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Problem Description

The goal of this master’s thesis is to develop a mixed integer program formulation for a large matching problem
routing rolling stock at the Oslo Metro between depots and the start and end of service routes. The object
is to minimize deadheading while fulfilling periodic cleaning requirements over realistic instances with long
planning horizons.

Main contents:

1. Description of the problem.

2. Literature review relevant to the application area and problem description.

3. Mathematical model for the problem.

4. Exact and heuristic solution methods.

5. Implementation and comparison of the proposed solution methods using a commercial solver.

6. Presentation of results and discussion of the possible implications and further research.
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Abstract

Mass rapid transit systems like the Oslo Metro are an important part of a city’s transport service in a world
of increased urbanization and demand for environmentally friendly transport solutions. Increasing size and
complexity of transport systems also provides an opportunity for optimizing scheduling and planning to
reduce costs. A significant cost saving measure is to reduce the distance empty trains drive between
depots and terminal stations. Driving empty trains between depots and the first and last station of a day
is called deadheading. Because of the integrated network design the problem of reducing deadheading is
particularly relevant at the Oslo Metro.

A plan that allocate trains to depots and passenger routes must also satisfy cleaning constraints as
all trains must be cleaned within certain time intervals, and only some depots have cleaning equipment.
Such a plan must also adhere to the maximum storing capacity of all depots.

This thesis aims to find allocation plans that minimize deadheading in a realistic situation at the Oslo
metro over a long planning horizon while satisfying all practical side constraints. The main contributions
of this thesis is defining the Multi-Depot Periodic Vehicle Routing Problem, formulating a mathematical
model for the problem, developing an exact and heuristic solution method and testing the heuristic solution
method for realistic instances with long planning horizons. No previous research literature on metro systems
are found that study this problem, however, related research on the similar bus rapid transit systems exists
and are discussed in the thesis. A half-year allocation plan for the Oslo Metro is found using the proposed
heuristic solution method. This solution is estimated to pose an 18.6 percent improvement, equivalent to
a cost saving of about NOK 3.4 million, over the current plan used by Sporveien AS, the operator of Oslo
Metro. The solution is found using a commercial solver on a standard desktop computer within 24 hours
of computing time.
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Sammendrag

Kollektivtransportsystemer som T-banen i Oslo dekker en essensiell del av storbyers behov for person-
transport. Verden opplever en økende urbanisering og etterspørsel etter klimavennlige transportløsninger.
Større og mer komplekse transportsystemer gir samtidig en mulighet for å for å redusere kostnader gjen-
nom operasjonsanalyse. En betydelig kostnadsbesparing er å redusere tomkjøring av tog mellom depot og
første og siste stasjon på en T-banerute. På grunn av det integrerte designet er dette problemet spesielt
presserende for T-banenettverket i Oslo.

En allokeringsplan av tog til depot og ruter må også tilfredstille togenes vaskekrav innen visse tidsin-
tervall, og bare noen depot er utstyrt med vaskeutstyr. En slik plan må også overholde depotenes maks-
kapasitet.

Denne oppgaven forsøker å finne allokeringsplaner som minimerer tomkjøring i realistiske scenarier ved
T-banen i Oslo over lange planleggingshorisonter mens vaskekrav er tilfredstilt. Oppgavens hovedbidrag
er å definere problemet, formulere en tilhørende matematisk modell, utvikle en eksakt og en heuristisk
løsningsmetode og teste den heuristiske løsningsmetoden for realistiske instanser over lange planlegging-
shorisonter. Det er ikke identifisert tidligere forskningslitteratur på T-banesystemer som dekker dette
problemet, men relatert forskning på metrobussystemer finnes og er diskutert i oppgaven. En halvårlig
allokeringsplan for T-banen i Oslo er funnet i oppgaven ved bruk av den foreslåtte heuristiske løsningsmeto-
den. Denne løsningen er estimert til å utgjøre en 18,6 prosent forbedring, tilsvarende en kostnadsbesparelse
på 3,4 millioner kroner, sammenlignet med dagens løsning fra Sporveien AS, operatøren av T-banen i Oslo.
Løsningen er funnet ved bruk av kommersiell programvare på en vanlig stasjonær datamaskin innen en
løsningstid på 24 timer.



Our existence in time
is determined for us,
but we are largely free
to select our location.

— August Lösch (1954, p.3)
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1 Introduction

More than half the world’s population now live in cities and the urbanization trend is only increasing. Since
1980, the number of people living in cities with more than 500,000 inhabitants has tripled. Larger and denser
cities bring both challenges and opportunities. With more people living and working close together, traffic
congestion and pollution become major problems. Relying on cars for personal transportation brings immense
social costs, including using high value real estate for roads and parking. On the other hand, increased
population density makes mass rapid transit systems like a metro more cost effective and eco-friendly. The
world’s total rail length built for metro systems has also tripled since 1980 from about 5,000 km to over
15,000 km (Institute for Transportation & Development Policy, 2017). Oslo, the capital of Norway, is also
growing, recently passing 1 million inhabitants in the greater Oslo area with an estimated total of 1.2 million
by 2040 (Statistics Norway, 2018). The Oslo City Council has decided that cars for personal transport shall
be banned from the city center, further strengthening the need for alternative transport systems (Business
Insider, 2018).

Sporveien AS is the operator of the Oslo Metro and the technical collaborator of this thesis. The Oslo Metro
serviced 119 million travelers in 2019, a 25 percent increase since 2015 (Sporveien AS, 2019). From 2014 to
2017, the average cost-per-trip went down from NOK 11.5 to NOK 8.5, a decrease of 35 percent, following
a period with large cost saving measures and increased production. The latest numbers from 2019 show
a rebound to about NOK 9.5 average cost-per-trip (Sporveien AS, 2019). A significant operational cost is
driving empty trains, so-called deadheading or dead mileage, between the depots where the trains are parked
overnight to the starting stations of the metro lines. Similarly, at the end of the day, the trains deadhead
back to a depot from the last station of the line they were plying, which means serving a line. Driving trains
without passengers is a costly, non-revenue generating activity and thus desirable to reduce. Every kilometer
of deadheading costs Sporveien about NOK 43 in power consumption, wear and personnel costs, totaling
NOK 36 million over the course of a year. Sporveien wants to continue their cost saving measures and reduce
the total deadheading length by finding a better routing plan between depots and the terminal stations.

Within a given time interval all trains must visit certain depots for cleaning, however the depots have limited
capacity. For a given planning horizon, a schedule must alternate which trains are assigned a cleaning depot
to fulfill this requirement. The goal is to minimize deadheading, while not exceeding the maximum depot
capacities and adhering to the periodic cleaning requirements as well as fulfilling the timetable. Trains are
assigned a metro line and a timetable block to ply for the day. Blocks are a set of routes and technical
movements trains perform over the course of a day in traffic. Aggregating all blocks generates the complete
timetable. The timetable, and the individual blocks with it, differ between weekdays, Saturdays and Sundays,
with reduced service on Saturdays and Sundays. Public holidays run on a Sunday timetable.

The purpose of this thesis is constructing a model and solution method that find an improved routing of trains
between depots and the terminal stations while fulfilling multi-period cleaning constraints. This has — to
my knowledge — not been studied or solved before in published academic literature in English. Although the
literature on deadheading minimization in metro systems is non-existing, literature found on problems in city
bus systems share many of the core properties of the problem studied in this thesis.

In this thesis, I develop an integer programming (IP) model for the Multi-Depot Periodic Vehicle Routing
Problem (MDPVRP) which is outlined above. Moreover, I develop an heuristic approach based on the Rolling
Horizon Heuristic (RHH) and solution space reduction (SSR) techniques and compare this with an exact
Branch-and-Bound (B&B) algorithm using a commercial solver. The purpose is to identify solution methods
suitable for solving instances representing Sporveien’s current situation over long planning horizons. Long
deadheading planning schedules makes personnel and long-term maintenance planning easier.

The largest instance I manage to solve in this thesis is the half year instance. The proposed solution suggests
that Sporveien may improve its block-vehicle-depot matching by 18.6 percent in terms of reduced deadheading,
which amounts to a cost reduction of about NOK 3.4 million over a six month period.



2 1 INTRODUCTION

This thesis is a continuation of my work on a project report on the same theme and problem. The focus of the
report was to formulate the problem and implement an exact solution method. However, most of this work
has since been developed further and transformed such that only the general idea and preparation of instance
input data remains to be found in this thesis. The chapters that still inherit a significant part from the report
are Chapters 2, 4 and 5. I will not proceed to reference the report throughout the thesis.

The remainder of this thesis is structured as follows: Chapter 2 expands on Sporveien and the Oslo Metro to
provide a technical background. A literature study is presented in Chapter 3 to discuss the problem properties,
application area and solution methods in previous research. Chapter 4 defines the problem, and Chapter 5
presents its mathematical formulation. In Chapter 6 the exact and heuristic solution methods are described.
Sporveien’s current situation represented as problem instances of different lengths are presented in Chapter 7.
A computational study of the solution methods proposed and other scenarios are presented in Chapter 8 and
finally, Chapter 9 offers concluding remarks.
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2 Technical Background

This chapter provides an introduction to the company Sporveien AS in general and Oslo Metro in particular,
as well as a background on the challenges of cleaning and storing metro trains. I present the publicly owned
company Sporveien AS and its subsidiary Sporveien T-banen AS in Section 2.1. In Section 2.2 I describe
Oslo Metro on a general level and in Section 2.3 I go into detail about how the trains are cleaned and stored.
Section 2.4 discusses the cost drivers and the utility Sporveien is interested in achieving. All specific information
provided in this chapter is either sourced from conversations with representatives at Sporveien or their latest
annual report (Sporveien AS, 2019).

2.1 Sporveien AS

Sporveien AS (from now on just Sporveien) is a company owned by the Municipality of Oslo, the capital
of Norway. It owns, operates and maintains the tracks and rolling stock — all trains and trams — of
the Oslo Metro and Oslo Tramway. Sporveien also owns Unibus, a bus operating company and two other
smaller operating subsidiaries as well as Sporveien Vognmatriell AS, formerly a separate company named Oslo
Vognselskap. Sporveien Vognmatriell owns the metro and tramway rolling stock and lease it to Sporveien Metro
and Sporveien Tramway which maintains the rolling stock in-house. See Figure 2.1 for a visual representation
of Sporveien, their owners and subsidiaries. In 2019 Sporveien employed 3,351 people and transported a total
of 269 million journeys, with NOK 4,785 million in total revenue. The public transport authority, Ruter, is the
official buyer of transport services from Sporveien, which in turn offer transport services to the public. Ruter
is owned 60 percent by the Municipality of Oslo and 40 percent by the County of Viken, the neighbouring
county to Oslo.

Figure 2.1 – Sporveien, its owners and subsidiaries. Translated from Sporveien AS (2019)

2.2 Oslo Metro

Oslo Metro (from here on ”the Metro”) is the partly underground urban train in Oslo, functioning as the
city’s rapid transit system. The Norwegian name ”T-bane” is short for ”Tunnelbane” (literally tunnel rail) and
corresponds to the more colloquial English terms Underground or Tube (British), Subway (North American),
U-Bahn in German speaking countries or Metro, which is more used internationally (Wikipedia, 2020b).



4 2 TECHNICAL BACKGROUND

The rail network has a total length of 85 km and consists of five lines that all run through the city centre,
see Figure 2.2. The network was historically built as separate networks on each side of the city, but was later
merged in the city center and the Ring (Line 5) was completed with the northern stations Nydalen, Storo
and Sinsen in 2006. There are 17 underground or indoor stations, and 84 stations above ground. The Metro
serves 14 out of the 15 boroughs in Oslo, St. Hanshaugen in the center of the Ring being the exception. Two
westward going lines run to Kolsås and Østerås in the neighboring municipality of Bærum in the county of
Viken. In 2019, the Metro served 119 million individual travels.

Figure 2.2 – The Oslo Metro schematic map. The stations with a co-located depot are marked in red. Names marked
with a red star are the associated stations where depots have cleaning equipment. Copyright Truls Lange Civitas

As of 2020, Sporveien operates 115 trains of the type OS MX3000 produced by Siemens, consisting of three
cars each. Usually the trains are driven as two coupled trains, as shown in Figure 2.3, but during periods of
low demand, and predominantly on Line 1 towards Frognerseteren where the stations are shorter, the trains
are driven individually. During deadheading, the trains may be coupled three and four together to move up
to twelve cars at the time with a single driver. Because of the limited length of the stations, the trains are
without passengers while driving more than two coupled sets. The interior of the MX3000 is open and modern
(see Figure 2.4) with a moderate number of seats and high total passenger capacity. Each three-car train has
a rated capacity of 400 passengers.
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Figure 2.3 – Two coupled Siemens OS MX3000
trains. Photo: User ”Falk2”, Wikipedia

Figure 2.4 – The interior of Siemens OS MX3000
train. Photo: Sean Hayford O’Learly

2.3 Cleaning, storing and other restrictions

The Siemens OS MX3000 train series was produced exclusively for the Oslo Metro and in 2010 the last of the
older trains was replaced with an MX3000 model. Having a custom-made and homogeneous fleet of trains
greatly simplifies the infrastructure requirements and maintenance routines. All trains are stored overnight at
one of several depots — which consists of a rail yard and garage complex — when they are not in traffic. For
about four to five hours each night, and one to two hours longer on weekend nights, there is no passenger
traffic.

The depots at Avløs and Ryen are larger and at a side track to the stations with the same names. The stations
Vestli, Ellingsrudåsen and Stortinget are also used as depots, with more limited storage capacity. Only parts
of the capacity at Vestli and Ellingsrudåsen may be utilized without interfering with trains in service. The
storage space at Stortinget station is on the old turning loop, a part of the track from before the eastern and
western network was combined in the city center (see Figure 2.5). At that time, all trains on the eastern lines
turned around using this loop, which is built on a different level than the newer main track. Today the loop is
still used as an easy way of turning around trains coming from an eastern line going to another eastern line,
e.g. Line 5 from Ellingsrudåsen to Line 3 Mortensrud. Before the end of the operating day, one of the two
tracks in the loop may be used as storage without interfering with trains in service. The second loop track is
held clear for turning maneuvers and are not used as storage until later in the night when most other trains
are in their depots and the timetabled traffic has ended.

Figure 2.5 – Layout of Stortinget station with the main track going under the looping track from the east. Colored
boxes are spots for storing trains overnight. Illustration from Sporveien.
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Figure 2.6 – Two Siemens OS MX3000 trains on the maintenance platform at Ryen depot. Photo: Sporveien

As seen on the map of the Metro (Figure 2.2), the five locations with storing capacity have their names marked
with red background. Two of the depots, Avløs and Ryen, have equipment to clean the trains interior. Trains
that are stored on the turning loop at Stortinget station are first prepared for storage at Ryen, where their
interior may be cleaned. This means Stortinget can be thought of as a depot with interior cleaning capability.
These three depots with interior cleaning capabilities are marked with a red star in Figure 2.2. The depot at
Ryen also have a washing tunnel for exterior cleaning.

The trains’ interior and exterior are cleaned for hygienic and aesthetic reasons and to reduce corrosion and
wear. Cleaning is performed at the depot where a train is stored overnight, but only if the depot has the
necessary facility. The cleaning capacity is limited by the total depot capacity, so time needed to clean is not
a limiting constraint. Interior cleaning is a fairly simple process performed by two to three cleaning personnel
who clean the floor, walls and windows and replace garbage bags. The process takes about 20 minutes per
train and is done at least every other day on each train. Exterior cleaning, which is only available at the Ryen
depot, should be performed at least once every five days. Here a cleaning operator drive the trains through a
washing tunnel, not unlike how a car wash tunnel works. Other, larger maintenance tasks are performed on
the trains while they are on service platforms as seen in Figure 2.6. There is a second service floor on a level
below the train and scaffolding on the sides and above such that maintenance personnel may access all parts
of the train exterior.

The full fleet of trains leased by Sporveien numbers 115. During rush hour on weekdays 105 trains are in
normal traffic, and on Saturdays or Sundays at most 98 and 82 trains respectively. The remaining trains
are out of service for preventive maintenance, repair, upgrades or just held as backup. Since the fleet is
homogeneous, they circulate the sets that are out of service so that incoming trains replace outgoing ones.
Long-term maintenance, repairs and upgrades are not considered in this thesis.

2.4 Utility and costs

Sporveien delivers transport services according to a contract with Ruter, the public transport authority. In
addition to customer satisfaction targets, Sporveien’s goal is to serve passenger travels as cost-effectively as
possible. Important cost drivers are the driver personnel cost, security and maintenance of trains and tracks,
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power consumption for propulsion and lighting, ventilation and air conditioning at the stations as well as
maintenance equipment and spare parts. At the start of a day the trains in service leave the depots and
deadhead to the first station of their allocated block for that day. A block is a sequence of in-service trips
that a train performs during a day. The aggregation of all blocks describes the flow of trains on all lines that
together constitute the timetable.

If Sporveien manage to decrease total deadhead travel length between depots and terminal stations, it will
result in reduced power consumption, less wear and lower personnel costs. Sporveien estimates that the
average cost of wear and power for a single train is about NOK 30 per km driven. Further, they estimate
an average personnel cost during the relevant hours at about NOK 800 per hour. The average driving speed
during normal traffic is 30 km/hr. Early in the morning and late in the evening, the traffic is less busy, which
allows for increased driving speed, but when calculating the driver personnel cost per km driven, this is more
or less offset by the drivers inconvenience allowance. An exception to this is the western branch of Line 1 from
Majorstuen towards and including Frognerseteren (see Figure 2.2), an older and steeper part of the network.
This branch is usually only served by a single train and have an reduced average speed of 20 km/hr.

According to Sporveiens current rolling stock schedule, the sum of deadheading on a regular weekday is
2,504 km, on a Saturday it is 2,055 km and on a it is Sunday/holiday 1,655 km. For the days in the year of
2020, this sums to 842,312 km of total deadheading between depots and block terminal stations.

To summarize, Sporveien is the largest provider of public transport in the Oslo area, and the Metro accounts
for a majority of this. The Metro have a highly interconnected rail network with many possible combinations
of depots and blocks for all trains in the homogeneous fleet. Cleaning of the trains is only possible at some
of the depots. Deadheading is costly and dependent on the matching of trains to depots and blocks. Finding
a better schedule matching trains to depots and blocks, while still fulfilling the cleaning restrictions may be a
considerable cost saving measure.
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3 Literature Review

In this chapter I explore and present literature relevant to the Multi-Depot Periodic Vehicle Routing Problem
(MDPVRP) for depot-block routing of metro trains. The introductory Section 3.1 presents the literature on
the Vehicle Routing Problem (VRP) and its extensions, as well as discussing how the problem of this thesis
can be modeled as a series of matching problems. Section 3.2 explains my search strategy for covering the
literature on metro systems and problems related to the MDPVRP, and presents the findings. In Section 3.3 I
discuss the relevance of the MDPVRP in other transport systems and review more thoroughly the literature on
the MDPVRP in bus rapid transit (BRT) systems. In Section 3.4 I focus on solution methods for large problem
instances by providing a short introduction to the rolling horizon heuristic and present relevant literature on
this approach. In the final Section 3.5 I summarize the most important findings in this chapter and discuss
this thesis’ contribution to the literature.

3.1 Vehicle Routing Problem and its extensions

The MDPVRP is derived from the well-known VRP — introduced by Dantzig and Ramser (1959) — which
aims to design a set of minimum cost vehicle routes through a network visiting a set of delivery locations,
so that each route starts and ends in a depot, often while satisfying some side constraints. Pickup and
delivery applications like goods or mail delivery or transportation problems like passenger bus routing are
typical examples of the VRP. The rich literature on the VRP covers many derivatives and application areas,
Golden et al. (2008) being a thorough survey and Adewumi and Adeleke (2018) being a more recent one.

When a network include multiple depots, the extended VRP is called Multi-Depot Vehicle Routing Problem
(MDVRP). Like with VRPs the goal of a MDVRP is to find a set of routes involving all depots that minimizes
the total travel cost (e.g. distance), while satisfying constraints like customer demand and vehicle capacity.
Sometimes the MDVRP extends to deciding the location of all or some depots, like the decision of where to
build ports to better accommodate supply ships serving a network of off-shore oil rigs (Uyeno & Willoughby,
1995). Even without deciding the location of depots, the MDVRP is proven to be NP-hard (Bertossi et al.,
1987), which means the problem is not solvable in polynomial time using known algorithms. For a review of
the MDVRP literature see Montoya-Torres et al. (2015).

A routing problem defined over a discrete number of periods, like days, extends the VRP to the Periodic
Vehicle Routing Problem (PVRP). The goal is still to minimize total travel cost, but across all time units in
the planning horizon. An example of the PVRP is public waste collection which must be preformed periodically
and are somewhat flexible as to the exact day and time frequency. Minimizing the total travel cost for waste
collection vehicles by chosing routes and frequency constitute a typical PVRP. For a survey on recent advances
in the PVRP literature, see Section 5 of Adewumi and Adeleke (2018).

The Metro is a connected rail network where trains on all lines may use any depot in the network, but only
some of the depots have cleaning equipment. The cleaning requirements are defined over a period of days
which make the problem studied in this thesis a combination of MDVRP and PVRP. This combination is
called Multi-Depot Periodic Vehicle Routing Problem (MDPVRP), sometimes unfortunately named Multi-
Period Multi-Depot Vehicle Routing Problem which is easily confused with the Multi-Product Multi-Depot
Vehicle Routing Problem, which is not relevant here. However, the version of the MDPVRP studied in this
thesis is different from most other MDPVRPs — like the one studied in Hadjiconstantinou and Baldacci (1998)
— in two important aspects: Firstly — illustrated by solution a) in Figure 3.1 — each vehicle route starts and
ends at the same depot in a traditional MDPVRP. The trains at the Metro is not required to return to the
same depot, which increase the number of legal paths in a network, as illustrated by solution b). Secondly,
because the timetabled blocks in this thesis are locked, or taken as given, each block is represented by a single
”delivery” node. All block nodes must be visited and no vehicle may visit more than one. This is illustrated
by solution c) in Figure 3.1 with the number of nodes reduced to the number of vehicles for clarity.
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Figure 3.1 – a) A solution from a traditional Multi-Depot Vehicle Routing Problem (MDVRP). A single period is
illustrated for clarity. b) A MDVRP where vehicles are not locked to a particular depot and c) a MDVRP like the one
in this thesis, with unlocked depots and where each vehicle may only visit a single delivery node. In the last solution,
the number of delivery nodes is reduced to the number of vehicles for clarity.
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Figure 3.2 – The matching options of depots and
block nodes as two complete bipartite, acyclic graphs.

When each node is a block and no vehicles may visit more
than one block before returning to a depot, the prob-
lem may be represented as a bipartite matching problem
(Bertossi et al., 1987). To see why this is the case, con-
sider each pair of same-colored edges from the paths in c).
Each vehicle is matched with a depot and block in the
morning, representing the first edge going from a depot
to a node, and a block and depot in the evening, repre-
senting going back from the node to a depot. The depot
and block nodes in each of the morning and evening parts
are separable to become two disjoint and independent sets
with edges going from one set to the other, see Figure 3.2,
which are the definition of bipartite graphs.

Kepaptsoglou et al. (2010) study a similar problem where
vehicles associated with a timetabled block are matched
with depots to minimize deadheading. The authors represent the problem with a bipartite, acyclic graph. This
uncomplicated network flow problem is equivalent to a matching problem (Derigs, 1988) and may be modeled
as such. Considering not only a single half-day, which is clearly a simple, acyclic bipartite graph, but the
complete planning horizon does not increase the complexity significantly. An extension to the MDPVRP is
given with Figure 3.3. Although this graph is richer — in that it has more nodes and edges — the extension
to a series of bipartite graphs is only a linear increase in complexity.

Figure 3.3 – Illustration of the graph structure of the Multi-Depot Periodic Vehicle Routing Problem (MDPVRP) with
a single delivery per vehicle in each period. The periodicity does not introduce a more than linear increase in complexity
as the complete planning horizon is simply a sequence of separate periods.

In this section I have presented literature relevant to the structure of the MDPVRP studied in this thesis.
Moreover, I have discussed different representation of the problem and found that even though it might be
represented as a cumbersome sequence of simple graphs, a matching problem formulation is equivalent. Trains
are matched with a start depot and a block in the morning, and with the same block and an end depot in the
evening each day in a planning horizon under periodic cleaning constraints.
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3.2 Literature on the MDPVRP in metro systems

In this section I will present a thorough search for relevant operations research literature with metro systems as
an application area. However, I will first introduce terms used to categorize problem areas within the railway
industry, where metro systems are considered a member. Several papers have adopted the useful hierarchical
structure of terms and illustration from Lusby et al. (2011, p.844), here presented in an adapted form in
Figure 3.4. These terms will later be used to categorize the literature found on metro systems.

Figure 3.4 – The railway planning problem hierarchy.
Illustration adapted from Lusby et al. (2011).

The many planning problems related to railway systems
may be organized sequentially in the order they need to be
planned, where each subsequent step is dependent on the
decisions made in the previous steps. However, the perfor-
mance of a particular solution at one step of the planning
process is dependent on the subsequent steps. A hypothet-
ical optimal solution to all planning steps would require an
incredibly complex model exchanging information between
every step in the hierarchy. Such a model is not likely
to be computationally tractable, and most research in this
area focuses on only one or two planning steps. Figure 3.4
is based on a similar illustration from Lusby et al. (2011)
and attempts to give a hierarchical overview of the major
planning problems in the railway industry. The network
planning step is the most basic and concerns the planning
of the physical location of tracks, junctions, stations and
other physical infrastructure. Projected population pat-
terns and urban development plans often create the basis
for the constraints and objective function. Line planning
covers the decisions of frequency and capacity of lines in
the network. These are long term strategic decisions that inform large, hard-to-reverse investments in infras-
tructure and rolling stock. Strategic level planning problems are only peripherally relevant to this thesis.

The usual next step is timetable generation, or timetabling for short, based on the set infrastructure, available
rolling stock and required line frequencies. Timetabling aims at determining a periodic timetable for the lines
in the railway network that does not violate the physical limitations of the infrastructure, while satisfying some
operational constraints. For a survey on the literature on timetabling problems i refer the reader to Cacchiani
and Toth (2012). The subsequent step in Figure 3.4 is railway track allocation or train routing which concerns
the detailed routing of lines through junctions, multi-track stations and passing loops where multiple trains
must coordinate to ensure conflict free execution, a problem which is usually less precarious to metro systems
although necessary. However, as I will return to later in Section 3.3, the Oslo Metro stands out among metro
systems as especially sensitive to sub optimal train routing due to the level of interconnection and shared
tracks of the different metro lines. The main focus of Lusby et al. (2011) is reviewing the literature on railway
track allocation planning problems.

Vehicle scheduling — or when specific to vehicles on rails: rolling stock scheduling — is the problem of
constructing feasible sequences of trips, or block, as defined by the timetable. A complete schedule is feasible
if each trip is assigned the appropriate number and type of rolling stock, and each vehicle performs a feasible
sequence of trips. This is the railway equivalent of the more general Vehicle Scheduling Problem (VSP).
Scheduling problems are often similar to routing problems, but the former concerns temporal planning and the
latter spatial planning. In other words, scheduling is deciding when an entity should take a certain action, and
routing is deciding where an entity should take the action. More often than not, practical problems involves
both dimensions and each term is thus often used for problems which does not exclusively concern time or
space. In some problems the decision to be made concerns where to route a set of vehicles while fulfilling
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constraints based on when such routes are allowed. This is the case in the problem of this thesis. The decision
is which routes to choose between depots and blocks, but certain combinations of depots and blocks are not
allowed because they are temporally incompatible. Between all planning steps presented in Figure 3.4 routing
problems like the one studied in this thesis are most similar to the vehicle scheduling planning problems. Other
terms used as synonyms or names for similar problems to vehicle scheduling in the literature combine rolling
stock, vehicles or trains with rostering, management, planning, circulation or assignment. Bunte and Kliewer
(2009) seems to be the most recent survey on the vehicle scheduling literature.

A common approach is to consider the scheduling of vehicles and operating crew in the same model, although
crew scheduling is an independent step on par with the other planning steps in Figure 3.4. Huisman (2004)
provides a thorough overview of methods for integrating vehicle and crew scheduling. The most essential crew
for operation are the drivers which may or may not be homogeneous in terms of which rolling stock they can
be assigned, and schedules are often restricted by maximum allowed working hours and other labor restrictions
required by law or employment contracts. Going from the tactical level to the operational level, plans face
reality and need real time adjustments. Disruption management is the real time management of unplanned
events such as infrastructure blockage, failing rolling stock and crew shortage. Research on this problem aims
typically to find predefined decision rules and fallback plans as well as methods that would quickly find optimal
redirection of rolling stock, crew, passengers and cargo to recover to normal service. See Cadarso et al. (2015)
and Lie and Sinnes (2019) as examples on disruption management and recovery for urban rail transit systems.

I have now introduced terminology from railway planning which also are relevant to metro systems. Next
in this section I will present a search for literature on metro systems and determine how they relate to the
problem studied in this thesis.

To find literature relevant for the MDPVRP in metro systems I used the following search string in a widely
used academic search engine (Google Scholar, 2020):

”optimization” (”rapid transit” OR ”metro”) ”depot” ”deadheading”

This particular string is based on some preliminary trial searches to find search terms that can identify relevant
literature without too many false positives. Terms in quotation marks are required in the search results, but
only one of the two terms ”rapid transit” and ”metro” are strictly needed using this search string. When not
including patents and citations, a search on April 14th 2020 provided 143 search results. An evaluation of title
and abstract determined if they passed the following three criteria:

1. The document is available in English through my university library

2. It covers a problem from the discipline of operations research

3. Metro systems are mentioned explicitly as a main application area

Through this filtering I reduced 143 search results to 21 confirmed relevant and unique documents, which I
further examined to determine scope and problem area. Of the 21 documents, 15 are published papers, three
are conference papers and three are PhD theses. All were published between 2003 and 2020, but 10 documents
(48 percent) were published in 2018 or later suggesting that the interest in metro systems within operations
research has recently increased. Table 3.1 provides a count of documents covering particular planning step as
introduced by the problem hierarchy in Figure 3.4. Table 3.2 lists all 21 research documents on metro systems
with the planning steps they cover, a short description of the objective function used, if the problem concern
more than one depot or a periodic problem. Notes on additional relevant properties are also added.

Most of the documents concern minimizing operating cost or cost drivers like energy consumption. However,
none include deadheading costs between depots and blocks as part of their problem. Some optimize for
reducing expected delays or passenger wait time through line planning or timetabling. In addition to using
objective functions different from the model studied in this thesis, none of the problems in Table 3.2 cover a
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periodic problem. Without periodicity, the problem structures are fundamentally different from the MDPVRP.
Only 8 out of the 21 documents includes a multi-depot problem.

Table 3.1 – Metro planning steps by number of relevant research documents. Note that a single document may cover
several steps, so the sum across all planning steps exceed the total of 21 identified documents.

Planning step No. of Documents
Network planning 2
Line planning 4
Timetabling 8
Railway track allocation 0
Vehicle scheduling 7
Crew scheduling 5
Disruption management 6

To summarize, the literature on metro systems identified here does not include any papers that share the
fundamental aspects of the problem studied in this thesis. I therefore conclude that it is highly likely this
problem for metro systems has not previously been studied in any published English research literature.

3.3 MDPVRP relevance in transport systems

In this section I move beyond metro system as an application area and explore other transport systems. The
goal is to determine if literature on comparable problems are relevant to the MDPVRP studied in this thesis.
Operations research covers a variety of different application areas. It is generally easier to find literature within
the same application area, as opposed to finding problems with similar structure or methodology from different
application areas. Papers tend to cite relevant articles from the same application area, and only rarely cite other
application areas with similar problem structure and methodology. This seems to happen because researchers
focus on different problems within a application area more often than focusing on particular problem structures
and methodologies across different application areas. This leads to diverging use of terms for otherwise similar
concepts making it harder to navigate the literature.

For a transport system to be relevant, the version of the MDPVRP covered in this thesis must be applicable
and appropriate. I have identified the following two requirements to determine if the MDPVRP is relevant to
a transport system:

• Nontrivial distance - The typical deadheading distance between depots and terminal stations of a block
is more than trivial or nonexistent

• Reasonable alternative depots - There are multiple reasonable choices of depots per terminal station

If we first consider the airline industry, most airports store airplanes at hangars co-located with the airports.
The distance from the gates to the hangars at an airport is fairly short for the typical case, violating the
requirement of nontrivial distance. In some rare cases planes may be re-positioned to other airports without
— or with unprofitable few — passengers because the planes are needed there the next morning. But this
”deadheading” trip is unavoidable and would have happened early in the morning if not the previous night as
necessitated by the flight schedule. The hangars at the new airport are still co-located with that airport.

Long-distance railway is an example of violation of the requirement for reasonable alternative depots as each
terminal station usually have only one train depot available in the vicinity. Deadheading to other terminal
stations is usually not a real alternative as the distance is too long. Long-distance shipping, and trucking share
the same characteristics as long-distance railway on this point. There is a rich body of operations research
literature concerning the airline industry, long-distance railway, shipping and trucking, however, they usually
do not met both requirements of nontrivial distance and reasonable alternative depots and hence this literature
is not relevant to this thesis.
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Table 3.2 – Summary of metro research documents. Planning steps from Figure 3.4. ”Opportunity cost” in a objective
function are ways of calculating societal costs like passengers time spent waiting and traveling. ”Open blocks” in the
Additional properties-column means locked blocks are not taken as input.

Document Planning step Objective function Depot Periodic Additional properties

Freling et al. (2003) Vehicle scheduling
Crew scheduling

Min number of
vehicles and crew

Single No Open blocks.

Huisman et al. (2005) Vehicle scheduling
Crew scheduling

Min sum of vehicle
and crew costs

Multi No Vehicle and crew locked
to depot. Open blocks.

Cadarso et al. (2013) Disruption
management

Min sum of operating
and opportunity cost

Multi N/A Open blocks.

Ramos (2013) Network planning
Line planning

Min sum of passenger
cost and operator cost

Multi N/A

Cadarso and Marı́n (2014) Disruption
management

Min sum of operating
and opportunity cost

Multi N/A Open blocks.

Jiang et al. (2014) Timetabling
Vehicle scheduling

Min travel time and
min plan deviation

Single No

Fuentes et al. (2015) Crew scheduling Min operating cost Multi No

Cadarso et al. (2015) Disruption
management

Min sum of operating
and opportunity cost

Multi No

HassanNayebi et al. (2016) Timetabling Min wait time and
opportunity cost

N/A No Robust stochastic
programming.

Liu et al. (2017)
Line planning
Timetabling
Vehicle scheduling

Min sum of operating
and opportunity cost

N/A No Multiple vehicle types.

Laporte et al. (2017) Timetabling
Vehicle scheduling

Min operating, capital
and opportunity costs

Single No

Ding (2018) Network planning Max social surplus N/A N/A

Fonseca et al. (2018) Timetabling
Vehicle scheduling

Min sum of operating
and transfer cost

Multi No Vehicles locked to
depot.

Zhang et al. (2018) Line planning Min timetable deviation
and train size

Multi No

Ortega et al. (2018) Disruption
management

Min sum of operating
and opportunity cost

Single No

Zhou et al. (2018) Timetabling Min net energy
consumption

N/A No

HassanNayebi et al. (2018) Timetabling Min wait time N/A No
Fuentes et al. (2019) Crew scheduling Min operating cost N/A No

Chang et al. (2019) Disruption
management

Min delays Single No

Blanco et al. (2020) Line planning
Timetabling

Min operating cost N/A No

Huang et al. (2020) Disruption
management

Min sum of delay cost
and opportunity cost

Single No

In fact, most metro systems do not fulfill the requirement of reasonable alternative depots. Metro lines are
usually constructed independently reducing the number of alternative depots available to trains on a particular
line. The Prague Metro is an illustrative example as seen on the map in Figure 3.5. The three lines apparently
meet at the station Můstek, Florenc and Muzeum, but the rails and platforms are not common between the
lines. The separate line platforms are merely co-located in the same station building. Each line has its own
set of rolling stock and often just one or two depots per line, making the problem of depot allocation trivial.
Compare this to the map of Oslo Metro in Figure 2.2 where all lines share rails and platforms in the city centre
with five depots spread out in the network. It follows that the MDPVRP is only a significant problem for
metro systems with a interconnected network design like one at the Oslo Metro.
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Figure 3.5 – The Prague Metro schematic map. Stations Můstek, Florenc and Muzeum in the city center are shared
by two lines, but the rail infrastructure does not overlap. Copyright Adam Sporka

City bus networks — also known as bus rapid transit (BRT) when sufficiently developed and of a certain size —
are similar to metros as they are highly integrated and have a large number of stops, lines, depots and vehicles.
BRT systems typically include dedicated roadways and high capacity vehicles designed to reduce stop time
by having passengers rapidly board and disembark. Both requirements of nontrivial distance and reasonable
alternative depots are met for BRT systems. Thus, minimizing deadheading in BRT systems can represent
huge cost savings in large cities. For instance, Nasibov et al. (2013) report that the BRT system in Izmir,
the third largest city of Turkey with a population of about 4.3 million inhabitants in the province (Wikipedia,
2020a), has 1,424 buses that operate on 293 routes using 10 depots. The total daily deadheading distance at
the time of the study was computed to 16,851 km, or nearly halfway around the world. Mathirajan et al. (2010)
deal with an even larger bus-depot matching problem in Bangalore, India with 5,031 buses and 30 depots.
A 2018 US report found that 14.5 percent, or 582.1 million driven bus kilometers a year, corresponds to
deadheading trips (APTA, 2020). There are important differences between BRT and metro systems, like the
operating costs per vehicle and the route availability in the network, but no other transport system is more
similar to the metro than BRT. Furthermore, contrary to metro systems, there is a rich literature on depot
routing problems for BRT systems.

To identify relevant literature on BRT systems, I used a similar approach to that of metro systems and searched
Google Scholar (2020) using the following search string:

”optimization” ”bus rapid transit” ”deadheading”

When not including patents and citations the search provided 152 results on April 21st 2020. These results
were evaluated based on their title and abstract and rejected if they did not meet the following criteria:

1. The document is available in English through my university library

2. It covers a problem from the discipline of operations research

3. The problem concerns matching of any combination of block, bus and depots with an objective of
minimizing deadheading

After this filtering, 17 unique documents remained, all papers published in a journal. The publication year is in
the range of 1983 and 2020 with 4 papers, or 24 percent, published in 2018 or later as compared to 48 percent
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of those regarding metro systems. In fact a majority of the papers on BRTs are published before 2003, the
earliest publication year for research on metro systems in Table 3.2. See Table 3.3 for a similar overview of
the BRT papers, but note that all BRT papers concern a VRP and are more relevant to the problem of this
thesis than any research document listed in Table 3.3.

Table 3.3 – Overview of bus rapid transit (BRT) research papers. Note that the Problem type-column is not comparable
to the Planning step-column in Table 3.2. ”Open blocks” in the Additional property-column means locked blocks are
not taken as input. Each paper listed covers a multi-depot problem.

Paper Problem type Objective function Periodic Additional properties

Wilhelm and Parks (1983)
Block-depot
matching and depot
location and size

Min cost of operation,
deadheading and
construction

No
Buses handled in aggregate.
Implies block-bus are locked.
Open blocks

Maze et al. (1983)
Bus-depot matching
and depot location
and size

Min cost of operation,
deadheading and
construction

No Block-bus locked

Sharma and Prakash
(1986)

Block-bus-depot
matching

Pri: min deadheading
Sec: min deadheading
range

No Buses handled in aggregate.

Mathirajan (1987) Block-bus-depot
matching

Min deadheading No Heterogeneous vehicles/depots

Agrawal and Dhingra
(1989)

Block-depot
matching and depot
location and size

Min cost of
deadheading and
construction

No Buses handled in aggregate.

Mathirajan (1993) Bus-depot matching Min deadheading No Block-bus locked

Uyeno and Willoughby
(1995)

Block-bus-depot
matching and depot
location and size

Min cost of operation,
deadheading and
construction

No

Buses handled in aggregate.
Considers weekday, Saturday
and Sunday/holiday blocks,
but independently

Perre and Oudheusden
(1997)

Block-bus-depot
matching

Min deadheading No Buses handled in aggregate.
Heterogeneous vehicles/depots

Willoughby (2002)
Block-bus-depot
matching and depot
location and size

Min cost of operation,
deadheading and
construction

No

Buses handled in aggregate.
Considers weekday, Saturday
and Sunday/holiday blocks,
but independently

Mathirajan et al. (2010) Bus-depot matching
Pri: min deadheading
Sec: min deadheading
range

No Buses handled in aggregate.
Block-bus locked

Kepaptsoglou et al. (2010) Block-bus-depot
matching

Min deadheading cost
and depot imbalance

No Buses handled in aggregate.
Heterogeneous vehicles/depots

Nasibov et al. (2013) Block-bus-depot
matching

Min deadheading No Buses handled in aggregate.
Heterogeneous vehicles/depots

Dávid and Krész (2018) Block-bus-depot
matching

Min travel costs
and operating costs

Yes Buses handled in aggregate.
Heterogeneous vehicles

Baldoquin and Campo
(2018)

Block-bus-depot
matching

Pri: min deadheading
Sec: min deadheading
range

No

Heterogeneous vehicles.
Considers weekday, Saturday
and Sunday/holiday blocks, but
independently. Open blocks

Xu et al. (2018) Block-bus matching Min travel costs No
Departure-duration restrictions
for crew shifts. Open blocks.
Bus-depot locked.

Moreno et al. (2019) Block-bus matching Min fleet size
and deadhead costs

No Open blocks.
Bus-depot locked.

Sevim et al. (2020) Block-depot
matching

Min fleet size
and deadhead costs

No Open blocks.

Even though many of the early BRT papers cover very large instances, the computing power of the day was
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far from adequate to solve these instances to optimality. The papers from the 80s and 90s were restricted
to defining the problem and solving mock instances as a proof of concept. Later papers take advantage
of the increased computing power and tackle larger problems and more complex and integrated models.
Baldoquin and Campo (2018) consider a problem of minimizing deadheading and, secondary, minimizing the
range between shortest and longest deadheading trips, where a heterogeneous fleet of vehicles are routed to
form blocks including deadheading trips to depots. The authors consider three sets of routes, namely those
from a weekday, Saturday and a Sunday/holiday timetable. However, each timetable are used as input in
three independent runs, implying that the solutions are repeatable for all days of the particular type and thus
independent from each other. The problem in this thesis extends on the two-way matching of vehicles to
depots and blocks by introducing periodic cleaning constraints forcing dependencies between days, even those
of equal type.

Unlike the research literature on metro systems, almost all papers identified in Table 3.3 include minimizing of
deadheading in their objective function. Some include other costs as well as deadheading, like Kepaptsoglou
et al. (2010) which also aims for reducing depot utilization imbalance. Some papers assume buses belong to
a specific depot and cannot change depot. Locking buses to depots reduces the problem to a block-depot
matching problem rather than a double matching problem of matching vehicles to both depots and blocks,
like the problem studied in this thesis.

Another dissimilar factor for most of the BRT papers is considering vehicles in aggregate. Only the number of
vehicles going between a certain depot and a given terminal station are recorded, not single identifiable vehicles.
This aggregation is also utilized in Dávid and Krész (2018), which is the only paper identified to present a
periodic model. The periodicity is introduced to include vehicle maintenance at least once every three days
in service. Although the problem from Dávid and Krész (2018) is the most similar to the one studied in this
thesis, it is modelled as a commodity flow model and not as a matching problem. All allowable combinations
of locations (garages, blocks and maintenance facilities), days and inspection states are represented by state
nodes with edges covering the allowable transitions between states. The standard commodity flow model is
augmented by adding capacity restrictions on depots and maintenance stations as well as constraints on blocks
to ensure demand is met. They also allow for vehicles to cover more than one block per day, blurring the
demarcation to the VSP compared to the problem studied in this thesis.
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Figure 3.6 – Run time data from Dávid and Krész
(2018, p. 7) in seconds on a logarithmic scale —
starting on 10 — for each scenario per 1, 2 and 3
weeks of planning horizon.

Dávid and Krész test this model on a real life instance of
238 vehicles, 109 garages, 6 maintenance locations and
an average of 131 daily blocks. They vary the length of
maintenance periods, vehicle types and days, but all sce-
narios are solved to optimality or near optimality in about
40 to 82,000 seconds on a standard desktop computer.
The longest planning horizon the authors test is 3-weeks
which provided optimal or almost optimal (<1 % duality
gap) results within 16,000 to 82,000 seconds, which the
authors deemed promising considering the practical appli-
cation of this planning model. They do not comment on
the length of planning horizons in the practical applications
they envision, but the needed planning horizon at the Oslo
Metro is months to a year rather than weeks. Given the
solution time reported by the authors (rendered in Fig-
ure 3.6) it seem rather optimistic to conclude that this
approach may solve similar or larger instances for planning
horizons of months to a year. Each scenario S-2 to S-6 in
the figure corresponds to instances with two vehicle types
and 2 to 6 days as the maximum allowed time between
maintenance checks per vehicle. The solution time clearly
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increase exponentially with at least an order of magnitude on average per one week increase in planning horizon
across all tested scenarios. Although it remains to be tested, an extrapolation from this data suggest that
a planning horizon of 12 weeks would require 10-100 trillion seconds to solve, or about 300-3,000 millennia.
Even with adjustments for the extrapolation, increased computing power and streamlined algorithms, it seems
highly unlikely to expect exact solutions within reasonable time for long planning horizons using this method.

The state based commodity flow model presented in Dávid and Krész (2018) is an interesting modeling
alternative to the approach given in this thesis. Still, it does not solve the challenge of superlinear growth in
computing time with increased planning horizon. One way of achieving adequate solutions in reasonable time
is utilizing heuristics to decrease solution time, which is introduced in the next section.

3.4 Literature on the Rolling Horizon Heuristic

This section provides a short introduction to the Rolling Horizon Heuristic (RHH) and a brief review of the
literature behind the approach, with an emphasis on use cases similar to the one in this thesis. A heuristic
approach is needed for the MDPVRP because it is NP-hard and solving realistic instances of the problem
with long planning horizons is likely to be impractical, as indicated with the run time data from from Dávid
and Krész (2018) shown in Figure 3.6. A rolling horizon heuristic is chosen because it decomposes the
problem across time, the dimension extended in long planning horizon instances. A technical explanation of
the implementation of the RHH used in this thesis is provided in Section 6.1.

The RHH is a matheuristic, a type of heuristics which make use of mathematical programming models to
find solutions more quickly (Archetti & Speranza, 2014). As with all heuristics, this solution method is not
guaranteed to find the optimal feasible solution. It is in fact not even guaranteed to find any feasible solution
even if they exist (Uggen et al., 2013). A RHH decomposes the full problem by dividing the planning horizon
into a set of shorter disjoint sub-horizons, solving each iteratively by fixing the variables in previously solved sub-
horizons when solving subsequent sub-horizons. For long horizon integer programming (IP) problems solved
using B&B, the solution time exceeds the solution time needed for a sequence of short horizon problems with
a combined length equal to the long horizon problem. When using a RHH, increasing the planning horizon
corresponds to adding more short horizon problems to the sequence, which in theory only produce a linear
increase in solution time. If the variables within a sub-horizon are dependent on variables in other sub-horizons,
the combined solution from a RHH may prove worse than the global optimum. This is the reason this heuristic
approach does not guarantee an optimal solution. Longer sub-horizons are less likely to fail in finding feasible
solutions, but they increase the total solution time.

Archetti and Speranza’s (2014) survey on matheuristics identifies RHH as a decompositional approach. The
RHH decomposes the original IP problem across the time dimension into shorter and easier IP subproblems,
solves them sequentially and reconstructs feasible solutions from the solutions of each subproblem. This
approach is therefore dependent on the ability of a problem to be decomposed based on a division across time,
and to properly integrate the solution to subproblems. Furthermore, the subproblems must be more than
proportionally easier to solve than the original problem since the RHH must solve a number of these problems
sequentially. In lieu of any of these properties the RHHs becomes an inefficient solution method.

Only one of the research documents in Table 3.3 studies a periodic problem, but with an exact solution method
and no heuristics. Most research utilizing the RHH is found in manufacturing scheduling (Rakke et al., 2011)
where it proves an effective way of solving planning problems with long time horizons. Quick solution methods
are paramount in manufacturing where more reliable and recent data becomes available and frequently demand
updated schedules. Baker (1977) is one of the very earliest explorations of a RHH approach in manufacturing
scheduling and found it effective, yet sensitive to the problem structure and parameter choices like the length
of each period. Baker also found that the RHH is especially useful if plans may be revised when gaining new
information.
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De Araujo et al. (2007) provide a more novel example of utilizing rolling horizon to solve large mixed-integer
programming (MIP) problems in manufacturing. The authors employs a version of the RHH called relax-and-
fix which considers all variables when solving each subproblem, but most variables are LP relaxed. Linear
programming (LP) relaxation of integer variables involves removing the integer restriction, while keeping
any upper or lower variable bounds. The full planning horizon is divided into K sub-horizons, one for each
subproblem. With each iteration a central period is defined over a sub-horizon. In iteration 1, the central
period covers the first sub-horizon, and in iteration 2 it covers the second and so on, each time rolling the
horizon one step forward. The central period retains the original model formulation, but for the remainder
of the planning horizon the model is relaxed. This relaxed period beyond the central period forecast the
consequences of decisions in the central period to avoid short sighted solutions. In the first iteration the
subproblem consists of a central period covering the first sub-horizon with integer and binary variables, and LP
relaxed variables in each subsequent sub-horizon. This relaxed problem is solved, and the decisions from the
central period is then fixed before moving on to the next iteration and the next sub-horizon. The successive
iterations solve a partially fixed problem, each with a greater number of fixed variables and fewer LP relaxed
variables than the one before. In the end the forecast period shrinks to nothing as all variables are fixed and a
solution to the full problem remains. See the solid literature review on the relax-and-fix in Uggen et al. (2013)
for more background on this heuristic.

The version of the RHH used in this thesis is a fixed length forecasting relax-and-fix approach. The central
period in this version is piloted by a forecast period which only extend some d time units from the end of the
central period, and not all the way to the end of the planning horizon like in de Araujo et al. (2007). The
variables in the section beyond the forecast period is simply not included when solving each subproblem. There
are other ways of relaxing the problem in the forecast period, for example by excluding certain constraints
or replacing the model with a simplified formulation (Mohammadi et al., 2010). In this thesis I have opted
for a LP relaxation as it seems to be the most used method. Both Alonso et al. (2000) and Marín (2006)
uses a relax-and-fix approach with LP relaxed forecasting periods to solve problems within transportation,
but for air traffic control and airplane taxi planning, respectively, and not related to rail transport. To my
knowledge, mainly because few papers considers periodic vehicle matching problems at all, no one have used
the relax-and-fix or other versions of the RHH to solve a block-vehicle-depot matching problem.

The relax-and-fix approach with a fixed length forecasting period is also used in Rakke et al. (2011), but
for a problem in shipping of liquefied natural gas. The authors combine the RHH with an improvement
heuristic. Improvement heuristics can utilize the relax-and-fix structure to improve the solution by un-fixing
parts of the solution found by the RHH and re-solve to uncover better solutions. During each pass of the
improvement heuristic different constraints are fixed and un-fixed, often across other dimensions than time to
capture dependencies not found in the chronological RHH approach. This way, new and better solutions may
be found. This assumes a feasible solution is found using relax-and-fix, which is not guaranteed in the basic
algorithm (Uggen et al., 2013, p.360).

In this thesis I explore a fixed length relax-and-fix RHH and compare it to an exact solution methods. The
RHH in this thesis is combined with solution space reducing heuristics, which are presented in Section 6.2.

3.5 Summary and contributions

This chapter have reviewed the literature relevant to this thesis. The assessed literature touch upon three
main aspects: First, the problem of thesis — the MDPVRP — with its background, variants, alternative
formulations and why it is relevant for the Metro. Secondly, the application area of metro systems and how
they compare to other transport systems, with an emphasis on the literature from the similar BRT systems.
And finally, on the proposed heuristic solution method.

The MDPVRP in this thesis is novel in that the routing of vehicles between depots and terminal stations to
minimize deadheading have not been previously studied for metro systems, nor has the periodic approach that
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arise with the multi-day cleaning constraints. Among transportation systems, it seems that metro systems
particularly understudied. A central contribution of this thesis is formulating a model for the MDVRP based
on the sequence of double matching problems discussed in 3.1 tailored to the situation at the Metro. Besides
the commodity flow model of the similar problem proposed by Dávid and Krész (2018), I have not identified
any previous work on the depot-block routing of metro trains.

The MDVRP is NP-hard (Bertossi et al., 1987), and because the MDPVRP is an extension of this problem, it is
too. Thus, it is difficult to solve realistic instances over long planning horizons to optimality within reasonable
time. This is also noted with the performance of the solution method proposed by Dávid and Krész (2018). I
propose a heuristic solution method to the IP model for long planning horizons, and compare computational
time and solution quality to an exact solution method. To my knowledge, this has not been done before for
depot-block routing problems of any application area.
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4 Problem Description

This thesis tackles the optimal matching of rolling stock to overnight depots and timetabled blocks at the Oslo
Metro while fulfilling short-term cleaning requirements. Finding the optimal matching plan entails minimizing
the total mileage of deadheading from depots to the first station of a block each train is covering that day,
and from the final station of the block back to a depot in the evening. This chapter provides a description of
this problem identified as a version of the Multi-Depot Periodic Vehicle Routing Problem.

The Metro provides the backbone of public transport in and out of the Oslo city centre with a homogeneous
fleet of trains servicing an interconnected set of lines. The rail network consist of a set of stations and depots
connected by rails and junctions such that any train can service any station and use any depot. The minimum
distances between stations and depots are known. The distance traversed while plying a block is not influenced
by which depots the trains are assigned.

Sporveien has defined timetables for all metro lines and within a day of operation each timetable is divided
into a number of blocks where each block consists of a set of train movements to ensure that the timetable is
covered. For instance could such a set of movements be: Two coupled trains start at Vestli station at 06:30,
serve Line 4 and arrive at Bergkrystallen by 07:15, then turn around and at 07:25 serve the same line back to
Vestli, and repeat. A block often involves trains plying the same metro line throughout the day, but sometimes
they move to other lines during the day as demand changes. Each block has a defined start time and station
in the morning, with a corresponding end time and station in the evening.

Every day trains are assigned a block for that day. Each block is served by either one train or two coupled
trains. For blocks served by two coupled trains, both trains must originate from the same depot as the
coupling is performed at the depot. As the timetable is different on the weekends, there are separate blocks
for Saturdays and Sundays. Public holidays uses the Sunday timetable. Because some redundancy is needed
for long term maintenance and unexpected breakdowns, Sporveien have more trains available than necessary
to cover all blocks, especially on Saturdays and Sundays/holidays. The trains must deadhead in the morning
from the depot where they were stored to the first station of their allotted block, and conversely they deadhead
from the final station of the block to a depot for storing and maintenance the following night. Deadheading
trips are costly without directly serving any customers, and therefore Sporveien aims to minimize this cost by
minimizing the total length of deadheading trips. The total deadheading length is minimized by finding the
optimal combination of start depot, block and end depot for each train each day over a planning horizon.

The depots are spread out in the rail network and are accessible from any metro line. All depots have a
maximum storing capacity which cannot be exceeded. Some depots are part of the main track or a station
and have restricted access during operating hours. There are certain non-compatible combinations of depots
and blocks as the blocks start or end at a time when the depots are unavailable. The trains serving these
blocks must therefore be matched with other block-compatible depots.

All trains are required to undergo an interior and exterior cleaning at least once within a given number of
operating days. Cleaning is performed after hours at depots with the appropriate equipment, which only a
subset of the depots have. If a depot is equipped with both interior and exterior cleaning equipment trains
stored here can be cleaned both internally and externally during the same night. Cleaning capacity during
a single night is only limited by the total storing capacity at a depot, but exterior cleaning is not performed
during the night before Saturdays or Sundays/Holidays due to collective labor agreements.

This problem formulation is highly adapted to the current situation at the Oslo Metro aiming for realistic
accuracy and practical usability. Existing infrastructure and timetables are fixed and assumed deterministic.
Extraordinary cleaning needs, accidents, breakdowns or other unforeseen events are not considered. Assuring
conflict free traffic control of trains in the network is also outside the scope of this thesis, and all trains
are assumed to traverse the minimum distance between depots and stations without disruption. A final
simplification is assuming the propagation time in and out of the depots is instantaneous.
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To summarize, the objective is to minimize the total deadheading length traversed between depots and blocks
by all trains over all days in the planning period. The deadheading length is solely dependent on the distance
between chosen depots and the first and final stations of matched blocks. The problem is thus to find the
optimal allocation of trains to depots and blocks, each day in the planning period while satisfying depot
capacities, flow consistency constraints and cleaning requirements of trains’ interior and exterior.
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5 Mathematical Model

This chapter presents a mathematical formulation of the Multi-Depot Periodic Vehicle Routing Problem (MD-
PVRP) as described in Chapter 4. Section 5.1 provides a description of the modelling assumptions and
Section 5.2 presents the notation used. In Section 5.3 the full model is formulated and explained.

5.1 Model assumptions

As mentioned in Chapter 2, the whole of Stortinget depot and parts of Ellingsrudåsen and Vestli depots are
unavailable during operating hours. These depots overlap with the main track or platforms at the nearby
station. The depots at Ellingsrudåsen and Vestli are therefore modeled as two separate depots, one part is
unavailable during operating hours and the other is always fully available. See Table B.1 in Appendix B for
details on how these are modeled. The constrained parts of the depots are not compatible with blocks starting
or ending within the same time period. To account for this, subsets of all blocks compatible with each depot
are defined. See set notations B x

n and B y
m in Table 5.1.

5.2 Model definitions

In this section I present notation used in the model formulation of the MDPVRP studied in this thesis. The
notation is summarized in Table 5.1 for model sets and subsets, Table 5.2 lists the parameters and Table 5.3
shows the model variables and associated domains.

There are four main sets: the set of trains T , the set of days D, the set of depots N and the set of blocks B .
Each set is indexed by the non-capitalized version of the set letter, with m being a secondary index to depots N .
There are no defined subsets of trains T since all trains are homogeneous. D is partitioned into the subsets
weekdays DW , Saturdays DS and Sundays/holidays D H . Of depots N , there are two overlapping subsets, N I

and N E , which are depots with cleaning equipment for interior cleaning and exterior cleaning, respectively. The
set B has several defined, overlapping subsets: B double contains all blocks that require two coupled trains. Bd

are the subsets of blocks compatible with day d such that if day 1 is a weekday, B1 contains all blocks from
the weekday timetable. B x

n and B y
m are the subsets of blocks compatible with starting at depot n and ending in

depot m, respectively. B x
AV L would for instance be the subset of blocks compatible with starting the day from

the Avløs (AVL) depot. β0 is a single element representing train out of service, e.g. not taking any timetabled
blocks. This element is part of each block subset, except B double .

Table 5.1 – Tabular overview of set notation.

Notation Description

T Set of trains, indexed by t

D Set of days in the planning period, indexed by d . D = DW ∪DS ∪D H

DW Subset of days labeled weekdays
DS Subset of days labeled Saturdays
D H Subset of days labeled Sundays and holidays. ;= DW ∩DS ∩D H

N Set of depots, indexed by n,m

N I Subset of depots with interior cleaning equipment
N E Subset of depots with exterior cleaning equipment

B Set of blocks, indexed by b

Bdouble Subset of B containing only blocks that require two coupled trains
Bd Subsets of B , each compatible with day d

B x
n Subsets of B , each compatible with starting at depot n

B
y
m Subsets of B , each compatible with ending at depot m

β0 Mock element representing train out of service
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The parameters presented in Table 5.2 covers information needed for uniquely defining an instance of the
problem studied in this thesis. Sn denotes the maximum storing capacity in number of trains at depot n. The
cost parameters C x

nb and C y
mb are the deadheading distance traveled from depot n to the start of block b and

from the end of block b to a depot m. Pt is the depot where train t is stored at the start of day 1 in the
planning horizon. The number of trains needed for servicing a block b is denoted by Ab . Exterior cleaning is
regulated by parameters QE

t and E , where the former is the initial cleaning history of train t — e.g. how many
days train t have gone without exterior cleaning before day 1 — and the latter is the number of consecutive
days all trains must have their exterior cleaned at least once.

Table 5.2 – Tabular overview of parameter notation.

Notation Description

Sn Maximum storing capacity at depot n

C x
nb Distance traveled from depot n to the start of block b

C
y
mb

Distance traveled from the end of block b to depot m

Pt Initial position of train t

Ab Number of trains needed for covering block b

QE
t Days lapsed without exterior cleaning of train t prior to day 1

E Number of concecutive days for which all trains’ exterior must be cleaned at least once

Decision variable notation is presented in Table 5.3. The binary variables xtdnb and ytdbm constructs the
matching of trains to depots and blocks. xtdnb equals 1 if train t at the start of day d drives from depot n to
block b, and 0 if it does not. Likewise does ytdbm equal 1 if train t at the end of day d drives from block b

to be stored overnight at depot m. The binary variables δdnb are designed to flag if a block b ∈ B double is
assigned two trains originating from the same depot. These variables equal 1 if, on a day d , a block b is served
by exactly two trains from the same depot d , and 0 otherwise. Finally, the exterior cleaning variables ztd

denote the number of days since last exterior cleaning for a train t on day d .

Table 5.3 – Tabular overview of decision variable notation.

Notation Description

xtdnb 1 if train t on day d is matched with depot n and block b in the morning, 0 otherwise
ytdbm 1 if train t on day d is matched with block b and depot m in the evening, 0 otherwise
δdnb 1 if block b ∈ Bdouble is served by two trains from depot n on day d , 0 if no trains are serving b from depot n

ztd 1 if train t is cleaned on day d , 0 if not

5.3 Model formulation

Objective function

min z = ∑
t∈T

∑
d∈D

∑
n∈N

 ∑
b∈Bd∩B x

n

C x
nb xtdnb +

∑
b∈Bd∩B

y
n

C y
nb ytdbn

 (1)

The objective function (1) sums the traveled deadheading distance between all compatible pairs of depot to
block and block to depot over all trains t and all days d . If a train starts the day at depot n and drives to
the beginning of block b a cost C x

nb is added. Conversely, a train going from the end of a block b back to to
a depot n adds a travel cost C y

nb . This objective function is minimized.
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Constraints

∑
l∈N

∑
b∈Bd∩B

y
m

ytdbm = 1 t ∈ T, d ∈ D (2)

∑
t∈T

∑
b∈Bd∩B

y
m

ytdbm ≤ Sm d ∈ D, m ∈ N (3)

∑
b∈B1∩B x

Pt

xt1Pt b = 1 t ∈ T (4)

∑
n∈N

xtdnb = ∑
m∈N

ytdbm t ∈ T, d ∈ D, b ∈ Bd (5)∑
b∈Bd∩B

y
n

ytdbn = ∑
b∈Bd+1∩B x

n

xt (d+1)nb t ∈ T, d ∈ D \ |D|, n ∈ N (6)

∑
t∈T

∑
m∈N

ytdbm = Ab d ∈ D, b ∈ Bd \β0 (7)∑
t∈T

xtdnb = 2δdnb d ∈ D, n ∈ N , b ∈ B double ∩Bd ∩B x
n (8)

∑
n∈N I

∑
b∈Bd∩B x

n \β0

xtdnb +
∑

m∈N I

∑
b∈Bd∩B

y
m \β0

ytdbm + ∑
m∈N

ytd(β0)m ≥ 1 t ∈ T, d ∈ D (9)

ztd = ∑
m∈N E

∑
b∈Bd∩B

y
m

ytdbm t ∈ T, d ∈ DW (10)

∑
d∈DS∩D H

ztd = 0 t ∈ T (11)

d+E−1∑
d ′=d

ztd ≥ 1 t ∈ T,d ∈ D \ {|D|−E +1, |D|−E +2, . . . , |D|} (12)

E−QE
t +1∑

d ′=1

ztd ≥ 1 t ∈ T (13)

xtdnb ∈ {0,1} t ∈ T, d ∈ D, n ∈ N , b ∈ Bd ∩B x
n (14)

ytdbm ∈ {0,1} t ∈ T, d ∈ D, m ∈ N , b ∈ Bd ∩B y
m (15)

δdnb ∈ {0,1} d ∈ D, n ∈ N , b ∈ B double ∩Bd ∩B x
n (16)

ztd ∈ {0,1} t ∈ T, d ∈ D (17)

The set of constraints (2) ensure that exactly one block and one depot is assigned to each train, each day.
Constraints (3) ensure that no depots exceed their max storing capacity. All trains must begin at their starting
position on the first day of the planning period, which is ensured by constraints (4). The next two sets of
constraints force flow consistency. Constraints (5) enforce that a train starting to ply a block in the morning
will complete the block in the evening. Additionally, they also make sure that the set of constraints (2) defined
by the evening variable y also holds for the morning variable x. If the previous set enforce consistency in blocks,
the set of constraints (6) enforces consistency in depots. All trains going to a depot in the evening must leave
the same depot the day after and together with constraints (3) they ensure that the maximum depot capacity
also are held by x. Constraints (7) ensure that each block is assigned the correct number of trains each
day. The set of constraints are defined by the evening variable y , but combined with constraints (5), it also
holds for the morning variable x. The large set of constraints (8) require trains assigned to the same double
block (b ∈ B double) to leave from the same depot in the morning.
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Interior cleaning is regulated by constraints (9) where at least one of the variables x and y must include a
depot with interior cleaning capacity each day, or being out of service. This means all trains must start and/or
end their day in a depot with interior cleaning equipment, or not be assigned a service block that day. This
ensures no trains are allowed two consecutive in-service-days without interior cleaning. The next four sets
of constraints concerns exterior cleaning, and the exterior cleaning variable z. Constraints (10) set ztd to
1 if a train t returns to a depot with exterior cleaning equipment m ∈ N E on a weekday DW and 0 if the
train does not. Exterior cleaning is not performed on Saturdays and Sundays/holidays, so constraints (11)
ensure that ztd is zero for all non-weekdays. All trains are required to have their exterior cleaned at least once
in every E -length segment of the planning horizon, which is ensured by constraints (12). Moreover, trains
start the planning horizon with a cleaning history and may need their first cleaning earlier than required by
constraints (12). Constraints (13) take the individual trains’ cleaning histories into account and require trains
to be cleaned within the first E +1 days minus the number of days a train have gone without cleaning prior to
day 1, denoted QE

t .

The remaining constraints define variable domains. All decision variables are binary, as defined by con-
straints (14)-(17). Notice that the variables xtdnb and ytdbm are defined over blocks b of the respective
subsets Bd ∩B x

n and Bd ∩B y
m , which are the blocks for a specific day d compatible depot n and depot m,

respectively.

As a final note, I will add that constraints (2) and (3) include variable y where it seems to be equally valid
for x. As seen, these constraints does indeed hold for x through constraints (5) and (6). The reason for
choosing y rather than x is specific to the current timetable at the Oslo Metro where fewer combinations of
blocks and depots are compatible in the evening than in the morning. That is, the size of B y

m tends to be
smaller than B x

n . Both sets of constraints (2) and (3) takes the sum of b ∈ Bd ∩B y
m , which are fewer than if

defined over over x and B x
n . However, for instances with a shorter horizon, a different consideration dominates

and implies one should opt for using the x variable in these constraints instead. The initial starting positions Pt

reduce the relevant number of xt1nb variables by a factor of |Pt | because none of the variables where n 6= Pt

are included. Nevertheless, the reduction in x variables on the first day of a long planning horizon is less
significant than the reduction of y variables due to the fact that |B y

m | is less than |B x
n |. I therefore conclude

that it is most effective to define constraints (2)-(3), (7) and (9)-(10) by y rather than x.
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6 Rolling Horizon and Solution Space Reduction

This chapter presents the heuristic solution methods studied in this thesis. Section 6.1 provides a technical
description of how the Rolling Horizon Heuristic (RHH) is implemented in this thesis. The challenge of
symmetry is explored and various solution space reducing measures are presented in Section 6.2. The final
Section 6.3 defines the four specific heuristic solution methods explored and compared in Chapter 8.

6.1 Implementation of the Rolling Horizon Heuristic

The MDPVRP is proven to be NP-hard as discussed in Section 3.1, and as demonstrated in Chapter 8, exact
solution methods are not capable of solving realistic instances with long planning horizons within reasonable
time. Both main variables xtdnb and ytdbm are defined across all main sets of trains t , days d , depots n

and m and blocks b. This makes problem instances of even short planning horizons challenging to solve to
optimality. Tackling long planning horizons requires the use of heuristic solution methods to produce good
solutions within reasonable time. The RHH is used successfully in the literature for other IP problems where
time is a prominent dimension of the problem, which this is the reason I use the approach in this thesis. The
main drawback of the RHH is its myopic nature where problem dependencies across time are not taken into
account, especially if the forecasting feature is weakly applied. An effective RHH implementation provides a
considerable reduction in solution time compared with an exact approach.

The RHH is iterative, where each iteration builds upon the solution of the previous iteration. Only a subsection
of the full planning horizon is considered in each iteration. I refer to the length of this subsection as the time
window (TW). I further divide the TW into two time periods, the first being the central period (CP) containing
the full model to be solved and the second being the piloting forecasting period (FoP), see Figure 6.1. The
FoP extends the considered interval beyond the CP to avoid short-sighted solutions. To reduce computational
effort, the FoP may be relaxed either by removing the integer restrictions or using a simplified model. In this
thesis I chose to use LP-relaxed decision variables in the FoP.

full model

Forecast period

LP relaxed model

>
Time Window

Central period

Figure 6.1 – First iteration of the Rolling Horizon Heuristic algoritm.

In the first iteration a satisfactory solution is found for the TW and the solution for variables in the CP are
saved, or frozen, as constraints for all subsequent iterations. In each new iteration the TW is shifted a given
number of time units equal to the length of CP, such that the CP is defined from the end of its previous
position and the FoP from the end of the new CP, as illustrated in Figure 6.2. However, the FoP will never
extend past the end of planning horizon. If the distance between the end of the CP and the end of the planning
horizon is shorter than the given FoP length, the FoP is cut short for the last iterations where this is relevant.

>
Forecast period
LP relaxed model

Frozen period Central period
full model +  

fixed variables

Time Window

Iteration k  

Iteration k+1  

full model

Figure 6.2 – Increments of the Rolling Horizon Heuristic. A similar figure is given in Mercé and Fontan (2003) and
Rakke et al. (2011)
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I call the trailing period of frozen solutions the frozen period (FzP) which integrates the solutions from each
subproblem. The FzP starts out as an empty interval when k = 1 and accumulates fixed decision variables as
each new subproblem is solved until it encapsulates the full planning horizon and provides a solution to the
full problem. The implementation of the RHH in this thesis is based on Rakke et al. (2011).

The FzP is included in every iteration as this ensures flow consistency and periodic cleaning constraints are
held in the transition between FzP and CP. As with the initial depot position of the trains given in the full
problem, the trains depot position at the end of the FzP reduces the solution space of the x-variable at the first
day in each central periods. E.g. if a train t ′ is fixed to depot n′ on day d ′ at the end of the FzP, xt ′(d ′+1)nb

may only equal 1 if n = n′ as the train must leave the same depot it arrived the day before. This reduces the
solution space for the x-variable by n−1

n for the first day of the CP in each iteration.

The FoP counteracts short-sighted solutions by basing a solution for variables in the CP on information from
a larger part of the planning horizon. Fractional values are not allowed in the full model, but in the FoP it
is as the purpose is to forecast the effect of the solution in CP. In later iterations, the variables in the FoP
are included in the CP and thus made binary. If the dependencies between variables are strong across time, a
longer FoP is needed, but this increases the solution time of each subproblem. The choice of length for the
FoP is a quality/time trade-off, dependent on the problem structure. In Chapter 8, I tune the length of the
FoP to find the best implementation of the RHH solution method.

6.2 Symmetry and Solution Space Reduction

The solution time for most IP problems is dependent on the solution space. Techniques that reduces the size
of the solution space may therefore reduce the solution time. The challenge is, however, to avoid excluding
too many good solutions in the process. In this section I will explain how symmetry and near symmetry may
be exploited to reduce the solution space while still retaining good solutions. I also present another solution
space reduction measure that excludes particularly costly decisions.

Symmetry in IP makes problems mathematically more difficult to solve than practically necessary. Imagine a
problem with a set of homogeneous entities only separated by the index values. VRP is a typical case where
homogeneous vehicles are allocated different routes in the network. Given a feasible solution, switching the
routes of two vehicles v and w starting from the same depot produces a new symmetric solution with the
same objective value, but which is mathematically different. All equivalent route switches involving identical
vehicles creates new mathematically unique, but practically equal solutions.

The problem studied in this thesis involves a homogeneous fleet of trains, where the only initial discriminant
is their starting location and cleaning history. Instances with a large fleet, few depots and short cleaning
intervals will necessarily have fully identical trains. The current situation at the Metro consists of seven
depots, interior cleaning at least every other day and exterior cleaning at least every five days combines to
25 states, each a unique allowed combination of these properties. A detailed calculation for this number is
provided in Appendix C. The fleet of 105 trains is distributed at one of 25 states each day, which means
symmetry is extensive. Moreover, the details of the situation — like the fact that all trains at the largest
depot, Ryen, share the same single state — further exacerbates the symmetry.

Near symmetric solutions are also prevalent in the problem of this thesis. Four of the seven depots are modeled
from two physical depots which pairwise share location. Switching compatible blocks between otherwise
similar trains situated in each part of a split depot will produce an identical or very similar solution. When
using branching algorithms like the B&B, computational effort is wasted when exploring isomorphic or near-
isomorphic branches.

Margot (2010) proposes several strategies to mitigate symmetry, many quite effective in the right circum-
stances, but hard to implement in software because the overhead of checking for symmetry tend to be higher
than the expected savings. Thus, the most fruitful approach is often to study the problem structure and the
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symmetry nature and manually implement mitigation efforts. A common strategy for dealing with symmetric
formulations is adding symmetry breaking inequalities. This means adding constraints to the original formu-
lation that cut some of the symmetric solutions, but retains at least one of the symmetric solutions. If the
gains in reduced solution space is higher than the increased computing from adding the new constraints, this
is a net positive alteration of the model.

Rakke et al. (2011) uses a different heuristic approach to deal with almost symmetrical solutions when imple-
menting a RHH in a MIP problem. Their problem is similar to the one studied in this thesis as the solution
space is large and populated with many almost symmetrical solutions. To decrease computational time they
implement solution space reduction (SSR) by limiting the number of variables generated. In their case, they
limit the contracts available to a liquefied natural gas carrying ship on a given day. The list of available
contracts to start each day alternates so that no contract is unavailable to any ship all the time.

I use a SSR heuristic similar to the one implemented in Rakke et al. (2011) to decrease computational time.
The main binary variables, denoted xtdnb and ytdbm in Chapter 5, are reduced in number. When generating
the variables, an algorithm takes an integer parameter SSRpar am as input and iterates a counter per block
denoted cb . Using the modulus operator, a variable is only produced when the remainder of t+d+cb

SSRpar am equals
zero. If SSRpar am = 3 and train t = 1 only the variables for the block counter 3, 6, 9 and so on are generated
on the first day d = 1. Basing the reduction on all three of t , d and cb spreads it out to avoid systematic
patterns that excludes all variables of a certain train, day, depot or block. When SSRpar am = 3, only a third
of the original variables remains.

Applying such a crude SSR, as compared to excluding variables based on a pattern adapted to the problem
structure, increase the chance of removing all feasible solutions in the process. A particular concern for the
problem of this thesis is limiting access to the few depots with exterior cleaning equipment. If the number
of trains reaching the maximum limit of days without exterior cleaning exceeds the capacity of the exterior
cleaning depot(s), no feasible solution exists. To remedy this, I make an exception to exterior cleaning depots
in the SSR heuristic. All variables xtdnb and ytdbm where n,m ∈ N E are therefore always generated.

As mentioned in Section 5.1, certain combinations of depots and blocks are incompatible due to timing
conflicts. All other combinations are available, even the most expensive options with regards to contributions
to the objective function. If the distribution of deadheading lengths in depot-block combinations is wide, and
the longest options are seldom or never included in good solutions, removing the variables that allow for these
combinations might deem a reasonable way of reducing solution time without deteriorating quality. In the cost
threshold (CT) solution methods I therefore do not generate variables of depot-block combinations above a
certain cost threshold. As with the SSR, variables involving exterior cleaning depots overrules this strategy
and are nevertheless generated.

6.3 Summary of Solution Methods

Using the heuristic techniques discussed in this chapter, I construct five unique solution methods comprising
of different combinations of these techniques as well as an exact solution method. The five solution methods
are summarised in Table 6.1.

The exact solution method is based on the model described in Chapter 5 and implemented without any
heuristics. The second solution method is a pure RHH implementation without solution space reducing
heuristics. The lengths of CP and FoP at all RHH solution methods are initially set to 2 and 4 days,
respectively. The third, fourth and fifth solution methods are extensions of the second. In the third, a SSR
heuristic is added to reduce the number of generated decision variables. In this solution method the parameter
SSRpar am is set to 3, which is the fraction of variables retained. The fourth solution method also reduces
the solution space, but by an upper limit on the cost incurred by a certain depot-block assignment, denoted
CT for short. The value of this parameter is initially set to 22.5 km. All initial parameter values mentioned
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in this chapter is selected based on experience from informal test runs during code development. Chapter 8
covers a more systematic parameter tuning. The last and fifth solution method is a combination of the third
and fourth. Now both solution space reducing measures are introduced on top of the RHH.

Table 6.1 – Summary of solution methods tested in this thesis.

Identifier Description

Exact Exact solution method as described in Chapter 5. No heuristics included.
Pure RHH Pure Rolling Horizon Heuristic, without any other heuristics.
RHH+SSR Rolling Horizon Heuristic combined with solution space reducing heuristic.
RHH+CT Rolling Horizon Heuristic with costly variables excluded.
RHH+SSR+CT Rolling Horizon Heuristic with solution space reduction and costly variables excluded.
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7 Data Generation

This chapter provides an explanation of how test instances in the computational study are constructed. Data
specific to the Oslo Metro is provided by Sporveien in conversations and unpublished internal documents and
reflect their current situation and timetables. Section 7.1 provides deadheading cost calculations and the
distance matrix. Section 7.2 presents the procedure and test instances for comparing the performance of exact
and heuristic solution methods. In the final Section 7.3 instances for testing the selected heuristic solution
method performance on long planning horizons and other relevant scenarios are given.

7.1 Cost and distance calculations

The goal of the model presented in this thesis is to minimize deadheading length at the Oslo Metro because
this is a costly, non-revenue generating activity. Cost savings is thus the ultimate motivation. To get a better
understanding of the significance of the results, I estimate the cost-equivalent of a deadheading km. This
cost-equivalent is estimated in this section together with the distance matrix between all relevant depots and
stations at the Metro.

I present the operational cost figures provided by Sporveien in Table 7.1. In order to arrive at a cost estimate
per km deadheading, I make some simplifying, but realistic assumptions. It is reasonable to consider both
wear and power consumption to be linearly correlated with distance, I therefore use average cost figures as an
estimate for the marginal cost. Moreover, I make an approximation that all deadheading is performed with
one driver per second train. Most trains are operated coupled together two and two, but some are driven as
a single train and some deadheading trips back to a depot are performed with more than two trains in a set.
Therefore, with one exception detailed in the next paragraph, this approximation seems reasonable. This leads
to a personnel cost per train-kilometer in normal circumstances to be 1

2 ∗ 800 [NOK /hr ]
30 [km/hr ] = NOK 13.33. Adding

the average cost of wear and power, the total cost per train-kilometer deadheading becomes NOK 43.33,
where 69 percent is contributed from wear and power costs and 31 percent from personnel costs.

Table 7.1 – Operational cost figures at the Oslo Metro as provided through conversations with representatives of
Sporveien. See Section 2.4 for more details.

Attribute Value

Avg. cost of wear and power per train 30 NOK/km
Avg. cost of personnel 800 NOK/hr
Avg. driving deadheading speed 30 km/hr
Avg. driving deadheading speed on Line 1 20 km/hr

The personnel cost is given on a per hour basis, which means increasing the driving speed lowers the personnel
cost per km driven. The average driving speed is fairly constant throughout the day, but during low traffic
in the early morning and late evening trains are driven at higher speeds. I assume this to be offset by the
driver inconvenience allowance when working outside regular working hours. There is, however, one exception
on Line 1 from Majorstuen station towards Frognerseteren. On this line segment the trains usually serve
uncoupled as single trains, and with the reduced average speed of 20 km/hr. This makes the personnel cost
per train-kilometer for this line segment to be 800 [NOK /hr ]

20 [km/hr = NOK 40. The total cost per train-kilometer
deadheading is therefore NOK 70, or 62 percent higher on the Frognerseteren branch compared to the rest of
the network. To adjust for this exception, and for ease of calculation, I increase the calculated distances on
this branch by 62 percent and uniformly use the cost per train-kilometer deadheading of NOK 43.33.

Distances between terminal stations and depots are given in Appendix A. The matrix is constructed from
distances given in a technical drawing (Sporveien AS, 2015) of the rail network at the Metro. Some assumptions
about where and how trains may turn and use junctions are necessary, and I base these assumptions on the
existing infrastructure, driver schedules and understanding of where and when trains may turn while not
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disturbing normal traffic. The increased cost due to the time it takes to turn trains is adjusted for by adding
an equivalent length to sections requiring trains to turn around. An example of a path where a train would need
to turn is the distance between the depot at Avløs and the terminal station at Østerås on Line 2, which require
the train to turn and switch track at Smestad station. See Figure 2.2 for reference. As mentioned above,
paths using the line segment between Majorstua station and Frognerseteren terminal station are given with a
62 percent longer distance to adjust for the lower speed and single train constraints. It is worth mentioning
that the deadheading between a depot and its associated station may reasonably be neglected, except the
distance between Stortinget depot and Stortinget station, which require a trip to Ryen depot for preparation
before storage. This distance is added to the appropriate figures involving Stortinget depot in Appendix A.

7.2 Test setup and instances for solution method comparison

The current situation at the Metro is that 105 trains are available at any given time. Depots, and their capacity
and equipment is provided in Table 7.2. As mentioned in Section 5.1, the depots at Ellingsrudåsen and Vestli
are modeled as two separate depots due to the difference in block compatibility. A train can maximum be in
service two days without interior cleaning, and a total of five days without exterior cleaning. That is, at least
once during five consecutive days, each train must have had their exterior cleaned. However, only in-service
days counts towards this limit for interior cleaning. A train assigned an out-of-service block is not expected
to have its interior be any dirtier than the day before.

Table 7.2 – Equipment and max capacity of trains at depots for the Oslo Metro. Depots with interior or exterior
cleaning equipment marked by an ”X” in the appropriate column.

Depot (shorthand)
Max

capacity
Interior
cleaning

Exterior
cleaning

Avløs (AVL) 20 X
Ellingsrudåsen-A (ELÅA) 4
Ellingsrudåsen-B (ELÅB) 4
Ryen (RYV) 60 X X
Stortinget (STTD) 22 X
Vestli-A (VESA) 6
Vestli-D (VESD) 4
Sum 120 3 1

Part of the depots at Ellingsrudåsen and Vestli, and the complete depot at Stortinget overlaps with the
corresponding track or station and cannot be used for storing during operating hours for the given station.
Before the first train arrives at the station, track and platforms must be cleared and, conversely, it is only
available the following night after the last train in traffic has left the station. The storing capacity of the
original depots of Ellingsrudåsen and Vestli are split between the modeled part depots, but the travel distance
relative to other depots and stations stay the same.

Sporveien’s current timetable forms the basis for all blocks used. Recall that a block is the schedule a train
follows during a day in service. A train may serve different lines during a single day and it may be involved
in one or more coupling or decoupling actions to fulfill the requirements of a given block. Sporveien provided
a driver schedule listing all drivers’ required tasks on weekdays, Saturdays and Sundays. This schedule lists
where the drivers are supposed to start the day, time and place for all individual trips and the coupling or
decoupling actions. Implied in the driver schedules are the movement of all trains. I am therefore able to
construct a complete block schedule based on trains rather than drivers since each driver may drive one or
two trains, and couple and decouple sets throughout the day. This new schedule includes a list of unique train
blocks, with type of day, the time when the first and last stations are served, and lastly how many trains are
required for this particular block.

From this train block schedule a set of all blocks is generated, with subsets grouping blocks by type of day
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and subsets representing compatibility with depots based on the availability of the depots and the time for the
first and last station in a block. The subset of blocks requiring two trains is also generated, as well as the list
providing the number of required trains per block.

I randomly generate the initial train positions and exterior cleaning history to avoid bias and achieve realistic
start conditions. The initial positions are drawn from a lot containing all possible depot spots such that no
depot exceeds its capacity. The exterior cleaning history is generated in a similar way. If not otherwise stated,
all instances in this thesis start on a Monday. Exterior cleaning is only performed during weekdays, and the
maximum number of days allowed between each exterior cleaning is five. Therefore, each train starts the
planning horizon having its latest exterior cleaning done 2, 3 or 4 days prior. As a reasonable simplification,
the initial exterior cleaning history is drawn uniformly from the set {2, 3, 4}.

These are the basic input data reflecting the current situation at the Metro. In most test instances that
follow, only the number and type of days in the planning horizon varies. If not stated otherwise, all the data
mentioned above are equal between all instances.

Figure 7.1 – Four stage performance testing scheme
of solution methods.

A main contribution of this thesis is the development of
an effective heuristic solution method to solve large, real-
istic instances of the MDPVRP for the Metro. To evaluate
the performance of a heuristic approach I propose a four
stage testing scheme, displayed in Figure 7.1. In Stage I,
a pure version of the RHH, without any additional heuris-
tics, is compared with an exact solution method in four
realistic instances with short planning horizons. Secondly,
in Stage II, the pure RHH solution method is compared
to the performance of extended RHH solution methods.
The best contender of these is then tuned in Stage III be-
fore tested further on long planning horizon test instances
and other relevant scenarios in Stage IV, as explained in
Section 7.3

To determine the effectiveness of RHH compared to the
exact solution method, as per Stage I in Figure 7.1, four
instances are used for a comparison between the two meth-
ods. The two first instances consist simply of three and
five weekdays. The last two instances also contains non-
weekdays and simulates a normal week and a two week
horizon with the second Monday being a public holiday.
Smaller instances are used to get meaningful results from the exact solution method within realistic solution
time. See Table 7.3 for an overview of the number and type of days in each of these test instances.

Table 7.3 – Test instances for comparing the exact and pure RHH solution methods. Corresponds to Stage I in
Figure 7.1.

Test instance Days Weekdays Saturdays Sundays/holidays

3D(3w-0s-0h) 3 3 0 0
5D(5w-0s-0h) 5 5 0 0
1W(5w-1s-1h) 7 5 1 1
x2W(9w-2s-3h) 14 9 2 3

In Stage II, three extended heuristic solution methods are compared to the pure RHH to determine which has
the best quality/time trade-off. To compare the performance of these four methods, they are tested on four
instances of medium-length. Table 7.4 provides an overview of these test instances. The first two instances
are the same as the last two in Table 7.3. The third and fourth instance are three and four normal weeks,
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respectively.

Table 7.4 – Test instances for a comparison of four heuristic solution methods: Pure RHH, RHH+CT, RHH+SSR,
RHH+CT+SSR. Corresponds to Stage II in Figure 7.1.

Test instance Days Weekdays Saturdays Sundays/holidays

1W(5w-1s-1h) 7 5 1 1
x2W(9w-2s-3h) 14 9 2 3
3W(15w-3s-3h) 21 15 3 3
4W(20w-4s-4h) 28 20 4 4

7.3 Test Instances for long planning horizons

Stage III concerns tuning the parameters of the RHH+CT+SSR solution method for decreasing computational
time without substantial degradation of solution quality. The five relevant parameters are:

1. The value of the solution space reducing parameter SSRpar am

2. The value of the cost threshold (CT)

3. The length of the central period (CP)

4. The length of the forecasting period (FoP)

5. The solution quality stop criteria at each iteration

Two alternative values of each parameter are tested with the test instance x2W(9w-2s-3h), shown in Table 7.3.
This test instance is chosen because it is not trivial in length, and it includes a three day interval of non-
weekdays. Thus, the solution methods are tested for performance at multi-iteration instances and longer
intervals of consecutive non-weekdays. Each parameter is changed sequentially holding the other constant at
either the original value, or a new better value if one is identified. Table 7.5 shows for which values each
parameter is tested, and the order the parameters are tuned.

Table 7.5 – Test instances for tuning the parameters of RHH+CT+SSR. Corresponds to Stage III in Figure 7.1.

Parameter Initial value Alternative value A Alternative value B

Value of SSRpar am 3 4 2
Value of cost threshold (CT) 2250 2000 2500
Length of central period (CP) 2 1 3
Length of forecasting period (FoP) 4 3 5
UB-LB gap stop criteria (%) 2 5 1

Note that the solution quality stop criteria, the maximum UB-LB gap, is specific to each solution method.
Which means that using a CT and SSR heuristic, the solver stops when a solution is found within 2 percent of
the lower bound (LB) at the specific run. It is not guaranteed that successful runs produce feasible solutions
within 2 percent of the optimal value of the exact solution method. Moreover, the solution quality stop
criteria is set at each iteration of RHH involving both integer variables in the CP and LP relaxed variables
in the FoP such that the gaps calculated at each iteration may not be meaningfully aggregated to the full
planning horizon. I.e. a solution quality stop criteria of 2 percent for a RHH does not mean the aggregated
solution is within 2 percent of the optimal solution of this heuristic solution method. It is unclear whether the
aggregated solution falls within a narrower or wider gap. This means it is generally not useful to use the given
UB-LB gap to compare solution quality between solution methods. For comparing solution quality, I compare
the deadheading length savings relative to Sporveiens equivalent status quo solution.
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Except for x2W(9w-2s-3h), the test instances in Table 7.3 and Table 7.4 are representations of generic weeks
with the repeating pattern of five weekdays, a Saturday and a Sunday — or shorter planning horizons with only
weekdays. These are reasonable choices when testing pseudo-realistic planning horizons of limited length, but
when testing realistic, long planning horizon instances, the mix of weekdays, Saturdays and Sundays/holidays
should closely simulate a real calendar. For performance testing of heuristic solution methods on long planning
horizons, I construct test instances of a quarter year, half a year and a full year. The optimal length of the
planning horizon is not known as Sporveien currently lack the capability for creating good plans for longer
planning horizons. For the purposes of this thesis I have, based on consultations with Sporveien, decided to
test instances with planning horizons of a quarter year, half a year and a full year. The Norwegian calendar for
the year of 2020 is used as a basis, and the third quarter and second half of the year are used as a template
for the two first instances, while the whole calendar is used for the final test instance with a long planning
horizon. This is shown in Table 7.6.

Table 7.6 – Instances for testing the performance of RHH+CT+SSR on long planning horizons. Corresponds to Stage IV
in Figure 7.1.

Test instance Days Weekdays Saturdays Sundays/holidays

Third quarter 92 66 13 13
Second half-year 184 131 25 28

Full year 366 254 52 60

I specifically chose the third quarter and second half-year because they contain fewer public holidays and thus
are easier to handle. The Metro runs a Sunday timetable on public holidays, and on all non-weekdays no
exterior cleaning is usually performed. This causes a conflict of constraints if four or five non-weekdays occur
consecutively. All trains are to have their exterior cleaned once in any interval of five days, but exterior cleaning
is not performed on non-weekdays. Moreover, the only depot with equipment for exterior cleaning, Ryen, has
a capacity to clean at most 60 trains. Five-day intervals with one weekday and four non-weekdays lead to no
feasible solutions as there is not enough capacity to clean the whole fleet of 105 trains on this single day. This
shows that if a planning horizon include a five-day interval consisting of more than three non-weekdays, no
solutions are feasible.

Suprisingly, this occurs only once during the year 2020. The Easter holidays on April 9th-13th are five
consecutive non-weekdays: two public holidays, a Saturday, a Sunday and a new public holiday. In practice,
Sporveien solves this by accepting less clean trains and allowing some exceptions to the policy of not performing
exterior cleaning during the holidays. For this thesis, I modify the planning horizon for the full year instance
and change April 9th and 10th to regular weekdays. I do not expect this small modification to significantly
change the overall results for a full year. Moreover, this is a conservative assumption as, compared to what
Sporveien does in practice, it makes the objective value worse (higher) as weekday timetables require more
deadheading than the Sunday/holiday timetable.

All three instances with long planning horizons starts on a Wednesday, however, the full year instance starts
on January 1st which is a public holiday. Compared to previous instances which have all started on a Monday,
trains’ exterior cleaning history at the start of the planning horizon are changed accordingly. For the third
quarter and second half-year, trains may have been cleaned on the Tuesday, Monday or Friday prior to the
Wednesday giving each train an exterior cleaning history of either 0, 1 or 4 days. With the full year instance,
the situation is similar as it also starts on a Wednesday, but because it is a public holiday having a initial
exterior cleaning history of 4 days is not allowed. Only the values 0 and 1 is allowed for this instance.



38 7 DATA GENERATION



39

8 Computational Study

In this chapter, I conduct a computational study of the solution method variants presented in Chapter 6 based
on the four stage testing scheme presented in Figure 7.1. The focus of the chapter is comparison of the
computational time/solution quality trade-off between an exact and several heuristic solutions to instances of
varying planning horizons. First, in Section 8.1, a study of the performance difference between the exact and
the pure RHH solution method is conducted. Then, the four different versions of heuristic solution methods are
compared to identify the best performing in terms of solution quality and computational time in Section 8.2.
Finally, in Section 8.3 the best performing heuristic solution method is tuned for increased efficiency and tested
on instances with long planning horizons. A study of the results in terms of performance and potential for
Sporveien concludes the chapter.

All solution methods are implemented in Xpress Mosel modeling language, version 3.10.0, and solved with
the commercial optimization software FICO Xpress-IVE version 1.24.08 64-bit and version 28.01.04 of Xpress
Optimizer. All instances are solved using a 3.4GHz AMD Ryzen 5 2600 processor with 6 cores and 12 threads,
with 16 GB RAM in 64-bit Windows 10 Home. Each run is initially set to terminate if a feasible solution of
less than 2 percent difference to the best bound is found or the total run time of 36,000 seconds (10 hours) is
reached. These termination criteria are based on preliminary test runs which demonstrate that most often the
solution gap is the deciding criteria and the first solution found usually produce a gap of less than 2 percent.
The gap termination limit is tuned in Section 8.3 and for the long planning horizon instances, also in Section 8.3,
the max run time limit is extended to 86,400 seconds (24 hours).

When evaluating the solution quality of feasible solutions in mathematical programming, it is customary to
report the smallest fraction, or gap, proven to contain the objective value of the optimal solution. The best
solution found is at most this gap away from the optimal solution. The gap is calculated as: U B−LB

U B , where
the upper bound (UB) — in a minimization problem — is the best feasible solution found and the lower
bound (LB) is optimal solution to a relaxed version of the original problem. That is, the optimal solution to
the original problem cannot be better than the optimal solution to the relaxed version of the problem, and
conversely, the best solution found constitute an upper bound for the optimal solution. The B&B algorithm
first solves the LP relaxed problem in the root node, which produces the first LB, and this bound is updated
when traversing the B&B tree. Any feasible solutions found compete for being the UB and as soon as LB=UB
the incumbent solution is proven optimal.

When evaluating solutions to the exact solution method, the optimizing software proceed as described above,
and report a proven optimality gap. However, when using a RHH method we lack a relaxed form of the full
problem. Only LBs of the subproblems are calculated in each iteration, and these cannot be aggregated to a
LB for the full problem in any meaningful way. Therefore, when evaluating the solution quality of the RHH
solutions, the LBs used are the solutions to LP relaxations of the corresponding exact solution method. These
are calculated separately for practical reasons, with different initial values for the trains’ starting positions and
external cleaning histories. The deviation is unfortunate, but it is only significant for short planning horizons
and the same LP solution is used when comparing all RHH based solution methods.

As mentioned in Section 7.3, to compare the solution quality between different solution methods, I use the
relative savings compared to the current situation at Sporveien. At each result I therefore report the relative
savings in percentages compared to the equivalent status quo deadheading lenght.

8.1 Comparison of exact method vs pure RHH

In this section, I investigate the relative performance of a pure RHH solution method to an exact one. Four
test instances with short- to medium-length planning horizons are tested. The solution time and solution
quality of the exact and pure RHH solution methods are compared and contrasted with Sporveien’s status quo
driving plan and the corresponding LP solutions. Table 8.1 shows the results from running the test instances
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presented in Table 7.3.

Table 8.1 – Results from performance testing of the exact method and a pure RHH solution method for test instances
presented in Table 7.3. Corresponds to Stage I in Figure 7.1. A LP relaxed model is solved separately to calculate the
integrality gap to the pure RHH full horizon solutions. Status quo deadheading lengths are estimated in Section 2.4.

Test instance Exact Pure RHH

3D(3w-0s-0h) Deadheading length (km) 5,861 5,920
UB-LB gap (%) 0.53 N/A
IP-LP gap (%) 0.60 1.58
Change from status quo (%) -22.0 -21.2
Total solution time (s) 759 242

5D(5w-0s-0h) Deadheading length (km) 9,699 9,843
UB-LB gap (%) 0.00 N/A
IP-LP gap (%) 0.18 1.64
Change from status quo (%) -22.5 -21.4
Total solution time (s) 10,449 2,371

1W(5w-1s-1h) Deadheading length (km) 12,786 12,872
UB-LB gap (%) 0.12 N/A
IP-LP gap (%) 0.14 0.81
Change from status quo (%) -21.2 -20.7
Total solution time (s) 27,876 1,495

x2W(9w-2s-3h) Deadheading length (km) No solution found 25,395
UB-LB gap (%) - N/A
IP-LP gap (%) - 0.81
Change from status quo (%) - -20.7
Total solution time (s) 36,000 15,257

For the instances solved, the exact solution method finds solutions closer to proven optimality than pure RHH.
For the 5D(5w-0s-0h) test instance the exact method even finds the optimal solution. However, this optimal
solution is only 1.1 percentage points better than the best solution found by pure RHH, using the Sporveien
status quo solution as a baseline. The pure RHH finds its first <2 % Gap solution four times faster than the
exact solution for this instance. At the 1W(5w-1s-1h) test instance, the difference in computing time is even
starker with the pure RHH solution time being 5.4 percent of solution time of the exact solution method,
while the difference in savings is only 0.5 percent in favor to the exact method. Ultimately, at the longest test
instance x2W(9w-2s-3h), the exact method does not find any solutions within the time limit.

There is a genuine, although expected, trade-off between solution quality and computational time between the
exact method and the pure RHH. The difference in solution quality is moderate. For the three test instances
the exact method saves on average 21.9 percent on status quo, while the pure RHH saves 21.1 percent on
average. The difference in savings amounts to about 6,700 km or NOK 292,000 over the course of a year,
which is only a small part of the total estimated deadheading length of 842,312 km under Sporveien’s current
plan. This extrapolated yearly savings is not to be read literally, but more akin to an order of magnitude
estimate of how much worse a heuristic solution method is compared to an exact solution method. The focus
of this study, however, is decreasing computing time to solve long planning horizon instances within reasonable
time.

When disregarding the x2W(9w-2s-3h) instance, the pure RHH solution time is on average 20 percent that of
the exact solution method, and with a larger discrepancy as planning horizons grow longer. The solution time
using the exact method seems to increase exponentially with increased planning horizon. The planning horizon
roughly doubles in length between 3D(3w-0s-0h) and 1W(5w-1s-1h), but the exact method solution time is
37 times longer with the second instance. With 1W(5w-1s-1h) the solution time is already nearly 8 hours,
so using this exact method to solve instances with radically longer planning horizons, for months and up to
a year, is practically infeasible. The pure RHH finds solutions of comparable quality in significantly shorter
time and at a slower solution time increase with increased instance size. The heuristic solution method is
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therefore preferable to the exact method when solving instances with planning horizons longer than 1 week
using a comparable computer and solution time tolerance.

It is worth noting that the pure RHH spent longer time solving the 5D(5w-0s-0h) instance than the 1W(5w-1s-1h)
instance. This is likely not due to any inherent properties of the otherwise smaller instance, but rather an
effect of the random generation of the initial train positions and exterior cleaning history. The commercial
solver may also choose different B&B solving avenues which may provide significantly different solution times
in otherwise similar instances. I expect this variance to even out with the longer test instances solved using a
higher number of RHH iterations.

8.2 Comparison of four heuristic solution methods

This section constitutes Stage II of the testing scheme outlined in Figure 7.1, and concerns the performance
comparison of four variants of the Rolling Horizon Heuristic (RHH) approach. The four solution methods are
tested on four instances with medium-length planning horizons presented in Table 7.4. The test results are
shown in Table 8.2. Overall, the same trade-off pattern between solution quality and computational time is
repeated in this section, although somewhat weaker.

Table 8.2 – Results from performance testing four heuristic solution methods on test instances presented in Table 7.4.
Corresponds to Stage II in Figure 7.1. The pure RHH results for the first and second instance are the same as in
Table 8.1. a LP relaxed model is solved separately for calculating integrality gap for all solution methods. Status quo
deadheading lengths are estimated based on the figures provided in Section 2.4.

Test instance Pure RHH RHH+CT RHH+SSR RHH+CT+SSR

1W(5w-1s-1h) Deadheading length (km) 12,872 13,187 13,128 13,304
IP-LP gap (%) 0.81 3.26 2.80 4.17
Change from status quo (%) -20.7 -18.8 -19.1 -18.0
Total solution time (s) 1,495 1,894 600 866

x2W(9w-2s-3h) Deadheading length (km) 25,395 25,658 26,113 26,243
IP-LP gap (%) 1.80 2.81 4.50 4.98
Change from status quo (%) -19.7 -18.8 -17.4 -17.0
Total solution time (s) 15,257 8,461 3,705 2,868

3W(15w-3s-3h) Deadheading length (km) 38,651 39,149 39,602 39,744
IP-LP gap (%) 1.28 2.54 3.65 4.00
Change from status quo (%) -20.6 -19.6 -18.7 -18.4
Total solution time (s) 9,667 5,354 10,913 5,542

4W(20w-4s-4h) Deadheading length (km) 51,558 51,742 53,465 53,032
IP-LP gap (%) 1.30 1.65 4.82 4.04
Change from status quo (%) -20.6 -20.3 -17.7 -18.3
Total solution time (s) 20,210 11,333 16,056 6,112

More often than not the extended RHH solution methods finish sooner than the pure RHH. On the other
hand, the pure RHH finds the solutions with the best objective value at all instances. The CT variants are as
fast or faster than their non-CT counterparts, while almost always producing worse solutions. A similar story
may be observed for the SSR variants, however the computing time decrease is even larger than CT offers.
When pairwise comparing runs of the same instances, solution methods with a CT component is on average
26.8 percent faster and methods with a SSR component is 39.0 percent faster than their counterparts.

The relative savings compared to status quo are fairly stable for each solution method across all instances,
implying that instances with longer planning horizons do not have worse solution quality. However, the more
complex heuristic solution methods produce solutions with poorer objective values on average. The pure RHH
saves on average 20.4 percent on the status quo, RHH+CT saves 19.4 percent, RHH+SSR saves 18.2 percent
and finally RHH+CT+SSR saves 17.9 percent on average. RHH+CT+SSR is the fastest solution method on
average, and the solution method where solution time grows the slowest with increased instances size.
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The purpose of comparing the computational time of these solution methods is determining which to use for
the instances of considerably longer planning horizons. To assess which solution method is most appropriate,
both the magnitude and growth rate of computational time is relevant. I have established that RHH+CT+SSR
is on average the fastest solution method for the instances tested. Applying a linear regression to the run time
data in Table 8.2 — excluding the x2W(9w-2s-3h) instance as it is non-regular — provides an estimate of
the growth in solution time. I use these linear functions to predict the computing time for an instance with a
planning horizon of a full year. Of course, extrapolating so far outside the data set is problematic, however, the
exact numbers are not important. Rather it is the relative difference in computing time that lends weight as
decision support for choosing the most appropriate solution method. A linear extrapolation predicts solution
times for a full year instance at 74 hours for the pure RHH and RHH+SSR, 42 hours for RHH+CT and for
RHH+CT+SSR only 27 hours.

The pure RHH and RHH+SSR are both slowest in measured solution time and the methods where the growth
in solution time increase most quickly. The differences in magnitude and growth of solution time between
the two remaining methods are smaller, and needs to be contrasted with the difference in solution quality.
With the configuration tested in this thesis, RHH+CT produces on average solutions that saves 2.5 percent
more deadheading than RHH+CT+SSR compared to Sporveien’s status quo solution. This corresponds to an
estimated monetary value of about NOK 900,000 a year, which might be substantially enough to be worth
an expected 57 percent longer solution time. However, in the interest of brevity and to increase the chance
of solving a full year instance within 24 hours, I choose to test RHH+CT+SSR on the long horizon instances.
Finally, I will add that if Sporveien has access to substantially more computing power or can accept up to
an order of magnitude longer computational times, the pure RHH produces considerably better solutions and
might therefore be preferable over the other solution methods.

8.3 Performance analysis on long planning horizons

The previous section has deemed the RHH+CT+SSR solution method most appropriate for solving long
horizon problem instances. This section covers the computational study of test Stages III and IV as presented
in Figure 7.1. In Stage III, the parameters of RHH+CT+SSR are tuned for improving solution quality or
computational time. Stage IV covers the testing of the tuned solution method on three realistic, long horizon
test instances presented in Table 7.6.

Five parameters are tested at two alternative values aiming for improving either solution quality or computa-
tional time compared to the initial values, as presented in Table 7.5. The x2W(9w-2s-3h) test instance is used
for tuning the parameters. Table 8.3 shows the tuning results.

Increasing the value of SSRpar am to 4, and thus retaining only a fourth of the matching variables not involving
an exterior cleaning depot, leads to no feasible solutions. Both SSR and CT reduce the solution space by
excluding matching options. Infeasibility occurs when the combination of these heuristics removes too many
options and no feasible solutions remain in the solution space. Decreasing the SSRpar am value to 2 produced
a better solution than the initial value, but at 2.5 times the solution time. The better objective value should
be evaluated by how much deadheading is reduced compared to status quo. The solution from using the initial
value reduces deadheading by 17.0 percent, while a SSRpar am value of 2 produces a reduction of 18.2 percent.
This savings difference of 1.2 percentage points is significant, but not crucial. Due to the substantial increase
in solution time, I choose to keep the initial parameter value of SSRpar am = 3.

Decreasing the CT to only allow for block-depot pairs with a distance of less than 20.0 km, except those
involving an exterior cleaning depot, also leads to no feasible solutions. Increasing it to 25.0 km reduced the
solution time by about a third, and surprisingly produced a slightly better objective value, which might be due
to between-run variance. Because this is a Pareto improvement, the new value of CT = 25.0 km is retained.

The lengths of the RHH periods influence the number of iterations, the time spent solving each iteration
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Table 8.3 – Results from tuning the parameter of RHH+CT+SSR. Corresponds to Stage III in Figure 7.1. Gray
background indicate the selected value, which is used in all subsequent runs. A comparison of the results from the
alternative values are given as a percentage in parenthesis.

Parameter Objective value Solution time

Value of SSRpar am Alt. value A - 4 Infeasible N/A
Initial value - 3 26,243 2,868
Alt. value B - 2 25,846 (98.5 %) 7,421 (258.8 %)

Value of cost threshold (CT) Alt. value A - 20.0 km Infeasible N/A
Initial value - 22.5 km 26,243 2,868
Alt. value B - 25.0 km 26,089 (99.4 %) 1,925 (67,1 %)

Length of central period (CP) Alt. value A - 1 day 27,984 (107.3 %) 638 (33.1 %)
Initial value - 2 days 26,089 1,925
Alt. value B - 3 days 26,130 (100.2 %) 8,173 (424.6 %)

Length of forecasting period (FoP) Alt. value A - 3 days Infeasible N/A
Initial value - 4 days 26,089 1,925
Alt. value B - 5 days 26,134 (100.2 %) 2,848 (147.9 %)

UB-LB gap stop criteria (%) Alt. value A - 5 25,973 (99.6 %) 3,008 (156.3 %)
Initial value - 2 26,089 1,925
Alt. value B - 1 25,981 (99.6 %) 13,144 (682.8 %)

and the solution quality as more or less variables are included in each iteration. Decreasing the length of CP
greatly decreases the solution time to just 33.1 percent of the solution time using the initial value. However,
the objective value deteriorate from to a 17.5 percent savings with the initial parameter value to 11.5 percent
savings of deadheading compared to Sporveien’s status quo. This loss of a third of the deadheading savings
is too large to justify the decreased computing time. I therefore choose to proceed with the initial value of
CP length = 2 days. The alternative parameter values of FoP produced either infeasible solutions or a worse
solution at higher solution time. Thus, the initial value of the FoP length is also retained.

The last parameter to be tuned is the UB-LB gap stop criteria, which together with the max time limit,
determines when to terminate a RHH iteration. It is initially set at 2, meaning if a solution is found within
two percent of the best lower bound of the optimal value, the solution is retained and the RHH increments
to the next iteration. Both increasing and decreasing the parameter value to 5 and 1, respectively, provides a
slight improvement in objective value of 0.4 percent. However, the solution time does surprisingly increase to
156.3 percent of the initial value with increasing the gap limit to 5, and a full 682.8 percent with a decrease
to 1. None of the alternative values are worth the solution time increase.

In the final testing Stage IV, the tuned version of RHH+CT+SSR is tested on three realistic test instances of
a quarter year, half-a-year and a full year length, as introduced in Table 7.6. For these instances, the max run
time limit is increased to 86,400 seconds (24 hours). A longer run time limit is justified by the longer planning
horizons of up to a year. Even longer run time limits might be justified for the longest planning horizons if
Sporveien only need to run these once a year, although more frequent runs for replanning or scenario testing
are likely use cases. The test results from RHH based solution methods are compared with an LP-relaxation of
the exact method to compute an IP-LP gap, however, this is not possible for these long horizon instances. The
LP-relaxed model did not finish within 86,400 seconds, even for the quarter year instance. For comparison, the
LP-relaxed model for the 4W(20w-4s-4h) instance took about 30,000 seconds to complete which is six times
the computing time of the LP-relaxed model for the x2W(9w-2s-3h) instance at half the size. Instead, I
continue to use the deadheading reduction compared to Sporveien’s status quo solution as a common point of
reference and measure of solution quality. The test results from long horizon instances are shown in Table 8.4.

The RHH+CT+SSR solution method manages to produce feasible solutions to the third quarter and second
half-year instances within 86,400 seconds, but not for the full year instance. Both successful solutions are of
the same relative quality as the shorter instances tested in Section 8.2, when comparing to Sporveien’s status
quo solution. This indicates that the solution quality is likely to be similar to the solutions to the shorter
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Table 8.4 – Results from testing the tuned version of RHH+CT+SSR on long horizon realistic instances presented in
Table 7.6. Corresponds to Stage IV in Figure 7.1. Status quo deadheading lengths are estimated based on the figures
provided in Section 2.4.

Test instance RHH+CT+SSR

Third quarter Deadheading length (km) 173,585.86
Change from status quo (%) -18.7 %
Total solution time (s) 24,200

Second half-year Deadheading length (km) 346,512.14
Change from status quo (%) -18.6 %
Total solution time (s) 76,811

Full year Deadheading length (km) No solution found
Change from status quo (%) -
Total solution time (s) 86,400

test instances, even though there is no IP-LP gap to evaluate. The second half-year solution is a reduction
of 18.6 percent, or 79,296 km of deadheading — an equivalent cost reduction of NOK 3,409,713 over the
planning horizon, a substantial cost saving.

As expected from the solution time on the medium horizon length instances in Table 8.2, no solutions are
found for the full year instance within 86,400 seconds. The linear extrapolation based on the medium-length
instances predict a solution time of 23,766 seconds for the third quarter test instance, a mere -1.8 percent
deviation from the actual solution time. By contrast, the second half-year solution time was considerably
higher than predicted. The solution time of the second half-year is more than three times that of the third
quarter, diverging substantially from the linear ratio between solution time and planning horizon length.

To investigate this unexpected violation of the linear relationship between solution time and planning horizon
length, I have plotted the run times of each individual iteration in the natural order for the third quarter and
the second half-year instances in Figure 8.1. The solid and dotted lines are the 7-day moving average run
times of the third quarter and second half-year, respectively.
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Figure 8.1 – Iteration run times for all iterations of RHH+CT+SSR at the third quarter (92 days) and second half-year
(184 days) instances.

The iteration run times for the third quarter instance is, on average, increasing slightly as the iteration number
increases. In fact, the average over the final 26 iterations is about 10 percent higher than the first 26 iterations.
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The gradual increase in run time is more pronounced with the second half-year instance as it escalates beyond
the end of the third quarter. Due to the noisiness of the data, it is hard to draw definitive conclusions, but the
growth in iteration run times might very well be exponential rather than linear. For planning horizons shorter
than a quarter year, this difference is unimportant as the increase in iteration run time is small. However,
the full solution time for instances with longer planning horizons might be vastly different depending on the
iteration run times growing exponentially or linearly. Relying on the iteration run time data from the second
half-year instance and assuming linear growth, I predict a solution time for a full year instance at 215 hours
(9 days), while assuming exponential growth I predict a solution time at 885 hours (37 days) using the same
model and hardware. It seems that a planning horizon of half-a-year is near the limit of reasonable solution
time for this approach.

The implementation of the solution method can probably be improved to decrease or remove the growth in
iteration run times. In theory, the iteration run time for RHHs should be constant as the iteration number
increase because the later iterations should not be influenced by the FzP. It is unclear what is causing this
growth in iteration run times.

The increasing iteration run times leads to superlinear growth in computational time as the planning horizon
increases, making it disproportionally harder to solve instances with longer planning horizons. However, a
main goal of this thesis is utilizing a heuristic approach to solve realistic instances with long planning horizons
within reasonable solution time. With the solution to a half-year long, realistic instance found in about 21
hours on a regular desktop PC, this goal is achieved. If this solution method is to be implemented in a real life
use case and even longer instances or shorter solution times are needed, then further improving this solution
method might be worthwhile. However, for this thesis I will not pursue the matter any further.

I have thus far in this chapter covered Stage III and IV of Figure 7.1 and discussed the results of the tuned
RHH+CT+SSR solution method on instances with long planning horizons. Although scenario analyses are not
the focus of this thesis, the depot utilization pattern from the instances tested is particularly interesting. In
Figure 8.2 I plott the utilization of all depots with light and dark gray indicating Saturdays and Sundays/holidays
of the second half-year instance.

The total available capacity across all depots is 120, while there are 105 trains modeled in this thesis. Max
capacity is utilized at all depots at nearly all times, with one major and two significant exceptions. The major
exception is Stortinget depot (STTD) with a max capacity of 22 trains, but only have an oscillating utilization
between 8 and 12 depot spots. Utilization at Stortinget depot is at its lowest during the weekends, especially
on Saturdays. This might indicate that Stortinget depot is at overcapacity and can be downgraded without
increasing deadheading. Another significant exception is Avløs depot (AVL) which hits its max capacity
consistently on Saturdays, when Stortinget depot is at its lowest utilization. However, Saturdays is generally
the only day Avløs depot it fully utilized. Ellingsrudåsen-A (ELÅA), the restricted part of Ellingsrudåsen depot,
is also usually at full capacity during weekdays, but reduced by one to three on weekends. Conversely, the
depots utilized at full capacity for a sustained period of time indicate that an expansion of the capacity at
these depots may lead to savings in total deadheading.
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9 Concluding Remarks

In this final chapter, I conclude the thesis and discuss potential future research on the Multi-Depot Periodic
Vehicle Routing Problem (MDPVRP) for metro systems. Section 9.1 provides a short account of the problem,
solution methods and results, while in section 9.2, I discuss further research and potential improvements on
the approach studied in this thesis.

9.1 Problem and results

This thesis is written in collaboration with Sporveien AS, the operator of the Oslo Metro. To reduce operational
costs, Sporveien wants to reduce the driving of empty trains — so called deadheading — between depots and
blocks by improving the allocation of their homogeneous fleet of trains to depots and blocks, while satisfying
depot capacity constraints and train cleaning requirements. Deadheading is a costly activity, where the main
cost drivers are power consumption, wear and personnel costs for train drivers, and it does not directly
contribute with increased revenue. The problem identified in this thesis is a version of the Multi-Depot
Periodic Vehicle Routing Problem, which to the best of my knowledge has never before been studied or solved.
No previous research on metro systems covers neither periodic block-vehicle-depot matching problems nor
problems on reducing deadheading.

Based on current operations of the Oslo Metro, I have stated a integer programming formulation of this
problem and implemented a Branch-and-Bound algorithm using a commercial solver for solving the full model.
The full model is only solvable within reasonable solution time for realistic instances of planning horizons up to
a week. I therefore develop a Rolling Horizon Heuristic (RHH) based model to drastically reduce solution time
without a considerable reduction in solution quality. Best performing approach is the RHH combined with
solution space reduction (SSR) techniques, selected based on a comparative computational study on realistic
test instances with planning horizons of medium length. This version is applied on realistic instances with a
planning horizon of a quarter year, half-year, and a full year. Sporveien would benefit from such long horizon
plans because crew scheduling and long-term maintenance planning will be more accurate when having a
rolling stock schedule as a fundamental. The quarter year and half-year instances are solved within 24 hours,
while the full year instance is not. Compared to the exact solution method, this heuristic approach is orders
of magnitudes faster while still producing high quality solutions.

The solution to the half-year instance provide an 18.6 percent deadheading reduction compared to Sporveien’s
current solution, equivalent to cost savings of about NOK 3.4 million over six months. Some simplifying
assumptions have been made to reduce the scope of the thesis, but the model and solution method may
immediately support Sporveien in improving their routing of trains between depots and blocks. The results
demonstrate that Sporveien likely has a substantial potential in reducing costs attributed to deadheading.
Furthermore, the results also show that cost reductions may also be gained by adjusting the capacity of
existing depots.

9.2 Future research

A considerable simplifying assumption of the problem described in this thesis is the absence of modeling the
propagation of trains going in and out of depots. Solutions found using the model in this thesis might be
practically problematic because they imply that trains leave or arrive at the same depot concurrently. A similar
problem arise if trains leave or arrive a depot when trains in traffic are scheduled on the main track outside
of the depot. Trains who need to stop and wait might cause propagating delays. One way of extending this
model to account for propagation in and out of depots by adding a sub routine where solution candidates are
checked for likely propagation problems.
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Another possible extension is integrating crew scheduling into the model. Several identified papers in Table 3.2
on metro systems have successfully integrated crew and vehicle scheduling to satisfy both physical restrictions
on trains and crew constraints like working hour provisions in the same model.

This thesis includes cleaning constraints for the rolling stock, but trains also undergo a series of long-term
maintenance checks over the course of their lifespan. A train could be taken out of service for half a day to
several days. Each maintenance level is performed after a certain mileage or time period, and due to limited
workshop capacity, too many trains should not be forced to be taken out of service at the same time. On the
other hand, performing the checks too early wastes money and train capacity as the next maintenance check
will need to happen correspondingly early. Utilizing the differences in driving length per block, an extended
model may also incorporate a long-term maintenance schedule that spread out the checks appropriately.

The solution method developed and tested in this thesis may also be improved for increased solution quality and
reduced computing time. The RHH is sometimes used in conjunction with an improvement heuristic, which
after finding feasible solutions relax some frozen variables and reruns the optimization algorithms to look for
better solutions — comparable to a local search heuristic. Another way of improving the implementation is
re-engineering the SSR heuristics to better exploit the structure of the symmetry in the problem. In this thesis
I have identified the extensive symmetry, but the SSR is applied cruelly which possibly cause infeasibility for
a part of the model, while other parts still retains significant symmetry.

Extensive symmetry and near symmetry are be strong arguments for implementing a state based commodity
flow model, similar to Dávid and Krész (2018), and solve it using heuristics. Another alternative approach
is basing the problem formulation on a Hitchcook-Koopmans Transportation Problem (Ford Jr & Fulkerson,
1956) and integrate the Vogel Approximation Method (Shore, 1970) or the Feasibility Pump heuristic (Berthold
et al., 2019) with a RHH, possibly combined with an improvement heuristic. A comparative study of these
approaches might be a fruitful endeavour.

Finally, testing the solution approach on other use cases than the Oslo Metro will improve the robustness of
the model and possibly reveal weaknesses that are hard to uncover based on a single case study. Other similar
use cases include metro systems and BRT systems.
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Appendices

A Distance matrix

Table A.1 – Effective travel distances between depots and stations. Depots in bold. Refer to Table A.2 for full
name versions. Distances between stations omitted as they are not used. To adjust for slower driving speeds on the
western branch of Line 1 between Majorstuen and Frognerseteren, the distances involving Frognerseteren (FRS) and
Holmenkollen (HOK) are increased by 62 percent for the relevant segments as described in Section 7.1.

From
To

RYV AVL STTD STTS VESD VESA ELÅA ELÅB ØSÅ BKR SOG HFY HOK KOL FRS MOR

RYV N/A 20930 6910 6910 16750 16750 11520 11520 17150 3560 15430 2840 21020 23750 28360 13130
AVL 20930 N/A 27840 14020 29070 29070 26270 26270 14680 24490 17560 18090 23150 2820 30490 27880

STTD 6910 24020 N/A 10000 15050 15050 12250 12250 20240 10470 13520 4070 24110 26840 31450 13860
STTS 6910 14020 13820 N/A 15050 15050 12250 12250 N/A N/A N/A N/A N/A N/A N/A N/A
VESD 22460 29070 29370 15050 N/A 0 28800 28800 25290 27020 23570 20620 29160 31890 36500 30410
VESA 22460 29070 29370 15050 0 N/A 28800 28800 25290 27020 23570 20620 29160 31890 36500 30410
ELÅA 11520 26270 18430 12250 22090 22090 N/A 0 22490 15080 20770 8180 26360 29090 33700 18470
ELÅB 11520 26270 18430 12250 22090 22090 0 N/A 22490 15080 20770 8180 26360 29090 33700 18470

ØSÅ 17150 14680 24060 N/A 25290 25290 22490 22490 N/A N/A N/A N/A N/A N/A N/A N/A
BKR 3560 24490 10470 N/A 20310 20310 15080 15080 N/A N/A N/A N/A N/A N/A N/A N/A
SOG 15430 17560 22340 N/A 23570 23570 20770 20770 N/A N/A N/A N/A N/A N/A N/A N/A
HFY 2840 18090 9750 N/A 13910 13910 8180 8180 N/A N/A N/A N/A N/A N/A N/A N/A
HOK 21020 23150 27930 N/A 29160 29160 26360 26360 N/A N/A N/A N/A N/A N/A N/A N/A
KOL 23750 2820 30660 N/A 31890 31890 29090 29090 N/A N/A N/A N/A N/A N/A N/A N/A
FRS 28360 30490 35270 N/A 36500 36500 33700 33700 N/A N/A N/A N/A N/A N/A N/A N/A

MOR 13130 27880 20040 N/A 23700 23700 18470 18470 N/A N/A N/A N/A N/A N/A N/A N/A

Table A.2 – Full names of the short depot and station names used for brevity in the distance matrix and other places.

Depot/station short name Depot/station full name

RYV Ryen
AVL Avløs
STTD Stortinget depot
STTS Stortinget station
VESD Vestli part D
VESA Vestli part A
ELÅA Ellingsrudåsen part A
ELÅB Ellingsrudåsen part B
ØSÅ Østerås
BKR Bergkrystallen
SOG Sognsvann
HFY Helsfyr
HOK Holmenkollen
KOL Kolsås
FRS Frognerseteren
MOR Mortensrud
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B Depot split modeling

The depots at Ellingsrudåsen and Vestli are partly overlapping with the platforms at their respective stations.
During normal traffic, these platforms are in use and no trains may occupy the track for storage. For modelling
purposes these two depots are split in two separate depots with the same location and distance to all other
depots and stations. The part of the depot that may conflict with normal traffic is incompatible with certain
blocks. This is an example of such an incompatible block-depot combination: Say a given block B ends
at 20:00 and there is a 30 min drive to depot N, which is also a station in use until 22:00. The train assigned
block B will arrive at depot N at 20:30 and obstructs regular traffic until 22:00. This block-depot combination
is therefore incompatible, and no trains can be matched with this particular combination. The whole of
Stortinget depot is also unavailable during normal traffic and is thus incompatible with certain blocks.

Table B.1 – A modeling of the two depots with a two part divergent availability. Mark that part 1 is never unavailable
as it is only part 2 that overlaps with the station or track.

Unavailable during the following hours

Original Depot Modeled Depots Capacity Weekday Saturday Sunday/
holiday

Ellingsrudåsen Ellingsrudåsen-A 4 05:25-24:31 09:06-24:31 09:06-24:31
Ellingsrudåsen-B 4 never unavailable

Vestli Vestli-A 4 05:27-01:10 06:58-01:10 06:57-01:10
Vestli-D 6 never unavailable

Stortinget [no change] 22 06:45-23:20 09:20-23:20 10:10-23:20
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C Possible train states

In Sporveiens current situation, as modeled in this thesis, there are seven unique depots as listed in Table A.2.
Each train is to have its interior cleaned at least every other day. This means a train may have two interior
cleaning states: Either it is cleaned the previous night (zero) or the night before (one). Similarly are the trains’
exterior to be cleaned at least once every five days, and possible states of exterior cleaning is thus zero, one,
two, three or four days since last cleaning. However, these sets are not independent. All trains situated at
a depot with interior cleaning equipment will have its interior cleaned that night, and any train situated in a
depot without interior cleaning equipment will not have had its interior cleaned. The interior cleaning state is
therefore fully explained by the depot. This is by a lesser degree true of exterior cleaning. Any train situated
at the Ryen depot will have had its exterior cleaned the previous night. Trains situated at other depots will
not have had their exterior cleaned the previous night, but it might have been cleaned one to four nights ago.
A summation of these observations is provided in Table C.1. Therefore, there are 25 possible unique states.

Table C.1 – Possible states of trains at the Metro organized by depot. Depot code names as provided in Table A.2

Depot Days since previous
interior cleaning

Days since previous
exterior cleaning

Number of possible
combinations

RYV 0 0 1
AVL 0 1, 2, 3 or 4 4
STTD 0 1, 2, 3 or 4 4
VESD 1 1, 2, 3 or 4 4
VESA 1 1, 2, 3 or 4 4
ELÅA 1 1, 2, 3 or 4 4
ELÅB 1 1, 2, 3 or 4 4

SUM: 25
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