
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

co
no

m
ic

s
an

d
M

an
ag

em
en

t
D

ep
t.

of
 In

du
st

ria
l E

co
no

m
ic

s
an

d
Te

ch
no

lo
gy

M
an

ag
em

en
t

M
as

te
r’s

 th
es

is

Ingrid Emilie Hermanrud
Carl Fredrik Lystad
Petter Jørgensen Narvhus

A Hybrid Optimization Approach for the
School Layout Problem

Combining a Memetic Algorithm, a Mathematical
Model, and a Local Search to solve an unparalleled
Layout Problem

Master’s thesis in Managerial Economics and Operations Research
Supervisor: Henrik Andersson

June 2020

Ingrid Emilie Hermanrud
Carl Fredrik Lystad
Petter Jørgensen Narvhus

A Hybrid Optimization Approach for
the School Layout Problem

Combining a Memetic Algorithm, a Mathematical
Model, and a Local Search to solve an unparalleled
Layout Problem

Master’s thesis in Managerial Economics and Operations Research
Supervisor: Henrik Andersson
June 2020

Norwegian University of Science and Technology
Faculty of Economics and Management
Dept. of Industrial Economics and Technology Management

Preface

This thesis is written in the course TIØ4905 and concludes our Master of Science de-
gree in Applied Economics and Operations Research at the Department of Industrial
Economics and Technology Management at the Norwegian University of Science and
Technology (NTNU). This thesis continues the work conducted in the specialization
project (TIØ4500) during the fall of 2019.

The thesis is written in collaboration with Spacemaker AI, who has developed an
artificial intelligence technology that helps users discover smarter ways to maximize
the potential of a building site. The product lets the user generate and explore a
multitude of site proposals, sort out the best ones, and provides detailed analyses for
each of them. The collaboration comprises the development of school layouts.

We want to thank our supervisor, Prof. Henrik Andersson, for his enthusiasm and
valuable input throughout the project. We would also like to express our gratitude
to Espen Wold and Simen Braaten at Spacemaker AI for their input on exploit-
ing optimization techniques in the architectural domain, and Nikolai Alfsen at Lille
Frøen AS for providing insight into the architectural approach of developing school
layouts.

Ingrid E. Hermanrud, Carl F. Lystad and Petter J. Narvhus

Trondheim, June 12, 2020

i

ii

Abstract

The process of designing a school layout is complex, requiring architectural firms to
spend hundreds of hours developing a layout suggestion. The complexity arises from
the number of rooms, the diverse composition of rooms, the set of requirements, and
both qualitative and quantitative objectives. This motivates the use of optimization
techniques to map out the solution space by suggesting layouts with desirable proper-
ties. This thesis considers the problem of generating school layouts with low building
costs, referred to as the School Layout Problem (SLP). The goal is to develop an algo-
rithm that generates school layout designs where building cost, in terms of building
area and exterior corners, is minimized.

A comprehensive literature search reveals that there exists no previous research works
on using optimization techniques in school layout design. Thus, a review is conducted
on comparable problems, mainly packing problems and other layout problems. Based
on the findings, a three-stage algorithm is implemented. The algorithm considers the
multi-objective optimization problem of allocating rooms and hallways to a building
site, forming a single floor in two dimensions. The algorithm consists of a memetic
algorithm (MA), a mathematical model, and a local search (LS). The MA consists of
a genetic algorithm (GA) and an LS, which jointly generate a first draft of the school
layout. Stage two is a mathematical model formulated as a single-objective integer
linear program. The model is applied to subareas of the layout, seeking to minimize
the number of corners locally. Finally, a local search is employed in stage three,
aiming to minimize the number of exterior corners and the total building area.

The SLP takes a room specification document (RSD) as input - a document list-
ing all rooms and room requirements for a particular school. These are size, shape,
proximity, and natural lighting requirements. The RSD does not specify hallways.
Instead, this thesis introduces a sophisticated algorithm for dynamically generating
hallways. The three-stage algorithm generates school layouts that satisfy the require-
ments in the RSD, along with additional constraints such as hallway connections
between rooms.

Extensive tests of the algorithm are conducted to assess various implementation alter-
natives, find suitable parameter settings, and improve the compatibility of the three
stages. Six RSDs with di↵erent complexity and characteristics are used to test the
performance of the algorithm. The RSDs are subsets of the RSD for Levanger Middle
School, which was built in 2015. The results are satisfying, as the algorithm generates

iii

desirable layouts in terms of cost, while meeting the requirements in the RSD.

This thesis illustrates the suitability of applying optimization techniques in the de-
velopment process of school layouts. The results show that a multi-stage algorithm
which exploits the strengths of several solution methods, has strong potential to
serve as decision support for architects when designing school layouts. The algorithm
generates a wide range of di↵erent, desirable layouts. These can be used both as
inspiration and starting points for architects in the planning phase, streamlining the
process of developing school layout designs. This study adds to the literature by
exploring the absent branch of layout problems that is school layout problems. Ad-
ditionally, the implemented algorithm extends existing research on layout problems
by having to consider qualitative and quantitative objectives of the SLP that di↵er
from comparable research works.

iv

Sammendrag

Å designe planløsningen til en skole er en kompleks oppgave, og krever at arkitektfir-
maer bruker hundrevis av timer p̊a å utvikle et planløsningsforslag. Kompleksiteten
kommer av antall rom, ulike romstørrelser, spesifikke krav til hvert enkelt rom, samt
kvalitative og kvantitative mål. Dette motiverer bruken av optimeringsteknikker til å
kartlegge løsningsomr̊adet ved å foresl̊a ulike planløsninger med ønskede egenskaper.
Denne masteroppgaven utforsker problemet med å generere planløsninger til skolebygg
som medfører lave byggekostnader, referert til som Planløsningsproblem for Skoler
(SLP). Målet er å utvikle en algoritme som er i stand til å generere en planløsning der
byggekostnadene, med tanke p̊a bygningsareal og utvendige hjørner, minimeres.

Et omfattende litteratursøk viser at det ikke eksisterer tidligere forskning p̊a bruk av
optimeringsteknikker for å utforme planløsninger i skolebygg. Dermed gjennomføres
et studie p̊a sammenlignbare problemer, hovedsakelig pakkeproblemer og andre plan-
løsningsproblemer. Basert p̊a funnene implementeres en trestegsalgoritme. Algorit-
men tar for seg det multi-objektive optimeringsproblemet å fordele rom og ganger p̊a
en tomt, som dermed danner en planløsning for en etasje i to dimensjoner. Algorit-
men best̊ar av en memetisk algoritme (MA), en matematisk modell og et lokalsøk
(LS). MA best̊ar av en genetisk algoritme (GA) og et LS, som sammen genererer et
første utkast til en planløsning. Steg to er en matematisk modell som er formulert
som et singel-objektiv linært heltallsprogram. Modellen tar for seg delomr̊ader i
planløsningen, og forsøker å minimere antall hjørner lokalt i disse omr̊adene. Til slutt
benyttes et lokalsøk i steg tre med sikte p̊a å minimere antall utvendige hjørner og
det totale bygningsarealet.

SLP tar et romprogram (RSD) som input - et dokument som lister alle rom og
romkrav for en bestemt skole. Kravene omhandler størrelse, form, nærhet og naturlig
belysning. Korridorer er ikke spesifisert i et RSD. I stedet implementeres en sofistik-
ert algoritme for dynamisk generering av korridorer. Trestegsalgoritmen genererer
planløsninger som tilfredsstiller kravene i et RSD, samt andre krav som korridor-
forbindelser mellom rom.

Omfattende tester av algoritmen er gjennomført for å vurdere ulike implementer-
ingsalternativer, finne passende parameterinnstillinger og forbedre kompatibiliteten
mellom de tre stegene. Ytelsen til algoritmen testes p̊a seks RSDer av ulik komplek-
sitet og med forskjellige egenskaper. RSDene er delmengder av romprogrammet til

v

Levanger ungdomsskole som ble bygget i 2015. Resultatene er tilfredsstillende, da
algoritmen er i stand til å generere planløsninger som medfører lave byggekostnader,
samtidig som de oppfyller kravene i RSDene.

Denne masteroppgaven illustrerer hvordan optimeringsteknikker kan brukes i utviklin-
gen av planløsninger for skoler. Resultatene viser at en flertrinns algoritme som ut-
nytter styrkene til flere løsningsmetoder har et sterkt potensiale til å fungere som
beslutningsstøtte for arkitekter n̊ar de utformer planløsningen til en skole. Algo-
ritmen genererer et bredt spekter av forskjellige, ønskelige planløsninger. Disse kan
brukes b̊ade som inspirasjon og utgangspunkt for arkitekter i planleggingsfasen, og ef-
fektivisere prosessen med å utvikle planløsninger. Denne studien beriker litteraturen
ved å utforske planløsningsproblemer for skoler, som er en fraværende gren i studier av
planløsningsproblemer. I tillegg utvider den implementerte algoritmen eksisterende
forskning p̊a planløsningsproblemer ved å vurdere kvalitative og kvantitative mål for
SLP som skiller seg fra sammenlignbare studier.

vi

Contents

Table of Contents vii

List of Tables xi

List of Figures xiv

1 Introduction 1

2 Literature review 7
2.1 Packing problems . 7

2.1.1 Material collection . 8
2.1.2 Full review . 9

2.2 Layout problems . 13
2.2.1 Material collection . 14
2.2.2 Full review . 15

2.3 Our contribution . 19

3 Problem description 21

4 Solution method 23
4.1 Overall architecture . 23

4.1.1 Stage one - memetic algorithm 24
4.1.2 Stage two - mathematical model 25
4.1.3 Stage three - local search . 25

4.2 Algorithm composition . 25
4.3 Pipeline example . 27
4.4 Assumptions and simplifications . 27

4.4.1 Single floor layout and discrete building site 28
4.4.2 Rooms and hallways . 28

5 Memetic algorithm 31
5.1 Memetic algorithm procedure . 31
5.2 Objectives . 32
5.3 Representation . 34

5.3.1 Genotype . 35

vii

CONTENTS

5.3.2 Phenotype . 35
5.4 Population initialization . 37
5.5 Crossover . 38

5.5.1 Tournament selection . 38
5.5.2 Swap neighbourhoods crossover 39

5.6 Mutation . 40
5.6.1 Move room random . 41
5.6.2 Move neighbourhood random 41
5.6.3 Swap rooms . 41
5.6.4 Move overlapping room . 42
5.6.5 Move to unattached door-neighbour 42
5.6.6 Move attached door-neighbours 43
5.6.7 Change room dimension . 43
5.6.8 Swap wall-sharing side . 43

5.7 Local search . 44
5.8 Fitness evaluation . 45

5.8.1 Locating hallways . 46
5.8.2 Connectivity . 47
5.8.3 Narrow hallways . 49

5.9 Selection . 50

6 Mathematical model 51
6.1 Procedure . 51
6.2 Notation . 53
6.3 Objective function . 55

6.3.1 Corner count . 55
6.4 Constraints . 56

6.4.1 Corner constraints . 56
6.4.2 No overlap between rooms . 56
6.4.3 Room and corner consistency 57
6.4.4 Room shapes and sizes . 57
6.4.5 Adjacency . 58
6.4.6 Variable declarations . 58

6.5 Valid inequalities . 59
6.6 Symmetry breaking constraints . 60
6.7 Modelling heuristics . 60

6.7.1 Lock main room . 61
6.7.2 Lock hallways . 62
6.7.3 Window access heuristic . 63
6.7.4 Concurrent neighbourhood optimization 64
6.7.5 Split neighbourhood . 64

7 Local search 67
7.1 Algorithm . 67
7.2 Selection approaches . 70

viii

CONTENTS

8 Case description 73

9 Technical study, memetic algorithm 77
9.1 Methodology . 78
9.2 Parameter settings . 79

9.2.1 Crossover . 79
9.2.2 Mutations . 80
9.2.3 Elitism . 81
9.2.4 Local search . 82
9.2.5 Population initialization and tournament size 83

9.3 Objective function . 83
9.4 Performance testing . 86

9.4.1 Generation of feasible and satisfactory solutions 86
9.4.2 Run time . 91

9.5 Exterior corners objective . 92

10 Technical study, mathematical model 97
10.1 Preliminary testing . 98
10.2 Test instances . 98
10.3 Methodology . 100
10.4 Basic model . 101
10.5 Lock main room . 106
10.6 Window objective . 109
10.7 Lock hallways . 112
10.8 Split neighbourhood . 115

11 Technical study, local search 121
11.1 Methodology . 122
11.2 Test instances . 122
11.3 Search area length . 124
11.4 Selection approach of neighbourhoods 127

12 Performance test 131
12.1 Objectives . 132

13 Concluding remarks 139

Appendices 147

A Room specification documents 149

B Parameter settings, memetic algorithm 151

C Parameter settings tests, memetic algorithm 153
C.1 Initialization . 153
C.2 Tournament size . 154

ix

CONTENTS

C.3 Mutations . 154

D Objective function tests, memetic algorithm 157

E Technical study, mathematical model 161
E.1 Lock main room . 161
E.2 Lock hallways . 162

F Technical study, local search 163

x

List of Tables

1.1 Simplified RSD example . 2

2.1 Comparison between the SLP and the papers left for full review, packing
problem . 10

2.2 Paper overview for Table 2.1 . 10
2.3 Abbrevations for solution method column in Table 2.1 11
2.4 Comparison between the SLP and the papers left for full review, layout

problems . 16
2.5 Paper overview for Table 2.4 . 17
2.6 Abbrevations for the solution method column in Table 2.4 17

5.1 Cell IDs . 36
5.2 Objective variables of the MA . 46

7.1 Objective variables of the LS . 68

8.1 The six RSDs used for testing, with the number and total area of rooms 74
8.2 Number of rooms and total area of each neighbourhood. The colour is

used for visualizations of the neighbourhoods. 74

9.1 Details of the computer hardware and software used for the memetic
algorithm . 78

9.2 Objective variables of the MA along with the additional tested objec-
tive, f8 exterior corners . 79

9.3 Initial and final parameter settings . 83
9.4 Average hallway area and connectivity score when running the MA

including and excluding the connectivity objective (f2) 86
9.5 Fraction of feasible and satisfactory solutions generated for the six in-

stances tested . 87
9.6 Average objective values of the infeasible runs of instance 11N 88
9.7 Objective abbreviations . 88
9.8 Fraction of feasible and satisfactory solutions generated for the six in-

stances tested, including the additional instance 11No 89
9.9 Run time to feasible and satisfactory solutions for the six test instances 91

xi

LIST OF TABLES

9.10 Fraction of feasible and satisfactory solutions for the test instances,
including and excluding objective f8 93

10.1 Details of the computer hardware and software used for the mathemat-
ical model . 97

10.2 The number of rooms, total area and assigned colour of each neighbour-
hood . 99

10.3 Abbrevations for Table 10.4 and 10.5 102
10.4 Initial and final number of corners and run time for the 6N instances

run with the basic model . 102
10.5 Initial and final number of corners and run time for the 9N instances

run with the basic model . 103
10.6 The objective values of the resulting solutions using the objectives in

stage one and three . 104
10.7 Objective abbreviations . 104
10.8 Initial and final number of corners and run time for the 6N instances

with the lock main room heuristics . 106
10.9 Initial and final number of corners and run time for the 9N instances

with the lock main room heuristics . 107
10.10 Initial and final number of corners and run time for the 6N instances

with the window heuristic . 110
10.11 Initial and final number of corners and run time for the 9N instances

with the window heuristic . 111
10.12 Connectivity score for the di↵erent model versions across all test instances114
10.13 Initial and final number of corners and run time for the 6N instances

adding the split neighbourhood heuristic 115
10.14 Initial and final number of corners and run time for the 9N instances

adding the split neighbourhood heuristic 116
10.15 Connectivity score for the di↵erent model versions across all test instances116
10.16 Window access score for the di↵erent model versions across all test

instances . 118

11.1 Objective variables of the local search 121
11.2 Details of the computer hardware and software used for the local search 121
11.3 Initial fitness and objective values of the test instances 123
11.4 Objective abbreviations of the local search objectives 123
11.5 The mean objective values for di↵erent search area lengths 125
11.6 The objective values of the best run for each combination of instance

and length . 126
11.7 The fraction of feasible solutions generated for each combination of

instance and length . 127
11.8 Three alternative selection approaches 127
11.9 The mean objective value for di↵erent selection approaches 128
11.10 The objective values of the best run for each combination of instance

and selection approach . 129

xii

LIST OF TABLES

11.11 Fitness and objective values of the test instances before and after the
local search . 130

12.1 Details of the computer hardware used for the performance tests . . . 131
12.2 Hallway area and exterior corner results from performance tests 133

A.1 Overview of neighbourhoods contained within each test RSD 149
A.2 The neighbourhoods considered from the RSD of Levanger Middle School150

B.1 Initial and final parameter settings, MA 151

C.1 Mutation IDs . 155

E.1 The objective values of the resulting solutions using the objectives in
stage one and three using the lock main room heuristic 161

E.2 Initial and final number of corners and run time for the 6N instances
with the lock hallways heuristic . 162

E.3 Initial and final number of corners and run time for the 9N instances
with the lock hallways heuristic . 162

F.1 Run time for the local search, for each combination of instance and
length. Time is given in seconds . 163

F.2 The fraction of feasible solutions generated for each combination of
selection approach and instance . 163

F.3 Run time for the local search, for each combination of layout and selec-
tion approach. Time is given in seconds 164

xiii

List of Figures

1.1 Comparison of an e�cient and an ine�cient layout suggestion 3

2.1 Material collection process on packing problems similar to the SLP . . 9
2.2 Material collection process on layout problems similar to the SLP . . . 15

4.1 Overall architecture of the solution method 24
4.2 Possible evolution of a simple school layout through the three stages . 27
4.3 A building site of a⇥ b metres with a rows and b columns. Each cell is

a possible room location. 28
4.4 School layout with six rooms, r1 - r6. The rey area is considered a hallway. 29

5.1 Memetic algorithm flow chart . 32
5.2 Window access illustration . 33
5.3 Excess neighbourhood area illustration 34
5.4 Room r with (x, y) coordinate, width w and length l 35
5.5 A phenotype matrix and its corresponding school layout 36
5.6 School layouts with overlap and narrow hallways 37
5.7 Building site divided into four sub-sites, A-D 38
5.8 Single-point crossover . 38
5.9 Tournament selection . 39
5.10 Swap neighbourhood crossover. Di↵erent neighbourhoods are swapped

between two parents, generating two o↵spring 40
5.11 Move room random operator . 41
5.12 Move neighbourhood random operator 41
5.13 Move overlapping room operator . 42
5.14 Move to unattached door-neighbour operator 42
5.15 Move attached door-neighbours operator 43
5.16 Swap wall-sharing side of attached door-neighbours 44
5.17 Phase one of locating hallways. Rectangular hallways are removed from

four starting points, c1 to c4. 47
5.18 Phase three of locating hallways. Hallways not connecting hallway-

neighbours are removed, in addition to narrow hallways having exterior
walls. 48

6.1 Example of an extended envelope . 52

xiv

LIST OF FIGURES

6.2 The resulting layout when the model is applied to a neighbourhood . . 53
6.3 The coordinates in the set Ene

(5,6) coloured in blue 54
6.4 Corner count example, where the green dots display the resulting corners 56
6.5 The extended envelope is input to the model with locked coordinates

for the main room . 61
6.6 Extended envelope with a locked main room and a pre-determined area

where there must exist a minimum amount of coordinates reserved for
hallways . 63

6.7 The green neighbourhood with six rooms is optimized in two consecu-
tive model runs . 65

7.1 Grid showing the room value of each cell for a simple layout with three
rooms. The green dots display the resulting exterior corners. 68

7.2 The local search of a neighbourhood. The neighbourhoods moves to
the best location within a square search area. 69

8.1 A generated school layout using RSD 6N as input, with seven neigh-
bourhoods and 27 rooms . 75

8.2 Blueprint of the layout in Figure 8.1 76

9.1 Fitness of the population for di↵erent crossover rates, pc 80
9.2 Fitness of the population for di↵erent mutation rates, pm 81
9.3 Fitness of the population with di↵erent elitism rates, pe 82
9.4 Fitness of the population with di↵erent local search probabilities, pl . 82
9.5 Development of a layout over 150 generations with connectivity turned

o↵ . 85
9.6 The six instances and their averasinglege fitness throughout the gener-

ations . 87
9.7 The six instances and their average fitness throughout the generations,

along with the additional instance 11No 89
9.8 Relative scores of the di↵erent objectives comparing 11N and 11No . . 90
9.9 The six instances and their run time to feasible and satisfactory solutions. 92
9.10 Instances tested with and without the exterior corners objective . . . 94
9.11 Layouts of instance 6N with and without including the exterior corner

objective . 95

10.1 Initial layouts of the test instances used in the technical study of the
mathematical model . 100

10.2 The total number of corners before, TCI , and after, TCB

F
, running the

basic model for all the six test instances 103
10.3 The resulting layouts after running the basic model on instance 6N3

and 9N1 . 105
10.4 The total number of final corners with, TCL

F
, and without, TCF , the

lock main room heuristic . 107
10.5 The basic model and the lock main room heuristic is compared on the

average time until the best feasible solution is found 108

xv

LIST OF FIGURES

10.6 Instance 6N2 before and after the model is run with the lock main room
heuristic . 109

10.7 Total number of corners in each test instance with and without the
window heuristic . 110

10.8 Average run time for each neighbourhood of the 9N instances 111
10.9 Layouts illustrating the e↵ect of the lock hallway heuristic on test in-

stance 6N2 . 113
10.10 The total number of corners in each test instance with, TCH

F
, and with-

out, TCF , the lock hallways heuristic 114
10.11 Total number of corners for the neighbourhoods containing five and

seven rooms . 117
10.12 The resulting layouts after running the model with and without the

split neighbourhood heuristic for instance 6N2 117
10.13 Layouts before and after the final mathematical model is run for in-

stance 9N2 . 119

11.1 Initial layouts of the test instances used as input in the technical study
of the local search . 124

11.2 The final layouts of the test instances after the local search is conducted 130

12.1 Blueprint of the layouts generated by the three-stage algorithm for each
of the six RSDs . 137

C.1 Fitness of the population for di↵erent values of ph 153
C.2 Fitness of the population for di↵erent tournament sizes 154
C.3 Fitness of the population with di↵erent mutation operators turned o↵.

The number in the legend corresponds to the mutation ID in Table C.1 154
C.4 Swap wall-sharing side (2) and move overlapping room (4) operators

turned o↵ compared to base case . 155
C.5 Fitness of the population after adjusting the mutation probabilities, q2,

q4, q5, q6 . 156

D.1 Development of a run with all objectives turned on 157
D.2 Development of best solution with the overlap objective, f1, turned o↵ 158
D.3 Development of best solution with the window access objective, f5,

turned o↵. The circled room requires window access, but does not have it158
D.4 Development of best solution with the narrow hallway objective, f3,

turned o↵ . 159
D.5 Development of best solution with the door-neighbour distance objec-

tive, f4, turned o↵ . 159
D.6 Development of best solution with the hallway area objective, f6, turned

o↵ . 159
D.7 Development of best solution with the excess neighbourhood area ob-

jective, f7, turned o↵ . 160

xvi

Chapter 1

Introduction

According to the Norwegian Education Act of 2003, all children have a statutory right
to a positive physical school environment. To uphold this, the 3500 school buildings
in Norway (Udir 2019) are subject to strict and constantly renewed regulations and
recommendations by the Norwegian authorities. A well-designed school contributes
to a positive learning environment for the students and an enjoyable working envi-
ronment for teachers and other employees (Schanke 2008). Additionally, schools act
as a cultural arena for the local community, and must be designed to serve this pur-
pose as well. It is the responsibility of each municipality to ensure su�cient capacity
and quality of its educational services. While the numbers greatly vary, the average
cost of building a new school amounts to 330, 000 NOK per student, according to
Statistics Norway (SSB). Clearly, a school building is a significant investment for a
municipality.

When a municipality decides to build a new school, it must first choose a site and
determine specifications such as the number of students and the necessary facilities.
Municipalities write a detailed description of requirements in a document called the
room specification document (RSD). The RSD consists of a list of rooms, typically
over a hundred, along with general guidelines for the complete school design. When
the specifications are determined, the municipality initiates a bidding process for
architectural firms. A bid is a complete design proposal for the school, meaning the
exterior and interior of the buildings, as well as the outdoor area.

To create a successful bid, there are a great number of rules, regulations, and objec-
tives an architect must consider. From the architect’s point of view, the design of a
school can be divided into three components; determining the location of the building
on the site, creating a layout for the school, and forming the outdoor area. Arguably,
the most demanding design component is the school layout. The architect must ad-
here to the requirements in the RSD, while the design must satisfy national and
regional regulations, e.g., emergency regulations, universal design, and flow capacity
in hallways. There are also several important objectives, which are both qualitative,
e.g., usability and aesthetics, and quantitative, e.g., building cost. As school buildings

1

are a large investment for the municipality, the cost is often the most decisive crite-
rion in the bidding process. The number of requirements and objectives, in addition
to the conflict of interest between them, make developing a complete school design
a strenuous task. To exemplify, a layout with large hallways will satisfy flow capac-
ity requirements, but extra square meters add to the building cost. The process of
designing a school layout is a multi-objective task that requires balancing conflicting
goals and complying with complex regulations.

In an RSD, each room comes with a function description, a suggested size, and some-
times an aspect ratio bound. The rooms are usually listed in groups, further referred
to as neighbourhoods. For example, in a middle schools’ RSD, a neighbourhood can be
classrooms, study rooms and common rooms used by the eight grade students. These
neighbourhoods determine proximity requirements, as closeness between rooms within
a neighbourhood is desirable. Table 1.1 shows a simplified example of a list of rooms
from an RSD. The table displays the name of the rooms, their suggested sizes and
aspect ratio bounds. The last column specifies how many of these rooms the school
should have. Figure 1.1 illustrates two very di↵erent layouts that both follow the
specifications in Table 1.1. Figure 1.1 (a) is clearly an ine�cient layout as it fails
to consider many qualitative and quantitative objectives. Figure 1.1 (b) shows one
of many viable layouts that can follow from the simplified RSD, and has a simple
geometric shape.

Table 1.1: Simplified RSD example

Room Suggested size (m2) Aspect ratio bound #

Classroom 50 1.5 5
Study room 40 2 4
Music area 70 1.5 1
Biological laboratory 80 2.5 1
Hub 300 3 1

2

(a) Ine�cient layout

(b) E�cient layout

Figure 1.1: Two possible layouts that adheres to the specifications in the simpli-
fied RSD from Table 1.1. (a) is clearly an ine�cient layout, whereas (b) is a more
promising layout.

3

Today, the development of a bid is predominantly a manual process. An architect
starts by looking at key information in the RSD, such as the type of school and
the number of students, and performs a site inspection. Architects then rely on
traditional methods using their knowledge and experience to form ideas of design
solutions. Hence, the process of developing the initial layout design is a resource-
demanding task. Discussions with the experienced architect firm Lille Frøen reveal
that it often takes 800-900 hours to create a complete bid, and that they spend the
majority of this time developing the layout.

Architect firms widely use software tools for visualization and analysis of layouts. A
typical analysis is total square meters of usable area or a room’s lighting condition.
However, the tools require the architect to input a suggested layout, and then perform
the analysis. If the layout does not meet regulations or requirements, the architect
must manually assess changes to improve the solution, alter the layout and reperform
the analysis. This process is repeated until a desirable, feasible design is obtained.
Conflicts of interest between requirements and objectives make it likely that fixing
one problem creates another. Besides, it is not evident whether or not a design
meets the necessary regulations. It is di�cult for an architect to keep track of all
these challenges simultaneously, and iteratively changing the layout is a tedious and
resource-demanding task. Another problem is that the first layout suggestion a firm
comes up with often has a large impact on the final design. Since creating an initial
layout proposal is time-consuming, subsequent design work tends to lean on the first
draft. Consequently, di↵erent, potentially more desirable design solutions can be
overlooked.

Modelling the problem as an optimization problem enables generating multiple so-
lutions that are guaranteed to meet quantitative regulations, while optimizing for
desirable objectives. Using optimization methods can allow the architect to work
with feasible solutions and exposes her/him to many possible designs. Historically,
optimization models have been used for comparable layout problems. Research has
mainly focused on industrial applications and housing, while the research on applying
optimization methods to generate school layouts is non-existent.

This thesis seeks to introduce an optimization algorithm that architects can use as a
decision support tool when developing school layouts. The algorithm creates layout
suggestions which comply with the requirements in the RSD while minimizing build-
ing cost. The task of developing layouts consistent with the RSD is referred to as the
School Layout Problem (SLP). This problem was first introduced in Hermanrud et al.
(2019). The SLP is defined in two dimensions and considers the development of a sin-
gle floor layout with no preset building footprint. Hermanrud et al. (2019) conducted
a feasibility study assessing the suitability of applying optimization methods to the
SLP. The study showed promising results for using optimization methods as a support
tool when solving the SLP. Hermanrud et al. (2019) developed a basic optimization
algorithm which, together with the findings, lay the foundation for the work in this
thesis. The solution method presented in Hermanrud et al. (2019) was a memetic
algorithm (MA). This thesis extends the algorithm to a three-stage algorithm. The

4

first stage is an improved version of the MA from Hermanrud et al. (2019), which
chooses the topology of the neighbourhoods and allocates the rooms. The second
stage is a mathematical model which takes the layout generated by the first stage
as input and improves the neighbourhoods separately in terms of corners. The final
stage is a local search (LS) using the gradient descent technique to decrease building
costs by minimizing the building area and the number of exterior corners.

Chapter 2 provides insight into relevant literature, and discusses the transferability
of reviewed approaches to the SLP. Next, Chapter 3 gives a thorough explanation of
the school layout problem. Chapter 4 provides an overview of the three stages in the
solution method, as well as a discussion on why they, together, are suited to solve the
SLP. Chapters 5 - 7 give a detailed explanation of how the di↵erent stages are imple-
mented. The various instances used to test the three-stage algorithm are presented
in Chapter 8. To optimize performance, each stage is tested individually in Chapter
9, Chapter 10 and Chapter 11. After completing these tests, a performance study of
the full solution method is presented in Chapter 12. Finally, Chapter 13 presents the
concluding remarks, and outlines possible future research areas and extensions to the
problem considered in this thesis.

5

6

Chapter 2

Literature review

This chapter intends to provide insight into relevant literature to the school layout
problem (SLP). To the best of our knowledge, there exists no published studies on
optimal layouts for schools. Thus, problems similar to the SLP are examined. The
SLP can partly be classified as a layout problem and partly as a packing problem.
Layout problems concern the allocation of space elements on a given area with regard
to a set of constraints and objectives. Similarly, the SLP considers allocating rooms
and hallways to a building site. The constraints in layout problems often concern
interrelations between objects, which is highly relevant to the SLP. Packing problems
attempt to pack small objects into one or several large objects to minimize the unused
area. This relates to the SLP as the rooms (small objects) are packed densely, and
the excess amount of hallways (unused area) is minimized within the layout (large
object). Some packing problems do not have a fixed large object, but instead attempt
to minimize the packing area. In the SLP, the footprint of the school building is not
predefined. Thus, these types of packing problems are relatable.

In this review, the search engine ”Scopus” is used. For each problem examined, a
set of relevant keywords are determined to search for literature. In the beginning
of each section, a more detailed description is given on how the literature search is
conducted. In Section 2.1, di↵erent packing problems are explored and compared to
the SLP. Section 2.2 examines layout problems of similar nature to the SLP, mainly
focusing on facility layout problems (FLP) and architectural space planning (ASP).
Lastly, Section 2.3 discusses this thesis’s contribution to the literature.

2.1 Packing problems

Packing problems are a class of optimization problems that attempt to pack smaller
objects into one or several larger objects. The objects are polygons defined in multiple
geometric dimensions. Certain geometric conditions must hold for the assignment of
objects - the small objects have to lie entirely within the large object, and they
cannot overlap (Wäscher et al. 2007). The goal is to either pack a single large object

7

2.1. PACKING PROBLEMS

as densely as possible or pack all small objects using as few large objects as possible
(Di Pieri 2013).

As demonstrated in the typology by Dyckho↵ (1990) and later Wäscher et al. (2007)
there exists a large variation of packing problems. Wäscher et al. (2007) introduce
categorisation criteria to define problem types. These include dimensionality, type of
assignment, the assortment of small and large items, and the shape of small items.
Based on these criteria, six basic problem types are defined; identical item packing
problem, placement problem, knapsack problem, open dimension problem, cutting
stock problem and bin packing problem. The SLP is considered an extension of the
open dimension problem (ODP). In ODPs, one or several dimensions of the large ob-
ject are considered decision variables. Additionally, the small objects are rectangles
and have fixed dimensions and area. There are clear similarities between the tradi-
tional ODP and the SLP. In the SLP, the small objects (rooms) are rectangular, while
the large object (school) has variable dimensions and is rectilinear, as it consists of a
set of axis-aligned, rectangular rooms. Additionally, the geometric conditions are the
same, as rooms cannot overlap.

Besides the similarities, the SLP contains many aspects not present in ODPs. Rooms
in the SLP can have variable dimensions as long as their aspect ratio is within a
given bound. These are often referred to as soft rectangles in literature. The area of
the rooms can also vary within a given range, which is uncommon for soft rectangle
packing (SRP) and the ODP. Additionally, as the SLP does not consider a set building
footprint, the small objects are not packed into a predefined rectilinear object. Still,
the final footprint will be of rectilinear shape. Because of this property, the SLP has
some resemblance to minimal area packing (MAP). MAP problems intend to minimize
the packing area of small objects. The packing area is required to be rectangular,
and thus the objective is to minimize the rectangular envelope covering all the small
objects. The SLP is in some way a rectilinear MAP problem where the packing area
is not necessarily rectangular, but rather rectilinear. Other aspects that di↵erentiate
the SLP from MAP and ODPs is the interrelation between rooms and the location of
hallways. This is rarely present, or non-existing, in packing problems.

2.1.1 Material collection

To systematically explore the literature that examine packing problems with similar-
ities to the SLP, two groups of keywords are developed. Packing problems appear
under various names in the literature. Thus, the keywords are determined based on
the typologies by Dyckho↵ (1990) and Wäscher et al. (2007). The first group contains
words equivalent to ”packing” in the literature on packing problems. These words
are ”packing”, ”loading”, ”placement” and ”allocation”. The second group consists
of words that limit the search to packing problems relevant to the SLP. These are:
”rectangular”, ”polygon”, ”soft rectangle”, ”open dimension”, ”variable dimension”,
”discrete”, ”regular” and ”two-dimensional”.

For a paper to be considered further in the literature review, one of the words from

8

2.1. PACKING PROBLEMS

the first group must be part of the title, while at least one word from the second group
must appear in either the title, abstract or keywords. This search resulted in 2248
papers. From these, only English journal articles are considered, resulting in 1272
papers. Further, only literature regarding the subject areas mathematics, computer
science, engineering and decision sciences are included. By limiting the search to
these research fields, 643 papers remain. To further narrow down the search, papers
with irrelevant keywords are excluded. These keywords are, for instance, ”particles”,
”molecular dynamics” and ”friction”, many from the fields of chemistry and biology.
Considering these criteria, 98 papers remain. The abstracts of these papers are read
to determine their relevance, and papers regarding traditional bin- and strip- packing
problems are excluded. Some of these papers are read for modelling inspiration,
such as how to model overlap constraints. Reviewing the abstracts left nine relevant
papers. Lastly, publications citing and cited by the nine papers are reviewed, resulting
in three additional relevant papers. Thus, 12 papers are left for full review. Figure
2.1 illustrates the material collection process.

Initial	search

Only	English

journal

articles

Exclude

irrelevant

subject	areas

Relevance	of

abstract

Remove	papers
that	focus	on
irrelevant	features
Remove
traditional	bin-
and	strip-packing
problems

Check

citations

2248	papers 1272	papers 643	papers 9	papers 12	papers

Exclude

irrelevant

keywords

98	papers

Add	relevant
papers	cited	by
the	9	papers	or
publications
citing	them

Word	from	first
group	must
appear	in	title
Word	from
second	group
must	appear	in
title,	abstract	or
keywords

Figure 2.1: Material collection process on packing problems similar to the SLP

2.1.2 Full review

Table 2.1 presents the papers left for full review. The numbers in the first column refer
to the papers in Table 2.2. The additional columns compare relevant characteristics
of the SLP to the various packing problems reviewed. The properties of the SLP is
specified in the bottom line of the table for comparison.

In the columns defining the shape of the small and large item(s), the terms irregular
and rectilinear are used. An irregular polygon can have sides of any length, and each
interior angle can be any measure. A rectilinear polygon is made up of straight lines,
where all sides meet at right angles. In all articles reviewed, the rectilinear objects
are arranged in an axis-aligned way, which is also the case in the SLP.

The column ”Problem type” defines the type of packing problem considered in the
paper. In this column, Soft MAP and 2D-OP are abbreviations for soft minimal
area packing and two-dimensional orthogonal packing, respectively. Soft MAP refers
to the packing of soft rectangles, and is an extension of the traditional MAP. 2D-

9

2.1. PACKING PROBLEMS

OP involves determining whether a set of rectangles can be allocated into a single
rectangle of fixed size. Soft 2D-OP is a 2D-OP problem with soft rectangles. The last
column specifies the solution method presented in the paper. The abbreviations of
this column are explained in Table 2.3. Note that a genetic algorithm (GA) hybridized
with a local search (LS) procedure is called a memetic algorithm (MA). A heuristic is
a technique for finding an approximate solution to a problem. Heuristics are helpful
when classic methods fail to find any exact solution. The solution methods of papers
using less known heuristics, as opposed to GA, MA, SA and LS, are referred to as
heuristic in the solution method column.

Table 2.1: Comparison between the SLP and the papers left for full review. *The
area can vary as well as the dimensions.

Instance
Shape of

large object(s)
Shape of

small object(s)

Variable
large
object

dimensions

Variable
small
object

dimensions

Problem
type

Solution
method

1 Rectangular Irregular Yes No MAP GA
2 Rectangular Rectangular Yes Yes Soft MAP LP + SA
3 Rectangular Rectangular Yes Yes Soft MAP Lagrange
4 Rectangular Rectilinear Yes Yes Soft MAP Lagrange
5 Rectangular Rectangular Yes Yes* Soft MAP LS + LP
6 Rectangular Rectangular Yes No MAP NLP
7 Cuboid Cuboid Yes No MAP LP
8 Rectilinear Rectangular Yes Yes Soft MAP LP
9 Rectangular Rectangular Yes No MAP Heuristic
10 Rectangular Rectangular No Yes Soft 2D-OP Heuristic
11 Square Rectangular Yes Yes Soft MAP -
12 Rectilinear Rectangular Yes No MAP GA

SLP Rectilinear Rectangular Yes Yes* Rectilinear MAP MA + LP + LS

Table 2.2: Paper overview for Table 2.1

1 Jain and Gea (1998)
2 Murata and Kuh (1998)
3 F. Young et al. (2001)
4 Chu and E. Young (2004)
5 Ibaraki and Nakamura (2006)
6 Maag et al. (2010)
7 Hu et al. (2012)
8 Fügenschuh et al. (2014)
9 He et al. (2015)
10 Ji et al. (2017)
11 Brenner (2018)
12 Erozan and Çalışkan (2020)

Shape of small and large object(s)

The second and third column of Table 2.1 specify the shape of the large and small
object(s) of each problem. In the SLP, the large object (school) is rectilinear, and the
small objects (rooms) are rectangular. Erozan and Çalışkan (2020) and Fügenschuh
et al. (2014) consider problems which allow for rectilinear large objects, like in the

10

2.1. PACKING PROBLEMS

Table 2.3: Abbrevations for solution method column in Table 2.1

MA Memetic algorithm
GA Genetic algorithm
SA Simulated annealing
LS Local search
LP Linear program solved using a commercial solver
NLP Non-linear program solved using a commercial solver

SLP. The model by Erozan and Çalışkan (2020) includes no predefined large object.
In contrast to traditional MAPs, which minimizes the envelope covering the small
objects, Erozan and Çalışkan (2020) minimize the distances between the centres of
the rectangular items using a genetic algorithm. Thus, the problem has a resemblance
to rectilinear MAPs, as the packing area is not required to be rectangular. Fügenschuh
et al. (2014) present a model to solve an extended bi-objective MAP problem with
rectangular small objects and a final rectilinear layout. In addition to minimizing the
envelope covering the small objects, the objective minimizes the length of all inner
borderlines. This length is proportional to the amount of ink one would use when
drawing the list of rectangles. The second objective facilitate rectilinear layouts as
much as rectangular ones. Thus, by removing the envelope objective, the problem
becomes more similar to the SLP.

Four papers suggest di↵erent solution methods to the traditional MAP problem with
rectangular small and large objects; Ibaraki and Nakamura (2006), Maag et al. (2010),
F. Young et al. (2001), and He et al. (2015). Even though these papers deal with
rectangular shaped large objects, they present approaches on how to densely pack
rectangles, which is an element of the SLP. Ibaraki and Nakamura (2006) propose a
hybrid of local search and mathematical programming to solve the MAP problem.
Using local search to find relative positions of the rectangles, the final mathematical
model determines the exact locations of rectangles. The resulting algorithm solves
problem instances with up to 50 rectangles. This complexity, at least in terms of the
number of rooms, resembles the SLP. Maag et al. (2010) and F. Young et al. (2001)
present di↵erent mathematical models to solve the MAP. F. Young et al. (2001)
define an integer program (IP) which is approximated with Lagrangian relaxation,
while Maag et al. (2010) model a non-linear program (NLP). Lastly, He et al. (2015)
present a dynamic reduction algorithm by solving the MAP problem as a series of
2D-OP problems.

Chu and E. Young (2004) propose a mathematical model which allows for rectilinear
small objects. Initially, they solve a soft MAP problem. Then the unused area of the
envelope is divided among the rectangles. Thus, if a rectangle is assigned parts of
the unused area, its entirety may contain a subset of rectangles, and can, therefore,
be of rectilinear shape. The problem solved by Ji et al. (2017) has resemblance to
the one presented in Chu and E. Young (2004). They start by solving a soft 2D-OP
problem, and thereafter assign unused area to the small objects. The small objects
must maintain a rectangular shape after this assignment. Jain and Gea (1998) solve a

11

2.1. PACKING PROBLEMS

MAP problem in which both rectilinear and irregular shapes of the small objects are
allowed. The authors use a grid representation where each small object is discretized
into a finite number of equisized cells. This allows for irregular shapes as the objects
are just a bunch of cells lying next to each other with their relative position defined
by a linked list. Also, Hermanrud et al. (2019) exploit a grid representation to model
the phenotype of the school layout.

Variable dimensions of small objects

One characteristic that distinguishes the SLP from the reviewed literature is the
variable dimensions and area of the small objects. Both the dimensions and area of
a room can vary within a given range. The fifth column of Table 2.2 shows that only
one paper has both these features in common with the SLP. Ibaraki and Nakamura
(2006) include boundaries on the length and width of a rectangle as well as the aspect
ratio. In this way, both the dimensions and the area of a rectangle can vary within
a given range. Along with this similarity, the paper presents constraints relevant to
the SLP, such as how to lock rooms within a particular region and how to avoid
overlap.

Six additional papers in Table 2.2 consider soft rectangle packing problems. These
problems contain small objects with given areas while their aspect ratios are chosen
from a given interval. Hence, the dimensions of the small objects can vary. Ji et al.
(2017) propose an iterative merging algorithm to solve a soft 2D-OP problem. The
algorithm iteratively merges the two rectangles with the smallest areas, and places
the merged rectangle into the large object by recursively determining its position
and dimensions. Murata and Kuh (1998) present a sequence-pair based placement
method for soft rectangles. The sequence-pairs specify the placement topology of
objects. The placement method fixes the horizontal and vertical relationships among
rectangles. Consequently, avoiding overlap. The solution method is a hybrid of
simulated annealing (SA) and mathematical programming, intending to minimize
the envelope under a placement topology. Besides the similarity of having variable
dimensions, these two papers as well as the four papers by Brenner (2018), Fügenschuh
et al. (2014), F. Young et al. (2001), and Chu and E. Young (2004) di↵er from the
SLP as the areas of the rooms are fixed.

Interrelations between objects

An essential consideration of the SLP is the interrelations between objects, which
distinguishes it from traditional packing problems. Certain rooms are required to lie
next to each other, and the distances within each neighbourhood are subject to mini-
mization. Interrelations is often part of layout problems, but is not commonly present
in packing problems. Erozan and Çalışkan (2020) use GA to solve an extended MAP
problem and consider the location of related objects. Some rectangular items have
a defensive radius, in which only certain other rectangles can be placed. The main
purpose of the radius is to place rectangular items that are related close to one other.
F. Young et al. (2001) consider the packing of floorplans and use constraint graphs to

12

2.2. LAYOUT PROBLEMS

represent horizontal and vertical placement relationships between rooms. The graphs
are given as input, such that the relative positions of rooms are predetermined. The
placement restrictions in the SLP are stricter, as some rooms are required to lie next
to each other instead of only constraining their relative positions. By tightening some
of the constraints in the model by F. Young et al. (2001), their problem becomes more
similar to the SLP.

2.2 Layout problems

Layout problems are concerned with the allocation of space elements in a given area,
with regards to a set of constraints and objectives. The term layout problems cover a
vast number of applications ranging from placing transistors on a chip, known as very-
large-scale integration (VLSI) design, to residential building design. These problems
are also subject to several geometric requirements, e.g. the space elements cannot
overlap, and they must be placed within the given area. The objectives in a layout
problem varies across the di↵erent applications, but usually consider the relationships
and interaction between the space elements.

A familiar layout problem studied for the past 60 years is the facility layout problem
(FLP). The FLP is defined as the placement of facilities in a plant area, with the aim
of determining the most e↵ective arrangement in accordance with some objectives and
constraints (Hosseini nasab et al. 2018). Typically are these constraints the shape,
size and orientation of the facilities. The general objectives of FLPs are to allocate
the facilities to maximize throughput, productivity and e�ciency.

The SLP and FLP share the concerns of a typical layout problem, i.e. placing space
elements in feasible locations, having non-overlapping constraints and geometric re-
strictions. On the other hand, the objectives when developing an e�cient layout in
an industrial environment di↵er from the objectives of a beneficial educational fa-
cility. They do, however, share some of the core objectives of layout problems such
as proximity and accessibility between the allocated space elements. An important
feature that FLPs share with SLPs is the high complexity. The size of the problem
instances, as well as the variety of facility sizes and shapes, correspond well with the
variety and number of rooms in the SLP. Hence, solution approaches that can handle
the complexity of FLPs are likely to do so also on SLPs.

Architectural space planning (ASP) is defined by Dutta and Sarthak (2011) as finding
feasible locations for a set of interrelated objects. ASPs usually consider residential
building layouts. The layout should not only meet design requirements and prefer-
ences, but also satisfy aesthetics and usability. Naturally, ASP shares the aforemen-
tioned characteristics of a canonical layout problem. Furthermore, ASP includes a
strong focus on subjective criteria such as aesthetics and design preferences, which
are essential aspects of the SLP. Thus, the representation of the problem and the solu-
tion approach for ASP problems must facilitate the possibility of including subjective
and preferential objectives. A solution approach performing well on ASP problems

13

2.2. LAYOUT PROBLEMS

is likely to capture these aspects also in the SLP. Most of the studies on ASP focus
on private housing, such as apartments. The problem instances usually consist of
fewer and more homogeneous space elements than SLPs. Therefore, it is crucial to
assess the suggested solution methods’ ability to scale, as the increased complexity of
modelling a school layout might make them inappropriate.

2.2.1 Material collection

To e�ciently explore the literature on layout problems, a similar search strategy
as for the bin packing problems is conducted, where two groups of keywords are
developed. The first group contains words equivalent to ”layout”. These words are
”layout”, ”floor plan”, ”space planning” and ”spatial allocation”. The second group
contains words to limit the search to layout problems relevant to the SLP. These
words are: ”rectangular”, ”rectilinear”, ”building”, ”variable dimension” and ”soft
rectangle”.

For a paper to be considered further in the literature review, one of the words from
the first group must be part of the title, while at least one words from the second
group must appear in either the title, abstract or keywords. This search resulted
in 2180 papers. Limiting the language to English and the type of paper to journal
decreases the results to 1009 papers. Next, the search is limited to the subject areas
Engineering, Computer Science, Mathematics and Decision Sciences, which yields 634
papers. To further constrict the literature search, papers containing irrelevant key-
words are excluded. These keywords are, for instance, ”VLSI”, ”Integrated Circuits”
and ”Fluid Dynamics”. 189 papers remain when these keywords are excluded. To fur-
ther narrow down the search, all papers dated before 1995 are excluded, which results
in 121 remaining papers. The titles and if necessary, the abstract of the remaining
papers are read to determine their relevance. Several papers considering basic layout
problems such as quadratic assignment problems (QAP) are then excluded. QAP are
problems where the site is partitioned into equally sized segments where the number
of segments equals the number of space elements to allocate. The problem is then to
assign each space element to a segment. Formulating the SLP as a QAP is impractica-
ble, and QAPs are therefore considered irrelevant. Additionally, papers considering
domains incomparable to SLP are removed, e.g. sewer system design. Finally, 14
papers remain.

Additionally, the literature search discovered three comprehensive surveys on layout
problems. Drira et al. (2007) and Hosseini nasab et al. (2018) conducts a survey on
a magnitude of extensions of FLP and Dutta and Sarthak (2011) conducts a review
on using evolutionary solution approaches on ASP. From the papers discussed in
the surveys, an additional nine papers are considered interesting for further review.
Consequently, 25 papers are chosen for full review. Figure 2.2 illustrates the material
collection process.

14

2.2. LAYOUT PROBLEMS

Initial	search

Only	English

journal

articles

Exclude

irrelevant

subject	areas

and	keywords

Relevance	of

title	and

abstract

Remove	papers

that	focus	on

irrelevant	features

Remove

traditional	QAPs

and	other

irrelevant

domains	

Add	papers

from	surveys

2180	papers 1009	papers 189	papers 14	papers 25	papers

Exclude	paper

published

before	1995

121	papers

Add	relevant

papers	cited	by

Drira	et	al.

(2007)	or

Hosseini	nasab

et	al.	(2018)

Word	from	first

group	must

appear	in	title

Word	from

second	group

must	appear	in

title,	abstract	or

keywords

Figure 2.2: Material collection process on layout problems similar to the SLP

2.2.2 Full review

Table 2.4 presents the papers left for full review. The numbers in the first column refer
to the papers in Table 2.5. The additional columns compare relevant characteristics
of the SLP to the various layout problems reviewed. The properties of the SLP is
specified in the bottom line of the table for comparison.

The column ”Shape of space elements” specifies the geometrical class of the space
objects, e.g. rooms or facilities, which are to be allocated. Next, The column ”Fixed
space elements” states whether or not the objects are subject to changes in shape,
dimension and size. Similarly, the column ”fixed footprint” states whether or not the
resulting footprint of the allocated elements is predetermined or not. Essentially, if
the footprint is fixed, the space elements must completely cover the area they are
allowed to be placed. If the problem does not define a fixed footprint, the footprint
is generated when the problem is solved, as the area covered by the allocated space
elements. The abbreviations used in the column ”Solution method” are explained in
Table 2.6.

15

2.2. LAYOUT PROBLEMS

Table 2.4: Comparison between the SLP and the papers left for full review

Article
Shape of
space

elements

Fixed
space

elements

Fixed
footprint

Problem
type

Solution
method

1 Rectangular No No ASP SA
2 Rectangular No Yes FLP B&B
3 Rectangular Yes No FLP GA + TS/SA
4 Rectilinear No Yes ASP GA + GDS
5 Rectangular Yes Yes FLP SA
6 Rectangular Yes No FLP B&B
7 Rectilinear No Yes ASP GA
8 Rectangular No Yes FLP ACO
9 Rectilinear No Yes ASP GA
10 Rectangular No No FLP LP
11 Rectilinear Both Yes ASP EAs
12 Rectangular Yes Yes Interior Design NSGA-II
13 Rectilinear No No ASP DFS + NN
14 Irregular No N/A Construction Site GA
15 Rectilinear No Yes ASP EA
16 Rectangular Yes N/A Construction Site PSO
17 Cuboid No No ASP NSGA-II
18 Rectangular No No FLP CPM
19 Rectilinear No No ASP SBRP
20 Rectangular Yes Yes FLP LP
21 Rectangular Yes No FLP LP
22 Rectangular No Yes ASP GADG
23 Rectangular No Yes FLP FA
24 Rectilinear No Yes ASP CNN
25 Rectangular Yes No FLP GA + A*-Search

SLP Rectilinear No No SLP MA + LP + LS

Objectives & fitness evaluation

Most FLPs seek to minimize material handling cost between facilities. This is in-
corporated by some determined cost of adjacency or the amount of flow between the
facilities. Additionally, the flow or adjacency cost is multiplied with the distance be-
tween the facilities. The fitness of a solution for the FLP is most often comprised only
of this objective which is commonly handled by a weighted sum. The only approach
out of the 11 FLP papers considered which deviates from this is (Tari and Neghabi
2018). The authors instead implement the material handling cost more implicitly by
seeking to maximize boundary lengths between facilities. Thus, prioritizing direct
adjacency above minimizing distance between the facilities. Proximity and adjacency
are essential also for the SLP, but they are merely a small part of the relevant objec-
tives. Thus, FLP are insu�ciently relatable to SLP with regards to objectives.

ASP considers a much wider range of objectives, which in turn requires a more so-
phisticated fitness evaluation. Wu et al. (2019) suggest an approach which avoids
having to define objectives and compute their corresponding objective values explic-
itly. The authors implemented a neural network and trained it on large data-sets, over
120k instances, of existing residential buildings. This approach is, however, highly

16

2.2. LAYOUT PROBLEMS

Table 2.5: Paper overview for Table 2.4

1 Chwif et al. (1998)
2 J.-G. Kim and Y.-D. Kim (1999)
3 Y. H. Lee and M. H. Lee (2002)
4 Michalek et al. (2002)
5 McKendall et al. (2006)
6 Xie and Sahinidis (2008)
7 S. S. Y. Wong and Chan (2009)
8 Komarudin and K. Y. Wong (2010)
9 Verma and Thakur (2010)
10 Dutta and Sarthak (2011)
11 Flack and Ross (2011)
12 Chatzikonstantinou and Bengisu (2016)
13 Zawidzki (2016)
14 Abotaleb et al. (2016)
15 Dino (2016)
16 Bazaati (2017)
17 Gürsel and Göktürk (2017)
18 Hammad et al. (2017)
19 Shekhawat and Duarte (2017)
20 Feng and Che (2018)
21 Tari and Neghabi (2018)
22 Wang et al. (2018)
23 Scalia et al. (2019)
24 Wu et al. (2019)
25 Besbes et al. (2020)

Table 2.6: Abbrevations for the solution method column in Table 2.4

MA Memetic algorithm
GA Genetic algorithm
CNN Convolutional neural network
FA Firefly algorithm
GADG Graph approach to design generation
LP Linear program solved using a commercial solver
SBRP Spiral based rectangular placement
PSO Particle swarm optimization
NSGA-II Non dominated sorting genetic algorithm
EA Evolutionary algorithm
DFS Depth-first search
B&B Branch & bound
CPM Cutting plane method
SA Simulated annealing
TS Tabu search
ACO Ant colony optimization
GDS Gradient descent search
LS Local search

restricted by the size of the problem instances. Wu et al. (2019) consider apartment
layouts consisting of five to eight rooms. Considering the small size of the instances
the NN is able to handle, similar solution approaches are most likely unsuitable for
the SLP.

17

2.2. LAYOUT PROBLEMS

A decisive objective of the SLP is the area of the layout as it is directly connected
to cost. Total area as an objective subject to minimization is common for ASPs in
general (Shekhawat and Duarte 2017; Flack and Ross 2011; Zawidzki 2016). More
specifically, Zawidzki (2016) seeks to minimize area by minimizing the size of hallways
which are used to connect the rooms. As the suggested size of the rooms in the SLP
are defined in the RSD, minimizing area is accomplished through e�cient hallways.
The purpose of the hallways is to enable to move from A to B in a layout. In the
literature this is referred to as connectivity, which is a common objective for the ASP
as well as the SLP (Zawidzki 2016; Flack and Ross 2011). In addition to connectivity
is reachability introduced in multiple papers. Reachability is the number of rooms
passed through when moving from A to B, and is an objective subject to minimization.
Flack and Ross (2011) handle reachability by implementing an adjacency graph with
the objective of minimizing its depth.

Some layout problems are essentially constraint satisfaction problems, where the goal
simply is to allocate the rooms to fulfil a number of requirements. However, the re-
quirements can either be considered as absolute or implemented as soft constraints.
Dino (2016) considers rooms wit a given desired size. The author implements a
single objective evolutionary algorithm where the goal is to minimize the rooms de-
viation from these sizes. Hence, Dino (2016) models the size ”requirements” as soft
constraints in the fitness function. It is not necessarily beneficial or possible to com-
pletely adhere to the suggested room sizes and shapes in the SLP. Hence, similar
techniques as the one proposed by Dino (2016) must be considered when solving the
SLP.

Some of the papers considered include most of the aforementioned objectives as well
as additional problem-specific objectives; geometric simplicity of the allocated space
elements (Zawidzki 2016) and maximizing rooms with window access (Zawidzki 2016).
As the composition of objectives determining the fitness of a solution becomes more
complex, it demands more sophisticated fitness evaluations. The SLP is inherently
multi-objective, and e�ciently prioritizing the objectives is crucial to obtain desirable
results. Flack and Ross (2011) explore alternatives to the weighted-sum method, such
as Pareto ranking and the sum of ranks. Gürsel and Göktürk (2017) and Chatzikon-
stantinou and Bengisu (2016) utilized NSGA-II, a specific GA implementation to
handle multi-objective problems.

Multi-stage models

The complexity of layout problems can make it necessary or beneficial to divide the
problem into sub-problems. In practice, this can be done by considering a subset of
objectives or space elements at the same time. Additionally, not having to consider
all aspects simultaneously simplifies formulating and representing the problem, as
well as choosing the solution approach. Solving the problem step-wise facilitates
applying more suitable models in each step. A number of multi-stage hybrid models
are proposed in the literature (Michalek et al. 2002; Wu et al. 2019; Zawidzki 2016;
Y. H. Lee and M. H. Lee 2002; Besbes et al. 2020; Gürsel and Göktürk 2017).

18

2.3. OUR CONTRIBUTION

Michalek et al. (2002) and Wu et al. (2019) consider ASPs. Both choose to divide
the problem into two stages. First, the topology of the rooms are determined, and
then a corresponding geometric solution is formed. A topology represents the relative
positioning of the rooms, while a geometry specifies the exact position and dimensions
of the rooms. Wu et al. (2019) apply a convolution neural net in both stages, while
Michalek et al. (2002) employ an evolutionary algorithm in the first stage and both a
genetic algorithm and simulated annealing in the second stage. The model suggested
by Michalek et al. (2002) iterates between stage one and two until a desirable layout
is obtained.

Zawidzki (2016) suggest a three-stage model to solve the ASP. In the first stage,
Zawidzki (2016) formulates the problem as a CSP and exploits a depth-first search
to find feasible layouts. The solutions are then classified, as the authors define it, as
”proper” or ”improper” using a feed-forward neural network. The last stage ranks
the proper layouts based on several objectives using a weighted-sum fitness function.
Applying a DFS unguided by the objectives is not an e�cient way to explore a large
solution space. Thus, an evident drawback of the model is its ability to handle large
problem instances, making it less comparable to the SLP.

To e�ciently explore the solution space, Y. H. Lee and M. H. Lee (2002) suggest a
hybrid genetic algorithm (HGA). The authors combine GA, TS and SA to make up
for a weakness in the GA by employing the strong points of TS and SA that find local
solutions rapidly (Y. H. Lee and M. H. Lee 2002). The model locally optimizes the
solutions in the initial population using the TS and SA before they are propagated to
a standard GA procedure. Essentially, the first step is a sophisticated initialization
which provides the GA with locally optimized solutions for it to assess and improve
at a global level.

2.3 Our contribution

Various layout problems are well studied, but the research conducted on School Layout
Problems is non-existing. This thesis sheds light on the unexplored challenges the
SLP o↵ers. The SLP considers large problem instances with heterogeneous rooms
which are subject to variable dimensions and sizes. In addition, numerous objectives
ranging from proximity between the rooms to natural lighting conditions are vital
when generating the layouts. Most research works on ASPs are concerned with a
given footprint and allocating the space elements to fit within this given area. The
practical problem of building a school is also concerned with new constructions. As
a result, this thesis considers allocating rooms on a given building site, and creating
the footprint based on the room locations. Collectively, these aspects comprise a
highly complex problem, which sets demanding requirements for problem formulation,
modelling decisions and solution approaches.

The solution method suggested in this thesis is a carefully assembled multi-stage ap-
proach. The purpose is to successively consider aspects of the SLP, as assessing all

19

2.3. OUR CONTRIBUTION

aspects of the problem simultaneously is considered too complex to obtain desirable
results. Additionally, dividing into stages allows exploiting the strengths of multi-
ple solution approaches. Specifically, this thesis presents an algorithm combining an
MA, a mathematical model and an LS. The robustness and flexibility of this ap-
proach makes it likely to be e�cient also on a wide range of multi-objective layout
problems.

20

Chapter 3

Problem description

This chapter discusses the school layout problem studied in this thesis. Consider an
architect firm who wants to enter into a bidding process for a new school building. The
main input available to the firm is the information in the room specification document.
Given the RSD, it is the architects task to design an e�cient layout. Several factors,
such as the number of rooms and objectives, make this a highly complex problem.
In essence, the number of possible layouts are endless and developing a single layout
suggestion requires lots of work. Increasing the e�ciency of the development process
will help architects create better school layouts.

To develop a school layout, an architect must place rooms, doors, windows, hallways
and vertical transportation. The primary task is to place rooms with varying sizes and
functions on the building site. Their shapes are not preset, and thus architects must
ensure they are e�cient. In this thesis, rooms are required to be rectangular, which
is common for rooms in school buildings. A rooms’ door(s) must be placed so that
the room has a natural access point(s). It is also essential to recognize the relations
between the rooms. The RSD explicitly states many of these relations. For instance,
every room is part of a neighbourhood. There are also implicit interdependencies
between rooms, such as noise pollution, that an architect must take into account.

Another challenging task is allocating hallways. In a feasible solution to the SLP, it is
required that every room is connected through hallways. Connectivity should be met
without creating an excessive amount of hallways, because extra square meters are
costly. Architects must also consider vertical transportation and outdoor area. The
location of vertical transportation impacts the validity and e↵ectiveness of the school
layout, while the outdoor area adds complexity to the SLP due to the interaction
between the outdoors and indoors.

This thesis makes some simplifications to reduce the SLP’s complexity. The building
site used as input is a flat square which is large enough to fit the rooms and hallways
comfortably. Since school sites usually have room for a large outdoor area, this is an
insignificant simplification. The SLP studied in this thesis considers the construction
of a single building with no preset footprint. Thus, the exterior walls are not set, but

21

are placed after the room and hallway locations have been decided. Both exterior and
interior walls need to be horizontal or vertical in relation to the site. Additionally,
this thesis focuses on a single, ground floor layout. The assumption of a single floor
reduces the problem to two dimensions, and removes vertical transportation from the
problem.

The constraints of the SLP are mostly related to the room specifications in the RSD.
These are size, shape, proximity and natural lighting requirements. Some constraints,
such as noise pollution and emergency exit access, apply to the real world SLP, but
are not taken into account in this thesis. These aspects are left for the architect to
consider when modifying the layouts this thesis produces.

A challenging part of the SLP is to determine the e↵ectiveness of a layout. A great
number of objectives measures e↵ectiveness and the weighting of these objectives vary
between architects. Aesthetics, planning for people flow, even creating a layout that
suppresses bullying, are all examples of criteria architects reflect on when designing
a school building. While they are undoubtedly important, they are also di�cult to
quantify. This thesis selects objectives based on importance and their ability to be
measured quantitatively and objectively. As discussed in Chapter 1, cost is a critical
criteria. Architects consider two main cost drivers, the total building area and the
number of exterior building corners. Thus, these are the two key objectives of this
thesis. The suggested size of the rooms in the SLP are defined in the room speci-
fication document. Building area is therefore minimized by minimizing the hallway
area. In addition to cost, this thesis focuses on aesthetics through obtaining geometric
simplicity in the layouts.

22

Chapter 4

Solution method

This chapter presents the overall architecture of the solution method developed in
this thesis. The solution method consists of three stages; a memetic algorithm, a
mathematical model and a local search. The stages are briefly explained in this
chapter and further elaborated in Chapter 5, 6 and 7. First, Section 4.1 provides a
general overview of the di↵erent stages of the solution method. The chosen solution
method and the interaction between the stages are discussed in Section 4.2. Section
4.3 provides a pipeline example illustrating the behaviour of the three components of
the solution method. Lastly, Section 4.4 presents assumptions and clarifications to
the SLP solved in this thesis.

4.1 Overall architecture

The first stage is a memetic algorithm, consisting of a genetic algorithm and a local
search, which creates a first draft of the school layout. This stage aims to create
layouts which fulfill the requirements in the RSD while minimizing building area.
The second stage is a mathematical model which takes the layout from stage one
as input and attempts to minimize the number of corners in each neighbourhood
separately. In this stage, adjustments to the sizes and locations of the rooms are
allowed to create a more geometric simplistic layout with fewer corners. Finally, in
stage three, a local search is conducted to minimize the number of exterior corners
and total building area. Figure 4.1 illustrates the overall architecture.

23

4.1. OVERALL ARCHITECTURE

Memetic	algorithm
	(MA)

Pre-processing

Mathematical	model

Local	search	(LS)

Stage	1

Stage	2	

Stage	3

School
layout

RSD

Figure 4.1: Overall architecture of the solution method

4.1.1 Stage one - memetic algorithm

The memetic algorithm allocates rooms and hallways to the building site, jointly
forming a school layout. The genetic algorithm initializes the solutions by using the
list of rooms, with their corresponding size suggestions and proximity requirements, in
the RSD as input. Since the RSD does not specify hallways, this thesis implements
a sophisticated algorithm for dynamically generating hallways. This algorithm is
explained in Section 5.8.1. The allocation of rooms is done by mutation and crossover
operators, which are standard operations in genetic algorithms. The local search
exploits a gradient descent technique to make small, improving changes to the layout.
The greediness of the local search complements the inherent randomness of the GA.
Collectively, they balance exploration and exploitation and search the solution space
e�ciently.

The goal of the memetic algorithm is to produce a school layout which satisfies the
requirements in the RSD, along with additional constraints such as hallway connec-
tions between rooms. Additionally, it aims to minimize the total building area. A
weighted-sum fitness function is used to handle the multi-objective MA. The out-
put propagated to the next stage is a complete layout suggestion where rooms and
hallways are placed on the site.

24

4.2. ALGORITHM COMPOSITION

4.1.2 Stage two - mathematical model

This stage is a mathematical model formulated as an integer linear program (ILP) and
solved using a commercial mathematical optimization solver. The model is applied
to each neighbourhood separately, aiming to minimize the number of corners by
adjusting the size and location of the rooms. This stage aids the three-stage algorithm
with creating geometric simplistic solutions, as this is directly tied to the number of
corners, both interior and exterior.

The model is preceded by a processing step to connect phase one and two. Addition-
ally, the pre-processing step exploits information in the layout generated by the MA
to decrease run time and increase solution quality of phase two. Stage one sets the
relative position of the neighbourhoods. To maintain this topology, stage two is only
allowed to place rooms in a subarea of the site. Based on the neighbourhood’s position
in the output from stage one, the algorithm determines a subarea for each neighbour-
hood. Additionally, the layout produced in stage one includes hallways which connect
the neighbourhoods. The location of these hallways are used to prevent stage two
from placing rooms that breaks connectivity.

Once a neighbourhood is optimized, it is inserted back into the layout. Next, the
hallways are regenerated using the same procedure as in stage one. The output from
stage two is a layout where the neighbourhoods are locally optimized with respect to
number of corners.

4.1.3 Stage three - local search

When the two first stages are completed, a layout with each neighbourhood optimized
separately, is designed. Stage three performs a local search to enhance the layout in
terms of cost by minimizing the building area and the number of exterior corners.
As fewer exterior corners often yields more natural-looking layouts, this stage also
enhances geometric simplicity. The previous stage minimizes the number of corners
within a neighbourhood, while the local search seeks to minimize the number of
exterior corners in the layout as a whole. The LS moves a neighbourhood to the
best position within a given radius. All rooms within the neighbourhood are moved
the same distance in the chosen direction. This preserves the relative position of
the rooms within the neighbourhoods. The output of stage three is the final school
layout.

4.2 Algorithm composition

Layout problems are known to be complex and are generally NP-Hard. Consequently,
it is not likely to find an optimal solution within an acceptable amount of time.
Furthermore, given the subjective nature of the SLP, it does not necessarily make
sense to seek an ”optimal” solution. Solving the SLP is rather to find an adequate
solution, adhering to the requirements in the RSD and satisfying both subjective and

25

4.2. ALGORITHM COMPOSITION

objective criteria, within an acceptable amount of time. This fact is vital to consider
when choosing the solution approach.

Memetic algorithms have the advantage of producing reasonably good solutions in an
acceptable amount of time, for problems with large search spaces. MAs achieve this
through their ability to balance exploration and exploitation. Additionally, MA is
flexible to domain specifics, has robust performance and supports multi-objective op-
timization (Zhao and Sannomiya 2001). Exploiting the strengths of MA in the initial
phase allows to e�ciently produce desirable layout suggestions. On the other hand,
genetic algorithms perform successive operations such that the resulting changes col-
lectively improve the solution. The GA chooses operations in a random manner.
Therefore, as the number of consecutive changes necessary to improve the solution
increases, the probability of the algorithm succeeding decreases. Some objectives re-
quire a great number of consecutive operations, e.g., the number of corners where
multiple rooms must be placed and fit together. As a result, MA is inadequate as a
stand-alone solution method.

Applying an exact method allows exploiting its guarantee of optimality, not hav-
ing to rely on many desirable successive changes to the solution. However, exact
methods are restricted by the complexity of the SLP, and applying them to the
SLP as a whole is practically impossible. Hence, the algorithm in this thesis utilizes
the memetic algorithm to determine the relative position of the neighbourhoods and
rooms, substantially narrowing down the search space. This facilitates for optimizing
each neighbourhood using the mathematical model locally. Another drawback of a
mathematical model is the challenge of modelling complex objectives such as placing
hallways to ensure connectivity between neighbourhoods. The output of the MA is
optimized for such objectives. Therefore, the task of the mathematical model is to
preserve these objectives, rather than explicitly incorporating them in the ILP as
objectives subject to optimization. Heuristics are implemented to the model both to
preserve the objectives considered in stage one, and to reduce the run time.

As the memetic algorithm is unsuitable to consider exterior corners and the math-
ematical model is unable to consider the SLP at the global level, the third stage is
implemented to fit all neighbourhoods together. A local search moves from solution
to solution by applying local changes, and the resulting jumps in the solution space
are too small to explore the vast solution space of the SLP su�ciently. However,
after stage two, the topology of the neighbourhoods and the position of rooms within
a neighbourhood are determined. Hence, the successive, greedy and local changes
performed in the local search is suited to solve the remaining problem. In addition
to minimizing the number of exterior corners, the local search also considers a subset
of the complex objectives included in the MA. By doing so, the third stage can fix
requirement violations at the global level.

Given the variety of challenges faced with when solving the SLP, this thesis im-
plements a multi-stage algorithm exploiting the strengths of multiple solution ap-
proaches. This hybridization and division of responsibility collectively forms a robust

26

4.3. PIPELINE EXAMPLE

and flexible algorithm.

4.3 Pipeline example

Figure 4.2 illustrates the evolution of a simple school layout through the three stages.
This layout contains three neighbourhoods coloured in green, purple, and orange.
Each coloured rectangle represents a room, where the rooms belonging to the same
neighbourhood have the same colour. The light grey area is a hallway connecting the
neighbourhoods while the white area is the outdoor area.

Figure 4.2 (a) shows a possible output from the memetic algorithm. In this layout,
the given proximity requirements within each neighbourhood is fulfilled, and a direct
path connects all neighbourhoods through hallways. Furthermore, the rooms which
requires natural lighting have window access. The green and purple neighbourhood
have 14 and 12 corners, respectively, while the school as a whole has 16 exterior cor-
ners. The layout proceeds to stage two, and the result is shown in (b). In the green
neighbourhood, both the size and location of several rooms has changed, decreasing
the number of corners from 14 to 8. For the purple neighbourhood, all rooms main-
tained their suggested size, but by relocating several rooms, the number of corners
decreased from 12 to 6. The layout still fulfils the requirements mentioned above
regarding connectivity, proximity and natural lighting. Finally, stage three performs
a local search. As seen from Figure 4.2 (b), the locations of all three neighbourhoods
have changed, decreasing the number of exterior corners to six. Note that the relative
positions of the rooms within a neighbourhood remain unchanged from stage two to
three.

Stage	1

(a) Layout after the memetic
algorithm

Stage	2

(b) Layout after the mathe-
matical model

Stage	3

(c) Final layout after the lo-
cal search

Figure 4.2: Possible evolution of a simple school layout through the three stages

4.4 Assumptions and simplifications

To implement the presented three-stage algorithm, some assumptions and simplifica-
tions are made. The following sections present the assumptions and simplifications

27

4.4. ASSUMPTIONS AND SIMPLIFICATIONS

defining the SLP examined in this thesis.

4.4.1 Single floor layout and discrete building site

As this thesis considers a 2-dimensional single floor SLP, staircases, elevators and
the height of rooms are not considered, and the building site is assumed to be level.
Furthermore, the site is a rectangle of a ⇥ b meters, where a and b are chosen such
that the site fits all the rooms comfortably. The site is split up in cells of a square
meter to form a grid, shown in Figure 4.3. As this is a discrete representation, the
number of possible room locations is finite.

a		

b

Figure 4.3: A building site of a⇥ b metres with a rows and b columns. Each cell is a
possible room location.

4.4.2 Rooms and hallways

The SLP only considers rectangular rooms. The required rooms and their suggested
sizes are given in the RSD and is used as input in the algorithm. Completely adhering
to the given size suggestions are neither achievable nor desirable as it would adversely
a↵ect the quality of the solutions. Therefore, a small deviation from these sizes is
allowed in the algorithm. Furthermore, the dimension of the room is subject to change
within its aspect ratio bound. The RSD specifies the aspect ratio bound of a subset of
rooms, for example, classrooms should be close to quadratic. For the rooms without
a specified bound, a suitable one is chosen. See Chapter 8 for further elaboration on
the chosen aspect ratio bounds.

Hallways are not an input to the algorithm and are handled di↵erently than rooms.
Space that is within the building, but not part of a room, is defined as a hallway.
Consequently, hallways are rectilinear polygons. Figure 4.4 shows a small school
layout consisting of six rooms, r1 to r6, where the solid black line marks the exterior
walls of the building. The grey area represents hallways, as the area is part of the
building, but not part of a particular room.

Each room is part of a larger area, called a neighbourhood. A neighbourhood contains
rooms that have to be grouped together according to the RSD. For instance, all
8th grade classrooms should be in close proximity to each other. In Figure 4.4,

28

4.4. ASSUMPTIONS AND SIMPLIFICATIONS

r5 r6

r4

r3r2

r1

Figure 4.4: School layout with six rooms, r1 - r6. The rey area is considered a hallway.

rooms in the same neighbourhood are illustrated with the same colour. In RSDs,
neighbourhoods usually contain a room which, in addition to its own purpose, serve
as an access point to the other rooms in that neighbourhood. The RSD used as input
in this thesis specify such a room for each neighbourhood. This room will be referred
to as the main room throughout this thesis.

Schools usually have a multi-functional hub which contains several essential functions,
for example, a cafeteria and an assembly hall. Most RSDs do not specify the size of the
components in the hub, but specify its total area. Based on this, the multi-functional
hub is modelled as one large room, and is further referred to as the hub.

A room can have two types of neighbours. Door-neighbours must share a wall, such as
r1 and r2 in Figure 4.4. The shared wall must be at least two meters wide, such that it
can fit a door. When two neighbours satisfy this constraint, the rooms are attached. In
this thesis, all rooms need to be attached to the main room of its neighbourhood. The
other type of neighbour is a hallway-neighbour. Two hallway-neighbours are required
to be attached or to be connected by a direct path through hallways. This pathway
cannot lead through other rooms. For instance, there is a direct pathway between r3

and r5, but not r3 and r4. All main rooms are required to be hallway-neighbour with
the hub. Combining door- and hallway-neighbour requirements ensures connectivity
between all rooms in the school.

29

4.4. ASSUMPTIONS AND SIMPLIFICATIONS

30

Chapter 5

Memetic algorithm

In this chapter, the first stage of the solution method is described. Section 5.1 pro-
vides a general overview of the di↵erent phases in a memetic algorithm consisting
of a genetic algorithm and a local search. The objectives of the MA are presented
and elaborated in Section 5.2. Section 5.3 describes the representation of the chro-
mosomes, including both the genotype and the phenotype. Finally, sections 5.4 - 5.9
describe the additional steps of the algorithm. These steps are the population ini-
tialization, crossover, mutations, local search, fitness evaluation and selection. This
chapter revisits excerpts from Hermanrud et al. (2019), as the MA is an improved
version of the MA developed in this specialization project.

5.1 Memetic algorithm procedure

The memetic algorithm consists of a genetic algorithm, complemented with a local
search. Genetic algorithms work on a pool of individuals, called the population. The
number of individuals in the population is called the population size. An individual
is a solution - in this case, a school layout. Each individual has a chromosome which
represents the features of the individual. The main idea of GA is to make small
changes to the individuals over time, steering the development of the population in
the desired direction. This development is encouraged by keeping the individuals that
have a desired evolution and eliminating those who do not. The flow chart of the
genetic algorithm, complemented with a local search, is illustrated in Figure 5.1.

First, the initial population is generated, and each individual is given a fitness score
based on the features of the chromosome. The next phase is to generate children, or
o↵spring, of the current individuals in the population. Children are generated by per-
forming crossover and mutations. During crossover, two individuals, called parents,
are chosen from the population through ”natural selection”. The selection considers
the fitness of the individuals, giving the fittest individuals a higher probability of
being chosen. Every pair of parents generate two o↵spring by combining the genetic
information of the parents.

31

5.2. OBJECTIVES

Mutation is the operation of producing children by making changes to a single par-
ent. Mutation occurs to maintain and introduce diversity in the population. The
crossover- and mutation-phase continue until the number of children is equal to the
initial population size.

Finally, the fitness of the children is evaluated. The individuals for the next pop-
ulation is chosen from the pool of the newly generated children and the previous
population, maintaining the same population size. These individuals are selected
based on their fitness. This is commonly called the selection-phase. Each popula-
tion created is called a generation. The algorithm terminates after a fixed number of
generations, or when a solution is considered su�ciently good.

The steps mentioned above are the classical GA-steps. In addition to these steps, the
algorithm performs a local search of the population and the generated children before
evaluating the individuals, composing the memetic algorithm.

Evaluation	of	fitness

Selection	of	new
population

Crossover	and
mutation	to	generate

children

Local	search	of
parents	and	children

Initialize
population

Stopping
criterion?

No

Yes

Stop

Memetic	Algorithm
	(MA)

Stage	1

Figure 5.1: Memetic algorithm flow chart

5.2 Objectives

The memetic algorithm considers a multi-objective optimization problem with seven
variables using the weighted-sum method. All the objectives are to be minimized,
and therefore all objectives fi have a corresponding positive weight, wi. The MA
includes the following objective variables:

32

5.2. OBJECTIVES

• f1 - Overlap: The total overlap between all rooms in terms of square metres.
Two rooms overlap when they cover the same space.

• f2 - Connectivity: The number of hallway-neighbour pairs which do not have
a direct pathway through a hallway connecting them.

• f3 - Narrow hallways: The amount of narrow hallways in terms of square
meters. A narrow hallway is a hallway no wider than 3 meters. This considered
unusable area.

• f4 - Door-neighbour distance: The sum of the Manhattan distance between
all door-neighbours. If two door-neighbours are attached, their Manhattan dis-
tance is zero.

• f5 - Window access: The number of rooms required to have windows which
do not have access. A room has window access if one of its walls is an exterior
wall, and has at least nine square meters of outdoor area next to it. Each side
must be at least three meters wide (3 ⇥ 3) to allow for daylight. Figure 5.2
shows an example where room ri has window access in (a), but not in (b). ri

has an exterior wall, marked in dark green, but in case (b) the wall is shorter
than three meters, preventing the room from having window access.

• f6 - Hallway area: The amount of hallway area in the layout. The hallway
area is given as the percentage of the total building area.

• f7 - Excess neighbourhood area: The excess neighbourhood area is defined
as the area not occupied by rooms within the envelope of a neighbourhood.
This objective is the sum of the excess neighbourhood areas. Its purpose is to
reward compact neighbourhoods. In Figure 5.3, the excess neighbourhood area
of two neighbourhoods are coloured in yellow.

ri
>	3	meters

(a) The exterior wall is longer than 3
meters, providing the room with more
than 3x3 meters of outdoor area next
to it. Thus, it has window access.

ri
<	3	meters

ri

(b) The exterior wall is shorter than 3
meters, and the room does not fulfill
the criteria of having window access.

Figure 5.2: Examples where a room ri has window access in (a), but not in (b). Its
exterior wall is marked with a dark green solid line.

33

5.3. REPRESENTATION

Figure 5.3: The excess neighbourhood area of a purple and green neighbourhood is
illustrated in yellow. The envelope (dashed line) minus the area of the rooms within
the neighbourhood make up the excess neighbourhood area.

For a solution to be feasible, objective f1 and f2 must be fulfilled: a layout cannot
contain overlapping rooms, and for a school to be functional, it must be possible to
get from a neighbourhood to another through a hallway. An objective is fulfilled if
its corresponding value is zero. These constraints are implemented as objectives in
the fitness function as soft constraints, rather than hard constraints excluding such
solutions from the search space. Further, a solution is satisfactory if objective f1�f5

is fulfilled. Note that these are the five objectives where an objective value of zero is
highly achievable, contrary to objective f6 and f7.

It is important to note that the magnitude of the objective values di↵ers. For instance,
the upper bound of f5 is equal to the number of rooms requiring window access, while
the size of the site bounds the objective value of f7. Hence, all objectives are scaled
to obtain comparable magnitudes. This also allows the weights to take on similar
values, making it more intuitive to understand the e↵ects of the objectives and tune
the weights accordingly.

An objectives importance can vary for di↵erent stages of a run. To su�ciently explore
the search space, infeasible solutions should be tolerated as they might be a necessary
step towards improved feasible solutions. Hence, it is likely beneficial to moderate the
penalty of violating connectivity and overlap in the first generations. The importance
of obtaining feasible solutions increases as the run progresses, and the weights w1 and
w2 should be adjusted accordingly. The MA facilitates this, and similar type of
behaviour, by using dynamic weights.

5.3 Representation

Each individual has a set of properties referred to as its chromosome. Choosing a ben-
eficial chromosome representation is a crucial part of developing GAs, as it determines
the limits and possibilities for making changes to and scoring the individuals. The

34

5.3. REPRESENTATION

representation consists of a genotype G, a phenotype P and an invertible mapping
f : G! P .

5.3.1 Genotype

A genotype is typically a low-level representation of the solution, which is easily
understood and manipulated. In this case, the chromosomes genotype is represented
as a hash map with the room IDs as keys and a room object as the corresponding
value. A room object contains information specific to the chromosome, which is its
current position on the site defined by the (x, y)-coordinate of the upper left corner,
along with the room’s length l and width w. A room object r is illustrated in Figure
5.4.

w

l

(x,y)

r

Figure 5.4: Room r with (x, y) coordinate, width w and length l

5.3.2 Phenotype

The phenotype is the physical representation of the chromosome, which in this case
is the school layout design. In this thesis, the phenotype is the site matrix where a
cell represents a square meter of the site, as mentioned in Section 4.4.1. Each cell can
be assigned these di↵erent values; room ID, overlap ID, hallway ID, narrow hallway
ID or outdoors ID.

If a room in the genotype covers cell (i, j), the room’s ID is assigned to the cell value
aij. All room IDs are positive integers. If two or more rooms occupy the same cell,
the cell is given a negative overlap ID of �1. Overlap is visualized with the colour red
in the school layout. If a cell is considered a hallway, the cell is assigned a hallway
ID of 0, illustrated as grey in the school layout. Narrow hallways are represented in
the matrix as �3 and are illustrated with the colour magenta, while cells that are
not part of the building have an outdoors ID of �2. This area is illustrated in white.
The cell IDs are shown in Table 5.1

A simple school layout is shown in Figure 5.5. Figure 5.5 (a) shows its site matrix,
while 5.5 (b) illustrate the corresponding school layout. The di↵erent cell IDs are
drawn in di↵erent colours. The white area is part of the site, but not part of the
building. The three rooms with ID 1, 2 and 3 are illustrated as three coloured
rectangles, r1, r2 and r3. Lastly, the light grey area with ID 0 is a hallway connecting
the three rooms.

35

5.3. REPRESENTATION

Table 5.1: Cell IDs

Cell IDs

Hallways 0

Overlap -1

Outdoors -2

Narrow hallways -3

Rooms Z

(a) Phenotype, represented by a site ma-
trix

r3

r1 r2

(b) Corresponding school layout

Figure 5.5: A phenotype matrix and its corresponding school layout

More extensive examples are given in Figure 5.6. Figure 5.6 (a) shows the case
with overlapping rooms, where room r2 and r3 overlap. Thus their shared space is
coloured red. Figure 5.6 (b) shows a case containing a narrow hallway, where the
hallway between room r2 and r3 is narrower than 3 meters. The area is therefore
coloured magenta.

36

5.4. POPULATION INITIALIZATION

r2

r1

r5 r6

r4

r3

(a) School layout with overlap. Room r2
and r3 overlap, and is illustrated in red.

r2

r1

r5 r6

r4

r3

(b) School layout with narrow hallways,
which is illustrated in magenta

Figure 5.6: School layouts with overlap and narrow hallways

5.4 Population initialization

When initializing the population, two primary methods are considered - random or
using a heuristic. With a random initialization, each rooms initial coordinate is
chosen at random. This often creates individuals with a poor initial fitness score. By
using a heuristic, problem-specific information can be exploited to improve the initial
solutions.

The initialization of the population should be given significant consideration. Com-
pletely random initialization may prevent the algorithm from finding promising so-
lutions, but has the positive e↵ect of maintaining diversity in the population. Using
a heuristic may result in an initial population with fit individuals, but less diversity,
preventing exploration of the search space. Research works on GA have found that
a combination of randomness and a heuristic has shown to be e↵ective, as it exploits
the good properties of both.

The MA initializes the population combining random and heuristic initialization.
The heuristic initialization works as follows. First, the building site is divided into
n sub-sites, where n is equal to the number of neighbourhoods. In Figure 5.7 there
are 4 sub-sites named from A to D. For each sub-site, one of the neighbourhoods
is chosen at random. Then, all rooms within that neighbourhood are given random
locations within the sub-site. This results in an initial positioning where all rooms
in a neighbourhood are close to each other. Hence, it exploits information about the
problem when initializing an individual. The random initialization randomly allocates
rooms within the bounds of the site. Whether the heuristic or random approach
is chosen to initialize an individual is determined using a probability parameter,
ph.

37

5.5. CROSSOVER

A B

C D

Figure 5.7: Building site divided into four sub-sites, A-D

5.5 Crossover

Crossover, also called recombination, is a genetic operator combining genes from
two parents to generate new o↵spring. The two parents are chosen through parent
selection, where fitter chromosomes have a higher probability of being selected. The
idea is that mating two fit parents is more likely to generate children with improved
features. The simplest form of crossover is a single-point crossover, as illustrated
in Figure 5.8. The crossover operator implemented swaps neighbourhoods between
parent chromosomes.

Figure 5.8: Single-point crossover

For parent selection, several alternatives exist. The most common are roulette wheel
selection, tournament selection and rank selection. Tournament selection is imple-
mented as the parent selection mechanism.

5.5.1 Tournament selection

To select parents for crossover, tournament selection is implemented and is illustrated
in Figure 5.9. Tournament selection chooses a percentage pt of the population at
random as competitors, this is called the tournament size. The fittest chromosome
of the competitors is chosen. Tournament selection occurs twice, resulting in two
distinct parents chosen for crossover.

The purpose of tournament selection is to explore the state space by allowing di↵erent
individuals to mate, but also exploit the fittest individuals by giving them a higher
probability of reproducing. A large tournament size can cause one, fit solution to
dominate the population since it prevents a diverse set of chromosomes from mating
and producing o↵spring. This results in a lack of exploration.

38

5.5. CROSSOVER

Figure 5.9: Tournament selection. Chromosome A, E and T are chosen as competi-
tors. A is the fittest chromosome and wins the tournament.

5.5.2 Swap neighbourhoods crossover

In the implemented crossover operator, a neighbourhood n is chosen at random.
Then, neighbourhood n in the two parent chromosomes are swapped - the relative
position of the rooms within neighbourhood n in chromosome c1 is swapped with
the relative position of the rooms within the same neighbourhood in chromosome c2.
This happens twice, such that two di↵erent neighbourhoods are swapped. Crossover
occurs with a probability pc for every generation.

In Figure 5.10, each neighbourhood has its own colour. Two neighbourhoods are
chosen at random for swapping - the purple and orange in the figure. The result is two
children with many of the same features as its parents, but with two neighbourhoods
swapped as shown by the circles in O↵spring 1 and O↵spring 2.

39

5.6. MUTATION

Parent	1 Parent	2

Offspring	2Offspring	1

Figure 5.10: Swap neighbourhood crossover. The purple and orange neighbourhoods
are swapped between the two parents, generating two o↵spring. The change of neigh-
bourhoods within each o↵spring is illustrated by a circle.

Crossover improves both exploration and exploitation. It creates a chromosome with
unique features, which explores the state space. Additionally, it exploits desirable
properties, as the parents are selected based on fitness.

5.6 Mutation

Mutation is a genetic operator to maintain diversity from one generation to the next.
Thus, mutation is used to explore the state space in new regions. Due to the com-
plexity of the SLP, mutations exploring specific problem knowledge is implemented.
It has been shown that mutations are essential for the convergence of GAs while
crossover is not (R. L. Haupt and S. E. Haupt 1998). Thus, the GA mainly relies on
mutation operators.

Mutation happens with probability pm, referred to as the mutation rate. If mutation
occurs, each of the di↵erent mutation operators is applied with a probability of qm for
each mutation operator m. This allows for several mutations to happen in a single
generation. Another approach would be to make mutation combinations manually

40

5.6. MUTATION

and give these a probability of occurring. Since eight mutation operators are im-
plemented, explicitly defining e�cient combinations is a challenging task avoided by
making the probabilities qm conditionally independent.

5.6.1 Move room random

This mutation operator moves a room to a random location on the site and is illus-
trated in Figure 5.11. The operator is implemented to create randomness and explore
the search space.

ri

ri

Figure 5.11: Move room random operator. Room ri is moved to a random location.

5.6.2 Move neighbourhood random

Similar to the move room random-mutation, this operator moves a neighbourhood
to a random location on the site. All rooms are shifted the same distance in x and
y-direction, maintaining the relative position of the rooms within the neighbourhood.
Figure 5.12 shows the operator.

Figure 5.12: Move neighbourhood random operator. The purple neighbourhood is
moved to a random location.

5.6.3 Swap rooms

The swap rooms-mutation chooses two random rooms and swaps their position.

41

5.6. MUTATION

5.6.4 Move overlapping room

In this mutation, both a random and smarter way to move an overlapping room is
implemented. With a small probability po, a room that is overlapped is moved to a
new random location. Else, the algorithm performs a local search of the room, trying
to escape the overlap. The operator is illustrated in Figure 5.13. Room rj in (a)
overlaps another room, and is moved in one of two ways. (b) shows a possible result
if the room is moved random, while (c) shows the result of a local search.

rj

(a) Pre mutation. Room
rj overlaps another
room.

rj

(b) Alternative one, post
mutation. Room rj is
moved random.

rj

(c) Alternative two, post
mutation. Room rj is
moved by a local searc.

Figure 5.13: Move overlapping room operator

5.6.5 Move to unattached door-neighbour

This mutator is implemented to attach door-neighbours. The operator finds an
unattached door-neighbour rj of room ri, and moves rj to the closest side of ri.
The mutation is illustrated in Figure 5.14, where (a) is the pre mutation state and
(b) shows the result of the operator where room rj is attached to its door-neighbour
ri.

ri

rj
rk

(a) Pre mutation. Room rj is
a door-neighbour of ri, but the
rooms are not attached

rj

ri

rk

(b) Post mutation. Room rj
attached to ri

Figure 5.14: Move to unattached door-neighbour operator

42

5.6. MUTATION

5.6.6 Move attached door-neighbours

This operator is an extension of the operator in Section 5.6.5. The purpose of this mu-
tation is to move unattached door-neighbours closer to each other, while not breaking
with a room’s already attached door-neighbours. This operator is illustrated in 5.15.
A room ri and one of its unattached door-neighbours rj is picked for mutation, as
shown in (a). Then, room rj and its attached door-neighbours, here rk, are moved to
the closest side of ri. The result of the operator is shown (b).

ri

rj
rk

(a) Pre mutation. Room rj is
a door-neighbour of ri.

rj

ri
rk

(b) Post mutation. Room rj
attached to ri while rk still
attached to rj .

Figure 5.15: Move attached door-neighbours operator

5.6.7 Change room dimension

As mentioned, each room has an aspect ratio bound. This mutation changes the
dimensions of a room to a random width and length without extending the aspect
ratio bound.

5.6.8 Swap wall-sharing side

This mutation finds two rooms that are attached, ri and rj, and move room ri to
another side of room rj. Whether it moves to the north, east, south or west side is
chosen at random. The operator is illustrated in Figure 5.16, where ri is moved from
the east to the north side of rj.

43

5.7. LOCAL SEARCH

ri

rj

ri

Figure 5.16: Swap wall-sharing side of attached door-neighbours. Room ri is swapped
from the east side to the north side of room rj.

5.7 Local search

As mentioned, a local search is added as an additional step to the classical genetic
algorithm, making the first stage of the solution method a memetic algorithm. The
complexity of the SLP motivates this extension, which provides a guided movement
of rooms. Local search happens with a probability pl and for one room only in each
generation.

The implemented local search is a gradient descent procedure which works as follows
- pick a room ri and try to move it one unit (one meter) in each direction. Then, if
one of the new positions improves the fitness of the chromosome, move the room to
that position and proceed with the local search. The number of moves is bounded to

44

5.8. FITNESS EVALUATION

mitigate time complexity issues. The procedure is described in Algorithm 1.

Algorithm 1: Local search of room
Data: Phenotype P , Set of rooms R, maximum meters of movement m
Result: Updated layout with room possibly moved
LocalSearch (P,R,m)

Improvement � True;
Bound � 0;
/* Pick room at random */
r � Random(R);
while Improvement and Bound < m do

Improvement � False;
/* Local search room */
LocalSearch(P, r);
if r.hasMoved then

Improvement � True;
Bound± 1;

end
end
return P

end

5.8 Fitness evaluation

For some of the objectives defined in Section 5.2, pre-scoring processing or extensive
calculation is needed. The e↵ectiveness of these processes highly impacts the run time
of the MA. Thus, sophisticated methods are developed to perform these calculations.
The objectives are repeated for convenience in Table 5.2. Obtaining the value of f1,
f4 and f7 require cheap and straightforward calculations. The value of f2, f3, f5 and
f6 are all dependent on hallways. As mentioned, hallways are not explicitly defined in
the genotype - they must be set based on the location of the rooms. This procedure
is explained in Section 5.8.1. Once the hallways are located, the value f5, window
access, and f6, hallway area, are trivial to obtain. Computing the values for f2,
connectivity, and f3, narrow hallways, require further complex procedures, explained
below.

45

5.8. FITNESS EVALUATION

Table 5.2: Objective variables of the MA

Objective variables, MA

f1 Overlap

f2 Connectivity

f3 Narrow hallways

f4 Door-neighbour distance

f5 Window access

f6 Hallway area

f7 Excess neighbourhood area

5.8.1 Locating hallways

When rooms have been given a location, the hallways have to be placed. Hallway
location also sets the exterior walls of the building, as they are generated by drawing
a line surrounding the rooms and hallways. The process of establishing the location
of hallways is divided into three phases.

Phase one is explained in Figure 5.17, where hallways are coloured grey. The start-
ing point is illustrated in (a), where the whole site, except for the three rooms, is
considered hallway. First, the hallway area is reduced to the rectangle given by the
extreme points of the school layout c1 to c4, as shown in Figure 5.17 (b). To further
reduce the hallway area, the largest vacated rectangle that can be found, starting
from each corner ci, is cut o↵. 5.17 (c) shows the largest and only vacated rectangle
r1,1 corresponding to corner c1. Figure 5.17 (d) and (e) show the two rectangles r3,1
and r3,2 found by searching from c3. As the area of r3,2 is larger than r3,1, r3,2 is cut
o↵. Note that there are no vacated rectangles found from c2 and c4. The result is
shown in Figure 5.17 (f), where r1,1 and r3,2 are no longer part of the building. The
exterior walls of the building are sketched with a solid black line.

In phase two, the hallways traversed when finding a connecting path between two
hallway-neighbours is fixed, such that it cannot be cut o↵ in phase three. This ensures
that connectivity is still fulfilled after cutting hallways in the next phase.

To explain phase three, a more extensive example is given in Figure 5.18. The
example consists of two neighbourhoods (purple and yellow), where ri and rj are
hallway-neighbours. Figure 5.18 (b) shows the building after phase one, where va-
cated rectangles are cut o↵ from each corner. The cutting results in a narrow hallway,
which is not possible to traverse. The narrow hallway is illustrated in magenta. The
stapled line shows the pathway connecting ri and rj, which is found in phase two.
The hallway area containing this line cannot be cut o↵ in the next phase. Hallways
that do not connect neighbourhoods do not help satisfy the connectivity objective
and are therefore superficial. Removing them allow for more constructive hallways
to appear elsewhere or reduces building costs as the building area decreases. This is
the purpose of phase three.

46

5.8. FITNESS EVALUATION

(a) Initial layout. The
whole site is considered
hallway.

c1 c2

c3c4

(b) The building defined by
the rectangle given by the
extreme points of the lay-
out

c1
r1,1

(c) Largest (and only) va-
cated rectangle r1,1 start-
ing from c1

c3

r3,1

(d) The first of the va-
cated rectangles r3,1 start-
ing from c3

c3

r3,2

(e) The second of the va-
cated rectangles r3,2 start-
ing from c3

(f) The building after
phase one is complete.
Rectangles r1,1 and r3,2
are removed.

Figure 5.17: Phase one of locating hallways. Rectangular hallways are removed from
four starting points, c1 to c4.

In phase three, all hallways which are not part of the hallways ensuring connectivity
are cut o↵. Additionally, all narrow hallways with an exterior wall are removed. The
final hallway area and exterior walls are shown in Figure 5.18 (c). As a result of phase
three, connectivity is maintained, as there still exists a connecting pathway between
ri and rj. Additionally, more rooms have window access. Thus, hallway cutting may
a↵ect the window access objective.

5.8.2 Connectivity

An extended Breadth-First Search (BFS) is implemented to measure the connectivity
of a solution. The algorithm searches for pathways through hallways connecting
hallway-neighbour pairs (ri, rj), where ri and rj are the IDs of the rooms. When
performing this search, ri is considered the source room. The search starts from the
upper left corner of ri. The algorithm only traverses cells with the value of ri and
zero, which is the ID for cells defined as hallways. If the algorithm finds a cell with
the ID of rj, it successfully found a pathway through a hallway connecting the two

47

5.8. FITNESS EVALUATION

ri

rj

(a) Layout where the
building is defined by the
rectangle given by the
layouts extreme points

ri

rj

(b) Phase one complete,
resulting in a narrow hall-
way. Dashed lines illus-
trate path between ri and
rj and is found in phase
two.

rj

ri

(c) Phase three complete.
Hallways not connecting ri
and rj and narrow hall-
ways are cut o↵.

Figure 5.18: Phase three of locating hallways. Hallways not connecting hallway-
neighbours are removed, in addition to narrow hallways having exterior walls.

hallway-neighbours. Furthermore, the algorithm searches for all hallway-neighbour
pairs containing ri simultaneously to improve run time. The procedure is described
in Algorithm 2.

48

5.8. FITNESS EVALUATION

Algorithm 2: Procedure for calculating the value of the connectivity objective
Data: Phenotype P and a list of hallway-neighbour pairs L
Result: Number of hallway-neighbours not connected through hallways (n� d)
CalculateConnectivity (P, L)

n � |L|;
d � 0;
while L 6= ; do

/* Initialize visited list */
V � ;;
(R1, R2) � Pop(L);
/* Initialize search queue */
Q � {GetCoordinate(R1)};
while Q 6= ; do

c � Pop(Q);
V � V [{c};
foreach n 2 GetNeigbhours(P, c) do

if n /2 V then
if V alue(n) == 0 or V alue(n) == R1 then

Q � Q [{n};
else if V alue(n) > 0 then

if L.contains((R1, V alue(n)) then
L.remove((R1, V alue(n)));
d = d+ 1;

end
end

end
end

end
end
return n� d

end

5.8.3 Narrow hallways

Narrow hallways are found by doing a check for cells defined as a hallway, that is,
aij = 0. For these cells, the algorithm checks whether or not the cell is part of at
least three consecutive hallway cells in both dimension i and j. The search strategy
is equal for dimension i and j, and for simplicity, only elaborated for dimension j,
which means traversing rows. A cell (i, j) defined as a hallway is changed to a narrow
hallway if the following holds:

49

5.9. SELECTION

{@k | (
k+2X

k=max(j�2,0)

ai,k == 0) � 3} for k 2 [max(j � 3, 0), j] (5.1)

The search is only performed on the extreme rows and columns of the allocated rooms,
as this is the only part of the site that can contain hallways. This is done to increase
the e�ciency of the search. Furthermore, if the previous coordinate (i, j�1) is defined
as a hallway, it follows that the current coordinate (i, j) cannot be a narrow hallway.
This property is exploited to determine if (i, j) is part of a narrow hallway without
having to check its two closest neighbours in both directions.

5.9 Selection

Selection is the phase of choosing chromosomes for the next generation. Selection is
crucial as it should ensure that the fitter individuals are kept to the next generation,
while at the same time maintain the diversity in the population. This algorithm uses
a combination of elitism and fitness proportionate selection (FPS). With elitism, a
percentage pe of the fittest individuals in the population always propagate to the
next population. Besides the elite, the rest of the next generation is chosen based
on fitness proportionate selection. In this selection method, every individual can
become a parent with a probability which is proportional to its fitness. Thus, the fitter
chromosomes have a higher chance of being propagated to the next generation.

50

Chapter 6

Mathematical model

In this chapter, the second stage of the algorithm is presented. Section 6.1 explains
the procedure of the mathematical model, including how the output of the memetic
algorithm is used to generate input for the mathematical model. The notation used
for the mathematical formulation is presented in Section 6.2. Next, a basic integer
linear program (ILP) is presented in Sections 6.3 - 6.4. Preliminary tests reveal
that although this model finds optimal solutions in terms of minimizing corners, the
computational complexity for neighbourhoods of relevant size is too high. Also, the
model does not consider connectivity or window access for rooms in its output. To
reduce the solution space without impacting the optimal solution, several inequalities
and symmetry breaking constraints are introduced and presented in Sections 6.5 and
6.6. Additionally, problem-specific heuristics taking advantage of traits from the
solution produced in stage one, are added to the mathematical formulation. These
heuristics intends to reduce the complexity and let the model produce better solutions
by taking advantage of the output from stage one. Section 6.7 presents the motivation
behind each heuristic, as well as how they are implemented.

6.1 Procedure

The mathematical model is applied to each neighbourhood separately to minimize
the number of corners within the neighbourhood. The neighbourhoods are iteratively
optimized by adjusting the size and location of rooms from the first stage. Subse-
quently, the neighbourhood is inserted back into the solution used as input to the
model. Each neighbourhood is enclosed by an extended envelope where the mathe-
matical model is allowed to place rooms. The extended envelope is determined by
taking the envelope of a neighbourhood from the solution in stage one and adding
x meters in each direction. Figure 6.1 (a) illustrates the extended envelope of the
neighbourhood consisting of the green rooms. The extended envelope is the rectangle
formed by the solid green line. Expanding the extended envelope increases the search
space, possibly resulting in a better optimal solution. However, a larger extended
envelope increases the run time of the model. The size of the increase to the envelope

51

6.1. PROCEDURE

is chosen to balance quality and complexity.

Figure 6.1 (b) shows the area inside the extended envelope. The area contains every
room in the chosen neighbourhood and some hallway area. It can also contain rooms
from other neighbourhoods, which is the case with the two purple and orange rooms
in (b). The rooms belonging to the chosen neighbourhood can be placed anywhere
inside the extended envelope, except for the areas covered by the rooms from di↵erent
neighbourhoods.

(a) The light green square shows the extended
envelope resulting from an x meter increase,
in all directions, to the regular envelope il-
lustrated by a dashed black line. The cho-
sen neighbourhood consists of the green rooms.
The purple and orange rooms belong to other
neighbourhoods and the hallways are coloured
in grey.

(b) Zooming in on the extended envelope.
The green rooms, belonging to the chosen
neighbourhood can be relocated, and re-
sized, within the extended envelope.

Figure 6.1: Example of an extended envelope

When the model finds the optimal solution for a neighbourhood, the layout is updated
with new positions and sizes for the rooms in the solved neighbourhood. Figure 6.2
shows the layout when the neighbourhood is updated. The procedure is repeated
for the remaining neighbourhoods, except for the hub which is fixed from stage one.
When the model is finished with all the neighbourhoods, hallways are regenerated.
The hallways are generated using the same procedure as in stage one. The result is
a complete solution which is sent to the last stage of the algorithm.

52

6.2. NOTATION

Figure 6.2: The resulting layout when the model is applied to the neighbourhood con-
sisting of the green rooms. The number of corners in the neighbourhood is decreased
from 16 to six.

6.2 Notation

Sets
E coordinates (i, j) in the extended envelope
D directions {w = west, e = east, n = north, s = south}
D

c corner directions {nw, ne, se, sw}
E
d

ij
coordinates in E in direction d 2 D

c of coordinate (i, j)
R all rooms in the layout
R

n rooms in the chosen neighbourhood n

R
w rooms required to have window access, Rw

⇢ R
n

R
+ rooms including other (o), R+ = R [{o}

R
o rooms not included in the chosen neighbourhood, Ro = R \R

n

The o in the set R
+ is a placeholder for outdoors or hallways. The hallways and

outdoor area are placed at the end of stage two when the model has been applied to
every neighbourhood. Thus, the mathematical model in itself does not di↵erentiate
between hallways and outdoors. The hallways are generated using the algorithm
explained in Section 5.8.1.

The set Ed

ij
is illustrated in Figure 6.3. Specifically, the figure considers Ene

(5,6), which
contains the coordinate (5, 6) and all coordinates north, east and northeast of coordi-
nate (5, 6) in the extended envelope E . The coordinates in E

ne

(5,6) are coloured in blue
in Figure 6.3.

53

6.2. NOTATION

Figure 6.3: The coordinates in the set Ene

(5,6) coloured in blue

Parameters
�r maximum % size deviation for room r 2 R

n

Sr suggested size of room r 2 R
n

Rr aspect ratio bound of room r 2 R
n

Art adjacency matrix for r, t 2 R
n

Kijr 1 if coordinate (i, j) is covered by room r 2 R
o, 0 otherwise

E
L length of extended envelope

E
W width of extended envelope

54

6.3. OBJECTIVE FUNCTION

Variables

y
d

ijr

(
1, if the d corner of room r is in (i, j)

0, otherwise
(i, j) 2 E , r 2 R

n
, d 2 D

c

xijr

(
1, if room r covers coordinate (i, j)

0, otherwise
(i, j) 2 E , r 2 R

+

a
d

ijrt

8
><

>:

1, if the d wall of room r is adjacent

to room t in coordinate (i, j)

0, otherwise

(i, j) 2 E , {r, t 2 R
+
|r < t}, d 2 D

hij number of rooms with a corner in (i, j) (i, j) 2 E

✓ij

(
1, if (i, j) is a corner

0, otherwise
(i, j) 2 E

pij integer variable used to count corners (i, j) 2 E

6.3 Objective function

min
X

(i,j)2E

✓ij (6.1)

The objective function seeks to minimize the number of corners in the neighbour-
hood.

6.3.1 Corner count

The variables hij, ✓ij and pij are introduced to count corners within the neighbour-
hood. ✓ij is a binary variable which determines whether or not the coordinate (i, j)
contains a corner of the neighbourhood. A value ✓ij of 1 means there is a neigh-
bourhood corner in the lower right corner of the coordinate. Integer variable hij is
equal to the number of rooms with a corner adjacent to the lower right corner of the
coordinate (i, j). hij is thus the sum of southeast (se) corners in (i, j), southwest
(sw) corners in (i, j + 1), northeast (ne) corners in (i + 1, j) and northwest (nw)
corners in (i+ 1, j + 1). Figure 6.4 (a) shows an example with the three rooms with
ID 1, 2 and 3, in orange, blue and purple respectively. The rooms belong to the same
neighbourhood but is illustrated with di↵erent colours for simplicity. The green dots
show the corners of the neighbourhood. Figure 6.4 (b) shows the hij matrix. Observe
that hij is defined over an additional row and column as hij is the sum of corners in
the four coordinates (i, j), (i + 1, j), (i, j + 1) and (i + 1, j + 1). Counting in this

55

6.4. CONSTRAINTS

manner ensures that when hij is an odd number there is a corner in the lower right
corner of coordinate (i, j).

(a) Grid showing the room value of each
cell

(b) Grid showing the hij matrix. When
hij is odd, there is a corner in the lower
right corner of coordinate (i, j).

Figure 6.4: Corner count example, where the green dots display the resulting corners

6.4 Constraints

6.4.1 Corner constraints

Constraints 6.2 sets the value of hij by summing over the corner variables in coordinate
(i, j) for all rooms, while constraints 6.3 ensure that ✓ij = 1 when hij is odd and that
✓ij = 0 otherwise.

hij =
X

r2Rn

y
se

ijr
+ y

nw

i+1,j+1,r + y
ne

i+1,j,r + y
sw

i,j+1,r (i, j) 2 E (6.2)

2pij = hij + ✓ij (i, j) 2 E (6.3)

6.4.2 No overlap between rooms

X

r2R+

xijr +
X

r2Ro

Kijr = 1 (i, j) 2 E (6.4)

Constraints 6.4 ensure that every coordinate (i, j) is either outdoors or covered by a
hallway or a single room.

56

6.4. CONSTRAINTS

6.4.3 Room and corner consistency

A room can only cover coordinate (i, j) if the coordinate is enclosed by the four corners
of the room, this is ensured by constraints 6.5. Additionally, if all four corners of a
room enclose a coordinate, the room must cover that coordinate, which is ensured by
constraints 6.6.

xijr 

X

(k,l)2Ed
ij

y
d

klr
(i, j) 2 E , r 2 R

n
, d 2 D

c (6.5)

xijr �

X

d2Dc

X

(k,l)2Ed
ij

y
d

klr
� 3 (i, j) 2 E , r 2 R

n (6.6)

6.4.4 Room shapes and sizes

Separately, constraints 6.7 - 6.10 ensure that walls are horizontal or vertical in rela-
tion to the building site. Collectively, they make sure all rooms are rectangular.

X

(i,j)2E

jy
nw

ijr
�

X

(i,j)2E

jy
sw

ijr
= 0 r 2 R

n (6.7)

X

(i,j)2E

jy
ne

ijr
�

X

(i,j)2E

jy
se

ijr
= 0 r 2 R

n (6.8)

X

(i,j)2E

iy
nw

ijr
�

X

(i,j)2E

iy
ne

ijr
= 0 r 2 R

n (6.9)

X

(i,j)2E

iy
sw

ijr
�

X

(i,j)2E

iy
se

ijr
= 0 r 2 R

n (6.10)

Constraints 6.11 and 6.12 make sure that the size of room r is between its upper and
lower limit, respectively. Constraints 6.13 and 6.14 enforce a room to have an aspect
ratio within its bound.

57

6.4. CONSTRAINTS

X

(i,j)2E

xijr 

j
(1 +�r)Sr

k
r 2 R

n (6.11)

X

(i,j)2E

xijr �

l
(1��r)Sr

m
r 2 R

n (6.12)

X

(i,j)2E

(yne
ijr
� y

nw

ijr
) · j ·Rr �

X

(i,j)2E

(yse
ijr
� y

ne

ijr
) · i r 2 R

n (6.13)

X

(i,j)2E

(yse
ijr
� y

ne

ijr
) · i ·Rr �

X

(i,j)2E

(yne
ijr
� y

nw

ijr
) · j r 2 R

n (6.14)

6.4.5 Adjacency

Constraints 6.15 - 6.19 ensure that the rooms r and t are adjacent when Art = 1,
namely when they are required to be door-neighbours. Constraints 6.19 ensure that
the rooms share a wall of at least two meters, which is a requirement for two rooms
to be attached. Given the rectangular shape of the rooms, adjacency is only possible
on one side at a time.

2an
ijrt
 xijr + xi�1,jt r, t 2 R

+
, (i, j) 2 E (6.15)

2as
ijrt
 xijr + xi+1,jt r, t 2 R

+
, (i, j) 2 E (6.16)

2aw
ijrt
 xijr + xij�1,t r, t 2 R

+
, (i, j) 2 E (6.17)

2ae
ijrt
 xijr + xij+1,t r, t 2 R

+
, (i, j) 2 E (6.18)

2Art 

X

(i,j)2E

a
n

ijrt
+ a

s

ijrt
+ a

e

ijrt
+ a

w

ijrt
r, t 2 R

+ (6.19)

6.4.6 Variable declarations

The following constraints declare the decision variables of the mathematical model.

y
d

ijr
2 {0, 1} (6.20)

xijr 2 {0, 1} (6.21)

a
d

ijrt
2 {0, 1} (6.22)

✓ij 2 {0, 1} (6.23)

hij 2 Z (6.24)

pij 2 Z (6.25)

58

6.5. VALID INEQUALITIES

6.5 Valid inequalities

A valid inequality for an IP (or MILP) is any constraint that does not eliminate any
feasible integer solutions. The following inequalities are implemented to improve run
time.

Constraints 6.26 make sure a room has one corner in all four directions.

X

(i,j)2E

y
d

ijr
= 1 r 2 R

n
, d 2 D

c (6.26)

Constraints 6.27 force a room to be located in every coordinate where the room has
a corner.

xijr � y
d

ijr
(i, j) 2 E , r 2 R

n
, d 2 D

c (6.27)

If a coordinate is enclosed by the four corners of room r, then the corner cannot be
covered by a hallway, outdoor or a di↵erent room t. This is ensured by constraints
6.28.

xijt +
X

d2Dc

X

(k,l)2Ed
ij

y
d

klr
 4 (i, j) 2 E , r 2 R

n
, t 2 R

+
\ r (6.28)

The absolute minimum number of corners in a neighbourhood is four, as it contains
solely rectangular rooms. Constraint 6.29 sets the lower bound of the number of
corners.

X

(i,j)2E

✓ij � 4 (6.29)

Constraints 6.30 - 6.36 make sure the length of the walls is within its lower and upper
limit. The limit is given by the size and aspect ratio bound of the room.

59

6.6. SYMMETRY BREAKING CONSTRAINTS

X

(i,j)2E

jy
nw

ijr
�

X

(i,j)2E

jy
ne

ijr
+
p

Sr(1��r)/Rr  0 r 2 R
n (6.30)

X

(i,j)2E

iy
nw

ijr
�

X

(i,j)2E

iy
sw

ijr
+
p

Sr(1��r)/Rr  0 r 2 R
n (6.31)

X

(i,j)2E

jy
sw

ijr
�

X

(i,j)2E

jy
se

ijr
+
p

Sr(1��r)/Rr  0 r 2 R
n (6.32)

X

(i,j)2E

iy
ne

ijr
�

X

(i,j)2E

iy
se

ijr
+
p

Sr(1��r)/Rr  0 r 2 R
n (6.33)

X

(i,j)2E

jy
nw

ijr
�

X

(i,j)2E

jy
ne

ijr
+
p

RrSr(1 +�r) � 0 r 2 R
n (6.34)

X

(i,j)2E

iy
nw

ijr
�

X

(i,j)2E

iy
sw

ijr
+
p

RrSr(1 +�r) � 0 r 2 R
n (6.35)

X

(i,j)2E

jy
sw

ijr
�

X

(i,j)2E

jy
se

ijr
+
p

RrSr(1 +�r) � 0 r 2 R
n (6.36)

X

(i,j)2E

iy
ne

ijr
�

X

(i,j)2E

iy
se

ijr
+
p

RrSr(1 +�r) � 0 r 2 R
n (6.37)

6.6 Symmetry breaking constraints

Several neighbourhoods have two or more identical rooms in terms of size and func-
tion, thus creating symmetrical solutions. To break these symmetries, the sets T ,
representing room types, and R

t (t 2 T), which represents rooms with room type
t, is introduced. Only rooms that are identical in the RSD are considered the same
room type. To break symmetry, a room p, identical to room r, is forced to be placed
either below or to the right of r. The two binary variables �v

rp
and �

h

rp
and constraints

6.38 - 6.40 are added to ensure this.

X

(i,j)2E

y
nw

ijr
i 

X

(i,j)2E

y
nw

ijp
i+ E

L
�
v

rp
r, s 2 R

t
, t 2 T , r < p (6.38)

X

(i,j)2E

y
nw

ijr
j 

X

(i,j)2E

y
nw

ijp
j + E

W
�
h

rp
r, p 2 R

t
, t 2 T , r < p (6.39)

�
h

rs
+ �

v

rs
 1 r, p 2 R

t
, t 2 T , r < p (6.40)

6.7 Modelling heuristics

The model described in Sections 6.2 - 6.6 does not take full advantage of the solution it
receives as input from stage one. The problem-specific heuristics presented in Sections
6.7.1 - 6.7.5 attempt to improve the solution quality or run time of the mathematical
model.

60

6.7. MODELLING HEURISTICS

6.7.1 Lock main room

Every neighbourhood has a main room which is required to be a door-neighbour
with all the other rooms. Adjusting the main room therefore a↵ects the feasible
positions of all the other rooms in the neighbourhood. Thus, locking the main room
to its location in the output from the MA will drastically reduce the run time. A
large drawback of this heuristic is that it removes many good, potentially optimal,
solutions. Still, as the extended envelope area is created based on the placement of
the rooms from stage one, keeping the main room fixed gives it a central location
within the area. This allows the other rooms to be adjacent on either side. A very
good, or even optimal, solution is therefore likely to be found with this positioning of
the main room. Figure 6.5 (a) once again illustrates a green neighbourhood with its
extended envelope. The main room of the green neighbourhood is the room located
near the centre of the extended envelope. Figure 6.5 (b) shows what is fixed inside
the extended envelope of the neighbourhood with this modelling heuristic. This now
includes both the main room and the surrounding rooms from other neighbourhoods.
The remaining rooms of the green neighbourhood are allowed to cover the white area
in the extended envelope.

(a) The extended envelope is determined the
same way as before

(b) The area covered by the main room is
now fixed. As earlier, the rooms from other
neighbourhoods (here purple and orange)
are also fixed.

Figure 6.5: The extended envelope is input to the model with locked coordinates for
the main room

To lock the main room m in the model, the set M is introduced. This set contains
the grid coordinates the main room covers given its position in the solution from
stage one. Constraints 6.41 prevents other rooms, hallways or outdoor to cover these
coordinates.

61

6.7. MODELLING HEURISTICS

xijr = 0 (i, j) 2M, r 2 R
+
\m (6.41)

For performance enhancements is xijr for (i, j) 2M not defined in the implementation
of the model when the main room is locked. Additionally, xijm for (i, j) 2 E is not
defined at all. However, constraints 6.41 is included for simplicity of the mathematical
formulation.

Locking the main room allows for significantly more e�cient adjacency constraints.
The coordinates of the walls of the main room are placed in the sets M

d where d

2 D. Constraints 6.42 ensure that every room shares one of its walls with the main
room.

(
X

(i,j)2Mn

xi�1,jr +
X

(i,j)2Ms

xi+1,jr +

X

(i,j)2Me

xij+1,r +
X

(i,j)2Mw

xij�1,r) � 1 r 2 R
n (6.42)

This implementation of adjacency allows for variables ad
ijrs

to be excluded from the
model, drastically improving run time. Lastly, locking the main room has the ad-
ditional advantage of allowing the heuristics in Sections 6.7.2 - 6.7.3 to be imple-
mented.

6.7.2 Lock hallways

To ensure connectivity for the school as a whole, all main rooms are required to be
hallway-neighbour with the hub. Fixing the main room makes it possible to use a
heuristic to keep the hallway structure from the solution in stage one. Placing hall-
ways is intricate and requires considering the school layout as a whole, as explained in
Section 5.8.1. The model only considers the area inside the extended envelope for one
neighbourhood at a time. It is therefore inherently unsuited to locate hallways.

A pre-processing step is added to maintain the connectivity in stage two. The step
is illustrated in Figure 6.6. First, a search algorithm finds the longest consecutive
stretch of coordinates within the main room that is adjacent to a hallway. A dark
green solid line illustrates this stretch in (a). Then a set H is defined. This set
contains the coordinates within the area extending x meters out of the main room
from the stretch. The area is illustrated by the dotted black rectangle in 6.6 (b).
Constraints 6.43 are added to make sure at least four coordinates in H are reserved
for hallways. This prevents rooms from occupying the coordinates, making it possible
for the hallway generator to place hallways in this area.

62

6.7. MODELLING HEURISTICS

X

(i,j)2H

xijo � 4 (i, j) 2 E (6.43)

(a) The extended envelope is set in the same
way as before. The longest consecutive stretch
of hallway-adjacent coordinates is illustrated
by a dark green solid line.

(b) The main room is fixed, and the neigh-
bourhood is forced to have a minimum
amount of reserved area for hallways within
the dotted rectangle area, extending x me-
ters out from the main room.

Figure 6.6: Extended envelope with a locked main room and a pre-determined area
where there must exist a minimum amount of coordinates reserved for hallways

6.7.3 Window access heuristic

As the hallways are regenerated after the model is applied to all neighbourhoods, the
model cannot distinguish between outdoors and hallways. Consequently, it does not
consider the window access objective. However, preliminary testing shows that the
lack of windows access is a recurring issue in the solutions generated by stage two.
Hence, a heuristic approach to handle the window requirements is developed.

Through a change in the objective function, rooms in R
w are incentivized to be

located where they have the largest chance of being adjacent to outdoor area. The
solutions generated in stage one show that rooms located on the far side of the main
room, in relation to the hub, are most likely to have window access. In the pre-
processing phase, calculations are performed to discover which side of the main room
is furthest from the hub. By using this as input to the model, the objective function is
adjusted to reward solutions which place rooms further from the hub. To implement
the heuristic the parameters P

d, where d 2 D, are introduced. If the calculations
reveal that placing rooms on the d side of the main room is desirable, P d is set to 1,
while P

t for 8t 2 D where t 6= d, is set to 0.

63

6.7. MODELLING HEURISTICS

To ensure that the objective of minimizing corners is prioritized, the coe�cient Cc is
introduced. The objective function, with the window heuristic implemented, is shown
in 6.44

min (
X

(i,j)2E

C
c
✓ij +

X

r2Rw

X

(i,j)2E

�
P

n
iy

se

ijr
+ P

s(EL
� i)yne

ijr
+ P

w
jy

ne

ijr
+ P

e(EW
� j)ynw

ijr

�
) (6.44)

6.7.4 Concurrent neighbourhood optimization

An alternative implementation of the model is to optimize neighbourhoods concur-
rently. This allows for a more e�cient use of computational power, thus reducing the
run time. With concurrent neighbourhood optimization, the total run time of the
model is decided by the run time of the most complex neighbourhood in the input.
Because the area of two extended envelopes sometimes overlap, this can cause rooms
from di↵erent neighbourhoods to overlap in the output from stage two. This must be
handled in stage three to ensure feasible solutions.

6.7.5 Split neighbourhood

The number of rooms in a neighbourhood heavily impacts the run time of the math-
ematical model. An alternative approach to address this is to run the model for a
subset of the rooms, iteratively placing all rooms in the neighbourhood. The pro-
cedure works as follows. First, the rooms in the neighbourhood R

n are partitioned
into P subsets Rp where p 2 {1, .., P}, such that each room is included in only one
subset R

P . The model then iterates the subsets and places the rooms. Rooms re-
quiring window access are placed in the first subset. When optimizing for Rt where
1 < t  P , the rooms in the sets R

p, where p 2 {1, .., t � 1}, are locked in place.
To lock coordinates that are covered by rooms placed in previous iterations is the
set Mf containing these coordinates introduced. Constraints 6.45 ensure that rooms
cannot cover coordinates in M

f .

xijr = 0 (i, j) 2M
f
, r 2 R

p (6.45)

Figure 6.7 illustrates the procedure considering a neighbourhood with six rooms par-
titioned into two subsets. The green rooms are subject to optimization, while the
purple and orange rooms are locked in place as they belong to di↵erent neighbour-
hoods. Figure 6.7 (a) shows the first iteration where four rooms are placed. (b)
shows the final iteration where the remaining rooms are placed while considering the
placement of the rooms in the previous iteration.

64

6.7. MODELLING HEURISTICS

(a) Four rooms, including the main room
(middle) are placed by the model in the first
run

(b) The second run places the last two
rooms

Figure 6.7: The green neighbourhood with six rooms is optimized in two consecutive
model runs

By splitting the neighbourhoods, the model optimizes for the given rooms without
considering the placement of the rooms in following iterations. Consequently, there
is a trade-o↵ between improving run time and quality of solutions when applying this
alternative approach.

65

6.7. MODELLING HEURISTICS

66

Chapter 7

Local search

The third and final stage of the three-stage algorithm is a local search. The local
search is performed in turn for each neighbourhood, where the order is chosen based
on a selection approach. The procedure is described in Section 7.1, while Section
7.2 describes three di↵erent alternatives for selecting the order of the neighbour-
hoods.

7.1 Algorithm

The local search moves a neighbourhood to the best position within a square search
area. The square is set by adding l meters in each direction from the upper left corner
of the envelope of the neighbourhood. Figure 7.2 (a) illustrates the search area, where
the solid black line forms the square. The l meters is further referred to as the length
of the search area. Each position within the area is scored using a weighted sum
of several objectives. The local search incorporates a subset of the MA objectives;
overlap (f1), connectivity (f2), narrow hallways (f3), window access (f5) and hallway
area (f6). The local search also includes exterior corners as an objective, subject to
minimization, denoted f8. The objective variables of the LS is summarized in Table
7.1. Figure 7.1 shows an example with the three rooms 1, 2 and 3, in orange, blue and
purple respectively. The green dots show the exterior corners of the building. Each
dot is an intersection of four cells. If an odd number of these cells have an outdoor
ID of 0, the intersection is an exterior corner.

67

7.1. ALGORITHM

Figure 7.1: Grid showing the room value of each cell for a simple layout with three
rooms. The green dots display the resulting exterior corners.

Table 7.1: Objective variables of the LS

Objective variables, LS

f1 Overlap

f2 Connectivity

f3 Narrow hallways

f5 Window access

f6 Hallway area

f8 Exterior corners

Locations that result in narrow hallways, overlap, or violate window access or connec-
tivity requirements are strongly penalized during the evaluation. Consequently, the
LS attempts to minimize these objectives to the optimal value of zero while seeking
to minimize the two remaining objectives; hallway area (f6) and exterior corners (f8).
Minimizing exterior corners is given the highest weight among the two, as it is the
primary goal of the LS.

Figure 7.2 illustrates the local search of a neighbourhood. Figure 7.2 (a) shows a
neighbourhood with its envelope and search area. The black filled cell in the upper
left corner is the reference point of the neighbourhood. The solid black line forms a
square which marks the area in which the reference point can be moved; in this case
5 meters, or cells, in each direction, as l = 5. Figure 7.2 (b) illustrates the scoring of
the possible locations, where red and green are the worst and best score, respectively.
The red cells are typically locations resulting in overlap or connectivity violation. The
green square marked by a solid black line is the best location based on the scoring
function. Thus, the neighbourhood moves to this position in (c).

68

7.1. ALGORITHM

l

l

(a) Initial position of a neighbour-
hood. The dashed black line is
the envelope of the neighbourhood,
while the black solid line forming
a square is the search area with
length l.

Best	
Score

Worst	
Score

(b) Scoring of possible new locations within
the search area. The green square marked
by a black solid line is scored as the best
location.

(c) Result after neighbourhood
moved to the new and locally best
location

Figure 7.2: The local search of a neighbourhood. The neighbourhoods moves to the
best location within a square search area.

The local search is performed in turn for each neighbourhood, where the order is based
on a selection approach. Three di↵erent approaches are implemented and described
in the subsequent section. As the movement of one neighbourhood can a↵ect the
outcome of other neighbourhoods, the procedure repeats until no beneficial moves
are present. The algorithm is described in Algorithm 3.

69

7.2. SELECTION APPROACHES

Algorithm 3: Local search of neighbourhoods
Data: Set of neighbourhoods N , Layout L, search area length l

Result: Updated layout L with new locations of neighbourhoods
LocalSearch (N,L, l)

Improvement � True;
while Improvement do

K � N ;
Improvement � False;
for i = 1 �! |N | do

/* Pick neighbourhood by criteria */
n � SelectionCriteria(K);
K.remove(n);
/* Local search neighbourhood */
LocalSearch(n, l, L);
if n hasMoved then

Improvement � True

end
end

end
return L

end

7.2 Selection approaches

Di↵erent approaches for choosing the order of neighbourhoods are described in the
following. Three approaches are developed, a random order approach, and two heuris-
tics. The first heuristic chooses the largest neighbourhood from the set of remaining
neighbourhoods K. The hypothesis is that the largest neighbourhoods are most de-
cisive of the fitness of the solutions and should be considered first.

The second heuristic intends to fix layouts which are either infeasible, meaning f1 or f2
is not zero, or fail to fulfil the window access objective (f5). The algorithm is described
in Algorithm 4. This heuristic chooses the neighbourhoods that break feasibility
or the window requirements first. It prioritizes feasibility over window access, and
overlap over connectivity. Thus, if a layout contains overlap, the neighbourhoods
containing the overlapping rooms are considered first, and the order among them
are chosen at random. Next up are neighbourhoods violating connectivity and lastly
neighbourhoods containing rooms without window access. If the layout is feasible

70

7.2. SELECTION APPROACHES

and satisfy the window objective, a random order approach is applied.

Algorithm 4: Selection Approach 2: Prioritize neighbourhoods by objectives
Data: Set of neighbourhoods K, Layout L
Result: Chosen neighbourhoood n

PrioritizeObjectives (K,L)
if f1 6= 0 then

No � getOverlappingNeighbourhoods(L);
n � Random(No);
return n

end
else if f2 6= 0 then

Nc � getUnconnectedNeighbourhoods(L);
n � Random(Nc);
return n

end
else if f5 6= 0 then

Nw � getNeighbourhoodsWithoutWindowAccess(L);
n � Random(Nw);
return n

end
n � Random(K);
return n

end

71

7.2. SELECTION APPROACHES

72

Chapter 8

Case description

This thesis uses the RSD of Levanger Middle School as input to the three-stage algo-
rithm. The RSD is a private document provided by our industry partner, Spacemaker.
Since most RSDs consist of the same information and contain similar requirements,
a single RSD is chosen as the starting point for this study without much loss of gen-
erality. Levanger Middle School was built in 2015 and accommodates 500 students.
The school contains approximately 120 rooms divided into 20 neighbourhoods, where
the rooms make up 4412 square meters in total. Today, the school constitutes 6200
square meters over two floors. This includes hallways and vertical transportation in
addition to rooms. The first floor consists of neighbourhoods such as the administra-
tion, sciences and the music area. The second floor mainly consists of the classrooms
and their corresponding study rooms. This thesis does not focus on the actual layout
of Levanger Middle School, as it is only one out of many possible layout suggestions
coherent with the RSD. Instead, parts of the RSD is used as input for generating
layouts. This includes the list of neighbourhoods and rooms, and the specifications
that come with each room.

Six RSDs are created for testing purposes, where each contains a subset of the neigh-
bourhoods described in the RSD of Levanger Middle School. As this thesis considers
a single floor SLP, some of the 20 neighbourhoods are excluded from the di↵erent
RSDs. The excluded neighbourhoods have less critical functions, such as storage for
cleaning equipment. The test RSDs are chosen to reflect the various compositions
of neighbourhoods a floor can contain, and with di↵erent degrees of complexity to
test the abilities of the three-stage algorithm. To preserve the characteristics of the
SLP, the neighbourhoods selected for each RSD contain rooms with di↵erent sizes and
aspect ratio bounds. For the rooms in the RSD of Levanger Middle School without
a specified aspect ratio bound, a suitable one is chosen - most rooms are assigned a
bound of either 1, 2 or 3. The main rooms, which are typically bigger and have many
door-neighbours, are assigned an aspect ratio bound of 3, 4 or 5, depending on its
size. All the RSDs contain the hub, as it is considered the centre of the school and
contains several essential functions.

73

Table 8.1 shows the number and total area of the rooms in each RSD. The column
”RSD” states the name of each RSD, which is the number of neighbourhoods it
contains in addition to the hub. Thus, RSD 2N contains two neighbourhoods and
the hub. Table A.1 in Appendix A displays the neighbourhoods each RSD contains.
Together these six RSDs consist of 15 unique neighbourhoods. Table 10.2 presents
the key characteristics of the neighbourhoods. The table shows the number of rooms
and their total area, along with a colour used for visualization purposes throughout
the technical studies. For a complete specification of the neighbourhoods and their
corresponding rooms, see Table A.2 in Appendix A.

Table 8.1: The six RSDs used for testing, with the number and total area of rooms

RSD Number of rooms Total area (m2)

2N 16 1610
3N 21 1705
6N 27 2061
7N 21 1835
9N 41 2795
11N 50 3230

Table 8.2: Number of rooms and total area of each neighbourhood. The colour is
used for visualizations of the neighbourhoods.

Neighbourhoods

Neighbourhood Number of rooms Total area (m2) Colour

Music Area 4 231
9th grade o�ces 5 140
Gym 4 200
Arts & Crafts 3 270
9th grade 7 540
Cooking 3 180
10th grade o�ces 5 140
10th grade 7 560
Science 3 160
Library 2 144
Administration 3 200
Employees wardrobes 2 150
ICT 6 165
8th grade 7 500
Hub 1 500

Figure 8.1 illustrates a possible layout generated from RSD 6N . The RSD contains
six neighbourhoods in addition to the hub, consisting of 27 rooms in total. The
exterior walls of the school building are marked by a solid black line surrounding the
rooms and hallways. The coloured rectangles are various rooms, and the light grey
areas are hallways. Rooms within the same neighbourhood are illustrated with the
same colour. These are the colours specified in Table 10.2 - e.g. rooms in the Arts &

74

Crafts neighbourhood are coloured in blue. Additionally, all rooms have a dark grey
wall colour.

Figure 8.1: A generated school layout using RSD 6N as input, with seven neighbour-
hoods and 27 rooms

A graph shows the door-neighbour relationships, where each room contains a white
node in the centre and white edges connecting the room to its door-neighbours. The
hub is a neighbourhood with only one room. Since it has no door-neighbours, it
has no white node. As specified in Section 4.4.2, all neighbourhoods have a main
room, and all rooms need to be attached to the main room of its neighbourhood.
Thus, the main room of each neighbourhood contains the root node of a graph in
the layout, while the other rooms contain leaf nodes. The layout in Figure 8.1 fulfils
the door-neighbour relationships, as all rooms are attached to the main room of its
neighbourhood.

The main room of each neighbourhood is required to be a hallway-neighbour with
the hub. Thus, the hub of the layout in Figure 8.1 has six hallway-neighbours, one
main room for each neighbourhood. The dashed black lines show the pathways from
the hub to its six hallway-neighbours. As there is a direct pathway through a hallway
from all main rooms to the hub, the layout fulfils the connectivity objective.

Figure 8.2 shows the blueprint of the layout visualized in Figure 8.1. Possible locations
for doors are manually inserted, and the thick solid grey line on the east wall of the
hub shows the suggested building entrance. As Figure 8.1 is more informative, this
design is used as the visualization tool for the technical studies, while the blueprint
design is used when presenting the final layouts in Chapter 12.

75

Figure 8.2: Blueprint of the layout in Figure 8.1

76

Chapter 9

Technical study, memetic
algorithm

This chapter studies the performance and capabilities of the memetic algorithm. The
performance of an MA is profoundly a↵ected by its parameter settings and objective
weights. These are collectively referred to as the settings. Though tests have been
performed continuously during development, a structured approach provides impor-
tant insights into how to improve the performance by tuning the parameters and
weights. After obtaining desirable settings, the performance of the MA is tested on
a variety of instances.

As this technical study is comprehensive, only the most interesting findings and results
are presented in this chapter. Additional results are presented in Appendix C and
D. The test methodology is discussed and presented in Section 9.1. In Section 9.2,
di↵erent parameter settings are tested. These parameter settings include population
initialization, crossover and mutation rates, as well as elitism rate and tournament
size. The section concludes the assessment of parameter settings by testing the local
search of the MA. Section 9.3 examines how the objectives impact the solutions, and
conduct tests to find desirable objective weights. After desirable parameter settings
are found, and the objective weights are set, the MAs performance on six di↵erent
instances is examined in Section 9.4. The technical study is concluded by studying
the impact of adding another objective; the number of exterior corners. The MAs
ability to minimize exterior corners, as well as the e↵ect adding this corner objective
has on the other objectives, are assessed in Section 9.5.

The MA is implemented in JAVA using the IDE IntelliJ IDEA. Python is exploited
for data analytics and visualization of the generated test results. The specification
of the hardware and software used to implement and perform tests on the MA is
presented in Table 9.1.

77

9.1. METHODOLOGY

Table 9.1: Details of the computer hardware and software used for the memetic
algorithm

CPU Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz

RAM 32 GB

JAVA Version 11.0.4

Python Version 3.7

JAVA IDE Intellij IDEA Version 2018 3.5

Python IDE Pycharm Version 2017 2.2

9.1 Methodology

The six RSDs presented in Chapter 8 are used as test instances in this technical
study. All tests in Sections 9.2 and 9.3 are performed using RSD 6N as input. As
Levanger Middle School consists of 4400 square meters of room area spread over two
floors, this RSD is considered reasonable sized for a single floor with its 2061 square
meters. The values chosen as preliminary settings are based on testing during the
development phase. These settings are referred to as the base case, and is displayed
by a dashed line in the charts. When there is a trend in the data indicating that
changing a parameter setting is beneficial, that parameter setting is adjusted, and
the new value is used in subsequent tests. In other words, the base case is updated
continuously. The complete list of initial settings can be found in Appendix B.

The first phase of the testing isolates a parameter to assess its impact and find a
desirable value. An individual parameter value is tested by running the algorithm
30 times with a population size equal to 30, for 150 generations. The mean fitness
of the best individual from each run is chosen as the basis for comparison. As only
one solution is propagated from the MA to the mathematical model in stage two,
it is reasonable to consider the best individuals. Additionally, violating feasibility
can allow significant improvement in the remaining objectives. Thus, to set a rea-
sonable ground for comparison, only the runs producing feasible solutions after the
150 generations are considered in the average. This holds for all tests conducted in
this chapter. The resulting charts for the parameter settings tests show the number
of generations on the x-axis and the mean fitness score on the y-axis. Note that the
y-axis follows a logarithmic scale. For a single parameter, multiple values are tested,
and all other settings are kept equal. Subsequently, to gain further insight into the
algorithm, combinations of mutation probabilities are adjusted and tested.

After desirable parameter settings are found, the objective function is tested. The
same test approach is used as with the parameter settings, by evaluating them each
individually, but with a di↵erent evaluation method. This evaluation method is ex-
plained in the first paragraphs of Section 9.3. The objective variables of the MA
are for convenience repeated in Table 9.2, along with the exterior corners objective
f8.

When the parameter settings and the weights of the objective function are fixed, the

78

9.2. PARAMETER SETTINGS

MA is tested on the six instances of di↵erent complexity. Two terms are frequently
used when evaluating the solutions. A feasible solution fulfils overlap (f1) and connec-
tivity (f2). An objective is fulfilled if its corresponding value is zero. A satisfactory
solution is feasible, and also fulfils objective f3 - f5. The algorithms ability to pro-
duce feasible and satisfactory solutions, as well as the run time, are considered when
evaluating its performance. Additionally, the satisfactory solutions are compared on
the two remaining objectives, f6 and f7. When assessing the MA’s ability to minimize
exterior corners by including objective f8, the same test methodology is chosen along
with a visual study of the layouts.

Table 9.2: Objective variables of the MA along with the additional tested objective,
f8 exterior corners

Objective variables, MA

f1 Overlap

f2 Connectivity

f3 Narrow hallways

f4 Door-neighbour distance

f5 Window access

f6 Hallway area

f7 Excess neighbourhood area

f8 Exterior corners

9.2 Parameter settings

The major part of the MA is the genetic algorithm. A challenge with GAs is the
number of parameters that need to be tuned. Changing one parameter can have a
significant impact on the algorithm, and changing several can have a di↵erent impact
than the sum of changing them one by one. On the other hand, the number of
parameter settings provides flexibility to tweak and tune the algorithm. Due to the
number of parameters and their interdependencies, finding an optimal combination of
parameter settings is not expected. However, by combining the results of the study
with intuition, a good approximation can be found. It is important to note that
genetic algorithms are by nature non-deterministic. Therefore, a certain degree of
variance in the results is expected.

9.2.1 Crossover

The results in Figure 9.1 indicates that the algorithm produces the best results when
the crossover rate pc is set at pc = 0.0 or pc = 0.2. The crossover rate in the base case
is low, at pc = 0.4, since the initial hypothesis was that crossover introduces too much
random change for a single generation. While the results strengthen this hypothesis,

79

9.2. PARAMETER SETTINGS

crossover does help with getting out of local optima. Therefore, it is not completely
removed, and the crossover rate is fixed at pc = 0.2.

Figure 9.1: Fitness of the population for di↵erent crossover rates, pc

9.2.2 Mutations

The e↵ects of changing the mutation rate pm is assessed in the following. Figure 9.2
shows how the MA performs with di↵erent mutation rates. With a mutation rate of
pm = 0.0, the algorithm does not find any feasible solutions. Thus, it is not part of
the plot. The poor performance is expected as the mutations are the backbone of the
implemented GA. Furthermore, the figure illustrates that a high mutation rate yields
desirable results. However, pm = 1.0 performs worse than pm = 0.6 and pm = 0.8.
This is likely due to excessive alterations of the individuals, resulting in a worsening
of the best solutions. Based on the trend in the graph and experience from prior
testing, the mutation rate is fixed at pm = 0.6. This allows substantial jumps in the
solution space while avoiding excessive alterations.

80

9.2. PARAMETER SETTINGS

Figure 9.2: Fitness of the population for di↵erent mutation rates, pm

Tests of the mutation operators and their final mutation probabilities are presented
in Appendix C. The results lack consistent trends, which strengthens the hypothesis
regarding the interdependencies of the parameter settings, as well as the inherent
randomness of GA. Considering the lack of consistent trends in the test data, and
the vast number of possible mutation probability combinations, intuition is combined
with the test results to determine desired mutation probabilities.

9.2.3 Elitism

Figure 9.3 shows test results for di↵erent elitism rates, pe. An elitism rate of zero
produces no feasible solutions. This is an expected result as there is no guarantee for
keeping the best solutions. The solution improves drastically by turning the elitism
rate on, if even just slightly. The results also indicate that too much elitism does
not give the algorithm enough freedom to explore, as an elitism rate at pe = 0.8 and
pe = 1.0 yields significantly worse results than the base case pe = 0.2. Additionally,
a low elitism rate, such as pe = 0.05 and pe = 0.1 performs poorly, as it causes the
algorithm to discard potentially good solutions. From the results, it can be concluded
that an elitism rate of pe = 0.4 e�ciently balances exploration and exploitation, and
the rate is therefore fixed at pe = 0.4.

81

9.2. PARAMETER SETTINGS

Figure 9.3: Fitness of the population with di↵erent elitism rates, pe

9.2.4 Local search

The algorithms performance for di↵erent values of pl is shown in Figure 9.4, where
pl is the probability of performing local search in a generation. The results clearly
show that a higher probability is favourable, both in terms of better solutions and
faster convergence. This is also the expected result and confirms that local search is an
important contribution to the algorithm. The local search rate in the base case is quite
low, as the initial hypothesis was that a low probability pl would steer the algorithm
in the right direction without ending up in a local minimum. This hypothesis is
rejected by the results, as a higher rate pl yields better results. Thus, the local search
rate pl is set to 1.0, meaning that the LS is applied in every generation.

Figure 9.4: Fitness of the population with di↵erent local search probabilities, pl

82

9.3. OBJECTIVE FUNCTION

9.2.5 Population initialization and tournament size

Tests are conducted to determine a beneficial tournament size and to assess the
di↵erent initialization approaches. The complete results are presented in Appendix
C. As discussed in Section 5.4, the MA uses two di↵erent approaches for initializing
an individual, a heuristic approach and a random approach. A probability parameter
ph determines the probability of the heuristic approach being chosen to initialize an
individual. The results are presented in Section C.1 and show a trend where a higher
ph yields better solutions. Based on the results, ph is set to 0.8. The tests conducted
on the tournament size do not provide any insight on whether to increase or decrease
the tournament size, it is therefore kept at pt = 0.4. See Section C.2 for complete
results. The initial and final parameter settings of the memetic algorithm are stated
in Table 9.3.

Table 9.3: Initial and final parameter settings

Initial parameter settings

GA rates

Initialization rate 0.1

Crossover rate 0.4

Mutation rate 0.4

Elitism rate 0.2

Tournament size 0.4

Mutation probabilities

Move room random 0.2

Swap wall-sharing side 0.4

Change room dimension 0.3

Move overlapping room 0.3

Move to not-attached door-neighbour 0.6

Move neighbourhood random 0.4

Move attached door-neighbours 0.3

Swap rooms 0.4

Local search

Local search probability 0.4

Final parameter settings

GA rates

Initialization rate 0.8

Crossover rate 0.2

Mutation rate 0.6

Elitism rate 0.4

Tournament size 0.4

Mutation probabilities

Move room random 0.1

Swap wall-sharing side 0.4

Change room dimension 0.1

Move overlapping room 0.4

Move to not-attached door-neighbour 0.6

Move neighbourhood random 0.4

Move attached door-neighbours 0.5

Swap rooms 0.4

Local search

Local search probability 1.0

9.3 Objective function

In this section, tests are performed to examine how the objectives impact the solu-
tions, such that their corresponding weights can be accurately determined. Addi-
tionally, as optimizing for numerous objectives simultaneously is challenging, remov-
ing any excess objectives is favourable. Consequently, tests are conducted to assess
whether or not objectives that seemed necessary during development are su�ciently
handled by a combination of the other objectives. For instance overlap (f1) may be
considered through the door-neighbour objective (f4), as two rooms violate f4 if they
overlap. Once again, the algorithm is run with a population size of 30 for 150 gener-
ations. When testing an objective, its weight is set to zero to examine how the MA

83

9.3. OBJECTIVE FUNCTION

performs without it. The evolution of the solutions are evaluated visually, and the
final objective values are considered to observe the impact of the objectives.

The results for the objective function tests are as expected. All objectives are con-
sidered necessary, and kept in the MA. To exemplify how the tests are performed
the connectivity objective is addressed in the following. The results for the other
objectives are presented in Appendix D.

Figure 9.5 displays the evolution of a layout when the connectivity weight is set
to zero. The figure shows the layout after 5, 20, 50 and 150 generations. Recall
that overlap is illustrated in red, while narrow hallways are coloured in magenta. If
there exists a direct path through hallways between the hub and a main room, it is
illustrated by a dashed black line. The layouts violate connectivity and have a minimal
amount of hallway area. Figure 9.5 (a) shows a layout with a connectivity score of
3, as three neighbourhoods are not connected to the hub, which is a requirement for
connectivity. After 150 generations, four out of six neighbourhoods are not connected
to the hub. The results indicate that the connectivity weight is necessary.

84

9.3. OBJECTIVE FUNCTION

(a) Generation 5. Connectiv-
ity score of 3.

(b) Generation 20. Connectivity
score of 6.

(c) Generation 50. Connectivity
score of 5.

(d) Generation 150. Connec-
tivity score of 4.

Figure 9.5: Development of a layout over 150 generations with connectivity turned
o↵. The dashed black lines show direct pathways through hallways to the main room
of a neighbourhood. After 150 generations, only two out of four neighbourhoods are
connected to the hub.

To further assess the necessity of the connectivity objective, the MA is run 30 times,
including and excluding the connectivity objective in the fitness function. The aver-
age hallway area and connectivity scores are presented in Table 9.4. The table shows
that the amount of hallway area decreases drastically when turning o↵ the objec-
tive, but the algorithm fails to provide solutions that fulfil connectivity. Hence, it is
concluded that the connectivity objective is necessary. Furthermore, the results illus-
trate the conflicting goals of minimizing building area while maintaining connectivity.
The connectivity weight is lowered slightly to facilitate obtaining solutions with less
hallway area.

85

9.4. PERFORMANCE TESTING

Table 9.4: Average hallway area and connectivity score when running the MA includ-
ing and excluding the connectivity objective (f2)

Hallway area(%) Connectivity

Including f2 21.2 0.2
Excluding f2 5.1 4.3

9.4 Performance testing

To assess the performance of the MA and gain deeper insight into its capabilities, a
number of tests using the final settings are conducted. These settings are found in
Appendix B. The six RSDs presented in Chapter 8 are used as test instances.

First, the fitness of the solutions generated for each instance is studied. Figure 9.6
shows the average fitness of the solutions for each instance for generations 0 to 150.
The results are as expected as the average fitness is higher, thus worse, for the complex
instances. By complex means an instance with either more rooms, neighbourhoods
or total area of rooms, or a combination of the three. To exemplify, more rooms
and neighbourhoods require more hallway area to fulfil connectivity, which adversely
a↵ects the fitness score. The complex instances also converge slower, which is con-
sistent with the expectations. For example, increasing the number of rooms gives
more door-neighbour relationships to fulfil, and additional operations are necessary
to reach convergence.

An interesting finding is the di↵erence in fitness between instance 3N and 7N . They
have an equal number of rooms, but for 3N , the algorithm obtains a significantly
better score than for 7N . On the other hand, the fitness score of the solutions for
instance 6N and 7N are close to equal, even though 6N has both more area and six
rooms more than 7N . The results show that the number of rooms, the total area,
and the number of neighbourhoods determine the complexity of the instances, and
that comparing instances must be done on a case-by-case basis.

9.4.1 Generation of feasible and satisfactory solutions

Table 9.5 shows the fraction of runs the algorithm produces feasible and satisfactory
solutions. The results indicate a pattern of decreasing fraction of both feasible and
satisfactory solutions as the instance becomes more complex. This is compatible
with the expected behaviour. More rooms lead to more chances of overlap, and
more neighbourhoods lead to more rooms requiring connectivity, which complicates
finding feasible solutions. Similarly, the requirements a solution must meet to be
considered satisfactory are harder to fulfil as the instances become more complicated.
The fraction of feasible solutions decreases with a lower rate than the satisfactory
ones, which is natural as the objectives to fulfil for a solution to be feasible is a subset
of the objectives for a satisfactory solution.

86

9.4. PERFORMANCE TESTING

Figure 9.6: The six instances and their averasinglege fitness throughout the genera-
tions

Table 9.5: Fraction of feasible and satisfactory solutions generated for the six instances
tested

Instance
Fraction of

feasible solutions
Fraction of

satisfactory solutions

2N 1.0 1.0
3N 1.0 1.0
7N 1.0 1.0
6N 0.87 0.83
9N 0.70 0.57
11N 0.53 0.43

For the instances with no more than 21 rooms (2N , 3N and 7N), all runs provide
feasible and satisfactory solutions. When the number of rooms increases, the fraction
of feasible and satisfactory solutions decreases accordingly. The objective values of
the largest instance are examined to study the bottleneck of reaching feasible and
satisfactory solutions. Table 9.6 presents the average objective values for the infeasible
runs of instance 11N . The table shows the average score for each objective, as well as
fitness score, for generations 0 to 150. The abbreviations are explained in Table 9.7,
and are further used for readability. The table shows an average connectivity score
of zero and an overlap score of 8.8 at generation 150. The numbers are highlighted
in blue. When the MA fails to find feasible solutions, it is because of overlapping
rooms. As a result, the overlap weight, w1, is increased and the MA is run using 11N
as input with the updated weight. This is further referred to as instance 11No.

87

9.4. PERFORMANCE TESTING

Table 9.6: Average objective values of the infeasible runs of instance 11N

Average objectives

Generation Fitness O HA(%) D C NH WA ENA

0 8626.8 566.5 52.4 232.2 0.0 46.4 5.5 1616.1
10 2318.2 197.1 47.9 13.1 0.0 19.1 1.1 1547.1
20 1089.1 94.9 44.7 2.2 0.0 11.1 1.1 1557.1
30 852.8 62.6 43.4 2.2 0.0 5.5 1.1 1656.1
40 654.6 42.4 41.6 6.6 0.0 3.3 0.0 1778.1
50 617.6 35.3 41.3 6.6 0.0 4.4 0.0 1683.1
60 611.6 35.3 39.3 6.6 0.0 4.4 0.0 1678.1
70 598.5 27.2 39.4 8.8 0.0 4.4 0.0 1740.1
80 467.4 12.1 38.4 9.9 0.0 5.5 0.0 1759.1
90 455.4 12.1 37.1 9.9 0.0 4.4 0.0 1808.1
100 443.4 8.8 36.7 9.9 0.0 3.3 0.0 1808.1
120 438.4 8.8 35.5 9.9 0.0 3.3 0.0 1827.1
150 438.4 8.8 35.5 9.9 0.0 3.3 0.0 1827.1

Table 9.7: Objective abbreviations

Objective abbreviations

O Overlap

HA Hallway area

D Door-neighbour distance

C Connectivity

NH Narrow hallways

WA Window access

ENA Excess neighbourhood area

Table 9.8 is an updated version of Table 9.5, which includes instance 11No. Increas-
ing the overlap weight increases the fraction of feasible solutions of instance 11N
drastically from 53% to 100%, producing only feasible solutions. Also, the fraction of
satisfactory solutions increases from 43% to 57%. As feasibility is vital for the quality
of the solutions, a low fraction of feasible solutions might result in having to re-run
the MA to obtain adequate results. Consequently, the fraction of feasible solutions
is important to find desirable solutions in an acceptable amount of time. However,
increasing the fraction of feasible solutions may come at a cost, as it can adversely
impacts the remaining objectives.

88

9.4. PERFORMANCE TESTING

Table 9.8: Fraction of feasible and satisfactory solutions generated for the six instances
tested, including the additional instance 11No

Instance
Fraction of

feasible solutions
Fraction of

satisfactory solutions

2N 1.0 1.0
3N 1.0 1.0
7N 1.0 1.0
6N 0.87 0.83
9N 0.70 0.57
11N 0.53 0.43
11No 1.0 0.57

Figure 9.7 is an extension of Figure 9.6 where instance 11No is added. The figure
shows that the average fitness for the feasible instances of 11No is worse than that of
instance 11N . Thus, the increased weighting on overlap negatively a↵ects the overall
fitness.

Figure 9.7: The six instances and their average fitness throughout the generations,
along with the additional instance 11No

Figure 9.8 compares the feasible and satisfactory solutions generated for the two
instances 11N and 11No. Each bar shows the objective value for instance 11No divided
by the objective value for 11N . This number is referred to as the relative score of the
objective. For instance, if the average hallway area score for 11No and 11N is 1000
and 500 respectively, the relative score of HA would be 2. Thus, the hallway area for
instance 11No would be twice as large as for instance 11N on average. If the average
objective values were equal, also including both zeros, the relative score would be
1. A relative score of 1 is illustrated by a dashed line in the figures. Figure 9.8 (a)
compares the two instances on the average objective values of the feasible solutions
generated at generation 150, while (b) considers the satisfactory solutions.

89

9.4. PERFORMANCE TESTING

(a) Feasible solutions (b) Satisfactory solutions

Figure 9.8: Relative scores of the di↵erent objectives comparing 11N and 11No. (a)
compares the feasible solutions while (b) compares the satisfactory solutions.

The results show notably worse scores for the feasible solutions for 11No compared to
11N . Even though all runs of instance 11No turn out feasible, the solutions fail to fulfil
door-neighbour relationships as illustrated by the bar D. The algorithm also obtains
a larger amount of narrow hallways and hallway area for instance 11No. The only
objective where the MA performs better on instance 11No than 11N is the window
access objective. Looking at Figure 9.8 (a), the relative score of WA is zero. That is
because the average WA of 11No is 0 and 1.0 for 11N . Thus, the algorithm only fulfils
this objective slightly more for 11No than 11N . For the satisfactory runs, the hallway
area is on average 40% greater with the increased overlap weight, as shown in Figure
9.8 (b). The results indicate that a higher priority of the overlap objective indirectly
give less priority to the remaining objectives, resulting in worse fitness scores.

For the larger instances, the results provide two possibilities; increasing the overlap
weight, resulting in more feasible and satisfactory solutions on average, or keeping the
overlap weight unadjusted, resulting in fewer, but far better, feasible and satisfactory
solutions. Besides minimizing cost, it is desirable to generate a wide range of di↵erent
layouts which can be used as inspiration for architects. Thus, the choice depends on
the run time. If the run time is high, increasing the overlap weight may be the best
option to generate a su�cient amount of feasible solutions. Still, the results show
that feasibility comes at a high cost with regards to the remaining objectives. If the
run time allows for running the MA several times, the same amount of enhanced
feasible and satisfactory solutions can be generated in an acceptable amount of time
by keeping the overlap weight unadjusted. Enhanced satisfactory solutions imply
less building costs as the objective value HA decreases, which is desirable. The
overlap weight is therefore kept unadjusted until the run time of the algorithm is
assessed.

90

9.4. PERFORMANCE TESTING

9.4.2 Run time

The run times of the algorithm on the six instances are presented in Table 9.9. All
times are given in minutes. The two columns show the average run time until a
feasible and satisfactory solution is found. The table shows that the time to find a
feasible or satisfactory solution increases with the complexity of the instance. This
is consistent with the expectations as more operations are needed to fulfil i.e. con-
nectivity, window access and door-neighbour relationships when the number of rooms
and neighbourhoods increase.

Table 9.9: Run time to feasible and satisfactory solutions for the six test instances.
Time is given in minutes.

Instance
Run time,

feasible solutions
Run time,

satisfactory solutions

2N 1.2 1.3
3N 3.0 3.7
6N 6.0 6.7
7N 4.4 4.9
9N 12.6 19.3
11N 22.4 39.3

The run time to feasible and satisfactory solutions are plotted for each instance in
Figure 9.9, making it possible to study the relationship between the run time and
the number of rooms of an instance. The instances are first sorted after the number
of rooms, and then the total area of rooms. The figure shows that the run time is
not linear in the number of rooms, but rather exponential. In general, increasing the
complexity of the instances increases the time used to find a feasible and satisfactory
solutions. Even though these results are consistent with the expectations, many
aspects a↵ect the results as elements vary among the instances. The combination
of site size, the number and total area of rooms, and the number of neighbourhoods
is unique for all instances and cannot be compared by one single factor. Even two
instances with the same number of rooms and neighbourhoods, but di↵erent ones,
can vary in complexity as there are di↵erences in the number of possibilities to for
instance fulfil door-neighbour relationships. Thus, the results discussed for Figure 9.9
may not be generalized.

91

9.5. EXTERIOR CORNERS OBJECTIVE

Figure 9.9: The six instances and their run time to feasible and satisfactory solutions.

Even though the run time increases with the complexity of an instance, the findings
show that time is not a bottleneck. The algorithm spends 39 minutes on average on
finding a satisfactory solution for the largest instance (11N), while about 7 minutes
for instance 6N . Based on these results, the run time allows for running the MA
several times in an acceptable amount of time, as the time only increases linearly
in the number of extra runs. Thus, to complete the discussion in Section 9.4.1, the
overlap weight for instance 11N is kept unadjusted. As a result, a wide variety of
enhanced layouts can still be obtained for large instances within a few hours.

9.5 Exterior corners objective

The building costs consist of two main components; the total building area and the
number of exterior corners. Until now, the MA only considers the building area
through the hallway area objective. Chapter 4 discussed the capabilities of GA and
MAs, presenting the hypothesis that the MA is inadequate as a stand-alone solution
method to minimize building costs in terms of area and exterior corners. To study
the impact of also considering the other component, exterior corners, an additional
objective of minimizing the number of exterior corners, f8, is added for comparison.
Review Chapter 7 for elaboration on the objective and how it is calculated.

The algorithm is run for all six instances with the additional objective and is compared
to the runs where the objective is excluded. The settings found in Section 9.2 are
used. Table 9.10 shows the fraction of feasible and satisfactory solutions for the
test instances with and without objective f8. As seen in Table 9.10, the fraction
decreases when adding the objective for all instances except 2N and 3N . As these
are quite small instances, the MA manages to handle the extra objective and still
find feasible and satisfactory solutions. Observe that the fraction of both feasible
and satisfactory solutions remains unchanged for 3N , while it decreases by 30% for
instance 7N . Adding a new objective to the algorithm implicitly decreases the focus

92

9.5. EXTERIOR CORNERS OBJECTIVE

on other objectives. A probable explanation for the decrease in the fraction of feasible
and satisfactory solutions for 7N , is the higher di�culty of ing connectivity for a seven
neighbourhood instance than for three.

For the largest instances, 9N and 11N , the algorithm does not manage to find any
satisfactory solutions. This points to the conclusion that the MA is unsuitable for
handling exterior corners. Still, instance 6N with its 27 rooms is considered reason-
able sized for a single floor. Satisfactory solutions are found for instance 6N when
adding the exterior corners objective. Thus, if the MA were to solve this instance to
satisfaction while minimizing building area and exterior corners, it could be a su�-
cient stand-alone method for solving smaller floors. Still, the fraction of satisfactory
solutions is reduced by 50%.

Table 9.10: Fraction of feasible and satisfactory solutions for the test instances, in-
cluding and excluding objective f8

Excluding f8 Including f8

Instance
Fraction of

feasible solutions
Fraction of

satisfactory solutions
Fraction of

feasible solutions
Fraction of

satisfactory solutions

2N 1.0 1.0 1.0 1.0
3N 1.0 1.0 1.0 1.0
7N 1.0 1.0 0.70 0.70
6N 0.87 0.83 0.67 0.40
9N 0.70 0.57 0.67 0.0
11N 0.53 0.43 0.63 0.0

Figure 9.10 compares the satisfactory solutions of instance 2N , 7N and 6N with
and without the exterior corners objective. Exterior corners is abbreviated EC. Once
again, the bars show the relative score of each objective, where a number greater
than one imply that the algorithm not considering objective f8 performs better. Not
surprisingly, the number of exterior corners decreases drastically by adding the ob-
jective. For instance 2N and 7N the number of exterior corners decreases by 50%,
while it decreases by 30% for instance 6N . However, this decrease comes at a cost.
The hallway area is more than doubled for 2N and 7N . When minimizing exterior
corners comes at the cost of increased hallway area, the memetic algorithm fails to
reach its goal of generating layouts with a small amount of building area.

93

9.5. EXTERIOR CORNERS OBJECTIVE

Figure 9.10: Instances tested with and without the exterior corners objective

Figure 9.10 reveals a pattern of decreasing negative e↵ects on building area as the
instance becomes larger or more complex. For instance 6N , the hallway area is
only slightly larger on average when including the exterior corners objective. This
may be interpreted as if larger schools require more hallway area to ensure flow and
connectivity and thus exterior corners may only increase this area to a limited extent.
For smaller instances, less hallway area is required. Thus, minimizing exterior corners
may have a greater negative impact on the building area.

As the performance of the algorithm for instance 6N shows positive trends regarding
minimizing building area and exterior corners at once, the solutions are examined
visually. Figure 9.11 shows two satisfactory solutions of 6N where the exterior corners
objective is excluded in (a) and included in (b). The fitness and hallway area are close
to equal for the two solutions. By comparing the two layouts, layout (b) contains
notably fewer exterior corners than (a) and is more naturally shaped. However,
although 36 exterior corners is a great improvement from 70, it is not su�cient.
It is easy to find quick fixes of layout (b) which decreases the number of exterior
corners without increasing other objectives. Hence, the MA is considered inadequate
to handle exterior corners as it is not able to find these fixes.

94

9.5. EXTERIOR CORNERS OBJECTIVE

(a) MA run with instance
6N , excluding the exterior
corners objective. 70 exte-
rior corners.

(b) MA run with instance
6N , including the exterior
corners objective. 36 exte-
rior corners.

Figure 9.11: Layouts of instance 6N when the MA excludes the exterior corners
objective f8 from the fitness function in (a), while including the objective in (b)

The study of adding the exterior corners objective f8 confirms that the MA with
its settings is inadequate as a stand-alone solution method for minimizing building
costs. The algorithm cannot find satisfactory solutions for larger instances, and fewer
exterior corners comes at the cost of greater hallway area for smaller instances. Pos-
sibly, the MA could have performed better by conducting additional tests to find the
”optimal” settings for solving the MA including the exterior corners objective. Still,
by the arguments in Section 4, an MA is likely inadequate regardless of the settings
as multiple consecutive moves are required to minimize exterior corners.

95

9.5. EXTERIOR CORNERS OBJECTIVE

96

Chapter 10

Technical study, mathematical
model

This chapter studies the mathematical model presented in Chapter 6, which consti-
tutes stage two of the solution method. The objective of this study is to assess various
modelling alternatives to optimize the performance of the algorithm as a whole.

The mathematical model is solved using the commercial optimization solver Gurobi,
and the model is implemented in Java using the Gurobi Java interface. Python is
exploited for data analytics and visualization of the generated test results. The tests
are conducted on the computing cluster Solstorm, provided by the Department of
Industrial Economics and Technology Management at NTNU. The specifications of
the hardware and software used are presented in Table 10.1.

Table 10.1: Details of the computer hardware and software used for the mathematical
model

CPU 2.4GHz Intel Xeon Gold 5115 CPU – 10 core

RAM 96 Gb

JAVA Version 11.0.4

Python Version 3.7

Gurobi Version 9.0.2

JAVA IDE Intellij IDEA Version 2018 3.5

Python IDE Pycharm Version 2017 2.2

Section 10.1 presents findings during preliminary testing. The test instances used are
presented in Section 10.2. In Section 10.3 the test methodology for the technical study
is discussed. Lastly, Sections 10.4 - 10.8 examine test results and assess the perfor-
mance and capabilities of the various modelling heuristics. The sections present the
most interesting results, while additional results are presented in Appendix E.

97

10.1. PRELIMINARY TESTING

10.1 Preliminary testing

Initially, the mathematical model is implemented as described in Sections 6.2 - 6.4.
Preliminary tests show that the computational complexity of the problem instances
are too high for the model to find solutions within an acceptable amount of time.
Therefore, the valid inequalities and symmetry breaking constraints, presented in
Sections 6.5 and 6.6 respectively, are added to the model. These are not tested in the
technical study as preliminary tests have proven them to have a positive, but small,
impact on the run time of the model. The modelling heuristics presented in Section
6.7 have a much larger impact on the run time. Therefore, the technical study focuses
on the e↵ectiveness of these heuristics. The valid inequalities and symmetry breaking
constraints are included in the model in all subsequent tests.

Additionally, the preliminary tests conclude that consecutively applying the model
to the neighbourhoods is too time demanding, and the deficits of optimizing the
neighbourhoods in parallel, discussed in Section 6.7.4, are negligible. Hence, in the
tests conducted in this chapter, the model optimizes the neighbourhoods concur-
rently.

The memetic algorithm in stage one seeks to minimize the total building area, which in
practice means to minimize hallway area. Preliminary testing shows that this cramps
the neighbourhoods together, leading to overlapping extended envelopes. In turn, this
gives the mathematical model insu�cient leeway to place the rooms. In most cases,
this yields a high number of corners. To address this issue, it is necessary to update
the memetic algorithm such that the output of stage one, in general, contains more
hallway area. Thus, the hallway area objective presented in Section 5.2 is updated
such that if the hallway area is less than a determined percentage of the total building
area, the objective value is set to zero. The threshold is set to 30%. Consequently,
in subsequent tests, if the hallway area objective is zero it does not mean that the
solution does not contain hallways, it means that the total hallway area is less than
30% of the total building area. Note that the hallway area objective in stage three
remains unchanged, and is still subject to minimization.

10.2 Test instances

To accurately determine the e↵ectiveness of the mathematical model, tests are per-
formed on a variety of layouts generated from RSD 6N and 9N , presented in Chapter
8. To account for the non-deterministic nature of the memetic algorithm, each model
heuristic is tested on six di↵erent test instances. The test instances are generated
by the MA with the final settings presented in Chapter 9. Three of these are from
6N , and the remaining three are from 9N . Together 6N and 9N consist of 12 unique
neighbourhoods. Table 10.2 presents the neighbourhoods with key characteristics,
and Figure 10.1 provides a visualization of the six test instances used as input in the
technical study of the mathematical model.

98

10.2. TEST INSTANCES

Table 10.2: The number of rooms, total area and assigned colour of each neighbour-
hood

Neighbourhoods

Neighbourhood # of rooms Total area (m2) Colour

Music area 4 231
9th grade o�ces 5 140
Gym 4 200
Arts & Crafts 3 270
9th grade 7 540
Cooking 3 180
10th grade o�ces 5 140
10th grade 7 560
Science 3 160
Library 2 144
Administration 3 200
Hub 1 500

99

10.3. METHODOLOGY

(a) 6N1 (b) 6N2

(c) 6N3 (d) 9N1

(e) 9N2 (f) 9N3

Figure 10.1: Initial layouts of the test instances used in the technical study of the
mathematical model

10.3 Methodology

Initially, tests are performed on the model described in Sections 6.2 - 6.6. This
implementation is referred to as the basic model. The performance of the model is
judged on both quantitative and qualitative criteria. Key performance indicators

100

10.4. BASIC MODEL

are how well the model meets its explicit objective of minimizing corners in each
neighbourhood, and the run time. Additionally, the model is assessed on its impact
on the complete layout, and its compatibility with the subsequent stage of the solution
method. This is done by evaluating the resulting solution on the objectives of the
memetic algorithm and the number of exterior corners, and by qualitatively evaluating
visual representations of the corresponding layouts.

Each test run consists of applying the model to each neighbourhood in a test instance
individually. For a single run, a time limit of eight hours is decided to be reasonable.
As the neighbourhoods are optimized concurrently, the model has eight hours to find
the best possible solution for each neighbourhood. If the model is unable to find
a solution that is guaranteed to be optimal within the given time, it returns the
current best solution. If the model is unable to generate a feasible solution at all,
the neighbourhood remains unchanged, and the model returns the neighbourhood
generated from stage one. When the model terminates for all neighbourhoods, the
neighbourhoods are put back in the layout and hallways are regenerated to form a
complete layout.

After the performance of the basic model has been assessed, the e↵ect of adding the
modelling heuristics presented in Section 6.7 are studied. This is done by adding one
of these heuristics to the model, re-running the tests and examining the change in the
results. If the results indicate a positive e↵ect of adding the heuristic, it is included in
the model and used in subsequent tests. The order in which the modelling heuristics
are tested is based on results from preliminary testing and interdependencies of the
heuristics.

10.4 Basic model

The basic model is implemented as specified in Sections 6.2 - 6.6. Table 10.4 and 10.5
illustrate the performance of the model on the 6N and 9N instances, respectively.
The table abbreviations are explained in Table 10.3. The tables show the number
of corners in each neighbourhood before and after running the model. The initial
number of corners, CI , correspond to the corners of the neighbourhoods in the layout
generated by stage one. The number of corners after applying the basic model to
the neighbourhoods is denoted C

B

F
. Additionally, the tables show the time until the

model finds the best solution obtained, TB, and the total run time, T . The time
is given in minutes. T = 480 indicates that the model ran for the total time at
disposal, and terminated without being able to guarantee that the problem is solved
to optimality. If T < 480, the model can guarantee optimality of the solution found
at time TB. Lastly, when the model fails to find any feasible solutions, it is illustrated
as TB =”-” in the tables. When no feasible solution is found, the model returns the
neighbourhood given by the memetic algorithm. Hence, CI = CF .

101

10.4. BASIC MODEL

Table 10.3: Abbrevations for Table 10.4 and 10.5

CI Initial corners

CB

F
Final corners

TB Time until best solution is found

T Total run time

Table 10.4: Initial and final number of corners and run time for the 6N instances run
with the basic model. Time is given in minutes.

6N1 6N2 6N3

CI CB

F
TB T CI CB

F
TB T CI CB

F
TB T

Music area 14 6 445 480 12 6 480 480 10 6 160 480
9th grade o�ces 16 10 478 480 12 8 142 480 12 6 46 480
Gym 12 6 260 480 10 6 480 480 12 8 336 480
Arts & Crafts 8 6 161 480 4 4 108 108 8 4 176 176
9th grade 14 14 - 480 20 20 - 480 18 18 - 480
Cooking 8 6 44 480 8 6 24 480 10 6 37 480

Table 10.4 shows that the model finds feasible solutions for all neighbourhoods except
9th grade in all 6N instances. As 9th grade contains the most rooms, it is expected to
be the most challenging neighbourhood. 9th grade is also the largest neighbourhood
in terms of area which yields a large extended envelope. Collectively, this results in
a search space the model is unable to handle. Furthermore, the model is only able
to find and guarantee an optimal solution for Arts & Crafts in the instances 6N2 and
6N3.

The results are similar for the 9N instances, presented in Table 10.5. The model
fails to find solutions for the most challenging neighbourhoods, 9th grade and 10th
grade. A surprising result is that no feasible solution is found for the fairly simple
neighbourhood Music area in instance 9N1. As illustrated in Figure 10.1 (d), the
Music area has a highly unnatural shape, and three other neighbourhoods lie close
to it. A probable explanation for why no solution is found is that the shape of the
Music area yields a large extended envelope, which increases the search space, and
the surrounding neighbourhoods restrict the possibilities for placing the rooms. As
for the 6N instances, the model fails to solve the neighbourhoods to optimality for
the 9N instances. The exceptions are the Science and Library neighbourhoods for
all test instances and the Gym for instance 9N3. The basic model generally fails to
solve the neighbourhoods to optimality, and for some neighbourhoods fails to find any
feasible solutions. Consequently, it can be concluded that it is insu�cient to handle
the desired complexity within the given time.

102

10.4. BASIC MODEL

Table 10.5: Initial and final number of corners and run time for the 9N instances run
with the basic model. Time is given in minutes.

9N1 9N2 9N3

CI CB

F
TB T CI CB

F
TB T CI CB

F
TB T

10th grade o�ces 16 8 135 480 12 6 254 480 12 6 323 480
Music area 12 12 - 480 10 8 187 480 10 8 205 480
9th grade o�ces 14 8 109 480 12 8 68 480 10 6 187 480
Gym 14 8 158 480 14 6 154 480 10 4 425 425
Library 4 4 1 1 6 4 1 1 6 4 1 1
9th grade 20 20 - 480 16 16 - 480 12 12 - 480
Science 8 4 22 22 12 4 15 15 6 4 28 28
Administration 6 6 2 480 6 6 43 480 8 6 93 480
10th grade 12 12 - 480 14 14 - 480 16 16 - 480

Despite the complexity and run time issues, Table 10.4 and 10.5 clearly show that
the behaviour of the model is as intended. For all neighbourhoods where feasible
solutions are found, the resulting number of corners is less than the initial number.
Figure 10.2 shows the sum of the initial, TCI , and final number of corners, TCB

F
, in

all neighbourhoods, for all instances. The number of corners drastically decreases for
all instances, ranging from a 23% decrease for 9N1 to 33% for 6N1.

Figure 10.2: The total number of corners before, TCI , and after, TCB

F
, running the

basic model for all the six test instances

Table 10.6 evaluates the model performance by the objectives of the memetic algo-
rithm, and the exterior corners objective (f8) used in stage three. The objective
abbreviations are repeated in Table 10.7. Table 10.6 (a) and (b) show the objective

103

10.4. BASIC MODEL

values of the instances before and after the model is run on all neighbourhoods. The
columns ”Pre” and ”Post” denote the objective values before and after running the
model. Clearly, the excess neighbourhood area decreases for all instances. This is an
expected result as minimizing corners leads to more compact neighbourhoods. Fur-
thermore, Table 10.6 (a) and (b) show that the mathematical model has an adverse
e↵ect on window access. Initially, all instances have a window access score of zero, and
after running the model, they all have positive scores. A negative impact on window
access is expected as the model does not take this objective into account.

Table 10.6: The objective values of the resulting solutions using the objectives in
stage one and three

6N1 6N2 6N3

Pre Post Pre Post Pre Post

O 0 0 0 0 0 1
HA(%) 0 31.0 0 41.3 0 35.2
D 0 0 0 0 0 0
C 0 1 0 0 0 1
NH 0 0 0 0 0 0
WA 0 2 0 3 0 4
ENA 710 423 731 512 686 362
EC 30 32 20 14 22 24

(a) 6N instances

9N1 9N2 9N3

Pre Post Pre Post Pre Post

O 0 2 0 2 0 0
HA(%) 0 0 0 0 0 37.4
D 0 0 0 0 0 0
C 0 6 0 4 0 2
NH 0 0 0 8 0 21
WA 0 1 0 1 0 4
ENA 981 770 800 658 1115 623
EC 48 72 50 52 34 44

(b) 9N instances

Table 10.7: Objective abbreviations

Objective abbreviations

O Overlap

HA Hallway area

D Door-neighbour distance

C Connectivity

NH Narrow hallways

WA Window access

ENA Excess neighbourhood area

EC Exterior corners

The model yields positive overlap or connectivity scores for all instances except 6N2.
Consequently, the corresponding solutions are considered infeasible. Furthermore,
Table 10.6 shows that the door-neighbour distance is zero both before and after
running the model across all instances. The reason is that all the test instances
considered are initially satisfactory, and the mathematical model requires fulfilling the
adjacency constraints. Consequently, the value of this objective remains zero.

104

10.4. BASIC MODEL

In general, Table 10.6 clearly illustrates that the mathematical model adversely a↵ects
the fitness of a layout. This is expected as the model is not developed to optimize for
the objectives used in stage one and three. The idea behind the solution method is
that the local search in stage three corrects the negative impact of the mathematical
model in regards to these objectives. Thus, stage three ensures feasible and satisfac-
tory solutions. However, the resulting layouts after stage two must facilitate for the
local search to be able to create desirable solutions.

Figure 10.3 (a) and (b) show the resulting layouts after running the basic model on
6N3 and 9N1, respectively. Figure 10.3 (a) shows that most neighbourhoods have
taken a geometric simplistic and more natural shape. The exceptions are the 9th
grade for both instances and the Music area for instance 9N1, for which the model
fails to find a feasible solution. Furthermore, for instance 6N3 there is a slight overlap
between the neighbourhoods Cooking and Gym , and connectivity is not fulfilled
for the Music area , as its main room is not adjacent to a hallway or the hub.
Consequently, the solution is infeasible. However, it is likely that this will be fixed
by the local search, as minor changes would yield a feasible solution.

Figure 10.3 (b) shows that connectivity is not fulfilled for as much as six of the nine
neighbourhoods for instance 9N1. The Gym neighbourhood is located such that it
prevents a hallway from reaching the unconnected neighbourhoods. The local search
does not have much leeway to relocate the Gym as the surrounding neighbourhoods
lie close. In this case, it is rather unlikely that the local search is able to find a
number of consecutive moves to make the solution feasible. The figure illustrates the
challenges of large instances. Increasing the number of neighbourhoods complicates
the task of finding non-conflicting locations for the rooms and neighbourhoods.

(a) 6N3 (b) 9N1

Figure 10.3: The resulting layouts after running the basic model on instance 6N3 and
9N1

The test results of the basic mathematical model show that the model is able to
decrease the number of corners in the neighbourhoods. However, it is not able to

105

10.5. LOCK MAIN ROOM

handle the complexity of the test instances, as no feasible solutions are found for
the largest neighbourhoods. Assessing the objectives used in stage one and three,
the results also indicate that the model adversely a↵ects the complete layouts. Most
notably, essential objectives, such as connectivity and window access, are insu�ciently
considered. The deficits of the resulting layouts for the 9N instances are likely to be
unmanageable for the local search in stage three.

10.5 Lock main room

To improve the performance of the model, the heuristic explained in Section 6.7.1
is implemented. In short, the heuristic locks the position of the main room before
applying the model to a neighbourhood.

Table 10.8 and 10.9 present the results for the 6N and 9N instances. TB and T

correspond to running the model with the lock main room heuristic. For comparison,
the final number of corners with and without the heuristic are displayed in the tables,
denoted C

L

F
and CF , respectively. The extended model finds solutions for the 9th

grade neighbourhood in four out of the six instances. As the basic model was not
able to find any feasible solutions for 9th grade, the results indicate that locking the
main room makes the model more suited to solve the larger neighbourhoods. On the
other hand, it is not able to find a feasible solution for 10th grade in any of the 9N
instances. In addition to be more prone to find feasible solutions, the model also
guarantees optimality for most neighbourhoods. The exceptions are 9th grade and
10th grade, for which the model is unable to prove optimality in any of the instances.
The tables clearly show that the heuristic improves the performance. It is, however,
evident that the model still struggles with the largest neighbourhoods.

Table 10.8: Initial and final number of corners and run time for the 6N instances
with the lock main room heuristics

6N1 6N2 6N3

CI CF CL

F
TB T CI CF CL

F
TB T CI CF CL

F
TB T

Music area 14 6 4 38 38 12 6 4 213 213 10 6 4 1 1
9th grade o�ces 16 10 6 32 480 12 8 6 67 480 12 6 6 24 260
Gym 12 6 4 18 18 10 6 4 35 35 12 8 8 8 19
Arts & Crafts 8 6 4 5 5 4 4 4 0 0 8 4 4 5 5
9th grade 14 14 14 - 480 20 20 8 348 480 18 18 14 297 480
Cooking 8 6 6 1 4 8 6 6 1 1 10 6 6 1 7

106

10.5. LOCK MAIN ROOM

Table 10.9: Initial and final number of corners and run time for the 9N instances
with the lock main room heuristics

9N1 9N2 9N3

CI CF CL

F
TB T CI CF CL

F
TB T CI CF CL

F
TB T

10th grade o�ces 16 8 4 43 43 12 6 6 9 18 12 6 6 36 480
Music area 12 12 4 168 168 10 8 4 54 54 10 8 6 24 204
9th grade o�ces 14 8 6 58 480 12 8 6 5 26 10 6 4 18 18
Gym 14 8 6 7 131 14 6 4 24 24 10 4 4 26 26
Library 4 4 4 1 1 6 4 4 1 1 6 4 4 1 1
9th grade 20 20 16 381 480 16 16 6 309 480 12 12 12 - 480
Science 8 4 4 4 4 12 4 4 1 1 6 4 6 1 1
Administration 6 6 6 1 1 6 6 6 1 3 8 6 6 3 3
10th grade 12 12 12 - 480 14 14 14 - 478 16 16 16 - 480

Locking the main room restricts the possibilities for placing the other rooms, as they
need to be attached to it. Hence, this heuristic likely excludes a significant number
of feasible solutions, which can adversely a↵ect the results. Figure 10.4 shows the
sum of the corners in the neighbourhoods for all instances. The figure compares the
final number of corners generated by the basic model, TCF , and the extension locking
the main room, TCL

F
. The extended model significantly outperforms the basic model

on all instances. Thus, the benefits of narrowing down the solution space outweighs
the negative impact of excluding solutions. There are usually multiple desirable,
feasible solutions, and even though the heuristic excludes some desirable solutions,
the remaining ones are easier to obtain.

Figure 10.4: The total number of final corners with, TCL

F
, and without, TCF , the

lock main room heuristic

The improved e�ciency of the model is further illustrated by Figure 10.5. The figure

107

10.5. LOCK MAIN ROOM

shows the average time until the best feasible solution found is obtained for each
neighbourhood in the 9N instances. The figure compares the time TB when running
the basic model to the time T

L

B
where the main room is locked. If the model fails to

find a solution, the time is set to the maximum time of 480 minutes, as the model, in
this case, returns the solution given from stage one. The figure shows that TL

B
< TB

for all neighbourhoods except 10th grade. It is evident that decreasing the solution
space by locking the main room facilitates obtaining solutions in a more e�cient
manner.

Figure 10.5: The basic model and the lock main room heuristic is compared on the
average time until the best feasible solution is found for all neighbourhoods in 9N ,
denoted TB and T

L

B
respectively

Figure 10.6 (a) and (b) visualize instance 6N2 before and after the model is run
with the lock main room heuristics. Observe that the position, shape and size of
the main rooms are equal in both (a) and (b). The figure illustrates that desirable
neighbourhoods can be obtained when the main room is locked. Specifically, observe
the major improvement to the 9th grade neighbourhood now that the model is
able to find a feasible solution. The main issue with the resulting layout in (b) is the
violation of connectivity. The neighbourhoods Cooking , Gym and 9th o�ce
are not connected to the rest of the school. Still, the local search is likely able to fix
this by moving the Gym to the right, thus making space for hallways.

108

10.6. WINDOW OBJECTIVE

(a) Initial layout (b) With the lock main room heuristics

Figure 10.6: Instance 6N2 before and after the model is run with the lock main room
heuristic

Including the lock main room heuristic shows positive results, as the model yields
fewer corners, decreased run time and more often guarantees optimality. The heuristic
is therefore included in subsequent tests. Regarding the objectives used in stage one
and three, locking the main room yields similar results as the basic model, and the
results are therefore not discussed. See Section E.1 for complete results.

10.6 Window objective

To address the issue of lacking window access in the layouts generated in stage two,
the heuristic presented in Section 6.7.3 is implemented. Figure 10.7 presents the
total number of corners for each test instance, with, TCW

F
, and without, TCF , the

window heuristic. The figure shows that the heuristic exclusively results in worse or
unchanged solutions in terms of corners. The heuristic is not intended nor expected to
decrease the number of corners. Nevertheless, the significant increase is an unexpected
result.

109

10.6. WINDOW OBJECTIVE

Figure 10.7: Total number of corners in each test instance with and without the
window heuristic, denoted by TCF and TC

W

F
respectively

Observe from Table 10.10 and 10.11 that the model does not find any feasible solutions
for neither 9th grade nor 10th grade before the time limit is reached. Previous to
implementing the window heuristic, the model found feasible solutions for the 9th
grade neighbourhood in four out of six instances. Thus, the increase in corners is
explained by the absence of feasible solutions for 9th grade. Only considering the
neighbourhoods where a feasible solution is found for both versions of the model, the
di↵erence in the total number of corners is insignificant. Hence, the heuristic does not
adversely impact the resulting neighbourhoods in terms of number of corners when
solutions are found.

Table 10.10: Initial and final number of corners and run time for the 6N instances
with the window heuristic

6N1 6N2 6N3

CI CF CW

F
TB T CI CF CW

F
TB T CI CF CW

F
TB T

Music area 14 4 4 16 16 12 4 4 433 433 10 4 4 7 7
9th grade o�ces 16 6 6 43 480 12 6 6 55 480 12 6 6 140 480
Gym 12 4 4 13 13 10 4 4 31 31 12 8 8 17 17
Arts & Crafts 8 4 4 6 6 4 4 4 1 1 8 4 4 9 9
9th grade 14 14 14 - 480 20 8 20 - 480 18 14 18 - 480
Cooking 8 6 6 1 6 8 6 6 1 1 10 6 6 1 6

110

10.6. WINDOW OBJECTIVE

Table 10.11: Initial and final number of corners and run time for the 9N instances
with the window heuristic

9N1 9N2 9N3

CI CF CW

F
TB T CI CF CW

F
TB T CI CF CW

F
TB T

10th grade o�ces 16 4 4 292 292 12 6 6 2 30 12 6 6 151 480
Music area 12 4 4 305 305 10 4 4 43 43 10 6 6 6 241
9th grade o�ces 14 6 6 55 480 12 6 6 3 29 10 4 4 4 4
Gym 14 6 6 30 253 14 4 4 30 30 10 4 4 15 15
Library 4 4 4 1 1 6 4 4 1 1 6 4 4 1 1
9th grade 20 16 20 - 480 16 6 16 - 480 12 12 12 - 480
Science 8 4 4 1 1 12 4 4 1 1 6 6 6 1 1
Administration 6 6 6 1 1 6 6 6 1 3 8 6 6 1 4
10th grade 12 12 12 - 480 14 14 14 - 480 16 16 16 - 480

Figure 10.8 shows the average run time for each neighbourhood in the 9N instances
without the window heuristic, TB, and with the window heuristics, TW

B
. The test

results show that this heuristic increases the run time of the model quite significantly.
A possible explanation is that the increased complexity of the objective function
has a negative impact on the e�ciency of the commercial solvers heuristics. The
increased complexity prevents the model from obtaining solutions to the 9th grade
neighbourhood, which explains the increase in the number of corners.

Figure 10.8: Average run time for each neighbourhood of the 9N instances, with,
T

W

B
, and without, TB, the window heuristic

The majority of the rooms with window requirements are classrooms located in the

111

10.7. LOCK HALLWAYS

9th grade and 10th grade neighbourhood. Since the model fails to find feasible solu-
tions for these neighbourhoods, the resulting solutions cannot be used to evaluate the
heuristic. Hence, it cannot be concluded from these tests whether or not the heuristic
works as intended. Preliminary tests show that the two heuristics that are left to be
tested speed up the model significantly. It is likely that including these heuristics will
allow obtaining feasible solutions for the 9th grade and 10th grade neighbourhoods
within the time limit, while keeping the window heuristic. The window heuristic is
therefore kept for subsequent tests, and is reevaluated if a solution to these neigh-
bourhoods are found. If the model fails to find feasible solutions within the time
limit, this heuristic can be removed to speed up the model.

10.7 Lock hallways

Previous tests reveal that the model struggles to maintain connectivity. Section 6.7.2
addresses this challenge, and proposes a heuristic. With the lock hallways heuristic
implemented, the model restricts rooms from completely covering an area that has
been deemed desirable for connectivity in the layout from stage one.

Figure 10.9 visually illustrates the impact of locking hallways. 10.9 (a) shows the
initial layout of instance 6N2, while (b) and (c) show the resulting layout of instance
6N2 before and after adding the lock hallways heuristic, respectively. Note that the
layout in (b) is the output of the model when applying the window access heuristics,
which did not find a feasible solution for 9th grade . Recall that the lock hallways
heuristic finds the longest stretch of the main room in the input layout which is
adjacent to a hallway and prevents the model from placing the remaining rooms such
that they completely cover this stretch. Consider the neighbourhood Gym . In the
layout in Figure 10.9 (a), the longest stretch adjacent to a hallway from its main room
is on the west side. Thus, including the lock hallways heuristic restricts the model
from placing the rooms such that they completely cover the west wall of the main
room. As Figure 10.9 (c) shows, the rooms of the neighbourhood are then placed
on the east side. Consequently, this change allows for a hallway on the west side,
which connects the neighbourhoods Gym , 9th o�ce and Cooking , resulting
in fulfilling the connectivity requirement. Additionally, the neighbourhoods in (c)
contain the same number of corners as in (b). Hence, the heuristic does not adversely
a↵ect the main objective of the model in this particular case.

112

10.7. LOCK HALLWAYS

(a) Initial layout

(b) Without the lock hallways heuristic (c) With the lock hallways heuristic

Figure 10.9: Layouts illustrating the e↵ect of the lock hallway heuristic on test in-
stance 6N2

More generally, the heuristic tends to have a negative impact on the number of corners
in the neighbourhoods. Figure 10.10 shows the total number of corners in each
instance with and without the heuristic, denoted TC

H

F
and TCF respectively. The

figure shows that the number of corners is unchanged for instance 6N1 and 6N2, and
slightly worsened for the remaining instances. As locking the hallways restricts the
feasible positions of the rooms, it is expected that desirable solutions in terms of
corners are excluded from the solution space.

To assess whether or not the lock hallways heuristic performs as intended, the con-
nectivity scores for the di↵erent model versions are compared. Table 10.12 shows the
connectivity score of all model versions for all the six test instances. The basic model

113

10.7. LOCK HALLWAYS

Figure 10.10: The total number of corners in each test instance with, TC
H

F
, and

without, TCF , the lock hallways heuristic

is denoted basic, and as the heuristics are implemented, the model is denoted by the
last added heuristic. Table 10.12 shows that including the lock hallways heuristic
outperforms the previous versions. From these results, it can be concluded that the
heuristic performs as intended. As mentioned, connectivity is often achieved by stage
three of the algorithm, even when several neighbourhoods are not connected after
stage two. On the other hand, when every neighbourhood is connected after stage
two, it is more likely that the local search can locate e�cient hallways in the final
layout and minimize the number of exterior corners. It is, therefore, desirable that
neighbourhoods are connected after stage two.

Table 10.12: Connectivity score for the di↵erent model versions across all test in-
stances

Connectivity

6N1 6N2 6N3 9N1 9N2 9N3

Basic 1 0 1 6 4 2
Lock main room 1 3 1 3 2 4
Window 1 3 0 2 0 2
Lock hallways 1 0 1 0 0 1

The lock hallways heuristic successfully improves the connectivity score directly, and
yields solutions for which the local search in stage three is more likely to generate
desirable layouts. Hence, the benefit of improved connectivity management outweighs
the slight increase in the number of corners. Additionally, the heuristics impact on the
run time is insignificant. See Section E.2 for time complexity results. Consequently,

114

10.8. SPLIT NEIGHBOURHOOD

the heuristic is included in subsequent tests.

10.8 Split neighbourhood

To enhance the performance of the model to a level where it is able to solve the
largest neighbourhoods, the split neighbourhood heuristic described in Section 6.7.5
is implemented. Results from preliminary testing suggest that it is beneficial to split
neighbourhoods consisting of five or more rooms. Neighbourhoods with less than
five rooms are handled as before. Consequently, for the 6N and 9N instances, only
the neighbourhoods 9th grade, 9th grade o�ces, 10th grade and 10th grade o�ces are
split. Table 10.13 and 10.14 show that adding the heuristic makes the model capable of
finding feasible solutions for all neighbourhoods across all test instances. Additionally,
the model terminates before the maximum given time for all neighbourhoods, meaning
that optimality is guaranteed. However, the heuristic first optimizes for a subset of the
rooms in a neighbourhood, fixes these in place and then optimizes for the remaining
rooms. Consequently, solved to optimality now means that the placement of the
initial subset of rooms is optimal, and the placement of the rooms in the final subset
given the placement of the first rooms is optimal. Hence, the resulting solution might
not be the optimal solution if the model considers all rooms in the neighbourhood at
once. The times presented in Table 10.13 and 10.14 are the total time spent placing
all rooms in each neighbourhood.

Table 10.13: Initial and final number of corners and run time for the 6N instances
adding the split neighbourhood heuristic

6N1 6N2 6N3

CI CF CS

F
TB T CI CF CFS TB T CI CF CS

F
TB T

Music area 14 4 4 19 19 12 4 4 114 114 10 4 6 15 98
9th grade o�ces 16 6 6 20 20 12 6 6 31 32 12 8 6 39 39
Gym 12 4 4 16 16 10 4 4 75 75 12 8 6 1 10
Arts & Crafts 8 4 4 14 15 4 4 4 1 1 8 4 4 3 3
9th grade 14 14 14 77 120 20 20 6 124 300 18 18 6 85 229
Cooking 8 6 6 4 4 8 6 6 1 1 10 6 6 1 4

115

10.8. SPLIT NEIGHBOURHOOD

Table 10.14: Initial and final number of corners and run time for the 9N instances
adding the split neighbourhood heuristic

9N1 9N2 9N3

CI CF CS

F
TB T CI CF CS

F
TB T CI CF CS

F
TB T

10th grade o�ces 16 4 6 6 6 12 6 8 41 41 12 6 6 208 208
Music area 12 4 4 36 36 10 4 4 250 250 10 6 6 6 316
9th grade o�ces 14 6 6 2 2 12 6 6 18 235 10 4 4 14 14
Gym 14 6 6 20 24 14 4 6 34 97 10 4 6 83 84
Library 4 4 4 1 1 6 4 4 1 1 6 4 4 1 1
9th grade 20 20 8 431 431 16 16 8 466 466 12 12 6 328 450
Science 8 4 6 1 2 12 4 8 1 2 6 6 6 1 1
Administration 6 6 6 1 3 6 6 6 1 1 8 6 6 1 5
10th grade 12 12 8 267 465 14 14 8 280 459 16 16 8 422 422

To evaluate whether or not the limit of five or more rooms is appropriate, the impact
on the neighbourhoods that are split is assessed. Figure 10.11 shows the total num-
ber of corners for the neighbourhoods with five and seven rooms for all test instances
with, TCS

F
, and without, TCF , the heuristic. The neighbourhoods containing five

rooms are 9th grade o�ces and 10th grade o�ces and the neighbourhoods containing
seven rooms are the 9th grade and 10th grade. The figure shows that the number
of corners for the neighbourhoods with five rooms are una↵ected by the heuristic,
while for seven rooms it is significantly improved. The improvement for the neigh-
bourhoods containing seven rooms is expected as the model previously struggled to
find solutions for these neighbourhoods. For the neighbourhoods with five rooms, the
initial hypothesis was that placing rooms in two steps adversely a↵ects the solutions,
as the previous model finds solutions for these neighbourhoods. The results, however,
indicate that splitting the neighbourhoods does not a↵ect the solutions in terms of
corners at all. In addition, as the run time for the neighbourhoods with five rooms
decreases drastically with the split heuristic, the limit is kept at five rooms.

Assessing the impact of the heuristic on the objectives used in stage one and three, the
connectivity and window access scores are most notable. See Appendix E for results
on the additional objectives. Table 10.15 compares the connectivity score obtained
by the current model, denoted split, and the previous model version denoted lock
hallways.

Table 10.15: Connectivity score for the di↵erent model versions across all test in-
stances

Connectivity

6N1 6N2 6N3 9N1 9N2 9N3

Lock hallways 1 0 1 0 0 1
Split 1 4 0 0 0 3

116

10.8. SPLIT NEIGHBOURHOOD

Figure 10.11: Total number of corners for the neighbourhoods containing five and
seven rooms over all test instances with, TCS

F
, and without, TCF , the heuristic.

The table indicates that the split heuristic has a negative impact on the connectivity
score. However, the adverse impact on connectivity is instance specific. To exemplify,
consider Figure 10.12 which shows the resulting layout of 6N2 when excluding the split
heuristic in (a), and adding the heuristic in (b). Figure 10.12 (b) illustrates that as the
9th grade neighbourhood is solved, it is placed such that the hallways connecting
four neighbourhoods is blocked. Consequently, the connectivity score increases from
zero to four by implementing the heuristic. Still, connectivity can be restored by
moving 9th grade slightly to the left or the Music area slightly down or to the
right, which is a manageable task for the local search in stage three.

(a) 6N2 run without the split
heuristic

(b) 6N2 adding the split heuristic

Figure 10.12: The resulting layouts after running the model with and without the split
neighbourhood heuristic for instance 6N2. When adding the heuristics, connectivity
is violated for several neighbourhoods.

117

10.8. SPLIT NEIGHBOURHOOD

As mentioned, it is necessary to reevaluate the window objective heuristic when the
model finds feasible solutions for the larger neighbourhoods. Table 10.16 shows the
window access scores obtained by di↵erent model versions for all instances. As the
previous test of the window heuristic is inconclusive, an additional model version is
included, which contains all heuristics except the window heuristic, denoted ”Split
w/o window”. The window heuristic can now be evaluated by comparing ”Split” and
”Split w/o windows”. First, observe that Split yields better window access scores
than Lock hallways. Hence, including the split heuristic positively a↵ects the window
access for rooms. Nevertheless, the improvement on window access is not directly
ensured by the split heuristic. It is rather a result of finding feasible solutions for
the large neighbourhoods 9th grade and 10th grade, which in turn puts the window
heuristic into e↵ect. The table also shows that removing the window heuristic again
yields worse window access scores, confirming the proficiency of the window heuristic.
Additionally, as the model now comfortably finds feasible solutions for all neighbour-
hoods in all test instances, the increased run time as a result of implementing the
window heuristic is considered insignificant. Consequently, the window heuristic is
kept.

Table 10.16: Window access score for the di↵erent model versions across all test
instances

Window Access

6N1 6N2 6N3 9N1 9N2 9N3

Lock hallways 1 2 4 6 1 0
Split w/o window 1 1 4 6 1 0
Split 0 0 1 4 1 0

The split neighbourhood heuristic speeds up the model to the point where it can
find feasible solutions and guarantee optimality for the largest neighbourhoods. Nat-
urally, this causes a significant improvement on the main objective of the mathe-
matical model, the minimization of corners. Hence, it is concluded that the split
neighbourhood heuristic should be implemented in the model.

Figure 10.13 visually illustrates the desirable e↵ects of the mathematical model. The
figure shows the layout of instance 9N2 before and after running the final model with
the desired heuristics. As the model finds feasible solutions for all neighbourhoods,
they all take a geometric simplistic and more natural shape in the output layout.
Additionally, the solution fulfils both connectivity and overlap, which makes it fea-
sible. Furthermore, only one room which requires window access does not have it.
The room without window access is the southwest room in the 9th grade neigh-
bourhood. This room can gain window access by simply moving its neighbourhood
northwards or eastwards.

118

10.8. SPLIT NEIGHBOURHOOD

(a) Initial layout. Input to the math-
ematical model

(b) Final layout. Output of the math-
ematical model run with all heuristics

Figure 10.13: Layouts before and after the final mathematical model is run for in-
stance 9N2

To summarize, the model creates neighbourhoods with significantly fewer corners and
more natural shapes by relocating and resizing rooms. However, the basic model has
apparent deficiencies. First, the model is unable to handle the complexity of the
problem instances. Secondly, it does not su�ciently take the objectives of stage one
and three into account, which adversely impacts the complete layouts. Including
the heuristics lock main room and split neighbourhood significantly increases the
performance of the model, allowing to find solutions and prove optimality for the
most complex neighbourhoods. Additionally, the window and lock hallways heuristics
mitigate the models adverse impact on window access and connectivity, respectively.
The final model containing the four heuristics above displays the desired behaviour,
as it is able to solve all the test instances and su�ciently maintain the objectives of
stage one and three. Consequently, the mathematical model in the final three-stage
algorithm contains all heuristics considered in this chapter.

119

10.8. SPLIT NEIGHBOURHOOD

120

Chapter 11

Technical study, local search

This chapter tests the third and final stage of the solution method. The study tests
and compares di↵erent values for the search area length of the local search, as well as
di↵erent approaches to select the order of the neighbourhoods. The objectives of the
local search were introduced in Chapter 7, and are for convenience repeated in Table
11.1. The fitness of the solutions generated in this stage is a weighted sum of these
objectives.

Table 11.1: Objective variables of the local search

Objective variables, LS

f1 Overlap

f2 Connectivity

f3 Narrow hallways

f5 Window access

f6 Hallway area

f8 Exterior corners

The hardware and software used to implement and test the local search are the same
as for the memetic algorithm and specified in Table 11.2.

Table 11.2: Details of the computer hardware and software used for the local search

CPU Intel Core i5 CPU @ 2.70GHz

RAM 8 GB

JAVA Version 11.0.4

Python Version 3.7

JAVA IDE Intellij IDEA Version 2018 3.5

Python IDE Pycharm Version 2017 2.2

121

11.1. METHODOLOGY

11.1 Methodology

The input to the local search is a layout generated in stage two. All tests are performed
on four test instances, two of which are generated from 6N , and two from 9N . Six
search area lengths and three selection approaches are tested. The lengths are tested
first. The tests are performed for each combination of instance and length using the
random order selection of neighbourhoods. When subsequently testing the selection
approaches the most desirable search area length, based on the test results. After
examining the results, the length obtaining the most promising results is applied
when testing the selection approaches. The same test approach holds for the selection
approaches, where tests are conducted for each combination of instance and selection
approach. Each combination is tested by running the algorithm ten times. Both
the mean objective values of the runs and the best run are chosen as the basis for
comparison. Preliminary testing reveals a low time complexity of the local search.
This allows the three-stage algorithm to run the local search multiple times, picking
the best solution as the final layout. Thus, the best run, which is the run obtaining
the lowest fitness score, is interesting to study. However, the objective values of a
single run might not give an accurate indication of how well a combination generally
performs compared to another. Comparing the mean objective values of di↵erent
combinations can help determine which solution approach to apply. Thus, the mean
is also studied. The final solution generated in the last stage should be feasible.
Therefore, only the runs producing feasible solutions are considered in the mean and
best objectives.

11.2 Test instances

To accurately determine the performance of the local search, tests are performed on
a variety of layouts generated from instance 6N and 9N . These instances are outputs
from stage two and are carefully picked to form a representative collection, where
the instances contain di↵erent properties and qualities. Table 11.3 presents the test
instances with their corresponding initial fitness and objective values. As the table
shows, the instances vary from being feasible, infeasible, and satisfactory. Recall that
a feasible solution fulfils objective f1 and f2, while a satisfactory solution also fulfils
objective f3 and f5. For the rest of this chapter, the objectives will be referred to by
the abbreviations in Table 11.4 due to readability. Figure 11.2 provides a visualization
of the four test instances. To ensure diversity of the instances, some test instances
contain neighbourhoods which were insu�ciently solved by the mathematical model.
This holds for 9th grade in (a) and (b) and 10th grade in (c).

122

11.2. TEST INSTANCES

Table 11.3: Initial fitness and objective values of the test instances

Objective variables

Instance Fitness f1 f2 f3 f5 f6 f8

6Na 672.2 0.0 0.0 14.0 2.0 29.2 24.0
6Nb 968.6 8.0 0.0 4.0 2.0 30.6 30.0
9Na 2183.2 0.0 3.0 0.0 4.0 27.6 48.0
9Nb 411.6 0.0 0.0 0.0 0.0 38.6 24.0

Table 11.4: Objective abbreviations of the local search objectives

Objective abbreviations

O Overlap

C Connectivity

NH Narrow hallways

WA Window access

HA Hallway area

EC Exterior corners

123

11.3. SEARCH AREA LENGTH

(a) 6Na (b) 6Nb

(c) 9Na (d) 9Nb

Figure 11.1: Initial layouts of the test instances used as input in the technical study
of the local search

11.3 Search area length

In the following, the length of the search area is tested. The lengths evaluated are
{2, 5, 10, 12, 15, 18}, which are chosen based on preliminary testing. The test results
for the average and best run for each combination of instance and length are shown
in Table 11.5 and 11.6, respectively. Table 11.5 shows the mean objective values of
each combination, while Table 11.6 shows the objective values of the best run of an
instance for each length. Both tables display the objective values of the instances
before conducting the local search. A feasible run implicates a connectivity and
overlap objective score of zero. As only the feasible runs are examined, these rows
are excluded from the tables. For both tables, the lowest fitness score obtained for
each instance is coloured in blue.

124

11.3. SEARCH AREA LENGTH

Table 11.5: The mean objective values for di↵erent search area lengths. The best
average fitness for each instance is marked in blue.

Search area length

Instance Objective Pre LS 2 5 10 12 15 18

6Na

Fitness 672.2 376.5 345.8 348.9 344.6 205.5 284.7
NH 14.0 0.0 0.0 0.0 0.0 0.3 0.0
WA 2.0 1.1 1.0 1.0 1.0 0.1 0.6

HA(%) 29.2 14.7 13.9 16.2 15.8 21.7 19.8
EC 24.0 30.9 31.7 27.7 26.9 24.9 27.4

6Nb

Fitness 968.6 504.7 320.0 212.4 273.2 172.5 243.7
NH 4.0 0.3 0.0 0.0 0.0 0.0 0.0
WA 2.0 1.6 0.7 0.3 0.6 0.0 0.4

HA(%) 30.6 23.3 20.8 16.7 17.9 20.0 17.7
EC 24.0 25.7 27.4 29.1 27.7 27.7 27.7

9Na

Fitness 2183.2 457.7 289.7 263.2 294.0 298.7 373.1
NH 0.0 0.0 0.0 0.0 0.0 0.0 0.0
WA 0.0 1.0 0.1 0.1 0.1 0.3 0.7

HA(%) 38.6 24.1 24.0 21.7 25.5 22.5 22.4
EC 48.0 32.0 34.0 34.3 29.7 31.7 31.3

9Nb

Fitness 441.6 249.1 221.0 229.5 209.8 224.6 214.9
NH 0.0 0.0 0.0 0.0 0.0 0.0 0.0
WA 0.0 0.0 0.0 0.0 0.0 0.0 0.0

HA(%) 38.6 24.5 21.6 22.8 20.5 22.3 20.7
EC 24.0 27.1 26.9 25.7 26.3 25.7 27.7

As seen in Table 11.5, a length of 15 yields the best results on average for two out of
four instances. Compared to the other lengths, the LS generates considerably better
solutions for the 6N instances with a length of 15, mainly due to its ability to fulfil the
window access objective. Table 11.6 shows a similar pattern. Again, using a length
of 15 results in the lowest fitness for half of the instances. Additionally, the best
fitness of instance 6Na with length 15, is almost equal to the best fitness obtained
with a length of 18. Overall, the tables reveal that increasing the length yields better
scores. Comparing the tables show that with a greater length, the LS performs better
on the best run compared to the shorter lengths, while on average, slightly shorter
lengths yields better fitness. For instance does the LS with length 18 perform better
in comparison to the other lengths for the best run compared to the average run.
This may be explained by the greediness of the LS with a large search area length. A
greater length provides more possibilities when moving a neighbourhood, but the LS
may make large relocations of a single neighbourhood that are not desirable for the
other neighbourhoods. The solutions for the 9N instances show smaller di↵erences
between the smaller and greater lengths, both for the best and average runs. As 9N
contains more neighbourhoods, increasing the length might not have the same e↵ect
as for smaller instances, because more of the search area is likely to be covered by
other neighbourhoods.

125

11.3. SEARCH AREA LENGTH

Table 11.6: The objective values of the best run for each combination of instance and
length. The best fitness obtained for each instance is marked in blue.

Search area length

Instance Objective Pre LS 2 5 10 12 15 18

6Na

Fitness 672.2 330.8 334.2 336.4 334.6 160.6 160.2
NH 14.0 0.0 0.0 0.0 0.0 0.0 0.0
WA 2.0 1.0 1.0 1.0 1.0 0.0 0.0

HA(%) 29.2 12.9 11.6 14.8 14.4 19.6 18.8
EC 24.0 28.0 32.0 26.0 26.0 24.0 26.0

6Nb

Fitness 968.6 380.8 138.2 140.2 138.8 124.6 144.4
NH 4.0 0.0 0.0 0.0 0.0 0.0 0.0
WA 2.0 1.0 0.0 0.0 0.0 0.0 0.0

HA(%) 30.6 21.9 13.3 16.3 12.5 10.7 16.2
EC 30.0 26.0 30.0 24.0 24.0 30.0 26.0

9Na

Fitness 2183.2 429.2 236.0 220.0 235.0 212.4 219.2
NH 0.0 0.0 0.0 0.0 0.0 0.0 0.0
WA 4.0 1.0 0.0 0.0 0.0 0.0 0.0

HA(%) 27.6 21.1 22.4 20.0 21.7 19.7 20.5
EC 48.0 32.0 30.0 32.0 32.0 30.0 30.0

9Nb

Fitness 441.6 232.6 188.4 188.4 152.6 161.4 190.2
NH 0.0 0.0 0.0 0.0 0.0 0.0 0.0
WA 0.0 0.0 0.0 0.0 0.0 0.0 0.0

HA(%) 38.6 23.1 19.8 19.8 13.5 17.2 18.3
EC 24.0 26.0 20.0 20.0 26.0 24.0 26.0

As the mathematical model in stage two may produce infeasible solutions, the local
search must be able to turn an infeasible solutions into a feasible one. Thus, the
fraction of runs in which the local search generates feasible solutions is key. Table
11.7 shows the fraction of feasible solutions for each combination of length l and test
instance. The results show that the LS generates solely feasible solutions for almost
all combinations. The only exception is instance 9Na, where its initial violation of
connectivity likely is the cause. Lengths of 2 and 18 yield feasible solutions for the
9Na instance 57% and 43% of the runs, respectively. A length of 2 possibly creates a
too small search area for the LS to obtain feasibility, while a local search with length
18 may take too greedy choices aiming to fulfil connectivity.

A time study is conducted and shows that the longest average run lasts for about
nine minutes. The results are given in Table F.1 in Appendix F. Due to the low time
complexity, time does not a↵ect the choice of length. Based on the objective value
results and the algorithms ability to produce feasible solutions, a search area length
of 15 is chosen for the local search.

126

11.4. SELECTION APPROACH OF NEIGHBOURHOODS

Table 11.7: The fraction of feasible solutions generated for each combination of in-
stance and length

Search area length l

Instance 2 5 10 12 15 18

6Na 1.0 1.0 1.0 1.0 1.0 1.0
6Nb 1.0 1.0 1.0 1.0 1.0 1.0
9Na 0.57 1.0 1.0 1.0 1.0 0.43
9Nb 1.0 1.0 1.0 1.0 1.0 1.0

11.4 Selection approach of neighbourhoods

In the following, di↵erent selection approaches of neighbourhoods are tested and eval-
uated. Two heuristics are implemented and compared to the random order selection.
The heuristics were introduced in Chapter 5.7 and is for convenience repeated in
Table 11.8 along with the random order selection.

Table 11.8: Three alternative selection approaches

Number Selection approaches

1 Order by largest neighbourhood

2
Order by neighbourhoods

violating objectives f1, f2 and f5

3 Random order

A study is conducted on both the fraction of feasible solutions and the time com-
plexity of the di↵erent approaches. The results are presented in Appendix F. Each
combination of selection approach and test instance yields solely feasible solutions.
The results also indicate no practical di↵erence in the time complexity of the di↵erent
approaches.

The objective values for the average and best run for each combination of instance and
selection approach are shown in Table 11.9 and 11.10, respectively. The numbers for
the selection approach correspond with those in Table 11.8. As the runs considered
are all feasible, the overlap and connectivity objectives are excluded from the tables.
The largest neighbourhood heuristic is deterministic, and is only run once. Thus, the
objective values are similar in the two tables, as the mean and best objective values
do not di↵er.

The tables show that the random order selection has the best performance. As in-
stance 9Nb is initially feasible and fulfils the window access objective, heuristic 2
turns into a random order approach for this instance, as described by Algorithm 4
in Section 7.2. Thus, the random order selection performs best on three out of four
instances, for both the mean and best runs. It is also observed from Table 11.10

127

11.4. SELECTION APPROACH OF NEIGHBOURHOODS

that random order performs equally good or strictly better on all objectives for three
instances. An unexpected result is the performance of heuristic 2. This heuristic
achieves the most satisfying results for instance 6Na both on average and for the best
run. As this initial instance fulfils both the connectivity and overlap objective, as op-
posed to instance 6Nb and 9Na, the heuristic does not perform best where expected.
Heuristic 1 obtains the worst results, possibly due to its determinism, yielding the
same order in each iteration. Based on the results, random order is chosen as the
selection approach.

Table 11.9: The mean objective value for di↵erent selection approaches. The best
average fitness obtained for each instance is marked in blue.

Selection approach

Instance Objective Pre LS 1 2 3

6Na

Fitness 672.2 339.0 185.0 205.5
NH 14.0 0.0 0.0 0.3
WA 2.0 1.0 0.0 0.1

HA(%) 29.2 13.4 23.3 21.7
EC 24.0 30.0 24.0 24.9

6Nb

Fitness 968.6 331.2 276.0 172.5
NH 4.0 0.0 0.0 0.0
WA 2.0 1.0 0.6 0.0

HA(%) 30.6 12.9 17.6 20.0
EC 30.0 28.0 29.4 27.7

9Na

Fitness 2183.2 309.4 327.5 298.7
NH 0.0 0.0 0.1 0.0
WA 4.0 0.0 0.4 0.3

HA(%) 27.6 29.5 22.3 22.5
EC 48.0 30.0 32.3 31.7

9Nb

Fitness 441.6 236.6 215.1 224.6
NH 0.0 0.0 0.0 0.0
WA 0.0 0.0 0.0 0.0

HA(%) 38.6 22.4 21.2 22.3
EC 24.0 30.0 26.0 25.7

128

11.4. SELECTION APPROACH OF NEIGHBOURHOODS

Table 11.10: The objective values of the best run for each combination of instance
and selection approach. The best fitness obtained for each instance is marked in blue.

Selection approach

Instance Objective Pre LS 1 2 3

6Na

Fitness 672.2 339.0 147.6 160.6
NH 14.0 0.0 0.0 0.0
WA 2.0 1.0 0.0 0.0

HA(%) 29.2 13.4 17.5 19.6
EC 24.0 30.0 24.0 24.0

6Nb

Fitness 968.6 331.2 144.6 124.6
NH 4.0 0.0 0.0 0.0
WA 2.0 1.0 0.0 0.0

HA(%) 30.6 12.9 13.6 10.7
EC 30.0 28.0 32.0 30.0

9Na

Fitness 2183.2 309.4 239.0 212.4
NH 0.0 0.0 0.0 0.0
WA 4.0 0.0 0.0 0.0

HA(%) 27.6 29.5 21.6 19.7
EC 48.0 30.0 34.0 30.0

9Nb

Fitness 441.6 236.6 196.4 161.4
NH 0.0 0.0 0.0 0.0
WA 0.0 0.0 0.0 0.0

HA(%) 38.6 22.4 18.4 17.2
EC 24.0 30.0 28.0 24.0

The technical study certifies the desired behaviour of the local search. The LS man-
ages to turn infeasible solutions feasible, turn feasible solutions satisfactory, and im-
prove satisfactory solutions in terms of building costs. Figure 11.2 visualizes the final
layouts of the test instances after employing a local search with a search area length
of 15 and random selection order of neighbourhoods. Table 11.11 compares the fit-
ness and objective values of the instances before and after the local search, denoted
”Pre” and ”Post”. By running the local search, all instances become satisfactory,
while decreasing the hallway area substantially. For instance 9Nb, which is initially
satisfactory, the hallway area decreases by 67%.

Additionally, the number of exterior corners of instance 9Na, which initially contains
notably more exterior corners than the other instances, decreases drastically. For
the other instances, the number remains unchanged. This can be explained by their
low initial number of exterior corners, and obtaining even fewer corners may not be
possible without a↵ecting the other objectives negatively.

129

11.4. SELECTION APPROACH OF NEIGHBOURHOODS

Table 11.11: Fitness and objective values of the test instances before and after the
local search

Objective variables

Instance Fitness O C NH WA HA(%) EC

6Na

Pre 672.2 0.0 0.0 14.0 2.0 28.2 24.0

Post 160.6 0.0 0.0 0.0 0.0 19.6 24.0

6Nb

Pre 968.6 8.0 0.0 4.0 2.0 30.6 30.0

Post 124.6 0.0 0.0 0.0 0.0 10.7 30.0

9Na

Pre 2183.2 0.0 3.0 0.0 4.0 27.6 48.0

Post 212.4 0.0 0.0 0.0 0.0 19.7 30.0

9Nb

Pre 411.6 0.0 0.0 0.0 0.0 38.6 24.0

Post 181.4 0.0 0.0 0.0 0.0 17.2 24.0

(a) 6Na (b) 6Nb

(c) 9Na (d) 9Nb

Figure 11.2: The final layouts of the test instances after the local search is conducted

130

Chapter 12

Performance test

This chapter evaluates the performance of the three-stage algorithm as a solution
method for the SLP. The algorithm is run five times for each of the six RSDs presented
in Chapter 8, giving a total of 30 solutions to the SLP. For all performance tests, the
three stages of the algorithm are implemented with the settings that were concluded
to be the most desirable in each of the technical study chapters, along with a stopping
condition. A population size of 50 is chosen for the MA, and the stopping condition
is set at 300 generations. Stage two, the mathematical model, is given a time limit
of eight hours. For each test, stage three is run 15 separate times, each generating
a unique solution. The best solution, in terms of weighted fitness score, is the final
result of the test. With these stopping conditions, stage one and stage three take
less than an hour each for the most extensive test instances. Stage two generally
uses close to the full eight hours for all instances. The tests are conducted on the
computing cluster Solstorm, provided by the Department of Industrial Economics and
Technology Management at NTNU. The hardware used for the performance tests are
specified in Table 12.1.

Table 12.1: Details of the computer hardware used for the performance tests

CPU 2.4GHz Intel Xeon Gold 5115 CPU – 10 core

RAM 96 Gb

Since the purpose of this thesis is to generate layouts meant to be iterated on by
architects, it is desirable but not an absolute requirement that they fulfil the spec-
ifications in the RSD. The results show that all 30 solutions su�ciently meet these
requirements and that they are all feasible. Thus, the solutions are further assessed
on how well they minimize building costs and their geometric simplicity.

131

12.1. OBJECTIVES

12.1 Objectives

The algorithm seeks to minimize building area and the number of exterior corners,
as they are the two main cost drivers in a layout design from an architectural point
of view. Recall that since the RSD lists the rooms with a suggested size, it is the
hallway area that is subject to minimization by the three-stage algorithm.

The best, average and worst hallway area score from the five tests performed on the
di↵erent RSD is presented in column HA in Table 12.2. Hallway area is almost non-
existent for solutions generated from the 2N and 3N RSDs. This is a reasonable
result as these solutions place the neighbourhoods adjacent to the hub, thus reducing
the need for hallways. For the other RSDs, the average percentage of hallway area is
between 14.2% and 24.7%, increasing with the number of neighbourhoods. The dif-
ference between the best and worst solutions in terms of hallway area also increases
with the number of neighbourhoods. The hallway area percentage in Levanger Middle
School is 39%. Comparing this to the test results for the 9N instance, which is more
complex in terms of total room size and number of neighbourhoods, the algorithm
obtains a significantly lower hallway area percentage in its solutions. The average
hallway area score in solutions for the 9N instance is 20.9 percentage points than
Levanger Middle School. An explanation for some of this di↵erence is that the algo-
rithm does not consider the fact that some hallways will be subject to heavy tra�c
and therefore should be wider than the minimum limit set in the algorithm. Also,
the algorithm uses the main room in each neighbourhood as an access point to a
greater extent than the real-world Levanger Middle School. Still, after taking this
into consideration, it can be concluded that the algorithm performs very well in terms
of minimizing building area.

132

12.1. OBJECTIVES

Table 12.2: Hallway area and exterior corner results from performance tests

Objectives

RSD HA(%) EC

Best 1.3 12.0
2N Average 2.8 15.6

Worst 4.4 18.0

Best 1.9 12.0
3N Average 3.1 14.0

Worst 4.1 16.0

Best 13.2 18.0
6N Average 14.2 18.0

Worst 16.5 22.0

Best 15.0 16.0
7N Average 18.2 17.6

Worst 20.2 20.0

Best 13.8 26.0
9N Average 20.9 33.2

Worst 25.7 46.0

Best 19.2 24.0
11N Average 24.7 35.8

Worst 30.2 42.0

Column EC in Table 12.2 shows the number of exterior corners in the final solutions.
As with the hallway area results, the best, average and worst value obtained in the
performance tests are presented. Examining the average value for the various RSDs,
the number of exterior corners for each of the two largest instances are almost double
that of the four smaller instances. The results indicate that this objective becomes
considerably more di�cult to satisfy as the number of neighbourhoods increase over
a certain threshold. The di↵erence between the best and worst solutions for both 9N
and 11N is large, with a gap of 20 and 18 exterior corners, respectively. The foot-
print of Levanger Middle School is a rectangle, thus it has only four exterior corners.
Considering the test results in Table 12.2, it is clear that the current implementation
of the three-stage algorithm is not suited to generate buildings with such a small
number of exterior corners. A major reason for this is the strict implementation of
door-neighbour requirements. Architects, in general, use these specifications in the
RSD more as proximity guidelines than requirements. Allowing rectilinear rooms, as
opposed to solely rectangular, will likely allow the algorithm to generate more e�cient
solutions in terms of exterior corners. At the same time, it will also increase the run
time drastically. Still, to generate buildings with as few as four exterior corners for
the largest RSDs, it is likely that fundamental changes to the three-stage algorithm
is needed. For example, to initially determine the footprint of the building.

Figure 12.1 shows solutions for each of the six RSDs, generated by the three-stage
algorithm. These are not necessarily the best in terms of hallway area or the number

133

12.1. OBJECTIVES

of exterior corners. When selecting these solutions, a subjective evaluation of the
practicality and aesthetics in the resulting layout is included. Also, the algorithm does
not di↵erentiate between di↵erent exterior corners. By assessing the layouts manually,
it becomes clear that small alterations can remove many of the exterior corners. An
example is the small gap between the 8th grade and 9th grade neighbourhoods in
Figure 12.1 (a). Since the solutions are meant for inspiration and a starting point
the architect can iterate on, a manual assessment of the layout can take this into
consideration.

Lastly, the algorithm is assessed by studying the geometric simplicity of the layouts in
Figure 12.1. A qualitative evaluation of their geometric simplicity is performed. Part
of the evaluation is done by assessing the number of corners in the solutions, both
interior and exterior. For all layouts, all individual neighbourhoods are geometrically
simple with natural shapes and few corners. This result is expected since this is the
main objective of the mathematical model, and the technical study revealed that the
model finds optimal solutions for all neighbourhoods within the eight-hour time limit.
The geometric complexity of the layouts grow at an increasing pace as the number
of neighbourhoods increase. Comparing the 3N and 6N layouts in Figure 12.1 (b)
and (c) shows there is quite a small di↵erence in terms geometric complexity between
these two layouts. This is a notable result as going from 3N to 6N constitutes a
100% increase in terms of neighbourhoods. The di↵erence in complexity between the
9N layout and the 6N layout is greater, even though this only constitutes a 50%
increase in the number of neighbourhoods. Loosening the restrictions on room sizes
and door-neighbour requirements would likely let the three-stage algorithm produce
layouts that is geometrically more simplistic.

(a) 2N

134

12.1. OBJECTIVES

(b) 3N

(c) 6N

135

12.1. OBJECTIVES

(d) 7N

(e) 9N

136

12.1. OBJECTIVES

(f) 11N

Figure 12.1: Blueprint of the layouts generated by the three-stage algorithm for each
of the six RSDs

137

12.1. OBJECTIVES

138

Chapter 13

Concluding remarks

This thesis has discussed the problem of developing a school layout, and proposed a
multi-stage algorithm for generating layout designs. The process of designing a school
layout is a multi-objective task that requires balancing conflicting goals and complying
with complex regulations. Modelling the problem as an optimization problem makes
it possible to generate multiple solutions that are guaranteed to meet quantitative
regulations, while optimizing for desirable objectives. The algorithm proposed in
this thesis can serve as a valuable decision support tool for architects. The solutions
generated show a broad spectre of layouts, which architects can use as starting points
in the layout developing process. The layouts comply with the requirements in the
RSD and are optimized for building costs in terms of area and exterior corners.

The generation of school layouts has to our knowledge never been studied in the
field of operations research. This thesis defines the School Layout Problem (SLP)
as the problem of placing rooms and hallways to form a single floor building in
two dimensions with no fixed footprint, and sheds light on the specific challenges
the problem poses. Furthermore, the thesis concludes that little research is directly
comparable or resembles the complexity of the SLP. As a school may contain more
than 50 rooms on a single floor, the SLP requires a solution method that scales
well. Thus, a robust three-stage algorithm is developed to generate layouts. The
stages are carefully assembled, and allows for exploiting the strengths of the multiple
solution approaches. The solution method consists of a memetic algorithm (MA),
a mathematical model and a local search (LS). These compose stage one, two and
three, respectively.

Based on the findings in the technical studies, it is apparent that concurrently con-
sidering all elements of the SLP is overly complex. Thus, the multi-stage approach is
developed to successively consider the aspects, resulting in a more manageable com-
plexity in each stage. In turn, this allows the stages of the algorithm to su�ciently
handle their respective considerations, such that they collectively solve the SLP as a
whole. Nevertheless, tests show that if a stage completely disregards the considera-
tions taken in the other stages, it tends to impact the complete solution adversely.

139

Thus, adjustments to each stage are made to make them more compatible. For exam-
ple, for the mathematical model, heuristics are implemented to maintain objectives
which are fulfilled in stage one. These heuristics improve the algorithms ability to
generate feasible solutions.

The implemented algorithm solves instances containing up to 50 rooms, which is
plentiful for the single-floor SLP studied in this thesis. The resulting layouts meet
the requirements in the RSDs while containing a small amount of hallway area and
few exterior corners. In Levanger Middle School, the hallways make up 40% of the
total building area. The layouts that are generated when applying the algorithm to
instances of comparable sizes contain merely 20% hallways. Additionally, the number
of exterior corners are minimized to the extent where the school buildings take a
natural shape. However, there is still a need for improvement. The algorithm is unable
to obtain fewer exterior corners as a result of rigidly adhering to the requirements in
the RSD. Specifically, keeping the size of the rooms fixed in two of the stages and a
strict implementation of proximity requirements.

The results show that the algorithm implemented generates a great variety of layout
suggestions from the same RSD. Hence, the algorithm manages to map out parts of
the solution space and turn a list of requirements into a suggested layout. To make
the solutions more applicable to a real-world layout, the SLP should be extended, as
aspects such as noise pollution and emergency exit access is not considered in this
thesis. Still, the layouts adhere to the requirements in the RSD and can provide inspi-
ration and a starting point for an architect. However, as designing a school layout is a
highly practical problem with many implicit criteria, architects take artistic freedom
in the layout designs. For instance, they may not completely adhere to adjacency
requirements, but rather consider the proximity of rooms. As municipalities do not
create RSDs to serve as input to optimization methods, considering the requirements
in the RSD as absolute may not be best practice. Doing so is likely to exclude desir-
able solutions. Assessing which deviations are reasonable is not an appropriate task
for an optimization method.

To make the layouts generated by the algorithm more e↵ective as a decision support
tool for architects, removing some of the simplifications made to the real-world SLP
should be considered. Creating layouts for multiple floors and allowing rooms to take
on more than just rectangular shapes are natural problem extensions. Changes to
the algorithm could also provide even more helpful solutions. A natural extension of
the current algorithm is to handle natural lighting and flow capacity requirements in
a more sophisticated manner. Another improvement of the algorithm would be to
revise the implementation of proximity requirements given in the RSD. The current
enforcement is stricter than what is demanded in the RSD. A better way to manage
these requirements would let the algorithm create layouts that satisfy the objectives
to a greater extent.

Based on the results, the use of optimization techniques to generate school layouts
appear to be promising. The implemented algorithm provides value to the architect

140

in terms of decision support, as the layouts generated perform well on several quan-
titative and qualitative objectives. Hence, the results of this thesis advocate further
research on the area.

141

Bibliography

Abotaleb, I., K. Nassar, and O. Hosny (2016). “Layout optimization of construction
site facilities with dynamic freeform geometric representations”. In: Automation in
Construction 66, pp. 15–28.

Bazaati, S. (2017). Construction site layout planning considering traveling distance
between facilities: Application of particle swarm optimization.

Besbes, M., M. Zolghadri, R. Costa A↵onso, F. Masmoudi, and M. Haddar (2020).
“A methodology for solving facility layout problem considering barriers: genetic
algorithm coupled with A* search”. In: Journal of Intelligent Manufacturing 31.3,
pp. 615–640.

Brenner, U. (2018). “Soft packings of rectangles”. In: Computational Geometry 70-71,
pp. 49–64.

Chatzikonstantinou, I. and E. Bengisu (2016). “Interior spatial layout with soft ob-
jectives using evolutionary computation”. In: 2016 IEEE Congress on Evolutionary
Computation (CEC), pp. 2306–2312.

Chu, C. and E. Young (2004). “Nonrectangular Shaping and Sizing of Soft Modules for
Floorplan-Design Improvement”. In: Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on 23, pp. 71–79.

Chwif, L., M. R. P. Barretto, and L. A. Moscato (1998). “A solution to the facil-
ity layout problem using simulated annealing”. In: Computers in Industry 36.1,
pp. 125–132.

Di Pieri, A. (2013). Algorithms for two-dimensional guillotine packing problems.

Dino, I. G. (2016). “An evolutionary approach for 3D architectural space layout design
exploration”. In: Automation in Construction 69, pp. 131–150.

Drira, A., H. Pierreval, and S. Hajri-Gabouj (2007). “Facility layout problems: A
survey”. In: Annual Reviews in Control 31.2, pp. 255–267.

142

BIBLIOGRAPHY

Dutta, K. and S. Sarthak (2011). “Architectural space planning using evolutionary
computing approaches: a review”. In: Artificial Intelligence Review 36.4.

Dyckho↵, H. (1990). “A typology of cutting and packing problems”. In: European
Journal of Operational Research 44.2, pp. 145–159.

Erozan, İ. and E. Çalışkan (2020). “A multi-objective genetic algorithm for a special
type of 2D orthogonal packing problems”. In: Applied Mathematical Modelling 77,
pp. 66–81.

Feng, J. and A. Che (2018). “Novel integer linear programming models for the fa-
cility layout problem with fixed-size rectangular departments”. In: Computers &
Operations Research 95, pp. 163–171.

Flack, R. W. J. and B. J. Ross (2011). “Evolution of Architectural Floor Plans”. In:
Applications of Evolutionary Computation. Ed. by C. Di Chio, A. Brabazon, G. A.
Di Caro, R. Drechsler, M. Farooq, J. Grahl, G. Greenfield, C. Prins, J. Romero,
G. Squillero, E. Tarantino, A. G. B. Tettamanzi, N. Urquhart, and A. Ş. Uyar,
pp. 313–322.

Fügenschuh, A., K. Junosza-Szaniawski, and Z. Lonc (2014). “Exact and approxi-
mation algorithms for a soft rectangle packing problem”. In: Optimization 63.11,
pp. 1637–1663.

Gürsel, D. and Ü. Göktürk (2017). “Multiobjective Design Optimization of Building
Space Layout, Energy, and Daylighting Performance”. In: Journal of Computing
in Civil Engineering 31.5, p. 04017025.

Hammad, A. W., D. Rey, and A. Akbarnezhad (2017). “A Cutting Plane Algorithm
for the Site Layout Planning Problem with Travel Barriers”. In: Computers &
Operations Research 82.

Haupt, R. L. and S. E. Haupt (1998). Practical Genetic Algorithms.

He, K., P. Ji, and C.-M. Li (2015). “Dynamic reduction heuristics for the rectangle
packing area minimization problem”. In: European Journal of Operational Research
241, pp. 674–685.

Hermanrud, I. E., C. F. Lystad, and P. J. Narvhus (2019). Floor Plan Optimization
in Schools using Genetic Algorithms.

Hosseini nasab, H., S. Fereidouni, S. Ghomi, and M. Fakhrzad (2018). “Classifica-
tion of facility layout problems: a review study”. In: The International Journal of
Advanced Manufacturing Technology 94.

143

BIBLIOGRAPHY

Hu, N.-Z., H.-L. Li, and J.-F. Tsai (2012). “Solving Packing Problems by a Distributed
Global Optimization Algorithm”. In: Mathematical Problems in Engineering 2012.

Ibaraki, T. and K. Nakamura (2006). “Packing Problems with Soft Rectangles”. In:
Hybrid Metaheuristics. Ed. by F. Almeida, M. J. Blesa Aguilera, C. Blum, J. M.
Moreno Vega, M. Pérez Pérez, A. Roli, and M. Sampels, pp. 13–27.

Jain, S. and H. C. Gea (1998). “Two-dimensional packing problems using genetic
algorithms”. In: Engineering with Computers 14.3, pp. 206–213.

Ji, P., K. He, Y. Jin, H. Lan, and C.-M. Li (2017). “An iterative merging algorithm for
soft rectangle packing and its extension for application of fixed-outline floorplanning
of soft modules”. In: Computers & Operations Research 86.

Kim, J.-G. and Y.-D. Kim (1999). “A branch and bound algorithm for locating in-
put and output points of departments on the block layout”. In: Journal of the
Operational Research Society 50.5, pp. 517–525.

Komarudin and K. Y. Wong (2010). “Applying Ant System for solving Unequal Area
Facility Layout Problems”. In: European Journal of Operational Research 202.3,
pp. 730–746.

Lee, Y. H. and M. H. Lee (2002). “A shape-based block layout approach to facil-
ity layout problems using hybrid genetic algorithm”. In: Computers & Industrial
Engineering 42.2, pp. 237–248.

Maag, V., M. Berger, A. Winterfeld, and K.-H. Küfer (2010). “A novel non-linear
approach to minimal area rectangular packing”. In: Annals of Operations Research
179.1, pp. 243–260.

McKendall, A. R., J. Shang, and S. Kuppusamy (2006). “Simulated annealing heuris-
tics for the dynamic facility layout problem”. In: Computers & Operations Research
33.8, pp. 2431–2444.

Michalek, J., R. Choudhary, and P. Papalambros (2002). “Architectural layout design
optimization”. In: Engineering Optimization 34.5, pp. 461–484.

Murata, H. and E. S. Kuh (1998). “Sequence-pair based placement method for hard/
soft/pre-placed modules”. In: Proceedings of the 1998 international symposium on
Physical design, pp. 167–172.

Scalia, G., R. Micale, A. Giallanza, and G. Marannano (2019). “Firefly algorithm
based upon slicing structure encoding for unequal facility layout problem”. In:
International Journal of Industrial Engineering Computations 10.3, pp. 349–360.

144

BIBLIOGRAPHY

Schanke, T. (2008). Kunnskapsstatus om skolebygg.

Shekhawat, K. and J. P. Duarte (2017). “Rectilinear Floor Plans”. In: Computer-
Aided Architectural Design. Future Trajectories. Ed. by G. Çağdaş, M. Özkar, L. F.
Gül, and E. Gürer, pp. 395–411.

Tari, F. G. and H. Neghabi (2018). “Constructing an optimal facility layout to max-
imize adjacency as a function of common boundary length”. In: Engineering Opti-
mization 50.3, pp. 499–515.

Udir (2019). Statistikk om grunnskolen 2018/19.

Verma, M. and M. K. Thakur (2010). “Architectural space planning using Genetic
Algorithms”. In: 2010 The 2nd International Conference on Computer and Au-
tomation Engineering (ICCAE). Vol. 2, pp. 268–275.

Wang, X.-Y., Y. Yang, and K. Zhang (2018). “Customization and generation of
floor plans based on graph transformations”. In: Automation in Construction 94,
pp. 405–416.

Wäscher, G., H. Haußner, and H. Schumann (2007). “An improved typology of cut-
ting and packing problems”. In: European Journal of Operational Research 183.3,
pp. 1109–1130.

Wong, S. S. Y. and K. C. C. Chan (2009). “EvoArch: An evolutionary algorithm for
architectural layout design”. In: Computer-Aided Design 41.9, pp. 649–667.

Wu, W., X.-M. Fu, R. Tang, Y. Wang, Y.-H. Qi, and L. Liu (2019). “Data-driven inte-
rior plan generation for residential buildings”. In: ACM Transactions on Graphics
38.6, 234:1–234:12.

Xie, W. and N. V. Sahinidis (2008). “A branch-and-bound algorithm for the continu-
ous facility layout problem”. In: Computers & Chemical Engineering 32.4, pp. 1016–
1028.

Young, F., C. Chu, W.-S. Luk, and Y. Wong (2001). “Handling Soft Modules in
General Non-slicing Floorplan using Lagrangian Relaxation”. In: Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on 20, pp. 687–692.

Zawidzki, M. (2016). “Architectural Functional Layout Optimization in a Coarse
Grid”. In: Discrete Optimization in Architecture: Architectural & Urban Layout.
Ed. by M. Zawidzki, pp. 3–34.

145

BIBLIOGRAPHY

Zhao, Y. and N. Sannomiya (2001). “An Improvement of Genetic Algorithms by
Search Space Reductions in Solving Large-scale Flowshop Problems”. In: IEEJ
Transactions on Electronics, Information and Systems 121.6, pp. 1010–1015.

146

Appendices

147

148

Appendix A

Room specification documents

Table A.1: Overview of neighbourhoods contained within each test RSD

RSD Neighbourhoods
2N 8th grade, 9th grade, Hub
3N 8th grade, 9th grade, ICT, Hub
7N Arts & Crafts, Cooking, Music area, Sciences, Library,

Employees wardrobes, Administration, Hub
6N 9th grade, Arts & Crafts, Cooking, Music area, Gym,

Employees 9th grade, Hub
9N 9th grade, 10th grade, Music area, Sciences, Gym

Library, Employees 9th grade, Employees 10th grade,
Administration, Hub

11N 9th grade, 10th grade, ICT, Arts & Crafts,
Cooking, Music area, Sciences, Library, Employees 9th grade,
Employees 10th grade, Administration, Hub

149

Table A.2: The neighbourhoods considered from the RSD of Levanger Middle School

Neighbourhood Room type Suggested size (m2) Aspect ratio bound

9th grade

Classroom 70 1.5
Classroom 70 1.5
Classroom 70 1.5
Classroom 70 1.5
Study room 30 2.0
Meeting room 30 2.0
Common room (Main room) 200 4.0

8th grade

Classroom 70 1.5
Classroom 70 1.5
Classroom 70 1.5
Classroom 70 1.5
Study room 30 2.0
Study room 30 2.0
Meeting room 30 2.0
Common room (Main room) 200 4.0

10th grade

Classroom 70 1.5
Classroom 70 1.5
Classroom 70 1.5
Classroom 70 1.5
Study room 30 2.0
Meeting room 30 2.0
Common room (Main room) 200 4.0

ICT

O�ces 20 2.0
ICT guidance 20 2.0
Computer room 25 3.0
Resting room 20 2.0
Meeting room 20 2.0
Common room (Main room) 60 4.0

Arts & Crafts
Preparation room (Main room) 100 3.0
Woodwork 100 3.0
Painting 70 3.0

Cooking
Kitchen 80 3.0
Storage and cold storage room 20 2.0
Eating area and entrance area (Main room) 80 3.0

Music area

Dancing/Movement room 60 2.0
Practice area band 55 2.0
Storage for music equipment 36 3.0
Main room 80 3.0

Sciences
Chemistry 80 2.0
Physics 40 2.0
Preparation room (Main room) 40 2.0

Library
Library (Main room) 80 3.0
Computer area 64 3.0

Employees 9th grade

O�ce 1 20 1.5
O�ce 2 20 1.5
O�ce 3 20 1.5
Meeting room 20 1.5
Common room (Main room) 60 3.0

Employees 10th grade

O�ce 1 20 1.5
O�ce 2 20 1.5
O�ce 3 20 1.5
Meeting room 20 1.5
Common room (Main room) 60 3.0

Administration
Teachers room 80 2.0
Warderobe teachers 20 2.0
Common room (Main room) 100 3.0

Employees wardrobes
Wardrobes (Main room) 120 3.0
Toilets 30 3.0

Gym

Warderobe, girls 40 3.0
Warderobe, boys 40 3.0
Warderobe teacherss 20 1.5
Gym area (Main room) 100 3.0

Hub Consists of a number of rooms; canteen, aula, auditorium etc. 500 2.0

150

Appendix B

Parameter settings, memetic
algorithm

Table B.1: Initial and final parameter settings, MA

Initial parameter settings

GA rates

Initialization rate 0.1

Crossover rate 0.4

Mutation rate 0.4

Elitism rate 0.2

Tournament size 0.4

Mutation probabilities

Move room random 0.2

Swap wall-sharing side 0.4

Change room dimension 0.3

Move overlapping room 0.3

Move to not-attached door-neighbour 0.6

Move neighbourhood random 0.4

Move attached door-neighbours 0.3

Swap rooms 0.4

Local search

Local search probability 0.4

Final parameter settings

GA rates

Initialization rate 0.8

Crossover rate 0.2

Mutation rate 0.6

Elitism rate 0.4

Tournament size 0.4

Mutation probabilities

Move room random 0.1

Swap wall-sharing side 0.4

Change room dimension 0.1

Move overlapping room 0.4

Move to not-attached door-neighbour 0.6

Move neighbourhood random 0.4

Move attached door-neighbours 0.5

Swap rooms 0.4

Local search

Local search probability 1.0

151

152

Appendix C

Parameter settings tests, memetic
algorithm

C.1 Initialization

As discussed in Section 5.4, the model uses two di↵erent approaches for initializing an
individual, heuristic and random. A probability parameter ph determines the proba-
bility of the heuristic approach being chosen to initialize an individual. Consequently,
the probability of the random approach being chosen is (1� ph).

Figure C.1: Fitness of the population for di↵erent values of ph

Figure C.1 shows a trend where a higher ph yields better solutions. Also, the runs
with high ph converge faster. In the case with only random initialization, the initial
objective value is significantly worse than higher values for ph, and the model needs
more iterations to converge. The findings argue that a high probability of the heuristic
approach is good, and thus ph = 0.8 for the subsequent tests.

153

C.2. TOURNAMENT SIZE

C.2 Tournament size

The results for the tournament size do not reveal any trends on the e↵ect of changing
pt in either direction. A possible explanation is that the tournament size is not very
significant. The results are displayed in Figure C.2. As this test does not provide
any insight on whether to increase or decrease the tournament size, it is kept fixed at
pt = 0.4. Intuitively, this tournament size balances exploration and exploitation.

Figure C.2: Fitness of the population for di↵erent tournament sizes

C.3 Mutations

In Figure C.3, each of the eight di↵erent mutations is turned completely o↵, by setting
their probability qm to zero, one by one. Table C.1 shows the ID of each mutation.
The IDs are used in the legend of Figure C.3, showing which mutation was turned o↵
during that run. E.g., the orange line marked 1 in Figure C.3 means that the move
room random-operator was turned o↵ during that run.

Figure C.3: Fitness of the population with di↵erent mutation operators turned o↵.
The number in the legend corresponds to the mutation ID in Table C.1

154

C.3. MUTATIONS

Table C.1: Mutation IDs

Mutation IDs

Move room random 1

Swap wall-sharing side 2

Change room dimension 3

Move overlapping room 4

Move to unattached door-neighbour 5

Move neighbourhood random 6

Move attached door-neighbours 7

Swap rooms 8

All mutations included All

For the rest of this section, each of the mutation-operators is referred to by its ID.
Figure C.3 indicates that the algorithm performs slightly better with mutation 2 and
4 turned o↵. Figure C.4 shows the models performance by turning them both o↵. The
model performs slightly worse than the base case but uses many more generations to
obtain the same fitness score. The base case is the run with all mutation operators
in function.

Figure C.4: Swap wall-sharing side (2) and move overlapping room (4) operators
turned o↵ compared to base case

To test if decreasing the usage of mutation 2 and 4 yields better results, their proba-
bility of occurring is adjusted slightly instead of turning the mutations completely o↵.
q2 is adjusted from 0.4 to 0.3, while q4 is lowered from 0.3 to 0.2. In addition, since
the results in Figure C.3 show that the algorithm performs significantly worse when
mutation 5 and 6 are turned o↵, the probability rates q5 and q6 are both increased
from 0.4 to 0.5. The model is tested with the new parameter settings. The result
is displayed in Figure C.5. The figure shows that the model performs significantly
worse than the base case.

155

C.3. MUTATIONS

Figure C.5: Fitness of the population after adjusting the mutation probabilities, q2,
q4, q5, q6

156

Appendix D

Objective function tests, memetic
algorithm

A run including all objectives is illustrated in Figure D.1.

(a) Generation 5 (b) Generation 20 (c) Generation 50 (d) Generation 150

Figure D.1: Development of a run with all objectives turned on

In Figure D.2, the model is tested with an overlap weight of w1 = 0. Keeping in
mind that red means overlap, the figure shows a fair amount of overlap after a 150
generations. The e↵ect becomes even clearer when the visual development of the
solution is compared to Figure D.1. Since the objective function penalizes overlap in
the run shown in Figure D.1, the algorithm gets rid of the overlap as it progresses.
Evidently, the overlap objective is necessary and works as expected.

157

(a) Generation 5 (b) Generation 20 (c) Generation 50 (d) Generation
150

Figure D.2: Development of best solution with the overlap objective, f1, turned o↵

Next, the model is tested without the window access objective. The result is illus-
trated in Figure D.3. One of the classrooms belonging to 9th grade does not have
window access. This classroom is circled by a dashed black line. In Figure D.1,
window access is satisfied for all classrooms while the other objectives also are at-
tained to the same degree as in Figure D.3. Thus, the window objective is kept in
the model.

(a) Generation 5 (b) Generation 20 (c) Generation 50 (d) Generation
150

Figure D.3: Development of best solution with the window access objective, f5, turned
o↵. The circled room requires window access, but does not have it

The results for the remaining objectives are illustrated below in Figure D.5 - D.4.

158

(a) Generation 5 (b) Generation 20 (c) Generation 50 (d) Generation 150

Figure D.4: Development of best solution with the narrow hallway objective, f3,
turned o↵

(a) Generation 5 (b) Generation 20 (c) Generation 50 (d) Generation 150

Figure D.5: Development of best solution with the door-neighbour distance objective,
f4, turned o↵

(a) Generation 5 (b) Generation 20 (c) Generation 50 (d) Generation 150

Figure D.6: Development of best solution with the hallway area objective, f6, turned
o↵

159

(a) Generation 5 (b) Generation 20 (c) Generation 50 (d) Generation 150

Figure D.7: Development of best solution with the excess neighbourhood area objec-
tive, f7, turned o↵

160

Appendix E

Technical study, mathematical
model

E.1 Lock main room

Table E.1: The objective values of the resulting solutions using the objectives in stage
one and three using the lock main room heuristic

6N1 6N2 6N3

In Out In Out In Out

O 0 0 0 0 0 0
HA(%) 0 0 0 0 0 0
C 0 1 0 3 0 1
NH 0 0 0 0 0 0
WA 0 0 0 1 0 0
ENA 710 293 731 279 710 293
EC 30 32 20 30 30 32

(a) 6N instances

9N1 9N2 9N3

In Out In Out In Out

O 0 0 0 0 0 0
HA(%) 0 561 0 247 0 31
C 0 3 0 2 0 4
NH 0 10 0 0 1 24
WA 0 6 0 3 0 0
ENA 981 606 800 429 1115 603
EC 48 30 50 28 34 42

(b) 9N instances

161

E.2. LOCK HALLWAYS

E.2 Lock hallways

Table E.2: Initial and final number of corners and run time for the 6N instances with
the lock hallways heuristic

6N1 6N2 6N3

Neighbourhood CI CH

F
TB TF CI CH

F
TB TF CI CH

F
TB TF

Music Area 14 4 17 17 12 4 205 205 10 4 1 1
9th grade o�ces 16 6 46 480 12 6 38 480 12 8 11 333
Gym 12 4 14 14 10 4 75 75 12 8 7 7
Arts & Crafts 8 4 12 12 4 4 1 1 8 4 5 5
9th grade 14 14 - 480 20 20 - 480 18 18 - 480
Cooking 8 6 1 3 8 6 0 1 10 6 0 2

Table E.3: Initial and final number of corners and run time for the 9N instances with
the lock hallways heuristic

9N1 9N2 9N3

Neighbourhood CI CH

F
TB TF CI CH

F
TB TF CI CH

F
TB TF

10th grade o�ces 16 4 292 292 12 6 2 30 12 6 151 480
Music Area 12 4 305 305 10 4 43 43 10 6 6 241
9th grade o�ces 14 6 55 480 12 6 3 29 10 4 4 4
Gym 14 6 30 253 14 4 30 30 10 4 15 15
Library 4 4 0 0 6 4 0 0 6 4 0 0
9th grade 20 20 - 478 16 16 - 480 12 12 - 480
Science 8 4 0 0 12 4 1 1 6 6 0 0
Administration 6 6 0 0 6 6 0 3 8 6 1 4
10th grade 12 12 - 480 14 14 - 480 16 16 - 480

162

Appendix F

Technical study, local search

The results are as expected where the run time decreases with shorter lengths.

Table F.1: Run time for the local search, for each combination of instance and length.
Time is given in seconds

Search area length l

2 5 10 12 15 18

6Na 2.29 47.86 118.71 118.43 443.29 278.29
6Nb 6.57 27.57 126.57 208.0 275.57 307.71
9Na 33.25 70.29 303.14 291.86 570.57 486.0
9Nb 13.0 61.71 223.29 252.86 324.71 561.86

The fraction of runs producing feasible solutions for each combination of selection
approach and instance is presented in Table F.2. The results show that all selection
approaches produce solely feasible solutions for all test layouts.

Table F.2: The fraction of feasible solutions generated for each combination of selec-
tion approach and instance

Selection approach

1 2 3

6Na 1.0 1.0 1.0
6Nb 1.0 1.0 1.0
9Na 1.0 1.0 1.0
9Nb 1.0 1.0 1.0

163

Table F.3: Run time for the local search, for each combination of layout and selection
approach. Time is given in seconds

Selection approach

1 2 3

6Na 236.57 256.57 443.29
6Nb 578.29 378.86 275.57
9Na 756.43 654.57 570.57
9Nb 251.0 358.86 324.71

164

	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Literature review
	Packing problems
	Material collection
	Full review

	Layout problems
	Material collection
	Full review

	Our contribution

	Problem description
	Solution method
	Overall architecture
	Stage one - memetic algorithm
	Stage two - mathematical model
	Stage three - local search

	Algorithm composition
	Pipeline example
	Assumptions and simplifications
	Single floor layout and discrete building site
	Rooms and hallways

	Memetic algorithm
	Memetic algorithm procedure
	Objectives
	Representation
	Genotype
	Phenotype

	Population initialization
	Crossover
	Tournament selection
	Swap neighbourhoods crossover

	Mutation
	Move room random
	Move neighbourhood random
	Swap rooms
	Move overlapping room
	Move to unattached door-neighbour
	Move attached door-neighbours
	Change room dimension
	Swap wall-sharing side

	Local search
	Fitness evaluation
	Locating hallways
	Connectivity
	Narrow hallways

	Selection

	Mathematical model
	Procedure
	Notation
	Objective function
	Corner count

	Constraints
	Corner constraints
	No overlap between rooms
	Room and corner consistency
	Room shapes and sizes
	Adjacency
	Variable declarations

	Valid inequalities
	Symmetry breaking constraints
	Modelling heuristics
	Lock main room
	Lock hallways
	Window access heuristic
	Concurrent neighbourhood optimization
	Split neighbourhood

	Local search
	Algorithm
	Selection approaches

	Case description
	Technical study, memetic algorithm
	Methodology
	Parameter settings
	Crossover
	Mutations
	Elitism
	Local search
	Population initialization and tournament size

	Objective function
	Performance testing
	Generation of feasible and satisfactory solutions
	Run time

	Exterior corners objective

	Technical study, mathematical model
	Preliminary testing
	Test instances
	Methodology
	Basic model
	Lock main room
	Window objective
	Lock hallways
	Split neighbourhood

	Technical study, local search
	Methodology
	Test instances
	Search area length
	Selection approach of neighbourhoods

	Performance test
	Objectives

	Concluding remarks
	Appendices
	Room specification documents
	Parameter settings, memetic algorithm
	Parameter settings tests, memetic algorithm
	Initialization
	Tournament size
	Mutations

	Objective function tests, memetic algorithm
	Technical study, mathematical model
	Lock main room
	Lock hallways

	Technical study, local search

