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Abstract

One of most important responsibilities the Norwegian municipalities is to provide its
inhabitants with a well-organized school system. Rapidly increasing populations and
continuous deterioration of school buildings make this a substantial challenge for several
municipalities. The municipalities must therefore consider several school development
projects to meet these challenges. This thesis aims to provide an unbiased decision tool
for municipalities by studying an area in southern Trondheim.

Through an extensive literature study on school location problems, this thesis reveals
that most facility location problems aim to minimize the travel costs and the opening or
closing costs of a facility. Moreover, it is clear that integrating uncertainty and real-size
data significantly increases the computational complexity of the problems. The literature
study exposes three gaps: a precise mathematical description including all the aspects of
Trondheim’s problem, an objective function taking utilization and quality of the schools
into account, and a solution method that can solve the problem within an acceptable
time.

To close these gaps, this thesis proposes the School Prioritizing Problem with Alternatives
(SPPA). This problem addresses an important question: Given a set of distinct possible
projects what are the optimal projects to execute at what time? The SPPA aims to
simultaneously minimize three terms: the length and hazard of the pupils’ road to school,
unwanted school capacity utilization, and inconveniences from poor school conditions that
affect the educational environment. As the population development is uncertain, multiple
future scenarios are taken into account. To manage the complexity of the model as the
number of considered scenarios increase, a solution algorithm based on the branch and
bound scheme is developed in two variations, the Execution Order Specific Branch and
Bound (EOSBB) algorithm and Alternative Execution Order Specific Branch and Bound
(AEOSBB) algorithm.

Preliminary tests on a deterministic variation of the SPPA find performance-enhancing
extensions. The implementation of a maximum allowed school deterioration and distance
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to school improves the computational effort without causing significant alterations to the
solutions. The performance of the solution algorithms is tested on real-size data provided
by Trondheim municipality, in a 15-year planning horizon. The tests demonstrate that
the AEOSBB algorithm successfully solves the SPPA to optimality for instances of up to
100 scenarios within an acceptable time. Consequently, the AEOSBB algorithm is the
preferred solution method for the model.

The outputs from the SPPA demonstrate how the model can aid the municipalities as an
unbiased tool in decision-making. The solution is an unambiguous school prioritization
order, with coherent years of execution for each project. The solution also includes a
completely new school district map.

This thesis successfully introduces a precise, mathematical model and demonstrates how
the proposed solution method can be used to solve real-world problems for a municipality
in Norway. As today’s decision-making process is tedious and subjective, we believe
that the contribution of this thesis can be of great value when planning a future school
expansion strategy in the municipalities.
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Sammendrag

En av de viktigste oppgavene til norske kommuner er å tilby innbyggerne sine et godt
organisert skolesystem. Raskt økende innbyggertall og kontinuerlig slitasje på skole-
bygninger gjør dette til en stor utfordring for flere kommuner. Kommunene må der-
for vurdere flere skoleutviklingsprosjekter for å imøtekomme disse utfordringene. Denne
masteroppgaven har som mål å tilby et objektivt beslutningsverktøy for kommuner ved å
studere et område sør i Trondheim.

Gjennom en omfattende litteraturstudie avdekker denne masteroppgaven at de fleste an-
leggslokasjonsproblemer (Facility Location Problems) retter seg mot å minimere reisekost-
nader og kostnader ved å åpne eller stenge anlegg. Videre er det tydelig at det å inte-
grere usikkerhet og realistisk data øker beregningskompleksisteten til problemene. Litter-
aturstudien avdekker tre mangler: en presis matematisk beskrivelse som inkluderer alle
aspekter ved Trondheims problem, en objektivfunksjon som tar hensyn til utnyttelse og
kvalitet ved skolene og en løsningsmetode som kan løse problemet innen akseptabel tid.

Med den hensikt å adressere disse manglene, foreslår denne masteroppgaven Skolepri-
oriteringsproblemet med alternativer (School Prioritizing Problem with Alternatives -
SPPA). Dette problemet tar for seg et viktig spørsmål: Når det finnes et sett av distinkte
mulige prosjekter, hva er de optimale prosjektene å gjennomføre, og til hvilken tid? SPPA
minimerer tre uttrykk samtidig: lengden på, og mulige farer langs, elevenes skolevei, uøns-
ket kapasitetsutnyttelse på skolene og ulempene fra dårlig tilstand på skolebyggene som
påvirker læringsmiljøet. Siden befolkningsutviklingen er usikker må flere fremtidsscenar-
ioer bli vurdert. For å håndtere kompleksiteten i modellen når antall scenarioer øker, er
en løsningsalgoritme, basert på branch and bound metoden, utviklet i to variasjoner, den
Utførelsesrekkefølgespesifikke branch and bound (EOSBB) algoritmen og den Alternative
utførelsesrekkefølgespesifikke branch and bound (AEOSBB) algoritmen.

Innledende tester på en deterministisk variasjon av SPPA finner prestasjonsfremmende
utvidelser. Implementeringen av en maksimal tillat forverring av skolene og lengde på
elevenes skolevei forbedrer modellens kjøretid betraktelig, uten at det blir store endringer
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i løsningene. Effektiviteten av løsningsalgoritmene er testet i et 15 års perspektiv på
data i virkelig størrelse, gitt av Trondheim kommune. Tester demonstrerer at AEOSBB
algoritmen lykkes med å løse SPPA til optimalitet for instanser med 100 scenarioer innen
akseptabel tid. Derfor er AEOSBB algoritmen foretrukket løsningsmetode for modellen.

Resultatene fra SPPA demonstrerer hvordan modellen kan brukes som et objektivt beslut-
ningsverktøy for å hjelpe kommuner. Løsningen er en utvetydig skoleprioriteringsrekke-
følge med tilhørende år for ferdigstillelse av hvert prosjekt. I tillegg inkluderer løsningen
et helt nytt kart over skoledistriktene.

Denne masteroppgaven lykkes med å introdusere en presis matematisk modell og demon-
strerer hvordan den foreslåtte løsningsmetoden kan brukes for å løse problemer av virkelig
størrelse i kommuner i Norge. Siden dagens beslutningsprosess er omfattende og subjek-
tiv, tror vi at bidraget fra denne masteroppgaven kan være av stor verdi når fremtidens
skolestrategi skal planlegges i kommunene.
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1 Introduction

Organized schooling in Norway dates back to the middle ages, but it was not until the
end of the 18th century that education became a prioritized matter (Thune, T., 2019).
This resulted in the People Act of 1889 which gave all Norwegian children the right to
seven years of schooling. A major reorganization of the school system in the late 1990s
incorporated the secondary schooling as a part of the Education Act. This act states that
children of school age, hereafter denoted as pupils, have the right, and are obliged, to
attend both primary and secondary school (Ministry of Education and Research, 1998).
It is the municipalities that must provide the necessary capacity for all pupils in their area.
This sets high demands for organized school structure in the municipalities. To obtain
a robust school structure, it is critical that schools are of the right size and located in
the right place, for a long-term perspective (Trondheim Kommune, 2019b). This implies
that urgent action should be avoided to cope with minor changes in student numbers.
Furthermore, the school facilities ought to be flexible and functional, to satisfy the content
of new reforms and organizational changes. The school structure must also handle the
uncertainty in population growth and the need for school capacity in the forthcoming
years.

This thesis is motivated by the collaboration with Trondheim Municipality, hereafter
denoted as Trondheim, and the challenges they face when determining the future school
structure. In essence, Trondheim has a list of potential school projects that can be
executed. For the existing schools, the list of projects includes renovation alternatives,
expansion alternatives, and alternatives including both renovation and expansion. In
addition, there exists a set of potential new schools that each can have several alternatives
concerning size and location. Each of the possible alternatives is denoted as a project.
The decision regarding which of the projects gets funding is political and is made in the
Trondheim City Council, hereafter City Council, based on recommendations from the
Chief Municipal Executive (CME). The CME creates a shortlist of school development
projects and presents this to the City Council in a prioritized order (Trondheim Kommune,
2019b). Today, the CME has few objective tool to compare the need for, and potential
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CHAPTER 1. INTRODUCTION

gain of, the potential projects, resulting in that the political decisions are largely based on
discretion. Trondheim is currently in a process where several new projects are considered.
In this thesis data from an area in southern Trondheim is used.

In this thesis, the School Prioritization Problem with Alternatives (SPPA) is studied.
The purpose is to use mathematical optimization to provide an unbiased decision tool to
assist Trondheim in deciding which project to execute at what time. To achieve this, a
multi-objective model is proposed. Traditionally, school location problems seek to mini-
mize travel distance and facility costs, constrained by a maximum capacity and a demand.
However, in a real-world setting, the travel distance is only a part of the entire perspective.
Therefore, the model presented in this thesis focuses on three objectives: the length and
hazards from pupils’ road to school, unwanted school capacity utilization, and inconve-
niences from poor physical condition of school building and its impact on the education.
These three factors constitute the objective function which is minimized in the model.
The model then provides a preferred order of execution of the projects, in addition to
allocate pupils to schools. To the best of our knowledge, addressing these three objectives
simultaneously has never been done previously. Due to the complexity of the problem,
it is computationally demanding to find solutions within acceptable computational time.
Consequently, two versions of an Execution Order Specific Branch and Bound (EOSBB)
algorithm is developed to find solutions to the real-world-sized problem. This is a unique
approach and a new algorithm for solving the school prioritization problem.

The method and results presented in this thesis provide a considerable contribution to the
available literature and research on school location problems. Furthermore, the results can
grant decision-makers a better understanding of the outcomes given different decisions.
The main contributions can be outlined as:

• A precise mathematical description of the SPPA that takes uncertainty in population
growth and the need for school capacity into account. The model addresses three
objectives simultaneously, which provides a real-world formulation of the problem.

• A new solution method is provided by developing the EOSBB algorithm. This
allows the model to be applied with complex, real data in a manageable way.

• The practical usage of the model and solution method is demonstrated using a real
case from southern Trondheim.

The ideas in this thesis are, to some extent, based on the foregoing Specialization Project
conducted in the Fall of 2019 (Aslaksen and Norum, 2019). The conceptual perception
of the problem is similar in both the Specialization Project and this thesis. The model
presented in this thesis differs by including uncertainty in population growth. Moreover,
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CHAPTER 1. INTRODUCTION

a new perspective is added by the introduction of a solution method to the model. Also,
the practical usage of the model and solution algorithm is demonstrated.

The thesis is arranged as follows. In Chapter 2, the main challenges faced by Trondheim,
is introduced. Then, the topics concerning the SPPA are discussed in light of existing
literature in Chapter 3. The thesis continues with a thorough description of the problem
in Chapter 4. In Chapter 5, the mathematical elements, and structure of the SPPA are
outlined. Next, the developed solution algorithm is presented in Chapter 6. Subsequently,
the data instances are described in Chapter 7. Next, in Chapter 8, results from different
tests of the suggested model are presented, and in Chapter 9, the practical application of
the model is demonstrated. Finally, in Chapter 10 concluding remarks and future research
opportunities are described.
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2 Background

In Norway, the municipalities are the school owners of public elementary schools. Accord-
ing to the Education Act (Ministry of Education and Research, 1998), school owners are
required to have a proper and sturdy system to ensure that schools are operated by exist-
ing laws and regulations. In this chapter, relevant background information for the thesis
is presented. In this chapter Section 2.1, 2.3, and 2.4 are reproduced from (Aslaksen and
Norum, 2019). First, a brief introduction to the history of school planning in Trondheim
is given in Section 2.1. Second, the population development prognoses is presented in 2.2.
Third, the main challenges in school planning today is considered in Section 2.3. Fourth,
in Section 2.4 an overview of the process prioritizing and executing projects is provided.
Lastly, in Section 2.5 the designated area is introduced.

2.1 A Brief History of Trondheim’s School System

The oldest organized school in Trondheim still in operation is Ila school, where teaching
started in 1770 (Trondheim Kommune, 2015). The number of children in the district
increased swiftly, and in the 1830s the school was moved to a new site to provide the nec-
essary capacity. Since then, the school system in Trondheim has been through numerous
changes. In the period between 1970 and 1986, 19 new schools were established due to
considerable growth in the number of pupils and changes in resident areas. Moreover, in
the 1990s a new national curriculum was implemented, that included new requirements
for school building design. This forced the municipality to execute several renovation
projects to alter the schools to meet the standard of these requirements. Since 2000, over
40 major school projects have been executed in Trondheim. One of the main goals of these
projects was to increase the capacity in specific areas in the municipality. Furthermore,
it has been important to create a flexible school structure that can easily be adjusted to
forthcoming changes.
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2.2 Population Development Prognoses

The population growth in Trondheim is largely dependent on the construction of new
homes and, thus, the population development prognoses are based on the estimated hous-
ing development (Trondheim Kommune, 2019a). These forecasts are based on a database
containing all the potential residential building projects in Trondheim. The total number
of potential residences is referred to as the building potential. The database is updated
annually and provides information on how far each potential project is in the realization
process. The currently known building potential is 45,000 units. A realization of all these
units would result in a population increase of 85,000 people. The potential residences
are divided into four categories: detached house, horizontally divided residences, verti-
cally divided residences, and low-/mid-rise buildings, where each type respectively has an
expected average number of pupils per housing unit.

Trondheim has arranged the building potential in three categories depending on the like-
lihood of realization (Trondheim Kommune, 2019b). The three categories have properties
as follows:

A This category includes the projects that are given actual building permits. This in-
volves projects that are ahead in the project process and the total building potential
from these are 6,000 homes

B This category contains the building potential in projects where area and regulations
plans are approved in the municipality. These projects are in an earlier stage than
the projects in A, and hold a building potential at around 12,000 homes.

C This is the category with the highest building potential and comprises the projects
that are only in the start phase of planning the projects, and where geographic areas
are deposited for residential purpose. These are the projects that are in the earliest
stage of the process. This is estimated to be 27,000 homes.

The population development in different parts of the municipality is thus dependent on
the building potential of the area. Higher potential in an area increases the uncertainty in
the future population. As category B and C contain a large number of potential projects,
the population forecast is highly uncertain. This can result in a population development
that is both lower or higher than projected.
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2.3 Challenges in School Planning Processes

This section presents the current main challenges Trondheim faces in terms of school
planning:

• Increased capacity demand

• Deterioration of existing schools

• Inconveniences on the road to school

The school capacity in Trondheim has been a challenge for many decades, and currently,
19 school districts do not have any spare capacity (Trondheim Kommune, 2019c). This
means that several schools today have a capacity-utilization beyond the optimal amount.
The red areas in Figure 2.1 illustrates these school districts. The realization of residential
building projects and expected population growth in the municipality causes an urgent
need for more capacity (Trondheim Kommune, 2015). At the same time, several school
districts operate with capacity utilization below the optimal level. This indicates that the
municipality struggles to evenly distribute the capacity utilization between the schools.

Figure 2.1: Capacity utilization of the school districts in Trondheim. Red areas high-
lights school districts where built capacity is reached, and the yellow areas are districts
with limited capacity available.

Trondheim operates with two levels of school capacities: optimal and built. Trondheim
defines the built capacity as the estimate of how many students a school facility can
accommodate (Trondheim Kommune, 2017). However, due to fluctuations in the number
of pupils, it is challenging to operate schools at the built capacity over time. Instead,
Trondheim plans for an utilization at 90% of the built capacity. This is the level a
school can operate without capacity problems over time and is denoted as the optimal
capacity (Trondheim Kommune, 2017). Furthermore, Trondheim has established that
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schools in periods may have a higher number of pupils than the built capacity, to ensure
that every pupil is allocated to a school. Consequently, to allow special considerations, this
thesis introduces a third level, maximum capacity. This is the absolute maximum allowed
utilization level. However, it is impossible to operate a school at maximum capacity while
maintaining stable school districts.

It is determined by Trondheim that nearby schools must have available capacity for con-
tractors to get a building permit in the area. This means that new housing units are not
accepted and conducted before the school capacity problem is resolved. Consequently,
the school capacity can both be a restricting factor for the city development and used as
a tool for the municipality to control where and when new residential building projects
should be executed. However, this is not strictly adhered to and exceptions have been
made. This results in affecting the already pressured capacity at many of the schools in
the municipality.

In addition to expanded capacity demand, several existing schools require maintenance to
uphold the necessary standards. The Norwegian law states that the environment in schools
should encourage health, well being, good social and environmental conditions and prevent
sickness and injury (Helse- og omsorgsdepartementet, 2014). Currently, Trondheim is
responsible for some schools with challenges concerning the physical condition (Trondheim
Kommune, 2019b). In addition, some schools use temporary pavilions in poor shape,
which further increases the need for rehabilitation actions. This again can affect the
learning environment in these schools, and, therefore, it is important to upgrade schools
that are in poor condition.

Another challenge for Trondheim is the pupils’ road to school. It is desired that the pupils
walk to their allocated school. Thus, by road to school, we consider the walking route from
a pupil’s home to his or her respective school. The Education Act (Ministry of Education
and Research, 1998) states that every pupil has the right to attend the school they live
geographically closest to or to the school they are allocated to through the school districts.
However, the Act declares that dangerous roads to school and topography are relevant
considerations as well when allocating pupils to a school (Utdanningsdirektoratet, 2014).
For instance, a steep hill on the road to school or a forest can affect the layout of the
school districts.

2.4 Project Prioritization and Execution

To create a school structure that takes on the challenges described above, the City Council
in Trondheim decides on a prioritized execution order of the potential school projects
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(Trondheim Kommune, 2019b). The ranking is based on three preferable assessment
topics, in prioritized order:

1. Measures that solve significant challenges related to physical learning and/or work
environment, either based on technical condition or sustained high student numbers.

2. Measures that increase capacity in areas where lack of school capacity limits the
building of new houses.

3. Measures replacing pavilions that are in good condition.

In addition to the prioritization criteria presented above, Trondheim has some desired
guidelines regarding school size. To achieve high utilization, each new school should have
at least two parallels. This improves the sturdiness of the school districts as the schools
are better equipped when facing fluctuation in the number of pupils.

When a project is selected the first step of the execution is to establish a total financial
budget (Trondheim Kommune, 2015). Secondly, regulation permits are provided and
contractors are selected. Approximately two years after the project is initialized, the
actual construction of the project is started. The construction of a major project is
estimated to last for two years. Thus, the budget of a school building project is often
distributed over a four year period.

2.5 Area of Consideration

In this thesis, an area in southern Trondheim is considered. The area consists of the
following current school districts:

Breidablikk
Flåtåsen
Huseby
Hårstad
Kattem
Okstad
Romolslia
Rosten
Sjetne
Stabbursmoen
Tonstad
Åsheim

The designated area is representative of many of the same challenges as Trondheim. First
and foremost this is an area with already limited capacity in some schools. Moreover, there
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is a high building potential in the area, where many of the projects are in category A.
Thus, the population is expected to grow which further exposes the capacity challenges. In
addition, several of the existing school buildings need renovation to meet the government’s
requirements. Figure 2.2 illustrates where the area is located in Trondheim.

Figure 2.2: The highlighted area is the area in southern Trondheim that is considered
in this thesis.

Several of the existing schools in the designated area are suitable for potential projects.
Furthermore, there are two potential new schools, Lundåsen and Hallsteingård, with
several alternatives for capacity. Table 2.1 shows the different types of projects that can
be conducted at each school. The first column lists the schools and the second to the
forth indicated what type of project that can be executed. The Alternative-column shows
which school that have multiple alternatives considering a capacity project.
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Table 2.1: The possible projects that can be executed at each school in the designated
area.

School Capacity Renovation New School
Breidablikk X X -
Flatåsen - X -
Huseby - - -
Hårstad - - -
Kattem X X -
Okstad - - -
Romolslia - X -
Rosten X - -
Sjetne X - -
Stabbursmoen X X -
Tonstad X X -
Åsheim X X -
Hallsteingård - - X
Lundåsen - - X
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3 Literature Review

In this part, the literature related to the School Prioritization Problem with Alternatives
(SPAA) is discussed. To the best of our knowledge, there is scant literature regarding
school location with limited alternatives. Consequently, this literature review discusses
different aspects and elements of the problem. The SPPA is a facility location problem
(FLP) where the location sites can be chosen from a set of alternatives. Moreover, as the
model consists of some conventional constraints, such as capacity and budget constraints,
these are relevant to discuss as well. This chapter is recreated from Aslaksen and Norum
(2019) with some alterations. To supplement, Section 3.1.6 and 3.2 are added.

First, FLP, with its most relevant extensions, are discussed in Section 3.1. Second, solution
methods are presented in 3.2. Finally, in Section 3.3 the contribution from this thesis and
how it differs from existing literature are presented.

3.1 School Location Problem and its Most Common
Extensions

School location is a variation of facility location problem (FLP) where the site of schools
is determined. The FLP has been widely discussed and there exists considerable amount
of literature on the subject (Nickel and Gama (2015), Castillo-López and López-Ospina
(2015), Daskin and Maas (2015)). A FLP can, in short, be described as a problem where
the objective is to decide where, and possibly when, a facility should be located, to serve
given customers. The model takes certain parameters into account, such as traveling cost,
set up cost, and customer demand (Nickel and Gama, 2015). In the SPPA, schools are
considered facilities, and the customers are pupils. Even so, various elements separate
the SPPA from a FLP. For instance, in addition to the location of the facilities, there
exist several alternatives concerning location site and facility size for each school. This
results in many additional decisions to be made in every possible location, thereupon the
complexity of the problem increases.
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Another central problem in discrete location modeling is the p-median problem (Daskin
and Maas, 2015). This problem aims to locate p facilities which minimize the overall
distance between the demand and its closest facility. An important property of the p-
median problem, presented by Daskin and Maas (2015), is the decreasing cost of distance
with each added facility. Moreover, the marginal improvement in distance cost is expected
to decrease with additional facilities. Both of these properties exist to some degree in the
SPPA. It is obvious that by increasing the number of schools from x to x+ 1 schools, the
costs from traveling distance decrease or stay the same. However, as the SPPA seeks to
optimize capacity utilization, additional facilities may degrade the capacity objective as
excess capacity is unwanted. Furthermore, the utility, in travel distance, of adding one
more school declines. For example, it is a larger improvement to increase from 0 to 1
school in an area, than from 6 to 7 schools. Concerning the SPPA, the budget constraint
bounds the number of executed projects, thus it is a capacitated p-median problem.

Another relevant problem in facility location modeling is the cover location problem. A
cover model is commonly used if the facilities provide a service that must lie within a
maximum distance between the facility and customer, for instance, fire stations (García
and Marín, 2015). If this requirement is fulfilled, the customer is considered covered. In
cover problems, there are mainly two different forms: the model can either minimize the
costs of covering all of the customers (set covering) or maximize the number of covered
customers (maximal covering). One of the disadvantages of the set covering problem is
that several customers (pupils) are covered by several facilities (schools). This creates
higher facility costs due to extra facilities and may cause districting problems which are
addressed in Section (3.1.5). As the SPPA requires that every pupil is allocated to a
school, the characteristics of a set covering problem are recognizable. However, since the
model contains a budget constraint, which restricts the amount of located schools, one
can argue that the model is also related to the maximal cover problem.

3.1.1 Objective

In short, the objective function in FLP aims to minimize travel costs between facilities and
demand nodes. Mattsson (1986) proposes a model where the aim is to reduce monetary
transportation costs associated with assigning a child to a specific school, where the
distance is multiplied with each allocated child. Schoepfle and Church (1991) has a
similar approach where the travel distance for a child allocated to a school is measured as
a cost and minimized. Hernández et al. (2012) present a facility location model intended
for prison location, and as both prisons and schools are a public facility, the problems are
comparable. In the model presented by Hernández et al. (2012), the travel distance is a
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term to minimize in the objective function, and a maximum transfer distance is included
in the constraints.

Caro et al. (2004) and Correia and Melo (2017) both extend the initial perception of
distance and travel cost. Correia and Melo (2017) propose an extensive model to minimize
the cost of facilities that can be closed or expanded. The model adds a tardiness penalty
cost to the travel cost, which applies in cases where the delivered goods are delayed in
the demand period and the unit must be replaced later. Thus, the scope of the objective
is broadened to capture several aspects of the practical problem. Differently, Caro et al.
(2004) suggest a model that optimizes school districting. In the article, the distance
parameter is extended with distance-equivalences from obstacles on the road to school.
This is similar to elements from the SPPA where not only distance, but other important
aspects on the road to school are considered.

Ferland and Guenette (1990), on the other hand, disregard travel distance in the objective
function. The article proposes a decision support system for school districting, but instead
of minimizing distance, as Caro et al. (2004) suggest, Ferland and Guenette (1990) state
that the children should be allocated to the nearest school. This applies if the given
school has sufficient capacity, and where the closest students are allocated first. Delmelle
et al. (2014) propose a capacitated median model that aims to minimize transportation
cost where the costs are subject to a budget constraint. The model expresses the travel
distance as an increasing, non-linear function if the distance is above a maximum allowed
distance. This is an interesting approach as it allows the distance to exceed maximum,
but the penalty increases strikingly if it does. The SPPA takes the travel cost into account
as the model minimizes the non-monetary cost from the road to school. However, in order
to ensure that every pupil is allocated to a school, there are no maximum distances in the
SPPA.

Menezes and Pizzolato (2014) review the development of education systems in areas with
extraordinary population growth rater. As with all of the articles presented in this thesis,
the objective is to minimize travel cost, but it is formulated as a capacitated p-median
and maximum cover model. The objective is to maximize the cover of as many users as
possible within a determined distance and with p located facilities. Caro et al. (2004)
also present a maximum distance from pupils to schools and can be regarded as a cover
problem in the same way as Menezes and Pizzolato (2014).

Some of the articles reviewed in this thesis formulate the model as a multi-objective
optimization problem (MOP). López Jaimes et al. (2011) introduce MOP as a model
containing an objective function where several objectives are to some degree in conflict
with each other. In Castillo-López and López-Ospina (2015) this is prominent as the
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model seeks to minimize facility costs and travel costs for the students at the same time.
These are clearly conflicting objectives as more facilities reduce travel expenditures, but
increase facility costs. Similarly, Hernández et al. (2012) introduce two opposing objectives
where the model aims to minimize the cost of expanding the facilities and simultaneously
avoid overpopulation in the facilities. Also the SPPA can be considered as a MOP, as
three different objectives are addressed at the same time. Minimizing the road to school
cost and obtaining an optimal capacity utilization are especially conflicting objectives, as
some pupils may be allocated to a school further away to share the capacity amongst the
schools.

3.1.2 Multi-Period Model

The purpose of multi-period, or dynamic, models is to not only decide where, but also
when, a facility should be sited to minimize facility and delivery cost from the facility
to the customer in the planned time period (Nickel and Gama, 2015). One of the first
articles on multi-period facility location is Wesolowsky (1973). The article proposes a
general dynamic model allowing a location to change within the planned time horizon.
The future change in cost and demand is forecasted and the optimal location is found
accordingly. Nickel and Gama (2015) emphasize the importance of defining the planning
horizon upfront as this is the time frame of the problem. In all of the articles with dynamic
models referred to in this thesis, the time aspect is described as a discrete set, which is
also the main focus in this thesis. As the SPPA considers facility location in multiple time
periods and some input parameters can change over time, this model can be regarded as
a dynamic facility location model.

Hernández et al. (2012) presents a multi-period location model where each time period has
different scenarios due to uncertainty in future demand. This is separate from Delmelle
et al. (2014) who propose a model without uncertainty and the time period has only one
forecasted scenario. Mattsson (1986) on the other hand, uses the same model in three
different time periods where the future parameters are estimated. This differs from the
other two as the time is not a consideration in the actual model. Therefore, this model
is only partly dynamic. Correia and Melo (2017) have a dissimilar approach where the
time period is used the same way as Delmelle et al. (2014). However, the time periods
are not uniform as the article defines two sets of time periods, one where decisions can be
made and one where they can not. This exemplifies that the multiple period FLP can be
expressed and used in different ways.

16



CHAPTER 3. LITERATURE REVIEW

3.1.3 Capacity Constraint

All of the relevant articles present in this thesis are capacitated models with a maximum
capacity constraint. As in the SPPA, the changes in demand are inMattsson (1986),
Hernández et al. (2012), Delmelle et al. (2014), Menezes and Pizzolato (2014) and Castillo-
López and López-Ospina (2015) caused by a rapidly growing areas that creates a need to
expand the capacity. In most of the articles, capacity is restricted by a given maximum
value (Caro et al. (2004), Hernández et al. (2012)). Castillo-López and López-Ospina
(2015) on the other hand, propose a different model regarding capacity. This article
addresses the need for school capacity in rural zones where the objective is to minimize
travel costs. To assign all of the school children to a school, capacity is determined based
on how many pupils are expected to be allocated to a school. Moreover, Delmelle et
al. (2014) and Correia and Melo (2017) present a flexible capacity constraint where the
maximum capacity can increase by renting extra units. This gives an additional cost for
renting the units, but the capacity, on the other hand, is not strictly limited. Menezes
and Pizzolato (2014) limit the capacity in the number of located facility, not in number of
pupils at each school. This means that an expected capacity for each school is calculated
and the model is restricted by the number of facilities.

3.1.4 Budget Constraint

Even though the basic parameters are not multi-periodic, constraints, such as the budget
constraint, can create dynamic properties in the model. For example, if the budget
constraint of installing new facilities exists per year, then locating facilities over time can
be inevitable (Nickel and Gama, 2015). As mentioned in previous paragraphs, Delmelle
et al. (2014) presents a model for location of school facilities with flexible capacity, but
it is constrained by a budget constraint. This means that the costs of building new
facilities or expanding capacity is restrained to the total available budget for the time
horizon. Hernández et al. (2012) propose a different type of budget constraint. Instead of
a separate constraint, the budget is expressed as the maximum number of built facilities
which, again, is determined by the available budget for that period. In that way, the
number of facilities becomes the budget constraint. The same approach is presented in
Menezes and Pizzolato (2014) where p facilities are considered the budget.

3.1.5 Districting Model

Kalcsics (2015) describes districting as the problem where small, geographic units are
clustered together to a larger, contiguous, and balanced district. A district can, for
example, be a zip code area or, in our case, a school district. A school district consists of
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several neighborhoods, which can be regarded as the small units being clustered together.
Districting problems address the issue of how to best allocate the customer’s demand to
each located facility (Kalcsics, 2015). In the SPPA, this means allocating the pupils to
schools so that the capacity utilization at the schools are balanced, and thus decide the
school districts in a given time horizon.

One of the earliest articles on districting problems was Koenigsberg (1968). He proposes
a general model where the objective is to create a school district with minimal travel
distance. Later, Ferland and Guenette (1990), Schoepfle and Church (1991), and Caro
et al. (2004) each present a districting model where the criteria they consider is to ensure
continuity from elementary to secondary school. This means that the children from the
same district should go to the same school as they advance to higher grades. Moreover,
ethnic diversity and balance is another consideration in the districting problems discussed
in Koenigsberg (1968), Schoepfle and Church (1991) and Caro et al. (2004). However,
in all of the articles, minimum travel distance is the main objective and thus the most
important consideration. Since ethnic diversity and compact districts can be conflicting
objectives, this can be a difficult trade-off.

3.1.6 Uncertainty

The facility location problems with uncertainty are addressed in existing literature in
various contexts (Correia and Saldanha-da-Gama, 2019). In FLP, uncertainty can for
instance occur in demand, travel time, location of customers, or other model-specific
parameters. The uncertain parameters are then represented as random variables. Each
random variable has several possible outcomes and a set that represents all of these
outcomes. A scenario is defined in King and Wallace (2012) as a possible future, with
one outcome for each random variable. Snyder (2006) presents two main drawbacks by
using scenarios. Firstly, it can be cumbersome to identify and determine the scenarios.
Secondly, the number of scenarios must be limited for computational reasons, which can
affect the range of future possible states. However, Snyder (2006) emphasizes that the
scenario approach often results in more manageable models, and allows the parameters to
be dependent over different time periods. This can be favorable especially since demand
often is interdependent across time periods.

When modeling problems with uncertainty, Correia and Saldanha-da-Gama (2019) distin-
guish between three different frameworks: robust optimization, stochastic programming,
and chance-constrained programming. Robust optimization was first introduced by Soys-
ter (1973), and later extended in several studies such as Bertsimas and Sim (2004) and
Ben-Tal et al. (2009). The idea behind robust optimization is to immunize the problem
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against uncertainty (Ben-Tal et al., 2009). This is obtained by robust feasibility, which
means that the robust solution is feasible for every realization of the uncertain data. In
the FLP it is appropriate to use robust optimization if the uncertainty is successfully
captured by a given set of scenarios, and there are no accessible probabilistic information
(Correia and Saldanha-da-Gama, 2019). If this is the case, Snyder and Daskin (2006)
point out that there are two favored objectives: to minimize expected cost or to minimize
regret. Regret in this context means the costs from worst-case scenarios. One of the
main advantages of robust optimization is that it does not require a distribution function
for the random parameters. However, as solutions found by robust optimization must be
feasible in the worst-case scenarios, they can be very costly compared to other methods
(King and Wallace, 2012).

The robust framework introduced by Soyster (1973) has been criticized for being too
conservative as it is feasible for the most unlikely worst-case scenarios (Bertsimas and
Sim, 2004). A less conservative approach is Stochastic programming. This framework
is often applied if the uncertainty can be described by a given probability distribution
(Correia and Saldanha-da-Gama, 2019). When this framework is used in a FLP, the
problem is denoted as a stochastic facility location problem. This method requires that
the distribution functions for the random variables are known or can be computed. By
exploiting these probabilities, the model can find feasible solutions and provide valuable
insight for decision-makers. A common way of expressing the stochastic programming
problem is by a two-stage model. In the first stage, some decision is made given available
information at that time. In the second stage, the problem is optimized with this decision
when the outcome of the uncertainty is known (Snyder, 2006). This is demonstrated in
Bieniek (2015), where a two-stage stochastic program with recourse is applied to locate
facilities with a both discrete and continuous distribution of the demand. An advantage
of stochastic programming that King and Wallace (2012) point out, is that the problem
type does not change profoundly from the deterministic problem, which is an advantage
when solving the model.

When it is allowed that one or several constraints may be exceeded in some scenarios, the
chance constrained framework is a suitable approach (Correia and Saldanha-da-Gama,
2019). The idea is that the constraints must hold for a given amount of the scenarios,
for instance as presented in Carbone (1974). In the article, p facilities must be located
concerning random, possibly correlated, demands. However, it is only required that the
demand is met in a certain percentage of the outcomes. This means that the model
attempts to ignore the worst extremes unless they are explicitly confronted (King and
Wallace, 2012). The method is therefore appropriate for reliable problems, but can be
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difficult to solve as it often requires demanding computational effort. In addition, as in
stochastic programming, a drawback in the chance constraint framework is the require-
ment that the probability distribution for the random variables is given or can be found.

In this thesis, the probability distributions for the random variables are estimated. This,
in addition to the fact that the model considers different scenarios for future population
growth, motivates a stochastic programming approach to solve the SPPA.

Several of the articles surveyed in this thesis consider uncertainty. Snyder and Daskin
(2006) present a model for a general facility problem with uncertain demand and trans-
portation cost. This is presented in a robust framework where a p-robust model is pro-
posed that combines both minimizing expected cost and minimizing regrets. Laporte
et al. (1994) also presents a model where facilities must be located to meet the uncertain
demand for the future. Unlike Snyder and Daskin (2006), the problem is presented as
a stochastic two-stage model where the first stage variables are binary and the second
stage are continuous variables. Hernández et al. (2012) utilize the stochastic program-
ming framework as well. In the article, uncertainty lies in the future demand for prison
facilities. The uncertainty is modeled as a set of scenarios and a scenario tree scheme is
used to illustrate possible states of future demand in prison capacity. Each scenario has a
given probability that motivates a stochastic programming approach. Castillo-López and
López-Ospina (2015) have a different approach, where a stochastic discrete choice model
is introduced. The model proposes a choice probability that determines the probability
that a student chooses to attend a given school.

3.2 Solution Methods

Like the FLP, the SPPA can be classified as a NP-hard problem. This means that finding
the optimal solution often requires many, and sometimes highly ineffective, enumerations
(Daskin and Maas (2015), Castillo-López and López-Ospina (2015)). As discussed in this
chapter, the SPPA is composed of building blocks from a variety of optimization frame-
works. This enables several possible solution methods for the problem. Some methods
are briefly covered in this section.

3.2.1 Exact Solutions

Exact solution algorithm method means that, given necessary computational resources,
the algorithm will provide an optimal solution. This can often be time-consuming and
computationally demanding, and exact algorithms are therefore often applied if the model
is tested on smaller instances or the computational time is not restricted. Menezes and
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Pizzolato (2014) present exact solutions for two models for the FLP: the capacitated p-
median model and the maximum covering location problem. By using AIMMS software
and CPLEX solver, exact solutions are found and the characteristics of the models are
compared. The school districting model, proposed in Caro et al. (2004), is solved with
exact solution methods by using geographic information systems (GIS) tools. By using
GIS, the input data can be prepared and interpreted in a way that reduces the complexity
in the model. The exact solutions that are found can then provide valuable insight into
the trade-offs involved in the problem.

The mathematical model presented in the specialization project Aslaksen and Norum
(2019) was solved by an exact solution method. However, the computational effort was
too strenuous, and an optimal solution could not be provided within an acceptable time.
As the model in this thesis is extended, in addition to more complex data from real-world
situations in Trondheim, the demand for computational resources increases. Therefore,
the computational requirement for the problem exceeds the available resources, using an
exact solution algorithm without alterations. Thus, a customized solution algorithm is
developed to ease the computational effort.

3.2.2 Heuristic Approach

Due to the complexity in the FLP, heuristics are commonly used to find an acceptable
solution (Daskin and Maas, 2015). One approach is the Tabu Search (TS) algorithm
which is developed by Glover (1990). This is an iterative process that starts with an initial
solution and neighbor operator, which defines the neighborhood that can be searched in
each move. An example of such an operator is a flip neighborhood. This means that
only one variable can change value in each search, thus the neighborhood becomes the
solutions where this is prevailing. In a TS, either one or multiple operators can be used
simultaneously. Further, the TS uses the best improvement search and moves to the
best solution in the neighborhood. To avoid cycling, the search history is exploited. By
creating a tabu list, the search is constrained and prevented from returning to the same
solution. This approach is further presented in Castillo-López and López-Ospina (2015),
which solves the nonlinear FLP by using a TS metaheuristic. In the article, the use of TS,
in addition to a system of equations, evaluates each solution. This results in reduction
strategies of the neighborhood size to the heuristic and enables larger problems. The TS
is an example of an improvement heuristic, where the value of the heuristic depends on
the presence of an initial solution. However, these solutions are often too cumbersome to
compute, and the use of construction heuristics can be more appropriate.

A construction heuristic uses simple rules to develop solutions from scratch. Hernández et
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al. (2012) propose a multi-period stochastic model where complexity in the probabilistic
scenarios, and the large-scale model incentives for a construction heuristic approach. To
incorporate the uncertainty in the model, the solution method presented in Hernández
et al. (2012) applies a scenario tree generation. The uncertainty is represented by the
scenarios, and a branch-and-cluster coordination method is used to solve the problem.
This is a method combined by a branch-and-fix coordination, proposed in Alonso-Ayuso
et al. (2003), and a branch and bound (B&B) method. The solution method presented in
Hernández et al. (2012) is a heuristic approach as the original problem is LP-relaxed to
provide good, feasible solutions in affordable computation effort. Ferland and Guenette
(1990) propose a more basic construction heuristic for the districting problem. In the
article, the school districts are created by allocating a neighborhood to a zone where the
closest neighborhood is allocated first. Subsequently, the zones are allocated in ascending
order up until the outermost zone is allocated to a school. The mathematical model
presented in this thesis has similarities with the problem described in Hernández et al.
(2012). This further incentivizes the use of B&B approach as a preferred solution method.

3.2.3 Other Relevant Methods

Delmelle et al. (2014) explore the Pareto optimal solution space by solving the bi-criteria
problem using the ε-constraint and weighted sum method. The ε-constraint method is a
common method to solve MOPs as it is characterized by its simplicity and applicability
(López Jaimes et al., 2011). In this approach, presented in López Jaimes et al. (2011), all
but one objective are used as constraints bound by some allowable level ε. This leaves one
selected objective to be minimized and thus creates a single objective problem (SOP). In
the weighted sum method, a weighting parameter is assigned to each objective and the
model is then solved as a SOP. In Delmelle et al. (2014), this method provided new insight
to the features in the model by exploring the relationship between the objectives.

The solution method used by Mattsson (1986) combines a tree search with a lower bound
obtained by a Lagrangean relaxation. By solving the Lagrangean dual problem, a highest
lower bound is found. The tree search is then terminated when the duality gap between
the best found objective value and this bound is less than a certain value. This conveys
that the difference between optimal and accepted solutions differ by, at most, this gap.

3.3 Our Contribution

As presented in this chapter, the FLP is a well-studied problem. The problem, in its
simplest form, aims to minimize the travel and facility cost, when the facilities are required
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to meet customers’ demands. However, this problem has been expanded in various ways,
and several solution methods have been developed. The variations discussed in this study
are summarized in Table 3.1. The decisions that have been made when creating the SPPA
are based on what is found preferable considering the nature of the problem.

The SPPA provides a unique, new mathematical model where three objectives are ad-
dressed simultaneously. The model focuses on the conflicting objectives of both mini-
mizing the costs from road to school and optimizing the capacity utilization, while also
preventing costs from poor school conditions. With these considerations, the SPPA un-
dertakes a complex representation of the real-world problem. In addition, instead of
presenting the road to school cost entirely as a function of distance, the SPPA considers
dangerous roads and change in topography as desired parameters to minimize as well.
By implementing these considerations, the model can solve real-world school planning
problems in a greater extent than what has been done before. Caro et al. (2004) propose
a model with similarities in the travel cost, however, the SPPA focuses on the parameters
more directly by implementing topography and dangerous roads as separate terms in the
objective function.

As the future demand in the SPPA is unknown, the model incorporates uncertainty, which
further effectuates the complexity of the model. As in Hernández et al. (2012), the demand
is modeled as a set of scenarios where the aim is to minimize total cost. This provides a
detailed and more realistic representation of the real-world problem, which again results
in more reliable solutions.

Furthermore, the SPPA introduces a standout new way of considering the capacity con-
straint. Delmelle et al. (2014) and Correia and Melo (2017) propose a model with flexible
capacity, where the capacity is expanded by renting extra units. In the SPPA, the capac-
ity is presented as a non-monetary cost in the objection function. To guarantee that each
pupil is allocated to a school, the built capacity can be exceeded. As this is an undesired
scenario in a long-term perspective, the non-monetary cost increases distinctly if the uti-
lized capacity exceeds the constructed maximum. Furthermore, the SPPA introduces an
optimal level of capacity utilization, and deviation from this level in either direction is
unwanted an thus costly. Therefore, the SPPA allows for fluctuations in the number of
pupils and presents a more realistic capacity constraint.

The budget constraint is another area where the SPPA stands out from the articles sur-
veyed in this thesis. Delmelle et al. (2014) propose a budget constraint that considers the
entire time period. The SPPA on the other hand considers a budget for each year. This is
due to the economic structure in Norwegian municipalities, where the budget for building
new schools is distributed over the years of the planned building. Thus, the model does

23



CHAPTER 3. LITERATURE REVIEW

not incur costs for the whole project period in the first year. This is a new and precise
way to consider the costs of a school project.

Finally, extended use of the branch and bound scheme is applied in the two variations
of the Execution Order Specific Branch and Bound algorithm to solve the SPPA. This
method has similarities with the branch-and-cluster approach presented in Hernández
et al. (2012), for instance, scenario tree generation and fixing variables. The algorithms
uses the structure of the branch and bound method in order to provide a sequence and
time schedule for the execution of the projects, in addition to solving the school location
problem. This is a unique way of solving a FLP that decreases the required computational
effort.

Conclusively, this thesis presents a model that addresses three gaps in the existing liter-
ature: a precise, mathematical description that takes uncertainty into account, a model
that undertakes three objectives simultaneously, and a new solution method provided by
the algorithms. In addition, the SPPA considers multiple elements in minimizing the
travel cost such as dangerous roads and topography. Moreover, a softened capacity con-
straint is introduced along with a budget constraint that is distributed over the planning
horizon. With all of these elements connected in one model, decisions can be made, where
several aspects can be weighted, and projects prioritized. Moreover, the algorithm pro-
vides a favorable scheme for solving the model. To our knowledge, this is the first time
all of these considerations are joined in one model simultaneously.
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4 School Prioritization Problem with
Alternatives

The School Prioritization Problem with Alternatives (SPPA) is the problem of deciding
what school projects to execute to best accommodate the school capacity in a community.
Essentially, given a set of distinct possible projects, the SPPA is the problem of determin-
ing which projects to execute at what time to optimally meet uncertain future demand
for school capacity. The goal of the SPPA is to provide an unbiased decision tool.

The SPPA is a multi-objective optimization problem, where a comprehensive assessment
of all the objectives is of importance. In this model, the following elements are undesired
and should be minimized:

• The cost from a long, hazardous and inconvenient road to school, from each pupil’s
home to their allocated school.

• The cost from non-optimal exploitation of school capacity.

• The cost from the inconvenience of pupils attending schools with low standards of
the physical educational environment.

Each objective is weighted according to a desired importance-measure. In addition, each
possible realization of the future population, denoted scenario, yields different values of the
objectives. The objective value of each scenario is weighted with the coherent possibility
of that scenario occurring. When the objectives above are optimized, a set of prioritized
projects is returned.

The SPPA considers a designated region, divided into smaller zones. A zone is initially
either inhabited with a distinct population or uninhabited. Each zone has a population
development throughout the time horizon. Thus, each zone has a number of pupils that
needs to be allocated to a school each year. The population development in each zone each
year is uncertain and represented as random variables. The random variables represent
scenarios that occur with a given probability. All pupils in a zone must attend a school
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every year, and it is undesired that pupils change their assigned school more than once
during the planning period.

Initially, there exists a definite number of schools. Each initially existing school has three
levels of capacity and a condition. The three capacity levels are: optimal, built, and
maximum. Built capacity is the capacity the school is constructed to handle in case
of an ideal utilization of its facilities. The optimal capacity is the capacity the schools
can handle to ensure stability in the school districts in a real-world setting. Maximum
capacity is the absolute maximum amount that can be allocated to the school. This level
allows for some school to accept more pupils than the built level, to ensure that every
pupil is allocated to a school.

Each school has an initial condition, related to the current physical state of the school
building. During the planning horizon, the condition of the schools further deteriorates.
A cost is related to the inconvenience of pupils attending a school in a poor condition as
discussed in Chapter 2. The total cost of condition for a school is thus both dependent on
the number of pupils at the school and the condition of the school. If a school is renovated
the condition of the school resets to a good as new state.

There exists a list of potential projects that can be realized in the planning period. The
SPPA distinguishes between schools that are suitable for possible projects and schools
that are not. Schools that are not suitable for projects are schools with available capacity
and satisfactory physical condition. For the schools that are suitable, each project is either
a capacity expansion project, a renovation project, or a combination project. Each school
may have several projects. There is also a set of potential new schools. Each of the new
schools may have multiple alternatives regarding size and location. Each combination
of location and size composes one project. The set of possible projects, including the
opportunity of doing nothing, is denoted as the school’s alternatives. Only one project
for each school can be executed.

Each project has a given duration. As discussed in Chapter 2, the duration of a project
includes the construction time, as well as the time it takes to get the necessary permits
and find contractors. The monetary expenses of all the projects can be defined. The
total expenditures for each project are distributed over the project’s duration. The total
expenditures for all projects under development are limited by a given budget for each
year in the planning horizon.

The ideal way from a zone to a school is denoted as the road to school. The utility of the
zone-to-school allocation is dependent on the distance between the school and the center
of the zone. Furthermore, it is undesired if roads to school require the pupils to travel
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through difficult topography such as up or down a steep hill. Lastly, roads to school that
require a crossing of dangerous sections, such as a heavily trafficked road or roads with
high speed limits should be avoided. If a school is located in a zone, the pupils in that
zone must be allocated to that school.
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5 Mathematical Model

In this chapter, a mathematical model is proposed for the School Prioritization Problem
with Alternatives (SPPA). The SPPA is a stochastic and scenario-based model, based
on the mathematical formulation proposed in Aslaksen and Norum (2019). Section 5.1
introduces the notation used in the model. Section 5.2 presents the mathematical model
with its objective and constraints. Lastly, Section 5.3 elaborates on some of the parameters
of the model.

5.1 Notation

Sets:

S set of schools

SE set of existing schools without potential projects in the planning

horizon (existing unchangeable schools)

SC set of existing schools with potential projects in the planning horizon

(existing changeable schools)

SP set of potential new schools in the planning horizon

As set of alternatives for school s

T set of time periods

Z set of zones

Zs set of zones in which school s is located

E set of possible scenarios
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Indices:

s school

a alternative

i zone

i(s, a) zone where school s alternative a exists

t time period

e scenario

Parameters:

Rsai total cost per pupil from undesired road to school s alternative a from

zone i

Esatτ the expense in time period τ of finishing school s alternative

a in time period t

Bt budget available for school projects in time period t

Nite number of pupils in zone i in time period t in scenario e

SIsa 1 if school s alternative a initially exists

CCON
sat condition cost of school s alternative a in time period t

Q̂sa built capacity at school s, alternative a

Q∗sa optimal capacity at school s alternative a

Q̄sa maximum capacity at school s alternative a

Ĉsa cost of having school s alternative a used at built capacity

C̄sa cost of having school s alternative a used at the maximum capacity

pe the probability of scenario e occurring

Weighting parameters:

α weight of cost from road to school

β weight of utilization cost

γ weight of cost of condition of the school
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Variables:

xsate 1 if school s alternative a is finished in time period t in scenario e

ysate 1 if school s alternative a exists in time period t in scenario e

vite 1 pupils in zone i change their allocated school in time period t in

scenario e

wsaite the amount of pupils in zone i that is allocated to school s alternative

a in time period t in scenario e

qsate used capacity at school s alternative a at time period t in scenario e

c(qsate) cost from non-optimal capacity utilization of school s alternative a in

time period t in scenario e

zsate cost of inconvenience from poor school condition for school s alternative

a in time period t in scenario e

5.2 Complete Model

This section describes the objective function and the constraints in the SPPA. The model
is presented in sections to ease the explanation. A compressed presentation of the model
is given in Appendix A.

Objective Function

min
∑
e∈E

pe(α
∑
s∈S

∑
a∈A

∑
i∈Z

∑
t∈T

RsaiNitewsaite +β
∑
s∈S

∑
a∈A

∑
t∈T

c(qsate) + γ
∑
s∈SC

∑
a∈As

∑
t∈T

Q̂sazsate)

(5.1)

The objective function (5.1) specifies the intention of the model, i.e. to minimize the
non-monetary cost from three terms given the possible realization of multiple scenarios.
The first term consists of the costs from long, hazardous and inconvenient roads to school.
The second term accounts for the utilization cost of the schools which are described as
a function of the used capacity. The last term denotes the cost of inconvenient school
conditions. Each term is weighted with its respective weighting parameter. The overall
objective value of each scenario is given an importance-measure reflecting the probability
of occurrence. Rsai and c(qsate) are elaborated on later in the chapter.
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Budget

s.t.
∑
s∈S

∑
a∈A

∑
t∈T

Esatτxsate ≤ Bτ τ ∈ T , e ∈ E (5.2)

Constraint (5.2) stipulates that the expenses that occur in a time period cannot exceed
the given budget for that same time period.

Existing Unchangeable schools

ysate = SIsa s ∈ SE, a ∈ As, t ∈ T , e ∈ E (5.3)

Constraint (5.3) establishes that the existing unchangeable schools will remain in the
initial state throughout the planning horizon.

Existing Changeable Schools

ysa1e = SIsa s ∈ SC , a ∈ As, e ∈ E (5.4)

ysa,t+1,e ≤ ysate + xsa,t+1,e s ∈ SC , a ∈ As, t ∈ T \{T}, e ∈ E (5.5)

ysate +
∑

b∈As|b 6=a
xsbte ≤ 1 s ∈ SC , a ∈ As, t ∈ T , e ∈ E|SIsa = 1 (5.6)

∑
a∈As

ysate = 1 s ∈ SC , t ∈ T , e ∈ E (5.7)

∑
t∈T

xsate ≤ 1 s ∈ SC , a ∈ As, e ∈ E (5.8)

Constraint (5.4) ensures that the initial existing alternative for an existing changeable
school is in fact the existing alternative in the first time period. According to constraint
(5.5), if an alternative for an existing changeable school exists in a time period, it either
existed in the previous time period or was completed in this period. Constraint (5.6)
states that an alternative ceases to exist if another alternative for that school is completed.
Constraint (5.7) ensures that a changeable existing school alternative exists in each time
period. Finally, constraint (5.8) limits the number of upgrades and alternatives for a
school to a maximum of one in the planning horizon.
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Potential New Schools

ysa1e = 0 s ∈ SP , a ∈ As, e ∈ E (5.9)

ysa,t+1,e ≤ ysate + xsa,t+1,e s ∈ SP , a ∈ As, t ∈ T \{T}, e ∈ E (5.10)

ysate ≤ ysa,t+1,e s ∈ SP , a ∈ As, t ∈ T \{T}, e ∈ E (5.11)

xsa,t+1,e ≤ ysa,t+1,e s ∈ SP , a ∈ As, t ∈ T \{T}, e ∈ E (5.12)∑
a∈As

ysate ≤ 1 s ∈ SP , t ∈ T , e ∈ E (5.13)

Constraint (5.9) sets the initial state for each potential new school and thus makes sure
that none exists in the first time period. Constraint (5.10) specifies that if an alternative
for a potential new school exists, it either existed in the previous time period or was
completed in this period. Constraint (5.11) ensures that if an alternative for a potential
new school exists in a time period, then it must exist for the rest of the planning period.
Constraint (5.12) guarantees that if a potential new school project is finished in the next
time period, then the alternative also has to exist in the next period. Constraint (5.13)
ensures that at most one alternative can be accepted during the time horizon for the
potential new schools.

Zone-to-School Allocation

∑
s∈S

∑
a∈A

wsaite = 1 i ∈ Z, t ∈ T , e ∈ E (5.14)

wsaite ≤ ysate s ∈ S, a ∈ As, i ∈ Z, t ∈ T , e ∈ E (5.15)∑
a∈As

wsai,t+1,e ≤
∑
a∈As

wsaite + vi,t+1,e s ∈ S, i ∈ Z, t ∈ T \{T}, e ∈ E (5.16)

∑
t∈T

vite ≤ 1 i ∈ Z, e ∈ E (5.17)
∑
i∈Z

Nitewsaite = qsate s ∈ S, a ∈ As, t ∈ T , e ∈ E (5.18)

wsa,i(s,a),te = ysate s ∈ S, a ∈ As, t ∈ T , e ∈ E (5.19)

Equality constraint (5.14) ensures that pupils in each zone are allocated to exactly one
school in each time period and every scenario. Constraint (5.15) states that pupils cannot
be allocated to schools that does not exist. Constraint (5.16) stipulates that the same
proportion of pupils in a zone must be allocated to the same school in the next time period
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unless they change schools. Constraint (5.17) enforces that a zone can redistribute the
allocations of pupils only once in the planning horizon. Constraint (5.18) states that the
used capacity of a school is equal to the number of pupils attending the school. Lastly,
Constraint (5.19) ensures that zones that contain an existing school must be allocated to
that school.

School Quality

zsate = CCON
sat ysate s ∈ SC , a ∈ As, t ∈ T e ∈ E (5.20)

Constraint (5.20) states the cost of condition of an alternative of a existing changeable
school if the alternative exists in the time period.

School Capacity

As explained in Chapter 4, the capacity of schools needs to be flexible and thus expressed
by soft constraints. The plot of the cost of the school capacity is illustrated in Figure
5.1, where there are three levels of capacity. At Q∗sa, the capacity is at an optimal value
and the corresponding cost is 0. The next level is Q̂sa which indicates the built capacity.
This implies a utility cost of Ĉsa. At Q̄sa, the school cannot take another pupil and is
considered completely full. As this is an undesired condition, this capacity comes with
the highest cost, C̄sa. The cost of a completely empty school is equal to the cost of a
school at maximum capacity, given that the school exists.

Figure 5.1: The plot of the cost of the school capacity.
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Since the cost function is convex and piecewise linear, linear inequalities can be used to
describe it. To simplify the inequalities, new parameters are introduced:

θ1 = Ĉsa

Q̂sa −Q∗sa
φ1 = Ĉsa

Q̂sa −Q∗sa
·Q∗sa (5.21)

θ2 = C̄sa − Ĉsa
Q̄sa − Q̂sa

φ2 = C̄sa − Ĉsa
Q̄sa − Q̂sa

· Q̂sa + Ĉsa (5.22)

θ3 = − C̄sa
Q∗sa

φ3 = C̄sa (5.23)

s.t. csate ≥ θ1qsate − φ1 s ∈ S, a ∈ As, t ∈ T (5.24)

csate ≥ θ2qsate − φ2 s ∈ S, a ∈ As, t ∈ T (5.25)

csate ≥ θ3qsate + φ3 − C̄sa(1− ysate) s ∈ S, a ∈ As, t ∈ T (5.26)

qsate ≤ Q̄sa s ∈ S, a ∈ As, t ∈ T (5.27)

Maximum capacity is defined by constraint (5.24) and (5.25), where the cost of capacity
must lie above these constraints. Constraint (5.26) prevents excess capacity if the school
exists. Constraint (5.27) ensures that the capacity does not exceed the maximum capacity.

Non-Anticipativity Constraint

xsat = xsate s ∈ S, a ∈ As, t ∈ T , e ∈ E (5.28)

The non-anticipativity constraint (5.28) assures that the model does not find solutions in
time t that are based on information that is not yet available.
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Non-Negativity/Binary Constraints

xsate = 0 s ∈ SE, a ∈ As, t ∈ T , e ∈ E (5.29)

xsate, ysate ∈ {0, 1} s ∈ S, a ∈ As, t ∈ T , e ∈ E (5.30)

vite ∈ {0, 1} i ∈ Z, t ∈ T , e ∈ E (5.31)

wsaite ≥ 0 s ∈ S, a ∈ As, i ∈ Z, t ∈ T , e ∈ E (5.32)

csate, qsate ≥ 0 s ∈ S, a ∈ As, t ∈ T , e ∈ E (5.33)

zste ≥ 0 s ∈ SC , t ∈ T , e ∈ E (5.34)

Constraint (5.29) ensures that unchangeable schools will not be upgraded in any of the
time periods in all scenarios. Non-negativity and binary conditions are determined by
constraint (5.30)-(5.34).

5.3 Parameter Elaboration

To further include all of the aspects of the SPPA, the following elaborations of the pa-
rameters are proposed. These elaborations can be included in the model itself or be a
part of a preliminary parameter development process.

Road to School

This section presents in detail how the value of the road to school parameter, Rsai, is
calculated. Rsai consists of input parameters that represent the distance from a zone
center to a school, troublesome topography, and how dangerous the road to school is.

Parameters:

Dsai distance between school s alternative a and zone i

Asai measurement of the topography between school s alternative a and zone i

Fsai measure of how dangerous the road between school s alternative a

and zone i is

PD penalty for distance

PA penalty for topography

P F penalty for dangerous roads
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Equality (5.35) determines the value of the road to school parameter as a result of distance,
topography, and dangerous roads.

Rsai = Dsai · PD + Asai · PA + Fsai · P F s ∈ S, a ∈ As, i ∈ Z (5.35)

Expenses of Projects

The expenses of new schools or rehabilitation projects are distributed over the duration
of the building process. The distribution is determined by a percentage for each project
year.

Parameters:

ETOTAL
sat Total cost of completing school s alternative a in time period t

Ltτ the percentage of the total cost of a project finished in time period t

that is accounted for in time period τ

The expenses from finishing a project in a time period are stated by (5.36) and are the
product of the total cost of the project and the percentage distribution of the same period.

Esatτ = LtτE
TOTAL
sat s ∈ S, a ∈ As, t ∈ T , τ ∈ T (5.36)
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6 Solution Method

In this chapter, a new algorithm with two variations is outlined and proposed as a solu-
tion method for the School Prioritization Problem with Alternatives (SPPA). First, an
overview of, and motivation for, the algorithm are presented in Section 6.1. Second, the
notation and technicalities used in the algorithm are discussed in Section 6.2. Then, the
different phases in the solution method are presented from Section 6.3 to 6.5. Lastly, the
alternative formulation of the algorithm is presented in 6.6. The two complete variations
of the algorithm are presented in Appendix B.

6.1 Execution Order Specific Branch and Bound

As discussed in Chapter 4, the uncertainty in the SPPA is modeled with a set of possible
outcomes for population development. The complexity of this multi-scenario approach, in
addition to the implementation of real-size data, motivates the need for a solution method
that can reduce the computational effort of the model. As the number of considered sce-
narios grows, the need for an effective solution method emerges. Therefore, the Execution
Order Specific Branch and Bound Algorithm is introduced. The idea of the algorithm is to
introduce a process for fixating the execution order of the school projects, before solving
the restricted multi-scenario SPPA with significantly reduced computational time. The
algorithm is developed in two variations. In the standard Execution Order Specific Branch
and Bound (EOSBB) algorithm, the set of projects at each school is aggregated. This
means that the execution order is fixating school by school, not by individual projects.
The Alternative Execution Order Specific Branch and Bound (AEOSBB) algorithm, pre-
sented in Section 6.6, fixates each of the individual projects instead.

The EOSBB algorithm is outlined in Figure 6.1. To solve the problem, the algorithm
introduces a single-scenario phase, where the multi-scenario problem (MSP) is broken
down into a set of single-scenario problems (SSP). The execution orders found in the
single-scenario phase are then compared to each other in the multi-scenario phase. If a
common execution order in all scenarios is found, the algorithm calculates the average
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objective value of the SSPs. Given that this average value is lower than the current best
found objective value of previously solved MSPs, the MSP is solved with this common
execution order as a restriction. If the objective value of the new MSP solution is lower
than that of the previously best found solution, a new best solution is found.

If a common solution is not found, further branching on the execution order is necessary
and new nodes are created. As long as there are unexamined nodes the search continues,
and the procedure of finding single-scenario solutions is repeated with added restrictions
to the allowed execution order. If there are no more unexplored nodes, the search is
finished and the best found solution is returned as the optimal solution.

Figure 6.1: An outline of the EOSBB algorithm.

The extensive literature study in Chapter 3 presented various methods for solving the
facility location problem. Particularly Hernández et al. (2012) successful use of a branch-
and-cluster coordination algorithm scheme motivates the development of the Branch and
Bound scheme of the EOSBB. Like Hernández et al. (2012), we propose a B&B algo-
rithm where the original problem is relaxed. However, while Hernández et al. (2012)
propose an LP-relaxation of the original problem, the EOSBB instead relaxes the original
multi-scenario problem to a set of single-scenario problems. Then, when reapplying the
restrictions of the execution order to the original problem, it still solves the problem to
optimality. The EOSBB stands out as an algorithm not yet seen in existing research by
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providing a sequence and time schedule for execution of the projects.

6.2 Notation and Technicalities of the Solution Algo-
rithm

To use the proposed solution algorithm outlined in Figure 6.1, new notation, and tech-
nicalities are introduced to the model. The added terms are introduced to enforce the
execution order restriction, compare previously found solutions as well as store the nec-
essary data.

6.2.1 The Execution Order Constraint

To have the SSPs and the MSPs comply with the current execution order requirements,
new notation and a new constraint are introduced to the SPPA model. The restriction is
enforced by introducing a new parameter, specifying the number of projects that need to
be already finished before the projects of a given school can be completed.

Rs The number of projects that need to be already finished before the projects

of school s can be completed.

Constraint (6.1) ensures that in order for a project at school s to be completed in time-
period t, the required number of completed projects prior to t must be at least Rs.

∑
a∈As

(1 +Rs)xsat ≤ 1 +
∑

u∈S|u6=s

∑
a∈Au

t−1∑
τ=1

xuaτ s ∈ S, t ∈ T (6.1)

6.2.2 School-Order Matrix and Vector

The project completion variable, x, defined in Chapter 5, is the relevant variable when
studying the order in which projects at schools are executed. To easily keep track of this
order, a School-Order matrix (SO-matrix) is introduced. The school-order combination,
(s,o), is 1 if any of the alternatives of school s are finished as project number o, and 0
otherwise. If none of the projects at school s are executed during the planning period,
the school-order element at order o = |S|+ 1 is 1.

Table 6.1 displays an example of a SO-matrix for a made-up, five-school, situation. The
table exhibits that the first school with a completed project is school 1. Further, we see
that the second executed project is at school 3, and the third is at school 2. The bottom
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two cells in the rightmost column state that school 4 and 5 do not have any executed
projects in the time horizon and thus, only three projects were executed in this example.

Table 6.1: School-Order matrix example

School \Order 1 2 3 4 5 6
1 1 0 0 0 0 0
2 0 0 1 0 0 0
3 0 1 0 0 0 0
4 0 0 0 0 0 1
5 0 0 0 0 0 1

If more than one project is finished in a time period, the respective schools are considered
to have the same order and the corresponding (s,o) elements are all 1. The number
of simultaneously completed projects then decides the order of the next school with a
completed project. For example, if two schools have projects completed simultaneously
as order 1, the next school with a completed project have order 3. Thus, the output of
running any given model is an integer SO-matrix. However, in the EOSBB it is necessary
to compare the average values of all the single-scenario SO-matrices. The fractional
average value then reveals how often a school-order combination occurs and is used as the
basis for the branching, further discussed in Section 6.5.

Furthermore, a School-Order vector (SO-vector) is introduced. The SO-vector presents
the information in the SO-matrix in a form that is easily comparable to the added num-
ber of already executed projects parameter, Rs. The vector is used to compare the active
execution order restriction to previously solved SSPs. This is further elaborated on in Sec-
tion 6.3. Each element in the vector represents the number of projects that are completed
before projects at school s. For the schools without executed projects, the vector element
is set equal to |S|. Do note that for the SO-vector to be an accurate representation of the
SO-matrix, the latter must have only integer values.

Table 6.2: School-Order vector example

School SO-vector
value

1 0
2 2
3 1
4 5
5 5

Table 6.2 shows the SO-vector of the example in Table 6.1. As a project at school 1 is
completed first, no other projects have been completed and the value of the SO-vector
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element is zero. Likewise, school 2 and 3 have the respective number of previously executed
projects as their corresponding element in the vector. School 4 and 5 do not have any
executed projects, and thus, the corresponding vector element is set to five.

6.2.3 The Branch and Bound Tree

The EOSBB algorithm branches on the execution order of the projects. To enable this,
each node in the B&B tree stores an execution order restriction parameter, Rs. As the
tree branches out, the restriction of the execution order tightens. This means that more
and more schools are locked in to be conducted in a specific order. We use the term search
depth to refer to the number of schools that are locked in. Each node store the average
objective value of the SPPs of its parent node. This is used as a measure on the best
possible objective value of the node and is thus used to determine what node to branch
on. Furthermore, a node is either active or terminated. An unexamined node is active
unless an MSP solution is found with an objective value lower than the stored average
SSP value.

When initializing the EOSBB algorithm, the first node, node 1, is created without any
restrictions regarding the execution order. This means that all elements in Rs are equal
to zero. When new nodes are created, a branching school and a branching order are
required. The branching order is always set to one higher than the search depth of the
parent node. For the initial node, the branching order is one, as a school needs to be
locked to order one. The branching school is always one of the schools not yet locked to
a specific order.

As the node branches, two new nodes, a downwards node, and a sideways node are created.
In the downwards node, the branching school is locked to the branching order. Thus, one
more school is locked to an order and the search depth increase. The sideways node
restricts the same branching school from being completed at the branching order. No
additional schools are locked in and the sideways node still has the same search depth
as its parent node. Do note that locking in a school to an order in practice is achieved
by restricting all other schools from being built at that order. That is, by increasing the
Rs element of all schools not previously locked to a school. The creation of new nodes is
further discussed in Section 6.5.

In Table 6.3, a snapshot example of the information stored in the branch and bound tree
nodes is presented.
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Table 6.3: A snapshot example of the information stored in a node in the B&B tree.

Identifier Parent Avg. SSP obj. value Search Active / Exec. ord. rest.
node (of parent node) depth Terminated 1 2 3 4 5

1 - 0 0 Terminated 0 0 0 0 0
2 1 2.5 1 Terminated 1 1 0 1 1
3 1 2.5 0 Terminated 0 0 1 0 0
4 2 2.7 2 Active 2 1 0 2 2
5 2 2.7 1 Active 1 2 0 1 1
6 3 3.7 2 Active 1 0 1 1 1
7 3 3.7 1 Active 0 1 1 0 0

At the time of the snapshot, there exist 7 nodes. As nodes 1 to 3 already have been
searched, they are terminated. The first still active node is node 4, which has node 2
as its parent node. We see from the information about node 4, that when the parent
node was searched, the solving of the SSPs with the execution order restriction, yielded
an average objective value of 2.7. Furthermore, it is easy to see the connection between
the execution order of node 2 and node 4. In node 2, no other school than school 3 could
complete the first project, and this also applies in node 4. However, node 4 is a further
tightening as the execution order also restricts all other schools than school 2 from having
the second completed project. Thus, as two schools are locked in, the search depth of
node 4 is two.

6.2.4 The Set of Solutions to Single-Scenario Problems

It is desirable to reduce the overall number of required SSP runs in each node. The
algorithm utilizes the fact that a cut in the solution space that does not remove the
optimal solution still yields the same optimum. Therefore, only the SSP of the scenarios
without previously found feasible solutions is solved. These are the scenarios with previous
solutions that violate the current execution order restriction. Thus, it is necessary to store
the execution order and objective value of each solved SSP. The execution order is stored
as a SO-vector. The set of stored solutions is denoted LIST , and each scenario e has
such a set, LISTe. If a solution in LIST is feasible given the active execution order
restriction, that solution is returned as the best solution for the SSP. Do note that when
searching for feasible solutions for the SPPs of a node, only the nodes directly upwards
in the tree can yield feasible solutions, and maximum one feasible solution can exist. By
directly upwards in the tree, we mean all nodes that can be traced back parent by parent.
Each set, LISTe, is initialized as empty. The process of checking for feasible solutions is
elaborated on in Section 6.3.
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6.3 Single-Scenario Phase

The input to the single-scenario phase is an active node with an execution order restriction
parameter, Rs. For each scenario e, the algorithm initially checks if the current restriction
is already fulfilled by a previous solution in LISTe. This means it searches through
all previously found solutions to find one with all elements in the SO-vector higher or
equal to the corresponding element in the active Rs. If one or more of the elements is
lower, the executed project at this school is completed before the required number of
previously completed projects is obtained. Thus the current restriction is not fulfilled by
that solution. If no previous solution fulfills the Rs, the SSP must be reoptimized for
that scenario. When solved, the SO-vector is created and stored as a new element in
LISTe with the corresponding objective value, ze. However, if a feasible previous solution
is found, the SSP is not reoptimized, and instead, the feasible solution is forwarded. The
snapshot in Table 6.4 provides an example of the situation for a scenario in a five-school
situation.

Table 6.4: A single-scenario phase example in a five-school situation and two previously
found SSP solutions.

School Comment
1 2 3 4 5

Rs 0 2 1 2 2
LIST 1 0 5 2 1 5 Not feasible
LIST 2 0 5 1 2 5 Feasible

In the example, the current execution order restriction ensures that a project at school 1 is
executed first and a project at school 3 second. We see that this scenario’s LIST contains
two previously found solutions. The first solution, LIST 1, breaks the execution order
restriction since school 4 is not allowed to have a project completed as the second project.
However, LIST 2 provides a feasible solution, as no schools have projects completed
earlier than the restriction allows. Thus, the SSP does not need to be reoptimized.
Instead, LIST 2 is returned, as it is the optimal solution for this scenario.

At the end of the single-scenario phase, a set of active SSP solutions, one for each scenario,
is forwarded to the multi-scenario phase. These solutions include the objective values and
the SO-matrices, recreated from the stored vectors. If one or more of the single-scenario
solutions do not yield a feasible solution given the current execution order restriction, the
search from the node in the B&B tree is terminated in the multi-scenario phase. The
single-scenario phase is outlined in Algorithm 1.
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Algorithm 1: The single-scenario phase
1: for each scenario e in E do
2: if Rs is not already fulfilled by a solution in LISTe then
3: solve the SSP
4: generate the SO-vector
5: add the solution to LISTe

else
6: return the feasible solution from LISTe

end-if
end-do

6.4 Multi-Scenario Phase

In the multi-scenario phase, the solutions found in the single-scenario phase are compared
and evaluated. Initially, the average SO-matrix (SO-average), as well as the average
objective value, zavg, are computed from the set of active scenario solutions returned from
the single-scenario phase. If one or more of the SSPs do not yield a feasible solution,
the search from the current node is terminated and the multi-scenario phase is ended.
The search from the node is also terminated if the algorithm has previously found a valid
multi-scenario solution, z̄, with a lower objective value than zavg as this branch can no
longer provide a better MSP solution.

Subsequently, if the node is active, the SO-average is checked for integer values. If all
elements are integers, the execution order in all of the SSP solutions is the same and a
reasonable execution order restriction can be introduced to the MSP, which is then solved.
However, all scenarios do not necessarily require the completion of the same number of
projects. If the search depth of a node is equal to the number of executed projects of
a scenario, further branching on the node does not lead to a common execution order.
As the execution of more projects in that scenario would deteriorate the objective value,
this is as deep as the search can go on the current branch. Thus, if the search depth of
the node equals the number of executed projects for one or more SSP solutions, the MSP
is solved with an execution order restriction equal to the execution order of the SSPs
in question. If the found optimal objective value of the MSP, zMSP , is lower than the
previously found value, z̄, the zMSP is the new best found value and the search from the
node is terminated.

If a common order is not found and the search depth does not equal the minimum number
of executed projects, the node is still active. The multi-scenario phase sends forward
the status of the current node to the new-node phase, where active nodes are due for
branching. The multi-scenario phase is outlined in Algorithm 2.
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Algorithm 2: The multi-scenario phase
1: calculate the SO-average, and calculate zavg
2: if one or more active single scenarios solutions not feasible then
3: node terminated

end-if
4: if zavg ≥ z̄ then
5: node terminated

end-if
6: if the SO-average is integer or

search depth = minimum number of executed projects then
7: run the MSP with added execution order restriction
8: if zMSP ≤ z̄ then
9: z̄ = zMSP

10: node terminated
end-if

end-if

6.5 New-Node Phase

In the new-node phase, there are two main processes: the creation of new nodes and
the picking of a new node to examine. From the multi-scenario phase, the status of the
current node is received. If the status of the node returned from the MSP is terminated,
no new nodes are created. If the status is active, the node is branched on. The branching
order is, as discussed in Section 6.2, related to the search depth of the current node. To
find the best branching school, however, the SO-average is searched, looking for the school
with the highest occurrence at the branching order. This is the school that in most of the
SSP solutions was built at the branching order. The downwards and sideways nodes are
then created.

An example of the node creation process is outlined in Table 6.5. The parent node
displayed in Table 6.5b yields the SO-average presented in Table 6.5a. The parent node
restricts all other schools than school 2 to have a project completed as the first, and
all other schools than school 3 to have a project completed second. The search depth
of the parent node is two and hence the branching order is three. Thus, the algorithm
searches down the order-three column in the SO-average. The search shows that school
4 has the highest fractional value, highlighted in green. School 4 is therefore chosen as
the branching school. Consequently, school 4 is locked to order three in the downward
node, and school 1 and 5 are no longer allowed to have the third executed project. In
the sideways node, however, school 4 is no longer allowed to have the third completed
project. This means that only school 1 and 5 can have the third project. Each of the two
nodes is then assigned the average SSP objective value, zavg, of the parent node.
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Table 6.5: Example of the SO-average and the creation of the downward and sideways
nodes.

(a) The SO-average-matrix

School \Order 1 2 3 4
1 0 0 0.2 0.8
2 1 0 0 0
3 0 1 0 0
4 0 0 0.6 0.4
5 0 0 0.2 0.8

(b) The execution order restriction of a par-
ent node and the resulting nodes given the SO-
average in (a)

1 2 3 4 5
Parent node 2 0 1 2 2

Downward node 3 0 1 2 3
Sideway node 2 0 1 3 2

After the creation of new nodes, the status of the parent node is changed to terminated.
The tree is then searched to find the best yet active node with the lowest zavg value. If
two nodes have the same value, the node with the deepest search depth is chosen.

The output of the new-node phase is a new node returned to the single-scenario phase.
If no new nodes are found, the search is finished and the best found solution is returned
as the optimal solution. If no solutions are found, the problem is infeasible. Algorithm 3
describes the steps of the processes.

Algorithm 3: The New-Node phase
1: if current node is active then
2: create two new nodes
3: add the created nodes to the tree

end-if
4: if still active nodes then
5: pick best node
6: return to the single-scenario phase

end-if
7: return the optimal solution of the SPPA

6.6 Alternative Formulation of the Execution Order
Specific Branch and Bound

The rationale behind introducing the EOSBB algorithm is to reduce the complexity of
the MSP by transferring some of the computational challenge to the solving of simpler
SSPs. To be of value the algorithm must reduce the computational time of the SPPA.
This means that the time it takes to solve all the necessary SSPs, the restricted MSPs,
and perform all the necessary tree mechanisms, must be shorter than the time it takes
to solve the original MSP. The size of the B&B tree directly affects the number of SSPs
that must be solved, and thus the size directly affects the performance of the algorithm.
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In the algorithm presented in this chapter, the size of B&B tree is based on the number
of existing schools, since only one execution order restriction exists per school. An al-
ternative formulation of the algorithm is to branch on all the existing projects. As there
potentially are several projects per school, this alternative formulation increases the num-
ber of execution order restrictions. Both the SSPs and MSPs still ensure the requirement
that only one project can be executed per school. It is expected that the alternative
formulation further increases the number of nodes of the B&B tree. However, it is also
expected that a stricter formulation of the MSPs reduces the computational time. In this
thesis, both formulations are tested to see whether a more substantial tree can further
reduce the computational time of the SPPA.

This alternative formulation of the EOSBB is denoted as the Alternative Execution Order
Specific Branch and Bound algorithm (AEOSBB). All mechanisms introduced and dis-
cussed in this chapter also apply and are used in the same way in the AEOSBB. However,
some adjustments must be made. First, the SO-matrix and -vector now contains one ele-
ment for each project instead of one element for each school. Second, a small alteration of
the formulation of the execution order restriction parameter and constraint is necessary.
The parameter is reformulated as follows:

Rsa The number of projects that needs to be finished before school s alternative
a can be completed.

Constraint (6.2) ensures that in order for school s alternative a to be completed in time-
period t, the required number of projects completed prior to t must be at least Rsa.

(1 +Rsa)xsat ≤ 1 +
∑

u∈S|u6=s

∑
b∈Au

t−1∑
τ=1

xubτ s ∈ S, a ∈ As, t ∈ T (6.2)
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7 Data Sets and Implementation

This chapter presents in detail the implementation of the data sets used in the compu-
tational study in Chapter 8. First, the designated area and its zones are discussed in
Section 7.1. Second, the population development in the designated area is presented in
Section 7.2, alongside the related uncertainty. Third, in Section 7.3 the distance from each
zone to the schools is discussed.. Fourth, in Section 7.4 the existing schools and potential
projects are outlined. Lastly, in Section 7.5 the weighting parameters are presented.

7.1 Area and Zones

For the case study, an area in southern Trondheim is considered. This area is defined by
the current school districts and their respective population zones. The data is presented
in ArcGis Pro, a geographic information system. ArcGis combines maps with spatial data
and enables complex analysis of the information. The area consists of twelve current school
districts, divided into 117 zones. In Figure 7.1a, the school districts, with the placement
of their schools, are illustrated, and Figure 7.1b demonstrates the zones. In collaboration
with Trondheim, this area is chosen as a representative selection of the municipality’s
current problems. The zones are determined and provided by Trondheim. These zones
are made by clustering neighborhoods to simplify planning in the municipality. There
are two types of zones. The first type is the zones that initially have a population, and
where the number of residents stays the same throughout the planning period. These are
referred to as unchangeable zones. The second type is the new zones without an initial
population, and where residential building projects are planned and may be executed.
Each new zone is related to exactly one residential building project. These zones are
denoted as changeable zones. There are 74 unchangeable and 43 changeable zones.

Each unchangeable zone has two defined centers: a straightforward geographic center,
and a center related to the location of residential homes in the zone. This center is the
mean location of all the residential buildings in the zones. As the size of the zones is set
sufficiently small, the use of centers is an equitable representation of the location of all
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(a) Schools and school districts.

(b) Existing zones and changeable zones.

Figure 7.1: Illustration of school districts, zones, and existing schools in the area of
consideration. The red lines indicate the school districts that are considered in this thesis.
The blue symbols represent the location of existing schools. The blue lines illustrate the
unchangeable zones that are considered in the study. The yellow areas are the location
of the changeable zones.
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the residents in that zone. Both centers are provided by Trondheim. The center for the
location of homes is the most interesting, as this indicates where most people are located,
and thus this center is used for the unchangeable zones.

As there are no current buildings in the changeable zones, the residential building center
can not be found, and they are given a geographic mean instead. The center is found
by using the ArcGis Pro tool Mean Center. These centers are the positions used for
changeable zones in the model and referred to as the zone center for changeable zones.

7.2 Population

The population of a zone is defined as the number of pupils in the zone. The population
development of a zone is dependent on whether the zone is changeable or unchangeable.
In unchangeable zones, it is assumed that the number of newcomers and people moving
out is equal, so the amount of pupils is constant throughout the planning horizon. The
data for existing zones are provided by Trondheim and shows the number of pupils as of
the 1st of January 2019. However, in zones with only one or two pupils, the amount is
adjusted due to privacy protection regulations. Consequently, zones with one pupil are
adjusted to zero, and zones with two pupils are set to three. Therefore, the population
differs slightly from actual statistics.

Initially, the population of a changeable zone is zero. The population of the zone is
then dependent on the realization of the residential building project. The location and
potential amount of new residences are shown in Figure 7.2. As the Figure illustrates, the
project size varies from approximately 30 to 900 residential buildings in the changeable
zones.
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Figure 7.2: The location and potential amount of new residences in the changeable
zones.

As presented in Chapter 2, the possible new residential buildings in Trondheim are cate-
gorized as detached houses, horizontally divided residences, vertically divided residences,
and low-/mid-rise buildings. The amount of each building type is specified in all the pos-
sible residential building projects. Each of the different building types has an expected
number of pupils. Table 7.1 presents the estimated number of pupils in one unit of each
type of building.

Table 7.1: Average number of pupils in one unit, per type of residential building.

Type of building Number of pupils
per unit ID

Detached house 0.27 D
Horizontally divided 0.13 HD
Vertically divided 0.33 VD
Low-/Mid-rise building 0.08 L/M

For each new residential building project, there is an anticipated year for when the first
and the last residence is finished and move-in ready. Further, the number of finished
buildings are assumed to be equally distributed in this time interval. An example of the
relevant residential building project-specific data is shown in Table 7.2.
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Table 7.2: Example of the relevant residential building projects specific data in a change-
able zone. Building potential denotes the total number of residences that can be built in
the changeable zone.

Zone name Building
potential

Amount of
building type First finished Last finished

D HD VD L/M
Hårstad Mindes veg 180 0 0.2 0 0.8 2020 2023

Throughout the planning period, the population in the changeable zones is found by
multiplying the number of finished residences with the respective number of pupils ac-
cording to residence type. However, the residences that are utilizable during a year are
not accounted for in the population register before the 1st of January the following year.
Therefore, there is a one time period delay, from when a residence is finished to when its
inhabitants are considered a part of the population. Table 7.3 shows an example of the
population development in a changeable zone.

Table 7.3: Example of population development in the changeable zone Hårstad Mindes
veg caused by the completion of building projects.

Year 2020 2021 2022 2023 2024
Number of finished buildings 45 90 135 180 180
Population in pupils 0 13 25 37 49

As discussed in Chapter 2, there are uncertainties associated with each of the residential
building projects. First and foremost, it is uncertain whether the project will be executed
or not. The probability that each project is executed is derived from the Regulatory Status
Scheme administrated by Trondheim. This status scheme allocates the projects according
to where they are located in the project process. For instance, projects with status 1 have
only just been initialized, while a status 4 project has all necessary permissions to start
the construction. Each of these statuses is assigned an associated probability of execution.
A project’s advancement in status is directly correlated to the progress of the planning
process. This results in a higher probability of completion as the status increases. The
Regulatory Status Scheme with coherent probabilities is presented in Table 7.4.
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Table 7.4: The Regulatory Status Scheme for building projects in Trondheim.

Status Explaination Probability
1 The project has not started planning work 0.50
2 Planning work is initiated 0.60
3 Complete plan proposal is ready to be presented for Trondheim 0.70
4 Trondheim has decided regulations 0.85
5 The building project is completed 1.00

Second, it is uncertain whether the projects can begin at the scheduled time. Table 7.5
presents the estimated probabilities for a project being postponed by 0 to 5 years. For
simplicity reasons, a delay only affects the start year, and the project duration remains
unchanged. As the population growths in the changeable zones are correlated with the
completion of the building projects, a delay in a project causes the same delay in popu-
lation development.

Table 7.5: The probability of postponement of the projects in years.

Delay in Years Probability
0 0.50
1 0.20
2 0.10
3 0.10
4 0.05
5 0.05

The same example presented in Table 7.3 is shown in Table 7.6, but with 1 year delay.

Table 7.6: Example of population development with 1 year delay in the new zone Hårstad
Mindes veg.

Year 2020 2021 2022 2023 2024 2025
Number of finished buildings 0 45 90 135 180 180
Population in pupils 0 0 13 25 37 49

7.3 Distance

To calculate the accurate distance from each zone to each school, information from several
data sources have been gathered and utilized. As presented in Chapter 2, it is desired that
pupils walk to school. Thus, the shortest walking distance from the zone centers to the
school is defined as the distance. A footpath network has been provided by Trondheim.
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This enables walking distances to be calculated in ArcGis by using the built-in Closest
Faclity tool. To avoid dangerous roads where footpaths are not available, ArcGis are
restricted from allowing roads that are unsuited for pedestrians. The given footpath
network is also expected to not include paths with height differences issues. Figure 7.3
illustrates the shortest walking distance from one of the zones to every school in the
selected area. As shown in the figure, walkways are clearly taken into consideration. This
is especially prominent when considering crossing dangerous roads, where the routes are
taking underpasses into account.

Figure 7.3: An example of walking distance from a zone to every school. The red dot
illustrates the zone center and the black lines are the shortest possible walking routes to
each distinct school.
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7.4 Schools

In addition to the twelve already existing schools, the construction of two potential new
schools are on the list of possible projects. All the schools have a set of common parame-
ters. Each alternative for each school is assigned a value for built capacity. As discussed
in Chapter 2 the optimal capacity level is given by Trondheim and set below the built
capacity to handle fluctuations in the year to year amount of pupils. In addition, the
maximum capacity value is established above the built capacity to allow for special con-
siderations. The optimal and maximum capacity is dependent on the built capacity as
shown in Table 7.7.

Table 7.7: Optimal and maximum capacity values as functions of built capacity.

Capacity Value
Optimal 0.9 · Built capacity
Maximum 1.05 · Built capacity

Trondheim emphasizes that utilization above optimal capacity is undesired in a long-term
perspective. Therefore a cost for capacity utilization deviating from the optimal level is
set. Utilization above the built capacity level is even more undesirable and penalized
accordingly. The parameters for cost at built capacity and cost at maximum capacity are
presented in Table 7.8. The cost for under-utilization is set so that the cost of no students
attending the school is equal to the penalty of capacity utilization at max capacity.

Table 7.8: Cost at maximum and built capacity.

Parameter Value
Cost at maximum capacity 5
Cost at built capacity 1

Changeable Schools

Nine of the twelve already existing schools are changeable, meaning that there exist one
or more potential projects for these schools. As discussed in Chapter 4, each project is
either a renovation project, a capacity expansion project, or a combination of both. Table
7.9 shows each of the changeable schools with coherent projects.
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Table 7.9: The number of each type of potential projects at each changeable school.

School Renovation
projecs

Capacity
projects

Combination
projects Sum

Breidablikk 1 0 1 2
Flatåsen 1 0 0 1
Kattem 1 2 1 4
Romolslia 1 0 0 1
Rosten 0 1 0 1
Sjetne 0 3 0 3
Stabbursmoen 1 0 2 3
Tonstad 1 0 1 2
Åsheim 1 0 1 2
Sum 7 6 6 19

To calculate the cost of the different projects, a defined standard school is used as a
reference. The standard school is provided by Trondheim and is a representation of the
maximum possible size of a school in the municipality. The characteristics of the school
are presented in Table 7.10.

Table 7.10: The characteristics of the standard school

Built capacity
[number of pupils]

Building costs
[ mill NOK]

Built area
[m2]

700 380 8,000

The cost for each capacity project is calculated by Equation 7.1. Here, Added built capacity
refers to the resulting increase in the built capacity if the project is executed.

Capacity project cost = 380 · Added built capacity
700 (7.1)

The costs from renovation projects are further distinguished into two categories based on
the nature of the renovation. For renovation projects that do not entail the replacement
of pavilions, the renovation cost is estimated to be 60 % of the cost of building a new
school of the same size. Thus, these projects are calculated by Equation 7.2, where the
Built capacity is the built capacity at the school.

Renovation project cost = 0.6 · 380 · Built capacity
700 (7.2)

61



CHAPTER 7. DATA SETS AND IMPLEMENTATION

If the projects require replacement of pavilions, this cost is calculated from the size of
the replaced area, and Equation 7.3 is used. Here, Square meters is defined as the total
square meters from the pavilions that need to be replaced.

Pavillion replacement project cost = 380 · Square meters
8000 (7.3)

The costs of the combination projects are found by summing the respective costs from
the projects’ parts.

All existing changeable schools have a condition state related to the physical condition of
their buildings. This condition state is set to deteriorate throughout the time horizon until
the school is upgraded by a renovation project. The expected condition and deterioration
is provided by Trondheim and is outlined in a condition-matrix. If a renovation project is
executed, the condition state is reset to zero and fixed for the rest of the planning period.
Figure 7.4 presents the possible states.

0 1 2 3 4 5
As new Critical

Figure 7.4: The possible states for the changeable schools.

The condition cost of each school is given by the condition state so that the condition
cost is equal to the square of the condition state. For instance, if a school is in state 3,
the condition cost is set equal to 9. Figure 7.5 illustrates the condition cost as a function
of the school’s condition state.
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Figure 7.5: Condition cost as a function of the state the school is in.
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Unchangeable Schools

Three of the schools in the designated area are denoted as unchangeable schools. As
discussed in Chapter 4, these are considered to be schools with available capacity and
with satisfactory physical conditions. Therefore there do not exist any possible projects
for these schools.

Potential New Schools

The two potential new schools are each proposed with three capacity alternatives: small,
medium, and large, to represent different possible realizations of the schools. The smallest
size is set to represent the smallest new school size acceptable to Trondheim. As for the
capacity projects, the building costs of the new schools are calculated by Equation 7.1.
The built capacity and building cost are given for each project size in Table 7.11.

Table 7.11: Built capacity in number of pupils and building cost in millions, of the three
possible sizes of potential schools.

Alternative Built capacity Building cost
Small 350 190
Medium 450 244
Large 550 299

Cost Distribution

The cost of executing the discussed projects is distributed over the project duration, as
discussed in Chapter 4. The cost distribution is given in Table 7.12 and is estimated from
real values provided by Trondheim, as presented in Chapter 2.

Table 7.12: Cost distribution for the projects.

Years to finish Cost distribution
0 0.04
1 0.16
2 0.65
3 0.14

Budget Parameter

The budget available for executing the school projects in the considered area is estimated
from the yearly budget in Trondheim. It is budgeted yearly with approximately 380 mil-
lion for school maintenance and development projects. Of this, 90% is designated for
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significant projects such as the ones discussed in this thesis. As the designated area in-
cludes roughly 1/4 of the schools and the population, the area-specific budget is estimated
to 80 million NOK each year.

Strictly following the yearly budget disable the execution of many projects as their costs
exceed the yearly budget. This leads to an unrealistically strict budget constraint. In
practice, the expenditures in some years can exceed the yearly budget if they in other
years are below it. Thus, the budget constraint, (5.2), must be reformulated to allow for
accumulation over time periods. Also, a new parameter is introduced:

Y The number of years the budget is accumulated over.

Then, constraint (7.4) ensures that the expenses that occur in a series of consecutive time
periods cannot exceed the accumulated budget for that same time period.

λ+Y−1∑
τ=λ

∑
s∈S

∑
a∈A

∑
t∈T

Esatτxsate ≤
λ+Y−1∑
τ=λ

Bλ λ ∈ T , e ∈ E|λ ≤ (|T | − Y + 1)

(7.4)

Furthermore, the accumulation of projects is not meant to enable many small projects
to be executed simultaneously. Constraint 7.5 ensures that at most one project can be
executed in each time period.

∑
s∈S

∑
a∈As

xsate ≤ 1 t ∈ T , e ∈ E (7.5)

In order to allow for the execution of each project, Y is set to 4.

7.5 Weight Parameters

As discussed in Chapter 4, the weight parameters reflect the desired importance-measure
of the objectives. For simplicity, the weight parameters are set so that they are equal to
one when summed. The weight parameters are presented in Table 7.13.

Table 7.13: The value of the weight parameters.

Weight Value
α 0.80
β 0.05
γ 0.15
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Trondheim emphasizes the importance of providing pupils with a short and safe road to
school. As this is also a requirement by law, this is the most important objective and thus,
the road to school objective weight, α, is given the highest value. Since measures that
solve significant challenges related to the physical learning environment of the schools is
one of Trondheim’s top priorities, the condition cost weight parameter, γ, is given the
second-highest value. Lastly, the capacity utilization objective weight, β, is weighted to
ensure satisfactory school capacity utilization.
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8 Computational Study

In this chapter, the performance of the model suggested in Chapter 5 is tested with data
instances as described in Chapter 7. The goal of the computational study is to test
and improve the computational performance of the School Prioritization Problem with
Alternatives (SPPA) by implementing various measures and the Execution Order Specific
Branch and Bound (EOSBB) algorithms presented in 6. A complete list of hardware and
software that are used to perform the tests in this computational study are described in
Table 8.1. The test instances are run and solved in Mosel Xpress.

Table 8.1: List over used hardware and software in the computational study

Hardware Lenovo M5
Processor 2 x Intel E5-2670v3
Memory 64 Gb RAM
Operating System CentOS 7.8.2003
Fico Optimization Suite v8.8
Xpress Mosel Version 64-bit v5.0.3

First, Section 8.1 presents the testing of a deterministic version of the SPPA, and is based
on Aslaksen and Norum (2019). Second, in Section 8.2, the solution methods are tested
and analyzed. Third, the stability of the model is tested in Section 8.3. Fourth, the
value of information is discussed in Section 8.4. Lastly, an analysis of alterations in the
non-anticipativity constraint is provided in Section 8.5.

8.1 Deterministic Model Testing

In this section, a deterministic model variation of the SPPA, denoted DM, is studied. The
DM is a representation of the SPPA in its simplest form, as a single-scenario problem. In
this context, deterministic means that the random population variables are replaced by
their expected value, based on the probabilities in Chapter 7. The goal of the DM testing
is to improve the computational performance of the SPPA, without cutting optimal, real-
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life feasible, solutions. This is achieved by implementing measures and restrictions specific
for the real case study of Trondheim. As discussed in Chapter 3, the stochastic problem
and the deterministic problem are not profoundly different, and implementations on the
DM can thus easily be implemented on the stochastic SPPA. Throughout the DM testing,
the maximal computational time is set to one hour.

In Section 8.1.1 we establish a base case version to the DM. Then, Section 8.1.2 presents a
relaxation of the school change variable. Further, a maximum allowed school deterioration
restriction is implemented in Section 8.1.3, and a set of zone-to-school allocation cuts are
examined in Section 8.1.4. The section concludes with Section 8.1.5, which presents the
final deterministic model.

8.1.1 The Base Case

As presented in Chapter 5, the objective function is divided into three objective terms:
inconvenience from road to school, inefficient capacity utilization, and poor condition
of the physical buildings. To compare the cost of the three objectives, we first need
to establish a non-dominant objective function. In a non-dominant objective function,
the objective values should be approximately equal if the weighting parameters in the
objective function, (5.1), are assigned the same value. As the values of the objectives
are unbalanced, each objective is assigned a divisor that, if applied, gives them equal
significance. When the divisors as well as the objective weights discussed in Chapter 7
are applied, the problem is denoted the base case.

The set of balancing divisors is found by introducing a single-objective problem (SOP) for
each objective. The objective values of the SOPs are then set as that respective objective’s
divisor. Consequently, by implementing the divisors, the best possible solution for each
objective is 1. All later objective values are presented as a comparison to the divisor
values found in the SOPs. The divisors are presented in Table 8.2. In the tables in this
chapter, the road to school objective is abbreviated to RtS, the capacity utilization to
Cap, and the school condition to Cond. The process of deciding the set of divisors is
further presented in Appendix C.

Table 8.2: The objectives with their respective divisors

Objective Divisor
RtS 48,160,000
Cap 2.73
Cond 208,577

The divisors yield information about the cost of each objective. However, these terms are
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represented as non-monetary costs and provide somewhat limited information about the
practical implication of the solution. Therefore, we introduce a second set of measures to
increase the practical understanding. These measures are average zone-to-school distance,
average capacity utilization, and average school building condition.

To minimize the objective function, the average road to school and school condition ought
to be as low as possible. The capacity term, however, is penalized if the utilization is either
above or below the optimal capacity. This signifies that the performance of a solution
can be illustrated by how low the average road to school and condition state is, and how
close the average capacity utilization is to 90%. The values of the solutions of each SOP
is given in Table 8.3.

Table 8.3: The results of the SOP tests, where the green areas represents the best
possible average from each objective.

Avg. RtS [m] Avg. Cap [%] Avg. Cond
RtS 678.6 86.3 2.00
Cap 2954.5 89.7 1.65
Cond 3239.4 99.1 1.29

The highlighted cells represent the best possible average road to school (Avg. RtS) and
average school condition (Avg. Con), as well as the best found average capacity utilization
(Avg. Cap). Note that if the three objectives are completely uncorrelated, the diagonal
values are the optimal solutions for the multi-objective SPPA.

To find the base case solution, the DM is solved with the discussed divisors and with
objective weights, as discussed in Chapter 7. Table 8.4 displays the solution values found
when the base case is solved.

Table 8.4: Solution values of the multi-objective base case

Integer
Solution

Best
Bound Gap [%] RtS Cap Cond

Obj. Avg. [m] Obj. Avg. [%] Obj. Avg.
1.4563 1.2286 15.6 1.19 807 4.01 89.7 2.00 1.51

From the table, we see that the three objectives are correlated, as the objective values are
all worse than the values of the SOP solutions. For example, the road to school objective
is 1.19 times higher than the divisor value. It is interesting to point out that whilst
the capacity utilization objective has a value of 4.01, which indicates a worse capacity
utilization, the average capacity utilization remains at the same level of 89.7%. This can
be explained by investigating the utilization of each school individually. For instance, if
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a school is using 85% capacity in half of the time periods, and 95% in the other half, the
average utilization will be 90%. However, the objective value is significantly worse than if
the utilization was 90% in all of the periods. This illustrates that the average utilization
can tell a different story than the objective value. Thus, it is necessary to study both to
get a complete understanding of the solution.

Furthermore, Table 8.4 shows a gap between the best found integer solution and the best
bound. This means that the DM cannot find the optimal solution within the maximum
allowed computation time. As the DM is already a simple single-scenario version of the
SPPA, the multi-scenario version is anticipated to struggle even more to find the optimal
solution. It is therefore necessary to test measures that can reduce the computational
time of solving the problem without deteriorating the solution.

8.1.2 Relaxation of the School Change Variable

When running the deterministic model, the maximum one change constraints, (5.16) and
(5.17), stick out as heavily demanding constraints. The combination of considerable row
generation and the binary variable v, increases the computational complexity consider-
ably. In an attempt to improve the run time, we introduce two alternatives for relaxed
formulations of the school change variable, v. The rationale for the relaxations is the
significant road to school weighting parameter which causes deviations from the shortest
path to be deeply unfavorable. Therefore, it is expected that the number of school changes
remains limited even with the more relaxed formulations of the school change variable.

The first relaxation suggestion is to introduce a small adjustment factor, allowing minor
zone-to-school changes without activating the maximum one change constraint. This
means replacing constraint (5.16) with constraint (8.1). Constraint (8.1) allows a small
amount of the pupils in a zone to change schools whilst still ensuring maximum one major
school change throughout the time horizon. We denote this variation as the minor change
model.

∑
a∈As

wsai,t+1,e ≤
∑
a∈As

wsaite+0.1+vi,t+1,e s ∈ S, i ∈ ZCt , t ∈ T \{T}, e ∈ E (8.1)

The second suggestion is to introduce a relaxed v model, where the binary requirement
on the v variable is relaxed. This relaxation means no longer restricting the number of
changes, but instead the amount of change. This allows smaller changes between the
schools whilst still restricting the overall amount of changes allowed during the planning
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period. To obtain this, the variable v is redefined as below. The relaxed v model is also
implemented with constraint (8.1).

vite how much of zone i that changes its allocated school in time period t

in scenario e

To assess the performance of the two relaxations, multiple performance criteria are stud-
ied. It is obvious that a positive effect on run time is required and that this effect must
be weighed against the deviation of the objective value. However, the performance of the
relaxed models is also affected by the variation in multiple measures regarding zone to
school allocation. Significant increases in the number of school changes or the number
of existing zone-to-school combinations are undesirable and must be weighed against the
impact on computational time. Similarly, a considerable reduction in the number of entire
zones allocated to the same school during the entire planning period, zone-to-one-school
zones, is undesirable. Table 8.5 shows the objective values and measures for the base case
and the suggested relaxation models.

Table 8.5: The results when the deterministic base case model is optimized with relax-
ations of the school change variable.

Integer
solution

Best
bound

Time
[s]

RtS Cap Cond
Obj. Avg.[m] Obj. Avg.[%] Obj. Avg.

Base case 1.4563 1.2286 Max 1.19 807 4.01 89.7 2.00 1.51
Minor change 1.4563 1.2286 Max 1.19 807 4.01 89.7 2.00 1.51
Relaxed v 1.3208 1.3208 1948 1.09 742 2.96 89.7 1.96 1.45

We see that the minor change relaxation has no detectable effect on the performance.
However, the relaxation of the variable v drastically reduces the run time. Not surpris-
ingly, the solution found with the relaxed v model gives a better solution for all the
objectives than the base case. Even so, we see that the objective value of the relaxed v
model solution is within the gap of the base case model solution. This indicates that the
relaxation still provides a solution that is somewhat similar to the solution of the base
case problem.

To verify the value of the solution of the relaxed v model, the found set of executed
projects is re-implemented in the base case. The result of this re-implementation on the
objective value is present in Table 8.6 and compared to the solution of the base case.
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Table 8.6: The solution of the base case with fixed project execution from the relaxed v
testing.

Integer
Solution

Best
Bound Time [s] Rts Cap Con

Base case 1.4563 1.2286 Max 1.19 4.01 2.00
Fixed executed projects 1.4191 1.3382 Max 1.17 3.73 1.96

From the results, it is clear that the re-implementation of the set of executed projects yields
a similar solution to the solution of the base case itself. In fact, the fixed executed projects
problem is able to find a better integer solution within the time limit. Furthermore, even
though the best bound of the base case is lower, we know from the result of the relaxed
v, that the solution of the base case must be equal to or higher than 1.3208 as that is
the solution of the relaxed problem. Thus the re-implementation of the fixed executed
projects confirms the validity of applying the relaxation of v.

However, before concluding on the implementation of the relaxation, it is interesting to
study the effect on the zone-to-school variable, w. Firstly, the amount of zones that is
allocated to the same school throughout the planning period, zone-to-one-school, gives a
measure of how stable the zone-to-school allocation is. Further, the number of non-zero w
elements can tell us about the number of divided zones, where pupils in the zone attend
different schools. A high number of divided zones is also a measure of instability, as these
zones are the most likely to change allocation from one time period to the next. Table
8.7 provides some key figures for the relaxed v model compared to the base case.

Table 8.7: The effect from relaxing v on the zone-to-school allocation. The three right-
ward columns present how many zones that are divided and allocated to different schools
in the base case and with the relaxed v.

Zones-to-one-
school [%]

Number of zones [in %] where the amount
of pupils attending the same school is:

100% >50% <25%
Base case 49.1 63.4 79.0 13.1
Relaxed v 38.2 55.4 74.5 14.2

From the table, we see that the relaxation of the school change variable v reduces the
number of zones-to-one-school allocations. However, we see that in both approaches, the
majority of the pupils are allocated to the same school in most of the zones. This indicates
that the relaxation of v only causes minor modifications to the number of non-zero w
variables. An implementation of a strict maximum road to school distance constraint can
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further offset this increase. This is discussed in Section 8.1.4. Consequently, the positive
effects of the drastic reduction in computational time surmount the negative affects on w,
and the relaxation of v is implemented.

8.1.3 Maximum Allowed School Deterioration

To further reduce the solution space of the model and hence improve the computational
time, a restriction to the maximum school deterioration is introduced. This is achieved
by forcing schools to be renovated within five years of reaching condition stage 5. The
rationale behind this extension is that the schools in stage 5 are in an unacceptable
physical condition and measures must be taken within five years to improve the condition.
This is pursuant to the law of a good physical learning environment, presented in Chapter
2 as well as Trondheim’s prioritization of school renovations projects.

The maximum allowed deterioration is added as a new constraint, where state 5 is the
highest maximum allowed state. In practice, this is obtained by restricting the coherent
cost of condition as presented in Constraint (8.2). Moreover, the condition-matrix dis-
cussed in Chapter 7 is altered such that a school state changes to artificial state 6 after
five years in state 5.

zsate ≤ 25 s ∈ S, a ∈ As, t ∈ T , e ∈ E (8.2)

An outline of the results from tests with the added constraint is presented in Table 8.8.

Table 8.8: A comparison of tests with and without a maximum allowed state of school
condition.

Objective Time [s] RtS Cap Cond
Relaxed v 1.3208 1948 1.09 2.96 1.96
Restricted z 1.3208 674 1.09 2.96 1.96

From the table, we observe that the model with the implemented new school deterioration
constraint provides equal results to those without the cut, but with a 65% decrease in
computation time. This indicates that the only effect from the restriction is a feasible cut
in the solution space. Thus, the restricted value of z can beneficially be implemented into
the model, without deteriorating the quality of the solutions.
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8.1.4 Road To School Cuts

The zone-to-school variable, w, is by far the variable with most elements. The complexity
and size of the model are significantly influenced by the 4,329 zone-to-school combinations
that exist in each time period and each scenario. This far exceeds the number of realistic
combinations in the real-world situation.

As discussed in Chapter 2, Norwegian law declares strict regulations considering the dis-
tance between a zone and its allocated school. Thus, to prevent the model from spending
unnecessary time on obviously unrealistic zone-to-school combinations, three types of
maximum distance cuts are proposed. The three types are:

1. Equal cuts: All zones are restricted to the same maximum distance (i.e. 3500
meters).

2. Shortest distance based cuts: Zones are restricted based on their distance to
the closest initially existing school.

• Extra meters: An additional length is allowed (i.e. shortest distance + 500
meters).

• Multiplier: An additional percentage is allowed (i.e. shortest distance · 1.5).

3. Closest schools cuts: Zones are restricted to go to one of its nearest schools.

• Two closest: The zone must be allocated to its nearest or second-to-nearest
initially existing school.

• Three closest: The zone must be allocated to one of its three nearest initially
existing schools.

The simplest type of cuts are the equal cuts, where the same maximum distance is allowed
for each zone. These are easy to implement and cut the worst zone-to-school combinations,
with the longest distances. To somewhat adjust for and exploit the location of the zone,
the shortest distance based cuts are implemented. These give strict cuts for the urban
zones that have several schools close by. At the same time, the cut allows for some
flexibility for the rural zones located further away from its nearest schools. The extra
meter cut ensures this by allowing a certain extra distance, but this distance is independent
of the urbanity of the zones. In comparison, the extra distance allowed in the multiplier
cut is determined by the distance of the closest school. This allows for individual zone
differences.

Furthermore, the closest school cut is completely customized for each zone, as the maxi-
mum distance is solely based on that zone’s distances to the schools. The shortest distance
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here means the shortest distance to an initially existing school. Likewise, the second clos-
est and third closest schools are given by the initially existing schools. This means that if
a new school is built closer than the second-to-nearest or third nearest school respectively,
zones can potentially be allocated to one additional school. Table 8.9 displays an example
of the value of the maximum allowed distance for the different cuts.

Table 8.9: An example of distance allowed in a specific urban zone and a rural zone, as
a function of the closest school. The values are given in meters.

Closest Equal
Shortest distance based Closest school
Extra meters Multiplier Two closest Three closest(500m) (1.5)

Urban zone 267 3500 767 401 801 907
Rural zone 2635 3500 3135 3953 3571 3804

All three types of cuts are tested and the complete calculations can be found in Appendix
C. The multiplier cut, with an additional allowed distance of 50%, as well as the two closest
and three closest cuts, provided the most promising results considering the computational
time and objective values. The effect of these implementations is studied further. Table
8.10 outlines the objective values and measures of the model when implementing the cuts.

Table 8.10: Results from implementing a restriction of maximum zone-to-school dis-
tance.

Obj.
value Time [s] RtS Cap Cond

Obj. Avg. [m] Obj. Avg. [%] Obj. Avg.
Restricted z 1.3208 674 1.09 741 2.97 89.7 1.96 1.45
Multiplier (1.5) 2.7591 40 1.06 718 31.8 89.6 2.11 1.50
Two closest 1.8391 51 1.09 737 13.1 89.3 2.06 1.51
Three closest 1.3572 135 1.12 757 3.33 89.7 1.96 1.45

The table shows that implementing either of the three proposed cuts significantly improves
the computational time, especially the multiplier and the two closest cuts. However,
both of the corresponding solutions to these cuts yield significantly deteriorated objective
values. Furthermore, we see that the increased objective value can be traced to the
capacity utilization objective. Before deciding on whether to include either of the three
proposed cuts, a closer study of the capacity utilization is needed. In Table 8.11, a
selection of the studied schools are presented with coherent capacity utilization.

In the multiplier test, we see an unwanted result where the capacity is unevenly distributed
amongst the schools. This is especially prominent at Okstad skole where the capacity
utilization is at 61% and at Sjetne skole where it is 96% utilization. Moreover, the
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Table 8.11: The capacity utilization of a selection of schools. All the values are given
in %.

School Restricted z Multiplier (1.5) Two Closest Three Closest
Huseby skole 89 95 89 88
Hårstad skole 90 94 91 90
Okstad skole 90 61 90 90
Sjetne skole 91 96 94 91

implementation of the two and three closest school cuts results in some deviations from
the desired 90% utilization, but to a lesser degree.

The introduction of road to school cuts are expected to affect the allocation of zones to
school, and thus the number of zones-to-one-school and divided zones. Once again, it is
relevant to study the zone-to-school variable w. Table 8.12 displays the impact on the
variable from the three cuts.

Table 8.12: The effect from implementing maximum distance cuts on the zone-to-school
allocation.

Zones-to-one-
school [%]

Number of zones [in %] where the amount
of pupils attending the same school is:

100% >50% <25%
Restricted z 38.2 55.2 74.5 14.4
Multiplier (1.5) 47.6 57.6 74.9 13.1
Two closest 38.2 64.4 81.9 10.6
Three closest 27.4 57.7 76.5 12.3

It is clear that the implementation of the multiplier cut increases the number of zones-to-
one-school zones. However, we see that the number of zones in which all the pupils attend
the same school only increases slightly. This indicates that the multiplier cut does not
seem to considerably decrease the number of divided zones. The two closest cut does not
increase the number of unchanged zones, but instead, we see a significant positive effect
in the number of undivided zones. Lastly, the three closest cut does neither improve the
amount of zones-to-one-school cuts or the number of undivided zones substantially.

The improvement in computational time, and the reduction in the number of divided
zones, incentivize the implementation of the two closest schools cut. The multiplier cut
leads to an undesirably large increase in the objective value. The objective value increase
of the second closest cut can be viewed as only a mathematical deterioration, as the
increase can be justified by practical considerations and obligations stated in Norwegian
Law. Even though the negative effect on the objective value is considerably smaller in the
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three closest school cut compared to the two other, the comparatively high computational
time, and the lack of improvement in the zone-to-school variable, reduces the value of the
three closest cut.

8.1.5 Final Deterministic Model

The final deterministic model denotes the deterministic model with applied extensions and
relaxations as discussed in this section. The forthcoming studies are based on the stochas-
tic equivalent of the final deterministic model. A comparison of the final deterministic
model and the base case is presented in Table 8.13.

Table 8.13: An overview of the building blocks that the base case and final model
consists of.

Base Case Final Model
(5.1) X X
(5.3) - (5.34) X X
(7.4) - (7.5) X X
Divisors X X
Relaxation of v - X
Maximum z constraint - X
Two closest schools cut - X

8.2 Comparison of the Solution Methods

In this section, the computational performance of the proposed solution methods to the
SPPA are tested and compared. The EOSBB and AEOSBB algorithms are compared
with the Complete Computation method (CC). The CC method solves the problem by
a direct implementation of the model as presented in Chapter 5, with the extensions
presented in Section 8.1.

As discussed in Chapter 6, the two proposed algorithms are exact solution methods.
Therefore, all three methods yield the same objective values when tested on the same
data set. The results show that the EOSBB and AEOSBB algorithms provide the same
solutions as the CC method in instances that the CC solves to proven optimality.

To evaluate the performance of the three solution methods, they are each tested on several
scenario instances with varying sizes. The aim is to obtain insight into each method’s
scaleability, i.e. the method’s ability to solve larger data instances. Figure 8.1 shows
the computational time of different scenarios sizes and is given as the average value of
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five instances of each size. In this test, the maximum computation time is set to 25,000
seconds.
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Figure 8.1: The average computational time is plotted against the number of scenarios
for the CC, EOSBB and AEOSBB.

From the figure, it is clear that when the number of scenarios in the instances increases,
the computational performance of the CC method significantly deteriorates. When the
method is tested on instances of more than 20 scenarios, the computational time exceeds
the given time limit.

The plot clearly illustrates that both of the suggested algorithms handle the increase
in the number of scenarios decisively better than the CC method. Thus, both solution
algorithms could beneficially be implemented as they have significantly higher scalabil-
ity. Furthermore, we see that the AEOSBB algorithm manages to solve large instances
decisively faster than the EOSBB. For instance, the AEOSBB algorithm solves the fifty
scenarios instances on average in half the time of the EOSBB, and the computational time
of the EOSBB continues to rapidly increase after this. Consequently, we can conclude
that the reduction of the MSP solution space, as discussed in Chapter 6, is decisive for
the computational performance.

As the AEOSBB algorithm provides optimal solutions in the shortest time, this is the
preferred algorithm for solving the SPPA on real-size data. Thus, the solution algorithm
is implemented in further studies.
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8.3 Sample Stability Testing

In this section, the stability of the model and scenario generation process is tested. The
concept of testing stability relates to determining that when we test our optimization
model, the results are not just dependent on the scenario generation procedure, but on
the properties of the model itself (King and Wallace, 2012). This section aims to verify the
utilized scenario generation process of the model and thereafter decide on an appropriate
scenario size of the instances used in later studies of the model. All theory presented in
this section is from King and Wallace (2012).

Each scenario in this thesis is generated based on discreatization of random variables. The
stability tests verify that the optimization model is not subject to systematic errors from
poor discretization. There are two main types of stability tests: in-sample and out-of-
sample. In-sample stability is a measure of the internal consistency of the model. That is,
a test of the scenario generation process itself. On the other hand, out-of-sample tests are
extended by testing the quality of the model as well. In stochastic programming, many
different solutions can provide the same objective value. Thus, stability is measured by
similarities in the objective values, not in the solutions.

8.3.1 In-sample Stability

The scenario generation process produces different scenario instances based on the same
data. When testing in-sample stability, the objective values of the optimal solutions of
different scenario instances are compared. If these objective values are approximately the
same for all instances, we say that we have in-sample stability. In short, if we have perfect
in-sample stability, the objective value is independent of the used instance.

To find the required scenario-size that provides in-sample stability for the SPPA, we solve
the model for five different instances of each of the scenario-sizes. The average, minimum,
and maximum found objective value of each size is presented in Figure 8.2. The figure
clearly shows that an increase in scenario-size reduces the variation in the objective value
of the instances. The improvement in stability is prominent, especially up to 20 scenarios.
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Figure 8.2: In-sample stability tests of the SPPA

The standard deviation, σ2, and coefficient of variance, CV, from the tests are presented in
Appendix D. The CV values determine the relative deviation in the tests’ results and can
thus be an indicator of in-sample stability. As we can see from the results, the CV value
is generally low, especially when the scenario-size exceeds 20 as the, CV value stabilizes
at below 2%. To further decide on a reasonable scenario-size, a comparison of the values
for the 5, 20, and 50 scenario instances are presented in Figure 8.3.
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Figure 8.3: The minimum, average and maximum objective value from five runs of for
the 5, 20, and 50 scenario instances.

From the figure, we see a significant improvement from the 5 scenario instances to the
20 scenarios instances. However, the improvement from 20 to 50 is marginal. For com-
putation performance reasons, it is desirable to keep the number of scenarios as low as
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possible. Thus 20 is a reasonable number of scenarios as it provides sufficient in-sample
stability.

8.3.2 Out-of-sample Stability

In out-of-sample stability tests, we want to test if the solutions of the instances yield
the approximately same true objective value. By the true objective value, we mean the
objective value of the true problem, in which all possible scenarios are taken into account.
Out-of-sample stability testing reveals if there is false stability in the scenario generation
procedure, as it takes the worst possible outcomes into account.

In practice, it is impossible to solve the true problem. Instead, the out-of-sample tests
are performed on an objective function with 1,000 scenarios, and with fixed first stage
variables, to simulate the corresponding true objective value. In the SPPA, the execution
of school projects, variable x, is considered the first stage variable. The first stage variable
of the simulated true objective function is fixed as the first stage solution of each of the
scenario instances. The standard deviation of the objective values of each scenario size
then provides a measure of the out-of-sample stability.

The out-of-sample stability is tested for 5 scenario instances of sizes ranging from 3 to 100.
The decisions of which and when projects are executed in every instance, the x-variable,
are fixed as the first stage variable in the simulated true objective function. The standard
deviation of the true objective values for each instance size is presented in Figure 8.4.
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Figure 8.4: The standard deviation σ2 from the simulated true objective function solved
with corresponding first stage variables.

The true objective value of the three scenario instances did not yield feasible solutions
to the true problem. However, the figure shows that even from the five scenario-size, the
standard deviation of the true objective value is low. Increasing the scenario-size shows
little effect on the standard deviation value. This implies that we have out-of-sample
stability even with a relatively small number of scenarios.
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8.3.3 Conclusion From Stability Testing

The results from in-sample and out-of-sample stability demonstrate stability in the model
and the scenario generation process. However, the lack of variations in the true objective
values also indicates that there is a somewhat restricted solution space. There seems to
be a limited set of first stage variable solutions that yields feasible solutions to all the
scenarios. While the tests on out-of-sample stability show stable results for both low and
high numbers of scenarios, the in-sample tests imply stability as the number of scenarios
escalates past 20. Consequently, we suggest that 20 scenarios are sufficient to obtain
stability.

8.4 The Value of Information

In this section, the value of information about the uncertain future is studied. First,
the value of considering uncertainty is evaluated. Second, the value of having perfect
information about the future is assessed. The theory used in this section is rendered from
Birge and Louveaux (2011).

A fundamental difference between a stochastic and a deterministic model is the considera-
tion of uncertainty. This allows the stochastic model to take in more accurate information
about the future. A measure that quantifies this value is the Value of the Stochastic Solu-
tion (VSS). The VSS is found by accessing the solutions found by the DM, in a stochastic
setting. VSS for a minimization problem is given by Equation 8.3.

V SS = EEV − SP (8.3)

Here, EEV denotes the expected result of using the expected value of the random variables.
The idea is to find the expected objective value when the first stage variables are fixed to
the x variables of the deterministic problem solution. Furthermore, the SP is the objective
value found by the stochastic model. A high VSS value indicates that the solution of the
stochastic model is more suited to handle the possible future realizations. As the DM
consistently avoids the edges of the distribution, it does not take extremes into account.
The VSS is thus expected to be positive as the value of EEV is dependent on individual
scenarios.

When solving the SPPA with the first stage solutions of the final model, the model is
incapable of finding feasible solutions. In theory, this means that the VSS is ∞, as
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the stochastic model actually provides feasible solutions. However, in practical usage,
infeasible solutions in which pupils are not allocated to a school are never allowed and
unlimited resources would be used to avoid this. Consequently, the deterministic approach
in a real-world setting is feasible, but often very expensive and inefficient. It is therefore
cumbersome to find an actual value of the VSS. Nevertheless, the tests indicate that
the stochastic solution is valuable as it addresses the worst-case scenarios and avoids
comprehensive measures if the extremes occur.

In addition to the VSS, we want to find the Expected Value of Perfect Information (EVPI).
This measurement quantifies the willingness to pay for obtaining information about future
states. The EVPI is found by Equation (8.4).

EV PI = SP −WS (8.4)

Here, the WS is the solution of the wait-and-see approach. In this approach, the optimal
solution of each scenario realization is found and the average objective value is calculated.
Five instances of the SPPA are tested, and the EVPI, as well as the SP and WS values,
of each of the five test instances, are found. The results are presented in Table 8.14.

Instance SP WS EVPI
1 2.078 1.905 0.174
2 2.107 1.951 0.156
3 2.105 1.968 0.138
4 2.060 1.886 0.174
5 2.104 1.935 0.169

Average 2.091 1.929 0.162

Table 8.14: The results from EVPI tests with coherent results from stochastic model
tests and the wait-and-see approach.

As the table shows, the EVPI is generally low in all the test instances. The average
objective value with access to perfect information only improves by 7.75% compared
with the stochastic solution. In practice, this means that Trondheim should avoid costly
measures to obtain accurate information on future population development.

8.5 Non-Anticipativity Constraint Alterations

The non-anticipativity constraint (NAC), (5.28), ensures that all projects must be exe-
cuted in the same order and at the same time in all the scenarios. In practice, this is the
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equivalent of Trondheim deciding today on the projects to execute for the entire 15-year
planning period. This rejects the possibility of altering the plan to the realization of the
population development. By relaxing the NAC, we allow for alterations dependent on
the future population. In this section we study the implementation of the following NAC
relaxations:

• Same Order: The projects are executed in the same order, but not at the same time
in all scenarios. For each individual scenario, it is not required that all projects in
the order must be completed. Furthermore, no additional projects can be executed.

• First Four: The first four projects are executed in the same order and at the
same time in all scenarios. The execution of all later projects is dependent on each
scenario.

In the Same Order alteration, individual adjustments are allowed, while the long-term
perspective of the planning is maintained. For Trondheim, this means the possibility to
decide on a common building order, that is somewhat adjustable to the actual population
realization. By this, we allow for the execution of more projects in scenarios with high
overall population growth and the opposite in the scenarios with low growth. Conse-
quently, we hope to alter the model to provide a better capacity-to-population fit in the
later time periods.

The First Four relaxation, is designed to illustrate a realistic decision process for Trond-
heim. Here, Trondheim makes a decision only for the first few years, and later decisions
are made as the actual population development is known. In this relaxation, only the
first four projects are locked, which allows Trondheim to make scenario-specific decisions
in the later years.

The implementation of the alternative NAC formulations is expected to yield lower objec-
tive values as well as significantly influence what school projects are executed. In practice,
solving the Same Order alteration, with the proposed solution algorithm, eliminates the
need for solving the MSP. Instead, single scenario problems must be solved until the
search depth is equal to the maximum number of executed projects. That is, the number
of executed projects in the scenario in which most projects are executed. Thus, the Same
Order alteration is expected to somewhat reduce the computational time of the SPPA.
The First Four alterations on the other hand are implemented by running the MSP each
time four schools have been locked in to an order. Thus, the execution order specific
branch and bound tree will be significantly reduced. However, the MSP is significantly
less restricted, and thus the run time of the First Four is expected to increase as restricting
the MSP has been proved key to reduce computational time. Table 8.15 displays the effect
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on the objective value of the two proposed NAC relaxations, in addition to the average
number of executed projects. The original formulation is also presented to compare the
three NAC variations.

Table 8.15: Objective value and the average number of executed projects for each in-
stance of twenty scenarios.

Instance Original Same Order First Four
Obj. Value # Projects Obj. Value # Projects Obj. Value # Projects

1 2.0430 9 2.0008 7.6 1.9525 8.3
2 2.1069 9 2.0773 7.8 2.0437 8.5
3 2.1053 9 2.0752 8.15 2.0375 8.4
4 2.0599 9 2.0236 7.9 1.9834 8.25
5 2.0713 9 2.0366 8.1 1.9886 8.3

Average 2.0773 9 2.0427 7.91 2.0011 8.35

The fact that both relaxations improve the objective value of all the instances indicates
that Trondheim can profit from adapting their decisions to the scenarios. Furthermore,
we can see from the table that the First Four relaxation yields the best objective values.
This shows that by freeing the common building order, more beneficial decisions can be
made.

Moreover, it is interesting to study the correlation, or lack thereof, between the objective
value and the average number of executed projects. Initially, from Table 8.15, there does
not seem to be any clear correlation between them. The Same Order relaxation has a
lower number of executed projects than the two other variations, but not the best ob-
jective value. Likewise, the original formulation yielded the highest number of executed
projects, but also the worst objective value. It is therefore interesting to take a deeper
look into the stature of the executed projects. As the capacity utilization objective penal-
izes unwanted capacity utilization in both directions, it is especially important to study
the executed projects with regards to increased capacity. Table 8.16 shows the average
increased capacity in the area throughout the time horizon.

We see from the table that the First Four alteration on average results in a smaller
capacity increase than both the Same Order relaxation and the original formulation.
This indicates that adding the extra flexibility of the First Four alteration allows for a
better fit between the realized actual demand and supply of school capacity. Thus, there
seems to be a correlation between the total increased capacity from the executed projects
and the objective value, not the number of executed projects in itself.

Furthermore, we study the two alterations’ effect on each of the three objectives, to find
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Table 8.16: The average increased capacity in the area when considering the original
formulation, Same Order and First Four as NAC.

Instance Increased built capacity
Orginal Same Order First Four

1 1000 884 863
2 1000 920 912
3 1000 943 923
4 1000 925 900
5 1000 888 883

Average 1000 912 896

where the positive effect can be traced. In Table 8.17 the objective value is presented for
each of the three objectives.

Table 8.17: The three objective terms in each of the NAC tests.

Objective Original Same Order First Four
RtS 1.08 1.08 1.08
Cap 17.83 17.12 16.32
Cond 2.06 2.14 2.07

We see clearly that the improvement of the two alterations can be traced to a reduction
in the capacity objective. This emphasizes the value of flexibility, where the available
capacity can be altered to the realized scenario. Furthermore, the road to school objective
remains unchanged for all the instances and scenarios. This indicates that the alterations
do not noteworthy change the zone-to-school allocation. However, as the NAC is relaxed
the condition objective slightly deteriorates.

At first glance, it is not obvious why the Same Order alteration has this negative effect
on the condition objective. However, a deeper look into the execution orders in question
shows that the last project in the order of all the instances is a significant renovation
project. Moreover, to fulfill the order restriction, a significant capacity expansion project
must be conducted before the renovation project. This leads to significant over-capacity
and therefore the renovation project is not favorable to execute. As a result, it is never
conducted exactly eight projects in the Same Order alteration, even though both seven
and nine projects are conducted numerous times.

It is important to point out that the first four projects are conducted at the same time
in both of the two NAC variants, and in the original formulation. Furthermore, it is
important to note that this order is different from the order of the deterministic solution.
This indicates that the original model is useful for Trondheim even though they do not
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make all the decisions for the 15-year planning period today. It is therefore worth studying
the alterations affect on the computational time of the model, presented in Table 8.18.

Table 8.18: The computational time of each of the NAC tests.

Original Same Order First Four
Avg. Time [s] 1,944 1,903 12,435

We see that the original formulation and the Same Order average computational time are
approximately equal. This shows that the solving of the additional SSPs takes approx-
imately that same time as the solving of MSPs of the original formulation. The First
Four objective value, however, is significantly deteriorating the computational time. This
means that the additional time it takes to solve the less restricted MSP is far greater than
the time saved on reduced tree generation.

As both of the alterations yields the execution of the same first four projects as original
formulation, the First Four does not add sufficient additional value to weigh up for the
extra computational time. The original formulation and the Same Order variations are
both providing useful insight for Trondheim, but as the original formulation gives a com-
mon result for all the scenarios it will be used in the studies in Chapter 9. Do note, that
the lack of variation in the first four executed projects can indicate that the solution of
the SPPA is guided by the set of defined projects used as input data. It is possible that
these first four projects are forced to be executed to provide feasible solutions.
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9 Practical Usage of the SPPA

The overall idea of this thesis is to create a model and solution method that can aid munic-
ipalities like Trondheim in school development planning. Therefore, this chapter provides
an analysis of the model’s practical impact on Trondheim. As previously mentioned in
Chapter 7, the data used as input to the model is from an area in southern Trondheim. In
this chapter, we thoroughly study the impact of the solutions found in Chapter 8, in this
area. The results presented, represent the optimal solution found by solving the SPPA to
optimality with one 20-scenario instance. To add value to the results, it is meaningful to
involve the decision-makers in the evaluation of the results. Therefore, the results’ value
and functionality are discussed in meetings with Trondheim.

First, Section 9.1 addresses the executed projects. Then, Section 9.2 presents a sensitivity
analysis on the budget parameter. Next, Section 9.3 discusses the location of a new school
and Section 9.4 address the divided zones. Lastly, Section 9.5 presents the new school
districts.

9.1 Executed Projects

As presented in Chapter 2, one of the main challenges for Trondheim is to decide on what
projects to execute and when to execute them. Therefore, one of the key findings from
the SPPA is the set of completed projects with the corresponding year of completion. An
overview of these projects is provided in Figure 9.1.

The figure presents the changeable and possible new schools along the planning horizon.
Out of the two new schools, only Lundåsen is built. The construction of this new school is
the first executed project and is completed in year 4. The situation at Lundåsen is studied
further in Section 9.3. The first initially existing school to be upgraded is Rosten, with a
capacity expansion completed in time period 5. Also Sjetne and Kattem are each subject
to a capacity project during the planning period. Stabbursmoen, Åsheim, and Romolslia
are all renovated while Tonstad and Breidablikk are expanded as well as renovated.

89



CHAPTER 9. PRACTICAL USAGE OF THE SPPA

Figure 9.1: Timeline of when the changeable and possible new schools exists and when
projects are executed. A change in color represents a completion of a project.

It is worth noticing that all but one school with a potential upgrade undergoes a change
throughout the time horizon. This underlines the need for investing in schools in this area
of Trondheim. Furthermore, we see that there is an even distribution of the project type
in the completed projects. Thus, there are no obvious trends in the types of conducted
projects.

For some of the schools, there exist several projects with different capacity expansion
sizes. It is therefore interesting to examine the characteristics of the prioritized projects
of these schools to see if there any clear trends of preferred size. Table 9.1 presents the
selected project for the schools with several possible size alternatives.

Table 9.1: The chosen initialized project at schools with several possible size alternatives.

School Type of project Selected alt.
Lundåsen New school Small
Sjetne Capacity project Small
Kattem Capacity project Small

As the table shows, there is a clear tendency of choosing the smallest capacity alterna-
tive. Thus, with model parameters as described in this study, the results indicate that
Trondheim should execute the projects with the least capacity expansion. However, it is
also possible that the economy of scale principle is underestimated in the data instance,
causing smaller projects to be more favorable.
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9.2 Sensitivity Analysis of the Budget Parameter

This section studies how changes in the budget parameter affect the solution of the SPPA.
As the budget in municipalities can vary each year, it is interesting to study how an
increase or decrease in the budget affects the project prioritization and objective terms.
The aim is to enlighten Trondheim on the causality between the value of the parameter
and the results.

We introduce a budget weight as a factor describing the deviation from the expected yearly
budget presented in Chapter 7. The minimum budget weight is the lowest value that still
provides feasible solutions for all instances. This is found, by preliminary tests, to be
0.875. The value is then incrementally increased until the budget is doubled. Finally, the
weight is set to 100 with the aim to simulate a no-budget situation. In each iteration, the
objective value and executed projects are registered. Five instances are tested for each
incremental budget weight.

9.2.1 Impact on Objective Values

It is interesting to observe how alterations in the budget affect the overall value of the
found solution. The average objective values of each budget weight are presented in
Appendix (E). In Figure 9.2, the average objective function is plotted as a function of the
budget weight values.
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Figure 9.2: The objective value dependent on different budget weights
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As we can see from the figure, even small reductions in the budget substantially deteriorate
the objective value. Likewise, we see that the objective value improves considerably with
the first incremental increases in the original budget. Budget increases up to 1.5 have
clear positive effects but after this point the development curbs and flattens out. From
the appendix, we see that even with the simulated, non-existing budget, the objective
value is the same as when the budget is doubled. This shows that further increases in the
budget have a marginal effect on the objective value as the budget grows.

To understand the practical consequence of the budget alterations, a study of the three
objective terms is conducted. From the test results in Appendix (E), we notice that as
the budget grows, the improvements in the objective value seem to be linked to more
optimal capacity utilization. At the same time, the condition objective also improves
with the increasing budget. When the budget is doubled, the cost of capacity is reduced
by 25% and the reduction in the condition cost is almost 50%. A further discussion of
the budget’s impact on the executed projects is provided in Section 9.2.2. The road to
school objective, however, is only negligibly affected. This indicates that the zone-to-
school allocation provided by today’s budget is similar to what the allocation would be
like with higher budgets.

Likewise, reductions in the budget highly affect the capacity utilization and the average
condition of the school. The cost from capacity utilization increases by 23% when the
original budget is reduced to the minimum and the condition cost is only affected by 8%.
Hence, altering the budget seems to affect the capacity utilization the most.

9.2.2 Impact on Project Prioritization

To elaborate on the effect of relaxing and restraining the budget parameter, we study
how the model prioritizes projects differently when the budget changes. By studying
the restrained budget solution, we get an understanding of which projects that must be
executed to handle the future population. Likewise, the relaxed budget solution provides
insight into the optimal set of projects when the budget is less of a factor. To obtain
this, the two extreme situations with budget weights of 0.875 and 2 are considered and
compared to the solution of the original budget.

To understand the prioritization mechanism of the SPPA, we study the set of projects
that are executed in multiple instances. It is expected that the most important projects
are executed in all instances, as these projects handle the realization of most scenarios.
Therefore, the projects that are executed in all of the studied instances are the ones
considered in the comparison of the budget parameter. The timeline of the average year
of completion for these projects is presented in Figure 9.3.
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(a) Executed projects with 0.875× budget.

(b) Executed projects with 1× budget.

(c) Executed projects with 2× budget.

Figure 9.3: Illustration of executed projects with different budget parameters over the
planning horizon. The year of completion is the average year over all the tested scenarios.
Do note that only the changeable and new schools with completed projects in all the
instances are presented.
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When the budget weight is only 0.875, the utmost important projects are prioritized and
executed. By comparing Figure 9.3a with the original solution presented in Figure 9.3b,
we see that the same three projects are completed first. This underlines the urgency
and importance of these three projects. One interesting change is the alternative that is
prioritized at Kattem. As presented in Table 9.1, the smallest alternative is preferred with
the original budget. However, with the reduced budget, the medium capacity alternative
is chosen, hence, doubling the capacity expansion at Kattem. This is caused by the
restricted budget limiting the number of projects that it is possible to execute. As a
consequence, the capacity expansion project at Breidablikk is no longer executed, causing
an increased capacity demand at Kattem. Thus, the model generally prioritizes fewer,
but bigger capacity projects over many small ones, when the budget is restricted.

Figure 9.3c illustrates the executed projects with the doubled original budget. This figure
presents several changes from the original budget. The first major difference is the absence
of Lundåsen. As Lundåsen is executed in all instances with the smaller budget, it is
surprising that the school is only built in 3 out of 5 scenarios with the enlarged budget.
Instead of the new school, Åsheim and Stabbursmoen are prioritized with both capacity
and renovation projects. This capacity expansion probably enables these two schools to
handle the increasing demand in the area that Lundåsen would accommodate if built.
This indicates that the construction of Lundåsen may not be optimal with an infinite
budget, but is the preferred solution when the monetary resources are restricted.

Another clear observation is that the amount of executed combination projects is signifi-
cantly higher with the doubled budget. This is natural as an increase in renovation solely
improves the objective function. However, as excess capacity is undesired, the increased
budget does not exaggerate the number of capacity expansion projects.

The sensitivity analysis that is conducted in this section can prove to be more useful
today than first anticipated, due to the COVID-19 virus. Trondheim communicates that
the extraordinary situation may affect the available budget for school projects and thus
reduce the room for decisions. Moreover, as the future budgets in the municipality are
uncertain, it is beneficial to be aware of the practical consequences of both an increase and
a decrease in the budget. Therefore, this analysis can be of guidance in the forthcoming
years.

9.3 A Study of Lundåsen

As previously stated, of the two possible new schools presented in Chapter 7, only
Lundåsen school is built. To understand the factors contributing to this decision we
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study the area in close proximity to the school site.

Today, the pupils in this area are attending either Åsheim or Kattem. From the capacity
map, presented in Chapter 2, we see that both of these schools have pressured capac-
ity. For this area, Stabbursmoen is the third closest school. However, this school also
experiences capacity issues, and thus, the situation in the area is already strained.

To make matters worse, three major residential building projects, denoted A, B, and C,
are planned or initiated, in the area. From year 1 to year 5, 565 new residences are
planned to be completed in project A. From the type of housing that is built, based on
the calculations presented in Chapter 7, we estimate that 84 pupils are moving into these
new homes. Project B is already ongoing, and by the planned completion in year 3, the
project is estimated to increase the number of pupils in the area by 48. Moreover, in year
3 to year 8, the third building project, project C, at Lundåsen is finished. The building
potential at this site is 450 and the amount of new pupils is 95.

Chapter 7, presents how each project is given a status that indicates the probability of
completion. From that scheme, project A and B are given status 4 which indicates an
85% chance of completion. Project C is earlier in the regulation process and is given
status 2, and thus a 60% chance of completion. Hence, the residential building projects
are constructed in the majority of the scenarios.

When this population development occurs, the capacity demand of the already pressured
Åsheim, Kattem, and Stabbursmoen school increases. In addition, the location of the
residential building projects relocates the overall center of gravity of the population away
from the already existing schools. This results in a less favorable road to school for the
pupils.

The capacity issues can be solved either by increasing the capacity of one or more of
the three already existing schools or by building the new school at Lundåsen. However,
Lundåsen provides a better fit for the new center of the population, and the building
of the school can significantly shorten the roads to school in the area. Consequently,
a new school at Lundåsen is considered the best solution to resolve the issues in the
area. Furthermore, in almost every scenario, Lundåsen is the first project to be executed.
This indicates that this new school is one of the most important, and urgent, projects in
southern Trondheim. Figure 9.4 shows the school district of Lundåsen in year 15 given
that it is completed.

Furthermore, it is interesting to study if the construction of Lundåsen is solely based
on the new population caused by the completion of projects A, B, and C, or if it is
built regardless. Therefore, we test the SPPA on instances where the residential building
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Figure 9.4: The school district for the new Lundåsen school in the final year of the
planning horizon. The blue areas in the figure indicate the changeable zones, where the
new homes have been built, and the labels denote each building project. Do note that
some of the zones in Lundåsen school district are shared with other schools, as addressed
in Section 9.5

projects are not executed. Not surprisingly, the results show that the new school is
not built in these cases. With only the current population, the pupils are allocated to
Stabbursmoen, Kattem, and Årstad, which are then able to accommodate them. We can
therefore conclude that it is the residential building projects in the area that are the root
cause of the construction.

Consultations with Trondheim indicate that the construction of Lundåsen is an option ex-
cessively discussed in the municipality. Several previously conducted analysis initiated by
Trondheim have found it more economically favorable to expand Åsheim, Stabbursmoen
or Kattem, instead of building a new school. Trondheim expresses that this fact makes
the results from the model even more interesting, as the SPPA may evaluate more options
and aspects than their previous studies. Further, Trondheim emphasizes some important
elements that are not considered in the model as it is described in this thesis. For instance,
since a new school means increased available school capacity, more entrepreneurs can get
their building projects approved by the municipality. As the limited school capacity can
be used as an instrument for controlling the city development, this issue needs to be inves-
tigated further. An important aspect to consider is how the construction of a new school
leads to increased demand of infrastructure. It is undesirable to develop areas of the city
that increase the need for transportation by car, and therefore it is important to organize
suitable transportation options. These factors are some of the important elements that
need to be further discussed to make beneficial alterations to the results.
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9.4 Divided Zones

As previously described in Chapter 4, pupils in a zone are allowed to attend different
schools. Thus, the model returns a set of zones in which the pupils are attending different
schools, denoted divided zones. This allows us to identify zones that beneficially could
be separated or arranged differently. The rationale behind this is that many zones are
organized based on historical school districts and outdated factors, not necessarily on the
situation today. The value of identifying these zones is especially prominent in zones
where two schools are located at approximately the same distance from the zone center,
and where dangerous roads do not affect the road to school. Figure 9.5 illustrates a zone
that is divided in all tested scenarios.

Figure 9.5: A zone with two nearby schools in about the same distance from the zone
center. The model splits the zone and about half of the pupils are assigned to each school.

On average, 55% of the pupils in the zone are allocated to Flatåsen school and 45% are
allocated to Huseby. With this allocation, the average capacity utilization at Flatåsen is
89% and Huseby is 91.6% which is close to optimal utilization. This indicates that this
zone can beneficially be organized in a different way than it is today.

Another advantage of dividing the zones is that it allows for a more efficient sharing of
the inconveniences. This means that in scenarios where one of the schools is concerned
with high capacity demand, the nearby school can share some of the capacity and improve
the utilization at both schools. Trondheim points out that this is a favorable result as
the school districts can share the capacity across the current school districts to a greater
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extent than what is done today. By reorganizing the zones, the overall capacity utilization
can be improved significantly. However, the higher the number of divided zones, the more
postprocessing work is required to fully utilize and understand the results of the SPPA.

9.5 School Districts

The school districts found by the SPPA are not bounded by today’s school districts.
Therefore, the school districts proposed in the optimal solution involve some changes we
want to study in detail. However, as the new districts are based on the existing zones,
some similarities are to be expected.

9.5.1 New School Districts in the First Year

It is interesting to study how the model designs the optimal school districts in Trondheim
today. This provides insight into what prioritization mechanisms are prevailing in the
SPPA. Further understanding is obtained by comparing the new districts to the actual
school districts in the area.

Figure 9.6 presents the optimal school districts given today’s population, i.e. the optimal
solution found by a one time period variation of the SPPA. In the figure, zones with the
same color represent a school district where all the zones attend the school that lies within
that colored area. The two-colored zones have pupils attending two different schools. Do
note that as no projects are executed, the condition objective does not affect the found
solution.

From the map, it is clear that zones, in general, are allocated to their nearest school.
Around the majority of the schools, there are distinct clusters of zones. Despite this, if
we only consider the distance, some zone-to-school allocations can seem fallacious. For
instance, Okstad school lies seemingly close to residences in Romolslia school district.
However, along the edges where the two districts meet, the E6 highway is located, and
there are little crossing options for pedestrians. Thus, the school districts are divided
as illustrated. This demonstrates that dangerous roads are considered when allocating
the pupils. The same principle is also noticeable in the nearly separated zone that is
allocated to Sjetne. Although this zone and Sjetne school also are separated by E6, there
exist suitable underpasses that can be used, and the dangerous road is not crossed on the
way to school.

By comparing the new map to the current school district map presented in Chapter 2,
it is clear that the school districts are similar in several ways. As the school districts
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today are largely based on the same criteria that are effectuated in the SPPA, this result
enhances the quality of the model. This indicates that the model provides applicable and
valuable solutions. Moreover, we see that there are some differences, found mainly along
the edges of the districts. These zones are the most troublesome to allocate, as several
zone-to-school assignments can be equally good. Consequently, it is logical that it is in
these zones that the differences occur and where we find the value of the SPPA as a school
districting tool.

When taking a closer look into the numbers behind the new districts, we get an un-
derstanding of how the SPPA solution affects the capacity utilization in the area. The
least beneficial capacity utilization in the first year is Romolslia with 72% utilization and
Huseby with 77%. This is despite the fact that the new school districts for the two schools
are expanded compared to the current school district. This shows that the SPPA is trying
to distribute the excess capacity to share the inconveniences. This indicates that the dis-
tricts found by the SPPA are somewhat prepared for population increases in most areas
of southern Trondheim.

9.5.2 School Districts in the Final Year

To fully understand the impact of the executed projects, we want to study the found
optimal school districts at the end of the planning horizon. The goal is to obtain a
long-term understanding of the school districts in Trondheim, and how the realization of
population development and the execution of projects form the future of Trondheim.

The complete map of the new school districts for Trondheim in year 15 is presented in
Figure 9.7. The map illustrates the optimal situation and considers the zone-to-school
allocations that occur in the majority of the scenarios of one 20 scenario instance.

As in the map for the first year, the new school districts in the final year clearly reflect the
considerations regarding road to school in the objective function presented in Chapter 5.
It is clear that most zones are allocated to what seems to be a suitable school concerning
both road to school distance and hazards.

We observe that the school districts in the map have several similarities to the school
districts in Trondheim today. This indicates that even with a population development,
the distribution of inhabitants is somewhat the same. However, it is clear that the area has
developed. The most prominent change is the new district assigned to Lundåsen school.
This new district accommodates several of the zones previously allocated to Åsheim. As
Åsheim is one of the schools with critical capacity today, a reduction in its school district
is reasonable. Thus, the construction of the new school results in near-optimal capacity

99



CHAPTER 9. PRACTICAL USAGE OF THE SPPA

Figure 9.6: School districts for Trondheim in year 1.
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utilization at both Åsheim and Lundåsen.

Another change is the expanded size of the school district assigned to Breidablikk. Today,
Breidablikk is one of the school districts with under-utilization, and the expansion of the
school district results in a new utilization of approximately 90% in all scenarios. This
demonstrates that the new districts are based on the requirement for optimal utilization.
Even though the district seems disproportionately big, the population of the zones in the
area is low. This is the reason why the construction of a new school in the area is not an
alternative even though it could reduce the road to school of the pupils living in this part
of southern Trondheim.

As presented in the previous section, Romolslia and Huseby have spare capacity in the
first year. However, in the final year, the average capacity at the two schools is 90%
and 91.6% respectively. This illustrates that the model’s ability to evenly distribute the
capacity utilization already in earlier years provides relatively stable school districts as
the population increases. Thus, by expanding the districts initially, the zones do not have
to change schools later, and the capacity utilization is close to optimal at both schools.

Feedback from Trondheim implies that they find the outline of optimal school districts
in year 15 especially interesting, as this enables long-term strategies for the districts.
The organizing of school districts is not only a cumbersome process for the municipality,
but also an important factor for the residents of Trondheim. As the school districts in
Trondheim today are, at any given time, based on the current population, the districting
process does not consider the long-term perspective. Therefore, these results can be used
as suggestions for possible future districts and be useful for several stakeholders.

Lastly, it is important to emphasize that this is a decision tool for Trondheim and not
an unambiguous solution. For instance, as the map shows, the model finds it best to
allocate a small zone to Stabbursmoen, even though the surrounding zones are allocated to
Breidablikk. This is explained by the fact that the zones are allocated based on the center
of its population. However, this is not necessarily the best solution when considering social
factors, which are not accounted for in the model. Consequently, the model can easily be
used as a foundation when planning new districts, but further discussions are essential to
obtain the best practical solution for Trondheim and its residents.
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Figure 9.7: School districts for Trondheim in year 15.
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10 Concluding Remarks and Future
Research

In this chapter, the significant findings of this thesis is presented in Section 10.1 and
future research opportunities are addressed in Section 10.2.

10.1 Concluding Remarks

This thesis presents a mathematical formulation of the School Prioritization Problem with
Alternatives (SPPA). Furthermore, two variations of the Execution Order Specific Branch
and Bound algorithm, EOSBB and AEOSBB, are proposed as solution methods to the
problem.

The SPPA is the problem of deciding on what school projects to execute to best accom-
modate the school capacity in a community. This location problem addresses an impor-
tant question: Given a set of distinct possible projects what are the optimal projects to
execute at what time? The problem arises from the uncertainty in future capacity de-
mand, wearing of existing school buildings, and the current lack of an objective decision
tool. Therefore, there is an economic and social value from the introduced mathematical
model and solution method that can aid municipalities, like Trondheim, in deciding school
strategies for the future.

The SPPA is formulated as a multi-objective problem. The objective function aims to
simultaneously minimize the overall cost from three terms: undesired roads to school,
under- or over-utilized capacity, and inconvenience of poor school condition. These objec-
tives are exposed to uncertainty in future demand and multiple scenarios are considered.
The model differs from existing literature and closes three gaps in the literature: a precise
mathematical description including all the aspects of Trondheim’s problem, an objective
function taking utilization and quality of the schools into account, and a solution method
that can solve the problem within an acceptable time.
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As the complexity of the problem increases with the number of considered scenarios, the
computational effort of the multi-scenario problem proves demanding. The introduction
of the solution algorithms addresses this problem by presolving each scenario separately
as single-scenario problems, to then reduce the number of required calculations in the
multi-scenario problem by limiting the execution order. As a consequence, the SPPA,
with real-size data, is solvable within an acceptable time.

The SPPA has been tested on a part of southern Trondheim consisting of 74 existing
zones and 43 changeable zones in 15 time periods. There are 12 initially existing schools
as well as 2 possible new schools. A list of all possible projects in the given time horizon is
developed and geographic information systems (GIS) are used to find optimal routes from
a zone to each school. Furthermore, several scenarios of the population of the changeable
zones are created. The SPPA is tested on instances of scenarios ranging from 3 to 100.

Preliminary, a deterministic variation of the SPPA is tested. The relaxation of some of the
binary variables proves to have minor impact on the solution, but causes major improve-
ments in computational time. In addition, the implementation of a maximum allowed
deterioration and cuts in the allowed distance to school reduce the computational effort
further. This results in a set of performance enchanting extensions which are included in
the final model.

To test the performance of the solution algorithms, the effectiveness is compared with the
performance of a Complete Computation (CC) approach. The results show that during
a set time, both the EOSBB and the AEOSBB algorithms can solve significantly larger
instances of the SPPA than the CC. Moreover, as the number of scenarios exceeds 20, the
CC is not capable of solving the problem to optimality within 25,000 seconds. However,
the EOSBB algorithm also struggles when the number of scenarios increases, and thus,
the AEOSBB algorithm proves to be the preferred solution method. The tests strongly
substantiate the outstanding performance of the new solution method and indicate that
the method is suitable for larger data instances.

The SPPA successfully provides a detailed overview of which projects to conduct at what
time. In all scenarios, the new Lundåsen school is the first executed project, which
indicates that this is a project Trondheim beneficially can investigate further and consider
executing. A completely new school district map for the final year is presented. This
provides an outline of the optimal future school districts of the designated area. Moreover,
the sensitivity analysis of the budget parameter shows that small adjustments on the
available budget have a great impact on the overall quality of the schools in the designated
area. Therefore, it is clear that the model easily can be used as a practical tool in decision-
making.
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However, it is important to emphasize that subjective considerations must be conducted
alongside the objective solutions presented in the model. The found results can beneficially
be used as a foundation for school development. However, as all decisions regarding
schools have substantial repercussions, social factors such as neighborhoods, previous
school districts, and affiliation to areas, are necessary to contemplate. Furthermore, the
presented results are somewhat optimistic as some assumptions and simplifications are
made. Lastly, the SPPA has been tested on limited data instances. This means that
further studies need to be executed to evaluate if the model and solution method can be
generalized.

In conclusion, this thesis has demonstrated that the SPPA successfully can be used as an
unbiased decision tool for aiding Trondheim in school planning and project prioritization.
Also, a solution method is developed that significantly improves the performance of the
model. We believe that with the unique formulation of the SPPA and the increased com-
putational performance provided by the AEOSBB algorithm, this thesis is a considerable
contribution to the field of school location planning.

10.2 Elements for Future Research

In this section, some elements for further research and model improvements are presented.
In Section 10.2.1, further research topics are discussed. Section 10.2.2 addresses possible
extensions to the problem. Lastly, Section 10.2.3 presents other relevant solution methods
that can be used when solving the SPPA.

10.2.1 Further Research Topics

An interesting new research opportunity is to study how a municipality can affect the
location of new buildings. As the building projects are dependent on available school
capacity, an increase of capacity in one part of the municipality can determine where new
zones are located. This allows the municipality to use school planning to actively direct
urban development in an area. This is a new approach to the school location problem
and can be worth studying further.

The model and solution method presented in this thesis is based on problems faced by
Trondheim. A possible future research topic is therefore to verify if the SPPA can be
generalized to other municipalities. The model can easily be adapted to other Norwegian
municipalities that face the same challenges as Trondheim. However, in municipalities
with, for instance, decreasing population growth, the value of the SPPA is not proven.
Furthermore, as the situations in some municipalities might require larger data instances,
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this could further increase computational demand and the performance of the SPPA.
In addition, it can be interesting to examine if the model and solution method can be
adjusted to be applicable to a general facility location problem.

10.2.2 Possible Extensions of the Problem

There are some elements regarding school planning, not included in this thesis, that may
be interesting to implement in future studies. For instance, the temporary allocation of
pupils when their allocated school is renovated can be a next topic to investigate. A
possible way to implement this is to install pavilions at the existing school sites. This
can be implemented in the model as either a non-monetary cost for the inconvenience of
utilizing pavilions or a monetary leasing cost, as presented in Delmelle et al. (2014).

Another interesting expansion of the model is to include the location of secondary schools.
In Norway, there is a strong interrelationship between the primary and secondary schools
that pupils are allocated to. In addition, some of the potential future projects involve
schools that have both primary and secondary schools at the same site. Thus, this is an
extension that covers an additional part of the real-world school prioritization problem.

In this thesis, some simplifications have been made. For instance, the population is
clustered to zones, and the zone centers are used when calculating the walking distance to
a school. This means that some pupils, especially those located in the zone edges, have a
longer road to school distance than what is considered in this thesis. Consequently, a more
detailed distance measure can be obtained by a finer partitioning of the area. However,
the right balance must be maintained between the positive effect of more detailed zones
and the additional effort of acquiring more precise data.

10.2.3 Improvement of the Solution Algorithm

This thesis presents the EOSBB and AEOSBB algorithms as possible solution methods to
the SPPA. However, as the size of the data instances increase, so does the computational
complexity. Consequently, it is natural to assume that the solution method must be
evolved as well. Heuristic methods are extensively used in facility location problems,
as presented in Chapter 3. For instance, different types of genetic algorithms can be
developed and may further improve the computational effort. Thus, a heuristic can be
developed to simplify the computation when the size of the problem increases.
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A Compressed Model

Sets:

S set of schools

SE set of existing schools without potential projects in the planning

horizon (existing unchangeable schools)

SC set of existing schools with potential projects in the planning horizon

(existing changeable schools)

SP set of potential new schools in the planning horizon

As set of alternatives for school s

T set of time periods

Z set of zones

Zs set of zones in which school s is located

E set of possible scenarios

Indices:

s school

a alternative

i zone

i(s, a) zone where school s alternative a exists

t time period

e scenario
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APPENDIX A. COMPRESSED MODEL

Parameters:

Rsai total cost per pupil from undesired road to school s alternative a from

zone i

Esatτ the expense in time period τ of finishing school s alternative

a, in time period t

Bt budget available for school projects in time period t

Nite number of pupils in zone i in time period t in scenario e

SIsa 1 if school s alternative a initially exists

CCON
sat condition cost of school s alternative a in time period t

Q̂sa built capacity at school s alternative a

Q∗sa optimal capacity at school s alternative a

Q̄sa maximum capacity at school s alternative a

Ĉsa cost of having school s alternative a used at built capacity

C̄sa cost of having school s alternative a used at the maximum capacity

pe the probability of scenario e occurring

Dsai distance between school s alternative a and zone i

Asai measurement of the topography between school s alternative a and zone i

Fsai measure of how dangerous the road between school s alternative a

and zone i is

PD penalty for distance

PA penalty for topography

P F penalty for dangerous roads

ETOTAL
sat Total cost of completing school s alternative a in time period t

Ltτ the percentage of the total cost of a project finished in time period t

that is accounted for in time period τ
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APPENDIX A. COMPRESSED MODEL

Weighting parameters:

α weight of cost from road to school

β weight of utilization cost

γ weight of cost of condition of the school

Variables:

xsate 1 if school s alternative a is finished in time period t in scenario e

ysate 1 if school s alternative a exists in time period t in scenario e

vite 1 if pupils in zone i change their allocated school in time period t in

scenario e

wsaite the amount of pupils in zone i that is allocated to school s alternative

a in time period t in scenario e

qsate used capacity at school s alternative a at time period t in scenario e

c(qsate) cost from non-optimal capacity utilization of school s alternative a in

time period t in scenario e

zsate cost of inconvenience from poor school condition for school s alternative

a in time period t in scenario e

Objective Function

min
∑
e∈E

pe(α
∑
s∈S

∑
a∈A

∑
i∈Z

∑
t∈T

RsaiNitewsaite +β
∑
s∈S

∑
a∈A

∑
t∈T

c(qsate) + γ
∑
s∈SC

∑
a∈As

∑
t∈T

Q̂sazsate)

Constraints

s.t.
∑
s∈S

∑
a∈A

∑
t∈τ

Esatτxsate ≤ Bτ τ ∈ T , e ∈ E

ysate = SIsa s ∈ SE, a ∈ As, t ∈ T , e ∈ E

ysa1e = SIsa s ∈ SC , a ∈ As, e ∈ E

ysa,t+1,e ≤ ysate + xsa,t+1,e s ∈ SC , a ∈ As, t ∈ T \{T}, e ∈ E

ysate +
∑

b∈As|b6=a
xsbte ≤ 1 s ∈ SC , a ∈ As, t ∈ T , e ∈ E|SIsa = 1

∑
a∈As

ysate = 1 s ∈ SC , t ∈ T , e ∈ E
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∑
t∈T

xsate ≤ 1 s ∈ SC , a ∈ As, e ∈ E

ysa1e = 0 s ∈ SP , a ∈ As, e ∈ E

ysa,t+1,e ≤ ysate + xsa,t+1,e s ∈ SP , a ∈ As, t ∈ T \{T}, e ∈ E

ysate ≤ ysa,t+1,e s ∈ SP , a ∈ As, t ∈ T \{T}, e ∈ E

xsa,t+1,e ≤ ysa,t+1,e s ∈ SP , a ∈ As, t ∈ T \{T}, e ∈ E∑
a∈As

ysate ≤ 1 s ∈ SP , t ∈ T , e ∈ E

∑
s∈S

∑
a∈A

wsaite = 1 i ∈ Z, t ∈ T , e ∈ E

wsaite ≤ ysate s ∈ S, a ∈ As, i ∈ Z, t ∈ T , e ∈ E∑
a∈As

wsai,t+1,e ≤
∑
a∈As

wsaite + vi,t+1,e s ∈ S, i ∈ Z, t ∈ T \{T}, e ∈ E

∑
t∈T

vite ≤ 1 i ∈ Z, e ∈ E

∑
i∈Z

Nitewsaite = qsate s ∈ S, a ∈ As, t ∈ T , e ∈ E

wsa,i(s,a),te = ysate s ∈ S, a ∈ As, t ∈ T , e ∈ E

zsate = CCON
sat ysate s ∈ SC , a ∈ As, t ∈ T e ∈ E

csate ≥ θ1qsate − φ1 s ∈ S, a ∈ As, t ∈ T

csate ≥ θ2qsate − φ2 s ∈ S, a ∈ As, t ∈ T

csate ≥ θ3qsate + φ3 − C̄sa(1− ysate) s ∈ S, a ∈ As, t ∈ T

qsate ≤ Q̄sa s ∈ S, a ∈ As, t ∈ T

xsat = xsate s ∈ S, a ∈ As, t ∈ T , e ∈ E

xsate = 0 s ∈ SE, a ∈ As, t ∈ T , e ∈ E

xsate, ysate ∈ {0, 1} s ∈ S, a ∈ As, t ∈ T , e ∈ E

vite ∈ {0, 1} i ∈ Z, t ∈ T , e ∈ E

wsaite ≥ 0 s ∈ S, a ∈ As, i ∈ Z, t ∈ T , e ∈ E

csate, qsate ≥ 0 s ∈ S, a ∈ As, t ∈ T , e ∈ E

zste ≥ 0 s ∈ SC , t ∈ T , e ∈ E
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Parameter Equalities

Rsai = Dsai · PD + Asai · PA + Fsai · P F s ∈ S, a ∈ As, i ∈ Z

Esatτ = LtτE
TOTAL
sat s ∈ S, a ∈ As, t ∈ T , τ ∈ T

θ1 = Ĉsa

Q̂sa −Q∗sa
φ1 = Ĉsa

Q̂sa −Q∗sa
·Q∗sa

θ2 = C̄sa − Ĉsa
Q̄sa − Q̂sa

φ2 = C̄sa − Ĉsa
Q̄sa − Q̂sa

· Q̂sa + Ĉsa

θ3 = − C̄sa
Q∗sa

φ3 = C̄sa
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B Building Order Algorithms

Algorithm 4 displays an outline of the entire EOSBB and Algorithm 5, the AEOSBB
solution methods for solving the SPPA. The algorithms solve the SPPA to optimality.
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APPENDIX B. BUILDING ORDER ALGORITHMS

Algorithm 4: Execution Order Specific Branch and Bound (EOSBB)
0: Initialize:

z̄ =∞
Rs = 0 for all s ∈ S
LISTe as an empty set for each scenario e

Single-scenario phase
1: for each scenario e in E do
2: if Rs is not already fulfilled by a solution in LISTe then
3: solve the SSP
4: generate the SO-vector
5: add the solution to LISTe

else
6: return the feasible solution from LISTe

end-if
end-do

Multi-scenario phase
7: calculate the SO-average, and calculate zavg
8: if one or more active single scenarios solutions not feasible then
9: node terminated

end-if
10: if zavg ≥ z̄ then
11: node terminated

end-if
12: if the SO-average is integer or

search depth = minimum number of executed projects then
13: run the MSP with added execution order restriction
14: if zMSP ≤ z̄ then
15: z̄ = zMSP

16: node terminated
end-if

end-if
New-node phase
17: if current node is active then
18: create two new nodes
19: add the created nodes to the tree

end-if
20: if still active nodes then
21: pick best node
22: return to the single-scenario phase

end-if
23: return the optimal solution of the SPPA
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Algorithm 5: Alternative Execution Order Specific Branch and Bound (AEOSBB)
0: Initialize:

z̄ =∞
Rsa = 0 for all s ∈ S
LISTe as an empty set for each scenario e

Single-scenario phase
1: for each scenario e in E do
2: if Rsa is not already fulfilled by a solution in LISTe then
3: solve the SSP
4: generate the SO-vector
5: add the solution to LISTe

else
6: return the feasible solution from LISTe

end-if
end-do

Multi-scenario phase
7: calculate the SO-average, and calculate zavg
8: if one or more active single scenarios solutions not feasible then
9: node terminated

end-if
10: if zavg ≥ z̄ then
11: node terminated

end-if
12: if the SO-average is integer or

search depth = minimum number of executed projects then
13: run the MSP with added execution order restriction
14: if zMSP ≤ z̄ then
15: z̄ = zMSP

16: node terminated
end-if

end-if
New-node phase
17: if current node is active then
18: create two new nodes
19: add the created nodes to the tree

end-if
20: if still active nodes then
21: pick best node
22: return to the single-scenario phase

end-if
23: return the optimal solution of the SPPA
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C Deterministic Model Testing

C.1 Determining the Divisors

Each single scenario problem is solved with a maximum run time of 3600, and yield the
following results.

Table C.1: The objective value, best bound and run time from each SOP.

Objective Integer solution Best bound Run time
RtS 48,160,000 N/A 90
Cap 10.24 2.73 MAX
Con 208,577 N/A 1974

Both the road to school and school condition SOP is solved to optimality. The divisor for
these two objectives is thus set equal to the found objective value.

The capacity utilization SOP, however, had a significant gap between the best bound and
the found integer solution. The difference of moving forward with the best bound versus
the integer solution value is equal to valuing capacity utilization approximately four times
higher. In order to reduce the possibility of moving forward with the wrong divisor, a
second set of test are conducted on the capacity utilization SOP in an attempt to reduced
the gap. Several added restrictions, cutting the obviously worst solutions, are attempted.
The following table presents the solution of the cut that yielded the smallest gap.

Table C.2: The solution with the lowest gap for the addition capacity utilization SOPs.

Objective Integer solution Best bound Run time
Original Cap 10.24 2.73 MAX
Cut Cap 5.68 2.73 1974

The best bound remained unchanged, and was chosen as the divisor for the capacity
utilization objective. However the value is uncertain, and the best bound is picked as to
not undervalue the capacity utilization objective.
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APPENDIX C. DETERMINISTIC MODEL TESTING

C.2 Road To School Cuts

Results from various tests with the road to school cuts discussed in Chapter 8.

C.2.1 Equality Cuts

Table C.3: Results from implementing equal cuts to the zone-to-school distance.

Cut
distance

Obj.
value Time [s] RtS Cap Cond

Obj. Avg. [m] Obj. Avg. [%] Obj. Avg.
2750 1.3217 415 1.10 743 2.97 89.7 1.96 1.45
3000 1.3214 395 1.10 742 2.97 89.7 1.96 1.45
3250 1.3210 665 1.10 742 2.97 89.7 1.96 1.45
3500 1.3208 515 1.10 742 2.97 89.7 1.96 1.45
3750 1.3208 809 1.10 742 2.97 89.7 1.96 1.45
4000 1.3208 674 1.10 742 2.97 89.7 1.96 1.45

C.2.2 Shortest Distance Based Cuts

Extra Meters

Table C.4: Results from implementing shortest distance cuts, with allowed extra meters,
to the zone-to-school distance.

Extra
meters

Obj.
value Time [s] RtS Cap Cond

Obj. Avg. [m] Obj. Avg. [%] Obj. Avg.
450 2.94 36 1.05 711 35.6 89.7 2.12 1.50
500 2.88 37 1.05 712 34.3 89.7 2.12 1.50
550 2.83 55 1.05 712 33.4 89.7 2.12 1.50
600 2.76 58 1.06 717 31.8 89.7 2.12 1.50
700 2.44 73 1.09 735 24.6 88.4 2.26 1.65
800 2.33 120 1.09 740 22.7 88.4 2.15 1.55
900 1.42 183 1.10 744 4.66 89.9 2.01 1.50
1000 1.39 236 1.10 745 4.12 89.9 2.01 1.50
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Multiplier

Table C.5: Results from implementing shortest distance cuts, with allowed extra meters
by a multiplier, to the zone-to-school distance.

Multiplier Obj.
value Time [s] RtS Cap Cond

Obj. Avg. [m] Obj. Avg. [%] Obj. Avg.
1.35 3.01 47 1.05 706 37.1 90.1 2.15 1.53
1.40 3.00 53 1.05 712 37.0 90.1 2.05 1.50
1.45 2.96 39 1.05 712 35.9 89.7 2.12 1.50
1.50 2.76 40 1.06 718 31.8 89.7 2.12 1.50
1.60 2.72 59 1.05 711 30.9 89.2 2.26 1.62
1.70 2.33 65 1.09 736 22.3 89.4 2.28 1.70
1.80 2.22 54 1.09 739 20.0 89.4 2.28 1.70
1.90 2.01 65 1.13 761 15.8 89.5 2.15 1.59

C.2.3 Closest Schools Cuts

Table C.6: Results from implementing closest schools cuts.

Obj.
Value Time [s] RtS Cap Cond

Obj. Avg. [m] Obj. Avg. [%] Obj. Avg.
Two closest 1.8391 51 1.09 737 13.1 89.3 2.06 1.51
Three closest 1.3572 135 1.12 757 3.33 89.7 1.96 1.45
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D In-sample Stability

Table D.1: Standard deviation σ2 and coefficient of variance from in-sample stability
tests.

Number of Scenarios σ2 CV
3 0.1448 6.85%
5 0.0733 3.59%
10 0.1640 8.00%
20 0.0282 1.36%
30 0.0408 1.99%
40 0.0346 1.64%
50 0.0171 0.82%
60 0.0156 0.73%
70 0.0495 2.35%
80 0.0323 1.54%
90 0.0385 1.73%
100 0.0417 1.97%
Average 0.0738 3.55%
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E Sensitivity Analysis

Table E.1: The results from sensitivity analysis of the budget constraint. The budget is
relaxed from its minimum value and to a value that is considered as infinity. The results
are plotted and further explained in Chapter 9.

Budget weight Objective value RtS Cap Con
0.875 2.319 1.094 22.004 2.232
0.90 2.195 1.103 19.153 2.316
0.95 2.098 1.084 17.939 2.168
1.00 2.077 1.084 17.826 2.064
1.10 1.916 1.091 14.838 1.955
1.25 1.866 1.097 14.495 1.705
1.50 1.765 1.082 13.269 1.518
2.00 1.711 1.100 13.295 1.061
100 1.711 1.100 13.295 1.061
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