0-22 100,000
Regional layer 33-132 19,000

Transmission layer 300-420 11,000

grid from other European countries. The regional grid and the distributional grid
connects the retail consumers to the grid. The characteristics for the different layers
in Norway can be seen in Table 2.1. Note that the distribution layer is significantly
longer than both the regional and the transmission layer. This is because the
distribution layer is less centralized and needs more branching in order to connect
every households to the regional grid.

2.1.2 Balancing Supply and Demand
Today different energy sources generate various amount of electricity at different
points in time. As storage capacity might not always be available, the supply
can either be greater or less than the current demand. When the supply is less
than the demand, it is known as load shedding. Load shedding is a controlled
removal of the demand in different parts of the grid, which implies a black-out.
This may impact critical parts of society such as hospitals, communication and
transportation systems and is therefore highly undesirable. When some supply can
not be injected into the grid it is known as curtailment. Curtailment is the effect
of reducing the output of a generator and has been common since the beginning of
the electric power industry. This makes seasonal production from wind and solar
power potentially less efficient if there is no storage technology available.

5



Chapter 2. Background

Solar energy is commonly known for having a daily trend with more solar en-
ergy generated during the day, in addition to generating more during the summer
months. Wind, on the other hand, is usually more effective during winter months.
These complementary characteristics is demonstrated in Subsection 7.3 in the chap-
ter on data analysis.

2.2 The EMPIRE Model
The EMPIRE model is a capacity expansion model which aims to find the opti-
mal capacity investment in the European power system over medium to long-term
planning horizon ranging between 20 to 50 years (Skar et al., 2016). The model
consists today of 31 European countries represented by nodes which are connected
by a total of 55 arcs, as seen in Figure 2.3. The list of included countries is shown
in Table 2.2. The model is equivalent to maximizing the economic surplus, which is
common when studying perfectly competitive markets. The model combines both
short-term and long-term system dynamics with and optimizes investments under
operational uncertainty(Skar et al., 2016).

Figure 2.3: Map displaying the country nodes and the corresponding arcs for the
EMPIRE-model. Red arcs represents transmission by high-voltage direct current (HVDC)
and black arcs that represents transmission by high-voltage alternating current (HVAC).

There are several underlying assumptions for the EMPIRE-model(Christian Skar,
Gerard Doorman and Asgeir Tomasgard, 2014):

• Perfect competition between the power producers.

• The generation capacity are aggregated for each country per technology.

• The investments are linear and continuous.

• The arcs in the transportation network are independent.

6



2.2 The EMPIRE Model

• The demand is inelastic.

• Perfect foresight about fuel prices, carbon price and load development.

The complete formulation for the EMPIRE-model can be found in Appendix A and
is credited to Ph.D. Candidate Stian Backe at Department of Industrial Economy
and Technology Management at NTNU.

Other approaches for modeling power markets exist as well (Ringkjøb et al., 2018).
Python for Power System Analysis (PSA) is a toolbox that considers time-horizon
of one year, compared to 40-50 years for EMPIRE, while the investment decisions
are taken on a hourly basis. The Integrated MARKAL EFOM System (TIMES) is
a general framework for modeling energy systems over long-term, multiple period
time-horizons. Similar to EMPIRE, short-term decision modeling is not taking fu-
ture decisions into account. Another model is the European Energy Market Model
(E2M2) which implements a linear stochastic program which takes variable renew-
able energy sources into account (Spiecker and Weber, 2014). The investments for
E2M2 are however myopic, while for EMPIRE the operational decision are made
under short-term perfect foresight.

Table 2.2: Countries involved in the EMPIRE-model.

Country Code Country
AT Austria
BA Bosnia H.
BE Belgium
BG Bulgaria
CH Switzerland
CZ Czech R.
DE Germany
DK Denmark
EE Estonia
ES Spain
FI Finland
FR France
GB Great B.
GR Greece
HR Croatia
HU Hungary
IE Ireland
IT Italy
LT Lithuania
LU Luxemb.
LV Latvia
MK Macedonia
NL Netherlands
NO1 East Norway
NO2 South Norway
NO3 Mid-Norway
NO4 North Norway
NO5 West Norway
PL Poland
PT Portugal
RO Romania
RS Serbia
SE Sweden
SI Slovenia
SK Slovakia

7



Chapter 2. Background

2.3 Scenario Generation
Generating scenarios means creating representations which reflects likely outcomes
of random variables in the data distribution. In most cases, random variables
tend to follows a continuous distribution which is difficult applying to a stochastic
program. A scenario generation routine creates a discrete distribution, constisting
of several scenarios, which is denoted as a scenario tree. This can be viewed as
extracting the most core fractions of the stochastic distribution. An example of a
scenario tree can be seen in Figure 2.4. A good scenario generation routine captures
the most important characteristics and yields correspondingly stable results for the
mathematical program. Thus, the success of a given scenario generation routine is
essentially dependent on the problem modeled by the stochastic program and its
representation of random variables.

Creating a good scenario generation routine might include capturing different rela-
tions between features of random variables such as correlations and anticorrelations.
These relations can in some cases already be concluded from prior observations.
For example in power market modeling, a seasonal anti-correlation between wind
and solar is usually observed: It is more windy in the winter months compared to
the summer. This anti-correlation between wind and solar have been studied in
the literature for different regions, for example in (Bett and Thornton, 2016) and
(Miglietta et al., 2017). Other time-dependent relations may also be accounted for,
for example that the electricity consumption is higher in the evening compared to
the night, and the solar irradiation is strongly periodic on a hourly scale. In addi-
tion, if a scenario is supposed to reflect a yearly distribution, prior understanding
of variations within a year, such as representing each respective week, month or
season could be made to make the scenario more intuitive.

2.3.1 Scenario Generation in the EMPIRE-model
The EMPIRE model have applied scenario generation for random variables such
as onshore wind, offshore wind, solar, load and hydro power based on sampling
historic observations of these data. Instead of using the complete historical distri-
bution, which would have been computationally infeasible, the random variables
are discretized into scenarios to be able to simulate the different outcomes due to
uncertainty. The scenarios are further split up into six different seasons, aiming to
capture different aspects of what is meant to portray a possible year.

The scenario generation routine for the EMPIRE-model have originally been a
sampling-approach (Skar et al., 2016). Moment-matching have also been applied,
which aims to make the scenarios more similar to the original distribution by finding
the sample that best matches with respect to the statistical moments (Marañón-
Ledesma and Tomasgard, 2019).

Other methods for generating scenarios have also been described in the literature.
Scenario reduction attempts to minimize the scenario-tree by generating scenarios
which is the closest to the initial distribution with respect to some probability

8



2.3 Scenario Generation

Figure 2.4: Illustration of a decision-tree in EMPIRE with a scenario-tree with three
scenarios for each investment period. The yellow circles represents five-year investment
periods and the red squares represents seasonal variations in the respective scenario. The
blue squares represents deterministic peak seasons for the load capacity.

metric(Heitsch and Römisch, 2003). This can in some sense be viewed as a more
general approach compared to Moment-Matching, as the metric for comparing the
probability distributions are the statistical moments. Another possibility is to
optimize the scenario tree with respect to minimizing the model, which has been
called "optimal discretization" in the literature (Kaut, 2003).

9
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Chapter 3
Theory

This chapter presents the underlying theory on the optimization modeling used in
this thesis. Section 3.1 discusses stochastic programming and relevant concepts,
while Section 3.2 introduces different ways to compare scenarios and stochastic
distributions.

3.1 Stochastic Programming
A general two-stage stochastic linear program can be formulated as

zstoch = min
x

cTx+
∑S
i=1 piQ(x, ξj)

s.t. Ax = b
x ∈ Rn,

(3.1)

where
Q(x, ξ) = min

y
{q(ξ)T y|W (ξ)y = h(ξ)− T (ξ)x, y ≥ 0}

is the optimal solution to the second-stage problem, before the realization ξj has oc-
cured with corresponding probability pj . The distribution of ξ is usually unknown
which makes it often impossible to find the global optimum. This is however often
solved by approximation and using discretization of possible realizations of ξ based
on its assumed distribution. The stochastic solution zstoch is therefore the solution
to Equation 3.4. Here each scenario outcome is attached a probability 1/S of oc-
curring, and the collection of all S scenarios is called a scenario tree. In this thesis
it will be assumed that the probability for each scenario is equal for all scenarios.
However, this may not necessarily always be the case.

11



Chapter 3. Theory

3.1.1 Value of the Stochastic Solution
The value of the stochastic solution (VSS) is obtained from calculating the dif-
ference in the objective values between the stochastic and the deterministic solu-
tion. The deterministic solution of a stochastic program is determined by creating
a deterministic program which considers only one scenario, where the stochastic
variables equals their respective means. This program can be seen in

zdet = min
x

cTx+Q(x, ξ̄)
s.t. Ax = b

x ∈ Rn,

(3.2)

The decision variables for the deterministic solution are then used in the stochastic
program for calculating the VSS, which can be seen in

VSS = zstoch(xdet)− zstoch(xstoch) (3.3)

Here zstoch(xdet) represents the value of the stochastic program when the decision
variables is optimized for the deterministic program. For a minimization problem
the VSS will always be non-negative. This reason can be intuitively understood
from that the deterministic decision variables will be less optimal in the stochastic
program and will therefore overestimate the objective value for a minimization
problem.

3.1.2 Expected Value of Perfect Information
The expected value of perfect information (EVPI) is defined to equal the additional
value of having access to perfect information in a stochastic optimization problem.
The stochastic solution from Equation 3.4 is therefore compared to what is called
the wait-and-see solution:

zwait = minx,y
∑S
i=1 pi

(
cTxi + q(ξTi yi

)
s.t. Ax = b

W (ξi)y = h(ξi)− T (ξi)xi i = 1, . . . , S
x ∈ Rn,

(3.4)

Here x is a vector of decision variables for each respective scenario i. This can
be considered as having perfect information about the outlook, where the decision
variables are optimized for each respective scenario to happen. The stochastic
solution will necessarily be larger for a minimization problem as the wait-and-see
solution is optimized for one specific scenario at the time. The EVPI is therefore
calculated to be

EVPI = zstoch(xstoch)− zwait(xwait) (3.5)
Similar to the VSS, the EVPI will always be non-negative as for a given scenario,
because xwait consists of significantly more decision variables than xstoch as the
decision variables are optimized for every scenario in the wait-and-see solution.
zwait will therefore always be less than or equal to zstoch, which on the other hand
adjusts the decision variables before the stochastic variables are locked.
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3.1.3 In-sample and out-of-sample stability
In-sample stability and out-of-sample stability tests are two measures for estimating
the quality of the scenario generation routine, and shows how well the scenario
generation routines yields stable solutions for the given stochastic program. The
motivation for performing stability tests is to better understand how many scenarios
is sufficient when performing the stochastic program.

In-sample stability checks if the scenario generation routine gives consistent results
in the same model for different scenario trees. That is, given a set of K scenario
trees ξ̄k, there exist a δ such that

|F (x∗i ; ki)− F (x∗j ; kj)| ≤ δ, ∀i, j ∈ K, (3.6)

where x∗i is a vector containing the optimal first stage decisions given scenario tree
ki.

Out-of-sample stability means locking the investment decisions for a scenario gen-
eration routine and see how well the stochastic program performs on the true
underlying distribution. This means, given some fixed δ, for all realizations x∗i of
a scenario realization ki, we have that

|F (x∗i ; k)− F (x∗j ; k)| < δ, ∀i, j ∈ K, (3.7)

where k represents the true underlying distribution. This is significantly more dif-
ficult than showing in-sample-stability as it is difficult knowing the true underlying
distribution. Since the true stochastic distribution is usually not known, EMPIRE
uses historical data as an approximation for the true distribution. However, climate
may develop in a way that may deviate significantly from past observations, or the
society can develop in a way that causes future load values to deviate from histor-
ical values. Given enough randomly sampled scenarios it will eventually converge
to the approximated stochastic distribution.

3.2 Comparing probability distributions
A lot of different metrics with various complexity exists to measure and compare
distributions (Rachev, 1991, pp. 5–7). However, many test statistics for comparing
probability distributions assume that the dataset is univariate. Common tests are
Shapiro-Wilk test, Anderson-Darling test and the Kolmogorov-Smirnov test, but
will only be described briefly as it has not been applied and are usually already
implemented in programming libraries.

The Anderson-Darling test is based on empirical distribution functions and checks
whether sample data is drawn from a specific distribution. The test-statistic can
be written as

n

∫ ∞
−∞

(Fn(x)− F (x))2w(x) dF (x), (3.8)

where w(x) is a weighting function, F (x) is the hypothetical distribution and Fn(x)
is the sample distribution.

13
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The Kolmogorov-Smirnov test considers the sample of random variables X1, ..., Xn

which are considered under the null-hypothesis to have the cumulative distribution
function F (x). The test statistic is then calculated as

Dn = sup
x
‖Fn(x)− F (x)‖, (3.9)

where Fn is the cumulative sample distribution for X1, ...Xn. It was proved in
1933(Kolmogorov-Smirnov et al., 1933) that

P (
√

(n)Dn < λ)→ K(λ), (3.10)

where K(λ) is known as the Kolmogorov-distribution:

K(λ) =
∞∑
−∞

(−1)me−2m2λ2
(3.11)

This test has also later been extended to handle bivariate distributions (Justel
et al., 1997).

A metric for comparing probabiliy distribution is the Kantorowich-Wasserstein-
distance. It can be used to measure the distance between two probability distri-
butions. It is sometimes called the earth mover’s distance because it is analogous
to the cost of turning one of the distributions into the other one. The metric can
therefore be looked upon as a mass-transportation problem, in which the problem
is to minimize the mass transported from the original distribution to the scenario
S.

Matching statistical moments can be used to compare distributions with respect
to the different statistical central moments. The n’th central moment is defined as

µn = E[(X − E[X])n] =
n∑
j=0

(
n

j

)
(−1)n−jµ′jµn−j , (3.12)

where µ equals the mean of the distribution and X is the distribution. It is im-
portant to notice that µn will be exponential as n grows large, so it is common to
consider the standardized moments as well:

µn
σn

= E[(X − µ)n

σn
(3.13)

It can be observed that the first and the second standardized moment will equal
0 and 1 respectively. It is therefore common in moment-matching to compare the
mean, variance, skewness and kurtosis which is calculated the following way:

Mean = µ = E[X] (3.14)
Variance = σ2 = E[(X − µ)2] (3.15)

Skewness = E[(X − µ)3

σ3 (3.16)

Kurtosis = E[(X − µ)4]
σ4 (3.17)
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Dividing by an order of σ3 and σ4 will make both skewness and kurtosis dimen-
sionless, compared to the mean and variance which have dimension one and two
respectively. Dimensionless means ratios between quantities whose dimension can-
cels out in the mathematical operation. Since the dimension is one for the mean
and the variance, they may differ in size compared to the skewness and the kurtosis.

These moments can be used to compare a sample distribution and the underlying
distribution to generate a metric which measures how much the sample distribution
differs from the whole distribution with respect to these moments. For comparing
subsamples of a multivariate time-series with the whole distribution, this can be ex-
tended by calculating the moments for each single sampled time-series and compare
it to the corresponding complete univariate time-series. It is however necessary to
sample the same indices for each univariate time-series to preserve correlation and
other dependencies for the sampled multivariate time-series.
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Chapter 4
Literature Review

This chapter reviews and summarizes the related literature. Section 4.1 discusses
different ways of modeling power markets. Section 4.2 goes more into detail about
how stochastic distributions have been modeled using scenario generation.

4.1 Power Market Modeling
This section introduces different approaches and aspects from the literature to how
power markets are modeled. This includes the mathematical structure and as-
sumptions for the model, but also different aspects related to the problem studied.
Many power market models considers endogenous investments for handling uncer-
tainty in various degree. An exogenous investment is the initial investment into a
capacity development. If the investment is not sufficient for meeting the capacity
demand or a constraint, the model can determine the additional investment en-
dogenously (Association et al., 2010). Endogenous investments is therefore usually
more computational intensive as they are composed of several stages.

One of the first documented power market models created for Europe is made by
Richter (2011), which proposes a linear model for optimizing future development of
electricity generation capacity and their dispatch in Europe, named DIMENSION.
The model represents Europe as a directed graph with vertices formulated both as
a sink and a source. The model is consequently restricted by the balance equa-
tions, capacity restrictions, capacity investments and power storage, in the time
horizon ranging until 2050. The model is a resulting linear energy system where the
objective function is the discounted sum of the different costs. The DIMENSION-
model considers the net-transfer capacity between nations endogenously, while the
renewable energy sources are treated exogenously.

Capros et al. (2012) models the European power market with the ambition to
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reach a low-carbon economy by 2050 with a 80% emission reduction. The model,
called the Price-Induced Market Equilibrium System (PRIMES), considers different
scenarios with the same amount of allowable GHG emissions from 2010 to 2050 for
comparability. The PRIMES model uses data supplied by Eurostat to simulate
the European power system with the use of power balance for supply and demand,
CO2-emission, energy technology penetration, prices and costs (E3M Lab, 2020).
The PRIMES-model considers the value of carbon as endogenous, and is estimated
through a series of iterations until the cumulative emission budget is met.

Jägemann et al. (2013) model projections for the European power sector from 2020
until 2050 with the use of a linear dynamic electricity system optimization model
and a total of 36 scenarios to the model. These scenarios are made up of different
instances with respect to different political decisions, for example not having nu-
clear energy as a possible investment, and should not be considered the same as the
stochastic scenarios generated for the EMPIRE-model. The cost of the implemen-
tation was considered to vary between 139 and 633 bn €2010 increase relative to not
accounting for any CO2 reduction target. The authors note that model variables
such as investment costs for Carbon Capture and Storage (CCS) and nuclear power
plants possesses large degrees of uncertainty. In particular the rather large amount
for nuclear energy in the final solution may therefore be questioned. Unlike in the
DIMENSION-model, the renewable energy technologies is modeled as endogenous
investments.

Seljom and Tomasgard (2015) compares a deterministic and a stochastic modeling
approach for a case study of wind power in Denmark using the TIMES model.
The results show that the stochastic approach gives lower investments into wind
power and generally lower total energy system costs compared to the deterministic
model results. This highlights the significance of considering the randomness in the
stochastic parameters as well. The TIMES-model considers endogenous electricity
prices for Denmark because they are dual values for the electricity balance equation,
while the electricity demand is exogenous.

Marañón-Ledesma and Tomasgard (2019) analyzes the aspect on how how Demand
Response (DR) could be implemented in a cost-efficient way for Europe by 2050.
The work was conducted integrated into the EMPIRE-model, and they found that
a total DR capacity at 91 GW by 2050 reduces the storage capacity with 86% and
the peak plant capacities by 11%. All of the investments into DR are considered
endogenous. For the original model implementation of EMPIRE described by Skar
et al. (2016), all investment periods are included in a single optimization.

4.2 Generating Scenarios
Scenario generation is a common way of representing the distribution of stochastic
input variables in power models, as described in 2.3. Generating scenarios intu-
itively be done in many different ways, for example by giving a probability weight
to an expert’s opinion on future events, but more methodical approaches exist that
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use sampling and statistical properties. The computational effort will naturally
increase with the number of scenarios considered, but is on the other hand likely
to give a more adaptable solution plan for different outcomes. This Section covers
how different scenario-generation routines have been applied in the literature.

Moment-matching has been more recently used for scenario generation in the last
couple of centuries. Kaut and Wallace (2007) apply moment-matching to portfolio
optimization of 12 different different investment assets. The moment-matching
algorithm is based on expected value, standard deviation, skewness and kurtosis,
in addition to the correlation matrix between the attributes. Despite having stable
results, they do not suggest that moment-matching is generally a good procedure,
but given enough data it yields scenario trees which passes the stability tests.

Moment-matching is also considered by Marañón-Ledesma and Tomasgard (2019),
who use it to generate scenarios for the European Model for Power Investments
with high shares of Renewable Energy (EMPIRE) with Demand Response. The
scenarios are sampled from a database consisting of 7 years of hourly data points.
A scenario tree is then generated to match the first four moments of the historical
data. The application of Moment-Matching as a procedure is however not discussed
in detail.

Kaut (2020) applies the Kolmogorov-Smirnov statistic to select the most optimal
sequence of datapoints which matches the historical distribution. The Wasserstein-
distance has also been applied for sampling scenarios from a historical distribution,
but were found to scale poorly for multivariate datasets.

Random sampling-approaches is another method which can be applied when the
dataset contains several attributes and it is difficult to generate scenarios which
matches all relations of significance in the dataset. Skar et al. (2016) creates a
total of three scenarios for the EMPIRE-model. For each scenario, a random year
is chosen and 666 hours are sampled. 48 hours are sampled from each season, in
addition to six ’extreme seasons’ consisting of five hours each.

Seljom and Tomasgard (2019) studies the scenario-generation methodology in greater
detail for the The Integrated MARKAEL EFOM System (TIMES) model. The sce-
nario generation is focused on hourly data of Wind power from 2000 to 2014 for the
two Danish Nord Pool regions. They use Sample Average Approximations (SAA)
through sampling methods to generate the scenario trees, in which the scenarios
contains subsets of chronologically sampled hours from each respective season of
the year that preserve the correlation between the two danish regions. The author
also argues that producing scenarios based on the first four moments may yield a
completely different distribution than what is expected.

Estimating the quality of a scenario generation routine can with the use of sta-
bility testing as discussed in Section 3.1.3. Kaut and Wallace (2007) measures
in-sample and out-of-sample stability for a moment-matching scenario generation
routine applied to portfolio optimization. For that given case they argue that a
scenario-tree containing less than 1000 scenarios would be not sufficient. Seljom
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and Tomasgard (2019) also calculate in-sample and out-of-sample stability for the
three cases of 3, 30 and 60 different scenarios and finds that 60 scenarios is sufficient
for receiving both in-sample and out-of-sample stability. A more detailed study of
a moment-matching scenario routine is proposed by Kaut (2020), which instead
of stability-testing studies the convergence of the matching-procedure on the first
four moments mean, variance, skewness and kurtosis. The study finds that the
skewness and the kurtosis is converging significantly slower compared to the mean
and the variance.

20



Chapter 5
Problem Description

In this chapter, the problem of properly handling stochastic variables as model
input for EMPIRE is described. The goal is to develop a scenario generation
routine which properly captures the stochasticity of the underlying input variables.
A good scenario generation routine is expected to output stable result and converge
with respect to both in-sample and out-of-sample stability tests, with as little bias
as possible in the scenario generation routine. This work investigates different
scenario generating approaches and the stability of them. Even though scenario
generation is often applied in the literature, the work on analyzing the different
scenario generation routines is limited.

Power markets consists of energy sources with various complementary characteris-
tics. Among the stochastic generators, possible investment objects are solar, wind
onshore, wind offshore and hydro run-of-the-river. In addition, transmission lines
and non-stochastic generation and storage capacity have to expand to compensate
for the increased amount electricity power into the market. The load at a given time
should also be accounted for as it is stochastic in nature as well. The EMPIRE-
model described in Section 2.2 will work as a test-case for investigating how the
the different scenario generation routines applies to a model of this complexity.
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Chapter 6
Solution Method

This chapter presents the different scenario generation routines implemented. Sec-
tion 6.1 considers random sampling, which attempts to work as a baseline scenario
routine. Section 6.2 applies a moment-matching for the generators, while Section
6.3 applies the same moment-matching procedure, but only on power load for the
different countries.

6.1 Random sampling of scenarios
The random sampling generation routine chooses first a random year in the range
of the data. The same year is sampled for solar, wind offshore and wind onshore,
while a different year is chosen for load and hydro run-of-the-river as the time series
are historically disjoint.

A scenario is made by the following way: Each year is divided into four different
season as shown in Table 6.1. A random sample of 168 consecutive hours days are
then sampled from each of these seasons. The indices for the hours are equal for
all of the generators and the load-capacity, such that the same correlation between
the different generators are captured. As load and hydro run-of-the-river are from
different time periods than wind onshore, wind offshore and solar, it is however not
possible to gather the correlations between these two sets.

Thereafter, two peak seasons are made. The first peak season finds the country
with highest average load throughout the year and the corresponding hour with
the highest load to that country. 24 hours consisting of this hour and the previous
23 hours are then sampled as the first peak season throughout the whole dataset.
The complete algorithm can be seen in Algorithm 1
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Algorithm 1: Random Scenario Generation
Input : Generator data d.

Load data l.
Number of scenarios Ω.
Number of investment periods I.
Number of seasonal periods S.
Regular season hours h1.
Peak season hours h2.

Output: Scenario data d̂.
1 d̂ = [];
2 for i = 1, . . . , I do
3 for i = 1, . . . ,Ω do
4 y = sample_random_year;
5 yearly_data_generator = d[y];
6 yearly_data_load = l[y];
7 for i = 1, . . . , S do
8 i1 = Random(0, length_of_season - h1);
9 seasonal_scenario = yearly_data_generator[i1:i1+h1];

10 d̂.append(seasonal_scenario);
11 seasonal_scenario = yearly_data_generator[i1:i1+h1];
12 d̂.append(seasonal_scenario);
13 c = country_with_largest_total_load_in_y;
14 i2 = index_with_largest_load_value_for_c in y;
15 peak_country = yearly_data generator[i2:i2 + h2];
16 d̂.append(peak_country);
17 i3 = index_with_largest_aggregated_load value_for_all_countries;
18 peak_overall = yearly_data generator[i3:i3 + h2];
19 d̂.append(peak_overall);

20 return d̂;
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Table 6.1: Separation of months into respective seasons

Month Season
December Winter
January Winter
February Winter
March Spring
April Spring
May Spring
June Summer
July Summer
August Summer
September Autumn
October Autumn
November Autumn

6.2 Moment-matching
The Moment-matching implementation is an extension of the random sampling of
scenarios based on the same scenario structure. The deterministic peak seasons
stays the same, while for the regular seasons the moment-matching procedure cre-
ates N different sample periods for each season. The mean, variance, skewness
and the kurtosis for each sample period is calculated and aggregated for each time-
series, and the sample period which best represents the total season is chosen. For
computational reasons, N = 50 samples have been used throughout this thesis.
The implementation is found in Algorithm 2.

6.3 Moment Load-matching
The third procedure is almost identical to the Moment-matching algorithm, but
matches primarily on load. The procedure is motivated for two reasons. The first
reason is that load is not normalized compared to the electricity generators and
could bias the other procedure. The second reason is to see how Moment-matching
performs when aggregated on fewer time-series.
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Algorithm 2: Moment Scenario Generation
Input : Generator data d.

Load data l.
Number of test samples N .
Number of scenarios Ω.
Number of investment periods I.
Number of seasonal periods S.
Regular season hours h1.
Peak season hours h2.

Output: Scenario data d̂.
1 d̂ = [];
2 for i = 1, . . . , I do
3 for i = 1, . . . ,Ω do
4 y = Sample_random_year;
5 yearly_data_generator = d[y];
6 yearly_data_load = l[y];
7 B = ∞;
8 for i = 1, . . . , S do
9 M = 0;

10 best_scenario = Null;
11 for i = 1, . . . , N do
12 i1 = Random(0, length_of_season - h1);
13 T = yearly data generator[i1:i1+h1];
14 M = M + ‖Mean(T )−Mean(yearly_data _generator)‖;
15 M = M + ‖Var(T )−Var(yearly_data_generator)‖;
16 M = M + ‖Skew(T )− Skew(yearly_data_generator)‖;
17 M = M + ‖Kurt(T )−Kurt(yearly_data_generator)‖;
18 if M < B then
19 B = M;
20 best_scenario = seasonal_scenario;

21 d̂.append(best_scenario);
22 c = country_with_largest_total_load_in_y;
23 i2 = index_with_largest_load_value_for_c_in_y;
24 peak_country = yearly_data generator[i2:i2 + h2];
25 d̂.append(peak_country);
26 i3 = index_with_largest_aggregated _load_value_for_all_countries;
27 peak_overall = yearly_data generator[i3:i3 + h2];
28 d̂.append(peak_overall);

29 return d̂;
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Chapter 7
Data Analysis

This chapter discusses first how the data is retrieved and preprocessed in Section
7.1 and Section 7.2. Lastly, Section 7.3 gives insight into how the data is structured
and visualizes how a moment-matching procedure attempts to model an underlying
distribution.

It should be emphasized that for the moment-matching scenarios in this chapter
and the Computational Study is using the central moments described in Section
3.2 for comparing the scenarios. This might have impact the results in the sense
that the moments are weighted differently as they are of different dimensions and
is therefore not equally scaled. Due to time-constraints, the chapter on the Data
Analysis and the Computational Study has not been reiterated.

7.1 Data Gathering
Load data
Five years of quarterly data of load has been gathered for the different countries in
the EMPIRE-model for the five years 2015 until 2019 using Simple File Transfer
Protocol from the ENTSO-E-initiative(ENTSOE, 2020). This have been reduced
to hourly data by removing data points which are not integer hours as the variation
in load in between hours is small and were considered easier to implement compared
to taking the mean of the four datapoints in each hour. The remaining data points
have thereafter been grouped by hour and landcode and then summed up. This is
because some countries may be divided into different areas as well.

Missing data has been replaced with the yearly mean for each respective country’s
load, and the five-year mean has been used if the whole year is missing. Quarterly
or monthly mean could also have been applied, but the ambition has been to only
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remove the extreme outliers and not necessarily fit them into the seasonal varia-
tions of the dataset. This will replace the outliers with the yearly mean and might
still deviate from the seasonal trend, but can now be considered white noise as the
amount of datapoints with similar characteristics have are significantly more. Re-
garding replacing whole years of mising data with the five-year mean, the goal has
been to make the dataset as complete as possible, not removing smaller countries
despite the lack of data.

Solar, Wind offshore and Wind onshore

Hourly data of solar power, wind offshore power and wind onshore power has been
gathered for the years 1985 to 2015 from the Renewables.ninja-platform (Renew-
ables.ninja). Renewables.ninja is a webtool developed at Imperial College London
and ETH Zürich which gathers data from global reanalysis models and satellite
observations.

Renewable.ninja has two available datasets for solar power: MERRA2 and SARAH.
MERRA2 was chosen, as SARAH was considered to have some missing values. Any
replacement of missing values for MERRA2 is therefore not necessary.

Hydro data
Quarterly generation data for run-of-the-river and poundage has been gathered
from ENTSO-E(ENTSO-E) for the years 2015-2019. Data access requires user
registration and access rights for using Simple File Transfer Protocol, which has
been provided by ENTSO-E. Similar to the load data, data points which are not
integer hours have been removed, and the datapoints have been grouped by hour
and countrycode, and thereafter summed up.

The data has then for each country and year been divided by the yearly maximal
country value to yield a metric describing how big share of the maximal production
is currently being produced in a specific hour. This is for making the dataset
compatible with how EMPIRE is implemented. This can also be viewed as the
amount of installed capacity being used in that given hour.
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7.2 Data Preprocessing
To boost the reliability of the results it is important to know that the data put into
the model is not faulty or wrong. The total sum of the load among all countries
between 2015 to 2019 are shown in Figure 7.1. The plot show significant deviations,
which gives a clear indication of outliers in the dataset. A simple preprocessing
algorithm has therefore been implemented for each country to remove the biggest
outliers from the dataset.

Figure 7.1: Summed up load capacity for all European countries.

The standard deviation and the median is calculated for each country, and every
points deviating with more than three standard deviations from the median is con-
sidered an outlier. The use of three outliers was empirically tested as a trade-off
between the number of points detected as outliers. A smaller treshold will eventu-
ally start removing seasonal datapoints as the median is calculated globally and is
therefore seasonal independent. The median could have been implemented locally
with a trend, but was viewed as unnecessary as the main goal has only been to
remove the most significant outliers. The median is chosen instead of the mean
because it is less sensitive to outliers. As some points are extreme outliers, they
have a significant impact on the calculated standard deviation. The algorithm is
therefore implemented as a while-loop, recalculating the standard deviation when-
ever an outlier is removed. An illustration for how the algorithm works is shown for
both Norway and Macedonia in Figure 7.2 with corresponding pseudocode shown
in Algorithm 3. For Norway the biggest outliers are removed and replaced with the
median for Norway. Linear interpolation of points in the neighbourhood would also
have been an possibility, but it is important to have in mind that there also exists
’less extreme’ outliers in the neighbourhood, which will make the replacement-
operation less predictable. In between 2015 and 2016 we see that the replacement
deviates from the neighbourhood somewhat for Norway. However, reducing the
treshold of three standard deviations further will eventually result in more non-
outliers being replaced as well because the median is calculated globally. When the
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outliers are removed for Macedonia, we see that there is still a lot of noise in the
dataset. The main ambition is however to remove outliers and not filter out noise,
as the outliers directly interfere with sampling out the peak-seasons discussed in
Section 6.1 on generating random scenarios.

Algorithm 3: Smoothing algorithm for the load dataset
Input : Load data d.

Number of countries c.
Output: Smoothed data d.

1 for i = 1, . . . , c do
2 Mi ← Median(di);
3 σi ←

√
Var(di);

4 for j = 1, . . . , ‖di‖ do
5 if |d[j]i −Mi| > 3σi then
6 d[j]i ← NaN ;

7 while di contains NaN-values do
8 for j = 1, . . . , ‖di‖ do
9 if |d[j]i is NaN then
10 d[j]i ←Mi;

11 Mi ← Median(di);
12 σi ←

√
Var(di);

13 for j = 1, . . . , ‖di‖ do
14 if |d[j]i −Mi| > 3σi then
15 d[j]i ← NaN ;

16 return d;
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((a)) ((b))

((c)) ((d))

Figure 7.2: Removal of outliers for the load dataset for Norway and Macedonia.

7.3 Complementary Energy Sources
The different countries in Europe have different potential for developing solar pho-
tovoltaic, wind power and hydro run-of-the-river. The overview for the countries
generator profile can be seen in Table 7.1, which shows which countries have data
available for the different stochastic generators. In particular, wind offshore is nat-
urally lacking as some countries are not located at the shore, but some countries
such as Bosnia-Hercegovina and Serbia are lacking wind onshore, which may be
due to either missing values or no installed capacity.

As briefly discussed in Section 2.3, there have been studies showing anti-correlation
between potential wind energy and solar irradiation in different regions, see (Bett
and Thornton, 2016) and (Miglietta et al., 2017). The aggregated average val-
ues for all countries for the different stochastic energy generators are shown on
a monthly and hourly basis in Figure 7.3 and Figure 7.4, respectively. From the
monthly aggregated data, wind onshore and wind offshore generates less power
during the summer months relative to the winter months. This is in contrast to
solar power that generates more power during the summer months. In addition,
power from wind onshore and wind offshore are generally more volatile for each
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Table 7.1: Generator profile for each of the 31 countries for the EMPIRE-model. Coun-
tries with missing data or only zero values are cross-marked.

Country
Code Country Solar Wind

onshore
Wind
offshore

Hydro
run-of-
the-river

AT Austria 3 3 7 3
BA Bosnia H. 3 7 7 7
BE Belgium 3 3 3 3
BG Bulgaria 3 3 7 3
CH Switzerland 3 3 7 3
CZ Czech R. 3 3 7 3
DE Germany 3 3 3 3
DK Denmark 3 3 3 3
EE Estonia 3 3 7 3
ES Spain 3 3 7 3
FI Finland 3 3 3 3
FR France 3 3 3 3
GB Great B. 3 3 3 3
GR Greece 3 3 7 7
HR Croatia 3 3 7 7
HU Hungary 3 3 7 3
IE Ireland 3 3 3 3
IT Italy 3 3 7 3
LT Lithuania 3 3 7 3
LU Luxemb. 3 3 7 7
LV Latvia 3 3 7 3
MK Macedonia 3 3 7 3
NL Netherlands 3 3 3 7
NO1 Norway 3 3 3 3
NO2 Norway 3 3 3 3
NO3 Norway 3 3 3 3
NO4 Norway 3 3 3 3
NO5 Norway 3 3 3 3
PL Poland 3 3 7 3
PT Portugal 3 3 7 3
RO Romania 3 3 7 3
RS Serbia 3 7 7 3
SE Sweden 3 3 3 7
SI Slovenia 3 3 7 3
SK Slovakia 3 3 7 3

month compared to solar. hydro run-of-the-river generates slightly more power in
the first half year and less effective in September until November. This may be due
to geographical variations or less effect from hydropower due to falling tempera-
ture. Hydro run-of-the-river is also more effective than the other generators, but
also the most volatile on an annual scale.

For the hourly aggregated values shown in Figure 7.4, all generators apart from
solar depends less on the hour of the day. Hydro run-of-the-river seems to have
some higher output during the day, which may be due to warmer climate and
ice melting. Both the output of wind onshore and wind offshore show tendencies
towards being independent on the hour of the day, but it is important to highlight
that this is all the countries aggregated together so the geographical nature of single
countries can not be seen here.

To investigate how the hourly trend varies throughout the day for single countries,
two examples in Figure 7.5 shows the aggregated average values for each hour of
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7.3 Complementary Energy Sources

((a)) Wind offshore ((b)) Wind onshore

((c)) Solar PV ((d)) Hydro run-of-the-river

Figure 7.3: Monthly aggregated data for the different stochastic generator profiles for
all European countries from their respective history of data.

the day for hydro run-of-the-river in Finland and wind offshore for France. Espe-
cially hydro run-of-the-river shows a significant increase during the day, while wind
offshore has lower variance during night. This is likely due to hydro run-of-the-
river includes pondage as well, and the demand for electricity is higher during the
day. The corresponding aggregated average load for Finland is shown in Figure 7.6
and shows a strong relation to capacity factor for hydro run-of-the-river. These
hourly seasonalities does not happen generally for all other countries, but it gives
a strong indication that both wind and hydro run-of-the-river may be affected by
daily seasonalities as solar. Other possible explanation can be that the daily rise
and fall of temperature may affect the amount of wind and hydro available in the
region.

The energy sources also have various complementary characteristics. Figure 7.7(a)
and Figure 7.7(b) shows how the hourly capacity factors from solar, wind onshore
and energy offshore are distributed over 30 years of data. The figures shows that
the hourly capacity factors for the energy sources may differ significantly between
countries. Solar seems to have generally less impact than both wind onshore and
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((a)) Wind offshore ((b)) Wind onshore

((c)) Solar PV ((d)) Hydro run-of-the-river

Figure 7.4: Hourly aggregated data for the different stochastic generator profiles for all
European countries from their respective history of data.

((a)) Hydro run-of-the-river ((b)) Wind offshore

Figure 7.5: Hourly aggregated data for hydro run-of-the-river for Finland and wind
offshore for France.

wind offshore. On the other hand, Figure 7.8 shows that solar deviates less between
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7.3 Complementary Energy Sources

Figure 7.6: Aggregated hourly load for Finland.

years compared to wind offshore and wind onshore. This makes solar energy more
predictable than the other two energy sources. In addition, none of the three energy
sources show any strong tendencies towards being non-stationary between different
climatic years. This makes sampling of years a suitable procedure when generating
scenarios. The aggregated energy sources for weekdays can also be seen in Figure
7.9. Some but does not seem to have any impact on the renewable capacity factor.

((a)) ((b))

Figure 7.7: Country generator profiles for Germany and France for the years 2001-2005,
and hydro run-of-the-river for the years 2016-2020. Zero-values have been removed for
visualization purposes, as it corresponds to roughly half the data points of the solar-
dataset.
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Figure 7.8: Year over year percentage change for the different energy sources for Ger-
many.

((a)) Wind offshore ((b)) Wind onshore

((c)) Solar PV ((d)) Hydro Run-of-the-River

Figure 7.9: Aggregated renewable energy sources for weekdays, where ’0’ is Monday, ’1’
is Tuesday, and so on, until ’6’ represents Sunday.

7.3.1 Moment-Matching Scenarios
The moment-matching procedure has been studied to see how it adapts to the un-
derlying distribution. Figure 7.10 shows how the moment-matching scenarios with
100 samples compares to a random generated scenarios. The difference between
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7.3 Complementary Energy Sources

the approximated distribution and the seasonal distribution are shown in the for
a Random routine, "Univariate" moment-matching, and a "Multivariate" moment-
matching. The "Multivariate" is the combined moment-matching procedure on all
of the four stochastic generators together, while the "Univariate" moment-matching
only take one generator into account at a time. This is to investigate how the
moment-matching procedure generalizes to several time series.

((a)) ((b))

((c)) ((d))

Figure 7.10: Illustration of how the different Scenario Generation Routines adapt to
the Seasonal data. The data being used is Germany for the summer of 2000. For hydro
run-of-the-river the year 2015 has been used instead.

For solar, the difference between the different scenario routines is almost insignif-
icant, likely due to high seasonality in solar power on a daily basis. For wind
offshore, the "Univariate" seems slightly better than both the "Multivariate" and
the Random routine, while for wind onshore it is difficult to tell if a routine approx-
imate the distribution better than the other. This is unexpected as the "Univariate"
moment-matching is believed to have significant improvements over the other rou-
tines. This is however seen for hydro run-of-the-river where the "Univariate" almost
fit the seasonal data perfectly, while the "Multivariate" Moment-matching proce-
dure is clearly performing the worst, likely due to having sampled a subset which
are very stable around 0.9-0.95. This shows that the Moment-matching procedure
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may yield distributions which deviates somewhat from the underlying distribution.
This shows that the accuracy of a moment-matching routine is likely to depend
much on the data distribution as well.

The deviation from the true distribution varies between the generators as expected,
as they possesses different traits with respect to seasonality which can make it
difficult to obtain a good representation of the true stochastic distribution as a
whole. It is however unexpected that the "Univariate" moment-matching procedure
does not show any significant improvement over the Random routine. Possible
explanations to this is that the moment-matching routine has been implemented
that only compares the moments between the sample distribution and the true
distribution as a whole. An alternative could be to compare the moments as a
sum of smaller segments instead, with the aim of better match the seasonality
in the distribution. As mentioned in the beginning of this chapter, the moment-
matching procedure is also compared using central-moments, which is likely to give
skewness and kurtosis a larger weight and override the impact from the variance and
the mean. This highlights the importance of implementing the moment-matching
procedure in a way that significantly converge to the true distribution.
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Chapter 8
Computational Study

The computational study has been performed in Python 3.7.7. The model pre-
sented in Chapter 6 is implemented using Pyomo 5.6.8 and is solved using the
Gurobi-package. All smaller computations are performed on an 2 x Intel® Xeon®

Gold 5115 2.4GHz CPU with 20 cores, 40 threads and 96 GB RAM. Larger compu-
tations with more than 5 scenarios for In-Sample stability in Case 1 are performed
on an 2x 3.5GHz Intel® Xeon® Gold 6144 CPU with 8 core and 384Gb RAM.

This chapter reviews different scenario generation routines with respect to In-
Sample and Out-of-Sample stability testing. Section 8.1 considers a full-scale
EMPIRE-model with a total of 31 different nodes, while Section 8.2 studies the
best performing scenario generation routine from Section 8.1 more in detail, re-
stricted to a subset of Europe. While the results are visualized as violin plots in
this chapter, the numerical results can be found in Appendix B.

8.1 Case 1: All of Europe
The first case considers all 31 countries in Europe with 168 hours in each regular
season. Due to memory problems, only a maximum of 10 scenarios for each invest-
ment period have been considered in this case. Three different scenario generation
routines have been tested: Random (R), Moment (M) and Moment-Load (ML).
Each routine has been tested for 3, 5, 7 and 10 different scenarios, all generating
20 different scenario trees to consider both the sample mean and the sample devia-
tion. Out-of-Sample stability testing have been conducted on a total of 40 different
scenarios, all generated with the Random routine.

The results for both the In-Sample and the Out-of-Sample stability testing can be
seen in Figure 8.1. For the in-sample stability, the standard deviation is expected
to decrease monotonically as the number of scenarios increases. Even the numerical
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results in Appendix B can indicate to a downward trend in the relative standard
deviation for all methods, it is not monotonically decreasing. For example, all
routines with 5 scenarios deviates more than the routines producing 7 and 10
scenarios. This may be caused by that N = 20 is too few scenario trees to properly
capture the downward trend, but may also be due to the difference in the number of
scenarios for each routine can be too small to grasp a significant difference between
them with respect to the standard deviation.

It can also be seen that for the in-sample stability that both the Moment-Matching
and the Moment Load-matching routine consistently yields lower average objec-
tive values compared to the Random routine. Since both Moment-Matching and
Moment-Load-Matching attempts to find the scenarios that best matches the un-
derlying distribution, this may result in a bias in the objective value compared to
the Random routine. This is also the case as the objective value in the Out-of-
sample stability tests

((a)) In-sample stability ((b)) Out-of-sample stability

Figure 8.1: In-sample and Out-of-sample stability for N=20 scenario trees for the dif-
ferent scenario generation routines.

For the Out-of-Sample stability tests, the average objective values are monoton-
ically decreasing with increased number of scenarios for all routines, indicating
that more scenarios can be used to support investment decisions that decrease the
objective function further. Both Moment-Matching, and in particular the Moment-
Load-Matching, show significant increase in objective value between the In-Sample
and the Out-of-Sample stability tests. This indicates that both of these Scenario
Generation Routines does not produce investment decisions that perform well in
arbitrary scenarios.

8.2 Case 2: Subset of Europe
Case 2 explores a subset of Europe consisting of only Belgium, Germany and France,
with the ambition to consider more scenarios and witness indications of convergence
in the Out-of-Sample stability. Since the Moment- and the Moment Load routines
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8.2 Case 2: Subset of Europe

showed indications of bias in Section 8.1, only the Random routine has been con-
sidered in this case. A slight modification to the algorithm has been made so that
the years sampled for solar and wind can now repeat itself in the algorithm. This
makes it possible to generate more than 20 scenarios in total.

Four different variations of the Random routine have been tested. 20 scenario
trees have been created four times, each containing 10 scenarios, 50 scenarios, 100
scenarios and 200 scenarios, yielding a total of 80 different scenario trees. The
reduced case makes it possible to solve the model with more scenarios without
running into memory problems. A total of 500 Random generated scenarios have
been applied for Out-of-sample stability testing for all of the 80 different scenario
trees. The results are shown in Table 8.2. The In-Sample stability testing results
shows that the relative standard deviation only decrease from 0.8 % to 0.7% by
using 100 instead of 50 scenarios. The average objective value is also unchanged up
to three significant digits, indicating that 50 scenarios is enough for representing
the stochastic variables in this case study. This can also be seen in the Out-of-
Sample stability testing results. The average value is monotonically decreasing with
increased number of scenarios in the trees. However, the difference between the
average objective values between the In-Sample objective values and the Out-of-
Sample objective values are almost identical after 50 scenarios. This is an argument
for 50 scenarios being sufficient for producing investment decisions that yield stable
results the reduced case.

((a)) In-sample stability ((b)) Out-of-sample stability

Figure 8.2: In-sample and Out-of-sample stability tests for N=20 scenario trees for the
reduced case.
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Chapter 9
Concluding Remarks

In this thesis, a study on scenario generation routines have been conducted on a
two-stage stochastic program supporting long-term development of power markets
under short-term uncertainty. The study is motivated by the need for understand-
ing how the scenario generation routine should be structured to better represent
the stochastic parameters including electric load and the availability of renewable
energy sources.. Three different variations of scenario generation routines based on
sampling of historic data were proposed and compared to each other.

Before the scenario generation routines have been tested, the dataset have been
preprocessed. This includes removal of outliers and replacing missing values to
make the results from the scenario generation routines more stable and compatible
with the dataset. In addition, the core characteristics with the stochastic parame-
ters have been described. Solar comes off as the most volatile and the least reliable
stochastic parameter on a daily basis, while hydro run-of-the-river generally has
the highest average capacity factor compared to solar- and windpower. All of the
renewable energy sources have some seasonality trend on a yearly basis, with hydro
run-of-the-river having the least significant trend.

Two different case studies for the scenario generation routines have been considered:
The full EMPIRE-model for all of Europe, and a subset considering only Germany,
France and Belgium. All of the three proposed scenario generation routines have
been tested for all of Europe, while for the case restricted to three countries only
the Random Scenario Generation Routine have been used as the other methods
were showing signs of being biased.

From the case study for all of Europe, it can be seen that the Random generation
scenario shows signs of being the least biased scenario generation routine, as both
Moment-Matching and Moment-Load-Matching generate objective values in which
the gap between the In-Sample and Out-of-Sample stability tests deviated signifi-
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cantly more compared to the Random Scenario Generation Routine. The relative
standard deviation were not monotonically decreasing, which show indications that
testing 20 scenario trees were not sufficient when comparing scenario generation
routines with 10 scenarios or less.

For the case that only considered France, Belgium and Germany, the difference
in objective value between the In-Sample and the Out-of-Sample stability tests
were monotonically converging. However, the convergence is slow after 50 scenar-
ios, reducing the gap with only 0.01 · 1011 with 100 scenarios, and an additional
0.01 · 1011 when considering 200 scenarios. This can be considered small when the
gap-reduction from considering 10 to 50 scenarios was 0.33 · 1011. The standard
deviation were also shown to decrease monotonically. It is likely that this is due to
stronger convergence when comparing scenario generation routines with significant
difference in the number of scenarios used. This makes it reasonable to assume
that 50 scenarios might be enough in the complete case as well, at least for the
Random routine.

For the case that only considered France, Belgium and Germany, the difference in
objective value between the In-Sample and the Out-of-Sample stability tests were
monotonically converging. However, the convergence is slow after 50 scenarios,
having a gap between the In-sample and the Out-of-Sample stability tests of only
0.32% relative to the average of both objective values with 100 scenarios, and an
additional 0.16% when considering 200 scenarios. This can be considered small
when the gap-reduction from considering 10 to 50 scenarios went from 4.2% to
0.48%. The standard deviation were also shown to decrease monotonically. It is
likely that this is due to stronger convergence when comparing scenario generation
routines with significant difference in the number of scenarios used. This makes it
reasonable to assume that 50 scenarios might be enough in the complete case as
well, at least for the Random routine.

The primary goal of this thesis has been to study the performance of different
scenario generation routines applied to a two-stage stochastic program used for
long-term power market modeling. It has been found that using a Random Sce-
nario Generation Routine is less biased compared to the other Scenario Generation
Routines.
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Chapter 10
Future Research

This chapter discusses possible future topics which could extend this work. The
aspects related to the data analysis and the theoretical foundation for the scenario
generation.

With regards to future modeling, the scenario structure could be further com-
pressed to better handle additional scenarios. A total of one week of consecutive
data were used for creating the respective seasons in the scenarios. However, the
strongest seasonality in the seasonal periods are between day and night, which
strongly affects solar PV. It is also likely that the load differs between weekdays
and regular days, even though this has not been verified in the data. A scenario
generation routine which considers fractions of days instead of weeks could there-
fore be appropriate as long as the ratio between weekend days and regular days
stays stays the same.

A challenge with generating scenarios for the EMPIRE-model is having sufficient
computational memory. Hourly data could possibly be aggregated to a lower reso-
lution, making fewer data points for representing days, weeks or months and allow
for more scenarios for each investment period without increasing the computational
challenge. Other ways of representing the year can be made by sampling one day
for each month or week. However, such simplifications ought to be balanced with
the interest in representing time series with high resolution and long duration in
models like EMPIRE to represent e.g. electricity storage and ramping constraints.

It has been found that Moment-Matching can show indications of being biased. A
way to possibly avoid this can be to use a hybrid approach and let a fraction of
the scenarios be randomly generated, while the other fraction follows a Moment-
Matching procedure. It is however important to highlight that due to the two peak
seasons generated for all scenarios, the random routine can already be considered to
be a hybrid approach. It is also not necessarily important to use Moment-Matching
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for all generators, as generators may have a strong daily seasonality and show little
to no improvement using a Moment-Matching procedure.

The Moment-Matching procedure being used calculates the different moments for
the whole sample distribution at once and compares it to the underlying distri-
bution. The matching-procedure could also be split up into several calculations
and applied to smaller segments of the sample distribution with the goal of bet-
ter approximating the probability distribution. The hourly or daily moments could
possibly be compared to the underlying distribution to give a better approximation.

The moment-matching procedures were comparing the central moments. Another
possible approach would be to transform all the statistical moments to have dimen-
sion one, as shortly described in Section 3.2. This means comparing the mean and
standard deviation instead to make both metrics equal to one. Similar for skewness
and kurtosis would be to let them equal their standardized moments, multiplied
with the standard deviation to increase the dimension from zero to one. This is
to check if comparing statistical moments with equal dimension will yield a better
approximation to the distribution.
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Appendix A
EMPIRE Model Formulation

This appendix shows the complete formulation of the EMPIRE-model used in this
thesis. The formulation is originally contributed to Stian Backe, PhD Candidate
at NTNU, Department of Industrial Economics and Technology Management.

A.1 Sets
A.1.1 Supply technology sets

G: Set of possible generator types,
T : Set of generator categories,
B: Set of possible storage types.

A.1.2 Temporal sets

I = {1, 2, ..., |I|}: Set of investment time periods,
H = {1, 2, ..., |H|}: Set of operational time periods,

S: Set of seasons.

A.1.3 Spatial sets

N : Set of nodes,
L: Set of bidirectional interconnectors,
A: Set of unidirectional arcs.
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A.1.4 Stochastic sets

Ω: Set of scenarios.

A.1.5 Sub-sets

Gn ⊆ G: Set of available generator types in node n ∈ N ,
Gt ⊂ G: Set of generator types in category t ∈ T ,

GRamp ⊂ G: Set of generator types limited by ramping,
GRegHyd ⊂ G: Set of regulated hydro generator types,
GHyd ⊂ G: Set of all hydro generator types,
Bn ⊆ B: Set of available storage types in node n ∈ N ,
B† ⊆ B: Set of storage types with dependent ratio between energy and power,
Hs ⊂ H: Set of operational time periods in season s ∈ S (Hs = {h1

s, h
2
s, ..., |Hs|}),

H−s ⊂ Hs: Set of operational time periods except the first in season s ∈ S,
Al ⊂ A: Set of unidirectional arc pair on interconnection l ∈ L,
Ain
n ⊂ A: Set of arcs flowing into node n ∈ N ,

Aout
n ⊂ A: Set of arcs flowing out from node n ∈ N .

A.2 Input data

A.2.1 Costs

cgeng,i : Cost per unit of investing in generator type g ∈ G in period i ∈ I,
ctranl,i : Cost per unit of investing in interconnection l ∈ L in period i ∈ I,

cstorPWb,i : Cost per unit of investing in power of storage type b ∈ B in period i ∈ I,
cstorENb,i : Cost per unit of investing in energy of storage type b ∈ B in period i ∈ I,
qgeng,i : Cost per unit of operating generator type g ∈ G in period i ∈ I,
qCO2
g,i : CO2 emission factor of generator type g ∈ G in period i ∈ I,
qlln,i: Value (cost) of lost load in node n ∈ N in period i ∈ I,

QCO2
i : CO2 emission ceiling for all generators in period i ∈ I,
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A.2.2 Technology limitations

Type dependent technology limitations

igeng : Lifetime of investment in generator type g ∈ G,
itranl : Lifetime of investment in interconnector l ∈ L,
istorb : Lifetime of investment in storage type b ∈ B,
γg: Ramping factor for generator type g ∈ GRamp ⊂ G,

ηtrana : Efficiency factor for transmission losses along arc a ∈ A, ηtrana ∈ (0, 1),

ηchrgb : Efficiency factor for charge losses with storage type b ∈ B, ηchrgb ∈ (0, 1),

ηdischrgb : Efficiency factor for discharge losses with storage type b ∈ B, ηdischrgb ∈ (0, 1),
ηbleedb : Efficiency factor for bleed losses with storage b ∈ B, ηbleedb ∈ (0, 1),

ρb: Capacity ratio between charge/discharge speed for storage type b ∈ B,
βb: Ratio between power and energy capacity for storage type b ∈ B† ⊆ B,
κb: Share of installed energy capacity initially available in storage type b ∈ B

in each representative time period.

Node dependent technology limitations

x̄genn,g,i: Initial capacity of generator type g ∈ Gn in node n ∈ N in period i ∈ I,
x̄tranl,i : Initial capacity of interconnector l ∈ L in period i ∈ I,

x̄storPWn,b,i : Initial capacity of power of storage b ∈ Bn in node n ∈ N in period i ∈ I,
x̄storENn,b,i : Initial capacity of energy of storage type b ∈ Bn in node n ∈ N in period i ∈ I,
X̄gen
t,n,i: Max investments in generator category t ∈ T in node n ∈ N and period i ∈ I,

X̄tran
l,i : Max investments in interconnector l ∈ L in period i ∈ I,

X̄storPW
n,b,i : Max investments in power of storage type b ∈ Bn in node n ∈ N and period i ∈ I,
X̄storEN
n,b,i : Max investments in energy of storage type b ∈ Bn in node n ∈ N and period i ∈ I,
V̄ gen
t,n,i: Max installed capacity of category t ∈ T in node n ∈ N and period i ∈ I,

V̄ tran
l,i : Max installed capacity of interconnector l ∈ L in period i ∈ I,

V̄ storPW
n,b,i : Max installed capacity of power of storage type b ∈ Bn in node n ∈ N and period i ∈ I,
V̄ storEN
n,b,i : Max installed capacity of energy of storage type b ∈ Bn in node n ∈ N and period i ∈ I.
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A.2.3 Scenario input

πω: Probability of scenario ω ∈ Ω,
ξgenn,g,h,i,ω: Availability of generator type g ∈ Gn in node n ∈ N in period h ∈ H, i ∈ I

and scenario ω ∈ Ω,
ξloadn,h,i,ω: Demand in node n ∈ N in period h ∈ H, i ∈ I and scenario ω ∈ Ω,

ξRegHydLimn,s,i,ω : Max output from regulated hydro in node n ∈ N in s ∈ S, i ∈ I and ω ∈ Ω,
ξHydLimn : Max expected annual output from total hydro in node n ∈ N .

A.3 Variables

A.3.1 Investment decision variables

xgenn,g,i: Capacity investments in generator type g ∈ Gn in node n ∈ N in period i ∈ I,
xtranl,i : Capacity investments in interconnector l ∈ L in period i ∈ I,

xstorPWn,b,i : Capacity investments in power of storage type b ∈ Bn in node n ∈ N in period i ∈ I,
xstorENn,b,i : Capacity investments in energy of storage type b ∈ Bn in node n ∈ N in period i ∈ I,
vgenn,g,i: Existing capacity of generator type g ∈ Gn in node n ∈ N in period i ∈ I,
vtranl,i : Existing capacity of interconnector l ∈ L in period i ∈ I,

vstorPWn,b,i : Existing capacity of power of storage type b ∈ Bn in node n ∈ N in period i ∈ I,
vstorENn,b,i : Existing capacity of energy of storage type b ∈ Bn in node n ∈ N in period i ∈ I.
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A.3.2 Operational decision variables

ygenn,g,h,i,ω: Output from generator type g ∈ Gn in node n ∈ N
in period h ∈ H, i ∈ I and scenario ω ∈ Ω,

ytrana,h,i,ω: Power flow over unidirectional arc a ∈ A in period h ∈ H, i ∈ I
and scenario ω ∈ Ω,

ychrgn,b,h,i,ω: Charging of storage type b ∈ Bn in node n ∈ N in period h ∈ H, i ∈ I
and scenario ω ∈ Ω,

ydischrgn,b,h,i,ω: Discharging of storage type b ∈ Bn in node n ∈ N
in period h ∈ H, i ∈ I and scenario ω ∈ Ω,

wstor
n,b,h,i,ω: Energy content of storage type b ∈ Bn in node n ∈ N in period h ∈ H, i ∈ I

and scenario ω ∈ Ω for demand class d ∈ D,
ylln,h,i,ω: Amoumt of load shed in node n ∈ N

in period h ∈ H, i ∈ I and scenario ω ∈ Ω.

A.4 Objective function

min z =
∑
i∈I

(1 + r)−5(i−1)×[ ∑
n∈N

∑
g∈Gn

cgeng,i x
gen
n,g,i +

∑
l∈L

ctranl,i xtranl,i +
∑
n∈N

∑
b∈Bn

(
cstorPWb,i xstorPWn,b,i + cstorENb,i xstorENn,b,i

)
+

ϑ
∑
ω∈Ω

πω
∑
s∈S

αs
∑
h∈Hs

∑
n∈N

( ∑
g∈Gn

qgeng,i y
gen
n,g,h,i,ω + qlln,iy

ll
n,h,i,ω

)]
∗ (A.1)

The objective function (A.1) discounts all costs at an annual rate of r, and the
investment periods are given as five year blocks. The factor ϑ =

∑4
j=0(1 + r)−j

scales annual operational costs to the five year investment periods.

The first four terms of (A.1) relates to investment costs in additional capacity of
generation, transmission and storage. The last two terms relate to operational
costs of generation and costs of load shedding. The terms for operational costs are
scaled with the scenario probability πω and the seasonal scaling factor αs, where
αs make sure the seasonal costs are scaled up to the length of each season.
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A.5 Constraints
A.5.1 Operational constraints
Total supply from generators and storage units, as well as imports and load shed-
ding, must be balanced with load served, exported and charged:∑

g∈Gn

ygenn,g,h,i,ω +
∑
b∈Bn

ηdischrgb ydischrgn,b,h,i,ω +
∑
a∈Ain

n

ηtrana ytrana,h,i,ω + ylln,h,i,ω =

ξloadn,h,i,ω +
∑
b∈Bn

ychrgn,b,h,i,ω +
∑

a∈Aout
n

ytrana,h,i,ω, n ∈ N , h ∈ H, i ∈ I, ω ∈ Ω. (A.2)

Production from generators are limited by the available installed capacity:

ygenn,g,h,i,ω ≤ ξ
gen
n,g,h,i,ωv

gen
n,g,i, g ∈ Gn, n ∈ N

h ∈ H, i ∈ I, ω ∈ Ω. (A.3)

For thermal generators, ramping up load in between hours is limited:

ygenn,g,h,i,ω − y
gen
n,g,h−1,i,ω ≤ γ

gen
g vgenn,g,i, g ∈ GRamp ∩ Gn, n ∈ N , s ∈ S,

h ∈ H−s , i ∈ I, ω ∈ Ω. (A.4)

All storages start with an initial energy level available as a percentage of installed
capacity and runs a full cycle over each representative time period in each season:

κbv
storEN
n,b,i + ηchrgb ychrgn,b,h1

s,i,ω
− ydiscrgn,b,h1

s,i,ω
= wstor

n,b,h1
s,i,ω

, b ∈ Bn, n ∈ N , s ∈ S,

i ∈ I, ω ∈ Ω. (A.5)
wstor
n,b,h1

s,i,ω
= wstor

n,b,|Hs|,i,ω, b ∈ Bn, n ∈ N , s ∈ S
i ∈ I, ω ∈ Ω. (A.6)

The balance of storage is ensured between operational time steps:

wstor
b,n,h−1,i,ω + ηchrgb ychrgb,n,h,i,ω − y

discrg
b,n,h,i,ω = ηbleedb wstor

b,n,h,i,ω, b ∈ Bn, n ∈ N ,
s ∈ S, h ∈ H−s ,
i ∈ I, ω ∈ Ω. (A.7)

The energy content of storage is limited by capacity:

wstor
n,b,h,i,ω ≤ vstorENn,b,i , b ∈ Bn, n ∈ N , h ∈ H, i ∈ I, ω ∈ Ω. (A.8)

The amount of charging and discharging per hour is also limited by capacity:

ychrgn,b,h,i,ω ≤ v
storPW
n,b,i , b ∈ Bn, n ∈ N , h ∈ H, i ∈ I, ω ∈ Ω, (A.9)

ydischrgn,b,h,i,ω ≤ ρbv
storPW
n,b,i , b ∈ Bn, n ∈ N , h ∈ H, i ∈ I, ω ∈ Ω. (A.10)
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For hydroelectric generators, energy available is restricted by season and node:

∑
h∈Hs

ygeng,n,h,i,ω ≤ ξ
RegHydLim
n,i,s,ω , n ∈ N , g ∈ GRegHyd ∩ Gn,

s ∈ S, i ∈ I, ω ∈ Ω, (A.11)∑
ω∈Ω

πω
∑
s∈S

αs
∑
h∈Hs

∑
g∈GHyd∩Gn

ygenn,g,h,i,ω ≤ ξ
HydLim
n , n ∈ N , i ∈ I. (A.12)

Transmission operation is in a net transfer capacity (NTC) representation:

ytrana,h,i,ω ≤ vtranl,i , l ∈ L, a ∈ Al, h ∈ H, i ∈ I, ω ∈ Ω. (A.13)

Total annual emissions are limited by an emission cap:

∑
s∈S

αs
∑
h∈Hs

∑
n∈N

∑
g∈Gn

qCO2
g,i ygenn,g,h,i,ω ≤ Q

CO2
i , i ∈ I, ω ∈ Ω. (A.14)

A.5.2 Investment constraints

Every generator, transmission line and storage unit have existing capacity available
in each period:

vgenn,g,i = x̄genn,g,i +
i∑

j=i′
xgenn,g,j , g ∈ Gn, n ∈ N , i ∈ I,

i′ = max{1, i− igeng }, (A.15)

vtranl,i = x̄tranl,i +
i∑

j=i′
xtranl,j , l ∈ L, i ∈ I,

i′ = max{1, i− itranl }, (A.16)

vstorPWn,b,i = x̄storPWn,b,i +
i∑

j=i′
xstorPWn,b,j , b ∈ Bn, n ∈ N , i ∈ I,

i′ = max{1, i− istorb }, (A.17)

vstorENn,b,i = x̄storENn,b,i +
i∑

j=i′
xstorENn,b,j , b ∈ Bn, n ∈ N , i ∈ I,

i′ = max{1, i− istorb }. (A.18)
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There are restrictions on investments and available capacity the technologies in
each node: ∑

g∈Gt

xgenn,g,i ≤ X̄
gen
t,n,i, t ∈ T , n ∈ N , i ∈ I, (A.19)

xtranl,i ≤ X̄tran
l,i , l ∈ L, i ∈ I, (A.20)

xstorPWn,b,i ≤ X̄storPW
n,b,i , b ∈ Bn, n ∈ N , i ∈ I, (A.21)

xstorENn,b,i ≤ X̄storEN
n,b,i , b ∈ Bn, n ∈ N , i ∈ I, (A.22)∑

g∈Gt

vgenn,g,i ≤ V̄
gen
t,n,i, t ∈ T , n ∈ N , i ∈ I, (A.23)

vtranl,i ≤ V̄ tran
l,i , l ∈ L, i ∈ I, (A.24)

vstorPWn,b,i ≤ V̄ storPW
n,b,i , b ∈ Bn, n ∈ N , i ∈ I, (A.25)

vstorENn,b,i ≤ V̄ storEN
n,b,i , b ∈ Bn, n ∈ N , i ∈ I. (A.26)

Some storage technologies b ∈ B† ⊆ B have dependencies between power and energy
capacity:

vstorPWn,b,i = βbv
storEN
n,b,i , b ∈ B† ∩ Bn, n ∈ N , i ∈ I. (A.27)
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Appendix B
Scenario Generation Results

This appendix presents the numerical results for the computational study.

Table B.1: Results for N=20 runs for the different scenario generation routines.

In Sample Stability
Scenario
Type Average Relative St. Dev (%)

R3 1.91+12 1.40
R5 1.93+12 2.73
R7 1.92+12 1.48
R10 1.93+12 0.94
M3 1.83+12 1.42
M5 1.85+12 2.42
M7 1.84+12 2.05
M10 1.85+12 1.59
ML3 1.83+12 1.84
ML5 1.84+12 1.90
ML7 1.85+12 1.15
ML10 1.85+12 1.43
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Table B.2: Out-of-Sample results for N=40 scenarios for the different scenario generation
routines when the investment decisions are already locked.

Out-of-Sample Stability
Scenario
Type Average Relative St. Dev (%)

R3 2.13+12 6.45
R5 2.00+12 1.48
R7 1.99+12 1.73
R10 1.98+12 2.94
M3 2.05+12 2.46
M5 2.02+12 2.22
M7 2.00+12 2.80
M10 1.98+12 0.96
ML3 2.60+12 8.47
ML5 2.46+12 5.61
ML7 2.24+12 5.78
ML10 2.23+12 3.95

Table B.3: Average generated installed capacity and annual production for Solar power
for the respective Scenario Generation Routines.

Solar Avg. Generated Installed Capacity (GW) Relative St. Dev (%)
Type 2025 2030 2035 2040 2025 2030 2035 2040
R3 2.55+05 2.81+05 2.86+05 2.86+05 9.70 10.12 9.34 9.34
R5 2.45+05 2.78+05 2.81+05 2.81+05 8.43 7.87 7.61 7.62
R7 2.38+05 2.65+05 2.67+05 2.67+05 12.11 12.94 13.04 13.04
R10 2.54+05 2.81+05 2.82+05 2.82+05 5.30 5.99 6.05 6.05
M3 2.40+05 2.59+05 2.65+05 2.65+05 7.66 6.56 6.21 6.21
M5 2.43+05 2.68+05 2.73+05 2.73+05 5.26 4.75 5.39 5.40
M7 2.43+05 2.65+05 2.69+05 2.69+05 4.18 4.00 3.59 3.59
M10 2.43+05 2.62+05 2.64+05 2.64+05 7.26 8.24 8.33 8.33
ML3 2.16+05 2.35+05 2.37+05 2.37+05 12.76 12.86 12.98 12.98
ML5 2.19+05 2.36+05 2.39+05 2.39+05 5.10 5.74 5.40 5.40
ML7 2.19+05 2.34+05 2.37+05 2.37+05 4.7 5.4 4.7 4.7
ML10 2.14+05 2.32+05 2.33+05 2.33+05 10.8 11.7 11.9 11.9

Avg. Annual Production (TWh) Relative St. Dev (%)
R3 3.27+05 3.58+05 3.66+05 3.70+05 13.2 14.2 10.6 12.5
R5 3.08+05 3.55+05 3.57+05 3.61+05 11.7 8.2 8.6 9.9
R7 3.02+05 3.40+05 3.44+05 3.40+05 14.2 13.7 14.5 14.9
R10 3.26+05 3.66+05 3.66+05 3.66+05 7.4 7.4 8.4 6.6
M3 3.14+05 3.37+05 3.46+05 3.49+05 9.5 8.6 7.3 7.7
M5 3.14+05 3.49+05 3.56+05 3.58+05 7.2 5.0 6.6 6.3
M7 3.15+05 3.45+05 3.54+05 3.49+05 6.0 5.4 4.9 4.7
M10 3.15+05 3.44+05 3.46+05 3.48+05 8.3 9.0 9.7 9.0
ML3 2.47+05 2.77+05 2.74+05 2.72+05 15.3 15.6 16.1 15.1
ML5 2.50+05 2.73+05 2.76+05 2.77+05 7.1 8.3 6.7 7.2
ML7 2.53+05 2.71+05 2.75+05 2.76+05 6.3 6.9 5.7 5.8
ML10 2.45+05 2.68+05 2.70+05 2.70+05 11.9 13.5 12.7 13.3
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Table B.4: Average generated installed capacity and annual production for Wind Off-
shore power for the respective Scenario Generation Routines.

Wind
Offshore Avg. Generated Installed Capacity (GW) Relative St. Dev (%)

Type 2025 2030 2035 2040 2025 2030 2035 2040
R3 1.81+04 1.81+04 4.90+04 4,90+04 6.2 6.2 28.8 28.8
R5 1,83+04 1,83+04 4,90+04 4,90+04 4.6 4.6 28.4 28.4
R7 1.81+04 1.81+04 4.54+04 4.54+04 4.4 4.4 26.5 26.5
R10 1.79+04 1.79+04 4.75+04 4.75+04 2.8 2.8 25.4 25.4
M3 1.80+04 1.80+04 4.51+04 4.51+04 4.1 4.1 26.7 26.7
M5 1.82+04 1.82+04 3.98+04 3.98+04 3.5 3.5 23.8 23.8
M7 1.79+04 1.79+04 4.41+04 4.41+04 2.1 2.1 22.7 22.7
M10 1.78+04 1.78+04 3.65+04 3.65+04 2.4 2.4 20.3 20.3
ML3 1.87+04 1.87+04 4.62+04 4.62+04 5.7 5.7 33.4 33.4
ML5 1.82+04 1.82+04 4.75+04 4.75+04 3.8 3.8 20.3 20.3
ML7 1.84+04 1.84+04 4.56+04 4.56+04 4.0 4.0 28.9 28.9
ML10 1.80+04 1.80+04 4.80+04 4.80+04 2.2 2.2 21.2 21.2

Avg. Annual Production (TWh) Relative St. Dev (%)
R3 5.20+04 5.41+04 1.74+05 1.81+05 12.5 15.1 33.9 32.3
R5 5.21+04 5.31+04 1.77+05 1.80+05 5.4 11.1 30.7 32.5
R7 5.08+04 5.24+04 1.64+05 1.65+05 9.1 8.4 29.3 29.2
R10 4.91+04 5.15+04 1.70+05 1.74+05 5.1 8.7 28.4 27.5
M3 5.35+04 5.68+04 1.68+05 1.71+05 7.3 6.8 29.4 31.1
M5 5.69+04 5.76+04 1.48+05 1.50+05 5.5 6.9 25.5 28.0
M7 5.31+04 5.61+04 1.66+05 1.72+05 3.0 4.5 24.9 25.2
M10 5.30+04 5.52+04 1.34+05 1.36+05 4.6 5.7 21.9 22.8
ML3 5.56+04 5.99+04 1.73+05 1.77+05 9.7 11.3 37.4 38.1
ML5 5.38+04 5.73+04 1.79+05 1.79+05 9.7 7.1 21.6 22.9
ML7 5.50+04 5.70+04 1.69+05 1.70+05 6.1 8.1 31.1 32.6
ML10 5.31+04 5.55+04 1.80+05 1.81+05 5.6 6.2 23.1 24.1

Table B.5: Average generated installed capacity and annual production for Wind On-
shore power for the respective Scenario Generation Routines.

Wind
Onshore Avg. Generated Installed Capacity (GW) Relative St. Dev (%)

Type 2025 2030 2035 2040 2025 2030 2035 2040
R3 4.22+05 4.93+05 4.99+05 4.99+05 6.5 7.0 7.1 7.1
R5 4.41+05 4.96+05 5.02+05 5.02+05 6.1 5.3 6.4 6.4
R7 4.44+05 5.01+05 5.10+05 5.10+05 7.2 5.6 5.3 5.3
R10 4.37+05 4.96+05 4.99+05 4.99+05 4.1 4.5 4.7 4.7
M3 4.58+05 5.29+05 5.43+05 5.43+05 6.9 3.7 4.6 4.6
M5 4.59+05 5.30+05 5.39+05 5.39+05 4.1 4.0 4.6 4.6
M7 4.57+05 5.30+05 5.35+05 5.35+05 3.0 3.5 3.7 3.7
M10 4.59+05 5.41+05 5.46+05 5.46+05 3.1 2.6 3.2 3.2
ML3 4.57+05 5.31+05 5.41+05 5.41+05 6.4 4.7 5.1 5.1
ML5 4.65+05 5.31+05 5.36+05 5.36+05 3.2 4.2 4.0 4.0
ML7 4.63+05 5.32+05 5.38+05 5.38+05 4.1 4.5 5.1 5.1
ML10 4.63+05 5.33+05 5.36+05 5.36+05 3.6 3.1 3.1 3.1

Avg. Annual Production (TWh) Relative St. Dev (%)
R3 9.43+05 1.11+06 1.08+06 1.09+06 10.9 10.7 8.7 9.9
R5 9.75+05 1.08+06 1.10+06 1.12+06 9.7 9.2 8.6 8.9
R7 9.65+05 1.10+06 1.14+06 1.14+06 10.5 8.4 6.2 7.3
R10 9.44+05 1.09+06 1.10+06 1.12+06 5.9 6.5 6.3 8.2
M3 1.06+06 1.25+06 1.28+06 1.28+06 8.3 7.2 8.3 6.3
M5 1.08+06 1.25+06 1.26+06 1.26+06 4.8 5.4 6.5 5.8
M7 1.06+06 1.25+06 1.26+06 1.29+06 4.2 4.4 4.3 5.0
M10 1.07+06 1.27+06 1.29+06 1.28+06 4.2 3.3 3.7 3.7
ML3 1.04+06 1.26+06 1.27+06 1.26+06 10.0 7.8 7.5 10.8
ML5 1.07+06 1.24+06 1.26+06 1.25+06 6.7 6.8 7.8 7.1
ML7 1.05+06 1.24+06 1.24+06 1.25+06 5.0 5.9 7.2 6.3
ML10 1.07+06 1.24+06 1.26+06 1.25+06 5.8 3.9 3.9 3.7
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Table B.6: Average generated installed capacity and annual production for Hydro Run-
of-the-river power for the respective Scenario Generation Routines.

Hydro Run-
of-the-river Avg. Generated Installed Capacity (GW) Relative St. Dev (%)

Type 2025 2030 2035 2040 2025 2030 2035 2040
R3 8.09+04 8.27+04 8.30+04 8.30+04 2.0 0.7 0.9 0.9
R5 8.16+04 8.28+04 8.30+04 8.30+04 1.9 0.5 0.6 0.6
R7 8.21+04 8.28+04 8.30+04 8.30+04 0.6 0.5 0.6 0.6
R10 8.19+04 8.30+04 8.31+04 8.31+04 1.1 0.6 0.6 0.6
M3 8.05+04 8.27+04 8.33+04 8.33+04 1.8 0.6 0.5 0.5
M5 8.01+04 8.32+04 8.34+04 8.34+04 2.5 0.5 0.7 0.7
M7 8.12+04 8.32+04 8.35+04 8.35+04 1.7 0.6 0.6 0.6
M10 8.06+04 8.31+04 8.33+04 8.33+04 2.2 0.4 0.4 0.4
ML3 8.11+04 8.27+04 8.29+04 8.30+04 2.1 0.7 0.6 0.6
ML5 8.17+04 8.30+04 8.32+04 8.32+04 1.7 0.4 0.4 0.4
ML7 8.14+04 8.31+04 8.32+04 8.32+04 2.4 0.4 0.5 0.5
ML10 8.19+04 8.31+04 8.31+04 8.31+04 2.0 0.3 0.4 0.4

Avg. Annual Production (TWh) Relative St. Dev (%)
R3 2.98+05 2.90+05 2.93+05 2.92+05 4.9 4.0 2.9 2.6
R5 2.98+05 2.92+05 2.91+05 2.90+05 4.1 2.2 2.3 3.4
R7 3.01+05 2.93+05 2.93+05 2.92+05 2.6 2.5 2.3 2.0
R10 3.00+05 2.91+05 2.93+05 2.91+05 2.4 1.7 2.2 2.2
M3 2.88+05 2.83+05 2.83+05 2.85+05 3.5 3.0 3.1 2.9
M5 2.87+05 2.83+05 2.82+05 2.82+05 5.7 3.0 2.5 3.2
M7 2.92+05 2.83+05 2.83+05 2.81+05 2.5 2.2 2.5 2.2
M10 2.89+05 2.84+05 2.82+05 2.83+05 4.0 2.5 1.9 2.4
ML3 3.00+05 2.91+05 2.88+05 2.92+05 4.0 2.7 2.2 2.4
ML5 3.02+05 2.92+05 2.91+05 2.94+05 3.8 1.9 3.1 1.8
ML7 3.02+05 2.92+05 2.91+05 2.92+05 4.3 1.6 2.0 1.6
ML10 3.02+05 2.92+05 2.92+05 2.91+05 2.9 1.2 1.6 1.5

Table B.7: Results for N=20 runs for each model in the reduced EMPIRE-model. Each
model has been run against a total of 500 randomly generated scenarios equal for the
different scenario generation routines.

In Sample Stability
Scenario
Type Average Relative St. Dev (%)

RR10 6.12+11 1.7
RR50 6.19+11 0.8
RR100 6.19+11 0.7
RR200 6.19+11 0.6

Out-of-Sample Stability
RR10 6.38E+11 1.54
RR50 6.22E+11 0.48
RR100 6.21E+11 0.27
RR200 6.20E+11 0.13

62



Table B.8: Average generated installed capacity and annual production for Solar power
for the reduced EMPIRE-model.

Solar Avg. Generated Installed Capacity (GW) Relative St. Dev (%)
Type 2025 2030 2035 2040 2025 2030 2035 2040
RR10 6.90+04 7.30+04 7.35+04 7.35+04 7.5 12.3 12.9 12.9
RR50 6.73+04 6.95+04 6.95+04 6.95+04 7.9 8.9 8.9 8.9
RR100 6.72+04 6.85+04 6.85+04 6.85+04 4.1 6.4 6.4 6.4
RR200 6.75+04 6.82+04 6.82+04 6.82+04 4.5 4.6 4.6 4.6

Avg. Annual Production (TWh) Relative St. Dev (%)
RR10 7.67+04 8.08+04 8.13+04 8.18+04 9.9 14.8 15.1 16.8
RR50 7.36+04 7.67+04 7.71+04 7.70+04 8.8 10.6 10.2 10.3
RR100 7.40+04 7.59+04 7.58+04 7.56+04 4.8 7.5 7.4 6.7
RR200 7.45+04 7.52+04 7.52+04 7.52+04 4.5 4.5 5.1 4.9

Table B.9: Average generated installed capacity and annual production for Wind Off-
shore power for the reduced EMPIRE-model.

Wind
Offshore Avg. Generated Installed Capacity (GW) Relative St. Dev (%)

Type 2025 2030 2035 2040 2025 2030 2035 2040
RR10 7.56+03 7.56+03 1.15+04 1.15+04 0.0 0.0 47.3 47.3
RR50 7.56+03 7.56+03 1.27+04 1.27+04 0.0 0.0 45.1 45.1
RR100 7.56+03 7.56+03 1.25+04 1.25+04 0.0 0.0 35.4 35.4
RR200 7.56+03 7.56+03 1.04+04 1.04+04 0.0 0.0 27.8 27.8

Avg. Annual Production (TWh) Relative St. Dev (%)
RR10 2.12+04 2.19+04 3.76+04 3.71+04 9.5 9.0 61.5 56.1
RR50 2.13+04 2.18+04 4.22+04 4.21+04 6.9 4.4 53.9 54.6
RR100 2.15+04 2.17+04 4.15+04 4.14+04 2.8 3.1 42.7 42.3
RR200 2.15+04 2.17+04 3.30+04 3.30+04 2.3 1.7 34.6 35.2

Table B.10: Average generated installed capacity and annual production for Wind On-
shore power for the reduced EMPIRE-model.

Wind
Onshore Avg. Generated Installed Capacity (GW) Relative St. Dev (%)

Type 2025 2030 2035 2040 2025 2030 2035 2040
RR10 9.21+04 1.14+05 1.14+05 1.14+05 12.0 11.5 11.5 11.5
RR50 9.49+04 1.14+05 1.14+05 1.14+05 7.3 7.9 7.9 7.9
RR100 9.28+0 1.12+05 1.12+05 1.12+05 5.3 7.1 7.1 7.1
RR200 9.20+04 1.15+05 1.15+05 1.15+05 5.8 4.1 4.1 4.1

Avg. Annual Production (TWh) Relative St. Dev (%)
RR10 1.69+05 2.25+05 2.22+05 2.21+05 20.2 17.5 18.1 17.0
RR50 1.75+05 2.22+05 2.20+05 2.18+05 12.1 10.2 10.1 9.4
RR100 1.71+05 2.18+05 2.18+05 2.18+05 8.7 10.2 8.9 8.8
RR200 1.70+05 2.22+05 2.24+05 2.23+05 8.1 5.6 5.3 5.0

63



Table B.11: Average generated installed capacity and annual production for Hydro
Run-of-the-River power for the reduced EMPIRE-model.

Hydro Run-
of-the-River Avg. Generated Installed Capacity (GW) Relative St. Dev (%)

Type 2025 2030 2035 2040 2025 2030 2035 2040
RR10 2.50+04 2.50+04 2.50+04 2.50+04 0.0 0.0 0.0 0.0
RR50 2.50+04 2.50+04 2.50+04 2.50+04 0.0 0.0 0.0 0.0
RR100 2.50+04 2.50+04 2.50+04 2.50+04 0.0 0.0 0.0 0.0
RR200 2.50+04 2.50+04 2.50+04 2.50+04 0.0 0.0 0.0 0.0

Avg. Annual Production (TWh) Relative St. Dev (%)
RR10 1.26+05 1.27+05 1.26+05 1.26+05 3.4 3.2 3.8 2.7
RR50 1.26+05 1.26+05 1.27+05 1.27+05 0.9 1.7 1.5 1.7
RR100 1.25+05 1.27+05 1.27+05 1.27+05 1.0 1.2 1.0 0.8
RR200 1.26+05 1.27+05 1.27+05 1.27+05 0.7 0.8 0.9 0.8
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