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Research Questions

We consider the optimal harvesting decision of a salmon farmer that faces the risk of
harmful algal bloom and market uncertainty. The salmon farmer seeks to maximize the
financial value of the fish farm by determining the optimal course of actions during the
algal bloom, and the optimal time to harvest after the bloom. Specifically, we develop
a framework to compare the options to perform an early harvest, or to wait in order to
learn about the true algal risk. Later, we extend this framework by taking into account
the option to move the salmon to an algal free location.

In this thesis we answer the questions of:

• What is the optimal harvesting strategy and value of managerial flexibility during
a harmful algal bloom while receiving imperfect information about the true algal
risk? How does the opportunity to move affect the course of actions?

• What should policy-makers do to facilitate optimal decision-making during harmful
algal blooms?

To illustrate the results and investigate the robustness of our model, we present two
case studies with realistic industry parameters from the Norwegian and Chilean salmon
farming industries.
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Abstract

Harmful algal blooms can cause fatal damage to farmed salmon. This forces salmon
farmers who face the risk of algal blooms to make difficult decisions regarding what to do
with their biomass. In 2019, an algal bloom in Norway caused great financial damage to
both smaller and larger salmon farmers, which had dire effects on the local communities
they support. This revealed the need for proper management tools to aid farmers facing
algal risk. There exists some literature on optimal harvesting of salmon, but no models
for helping salmon farmers make optimal decisions while facing the risk of losing their
biomass. This master thesis introduces a novel decision-making evaluation method for
flexibility in harvesting during harmful algal blooms. Here, we demonstrate that if salmon
farmers can actively learn about the true risk of losing the biomass, the value of flexibility
in the harvesting decision is significant. We use the Least Squares Monte Carlo approach
together with two-factor price modeling, risk modeling, and learning through signals, in
order to determine the optimal timing of early harvesting. Furthermore, we quantify
the value of having flexibility in the timing of early harvest. In addition, we develop a
framework for evaluating the possibility of moving the biomass and examine the effect this
has on the harvesting decision. Through case studies in a Norwegian and Chilean setting,
we ensure the robustness of our model. We find that the availability of reliable information
heavily affects what decisions salmon farmers should make, with higher reliability yielding
higher value for salmon farmers. When information is sufficiently reliable, it is worth
taking the risk of losing the biomass in order to learn, and make a better-informed decision
at a later stage. Therefore, it is of great importance that policy-makers, governments, and
industry organizations facilitate communication between industry actors, the collection
of reliable data, and implementation of mitigation strategies. This applies both during a
harmful algal bloom and as preventative measures.
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Sammendrag

Skadelige algeoppblomstringer kan føre til dødelighet hos oppdrettslaks. Dette tvinger
lakseoppdrettere som st̊ar overfor risikoen for algeoppblomstring til å ta vanskelige beslut-
ninger om hva de skal gjøre med biomassen. I 2019 for̊arsaket en algeoppblomstring i
Norge store økonomiske tap for små og store lakseoppdrettere. De økonomiske tapene
hadde alvorlige konsekvenser for de berørte lokalsamfunnene. Denne hendelsen avslørte
behovet for et beslutningsverktøy som kan hjelpe lakseoppdrettere som st̊ar overfor al-
gerisiko. Fra før finnes det en del litteratur om optimalt slaktetidspunkt for laks, men
ingen modeller som hjelper lakseoppdrettere med å ta optimale beslutninger n̊ar de st̊ar
overfor risiko for at biomassen g̊ar tapt. Denne masteroppgaven introduserer en ny eval-
ueringsmetode for beslutningtaking med fleksibilitet i slaktetidspunkt under skadelige al-
geoppblomstringer. Vi demonstrerer at dersom lakseoppdrettere kan lære om den sanne
risikoen for at biomassen g̊ar tapt, tilfører fleksibilitet i slaktetidspunktet betydelig verdi.
Vi bruker metoden Least Squares Monte Carlo sammen med tofaktor prismodellering,
risikomodellering og læring gjennom signaler for å bestemme det optimale tidspunktet for
tidlig slakt. Videre kvantifiserer vi verdien av fleksibilitet for tidlig slakt. I tillegg utvikler
vi et rammeverk for å evaluere muligheten for å flytte biomassen og undersøker hvilken
effekt dette har p̊a beslutningen om å slakte. Gjennom casestudier i en norsk og chilensk
setting, sikrer vi modellens robusthet. Resultatene v̊are viser at beslutningene oppdret-
tere bør ta, p̊avirkes i stor grad av tilgjengeligheten av p̊alitelig informasjon. Videre viser
resultatene at høyere p̊alitelighet øker verdien for lakseoppdretterne. Dersom informasjo-
nen er tilstrekkelig p̊alitelig er det verdt å ta risikoen for å miste biomassen for å lære mer
om den sanne risikoen og f̊a et bedre beslutningsgrunnlag. Derfor er det viktig at poli-
tikere og bransjeorganisasjoner legger til rette for kommunikasjon mellom industriaktører,
innsamling av p̊alitelig data og implementering av skadebegrensningstiltak. Dette gjelder
b̊ade under en skadelig algeoppblomstring og som forebyggende tiltak.
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Chapter 1
Introduction

In the spring of 2019, a harmful algal bloom (HAB) in Norway caused great damage
to salmon farmers located in the counties Nordland and Troms. The HAB resulted in
the loss of 14 500 tons of Atlantic salmon with economic consequences and ripple effects
estimated between 2.3 to 2.8 billion NOK (Kontali, 2020). The risk of losing millions worth
of revenues forced small and large salmon farmers to make swift decisions regarding how
they should respond to the threat. At the same time, salmon farmers received information
about the algal spread from research communities, as well as hearsay from nearby farms,
which created an incentive to wait in order to learn about the risk and make a more
informed decision (Directorate of Fisheries, 2020a; Karlsen et al., 2019).

During the HAB outbreak, there were mainly two actions that farmers took, namely to
perform an early harvest or move the biomass. As an example, SalMar decided to harvest
1 000 tons of salmon weeks before the planned schedule1. Other large salmon companies
with spatial diversification, such as Cermaq and Nordlaks, moved their fish away from
the HAB to alternative locations in order to secure further salmon growth (Directorate
of Fisheries, 2019b). The fundamental problem for farmers during HABs is to choose the
right action at the right time. There exists a wide body of literature regarding optimal
harvesting time of salmon, such as the work of Asche and Bjørndal (2011) and Ewald
et al. (2017). However, none of these account for the risk of losing the biomass and the
possibility to learn about the risk level. Thus, there is a need for models the salmon
farmers can apply to find the optimal decisions in such a situation. This is the problem
we address in this thesis.

Performing an early harvest entails losing the future growth of the biomass, and the possi-
bility to harvest optimally at a later stage. Moving the biomass can be costly due to direct
moving costs and indirect production costs as feed conversion ratios (FCRs) and salmon
mortality increase, as a result of high fish density during wellboat transportation (Basrur
et al., 2009; Calabrese et al., 2017). Moreover, the salmon farmers do not know the true
risk that the algae will arrive at their farms. However, farmers receive imperfect signals
from other farmers and research organizations about the true risk. Another challenge that

1https://e24.no/boers-og-finans/i/8mOkkG/salmar-slakter-tusen-tonn-laks-for-aa
-sikre-seg-mot-alger

1
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Chapter 1. Introduction

the farmers face is that the future salmon price is highly uncertain. Salmon spot prices
tend to fluctuate in the short-run, but salmon farmers can observe the expected long-run
price via forwards prices. Given all the uncertainties involved, the timing of the decision
is crucial. Static valuation methods, such as the Net Present Value (NPV) approach, have
a now-or-never nature and does not recognize the value of information or flexibility. In
order to encapsulate the uncertainties and the value of waiting in order to learn, more
advanced valuation tools are needed. We apply Real Options (RO) methodology to find
the optimal timing and choice of strategy for salmon farmers facing HAB risk.

HABs are considered to be a global issue and is not an event exclusively experienced
by Norwegian salmon farmers. Chile, the second largest salmon producer after Norway,
has also experienced several dramatic HAB outbreaks. In 2016, a severe HAB oubreak
in the southern parts of Chile killed 39 000 tons of Atlantic salmon and trout (Montes
et al., 2018). More recently, in April 2020, Marine Farm in the Aysén region lost 43
tons due to a HAB2. In both Chile and Norway, the salmon farming industry supports
many local communities along the coasts. Losses as a result of HABs can have large
effects on these communities as the financial effects can cause bankruptcies and loss of
livelihoods. The frequency and severity of HABs have increased dramatically on a global
scale in recent decades, and this trend may continue due to climate change (Anderson,
2009; Sellner et al., 2003). There is also consensus among scientists that economic losses
are increasing due to HABs (Anderson et al., 2012). Thus, better decision-making tools
in the presence of HAB risk can contribute to securing the future of the local communities
that are necessary for a sustainable salmon farming industry.

The aim of this master thesis is to identify optimal harvesting strategies for small and large
salmon farmers when facing the risk of HAB arrival and stochastic prices. In order to do so,
we develop three novel models using RO methodology. The first model, the General Single
Rotation Model (GSR-model), finds the optimal time to harvest while facing uncertain
prices without algal risk. Moreover, the GSR-model quantifies the value of flexibility
in the operations of a salmon farmer, and is also used as input into the more advanced,
subsequent models. The Early Harvest Model (EH-model) is the main focus of this thesis.
The EH-model finds the optimal harvesting strategy and quantifies the value of harvesting
flexibility during a time-limited HAB, while facing stochastic prices. The EH-model also
accounts for the imperfect information farmers receive, which they use to learn about the
true HAB arrival rate. The third and final model, the Early Harvest-Move Model (EH-M-
model), extends the EH-model and allows companies with spatial diversification to jointly
evaluate the decision between early harvesting and moving. We apply the EH-M-model
to investigate if moving the biomass can bring additional value for farmers. We apply the
models on two case studies, for Norway and Chile. This is of interest since the world’s
two largest producers of farmed salmon operate under different production conditions.
We investigate these two cases in order to identify optimal strategies for salmon farmers
from both parts of the world. All models use sophisticated price modeling, and are solved
using state of the art simulation and regression methods.

Our thesis contributes to the literature in the following ways. We develop a novel opti-
mal early harvesting model that incorporates both active and passive learning in an RO
framework. Salmon farmers learn about the uncertain arrival rate of HAB through signals

2https://salmonbusiness.com/10000-harvest-size-salmon-die-from-red-tide/

2
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from research organizations. Based on these signals, farmers can actively update their
beliefs about the algal arrival rate in accordance with Bayes’ rule. Additionally, farmers
passively learn about the salmon price development by postponing their decision. To the
best of our knowledge, we are the first to include HAB risk modeling in the context of
optimal harvesting within the aquaculture literature. Our model could also be applied to
other kinds of disease outbreaks that incorporates learning about the true rate of infection
which is not known. We use realistic industry parameters and show that our model is
robust to different geographical settings.

Furthermore, we provide novel insights for salmon farmers, policy-makers and industry
organizations that can be summarized as follows. Firstly, we give salmon farmers a
framework for making optimal harvesting decisions during HABs. Additionally, we offer
recommendations for policy-makers on how they can facilitate optimal decision-making
for salmon farmers during HABs.

Our results show that there is significant value in managerial flexibility in the harvesting
decision both with and without HAB risk. The value of harvesting flexibility varies
across the production cycle. In particular, the harvesting flexibility has little value in
the early stages of the cycle, but increases in value for later stages. In other words, the
current weight of the salmon largely affects the harvesting decision. As a consequence,
if the HAB occurs early in the cycle when the biomass is low, salmon farmers should
ignore the signals and perform no early harvest. However, if the HAB arrival intensity is
sufficiently increased, we find that flexibility in the harvesting decision is valuable even
for the early production cycle stages. Furthermore, we find that when the signals are
sufficiently reliable, it is worth taking the risk of losing the biomass in order to learn more
about the true risk.

The main insights of this thesis are that there is significant value in information when
farmers have the possibility to actively learn about the true risk. The availability of reli-
able information heavily affects what decisions salmon farmers should make, with higher
reliability yielding higher value for salmon farmers. Therefore, it is of great importance
that policy-makers, governments, and industry organizations facilitate communication be-
tween industry actors, the collection of reliable data, and implementation of mitigation
strategies, both during a HAB and as proactive measures.

The remainder of this thesis is organized as follows. Chapter 2 presents relevant aspects of
the salmon farming industry in Norway and Chile with respect to our problem. Chapter 3
presents a review of the literature relevant to our research questions. The three models
and the solution approaches are described in Chapter 4. In Chapter 5, we quantify
parameters for a Norwegian and Chilean case study. Results and discussion of the case
studies are presented in Chapter 6. Finally, Chapter 7 concludes the master thesis and
provides suggestions for further work.
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Chapter 2
Background

This chapter presents relevant aspects of the salmon farming industry with respect to the
research questions. Section 2.1 gives an overview of the different phases of the production
cycle and discusses relevant production costs in salmon farming. Section 2.2 presents
background on HABs, including a review of recent events, the biological preconditions for
HABs, and the actions available for salmon farmers during a HAB. Section 2.3 discusses
salmon price characteristics and the salmon futures market.

2.1 Salmon Farming
The salmon farming production cycle can be broken down to the following phases:

i) Egg and spawn production. In hatcheries, eggs are fertilized and hatched.

ii) Smolt production. In a controlled freshwater environment on land, salmon are
grown to a weight of around 100 to 150 grams. This usually takes between 10 to 16
months.

iii) Sea phase. The sea farming phase is where the salmon are transferred to sea water
cages for further growth. This period lasts about 12 to 24 months and requires
ideal water temperatures and sheltering from harsh weather. In this part of the
production cycle, biological issues such as HABs become present to salmon farmers.
Thus, it is the sea farming phase that is of interest in this thesis.

iv) Harvesting and processing. Towards the end of the production cycle, fish are
transferred to a process plant for slaughtering and final processing. Transportation
of salmon is usually conducted through the use of wellboats (Mowi, 2019).

The total average production cycle length is about three years. However, the production
cycle in Chile is shorter compared to Norway. This is because the sea water temperatures
are more ideal for salmon growth and the temperatures have fewer fluctuations. The
average sea water temperature in Chile is about 12◦C, while production regions in Norway
average around 10◦C (Mowi, 2019). The sea water temperature is considered to be a
natural competitive advantage for Chilean salmon farmers as they operate with shorter
cycles.
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2.1 Salmon Farming

The sea farming phase is the most time consuming part of the production cycle. In
this phase, the salmon is traditionally kept in open sea cages made of plastic, metal or
rope nets. The cages are moored to the bottom of the ocean and kept afloat at the
surface of the sea. This allows for free flow of water while keeping the salmon in place, as
well as easy access for feeding and harvesting. At the same time, the sea pens must be
sufficiently sheltered from harsh weather. The coastline and fjords of countries such as
Chile and Norway, providing ideal production conditions, have consequently given them
a competitive advantage within salmon farming.

As the salmon is exposed to the surrounding aquatic environment, the sea farming phase is
the phase where major biological challenges arise. The issues of HABs, sea lice, and spread
of diseases are some of the obstacles the aquaculture industry is seeking to overcome.
The biological challenges have resulted in authorities imposing industry regulations and
incentivizing technological innovation, seeking to achieve more sustainable production.
Policy-makers in Norway have, e.g., set a maximum allowed biomass (MAB) of 780 tons
per licence, except for the counties Finnmark and Troms where the MAB is 945 tons
(Directorate of Fisheries, 2017). There is also a limit of 200 000 salmon per cage. In
addition to regulations and biological issues, salmon farmers also face various production
costs in the sea farming phase. The next section will look at the largest and most relevant
production costs associated with this part of the production cycle.

Relevant Sea Phase Production Costs
The production costs for Norwegian salmon farmers have been steadily increasing since the
early 2000s. The same can be said for salmon farmers located in Chile, but the production
costs have been more variable. The average production costs for slaughtered and prepared
salmon in 2018 were around 38 NOK per kilogram salmon produced in Norway1. When
comparing against Chile for the same year, the average total production costs were 6.5%
lower (Iversen et al., 2019). Aquaculture in Norway saw a significant increase in the costs
from 2012 to 2016, mainly due to higher feed prices and issues related to lice and diseases.

Figure 2.1 below shows the production costs by cost category for 2018 in Norway.

Figure 2.1: Illustration of the production costs, excluding financial expenses, for Norwegian
salmon farmers during 2018. Other operating expenses includes costs related to services, main-
tenance, administration, etc (Iversen et al., 2019).

1https://www.barentswatch.no/havbruk/kostnader
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Chapter 2. Background

It is evident from Fig. 2.1 that feeding costs alone account for around 50% of the total
production costs and is thus the most important input factor in salmon aquaculture
(Asche and Oglend, 2016). Feeding costs occur throughout the production cycle and is
highly relevant for the sea farming phase. As harvesting the fish means that the farmer
stops paying feeding costs, these costs have a great impact on the decision to harvest or
to continue farming. As seen in Fig. 2.1, costs related to wellboat and slaughter make
up about 10% of the production costs. Wellboat and slaughter costs are important when
considering the possible actions during HAB outbreaks. This is because transportation
of fish is necessary if the salmon farmer decides to harvest early or move the biomass to
another production facility. We will not include costs regarding depreciation, wages and
salaries, smolt, and other operating expenses. This is because these costs are not directly
affecting the operation and the actions in the sea farming phase.

Feeding costs involve feeding the salmon to an optimal slaughter weight. The feeding
costs can be decomposed into feed conversion ratio (FCR) and feed price. The FCR is
a production indicator that indicates how effectively the fish is consuming the feed. The
FCR is affected by relationships such as the biological feed utilization, feed waste, and
lost biomass during production. These relationships are again affected by HABs, diseases,
sea lice, sea water temperature, feed quality, feeding regime, etc.

Feeding costs and feed price movements in the salmon producing countries are historically
quite similar. The similarities are due to the fact that the feed markets are international
markets. Estimations conducted by Iversen et al. (2019) show that feed prices for salmon
producing countries have steadily increased since the early 2000s. The average feed price
per kilogram for Norwegian salmon farmers rose from 10.90 NOK/kg to 11.26 NOK/kg
from 2017 to 2018 (Directorate of Fisheries, 2019a). As the feeding cost is the highest
contributor to the total production costs and it occurs at a larger scale in the sea farming
phase, we include this cost to account for the production costs in our models.

Wellboat and slaughter costs arise from transportation of salmon and harvesting at pro-
cess plants. Transportation of salmon is usually conducted through the use of wellboats.
Salmon companies often rent wellboats on long-term charter contracts, but the larger
companies may have their own vessels. According to the Directorate of Fisheries (2019a),
the average cost of wellboat and slaughter for Norwegian farmers was 3.79 NOK/kg in
2018. This cost level is considerably lower in Norway compared to other salmon producing
nations. The reason for this is that Norway has invested into efficient and highly auto-
mated processing plants. Additionally, the Norwegian wellboats are of substantial size
and the infrastructure is good. Therefore, the Norwegian aquaculture industry is able
to reduce costs related to wellboat and harvest due to efficient logistics and automated
processing plants (Iversen et al., 2019). The following section will look into how HABs
develop, HAB outbreaks in recent times, and what actions salmon farmers can undertake
to minimize economic losses due to HABs.

2.2 Harmful Algal Bloom
Algae are a diverse group of organisms that live in aquatic environments with the ability
to perform photosynthesis (Vidyasagar, 2016). An algal bloom is a rapid increase in the
population of algae in aquatic environments. Algae are important to the environment
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as they contribute with producing oxygen through photosynthesis. On the other hand,
algae can be harmful to aquatic life. HABs can cause mortality, reduced welfare, and
result in poor water quality for farmed salmon. It can inflict mechanical injury on the
gills of the farmed salmon and cause suffocation through oxygen depletion (Anderson,
2009; Dale, 2020). For a HAB to take place, there must be enough nutrients and light for
it to develop. HABs often occur in the spring, as nutrients build up over the winter and
increased daylight provide ideal growth conditions. However, as algal blooms consume the
nutrients it will naturally fade out after some time. This makes HABs inherently time-
limited events. Sellner et al. (2003) argue that HABs mainly arise from anthropogenic
loadings (human activities on nature) and natural processes (e.g., water circulation and
upwelling). Anthropogenic loadings can lead to nutrient pollution where the seawater
becomes overly enriched with nutrients and minerals. The frequency and severity of
HABs have increased globally in recent times and the increase might continue due to
climate change (Anderson, 2009; Sellner et al., 2003).

HABs have affected salmon farmers negatively, in terms of large losses of fish, in the biggest
salmon producing countries for a long period of time. Blooms of Alexandrium catanella
in 2002 and 2009 killed tons of fish in the southern production areas in Chile. Later, in
2016, high densities of A. catenella and Pseudochattonella cf. verruculosa caused deaths
for 27 million salmon and trout which equaled a total biomass of 39 000 tons (Montes et al.,
2018). Advection of greater nutrient-rich and saline seawater were the main reasons behind
the HAB in 2016, which were made possible by changes in atmospheric and oceanographic
conditions during the summer of the same year (León-Muñoz et al., 2018). More recently,
in April 2020, a company based in the Aysén region communicated to the Chilean National
Fisheries and Aquaculture Service that 43 tons were killed due to a HAB outbreak2. It
is evident that HABs are reported frequently and vary in severity for salmon farmers in
the aquaculture industry.

Similarily, salmon farmers along the Norwegian coastline have been struggling with various
species of algae. Gyrodinium aureolum hit farmers located at Senja in 1982. Another
species, Chrysochromulina leadbeateri, caused big economic losses of farmed and wild fish
during the summer of 1991 in Lofoten and Vestfjorden. The same species had a smaller
bloom in 1998 along the coast of Troms county, but had a bigger impact for salmon
farmers when it came back in 2008 (Dale, 2020; Lorentzen and Pettersson, 2005). More
recently, Chrysochromulina leadbeateri caused great damage to farmers located in the
counties Nordland and Troms in the middle of May 2019. Production facilities that were
hit especially hard were located in Astafjorden, Ofotfjorden, Vestfjorden, and Tysfjorden,
and these farmers lost 14 500 tons of Atlantic salmon. The lost biomass represented
approximately 2% of the biomass on a national level. Kontali has estimated that the
economic consequences lie between 2.3 to 2.8 billion NOK, including lost profits, ripple
effects, and lost taxes (Kontali, 2020). The economic losses during the 2019 HAB event
were substantial for many salmon farmers and the corresponding local communities. This
motivates the development of an economic decision tool for salmon farmers during HAB
outbreaks to minimize economic losses.

In many cases, it is hard to foresee blooms, the reasons behind them, as well as their total
duration. Even though there is always a possibility of a HAB developing at a facility

2https://salmonbusiness.com/10000-harvest-size-salmon-die-from-red-tide/
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or reaching a facility, salmon farmers and authorities can look to various measures to
minimize economic losses. Anderson (2009) mentions prevention, control, and mitigation
as strategies stakeholders can undertake to deal with the threat of HABs. Prevention
refers to the actions taken to limit the HABs from happening in the first place. The
issue here is that we often lack knowledge about why HABs occur in certain areas, so
this makes it harder to implement actions to regulate the outbreaks. Control strategies
directly interrupt the bloom process by suppressing or completely destroying it. However,
implementing control strategies is very costly and has a large negative impact on the
marine environment. Finally, mitigation strategies involve dealing with an ongoing HAB
and is about reducing the negative impacts. It is important for fish farmers to take
immediate action if a HAB is reported nearby or if the fish behave abnormally. Therefore,
we will focus on mitigation strategies for reducing the potential economic impacts due to
HABs. In this thesis, we look at the following mitigation strategies:

i) Early harvest. This action serves as a tool for securing revenues from the biomass
at the current spot price before potential salmon deaths. On the other hand, if
the HAB does not reach the production facility and the salmon farmer undertakes
an early harvest, the salmon farmer loses potential higher biomass. So there is a
trade-off between securing biomass revenues through early harvesting and taking the
risk to further grow the salmon biomass. SalMar was one of many salmon farming
companies with production facilities in close proximity to the HAB outbreak in
Nordland and Troms in 2019. SalMar decided to harvest 1 000 tons of salmon only
a few weeks before the planned schedule3. The early harvest approach may not have
been viable for SalMar if the salmon had recently entered the sea farming phase of
the production cycle. Thus, the time since the start of the sea phase must also be
taken into consideration.

ii) Move biomass to an alternative location. This can be an effective action for
securing future biomass growth. However, transporting fish under higher densities
gives rise to higher stress levels which can affect FCR and mortality rate negatively
(Basrur et al., 2009; Calabrese et al., 2017). In addition, this action is only available
for enterprises that operate multiple locations (i.e., companies with spatial diversi-
fication). Only four out of fourteen companies moved salmon to another location
under the 2019 HAB outbreak in Norway. These were Cermaq, Nordlaks, Ellingsen
Seafood, and Nordnorsk Stamfisk. A fifth company, Lerøy Aurora, considered to
move their salmon, but upon receiving additional information about the HAB spread
cancelled the move (Karlsen et al., 2019). Licences from the Directorate of Fisheries
and the Norwegian Food Safety Authority are needed to perform a moving oper-
ation. The Directorate of Fisheries started to work on these licences swiftly after
the HAB was detected which allowed several salmon companies to move salmon
(Directorate of Fisheries, 2019b).

After the Norwegian Food Safety Authority and the Directorate of Fisheries were informed
about the 2019 HAB outbreak, several organizations were brought in to assist with anal-
yses and information to the salmon farmers. The research team consisted of SINTEF,
Akvaplan-niva, and the Institute of Marine Research. In addition, the Norwegian Mete-

3https://e24.no/boers-og-finans/i/8mOkkG/salmar-slakter-tusen-tonn-laks-for-aa
-sikre-seg-mot-alger
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orological Institute provided forecasts on sea water streams which could bring the HAB
to new locations (Directorate of Fisheries, 2019b). These organizations provided farm-
ers with information regarding the current spread and density of the HAB. Additionally,
farmers received forecasts on future spread. However, the information flow was not orga-
nized by a single organization. This meant that the salmon farmers received information
from multiple sources at unknown intervals during the algal bloom. Furthermore, the
degree of collaboration was high in the Norwegian aquaculture industry during the HAB
outbreak, and salmon farmers shared resources and information with each other (Karlsen
et al., 2019). The collaboration and involvement from research organizations gave salmon
farmers the opportunity to make better-informed decisions.

2.3 Salmon Futures Market and Salmon Spot Price
Index

In what follows, we briefly introduce the Fish Pool salmon futures market and the Fish
Pool Index (FPI). We analyze the characteristics of the salmon price in order to highlight
what important features are required to make our price modeling as realistic as possible.

Futures markets serve as a price risk management tool for market participants that are
exposed to price risk from the underlying commodity or asset. Fish Pool ASA exchange
market was established in Norway in 2005 and is the leading provider of futures contracts
on farmed salmon. Fish Pool provides daily updates on futures prices for contracts with
monthly maturities, with contract lengths up to five years. These contracts reflect the
future price expectations of the registered trade members at Fish Pool for the coming
months and years (Ankamah-Yeboah et al., 2017). In this thesis, we use weekly obser-
vations of forward prices from Fish Pool. The data retrieved from Fish Pool spans from
week 14, 2013 to week 18, 2020 and we include contracts with one month and up to five
years to maturity in our analysis.

There exist several salmon spot price indicators for Atlantic salmon in the market. Price
indicators often used by analysts include the FPI, the Fish Pool European Buyers Index,
the NASDAQ Salmon Index, the Kontali Farmers Index, and the export statistics from
Statistics Norway (SSB) (Fish Pool ASA, 2020c; The Nasdaq Group, Inc., 2017). In this
thesis, the FPI is the chosen index for the salmon spot price because it is used as a basis for
financial settlement of all forward contracts at Fish Pool. The index is a synthetic market
price, composed of both the NASDAQ Salmon Index and the Norwegian export statistics
from SSB, weighted 95% and 5%, respectively. It is calculated using a weighted weekly
average of sizes from 3-6 kg, head-on gutted salmon, following a fixed size distribution
(Fish Pool ASA, 2020a). For our analysis, we study spot price history for the same period
as for the forward contracts, spanning from week 14, 2013 to week 18, 2020.

The FPI spot and forward price history obtained from Fish Pool is shown in Fig. 2.2,
where the blue line represents spot prices and the gray line 24-month forward prices.
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Figure 2.2: Graph plotting the development of the Fish Pool Index spot price and 24 month
forwards from 2013 week 14, to 2020 week 18 (Fish Pool ASA, 2020b; 2020c).

Figure 2.2 indicates a much higher volatility for the spot price than for the long-maturity
forward. For example, during the HAB in Norway in 2019, prices dropped from 72.41
NOK to 42.50 NOK (i.e., a 41% reduction). However, the long-maturity forward indicates
that the price fall was not expected to persist. Likewise, during the Covid-19 outbreak
this year, we see once more that the spot price falls below the long-maturity forward.
Comparing the volatilities of spot and 24-month forwards shows decreasing volatility as
a function of maturity. This indicates mean-reversion in the salmon spot price process
(Näsäkkälä and Fleten, 2005; Schwartz and Smith, 2000).

Mean reversion may occur as a result of delay in the production adjustments by salmon
farmers to changing price levels. Intuitively, when the salmon spot price increases, exist-
ing salmon producers have incentives to increase their production and new entrants are
attracted to the market, causing downward pressure on prices. Conversely, when the spot
price decreases, there will be upward pressure on prices because some high-cost produc-
ers may be forced to exit and producers will temporarily lower their production. These
adjustments are not instantaneous due to the biological characteristics of the production
cycle. Thus, there will be periods with a temporary high or low spot price, which will
revert towards a long-term equilibrium level.

In addition to mean-reverting traits, there appears to be uncertainty about the long-term
equilibrium price to which the salmon spot price reverts to. Changes in the equilibrium
price may come from fundamental changes in the market (e.g., new regulations or disrup-
tive technologies). In order to capture both the effects of uncertainty about the long-term
price and the mean reversion in prices, we adopt a two-factor model for the salmon price
process.
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Chapter 3
Literature Review

In this chapter, we look into the literature that is relevant for our problem of finding
the optimal harvesting strategy during a harmful algal bloom while receiving imperfect
information about the true algal risk. We begin by presenting literature in the context
of optimal harvesting. Furthermore, we investigate literature on HABs and time-limited
threats, in addition to signaling and learning. Next, we present valuation techniques
for optimal harvesting decisions. We argue that real options (RO) methodology is most
suitable to answer our research questions. Moreover, we study state-of-the-art solution
procedures for real options analysis. Lastly, we examine state-of-the-art commodity price
models.

There exists a wide body of literature in the context of optimal harvesting of salmon.
Early work analyzes how different costs and growth curves affect the harvesting time, but
does not include uncertainties in the model and salmon prices are assumed to be deter-
ministic (Bjørndal, 1988). Further work extends this analysis. Arnason (1992) analyzes
interdependence of optimal feeding schedule and harvesting time. Later, Forsberg (1999)
develops a harvesting planning model that has the ability to take all production restric-
tions into consideration. The harvesting model in Forsberg (1999) is later used to find the
value of price information, based on different price scenarios by Forsberg and Guttormsen
(2006). Forsberg and Guttormsen (2006) extend former production planning models to
also include forecasting of prices. Asche and Bjørndal (2011) add to the existing literature
by providing systematic economic analyses based on more up-to-date Norwegian industry
data. In a more recent study, Ewald et al. (2017) consider the optimal harvesting problem
for both single and infinite production cycle rotations. They build on findings from Asche
and Bjørndal (2011) and account for stochastic prices in a two-factor price model, using a
large set of forwards contracts from Fish Pool exchange market to estimate prices. In line
with Ewald et al. (2017), we adapt and apply a two-factor price model to our problem
using latest price information. Moreover, we follow Asche and Bjørndal (2011) on their
biomass growth assumptions, to be detailed in Chapter 4.

However, none of these studies have accounted for the risk of losing the biomass in the
optimal harvesting models. Large efforts have been made in studying causes, detection,
and economical impacts of HABs (see, e.g., Sellner et al. (2003), Lorentzen and Pettersson
(2005), Hoagland and Scatasta (2006), Anderson et al. (2012), and Montes et al. (2018)).
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However, to the best of our knowledge, HABs have not been studied with respect to finding
optimal early harvesting strategies for salmon farmers. Pettersen et al. (2015) study the
possible benefits of disease triggered early harvest due to pancreas disease (PD). They do
not focus on the risk of PD arrival, but apply a partial budgeting approach to compare
scenarios with and without PD outbreaks inside a sea pen. In their harvesting strategy,
they assume that the salmon farmer adopts a diagnostic screening program to monitor the
virus levels in the farm. This data is used to forecast a PD outbreak, which for certain
thresholds trigger an early harvest to avoid disease losses. Different from the problem
under consideration in Pettersen et al. (2015), salmon farmers facing HAB threat can not
use a device to monitor algae levels inside the pen, because the salmon die shortly after
the algal arrival.

As discussed in Section 2.2, HABs are examples of time-limited events. Such events have
not been studied in optimal harvesting problems within the aquaculture literature, but
appears, e.g., in the context of evacuation decisions in case of fire accidents in Reniers et al.
(2007). Reniers et al. (2007) develop a decision aid model for the problem of whether or
not, and when, to evacuate chemical installations threatened by fire. The probability that
an initiating fire event escalates into a large-scale accident between the time of notification
and the maximum duration of the threat is given by a Poisson arrival rate. Once the
potential fire threat becomes zero, it will remain zero from then on, and the decision-
maker will no longer consider evacuation of the facility. This is of similar characteristics
in the case of HAB outbreaks: salmon farmers will no longer consider harvesting early
once the HAB threat ceases. We adopt the approach of a time-limited event, described in
Reniers et al. (2007), to correspond with our HAB problem in Chapter 4. Different from
Reniers et al. (2007) is that during this time-limited threat, we also incorporate learning
with respect to the perceived risk level.

Learning within the aquaculture literature tends to appear in the context of technology
uncertainty and adaptation strategies. There are several papers that account for a passive
learning-by-doing effect (see, e.g., Nilsen (2010) and Sandvold (2016)). Other papers, such
as Hagspiel et al. (2018), incorporate passive learning in a wait-and-see manner. Within
other areas of research, e.g., operational research, learning appears within the framework
of information flow, where arriving signals are actively used to update ones beliefs about
unknown parameters. Harrison and Sunar (2015) make use of a continuous-time Bayesian
framework for updating a firm’s beliefs of the unknown project value. Furthermore, the
firm can choose between several costly learning modes. Each learning mode has a known
cost and provides information of a known quality. Another example of Bayesian learning in
an RO framework is Dalby et al. (2018), that study how investment behavior in renewable
energy is affected by updating a subjective belief on the timing of a subsidy revision. In
their setting, the two states of the world (good or bad) are not known to investors. These
states indicate the duration of the subsidy scheme, and through Bayesian learning, the
investor updates the belief about the transition rate between the subsidy regimes based
on arrival of exogenous signals. Similar to Harrison and Sunar (2015), Dalby et al. (2018)
assume that the signal arrival frequency regarding the state of the world is high enough to
be modelled as a Brownian Motion (i.e., a continuous time process). Unlike Harrison and
Sunar (2015) and Dalby et al. (2018), Thijssen et al. (2004) assume that signals arrive
discretely through a Poisson birth process. Thijssen et al. (2004) consider a firm with the
opportunity to invest in a project with uncertain profitability. Over time, the arrival of
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signals indicate the profitability of the project. The true state of the world is either good
or bad, and this affects the profitability of the project. The firm uses the signals to update
its belief that the state of the world is good in accordance with Bayes’ rule. Ultimately,
these signals affect the firm’s valuation of the project and is used to form a decision rule.
In our problem, signals do not arrive continuously, and farmers have free access to the
different learning modes (e.g., phone-based information from nearby farmers, reports, and
forecasts from research organizations). Moreover, the farmer can not influence the quality
of the information, nor when the signals arrive. Therefore, we adopt the discrete-time
signal process of Thijssen et al. (2004) to correspond to our HAB situation, where farmers
receive imperfect information indicating the true HAB arrival rate. We are among the
first to incorporate active learning in the context of risk modeling within the aquaculture
literature. In what follows, we argue that RO analysis is the most suitable valuation
method for our problem.

When decision-makers have to make a choice between several alternatives (e.g., harvesting
or waiting), there exist many ways of conducting this choice. The method of discounted
cash flows (DCF) is a well-known and widely used method. If the decision is whether to
make an investment or not, DCF involves calculating the Net Present Value (NPV) of
the expected future cash flows received by doing an investment or performing an action.
If the choice is between doing an action or not, the DCF-method says that if the NPV
is positive, the action should be done. If there exists multiple alternatives, the action
with the highest resulting NPV should be chosen. The problem with this method is that
it views investment opportunities and choices as now-or-never decisions and completely
ignores the value of managerial flexibility. Thus, it will often lead to sub-optimal deci-
sions (Mcdonald and Siegel, 1986). For problems such as the one we are studying, with
managerial flexibility in the timing of the decision, a multitude of uncertainties, and the
possibility to wait and learn, RO analysis is a better alternative (Dixit and Pindyck,
1994; Trigeorgis, 1996). A real option is the real-world counterpart of a financial option,
and is the right, but not the obligation, to undertake an investment or decision. The
two main solution approaches in RO analysis are contingent claims analysis and dynamic
programming (Dixit and Pindyck, 1994). The two methods make different assumptions
about financial markets and discount rates used to value future cash flows. Contingent
claims analysis mainly derives its principles from financial theory. The valuation of an
asset is performed by setting up a portfolio of existing traded assets with similar risk
and return characteristics as the asset. Dynamic programming is a very general tool for
dynamic optimization, and is especially useful when treating multiple sources of uncer-
tainty (Dixit and Pindyck, 1994). The approach breaks up a whole series of decisions
into a maximization problem with just two parts, known as the Bellman equation: the
immediate decision and the continuation value. The continuation value is a function that
incorporates the consequences of all subsequent decisions, given that they are optimal
decisions. The approach originates from the work of Bellman (1956) and his principle of
optimality.

One of the most applied methods for solving complex RO problems is a combination
of simulation and dynamic programming techniques. An early example is that of Boyle
et al. (1997), who show that simulation methods can be used to solve American-type
option problems. Tsitsiklis and Van Roy (2001) propose a simulation and regression
method, and provide proofs that such methods converge and are viable methods if the
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natural distribution of the underlying state process is simulated properly. A similar but
more well-known method is the Least Squares Monte Carlo (LSM) approach developed
by Longstaff and Schwartz (2001). LSM is based on least-squares regressions in which
the explanatory variables are polynomials of the underlying variables. The essence of
the LSM approach is that the regressions estimate the continuation value in the Bellman
equation. We apply the LSM approach to solve our optimal harvesting problem. Analyses
by Clément et al. (2002) proved the convergence of the LSM algorithm under general
assumptions. Furthermore, Moreno and Navas (2003) found that it is robust to the
choice of functions in the regression. Moreover, the LSM method has seen widespread use
in the RO literature. A notable example is Cortazar et al. (2008), who extend the model
of Brennan and Schwartz (1985) to include a realistic three-factor model for stochastic
prices. Brennan and Schwartz (1985) use a finite-difference scheme to solve their model.
Cortazar et al. (2008) find that the solution found by the LSM procedure converges to
that found by the finite-difference method. Furthermore, they argue that LSM reduces
the need for simplifying assumptions compared to other available methods, concluding
that it is a better fit for real world problems. Another example of LSM within the RO
literature is Gamba (2003), who extends the work of Longstaff and Schwartz (2001) by
proposing a framework for evaluating several real options dependent on multiple state
variables. Included in this framework is the evaluation of mutually exclusive options,
which we apply for comparing the possibility to harvest and move during a HAB. Gamba
(2003) provides numerical results to show the convergence of the algorithm, and applies
it to real-life capital budgeting problems.

In the aquaculture literature, Ewald et al. (2017) apply the LSM method for their optimal
harvesting model. As previously mentioned, we add several components to our model
compared to Ewald et al. (2017). The decisions for salmon farmers during HABs are
affected by multiple sources of uncertainty, and it is of importance that all the dimensions
of the problem are taken into account. The LSM framework allows us to make our models
as realistic as possible. We apply the extensions proposed by Gamba (2003) in order to
capture the joint effects of having the option to early harvest and the option to move.

In what follows, we review existing literature on the modeling of salmon prices. In early lit-
erature, commodity price processes were assumed to follow a stochastic process described
by a geometric Brownian motion (GBM) (see, e.g., Brennan and Schwartz (1985) and
Paddock et al. (1988)). In a price process that follows a GBM, there is a constant growth
rate and the variance in future prices is increasing in proportion to time. Later, others
argued the use of mean-reverting price models are more appropriate for commodities,
because such prices might fluctuate randomly up and down in the short run, but ought
to be drawn back towards some ”normal” price level in the long run. Such a ”normal”
level could, e.g., be the long run marginal cost of production of the respective commodity
(see, e.g., Laughton and Jacoby (1993, 1995), Dixit and Pindyck (1994), Cortazar and
Schwartz (1994), and Smith and McCardle (1998)).

Section 2.3 describes characteristics of the salmon prices. To capture both the effect
of mean reversion and uncertainty in the equilibrium price, we adopt a two-factor price
model in line with Schwartz and Smith (2000). The work of Schwartz and Smith (2000)
builds upon the former article of Schwartz (1997). In their model, Schwartz and Smith
(2000) let the crude oil equilibrium price evolve according to a Brownian motion with
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drift and the short-term deviations are assumed to follow a mean-reverting process. To
prevent negative prices, log transformations are made. Moreover, the state variables in
the two-factor model are not directly observable and must be estimated using oil spot
prices and/or oil futures contracts. Standard Kalman filtering techniques are commonly
applied to estimate these state variables.

Within the aquaculture literature, Ewald et al. (2017) make use of futures from Fish
Pool to estimate parameters in their adopted two-factor model which is strongly linked
to Schwartz (1997). They use the two-factor price model to study the optimal harvesting
problem and compute arbitrage free prices for lease and ownership of fish farms. Fur-
thermore, they investigate the importance of a salmon futures market, such as Fish Pool,
for price risk management. Similar to Ewald et al. (2017), we make use of salmon price
information from Fish Pool, but from a more recent time period and for a wider range of
contract maturities. Ewald et al. (2017) find that presence of seasonality in salmon futures
only marginally affects the parameter estimates, and hence do not include a seasonality
function. Schwartz and Smith (2000) do not incorporate seasonality and the findings in
Ewald et al. (2017) justify our decision to use a non-seasonal price process as well. Dif-
ferent from Ewald et al. (2017) is that our two-factor model is based on the Schwartz and
Smith (2000) model which does not explicitly consider stochastic convenience yields. Fur-
thermore, we extend the optimal harvesting problem in Ewald et al. (2017), by including
presence of harmful algal risk and learning via signals.

To summarize, we contribute to the existing body of literature on optimal harvesting by
developing novel models that incorporates both active learning related to a time-limited
threat, and passive learning about uncertain prices.
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Chapter 4
The Models

In this chapter, we develop three realistic real options models for the problems of (i) finding
the optimal time to harvest in a basic, single production cycle while facing stochastic
prices, (ii) finding the optimal time to harvest while also facing uncertain HAB arrival
risk, and (iii) finding the optimal course of actions when allowing for both early harvesting
and moving the biomass.

Section 4.1 presents the General Single Rotation Model (GSR-model). In this model, the
optimal harvesting time of salmon and the value of having the option to harvest optimally
is found. We take into account production costs, harvesting costs, biomass growth, and
uncertain salmon prices. For the price modeling, we employ a sophisticated two-factor
price model based on observations of spot and forward prices. In order to find the optimal
time of harvesting, we use a least squares Monte Carlo (LSM) approach.

Section 4.2 presents the solution approach for the GSR-model in detail. The LSM ap-
proach is a state-of-the-art solution technique for RO models. Results from the GSR-
model are both used as input into our more advanced models and as a benchmark for
results.

In Section 4.3, we extend the problem under consideration in the GSR-model by introduc-
ing time-limited HAB-risk. Salmon farmers now face an uncertain risk of a HAB arriving
at their farm. During the algal outbreak, salmon farmers receive a flow of information
about the algal spread coming from several sources, as discussed in Section 2.2. Based on
these signals, farmers can actively update their beliefs of the algal arrival rate in accor-
dance with Bayes’ rule. In addition to actively learning from the arriving signals, farmers
passively learn about the salmon price development by postponing their decision. These
two elements combined let salmon farmers undertake a better-informed harvesting deci-
sion. However, the benefits of waiting for more information about the algal arrival rate
and possibly a higher salmon price, must be weighted against the risk of losing the current
biomass altogether due to algae arriving. Section 4.4 presents the method to quantify the
value of harvesting flexibility under the risk of HAB arrival. This model is called the
Early Harvest Model (EH-model) and is the primary focus in this thesis.

In Section 4.5, we extend the main model to also include the option to move the fish.
We do so in order to emphasize that, as an alternative to early harvesting, some farmers

16



4.1 General Single Rotation Model

may have the opportunity to move their fish to another location free of algal risk. In
other words, salmon farmers now hold two mutually exclusive options, i.e., the option
to harvest early and the option to move. To take into account the interaction between
the two options, we present the Early Harvest-Move Model (EH-M-model). The solution
procedure is built upon the framework of Gamba (2003) for mutually exclusive options,
and completes this chapter.

4.1 General Single Rotation Model
We consider a salmon farmer who seeks to maximize the value of his farm’s salmon biomass
during a single production cycle. At each point in time, the salmon farmer must decide
whether to harvest the fish now or to grow it further. By harvesting the fish, the farmer
pays a one-time harvesting cost and receives the revenue from the harvested biomass. The
fish farmer will make a profit of B(t)

(
St−CH

)
at the time of harvest, where B(t) denotes

total salmon biomass at time t, St is the salmon price at time t, and CH represents the
fixed harvesting cost per kilogram fish.

The total biomass B(t) is the product between the number of fish in the pen, denoted R(t),
and the average individual weight of the fish, given by a weight curve W (t). We denote
the number of fish at time t = 0 by R0, and assume that W (t) follows a deterministic
process described by a von Bertalanffy’s growth function,

W (t) = w∞

(
a− be−c

(
t+tsea

365

))3

,

where w∞ is the asymptotic average weight of an individual fish, a, b, and c are constants,
and tsea is the time since the fish was introduced to the sea pen. The von Bertalanffy’s
growth function is commonly applied to model fish growth, see for instance Asche and
Bjørndal (2011) and Ewald et al. (2017).

Since the salmon is not reproducing in pens, it is common to introduce a fixed mortality
rate, M , to model a decreasing number of fish over time. Following Asche and Bjørndal
(2011), we find the number of fish in the pen at time t by solving

R(t) = R0e
−Mt.

Hence, we can estimate the total biomass B(t) at time t by solving

B(t) = R(t)W (t) = R0e
−Mt

w∞
(
a− be−c

(
t+tsea

365

))3
. (4.1)

Alternatively, the salmon farmer can postpone harvesting and continue growing the fish
and potentially receive a higher salmon price in the future. The harvesting profit of
B(t)

(
St − CH

)
is compared against the option to harvest at a later point in time, while

paying the production costs Cp(t) in the meantime. As discussed in Section 2.1, feeding
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Chapter 4. The Models

cost is the main cost driver for salmon farmers during the sea phase. Therefore, we assume
that the variable production costs consists of feeding costs only.

The total feed quantity required at time t is the amount of feed needed per fish multiplied
with the amount of fish. To find this quantity, we multiply the FCR, fr, and the weight
growth of the fish, W ′(t), together with the amount of fish, R(t), i.e., frW ′(t)R(t). Then
for a given feed price per kilogram, Cf , the production costs at time t is

Cp(t) = frW
′(t)R(t)Cf .

The optimal harvesting time, τ , of the GSR-model is thus the solution of the following
optimal stopping problem,

sup
τ

E
[
B(τ)

(
Sτ − CH

)
e−rτ −

∫ τ

0
Cp(t)e−rtdt

]
. (4.2)

Equation (4.2) consists of two main parts. The first part consists of the cash flow received
from selling the biomass at the optimal time, less the cost of harvesting, discounted to
time zero. The second part is the discounted production costs paid from time zero to the
optimal harvesting time, τ . In Eq. (4.2), St denotes the salmon spot price at time t. Our
analysis of the salmon price characteristics in Section 2.3 motivate the use of a two-factor
model for simulations of salmon spot prices. Therefore, we follow the seminal work of
Schwartz and Smith (2000) on commodity price modeling.

In line with Schwartz and Smith (2000), we decompose the logarithm of the salmon spot
price into the sum of two stochastic factors, i.e.,

ln(St) = χt + ξt, (4.3)

where χt represents short-term deviations in salmon prices and ξt the equilibrium price
level at time t.

Changes in the short-term deviations, χt, represent temporary changes in salmon prices
and are assumed to revert to zero following an Ornstein-Uhlenbeck process,

dχt = −κχtdt+ σχdzχ,t. (4.4)

Changes in the equilibrium price, ξt, represent fundamental changes that are expected to
persist and are assumed to follow an arithmetic Brownian motion process,

dξt = µξdt+ σξdzξ,t. (4.5)

The Brownian motion increments of dzχ,t and dzξ,t are correlated with ρχξdt = dzχ,tdzξ,t.
Parameter κ is a mean-reversion coefficient describing the rate at which short-term devia-
tions are expected to dissipate, σχ represents the short-term volatility, µξ the equilibrium
drift rate and σξ the equilibrium volatility.

Given χ0 and ξ0, and following from Eqs. (4.3)-(4.5), the logarithm of future spot prices
are normally distributed, with expected value being

18



4.2 Solution Approach for the General Single Rotation Model

E[ln(St)] = e−κtχ0 + ξ0 + µξt,

and variance

Var[ln(St)] = (1− e−2κt)
σ2
χ

2κ + σ2
ξ t+ 2(1− e−κt)ρχξσχσξ

κ
.

The salmon price St will then be log-normally distributed and its expected price can be
calculated solving

E[St] = exp(E[ln(St)] + 1
2Var[ln(St)]).

In the two-factor price model, the short-term deviations, χt, and the equilibrium price
level, ξt, are unobservable. Kalman filtering is a recursive procedure that allows us to
compute estimates for the short-term deviations and for the equilibrium price based on
observations of spot and forward prices. These estimates give us more sophisticated
salmon price simulations. Details behind this procedure can be found in Appendix A.
Our resulting state variables and model parameter estimates are presented in Section 5.1.
For a careful description of the two-factor modeling approach and corresponding proofs
we refer to Schwartz and Smith (2000), as these derivations and properties are not the
main focus of this thesis.

Completing this section, we note that the closed-form solutions for the optimal stopping
problem does not exist. Therefore, we solve Eq. (4.2) numerically by applying the LSM
approach described in Section 4.2 below.

4.2 Solution Approach for the General Single
Rotation Model

In this section, we outline our solution method for the GSR-model. We employ the
LSM approach described by Longstaff and Schwartz (2001) to find the optimal time of
harvesting. The LSM approach was originally created for approximating the value of
American call options by simulation, and has been shown to be applicable in solving
complex multidimensional real option problems (Cortazar et al., 2008; Gamba, 2003).

As stated in Eq. (4.2), the optimal stopping problem the farmer faces in the GSR problem
is when to stop paying the production costs and harvest the fish, in order to get the cash
flow from selling it:

sup
τ

E
[
B(τ)

(
Sτ − CH

)
e−rτ −

∫ τ

0
Cp(t)e−rtdt

]
.

In order to solve the problem using the LSM-approach, we need to recast the optimal
stopping problem as an American option with a finite time-horizon. In theory, the GSR
problem can be seen as an infinite time-horizon problem, but in reality the length of the
rotation is rarely longer than two years, see Section 2.1. Therefore, we define a maximum
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length of the sea phase, T sp, which is the latest time a farmer can harvest the salmon in
the single rotation problem.

We start by splitting the problem into sub-problems which the farmer evaluates at K
discrete points in time from the start of the option, t = 0, to the end of the option,
t = T sp: 0, t1, t2, ..., tK−1, tK = T sp. The short time elapsed between each time point is
denoted ∆t = T sp

K
, see Fig. 4.1.

∆t = T sp

K

Start of
option

t = 0 ti ti+1

Option
expires

t = tK = T sp

Figure 4.1: Illustration of time discretization in the GSR-model.

At every time point ti, we simulate N realizations of the salmon spot price process. We
simulate the price with ∆t time between each time point. From Eq. (4.3) we find that
the natural logarithm of the spot price at time t+ ∆t is given by,

ln(St+∆t) = χt+∆t + ξt+∆t. (4.6)

In order to simulate the two-factor price process needed in our option valuations, we follow
the discretizations proposed by Davis (2012). The exact discretization of the short-term
deviations in Eq. (4.4) is,

χt+∆t = χte
−κ∆t + σχ

√
1− e−2κ∆t

2κ ωt (4.7)

where ωt is an identically distributed random draw from a normal distribution with mean
ρχξεt, and variance 1− ρ2

χξ, i.e.,

ωt ∼ N(ρχξεt, 1− ρ2
χξ).

Furthermore, the discretization of the equilibrium price in Eq. (4.5) is given by,

ξt+∆t = ξt + µξ∆t+ σξ
√

∆tεt, (4.8)

where εt ∼ N(0, 1) is an independent and identically distributed random draw from the
standard normal distribution.

The salmon price in Eq. (4.6) is then simulated using the discretizations in Eqs. (4.7) and
(4.8), together with the estimated model parameters and state variables from the Kalman
filter procedure.
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4.2 Solution Approach for the General Single Rotation Model

The state vector Xti(ω) describes the simulated state of the price process at time ti for
realization ω. Xti contains the values of the stock price Sti , the equilibrium price ξti and
the short-term deviation χti . Thus, we assume that the farmer can observe the equilibrium
price, which according to Schwartz and Smith (2000) is unobservable. However, a farmer
can easily estimate the value of the equilibrium price at any time, either by using the
Kalman Filtering approach or with a spreadsheet of forward curves as Schwartz and
Smith propose in their paper.

The value of harvesting, denoted Π, is a function of time and the state vector,

Π(ti, Xti) = B(ti)
(
Sti − CH

)
,

with biomass B(ti) as in Eq. (4.1) and tsea, R0 and M given as inputs to the model.

The value of the option to harvest optimally in the future, evaluated at time ti with
state vector Xti , is denoted FGSR(ti, Xti). The value of continuing, Φ(ti, Xti), is then the
discounted expected value of the option at the next time step, less the cost of producing
in the time period between the two time steps, i.e.,

Φ(ti, Xti) = Eti [e−r∆tFGSR(ti+1, Xti+1)]− Cp(ti)×∆t.

At every time step ti, the farmer chooses the alternative that maximizes the value of his
farm: continuing or harvesting. The value of the option, at any time, is thus described
by the following Bellman equation,

FGSR(ti, Xti) = max
{

Π(ti, Xti), Φ(ti, Xti)
}

= max
{
B(ti)

(
Sti − CH

)
, Eti [e−r∆tFGSR(ti+1, Xti+1)]− Cp(ti)×∆t

}
. (4.9)

The next step is to determine the correct continuation value. The LSM procedure uses
least squares regression to approximate the expected continuation value at each time
step. We start at the expiration of the option, at t = tK , where there is no possibility to
continue, i.e., Φ(tK , XtK ) = 0. Then, for every simulated realization ω, the value of the
option at expiration is known,

FGSR(tK , XtK (ω)) = max
{
B(tK)

(
StK (ω)− CH

)
, 0
}

= B(tK)
(
StK (ω)− CH

)
.

Initially, we let the optimal stopping time τ for every realization ω be τ(ω) = tK . Next,
we work backwards from tK−1 to t0. At every time point ti, the expected continuation
value is estimated following this procedure:

• First, we find the realized discounted cash flow for each realization ω. This is the
cash flow received by harvesting at time τ(ω), less the production costs incurred
between time ti+1 and τ(ω), discounted back to ti.

• We define a basis function on the state variables in Xti , denoted F (Xti). We choose
a set of simple powers and combinations of the state variables, as this type of basis
functions gives accurate results (Longstaff and Schwartz, 2001). Therefore, we let
F (Xt) = β0 + β1St + β2S

2
t + β3Stξt + β4S

2ξ2
t .
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• Then, we fit a least squares regression with the realized cash flows of each realiza-
tion as the dependent variable onto this basis function, F (Xt). In order for the
regression to be a reasonable estimation of the continuation function, the amount of
realizations must be sufficiently high. The regression will converge in mean square
and in probability to the true value of F (Xt) as the number of simulations N goes
to infinity. For computational efficiency, we only use the realizations which are
in-the-money. The fitted basis function, F̂ (Xti), is then the approximation of the
expected continuation value Eti [e−r∆tFGSR(ti+1, Xti+1)].

• For every realization ω, we estimate the continuation value at time ti, including
the cost of producing, and if the value of harvesting is greater than the value of
continuing we update the optimal stopping time of the realization:

τ(ω) = ti if Π
(
ti, Xti(ω)

)
≤ F̂

(
Xti(ω)

)
− Cp(ti)∆t.

If this is not the case, τ(ω) is not updated.

Finally, when this procedure has been performed for every time step, we have an optimal
exercise time for every realization. The value of the option at time t0 is the average of the
discounted realized cash flows received, less the production costs paid, in every realization
when following the optimal strategy found by the algorithm.

4.3 Introducing Harmful Algal Bloom Risk and
Imperfect Signals

In what follows, we extend the problem under consideration in the GSR-model. First, we
incorporate the risk of a HAB arriving as a time-limited event with an uncertain arrival
rate. Then, we include the flow of information available to salmon farmers about the algal
spread. Based on imperfect signals, farmers can form beliefs about the true algal arrival
rate.

As discussed in Section 2.2, HABs have disastrous effects. At the same time, the duration
of a HAB is limited due to its biological characteristics. To account for these two elements,
we model the risk of HABs as time-limited events with an uncertain arrival rate at any
given time. This approach is novel in the context of risk modeling in the aquaculture
literature.

At time t = 0, a HAB is reported by a nearby farm. We let the time period from t = 0
to t = T represent the maximum duration of the HAB. In the case of the HAB arriving
at our farmer’s location, we denote the arrival time tHAB.

The presence of algal bloom at the farm is modeled as a binary variable, Γt. We let Γt = 0
if there is no algal bloom at the farm at time t, and Γt = 1 at the time of the HAB arrival
and for all subsequent times, t ≥ tHAB:

Γt =

0 before a HAB arrival,
1 during and after the HAB arrival,

and Γ0 = 0.
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4.3 Introducing Harmful Algal Bloom Risk and Imperfect Signals

As described in Section 2.2, the effect of the HAB on the harvesting profit is that, if
Γt = 1, the salmon dies and cannot be sold, giving zero revenues.

In other words, the value of the fish stock immediately goes to zero if the HAB arrives
at the farm. The farmer now needs to take this risk into account when choosing the
optimal harvesting time. If the HAB risk is endured, i.e., ΓT = 0 indicating the HAB did
not arrive, the farmer may continue to grow the fish and harvest at the optimal weight
and price. In such a case, the optimal harvesting time is given by the GSR-model in
Section 4.1.

As previously mentioned, the true risk of receiving a HAB is difficult to predict. However,
during the HAB threat from t = 0 to t = T , there is a steady flow of information arriving
to the salmon farmer about the algal spread. We assume signals are coming from word of
mouth from neighboring farms and from research organizations. Based on these signals
farmers can form beliefs about the true algal arrival rate.

To account for this flow of information we adapt a signal process similar to that of Thijssen
et al. (2004). We introduce two states describing the risk of getting the HAB, the high
risk state H, and the low risk state L. The world can only be one of these states, i.e., it is
either high or low during the whole HAB. The states have corresponding Poisson arrival
rates which are known to the farmer, λH and λL. The risk of HAB arrival in H is higher
than in L, i.e., λH > λL ≥ 0. The farmer does not know which risk state the farm is in
when the HAB is first reported at t = 0. However, the salmon farmer has a prior belief
that the true state is H: P (H) = p0.

The signals are arriving at irregular intervals which indicate the true state of the risk.
The signals are either good, denoted l and signalling that the true state is L, or bad,
denoted h, signalling that the true state is H. We denote the cumulative sums of good
and bad signals that have arrived up until time t as lt and ht, respectively. Moreover, the
signals are known to be imperfect, and the farmer considers the probability of a signal
being correct to be Pcs > 0.5, see Table 4.1.

Table 4.1: Probability of a signal indicating high or low HAB risk, given the true state of the
world.

Risk/signal h l
H Pcs 1− Pcs
L 1− Pcs Pcs

The signals arrive according to a Poisson birth process with intensity µ > 0. This is a
realistic representation of how signals arrive, since research reports and news arrive at
unknown intervals. Whenever a signal arrives, the farmer updates his belief of what the
true state is via Bayesian updating. We introduce kt as the amount of bad signals in excess
of good signals that has arrived from time 0 to time t, i.e., kt = ht − lt. By following
Bayes’ rule, the belief that the world is in the high risk state H, can be formulated as a
function of kt:

p(kt) = P kt
cs

P kt
cs + 1−p0

p0
(1− Pcs)kt

. (4.10)
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We refer to Appendix B for derivation of Eq. (4.10).

At time t = T , the HAB risk becomes zero and the signals stop arriving. In this case, the
optimal harvesting problem is reduced to the problem under consideration in the GSR-
model in Section 4.1. For t < T , i.e., during the algal bloom, salmon farmers receive a
flow of information about the algal spread. Based on these signals, farmers are actively
updating their beliefs of the algal arrival rate in accordance with Bayes’ rule. In addition
to actively learning from signals arriving, farmers are passively learning about the salmon
price. Thus, farmers have an incentive to wait for more information in order to make a
better-informed decision. However, the benefits of waiting for more information about the
algal arrival rate and possibly a higher price, must be weighted against the risk of losing
the current biomass altogether due to algae arriving. This is a realistic representation of
the dilemma faced by salmon farmers during a real HAB. Hence, the farmer may decide
to harvest the fish early in order to secure his profits, given the HAB has not yet arrived.
In what follows, we will present a modeling approach that takes into consideration the
HAB arrival risk and the information flow available to salmon farmers.

4.4 The Early Harvest Model
This section presents the method to quantify the value of flexibility of harvesting while
facing the risk of HAB arrival. As a harvests during HABs often are referred to as
early harvests, we name the model the Early Harvest model (EH-model). The solution
technique for the EH-model is similar to the GSR-model, but with appropriate changes
coming from the introduction of algal risk and its related signals.

With the model extensions described in Section 4.3, the optimal harvesting problem is
now quite different than in the GSR case. While facing algal risk, the farmer must decide
whether (and when) to secure biomass revenues by harvesting early, or risk losing the
value altogether while waiting for more signals. Hence, the GSR-model must be extended
to account for the HAB. We let the biomass weight function follow Eq. (4.1) as in the
GSR-model, with tsea, R0 and M given as inputs to the model. The production cost,
harvesting cost and harvesting profit are also the same, but with the addition that they
are reduced to zero should the HAB arrive. The optimal stopping problem the farmer
faces can now be formulated as

sup
τ

E
[(
B(τ)

(
Sτ − CH

)
e−rτ −

∫ τ

0
Cp(t)e−rtdt

)
×
(
1− Γτ

)]
, (4.11)

where τ is the optimal harvesting time. This optimal stopping problem is similar to
Eq. (4.2), with the cash flows received and production costs paid at the time of optimal
harvest, discounted from the optimal harvest time τ to time zero. The production costs
paid until the optimal time of harvest are also discounted to time zero. Additionally, the
last parenthesis ensures that if the HAB has arrived, the value is zero.

If the farmer endures the HAB-event without the HAB arriving at his location, i.e., Γτ = 0
and τ ≥ T , he may continue to grow the fish and harvest at the optimal weight and price.
In such a case, Eq. (4.11) is reduced to Eq. (4.2).
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4.4 The Early Harvest Model

4.4.1 Solution Approach for the Early Harvest Model
Similar to the procedure in Section 4.2, we split the problem into K sub-problems, but
now from the first report of the algal bloom at t = 0 to the maximum duration of the
algal bloom t = T . See Fig. 4.2 below.

∆t = T
K

Start of option
to early harvest

t = 0 ti ti+1

HAB ends

t = tK = T

Figure 4.2: Illustration of time discretization in the EH-model. If the HAB is endured, the
farmer may continue to grow the fish and harvest at the optimal weight and price.

At every time point ti, we simulate N realizations of the two-factor price process. Fur-
thermore, given the prior belief of being in state H, p0, we simulate N × p0 realizations
of the algal process and signals, assuming the true state being H. In the same way, we
simulate another N×(1−p0) realizations, but now assuming the true state being L. Thus
at every time step, we will have N realizations of the price, algal and signal processes.

In order to include HAB risk and signals in our EH-model, we introduce X̃ti(ω) as the
state vector of realization ω at time ti. We let X̃ti(ω) contain the simulated values of the
price process, Sti , χti and ξti , together with the binary variable for HAB presence, Γti ,
and the current state of signals, kti . We note that Xti(ω) from Section 4.2 is a subset of
X̃ti(ω) introduced here.

In order to find the optimal strategy for the EH-model, we start by evaluating the option
at the very end of the HAB. At tK , the option to harvest early is reduced to the GSR
problem. Thus, we need to solve the GSR-model for all realizations where the algae did
not arrive, i.e., where ΓtK (ω) = 0. Denoting the resulting values FGSR

(
tK , Xtk(ω)

)
, we

solve for the initial state being XtK (ω) =
{
StK (ω), χtK (ω), ξtK (ω)

}
and for initial values

tGSRsea = tsea + T and RGSR
0 = R(T ).

Having calculated FGSR
(
tK , Xtk(ω)

)
, we can now derive the option value at the time of

expiry:

F
(
tK , XtK (ω)

)
= max

{
0, FGSR

(
tK , Xtk(ω)

)(
1− ΓtK (ω)

)}
.

Here, F
(
tK , XtK (ω)

)
represents the value of having the option to harvest early at the

time of expiry in realization ω, in the EH-model.

Next, the optimal stopping time is initialized to τ(ω) = tK . Then, we start working our
way backwards using a similar LSM procedure as in Section 4.2. At every time ti, the
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value of harvesting is zero if the HAB has arrived. Otherwise, it is

ΠEH

(
ti, X̃ti(ω)

)
= B(ti)

(
Sti − CH

)
×
(
1− Γti

)
.

Furthermore, the value of harvesting is compared to the value of continuing. The LSM
procedure approximates the expected continuation value using a least squares regression.
This is done similarly as described in Section 4.2, except for the addition of the signal
state kt to the basis function. In other words, the expected continuation value is now also
dependent on the information given by the signals. For the regression, we define the new
basis function below,

F (X) = β0 + β1St + β2S
2
t + β3ξt + β4Stξt + β5ξ

2
t + β6kt + β7k

2
t + β8ktSt + β9ktStξt.

The value of continuing, Φ
(
ti, X̃ti(ω)

)
, is the discounted expected value of the option at

the next time step, less the cost of producing in the period between the two time steps:

Φ
(
ti, X̃ti(ω)

)
=
[
Eti

[
e−r∆tF

(
ti+1, X̃ti+1(ω)

)]
− Cp(ti)×∆t

]
×
(
1− Γti

)
.

We decide on the optimal strategy by comparing the value of harvesting and the estimated
continuation value. The farmer always chooses the alternative with the highest value,

F
(
ti, X̃ti(ω)

)
= max

{
Π
(
ti, X̃ti(ω)

)
,Φ
(
ti, X̃ti(ω)

)}
,

and the optimal stopping time τ for every realization ω is updated if it was optimal to
exercise the option to harvest early.

Finally, when the LSM procedure has been performed for every time step, we have an
optimal exercise time for every realization. The value of the option at time t0 is again the
average of the discounted realized cash flows received, less the production costs paid, in
every realization when following the optimal strategy found by the algorithm.

4.5 Extension to the Early Harvest Model
In this section, we extend the EH-model above by including the option to move the fish.
We do so in order to emphasize that in some cases, farmers may have the opportunity to
move their fish to another location without HAB threat, as an alternative to early har-
vesting. We denote the extended model the EH-M-model. The option to move is typically
restricted to only the larger farmers with several farming locations. For these farmers,
both options need to be taken into consideration in an optimal harvesting strategy. First,
we describe the characteristics of the option to move and formulate its optimal stopping
problem. Next, we present the solution approach for the extended model. Solving for the
option to move follows the exact same approach as for the option to harvest early, but for
a different payoff function. To take into account the interaction between the two options,
we follow the procedure outlined in the Gamba (2003) framework of mutually exclusive
options.
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4.5 Extension to the Early Harvest Model

As an alternative to early harvesting, some farmers will have the opportunity to move
their fish to another location without algal risk. This allows the farmer to harvest at the
optimal time at the new location, similar to the approach in the GSR-model. However, as
discussed in Section 2.2, the move is stressful for the salmon resulting in a higher mortality
rate and a higher FCR. The mortality rate at the new location is denoted MM , and the
FCR is denoted frM . Furthermore, the move comes at a direct cost of renting a wellboat
for fish transportation. We denote the total moving costs per kilogram fish by CM .

As a result, the option value of moving is the value of harvesting optimally at the new
location (without HAB risk, but with the higher mortality and FCR), less the moving
cost. This option value is compared to the value of waiting and receiving more informa-
tion about the algal risk. The optimal stopping problem the farmer now faces can be
formulated as

sup
τ1

E

(( sup
τ2

E
[
B(τ2)

(
Sτ2 − CH

)
e−r(τ2−τ1) −

∫ τ2

τ1
Cp(t)e−r(t−τ1)dt

]
− CMB(τ1)

)
e−rτ1

−
∫ τ1

0
Cp(t)e−rtdt

)
×
(
1− Γτ1

), τ1 < τ2,

(4.12)

where τ1 is the optimal moving time and τ2 is the optimal harvesting time. Finding τ2
is similar to solving the optimal stopping problem in Eq. (4.2), starting from τ1. The
innermost supremum of Eq. (4.12) represents the value of producing at the new location
and harvesting optimally at time τ2, discounted back to the time of moving, τ1. Next,
the cost of moving the biomass at time τ1 is subtracted, before discounting the derived
value back from the time of moving. Then, production costs from time zero to τ1 are
subtracted. Lastly, we take into account, Γτ1 , indicating whether the algal bloom reached
the farm before moving.

4.5.1 Solution Approach for the Early Harvest-Move Model
Farmers with both the option to harvest early and to move the fish, are holding two
mutually exclusive options. Either one of them will be exercised or none will. Effectively,
the farmer can choose between the optimal stopping problem in Eq. (4.11) and the one in
Eq. (4.12) at every time step. In order to study this interaction, we adapt the framework
of Gamba (2003) for evaluating mutually exclusive options. We denote the value of
the option to undertake either of these actions as G. The problem now includes not
only whether to continue or stop, but also what stopping mechanism to choose. To
accommodate this, we extend the optimal stopping time τ to also include the optimal
choice at the optimal time, either EH for early harvesting or M for moving. The new τ
is denoted τG.

As before, we find the value of early harvesting by solving

ΠEH

(
ti, X̃ti(ω)

)
= B(ti)

(
Sti − CH

)
×
(
1− Γti

)
.

The value of moving is the value of the option to harvest optimally at the new location,
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less moving costs:

ΠM

(
ti, X̃ti(ω)

)
=
[
FM
GSR

(
ti, Xti(ω)

)
− CMB(ti)

]
×
(
1− Γti

)
.

Here, we have defined FM
GSR to be the value we get by solving the ordinary FGSR of

Eq. (4.9), but with the new mortality rate MM and the new feed conversion ratio frM that
arise from moving the fish, as described above. Moreover, we calculate FM

GSR

(
ti, Xti(ω)

)
with the initial state being Xti(ω) = {Sti(ω), χti(ω), ξti(ω)} ⊆ X̃ti(ω), and initial values
tGSRsea = tsea + ti and RGSR

0 = R(ti).

Furthermore, the value of continuing is the discounted expected value of the option at the
next time step, less the cost of producing for another time step:

Φ(ti, X̃ti) =
[
Eti [e−r∆tG(ti+1, X̃ti+1)]− Cp(ti)×∆t

]
×
(
1− Γti

)
.

The expected continuation value of the option is estimated by least squares regression as
previously described. The optimal choice in each realization ω is given by the following
Bellman Equation,

G
(
ti, X̃ti(ω)

)
= max

{
ΠEH

(
ti, X̃ti(ω)

)
,ΠM

(
ti, X̃ti(ω)

)
,Φ
(
ti, X̃ti(ω)

)}
.

The optimal stopping time is then updated according to this rule,

τG(ω) =


Unchanged if G

(
ti, X̃ti(ω)

)
= Φ

(
ti, X̃ti(ω)

)
,

(ti, EH) if G
(
ti, X̃ti(ω)

)
= ΠEH

(
ti, X̃ti(ω)

)
,

(ti,M) if G
(
ti, X̃ti(ω)

)
= ΠM

(
ti, X̃ti(ω)

)
.

Finally, when this procedure has been performed for every time step, we have an optimal
action and exercise time for every realization. The value of the option at time t0 is the
average of the discounted realized cash flows received, less the production costs paid, in
every realization when following the optimal strategy found by the algorithm.
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Chapter 5
Model Parametrization

In this chapter, we quantify and motivate the input values for the GSR- and HAB-models.
We present two case studies, for Norway and Chile. This is of interest since the world’s
two largest producers of farmed salmon operate under different production conditions. We
investigate these two cases in order to identify optimal strategies for salmon farmers from
both parts of the world. Parameter estimations are based on relevant aquaculture studies
from both regions, in addition to input from Chilean industry experts from our field trip
to Puerto Montt1. The industry experts we have spoken to in Chile have several years of
experience, some of whom with experience from both the Norwegian and Chilean salmon
industry. Therefore, we consider our sources of information to be reliable. However, we
keep in mind that this information is not necessarily representative for all salmon farmers,
but it still provides reasonable assumptions. It should be noted that our assumptions for
the Chilean case study are mostly based on insights from these industry experts, whereas
the assumptions for the Norwegian case study are based on public available data and
industry reports. Price process parameters are derived from historical spot and forward
prices from Fish Pool. Thus, overall, we believe our quantifications reflect realistic levels
for the two industries.

First, we discuss the input values for the GSR-model. These are related to discount rate,
production costs, harvesting costs, mortality, weight development, and price estimation.
Next, we discuss the variables that appear in the HAB-models. These are related to the
signal and algal processes and to the consequences of moving the fish. Table 5.1 below
summarizes the relevant input variables.

1The field trip to Puerto Montt was made possible by sufficient funding and we express our gratitude
to Tekna and Legat til Henrik Homans minne for giving us this opportunity.
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Parameter Symbol Norwegian case study Chilean case study
GSR-model
Discount rate r 6% 8%
Feed conversion ratio fr 1.3 1.2
Price per kilogram feed CF 12 NOK/kg 12 NOK/kg
Harvesting cost per kilogram fish CH 3.9 NOK/kg 4.5 NOK/kg
Mortality rate M 15% 13%

HAB-models
HAB arrival intensity in state i λi 0.07 0.07
Arrival rate of signals µ 2 1.5
Probability of signal being correct Pcs 0.75 0.60
Moving cost per kilogram fish CM 3.0 NOK/kg 2.8 NOK/kg
Feed conversion ratio after moving frM 1.50 1.40
Mortality rate after moving MM 20% 18%

Table 5.1: Summary of relevant Norwegian and Chilean input variables for the GSR- and
HAB-models.

5.1 General Single Rotation Model Parameters

Discount Rate
(
r
)

The discount rate is set to 6% for the Norwegian case study and 8% for the Chilean. The
discount rate displays the risk embedded in a project where an increase reflects a project
with higher risk. The project we are considering in this thesis is the normal operation
of growing salmon. The choice of discount rate is based on the assumption that the
risk inherent in normal operations in aquaculture is relatively low. We also consider the
applied discount rate by key players in the industry. For example, SalMar operates with a
discount rate before tax of 8.3% (i.e., 6.5% after tax for a corporate tax rate of 22%) for all
of their cash flow generating units and projects in the year of 2019 (SalMar ASA, 2019).
Cermaq uses the WACC approach for determining discount rates. Their assumptions
for the discount rate before tax for 2018 were 4.8% and 8.1% for Norway and Chile,
respectively (Cermaq, 2018). Morten Nærland, the CFO of Cermaq Chile, confirmed this
relationship during our discussions at their offices in Puerto Montt: Cermaq operates with
a higher discount rate in Chile than in Norway.

Feed Conversion Ratio
(
fr
)

We use a FCR of 1.3 for the Norwegian case study and 1.2 for the Chilean case study.
The numbers are based on the average FCR reported by the Directorate of Fisheries and
Nofima during the last ten production years in Norway. The average FCR in Norway
was 1.26 in 2018 according to the Norwegian Directorate of Fisheries, whereas Nofima
reported a FCR of 1.29 (Directorate of Fisheries, 2019a; Iversen et al., 2019). Chile has
historically had a higher and more variable FCR compared to Norway. However, the
Chilean FCR has moved below Norwegian salmon farmers for the production year of 2018
(Iversen et al., 2019). Thus, we have chosen a lower parameter value for the Chilean case
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study.

Price per Kilogram Feed
(
CF

)
The feed price is set to 12 NOK/kg for both of our case studies. The choice is determined
based on the current feed price level and the increasing price trend over time. Elevated
competition between feed suppliers, MOWI’s introduction of own feed factories, and focus
on sustainable feed are factors explaining the continued growth in feed prices. The average
feed price per kilogram for Norwegian salmon farmers rose from 10.90 NOK/kg to 11.26
NOK/kg from 2017 to 2018 (Directorate of Fisheries, 2019a). Estimations conducted
by Iversen et al. (2019) show that prices for salmon producing countries have steadily
increased since the early 2000s. In 2003, the prices ranged from 5 to 7.5 NOK/kg. For
2018, this range was between 11.5 and 13 NOK/kg. Feed price in Chile were lower for
a longer period of time, but the price levels are now approaching the ones in Norway.
Discussions with Pablo Ibarra, the General Manager of ATC Patagonia Research Center,
support the fact that Chilean salmon farmers have given nutrition projects more attention
in the last couple of years which can partly explain similar price levels.

Harvesting Cost per Kilogram Fish
(
CH

)
Harvesting cost is estimated to be 3.9 NOK/kg for Norway and 4.5 NOK/kg for Chile.
These estimates are based on available cost studies undertaken by the Directorate of
Fisheries (2019a). According to the Norwegian Directorate of Fisheries, the average cost
of slaughter and transportation for Norwegian farmers was 3.79 NOK/kg in 2018. From
2011 to 2018, the average costs of slaughter and wellboats have made up about 10.44%
of the total production costs for Norwegian salmon farmers2 (Directorate of Fisheries,
2019a). This is further supported by economic analyses conducted by Kontali Analyse.
They estimate that total production costs have seen a yearly average increase of 4.89%
from 2011 to 2018, measured in 2018 real values (Kontali, 2020). This leads to the
following estimation:

CNorway
H = Total production costs 2020 × Avg. % cost of slaughter and wellboat

= 37.27 NOK/kg× 10.44% ≈ 3.9 NOK/kg.

Furthermore, we assume 15% higher harvesting costs in Chile because of lower degree
of automation at processing plants and lower standard on infrastructure. This yields an
estimated cost of 4.5 NOK/kg for Chile. These assumptions are in line with discussions
with industry experts in Puerto Montt.

Mortality Rate
(
M
)

For the Norwegian case study a mortality rate of 15% is used, and for the Chilean case
study we assume a slightly lower rate of 13%. The mortality rate for Norwegian salmon
farmers is determined by looking at fish mortality and losses in production. The statistics
on wastage in production is gathered by the Directorate of Fisheries and is open to the

2See Fig. 2.1 in Section 2.1 for total production cost percentages per cost category.
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public. From 2005 to 2019, the yearly loss percentages have varied between 15% to 20% of
the total number of fish (BarentsWatch, 2020; Directorate of Fisheries, 2020b). According
to Iversen et al. (2019), wastage in production per generation in Chile has varied more
than for any other salmon producing country. However, in 2016 and 2017, the mortality
rate in Chile was lower than in Norway. Because of this, we assume a slightly lower
mortality rate for the Chilean case study.

Salmon Weight Function
(
W (t)

)
We assume that the salmon weight function, W (t), follows the deterministic process de-
scribed in Section 4.1. The von Bertalanffy’s function is commonly applied in the lit-
erature, and for the Norwegian case study we follow Ewald et al. (2017) who find a, b,
and c to be 1.113, 1.097, and 1.430 respectively. We set the asymptotic average weight,
w∞, to be 5.5 kg. With these values, the salmon will reach a weight of approximately
six kilogram after two years in the sea, which is a realistic representation of the growth
(The Norwegian Seafood Federation, 2020). This yields the following Norwegian weight
function,

WNorway
t = w∞

(
a− be−c

(
t+tsea

365

))3

= 5.5
(

1.113− 1.097e−1.430
(
t+tsea

365

))3

,

where tsea is the time since the fish was introduced to the sea pen.

As discussed in Section 2.1, the salmon grows slightly faster in Chile due to higher wa-
ter temperatures. In order to model a steeper weight curve, we adjust weight function
constant b to b = 1.000 and get the following Chilean weight function,

WChile
t = 5.5

(
1.113− e−1.430

(
t+tsea

365

))3

.

Time Since Start of Sea Phase
(
tsea

)
As described in Section 2.2, HABs can develop at any time during the sea phase. In order
to study how the optimal strategy is affected by the fish weight at the start of an algal
outbreak, we introduce the auxiliary parameter tsea, the time since the start of the sea
phase. This lets us estimate the current biomass at the start of a HAB. We let tsea be
either 200, 400 or 600 days, representing the early, middle and late stage of the sea phase,
respectively.

Number of Fish Recruits
(
R0

)
We assume that the farmer wants to grow the biomass to the limit of what is allowed.
In Norway, the maximum allowed biomass (MAB) is 780 tonnes per licence. As such, we
choose the number of recruits so that the total biomass reaches the MAB at the end of
the sea phase (assumed to be 24 months). Given our weight function, the MAB is reached
at the end of the sea phase by introducing 165 000 salmon recruits at the start of the sea
phase. Table 5.2 below shows the number of fish in the pen for different values of tsea,
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including corresponding individual fish weight and total biomass. These estimates will be
used in both case studies to investigate optimal policy and other relationships.

Norwegian case study Chilean case study
tsea R0 Weight Total biomass Weight Total biomass

200 days 151 981 1.27 kg 193 372 kg 1.55 kg 236 215 kg
400 days 139 989 3.81 kg 533 707 kg 4.07 kg 569 474 kg
600 days 128 943 5.65 kg 728 205 kg 5.80 kg 747 506 kg

Table 5.2: Number of fish in the pen, R0, for different values of tsea, including corresponding
estimates for individual fish weight W (0) and total biomass B(0). Estimates are presented for
both case studies.

Maximum Length of Sea Phase
(
T sp

)
We set the maximum length of a single rotation sea phase to be two years, or 730 days, in
both case studies. This is mainly to account for the fact that no farmers operate on a single
rotation basis. Keeping a single generation of fish for longer than two years is not viable
economically, as harvesting and putting out a new generation is better when considering
more than a single rotation case. This means that with tsea = 200, 400 and 600, the
expiration of the option to harvest optimally are T sp = 530, 330 and 130, respectively.

Parameter Estimation for the Two-Factor Salmon Spot Price
Model
In the estimation of the two-factor model, we make use of historical salmon spot prices
and forward contracts to estimate the model’s unknown parameters (κ, σχ, µξ, σξ, ρχξ,
χt=0 and ξt=0). Our data consists of weekly observations of spot prices and forwards from
Fish Pool, spanning week 14, 2013 to week 18, 2020. The synthetic FPI spot prices are
updated weekly. For the forwards, we let the closing price of the last trading day of a week
represent the week’s closing price. We include forwards with maturities ranging from one
month up to a year, and with 18 months, two, three, four and five years to maturity.
This gives a total of 368 weekly price observations of spot prices and 17 different forward
contracts as input for our parameter and state variables estimation.

We identified the set of parameters that maximizes the log-likelihood function in Ap-
pendix A by rerunning the Kalman filter for different initial parameter values. Table 5.3
presents the maximum-likelihood parameter estimates.

Table 5.3: Maximum-Likelihood Parameter Estimates for Two-Factor Price Model.

Parameter Description Estimate Std. dev.
κ Short-term mean-reversion rate 2.7 0.18
σχ Short-term volatility 0.49 0.10
µξ Equilibrium drift rate 0.07 0
σξ Equilibrium volatility 0.07 0.04
ρχξ Correlation in short-term and equilibrium process increments -0.37 0.06
χt=0 Log short-term deviation at time t = 0 -0.26 NOK/kg -
ξt=0 Log equilibrium price level at time t = 0 4.18 NOK/kg -
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The parameter estimates in Table 5.3 serve as input into our price simulations, described
in Section 4.2. For simplicity, we assume the price dynamics are the same for both
Norway and Chile. Hence, we use the same price simulations in both case studies. At
the start time of our option valuation, i.e. t = 0, the short-term (log) price deviation
χt=0 is estimated being −0.63, whereas the equilibrium (log) price level ξt=0 is estimated
being 4.18. In other words, the two-factor model estimates an equilibrium price of 65.51
NOK/kg, with an estimated spot price of 34.84 NOK/kg for week 18, 2020. However, the
observed spot price was in fact 50.53 NOK/kg (Fish Pool ASA, 2020c). In order to start
our price simulations from a realistic starting point, we adjust the short-term deviation
accordingly, giving instead χt=0 = −0.26.

The market is said to be in contango when spot prices lie below expected forward prices.
In light of HAB events, a salmon price correction is typical in the short-run, but for the
long-run the prices are usually expected to go up3. Thus, we find it reasonable to employ
these parameter estimations for the price simulations in the option valuation.

5.2 Harmful Algal Bloom Models Parameters

HAB Arrival Intensity in State i
(
λi
)

In the low risk state, we set the algal risk to be zero during a HAB: λL = 0. In the
high risk state, we set it to λH = 0.07. This makes the expected arrival time 1

0.07 = 14.3
days, and the probability of arrival in one day is 1 − e−0.07 = 6.7%. The probability of
getting an arrival of HAB within the maximum length of 21 days is 1− e−0.07×21 = 77%.
The arrival rates of HABs in both states are assumed to be equal in both case studies.
Professor Godoy at St. Sebastian University mentioned during our meeting that small
HAB outbreaks are detected in Chile every year, and that they are unable to predict
when or where it happens. Due to the large uncertainty in this parameter we examine
the effects it has on decision making during HABs in Chapter 6.

Arrival Rate of Signals
(
µ
)

The arrival intensity of signals is set to 2 for the Norwegian case study and 1.5 for the
Chilean. This means that Norwegians expect to receive 2 signals per day, and Chileans
expect 1.5 signals. See Table 5.4 for the probability of receiving a given amount of signals
in one day.

Table 5.4: Probabilities of receiving different amount of signals in one day for the two case
studies.

Case µ 0 signals 1 signal 2 signals 3 signals 4 or more signals
Norway 2.0 13.5% 27.1% 27.1% 18.0% 14.3%
Chile 1.5 23.2% 33.5% 25.1% 12.6% 5.6%

From a meeting with Trine Dale, a HAB expert at the Norwegian Institute for Water
3https://e24.no/boers-og-finans/i/9v8Jld/lakseprisfall-etter-algeslakt-fortsetter

-det-er-kaos
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Research, we learned that farmers received daily signals from various research organiza-
tions and the Directorate of Fisheries (2020a) during the 2019 HAB event. These signals
included results from water samples and algal spread simulations. Additionally, most
farmers also performed their own sampling and communicated with neighboring farmers
about their view of the situation (Karlsen et al., 2019). For the Chilean case study, how-
ever, we assume a slightly lower arrival rate of signals. During our field trip to Puerto
Montt several industry experts claimed it was less collaboration among Chilean salmon
farmers, and between governmental organizations and farmers, compared to Norway.

Probability of Correct Signals
(
Pcs

)
The probability of a signal being correct is set to 75% for Norway and 60% for Chile. Trine
Dale emphasized that the results from the water samples and simulations are subject to
relatively high uncertainty. It was made clear to the farmers that they should not interpret
the signals as the the truth, but rather as a guideline. Furthermore, Nofima finds in its
report on the 2019 algal bloom that water samples were conducted and treated differently
(Karlsen et al., 2019). This may also adversely affect the tests’ validity. For the Chilean
case study, we once again assume that the collaboration among key industry actors is
less, compared to Norway. Thus, the probability of correct signals in Chile is assumed to
be lower. The information received and the accuracy of the information is of course of
great importance for a farmer wanting to choose the optimal action. Therefore, we will
examine the effects of signal reliability and arrival rate in Chapter 6.

Moving Cost per Kilogram Fish
(
CM

)
For the Norwegian case study, we assume total moving costs to be 3 NOK/kg. This
estimation is based on assumptions for costs related to the use of wellboats. For the
Chilean case study, we use a slightly lower moving cost of 2.8 NOK/kg due to cheaper
labor costs. We assume that moving the biomass to an alternative location is conducted
through the use of wellboats. Liu et al. (2016) estimate in their study on economic
performance, that harvesting costs (including the use of wellboat) make up about 12% of
the total production costs for traditional open net pen salmon farming. This is similar
to our estimates above. Furthermore, they estimate wellboat costs alone to be about 4%
of the total production costs. There is, however, little data available on costs related to
urgent moving of fish during a HAB. We assume that the cost of an urgent move during
a HAB is twice the cost of a planned move operation. As a result, we get the following
estimations by using our estimate for the total production costs for the year of 2020:

Estimated moving cost in a planned operation = 37.27 NOK/kg× 4% = 1.49 NOK/kg.

Unplanned moving cost during algal outbreaks = 1.49 NOK/kg× 2 ≈ 3.0 NOK/kg.

Feed Conversion Ratio After Moving
(
frM

)
The FCR is assumed to increase approximately by 15% after moving the biomass to
another facility. Therefore, we set the value of FCR after moving, frM , to 1.5 and 1.4
for Norway and Chile, respectively. The rationale behind this is that higher fish densities
during transportation, loading, and unloading is a source of increased stress levels which
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can cause higher FCRs. This is supported by Basrur et al. (2009), who conducted a growth
study for two groups of Atlantic salmon where one was subject to a weekly crowding
stressor and the other was under controlled conditions. Higher stress and a 38% increase
in FCR was observed for the group with higher density. Similarly, Calabrese et al. (2017)
found that increasing stocking density for post-smolt had a negative effect on FCR.

Mortality Rate After Moving
(
MM

)
The mortality rate after moving is set to 20% and 18% for Norway and Chile, respectively.
We assume that the mortality rate after transportation is increased by 5 percentage points,
due to potential disease spread as a result of higher densities and stress levels during the
move. This adverse effect of moving is supported by Calabrese et al. (2017), who find
that stocking densities above 100 kg/m3 give notable negative effects on external welfare
and fin damage4.

Maximum Duration of Algal Bloom
(
T
)

We set the maximum duration of the algal bloom to 21 days in our case studies. This is
the same duration as the 2019 Norwegian algal bloom (Karlsen et al., 2019).

4The maximum density in sea pens in Norway is 25 kg/m3. We assume a density of 150 kg/m3 during
wellboat transportation (Calabrese et al., 2017).
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Chapter 6
Results and Discussion

In this chapter, we present and discuss results from the Norwegian and Chilean case studies
of the GSR-, EH- and EH-M-models. We use the parameter values specified in Table 5.1
as base case. In addition, we investigate the effects of changing selected parameters. The
objective of this chapter is to identify optimal choices for salmon farmers in Norway and
Chile under the various models. Optimal harvesting strategies are investigated for three
different stages of the sea phase. In addition, we quantify the added value of flexibility
under the GSR-, EH-, and EH-M-models and discuss measures that policy-makers may
use to facilitate better decision making in presence of HAB risk.

First, we present results from the GSR-model. We present the optimal harvesting time and
investigate if the option to harvest optimally uncovers excess value compared to planned
harvest at the end of the production cycle. Additionally, we study exercise boundaries for
the case studies.

Second, we study results from the EH-model. Unlike in the GSR-model, where the decision
concerns when to harvest optimally during the whole cycle, the EH-model rather focuses
on when and if to harvest early during a time-limited HAB. We research the optimal
harvesting strategy and exercise boundaries for the days during the HAB outbreak. The
results of the EH-model are especially important to small-scale farmers that do not have
the resources to move salmon to another location. We examine what effects selected
parameters have on both the optimal harvesting strategy and the value of flexibility.
Implications for policy-makers in the aquaculture industry are discussed for facilitating
an early harvest strategy during HAB outbreaks and for improving signal frequency and
quality.

Finally, the results of the extended EH-M-model are discussed. The extension includes the
possibility for salmon farmers to move their biomass to an alternative location for further
growth before harvesting optimally without HAB threat. Spatial diversification is needed
to carry out this strategy, so the model is mostly relevant to larger enterprises or those
with other available locations. We present the optimal choices during HAB outbreaks
and quantify the added value of flexibility. We also investigate a special case for increased
moving cost to see how the optimal choice between the two respective mitigation strategies
changes and how it affects the value of the options.
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6.1 General Single Rotation Model Results
Table 6.1 presents the GSR-model’s option values based on 200 000 price simulations and
with a weekly harvesting decision (∆t = 7). Results are presented for different stages
of the production cycle, listed under tsea, representing early, middle, and late stages of
the sea phase. We do this for both the Norwegian and the Chilean parameter sets.
Planned harvest shows the harvesting value when it must be performed on the last day of
the production cycle. The last two columns quantify the additional value of managerial
flexibility in the harvesting timing, in comparison to planned harvest.

Table 6.1: GSR-model results for the Norwegian and Chilean case studies. There is a decreas-
ing, positive value of managerial flexibility during the entire sea phase.

tsea Case Planned Harvest GSR-Model Value of Flexibility Percentage increase
200 days Norway 38.70 MNOK 41.27 MNOK 2.57 MNOK 6.64 %
400 days Norway 42.96 MNOK 44.73 MNOK 1.77 MNOK 4.18 %
600 days Norway 42.38 MNOK 42.65 MNOK 0.26 MNOK 0.61 %
200 days Chile 40.25 MNOK 43.15 MNOK 2.90 MNOK 7.20 %
400 days Chile 43.97 MNOK 45.92 MNOK 1.95 MNOK 4.44 %
600 days Chile 42.81 MNOK 43.07 MNOK 0.26 MNOK 0.61 %

It is evident from Table 6.1 that there is significant value in having the flexibility to
optimally time the harvesting decision during the production cycle. This holds for all
three stages of the sea phase in both of the case studies. We see that the value of
flexibility is decreasing towards the end of the production cycle. This is reasonable as
there is less time to take advantage of the flexibility. As the price will have less time to
evolve from its initial level, it is less likely to reach the high levels required for harvesting
to be optimal before the expiration, thus reducing the value of flexibility.

Figure 6.1 below shows the distribution of optimal harvesting time for the Norwegian and
Chilean case studies. We see that the majority of the harvests still occur towards the end
of the production cycle. We observe that salmon farmers in Chile generally will use the
option to harvest earlier than planned more often than Norwegian farmers. This explains
the slightly higher values of flexibility for the Chilean case study observed in Table 6.1.

Figure 6.1: Probability of optimal harvest time in the GSR-model for Norwegian and Chilean
case studies with tsea = 200. Important to be noted is that the very last bin is left out. On
the day of expiry, the probability is 45% for Norway and 43.5% for Chile. This last bin is thus
several times larger than the others and is left out for visualization purposes.
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The Norwegian and Chilean exercise boundaries are represented in Fig. 6.2 by blue and red
curves, respectively. The boundaries separate the two regions where one should harvest
(on and above the lines) and where the farmers should continue farming (below the lines).
Differences between these boundaries come from the fact that the salmon grows faster
earlier in the sea phase in Chile compared to Norway, which makes the value of harvesting
higher. At the same time, the value of continuing growing the biomass will be lower in
the later stages.

Figure 6.2: Exercise boundaries over time in the GSR-model for Norwegian and Chilean cases
with tsea = 200 and with fixed equilibrium price at the starting level (65.36 NOK/kg). The
lines separate where the farmer should continue farming (below) and where the farmer should
harvest (on and above). For visualization purposes the plot does not include the day of expiry,
as harvesting will be exercised for any spot price.

The peaks of the lines coincide with peaks of the biomass growth. Shortly thereafter, the
exercise boundaries fall quickly, and on the day of expiry (day 530) the salmon is harvested
for any spot price. This explains why the majority of harvesting occur towards the end
of the production cycle. This result indicates that under normal production conditions
without algal risk, harvesting is mostly optimal very late in the cycle, except if the price
is very high and expected to drop.

6.2 Early Harvest Model Results
Results from the EH-model are presented in Table 6.21. Immediate Harvest represents
the value when the salmon farmer decides to harvest immediately after the HAB occurs
(i.e., on the first day of the HAB outbreak). No Early Harvest represents the value if the
salmon farmer has no possibility to harvest during the HAB. Alternatively, this can be
interpreted as the value if the farmer ignores the signals and accepts the risk of losing the
biomass to the HAB. The next column, EH-model, is the value of harvesting optimally
during and after the HAB. Finally, the Value of Early Harvest is the excess value of having
the option to harvest during a HAB compared to not having any managerial flexibility
during the HAB, and is calculated by subtracting the value of No Early Harvest from

1The results are based on 15 000 simulations of price, signals and HAB. Furthermore, the results are
obtained with ∆t = 1, meaning that the farmer makes a daily decision during the HAB. The compound
option values are found by 10 000 simulations each, and ∆t = 14.
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the value of the EH-model. We use the term option value and value of early harvest
interchangeably throughout this chapter.

Table 6.2: EH-model results showing the values of harvesting immediately, doing no early
harvests during the HAB, and following the strategy found by the EH-model. The value of
flexibility is the added value by following the EH-model compared to No Early Harvest.

tsea Case Immediate Harvest No Early Harvest EH-model Value of Early Harvest
200 days Norway 8.91 MNOK 24.99 MNOK 24.99 MNOK 0 MNOK
400 days Norway 24.74 MNOK 27.33 MNOK 31.24 MNOK 3.91 MNOK
600 days Norway 33.82 MNOK 25.90 MNOK 35.02 MNOK 9.12 MNOK
200 days Chile 10.84 MNOK 26.23 MNOK 26.23 MNOK 0 MNOK
400 days Chile 26.14 MNOK 28.15 MNOK 29.47 MNOK 1.32 MNOK
600 days Chile 34.31 MNOK 26.22 MNOK 34.31 MNOK 8.09 MNOK

It is evident from Table 6.2 that the EH-model gives positive values of early harvest for
tsea = 400 and tsea = 600 for both case studies. This tells us that there can be added
value of performing early harvest in these stages of the sea phase. However, the value
of early harvest is zero for tsea = 200. This counter-intuitive result can be explained
as follows. Early on in the sea phase, the biomass has the biggest potential for further
growth. Furthermore, recall that in the High risk state the HAB arrival rate is λH = 0.07,
which means that there is a 23% chance of surviving the HAB in the High state2. So,
even if the farmer is perfectly certain that the true risk state is High at the beginning
of the HAB, there is 23% chance of getting the value of harvesting optimally at a later
stage, which amounts to a higher expected value than the value of immediate harvest3.
This explains why one early on in the sea phase would be marginally better off by not
early harvesting the salmon. Later, we will see that if we increase the probability of HABs
arriving in the High state, i.e., increasing λH , early harvest does have value in the early
sea phase as well.

Figures 6.3 and 6.4 below visualize the distribution of cash flows received from Immediate
Harvest, No Early Harvest and under the EH-model for the Norwegian and Chilean case
studies from Table 6.2. The blue, red and green bars represent the values of cash flows
received from immediate harvesting, from ignoring the HAB risk and from following the
EH-model, respectively. Note that on the y-axis, we plot the percentage of realizations
that according to our simulations end up with that cash flow by following the given
strategy. This percentage is equivalent to the probability of ending up in a given bin
at the outset of the HAB-duration, and we use the terms probability and percentage of
realizations interchangeably throughout this chapter.

2P (No HAB arrival in 21 days|High state) = e−0.07×21 = 0.23.
30.23× 42.27 MNOK = 9.5 MNOK > 8.91 MNOK.
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(a) tsea = 200 (b) tsea = 400 (c) tsea = 600

Figure 6.3: Histogram showing the distribution of Cash Flows Received with different strategies
for the Norwegian case study.

(a) tsea = 200 (b) tsea = 400 (c) tsea = 600

Figure 6.4: Histogram showing the distribution of Cash Flows Received with different strategies
for the Chilean case study.

For tsea = 200 in Figs. 6.3a (Norway) and 6.4a (Chile), we observe that the optimal choice
found in the EH-model coincides with No Early Harvest. Consequently, we observe that
the value of early harvest is 0 MNOK for tsea = 200 in Table 6.2. For tsea = 400 and 600,
the probability of losing the biomass to the HAB when following the EH-model is reduced
compared to doing No Early Harvest. The probability of getting the highest payoffs is
also slightly reduced. However, the value of the cash flow received as a result of early
harvesting outweighs the slight reduction in probability of getting the highest cash flows.
Thus, for the middle and late stages of the production cycle, following the EH-model
yields higher values than by ignoring the HAB risk. In Fig. 6.4c for Chile, we observe
that the EH-model suggests harvesting immediately at the report of a HAB. This occurs
as a result of lower signal arrival rate and less reliable signals, meaning that it is more
valuable to harvest early in the late stage of the cycle, than to risk losing the biomass to
HAB while waiting for more information.

Table 6.3 below shows the the probabilities of different outcomes under the EH-model.
The table shows the probabilities of losing the biomass to HAB, performing an early
harvest, and enduring the HAB (i.e., survive the HAB event and optimally harvest after
the HAB period)4. These are prior probabilities at the time of the first report of HAB,
i.e., at time t0 in the EH-Model with no signals received.

4HABs are expected to arrive in 38.5% of the realizations in both case studies (P (H)×P (HAB|H) =
0.5× (1− e−0.07×21) = 38.5%).
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Table 6.3: Probabilities of losing biomass to HAB, performing an early harvest, and enduring
the HAB for the two case studies at different stages of the sea phase.

tsea Case Lose to HAB Early Harvest Endure
200 days Norway 38.5% 0% 61.5%
400 days Norway 15.4% 34.0% 50.6%
600 days Norway 7.9% 48.0% 44.1%
200 days Chile 38.5% 0% 61.5%
400 days Chile 24.5% 25.5% 50.0%
600 days Chile 0% 100% 0%

Table 6.3 shows that by following the EH-Model, decision-makers can drastically reduce
the probability of losing biomass to HABs, and that there is added value for risk manage-
ment actions. For tsea = 200, the results are equal for the two cases. For tsea = 400, the
probability of losing biomass to HABs for the Norwegian case study is lower than for the
Chilean case study. The Norwegian salmon farmers also conduct early harvesting more
often during the HAB outbreak for this sea phase stage. Given the baseline parameter
sets for the two countries, Norwegian salmon farmers receive information more often and
the accuracy of the signals is higher because of better collaboration in the aquaculture
industry. Therefore, they are able to make better-informed decisions compared to Chilean
farmers. It is evident from Table 6.3 that there is 0% chance of the losing biomass to
HAB for the Chilean case study for tsea = 600, as the optimal choice is to harvest imme-
diately. This result is again related to the availability of reliable information where the
Chilean salmon farmers are worse off. As they can expect to learn less from the signals
and receive fewer signals, the value of waiting is lower than the value of harvesting im-
mediately. Therefore, we conclude that the degree of information is an important factor
when determining whether to wait or harvesting early.

Figure 6.5 indicates the distribution of optimal early harvests on a given day during the
HAB duration of three weeks for both case studies when tsea = 400.

Figure 6.5: Probability of early harvests on a given day with tsea = 400 for the Norwegian and
Chilean case studies.

We see that Norwegian salmon farmers are more likely to perform an early harvest the first
days after HAB detection compared to Chilean salmon farmers. As previously discussed,
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salmon farmers in Norway receive more signals which is a better foundation for decision
making. Therefore, they have smaller probability of losing biomass to HAB and the
option value is higher in this particular sea phase stage (see Table 6.3 and Table 6.2,
respectively). Figure 6.5 shows that there is a decreasing probability of performing an
early harvest as the number of days increases. Thus, our model suggests that most of the
decisions for early harvesting should be conducted in the beginning of the HAB duration.
This emphasizes that correct information from research organizations and collaboration
within the industry play an important part for salmon farmers when deciding on the
optimal early harvesting strategy.

Figure 6.6 illustrates exercise boundaries for the middle and late stage of the sea phase
for the Norwegian case study. The exercise boundaries are plotted for a range of spot
prices, equilibrium prices, and the signal state, k, which is the number of bad signals in
excess of good received by the farmer at any given time. We drop the time subscript for
ease of notation.

Figure 6.6: Separating planes for the first day of HAB for the Norwegian case study. The
planes separate where the farmer should wait (below) and perform an early harvest (on and
above). The planes are plotted in the range between the 10th and 90th percentiles for spot
and equilibrium prices. Note that tsea = 200 is not plotted, as the optimal strategy is to never
perform an early harvest for any level of k.

Our model indicates that earlier in the sea phase, salmon farmers need to be more certain
that they are in the High risk state when determining whether to harvest early or delaying
the decision compared to later in the sea phase. This is reasonable as the salmon farmer
has more to gain by growing the biomass further early in the sea phase.

In Figs. 6.7a (Norway) and 6.7b (Chile) we study how the exercise boundary evolves over
time while keeping spot and equilibrium prices fixed. We fix the spot price to the last
observed spot price from Fish Pool and the equilibrium price to the estimated equilibrium
level from the two-factor price model.
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(a) Norwegian Case Study (b) Chilean Case Study

Figure 6.7: Exercise boundaries for the first week of the HAB for Norwegian and Chilean
case studies. The boundary is plotted with respect to k (bad signals in excess of good signals
received), with the spot price (50.40 NOK/kg) and equilibrium price (65.36 NOK/kg) fixed to
the initial values. The farmer should perform an early harvest if observed k at a given day is on
and above the line. If observed k is below, the farmer should continue and wait for more signals.
Note that tsea = 200 is not plotted, as the optimal strategy is to never perform an early harvest
for any level of k.

Now, we more clearly observe the optimal strategies for Norwegian and Chilean salmon
farmers during the first week of a HAB outbreak, for different stages of the sea phase.
For example, in Norway one should perform an early harvest on day four in the middle
stage of the production cycle (tsea = 400) if k is five or above (given the same spot and
equilibrium prices). Whereas for the same situation in Chile, one would perform an early
harvest if k is four or above. Note that the late stage (tsea = 600) exercise boundary
for Chile is at k = 0 for the first four days. This indicates that it is optimal to harvest
immediately in this case, as the initial value of k is zero (no signals has arrived), which
coincides with the results presented in Tables 6.2 and 6.3. This illustrates how the EH-
model may be used to produce optimal strategies for different scenarios. In what follows,
we will investigate how the signal arrival rate, the signal reliability, and the HAB arrival
intensity affect the EH-model results.

Examining the Effect of Signals and HAB-risk
Here, we examine the effects of changing selected parameters related to HABs. First,
we focus on the arrival rate of signals and reliability of signals. These parameters are
highly interesting as industry organizations and policy-makers can directly influence the
flow and certainty of information. An increase in information and collaboration will allow
salmon farmers to make better decisions. Therefore, we discuss some implications for
policy-makers and the aquaculture industry as a whole. In addition, we look at the HAB
arrival intensity as this is a highly uncertain parameter. We use a range of values for
these parameters to examine the effects on optimal strategy, cash flows received, and the
value of flexibility. For tractability, the effects of changing selected parameter values are
only examined for the Norwegian case study, as similar conclusions follow for the Chilean
case study.
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Changing the Arrival Rate of Signals

First, we study the effects of doubling and halving the parameter value for the arrival
rate of signals in the Norwegian case study. Figure 6.8 presents the distribution of early
harvests per day during the first week of the HAB outbreak. Salmon farmers do not
receive any signals before day one.

(a) tsea = 400 (b) tsea = 600

Figure 6.8: Probability of early harvests on a given day with different arrival rate of signals
µ. The scale of the y-axis is different for visualization purposes. tsea = 200 is not included as
no early harvests should be performed for any µ.

By observing Fig. 6.8, it is clear that the majority of early harvests should happen at
day one for the middle and late sea phase stages. The probability of early harvest being
optimal decreases the following days of the HAB outbreak. For the middle sea phase
stage, it is notable that an increasing arrival rate of signals leads to a higher probability
of optimal early harvest during the first days of the HAB period. This does not hold
when tsea = 600. According to our model, the salmon farmers do not rely so much on
the arrival rate of signals for the later stages in the sea phase where the early harvest
choice is conducted with higher probability. From this we conclude that it is vital for
salmon farmers to receive signals about the HAB risk as early as possible. Policy-makers
should enhance collaboration between salmon farmers themselves and companies that
posses knowledge about detecting HABs. Additionally, reporting HAB events should be
centralized by, for example, the Directorate of Fisheries. The Directorate of Fisheries
can then notify the surrounding production facilities efficiently. National or regional
monitoring programs should also be encouraged to improve HAB detection.

Figure 6.9 below shows the probability of receiving a cash flow for the Norwegian salmon
farmer in the different sea phase stages for a varying amount of signals.
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(a) tsea = 400 (b) tsea = 600

Figure 6.9: Distribution of cash flows received in the EH-model with different arrival rate
of signals µ. The scale of the y-axis is different for visualization purposes. tsea = 200 is not
included as the distribution for any µ is equivalent to Fig. 6.3a.

The scenarios that result in around 0 NOK for the salmon farmer are the cases where
a HAB kills the salmon in the sea pen5. Figure 6.9 shows that the probability of losing
biomass decreases for an increase in µ. Thus, salmon farmers are better off economically
when receiving more signals about the true state of the HAB risk. For tsea = 600, the
cash flows received are generally higher than for the middle sea phase stage as the total
biomass of the generations are higher. The option values are also higher for tsea = 600.
This is visible in Table 6.4. The table shows that the value of early harvest increases
for higher arrival rates of signals, except for in the early sea phase stage, in which it is
optimal to perform no early harvest for any signal arrival rate.

Table 6.4: Value of early harvest in the EH-model with different arrival rate of signals µ for
the Norwegian case study.

tsea µ = 1 µ = 2 µ = 4
200 days 0 MNOK 0 MNOK 0 MNOK
400 days 3.02 MNOK 3.91 MNOK 4.60 MNOK
600 days 8.09 MNOK 9.12 MNOK 9.74 MNOK

Changing the Reliability of Signals

This section studies how a change in the signal reliability affects the optimal strategy and
added value of early harvest. We investigate the relationships for Pcs = 60%, Pcs = 75%,
and Pcs = 90% under the different sea phase stages. Figure 6.10 shows the number of
harvesting decisions during the first week of the HAB duration.

5These cash flows are actually slightly negative, as the farmer pays production costs until the HAB
arrives.
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(a) tsea = 400 (b) tsea = 600

Figure 6.10: Probability of early harvest on a given day with different reliability of signals
Pcs. The scale of the y-axis is different for visualization purposes. tsea = 200 is not included as
no early harvests should be performed for any Pcs.

It is evident from Fig. 6.10 that the reliability of signals have a great impact on the
early harvesting decision. The harvesting decisions vary considerably, especially when
Pcs = 60%. The probability of early harvesting is low for this signal reliability when
tsea = 400, but this is not the case when tsea = 600. We see that the farmer should early
harvest on day zero for this particular signal quality and sea phase stage. This means
that it is not worth it for the salmon farmer to wait for any signals when the reliability
of signals is this low for the late sea phase stage. This is the same result as we saw for
the Chilean case study in Table 6.3.

When the reliability of signals is set to Pcs = 75% or Pcs = 90%, the trend of early har-
vesting decisions become clearer. If early harvest is optimal, the salmon farmer will most
probably early harvest in the first days of the HAB outbreak. The probability of making
a harvesting decision decrease as the days go by. With a higher Pcs the farmer can make
a better-informed decision earlier in the HAB event. If the HAB event happens during
the middle stage of the sea phase, a higher reliability means making more early harvests
in the first days. In the late stage of the sea-phase, this is reversed. Intuitively, this is
because the relationship between the cost of making a mistaken early harvest, relative to
the benefit of doing a correct one, shifts from favoring restrictive early harvesting in the
middle stages of the sea phase to excessive early harvesting in the late stages of the sea
phase.

Figure 6.11 below shows the salmon farmers’ probability of receiving cash flows for differ-
ent Pcs.
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(a) tsea = 400 (b) tsea = 600

Figure 6.11: Distribution of cash flows received in the EH-model with different reliability of
signals Pcs. The scale of the y-axis is different for visualization purposes. tsea = 200 is not
included as the distribution for any Pcs is equivalent to Fig.6.3a.

The effect of changing Pcs is similar to that observed when changing the arrival rate
of signals. In particular, the probability of losing biomass to HAB decreases as signal
reliability increases. Furthermore, the value of early harvest is lower when the reliability
of signals is low. This is depicted in Table 6.5 where the value of early harvest increases
for improved signal reliability. Again, in the early sea phase stage, it is optimal to never
perform early harvest for any signal reliability.

Table 6.5: Value of early harvest in the EH-model with different reliability of signals for the
Norwegian case study.

tsea Pcs = 0.60 Pcs = 0.75 Pcs = 0.90
200 days 0 MNOK 0 MNOK 0 MNOK
400 days 1.44 MNOK 3.91 MNOK 4.88 MNOK
600 days 7.12 MNOK 9.12 MNOK 10.02 MNOK

Interestingly, our model shows that when the signals are sufficiently reliable, it is worth
taking the risk of losing the biomass in order to learn more about the true risk. The
conclusion can also be drawn by looking at Fig. 6.11b. Since it is optimal to harvest at
day zero when Pcs = 60%, the cash flows received equal around 30 MNOK. For Pcs = 75%
and Pcs = 90%, the salmon farmer is able to achieve higher cash flows by learning about
the true state of the HAB risk, but in order to do so risks losing the biomass and receiving
no cash flow at all.

Numerous possibilities exist to improve the reliability of signals for the salmon farmers.
One solution can be to improve the knowledge about HAB testing for the salmon compa-
nies themselves. Alternatively, the regional capacity can be improved to boost the testing
ability. If the salmon farmers are able to conduct their own testing and analyses, they will
benefit from faster and more efficient results. We know from the 2019 incident in Norway
that the presence of deadly algae were noticed mostly by the salmon farmers themselves
by observing changes in behavior and increased mortality rates (Karlsen et al., 2019).
Implementing this measure may therefore be effective and the salmon farmers will not
depend on other organizations to learn about the HAB risk.
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Changing the HAB Arrival Intensity

HAB arrival intensity is an uncertain parameter which depends on several factors in the
natural environment as discussed in Section 2.2. Therefore, the choice of parameter value
is highly uncertain. This motivates the choice of performing a sensitivity analysis for
this particular parameter. We investigate how a range of different λH affect our research
questions. See Table 6.6 for the chosen parameter values, expected time of arrival, and
probability of HAB arrival in the High state.

Table 6.6: Different arrival rates with corresponding expectations regarding arrival time and
probabilities of getting the HAB if the true risk state is High.

λH Expected time of arrival P (HAB|H)
0.05 20.0 days 65%
0.07 14.3 days 77%
0.10 10.0 days 88%
0.20 5.0 days 98%

Figure 6.12 depicts the distribution of early harvests in the first week of the HAB outbreak
for different HAB intensities.

(a) tsea = 200 (b) tsea = 400 (c) tsea = 600

Figure 6.12: Probability of early harvest on a given day for different arrival rates of HAB in
the High risk state, λH . The scale of the y-axis is different for visualization purposes.

From Fig. 6.12 we see that the probability of early harvests decrease over the HAB dura-
tion. This result is true for all of the chosen HAB arrival rates. Interestingly, we observe
that for the two highest values of λH , it can be viable to perform early harvests in the
early sea phase. We also see that with higher λH , the probability of early harvest being
optimal increases. An interesting result is obtained in Fig. 6.12c for λH = 0.20 where it is
optimal to early harvest at day zero. This means salmon farmers should always conduct
early harvests late in the production cycle if the HAB arrival intensity is very high.

The corresponding probability distribution of cash flows received by the salmon farmer is
displayed in Fig. 6.13.
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(a) tsea = 200 (b) tsea = 400 (c) tsea = 600

Figure 6.13: Distribution of cash flows received in the EH-model with different arrival rates of
HAB in the High risk state, λH . The scale of the y-axis is different for visualization purposes.

Figure 6.13 shows that the probability of losing biomass increases for higher λH , with the
exception of tsea = 600 as it is optimal to early harvest immediately. The value of early
harvest in the different sea phase stages under various λH are illustrated in Table 6.7.

Table 6.7: Value of early harvest in the EH-model with different HAB arrival intensity for the
Norwegian case study.

tsea λH = 0.05 λH = 0.07 λH = 0.10 λH = 0.20
200 days 0 MNOK 0 MNOK 0.38 MNOK 1.25 MNOK
400 days 2.18 MNOK 3.91 MNOK 5.57 MNOK 6.05 MNOK
600 days 6.86 MNOK 9.12 MNOK 10.53 MNOK 11.30 MNOK

We see from Table 6.7 that the option value is substantially higher for increasing HAB
arrival intensity. We also see that the value of early harvest becomes positive for the
highest arrival intensities for tsea = 200. As the optimal actions and values of performing
early harvests are highly dependent on the actual risk of getting the HAB, it is essential
for policy-makers and aquaculture organizations to contribute with accurate and frequent
signals about HAB risk.

6.3 Early Harvest-Move Model Results
As previously discussed, moving the salmon will lead to an increased mortality rate and
feed conversion ratio. Consequently, more salmon will die and production costs increase
after moving. This obviously leads to a decrease in the value of harvesting optimally at
a later stage, if the farmer has moved the biomass compared to endured the HAB at the
existing location. Still, the possibility to move the salmon is found to be an attractive
option with the introduction of HAB risk. The reason for this is the risk of HABs killing
the fish and thus making the biomass worthless. Table 6.8 below shows the EH-M-model
results based on 10 000 simulations of price, HAB, and signal processes, with another
7 500 compound GSR-model simulations at every time step.

50



6.3 Early Harvest-Move Model Results

Table 6.8: EH-M-model results presented for different stages of the production cycle, repre-
sented by different values for tsea, for both the Norwegian and Chilean case studies. Immediate
Harvest and Immediate Move shows the value of harvesting or moving immediately at the report
of a HAB outbreak, No Move or EH shows the value when not allowing for flexibility to move
or early harvest. EH-M-model shows the value obtainable when following the EH-M-model’s
strategy, and Value of Move or EH denotes the added value from the flexibility to move or early
harvest.

tsea Case Immediate Harvest Immediate Move No Move or EH EH-M-model Value of Move or EH
200 days Norway 8.91 MNOK 35.61 MNOK 24.99 MNOK 35.61 MNOK 10.62 MNOK
400 days Norway 24.74 MNOK 40.59 MNOK 27.33 MNOK 40.59 MNOK 13.26 MNOK
600 days Norway 33.82 MNOK 39.55 MNOK 25.90 MNOK 39.55 MNOK 13.65 MNOK
200 days Chile 10.84 MNOK 36.82 MNOK 26.16 MNOK 36.82 MNOK 10.66 MNOK
400 days Chile 26.14 MNOK 41.66 MNOK 28.15 MNOK 41.66 MNOK 13.51 MNOK
600 days Chile 24.41 MNOK 41.01 MNOK 26.22 MNOK 41.01 MNOK 14.79 MNOK

For all stages of the sea phase, the EH-M-model finds it optimal to move immediately
at the report of a HAB outbreak, hence the equal values in EH-M-model and Immediate
Move columns. This means that it is not worth risking losing the biomass while waiting
for signals if the farmer has the option to move. As seen in Table 6.8, the derived value
of flexibility to move or early harvest is relatively large. This implies that it is highly
beneficial for salmon farmers with alternative farming sites available to move salmon.
Furthermore, we find these values to be very similar for Norwegian and Chilean salmon
farmers.

These findings imply that salmon farmers should seek to enable spatial diversification if
possible. Typically, only the larger salmon farmers have multiple farming sites in different
regions and hence the possibility to move their fish during HABs. For policy-makers, this
has two implications. First, processing of applications for moving the fish during a HAB
needs to be prioritized to allow for swift moving. Second, decision-makers should look
into the possibility to establish a number of reserve fish farming sites in order to support
small salmon farmers in the most endangered HAB areas. This is of importance to secure
workplaces for smaller salmon farming companies and local communities.

The EH-M-model allows for joint consideration of early harvesting and moving, which is
especially relevant for larger farmers. Compared to Table 6.2 showing EH-model results,
we find that the option to move gives much higher option values, thus being the more
attractive option, see Table 6.8. As a consequence of a relatively large moving profitability
for our baseline case, we find that the option to move is dominating the option to early
harvest and to wait in the EH-M-model. Therefore, it is of interest to investigate special
cases in which an immediate move is not optimal. First, we look into how an increased
cost of moving affects the relationship between moving and harvesting. Figure 6.14 shows
the distribution of optimal moves and early harvests in the EH-M-model with varying
cost of moving with the parameters from the Norwegian case study, and with tsea = 600.
We choose to examine the latest stage of the sea phase because it is at this time that the
value of early harvest is closest to the value of moving (see Table 6.8).
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Figure 6.14: Plot showing the distribution of early harvests and moves performed during the
HAB under the EH-M-model with different costs of moving. This is from the Norwegian case
study with tsea = 600.

It is evident from Fig. 6.14 that the option to move dominates the option to early harvest
for move costs much higher than what we have estimated. It is first when the move cost
is more than twice the original level, at 7 NOK/kg, that moving should not be done
immediately. This means that the conclusion to move immediately holds for moving costs
up to 7 NOK/kg. This implies that salmon farmers would be willing to pay a lot more
than they do today for a moving operation, even when they have the option to early
harvest.

We observe from Fig. 6.14 that the amount of moves is equal to early harvests performed
for a break-even level of move cost, CM = 10.68. Intuitively, the values of the option
to move and the option to early harvest evaluated individually should be similar at this
move cost. We examine the effect of evaluating them jointly in Table 6.9, which shows
the values obtained by evaluating the options to move or early harvest individually, and
the value found by the EH-M-model.

Table 6.9: Values found by evaluating the option to Move individually, the option to Early
Harvest individually (i.e., the EH-model), and the EH-M-model which evaluates the option to
Move or Early Harvest jointly. Obtained values are for the Norwegian case study with cost of
moving increased to CM = 10.68.

Option to Move Option to Early Harvest EH-M-Model
35.02 MNOK 35.02 MNOK 35.20 MNOK

As expected, the values of the individual options are roughly equal. However, evaluating
the options to move or early harvest as mutually exclusive uncovers 200 000 NOK in
excess value compared to when evaluating the options individually in this spesific case.
The excess value comes from being able to choose the optimal choice between moving and
harvesting.

Figure 6.15 plots the values for different move costs close to the break-even level.
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Figure 6.15: Plot showing the value of the option to move and early harvest evaluated indi-
vidually, and as mutually exclusive options found by the EH and EH-M models with different
moving costs. The roughness in the option to Move and the Option to Move or EH stems from
randomness in the Monte Carlo simulations. The option to early harvest is not affected by the
cost of moving. This is from the Norwegian case study with tsea = 600.

Figure 6.15 illustrates that when one of the mutually exclusive options is worth a lot
more than the other, the value of evaluating them jointly converges to the option with
the highest value. However, there is excess value in evaluating them together. This applies
especially when the values of the individual options are close to each other. This implies
that farmers that have both options should evaluate them jointly in order to maximize
the value of their biomass. Otherwise, it can lead to sub-optimal choices. This applies
especially in cases where the values of harvesting and moving are relatively similar, such
as very late in the sea phase and with high costs of moving.

We conclude this chapter by remarking that HABs are highly unpredictable and nearly
impossible to influence by a policy-maker, see Section 2.2. Therefore, we recommend
that policy-makers facilitate implementation of possible mitigation strategies available to
salmon farmers when facing HABs. This facilitation includes permissions to move salmon
biomass to alternative locations or use available processing plants for early harvesting.
Salmon farmers themselves should discuss the terms for allocation of resources during
HAB outbreaks, such as the use of wellboats. Communication will be more efficient if
these terms are clarified before a potential HAB outbreak. Lastly, human monitoring
and control can be increased at the salmon farms to notice changes in fish behavior and
increased mortality rates, or with underwater camera technology.

With respect to our results, we understand that there are several uncertain factors in-
teracting at once. These are related to the price, algal, and signal processes. To reduce
these underlying uncertainties, we do a reasonable amount of simulations of the respective
processes. We observe slightly different option values for each model run, coming from
the nature of randomness of the Monte Carlo simulations. However, our results are very
similar for each model run, ensuring that our conclusions are robust.

Lastly, our results hold when the market is in contango, i.e., when the spot price lies
below expected future salmon prices. We have not looked into when the market is in
backwardation and spot prices are expected to drop in the future. However, we find
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that contango is a reasonable market assumption with respect to HAB events. Thus, we
believe our conclusions are valid with respect to our research questions.
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Chapter 7
Conclusion

This thesis identifies optimal harvesting strategies for small and large salmon farmers when
facing the risk of HAB arrival and stochastic prices. More specifically, we study optimal
harvesting decisions and quantify the value of managerial flexibility when allowing for
early harvesting, while receiving imperfect information about the true algal arrival rate.
In an extension to this framework, we introduce the opportunity to move the fish and
investigate how this affects the optimal course of actions. We present two case studies,
for Norway and Chile, and discuss their results for different stages of the salmon farming
sea phase. Realistic model parameters have been identified from interviews with Chilean
industry experts and by studying relevant aquaculture studies on both industries. Our
results are found to be robust to both geographical settings. Based on the results, we offer
recommendations for policy-makers on how they can facilitate optimal decision-making
for salmon farmers during HABs. In what follows, we will present the main findings of
this thesis, our contributions to the existing body of literature, and suggestions for further
research.

First, in the GSR-model, we find optimal harvesting time while facing stochastic prices.
Our model uncovers excess value when accounting for managerial flexibility in the har-
vesting decision. The value of flexibility is decreasing towards the end of the production
cycle. Conversely, we find that the probability of harvesting increases as a function of
time. We find that with harvesting flexibility, the probabilities of using this flexibility and
of waiting until the last possible harvest day are approximately equal. For salmon farmers
this implies that under no algal risk, harvesting is most likely optimal at the end of the
production cycle. However, fluctuating prices may lead to optimal harvesting before this,
thus having the flexibility to change the time of harvesting is valuable.

Second, the EH-model allows for early harvesting when facing risk of HAB arrival and
stochastic prices. We find that by following the EH-model, the probability of losing salmon
to the HAB is strongly reduced. However, the results show that the value of harvesting
flexibility varies across the production cycle. In particular, the harvesting flexibility has
little value in the early stages of the sea phase, but increases in value for later stages.
In other words, the current sea phase stage largely affects the harvesting decision. As a
consequence, if the HAB occurs early in the sea phase stage when the biomass is low,
salmon farmers should ignore the signals and perform no early harvest. However, if the
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HAB arrival intensity is sufficiently increased, we find that flexibility in the harvesting
decision is valuable even for the early sea phase stages.

Furthermore, we find that when the signals are sufficiently reliable, it is worth taking
the risk of losing the biomass in order to learn more about the true risk. Conversely,
if the signals are unreliable, salmon farmers late in the sea phase should not take this
risk. Instead, they should harvest immediately on the report of a nearby HAB event.
We conclude that increased HAB signal reliability leads to better-informed decisions and
thus larger option values. Policy-makers may contribute to improved signal reliability by
boosting regional testing capabilities and by improving HAB testing knowledge among
salmon farming companies themselves.

We find that the value of flexibility in the harvesting decision increases, as the signal ar-
rival rate increases. Thus, we conclude that more signals enables salmon farmers to make
optimal decisions. For this reason, policy-makers should enhance collaboration between
salmon farmers and organizations that posses knowledge about detecting HABs. More-
over, if the HAB reporting responsibility is centralized to, for example, the Directorate of
Fisheries, all industry stakeholders may be informed efficiently at the same time.

Third, in the EH-M-model, our results suggest that salmon farmers having the opportunity
to move the fish out of HAB risk areas, should do so immediately. Should current costs
of moving significantly increase in the future, both the options of early harvesting and
moving needs to be considered in order to avoid sub-optimal decisions. For policy-makers,
the results imply two things. First, processing of applications for moving the fish during
a HAB event needs to be prioritized to allow for swift moving of fish. Second, decision-
makers should look into the possibility to establish a number of reserve fish farming areas
in order to support small salmon farmers in the most endangered HAB areas.

Our work offers several promising directions for further research. Salmon farming com-
panies organize their value chains differently, giving various production and moving costs
across the industry. This can easily be accounted for by transforming our production
and moving cost parameters into cost functions with relevant cost components as input.
Developing more sophisticated cost functions would allow salmon farming companies to
estimate even more accurate results, accommodating their specific cost settings.

Moreover, we do not include biomass insurance as a scalable risk management tool.
Biomass insurance lets salmon farmers hedge against some of the potential losses and
would be an interesting extension to our model. It would also be of interest to extend
the GSR-model to account for multiple rotations. In the EH-model, one could allow for
the possibility to start a new rotation after a given time in order to make the model even
more realistic.

Lastly, we assume the price dynamics are the same for both Norway and Chile, even
though they serve different markets and are exposed to different currencies. Further work
should put additional efforts into obtaining historical Chilean price data and investigate
whether the price processes differ geographically. Moreover, we do not account for sea-
sonality in salmon spot prices. Extensions to the price model could make the two-factor
price process even more sophisticated by incorporating seasonality.
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Appendix A
Kalman Filter Procedure

In our two-factor price model, the short-term deviations, χt, and the equilibrium price
level, ξt, are unobservable and must be estimated from spot and forwards prices from Fish
Pool. The following transition equation describes the evolution of state variables,

xt = c + Gxt−1 + ωt, t = 1, ..., n, (A.1)

where n is the number of sets of price observations and

xt =
[
χt
ξt

]
is a 2× 1 vector of the state variables,

c =
[

0
µξ∆t

]
is a 2× 1 vector,

G =
[
e−κ∆t 0

0 1

]
is a 2× 2 matrix,

and ωt is a 2 × 1 vector of disturbance terms with zero expected value and covariance
matrix as following,

W = Cov[(χ∆t, ξ∆t)] =
[

(1− e−2κt)σ
2
χ

2κ (1− e−κt)ρχξσχσξ
κ

(1− e−κt)ρχξσχσξ
κ

σ2
ξ t

]
.

The time difference between each price observation is ∆t. Furthermore, the following
measurement equation describes the relationship between the price observations and the
state variables, χt and ξt, i.e.,

yt = dt + Fxt + vt, t = 1, ..., n, (A.2)

where
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yt =


ln(FT1)

...
ln(FTN )

 ,
is an N × 1 vector of log forwards observations with time maturities Tj, j = 1, ..., N ,
where N is the number of forward contracts,

dt =


A(T1)

...
A(TN)

 , is an N × 1 vector in which

A(T ) = µξT + (1− e−2κT )
σ2
χ

4κ + (1− e−κT )ρχξσχσξ
κ

+
σ2
ξ

2 T,

F =


e−κT1 1

... ...
e−κTN 1

 , is an N × 2 matrix,

and vt is an N × 1 vector of disturbance terms with zero expected value and a diagonal
covariance matrix with diagonal elements (s2

1, ..., s
2
N).

In the Kalman filter procedure, the short-term deviations and the equilibrium price level
must be jointly estimated with the other model parameters, i.e., κ, σχ, µξ, σξ and ρχξ,
together with standard deviations for these estimates. Schwartz and Smith (2000) pro-
pose finding these model parameters using maximum likelihood estimation, but do not
explicitly state any likelihood function. However, by using transition Eq. (A.1), measure-
ment Eq. (A.2) and following the procedure in Chapter 3.4 of Harvey (1989), we derive
the following likelihood function,

log L = −Nn2 log 2π − 1
2

n∑
t=1

log |Ft| −
1
2

n∑
t=1

v′tF−1
t vt. (A.3)

We want to find the set of parameters (κ, σχ, µξ, σξ and ρχξ, together with standard de-
viations for these estimates) that maximizes this likelihood function. To ensure a global
maximum is reached, the optimization procedure must be repeated for a variety of initial
parameter values. Our resulting parameter estimates and state variables are presented
in Section 5.1. For an in-depth explanation of the Kalman filtering procedure and corre-
sponding proofs, we refer to Harvey (1989) and West and Harrison (1996).

63



Appendix B
Derivation of High-Risk State Belief Function

The number of bad signals received (indicating true risk is High, H) is denoted h, and the
number of good signals received (indicating true risk is Low, L) is denoted l. The farmer
has prior belief that there is p0 probability of being in the High state. Furthermore, he
believes that the probability of a given signal being correct is Pcs. We denote the belief
that the farmer is in the High state as a function of the number of bad and good signals
received P (h, b). By following Bayes rule, we get that the belief is given by:

P (h, l) = P (h, l | H)× P (H)
P (h, l | H)× P (H) + P (h, l | L)× P (L) =

P h
cs × (1− Pcs)l × p0

P h
cs(1− Pcs)lp0 + (1− Pcs)hP l

cs(1− p0) ,

by multiplying numerator and denominator by P−lcs
p0(1−Pcs)l , we get

P h−l
cs

P h−l
cs + 1−p0

p0
(1− Pcs)h−l,

, we then introduce k = h − l, the number of bad signals (signaling High risk) in excess
of good signals (signaling low risk) and get the belief function

p(k) = P k
cs

P k
cs + 1−p0

p0
(1− Pcs)k

.
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