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Abstract 

 

The dynamic relationship between Brent Crude Futures and Carbon Futures has long been a 

crucial research topic, hampered in part by lack of empirical evidence due to the focus on spot 

market only. Here we try to identify the dynamic relationship between the Futures of EU ETS 

and the Futures of Brent Crude listed on the Intercontinental Exchange. By deploying a Vector 

Autoregressive model on the Futures returns and Cointegration on the price relationship. Our 

study revealed that there is no significant dynamic relationship between Brent Crude Futures 

and EU ETS Futures in terms of returns and price.  
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1 Introduction 

 

Climate change is a shared issue, and it likely remains one in the foreseeable future. From the 

perspective of each country, if each country had an individual climate, then the self-interested 

countries would attain the climate goal - much like other goals in the country such as education, 

transportation infrastructure, and other public goods and services. However, our climate is 

shared by everyone, which makes it challenging to gain benefit all by oneself. A CO2-receding 

country reaps only a smaller portion of the benefits, yet obtain the total costs of its abatement. 

A self-interested response in this type of scenario is to free-ride. In today's globalized economy 

where the energy prices extensively alter the economic viability and competitiveness, self-

interested behaviour of free-riding is notably correct. However, some countries do not display 

this kind of self-interested behaviour and still pursue their national climate policies.  

Several strategies have been taken to reduce fossil fuel usage in our environment, e.g., utilizing 

hydropower, solar, and/or nuclear energy. However, a price on carbon is often viewed as the 

most cost-efficient way to deal with this problem (MacKay JC, et al., 2017). A price on carbon 

is flexible. It can incorporate fossil fuel taxes and restrict usage by introducing a cap-and-trade 

system, and it fits well with other national policy actions. The European Union Emission 

Trading Scheme (EU ETS) is the most active and largest cap-and-trade scheme globally 

(European Commission, 2015). This scheme provides a price on carbon emission to be traded 

like other commodities, such as crude oil, natural gas, and coal. As EU ETS puts an overall cap 

on the amount of emitted greenhouse gasses in the atmosphere, we can assume that EU ETS 

and fossil fuel has some liaison. Thus, the dynamic relationship between the fossil fuel market 

and the carbon emission market is essential for government planning since it will affect the 

overall market of both fossil fuel consumption and fossil fuel production. Climate change has 

been primarily attributed to burning of fossil fuel, which releases significant amount of 

chemical gases into the atmosphere. Amongst the fossil fuel, coal is the most harmful for 

environment and researchers have developed several policies to avoid coal as an energy source 

(Union of Concerned Scientists, 2008). In recent times, natural gas and oil is the primary driver 

of energy source (Ritchie & Roser, 2014).  

The carbon price will influence the marginal cost of production for industries using fossil input 

(such as coal, oil, and gas), and the power market and the market for carbon emissions will 

mutually affect each other. An increase in the price of power will increase the production and 
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lead to more CO2-emissions, and thus an increase in the carbon price. On the other hand, a 

higher carbon price will – due to higher demand for CO2 emissions – increase the costs of 

producing power. If the price elasticity of power is low, this cost increase will primarily increase 

the price of power. A carbon price will, however, influence the relative cost of the different 

production forms with high CO2 emissions. Coal-based production will cause higher CO2 

emissions per kWh than oil-and gas-based production. Depending on the form of production, 

there is an influence of carbon price on the price of power. Even though coal has a lower 

marginal cost of production than gas, an increase in the carbon price can make gas cheaper than 

coal. The relationship between different power prices and the carbon price is thus very complex, 

and there is a large uncertainty connected to the development of future carbon prices. This 

uncertainty is important for economic analyses and industry decisions regard CO2 emissions. 

High uncertainty will probably reduce the private sectors willingness to accept measures to 

reduce CO2 emissions.  

There are several Carbon policies designed to understand the impact of Carbon pricing on 

various factors of an economy such as Gross Domestic Product (GDP), federal deficit, energy 

independence, household costs, and other energy sources (gasoline, coal).  Researchers and 

economists have explored the economic analysis of both carbon pricing and EU ETS. 

According to a research paper by OECD (Dechezleprêtre & Venmans, 2018) conducted using 

installation-level data from the National Pollutant Release and Transfer Register’s (PRTR) of 

France, the Netherlands, Norway, and the United Kingdom, the researchers found a statistically 

significant reduction of carbon emissions in the range of 10 – 14% (Dechezleprêtre & Venmans, 

2018). The authors have found most of the reduction around the time of 2008 to 2012 largely 

driven by large installations. From the research, the authors concluded that the chemical sector 

displays the largest reductions. Few researchers have attempted to identify the relationship 

between Brent Crude Futures and Carbon Futures prices and returns. Contemporary research 

has mostly focused on the spot market of fossil fuel prices and carbon prices, or they have been 

based on the early period of carbon trading. Our study will help bridging the gap in this literature 

by exploring the dynamic relationship between the Carbon Futures market and the Brent Crude 

Futures market. To be more precise, we will explore the dynamic relationship between the oil 

future price and the European Union Allowances (EUAs) futures by employing a Vector 

Autoregression Regression (VAR) method. We will also extend our research to find a long-run 

relationship between oil futures and EUA futures by employing the Cointegration technique 

along with the Vector Error Correction Model (VECM). For EUA allowances, we will use the 
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data from European Climate Exchange (ECX), and for oil futures, we will use the Brent Crude 

Futures from Intercontinental Exchange (ICE). Our paper explores the implied dynamic 

relationship between the Carbon Futures and Brent Crude Futures prices and returns. The 

identification of this dynamic relationship can help us understand the effectiveness of Carbon 

Futures on the usage of Brent Crude Futures. Futures offer a fast, cost-efficient way to trade in 

the financial and commodity markets. The reason behind the importance of Futures market are 

several among which we will mention some. Futures markets are substantially liquid which 

makes it easier to trade. The Futures can help investors with diversification and hedging. For 

the above-stated reason we have focused our paper on the Futures market for both Carbon and 

Brent Crude. We constrained our analysis on the one-month Futures contract for both the 

commodities. Based on the background information and brief theoretical discussion stated 

above, we, therefore, formulate our research questions as follows: 

 

1. What is the dynamic relationship between the oil futures price and carbon futures? 

2. Are the prices Cointegrated? Is there any long-run relationship between the prices? 

 

There are some limitations that we faced while conducting the research. Firstly, we need to 

narrow down our scope of research to oil futures based on Brent Crude of Europe. The primary 

reason is as EU ETS only covers Europe and Brent Crude is the benchmark for oil in Europe, 

the results will be applicable to only Europe and cannot be generalized to other locations. 

Secondly, a VAR analysis does not incorporate the moving average (MA) terms in the analysis, 

which might be useful in capturing the overall dynamics of the process. For example, a Vector 

Autoregressive Moving Average (VARMA) could capture the overall underlying process of the 

oil futures and carbon futures. However, a VARMA process suffers from the problem of 

invertibility and might produce unreliable results. Lastly, COVID-19 has altered the current 

scenario of the fossil fuel market, which we exclude in our paper and left out for future analysis.  

 

The rest of the paper follows the following sequence. We start with a comprehensive overview 

of both EU ETS and Oil Market in the literature review section. We also describe the 

mechanism of how both the futures market works. In the methodology section, we provide a 

comprehensive overview of the methodology that we apply to analyze the dynamic relationship 

between oil futures and carbon futures, i.e., estimation and forecasting techniques of a VAR 

model and estimation and Error Correction Form of the Cointegrated model. 
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2 Context and Literature Review  

 

The warmer planet and economic efficiency using fossil fuels have become a paradox for 

researchers and practitioners. Two-thirds of total carbon dioxide emissions come from 

electricity/heat generation and transportation systems (International Energy Agency, 2020). 

The consumption pattern varies across countries: carbon dioxide emissions through the 

transportation system are predominant in many North American countries, one-half of the 

emissions in Asia comes from power generation, and less than one-sixth from transportation 

(Ritchie & Roser, 2019). After reallocation of emissions from power generation to final sectors, 

the picture changes. Industry accounts for 43 percent of total CO2 emissions, while buildings 

and transport account for 25 percent each (International Energy Agency, 2020). On one side, 

there is wealth, which is necessary for everyone who wants to achieve a higher standard of 

living, and on the other side, the usage of fossil fuel for efficient productivity leads us to a 

warmer planet with unprecedented weather volatility. However, to replace fossil fuel energy, 

several renewables technologies have been introduced, but most of them come with their 

disadvantages. For example, solar energy is an excellent source of electricity, but it is not 

deployed widely due to weather variability.  

 

The theoretical framework of our paper has been divided into three distinct sections. The first 

section provides a comprehensive literature overview of the European Union Emissions 

Trading System. In this section, we have explored the rationale behind the EU ETS, political 

and theoretical foundations of the EU ETS, the three Phases of the EU ETS, and the Mechanism 

of the market. The second section describes the history and structure of the futures market for 

crude oil. We have described the volatile history of oil from its inception until recent times. In 

the final section of our theoretical framework, we review the contemporary literature that has 

been done on carbon price and crude oil price. 
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2.1 Literature Review of EU ETS 

 

We start our theoretical framework by extensively studying the foundational rationale behind 

the development of the EU ETS, the compliance periods, and the mechanism of the Carbon 

Market. We finish our review by discussing the current condition of the market along with the 

discussion on the subsequent changes the EU ETS has adopted in recent times.  

 

 

2.1.1 Theoretical and Political Background of EU ETS 

 

While pollution reductions may be beneficial for global society in the long run, states will only 

choose to abate pollution if the short-term net benefit of abatement is positive from a national 

perspective (Napoli, 2012). This attraction towards the selfish equilibrium is the primary reason 

why the Kyoto protocol failed (Cooper, 2001). The carbon emission reduction vows undertaken 

by 184 countries in the Paris Agreement for 2030 were not enough to keep the global warming 

well below 2° celsius (Leahy, 2019). The best candidate for a common commitment in 

international climate policy is carbon pricing. Tackling climate change is difficult because of 

the free-rider problem. The atmosphere provides countries that emit with the option to free-

ride. Some nations relax and rely on when others give the effort, the incentive to tackle climate 

change weakens. A collective pledge can give assurance to participants that others will match 

their efforts and will not free-ride. "I will if you will" - strategy will stabilize higher levels of 

cooperation. A carbon price – would be the ideal basis for a collective commitment in our view. 

A price is easy to administer, relatively impartial. Climate change is a problem of the commons, 

and it likely remains one in the foreseeable future. If each country had its climate, then self-

interested countries would reach climate goal-much like self-interested countries provide 

education, transportation infrastructure, parks, and other public goods. Nevertheless, with a 

shared climate, a CO2-abating country receives only a small fraction of the benefits, yet incurs 

the full costs of its abatement. Naturally, the self-interested response is to free-ride which is 

particularly true (Cooper & Cramton, 2017).  

 

The role of the European Union Emissions Trading System (EU ETS) is significant in the EU. 

The EU ETS is a 'cap-and-trade' system which puts a cap on the total amount of Greenhouse-

Gases (GHG) emissions from several installations and aircraft operators primarily responsible 



10 

 

for approximately 50 per cent of the European Union's GHG emissions (European Commission, 

2015).  Within the system, parties can trade emission allowances so that the allocated emissions 

of the installations and aircraft operators remain within the cap. This motivation ensures that 

the parties would take the least-cost measures to reduce emissions. From the classic book of J. 

H. Dales published in 1968, Pollution, Property and Prices, the EU ETS draws its inspiration 

(Dales, 1968). Explicitly, Dales stated that 'if it is feasible to enact a marketplace to enforce a 

policy, no policymaker can afford to do without one'. One of the primary underlying reason for 

the problem of climate change is the failure of the market to perceive the scarcity value of our 

atmosphere as a sink for Greenhouse-Gas emissions. However, no price appropriately signals 

this increasing scarcity, which leads to the fact that there is no incentive to reduce these 

emissions. Economists recognize two broad policy instruments to repair this failure (Cooper & 

Cramton, 2017). The first instrument was to introduce environmental taxes, i.e., a tax imposed 

on every unit of emissions produced (Cooper & Cramton, 2017). The second market-based 

policy instrument is emissions trading, which draws on humanity's singular impulse to trade 

(Cooper & Cramton, 2017). Broadly expressed, the trade would involve setting an overall cap 

per unit of time on the emissions to be permitted. Determination of the overall cap will lead to 

the allocation of allowances/permits to emitters. The sum of the allowances allocated will not 

exceed the cap. These emitters can then pollute as they wish, but only on the condition that they 

hold sufficient allowances at the end of the period to cover their emissions. If they wish to emit 

more than the allowances they have received, they must buy allowances from those who had a 

lower emission or have a surplus on the allowances. These transactions produce a price per unit 

of pollution that provides the incentive to polluters to reduce emissions and sell the surplus to 

those who need to buy to cover their emissions. With the concept in mind and some inspirations 

taken from the trading scheme for sulphur dioxide (SO2) in the power sector from the United 

States, the European Union Emissions Trading Scheme came into being as a Europe Wide 

Market for Carbon dioxide (CO2) (Ellerman, et al., 2010). 

 

Coase (Coase, 1960) provided a trenchant argument that the assignment of suitably defined 

property rights would allow for the use of environmental endowments to negotiate and trade 

their way to the economically efficient outcome. The above theoretical framework was given 

more explicit expression as a way of creating an emissions market by Crocker (Crocker, 1966), 

Dales (Dales, 1968) and Montgomery (Montgomery, 1972), by using hypothetical cases to 

illustrate the potential. They all make the case that fixing the number of emissions, allocating 

quotas to the emitters such that the sum of these did not exceed the overall ceiling then allowing 
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a price to emerge as the product of trades would allocate abatement automatically to those 

market participants who could abate at least cost. Besides, the price signal would create a 

continuing incentive to innovate, thereby yielding dynamic efficiency, and the approach 

adhered to the 'polluter pays principle' by automatically rewarding those who reduced emissions 

and penalizing those who did the contrary. The US Acid Rain Program provided the meat in 

the analytical sandwich and nourished the development of the instrument in Europe (United 

States Environmental Protection Agency, 2020). The program was aimed for substantial 

reductions in sulphur dioxide emissions by power stations at costs that were substantially below 

the likely alternative policies.  

 

The EU ETS was the product of two failures. The first one is the failed attempt to levy a carbon 

energy tax. In 1992, the EU proposed a Union-wide carbon energy tax (Ellerman, et al., 2010). 

Primarily for two reasons, the proposal failed. Firstly, some nations regard member state 

autonomy in taxation as a core value, not to be relinquished even if the environment would 

benefit. Secondly, the leading industry lobbies represented most clearly by the Union of 

Industrial and Employers' Confederations of Europe (UNICE), also opposed the tax. The 

second one is the Kyoto negotiations. The third Conference of Parties to the UN's Framework 

Convention on Climate Change convened in Kyoto, Japan, in December 1997.  

 

 

2.1.2 The compliance periods 

 

We start the section by explaining the different compliance periods that the EU ETS has been 

experienced. The system started out in 2005 and has undergone drastic and minor changes since 

then. According to the EU ETS handbook, the implementation of the system has been 

subdivided into distinct trading periods over time which can be addressed as phases. The current 

phase of the EU ETS began in 2013 and will last till 2020.  

 

The first trading period (2005-2007) constituted a process of 'learning by doing'. The objective 

of the period was to establish the infrastructure and institutions and to gain the experience to 

make the subsequent 'real' period a success. The cap that was to be decided for the trial period 

was a voluntary one assumed by the European Union to prepare for the subsequent trading 

period when a legally binding obligation would exist. The criteria for cap-setting in the trial 

period were closely tied to expected business-as-usual (BAU) emissions. A BAU scenario 
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assumes that there will be no significant change in people's attitudes and priorities, or no 

significant changes in technology, economics, or policies so that normal circumstances can be 

expected to continue unchanged (Oxford Reference, 2020). The self-contained nature of the 

trial period, created by the short-time period and the inability to bank first-period allowances 

for use in the second period, made a zero price at the end of the period inevitable. The task of 

setting a cap that was at or close to BAU emissions was made enormously more difficult by 

weak data (European Commission, 2015). The problem was that no member state government 

had a good idea of the exact emissions within the ETS sectors. Through UNFCCC processes, 

good inventory data had been developed for the national and sector levels. However, these data 

were calculated on an upstream basis – based on fuel consumption at the sectoral and economy-

wide levels. Furthermore, the definition of sectors differed, as did the criteria by which 

installations and emissions were included in the ETS. As a result, there were no accurate models 

that could predict ETS sector emissions. The problem of data was also extended into the 

allocation of allowances to installations, which required installation-level emissions data. As 

there was no legal and regulatory framework for collecting these data, the practical expedient 

was dependence on the voluntary submission of data by the owners of included installations. 

The agreement among the EU15 member states concluded in July 2003 and formally issued in 

October 2003, required first-period national allocation plans to be submitted by the end of 

March 2004 (European Commission, 2015). Then the Commission was to complete its review 

within three months of having been notified of each member state's NAP. In theory, the entire 

process would be concluded and the cap determined by August 2004, five months before the 

scheduled start of the system on 1 January 2005 (European Commission, 2015). This proved to 

be an impossible timeframe given the significance and preparation needed to implement the 

emissions trading scheme.  

 

We can attribute this situation with the planning fallacy, which was first pointed out by the 

Nobel Laureate Daniel Kahneman and Amos Tversky. A belief that one's project will proceed 

as per plan, even knowing that most of the similar nature projects have run late, is known as the 

planning fallacy (Buehler, et al., 1994). The delays incurred resulted not only from late 

submissions but from the Commission's review. The total proposed annual amount by the EU25 

members was 2278.8 Million EUAs, whereas the allowed annual amount was 2181.3 Million 

EUAs (Ellerman, et al., 2010). A 4.3 per cent reduction was required to put it under the cap. 

However, for a myriad of reasons, this 4.3 per cent of reduction turned to be a surplus of 4.3 

per cent. One of the reasons was due to the unavailability of data from Eastern Europe 



13 

 

(Ellerman, et al., 2010). Some of the other significant reasons include the accession of Romania 

and Bulgaria in 2007; the European Court of First Instance's ruling on Germany's challenge to 

the Commission's disallowance of ex-post adjustments; the treatment of opt-outs and opt-ins; 

and the incomplete distribution of allowances in the new entrant reserves (NERs). 

 

The final first-period cap and emissions can be summarized in the following table:  

(data in millions) EUAs Verified 

Emissions 

Surplus 

Final first-period results 6467 6200 267 

Table 1 The Final First-period cap and emissions 

 

Most of the problems that had plagued the first-period NAP process had disappeared by the 

time the second-period (2008-2012). NAPs were developed and reviewed. The problem of 

weak data was solved at one fell swoop by the release of verified emissions data for 2005. Also, 

the deadline for the submission of NAPs (June 2006) was no longer an impossible one, which 

solved the planning fallacy problem. Nonetheless, the first-period problems were replaced by 

new ones created by the EU ETS status in the second period as a cap within a cap and the need 

to make sure that the second-period allocation did not jeopardize the European Union’s 

achievement of its obligations under the Kyoto Protocol. These problems concerned the trade-

off required by the fact that the ETS was now a cap within a broader cap and that limits on the 

use of credits from Joint Implementation and the Clean Development Mechanism. The 

Commission announced its expectation that the second-period EU-wide cap would be 6 per 

cent lower than the comparable first-period cap on an annual basis (European Commission, 

2015). Moreover, the Commission also announced that it would apply uniform assumptions 

concerning the growth of CO2 emissions – an annual rate of growth of 0.3 per cent for the 

EU15 and 0.2 per cent for the new member states – instead of relying on member state 

projections (European Commission, 2015). In the second phase of EU ETS, Iceland, Norway 

and Liechtenstein joined as new state members on 1 January 2008. The total allowances were 

dwindled by 6.5 per cent for the period (European Commission, 2015). Furthermore, the 

economic dip due to the financial crisis caused a low demand for emissions in the second period. 

Due to the surplus credits, available from the Joint Implementation and the Clean Development 

Mechanism, there was an excess amount of unused allowances and credit, which put pressure 



14 

 

on the carbon prices. Nevertheless, previously not included Aviation Industry was also brought 

into the system.  

After the two-compliance period, the ETS Directive proposed some significant changes on 23 

January 2008 primarily concerned with the issues of auctioning, harmonization and cap-setting 

(Ellerman, et al., 2010). We will briefly review these in this section. The most radical and 

contested issue was related to auctioning. The Commission’s proposal consisted of a principle 

and a proposal for implementation. The principle was that free allocation would be ended and 

allowances distributed entirely through auctioning. The proposed implementation consisted of 

three elements:  

 

o The power sector would receive no free allowances from 2013 on, except for heat 

delivered to district heating or for industrial uses; 

o Installations in non-power sectors would receive a free allocation of 80 per cent of their 

share of the cap in 2013, which would be reduced by ten percentage points each year so 

that free allocation would be phased out in 2020;  

o Energy-intensive sectors or subsectors that face a significant risk of carbon leakage from 

competitors in countries without equivalent CO2 measures could receive free 

allowances of up to 100 per cent of their need. 

 

 

2.1.3 Mechanism of the Market 

 

The EU ETS is a cap-and-trade system. It works by putting a cap on the overall greenhouse gas 

(GHG) emissions of all the participants in the system. To emit GHG emissions, EU ETS 

legislation created allowances which are attributed as rights to emit one tonne of CO2 

equivalent (tCO2e). The overall level of the cap determines the total number of allowances 

available in the EU ETS system. From 2013, the cap is redesigned to decrease annually, which 

in turn will reduce the number of allowances available to the businesses that fall under the EU 

ETS system. The amount of reduction will circulate 1.74 per cent per year, which would allow 

the firms to gradually adjust in meeting the increasingly ambitious target for emissions 

reductions (Brohé, et al., 2009).  

 

The allowance is allocated either by free allocation or via auction. In phase one and two, 

allowances were primarily handed out for free, which has changed starting from phase three. 
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From the third phase, the default method of allowance allocation is through auction. Although 

free allocations are still valid for the industry sector with a cap on the maximum amount of free 

allocation limiting to approximately 43 per cent of the total phase three cap (European 

Commission, 2015). One hundred per cent auctioning is subject to the power generation section 

that started from 2013 onwards except for the Member States engaged in the modernization of 

the power sector (Brohé, et al., 2009). The industrial and heating sectors are given free 

allocation based on the ambitious GHG performance benchmarks. By 2020 the free allocation 

rules for the industrial sector is set to decrease by 30 per cent. The ambition extends to 0 per 

cent by 2027. Factors that deemed to face a severe issue of carbon leakage will receive 100 per 

cent of the quantity freely. Allowances follow the basic economic principle of supply and 

demand. There is a capped supply, and there is a demand from the participants. There is also 

the case where the participants have a higher cost of reductions compared with other 

participants. To ensure compliance, penalty and enforcement structure is available. If a firm 

fails to comply by surrendering sufficient allowances in time, the amount of fine is set at €100 

per tCO2e adjusted with the EU inflation from 2013 (Brohé, et al., 2009). Besides, firms are 

obligated to surrender the allowances owed.  

 

The coverage of EU ETS has expanded significantly since the start of phase one in 2005 in 

terms of geography, sectors, and types of GHGs (European Commission, 2015). From phase 

three, the EU ETS approximately incorporate half of the overall GHG emissions that take place 

in the EU. Furthermore, the European Commission, EU Member States are always looking for 

new prospects to include.   

Geographically speaking, the EU ETS started with 25 EU Member State and grew to 27 

Member States when Romania and Bulgaria joined under the EU in 2007. At the start of phase 

two, the EU ETS expanded and started covering the European Economic Area (EEA) with 

Norway, Iceland, and Liechtenstein. The area expanded, even more, when the largest stationary 

emitters in Croatia joined the EU ETS from January 2013 and the aviation sector of Croatia 

from 2014. The most GHG intensive sectors in the power and manufacturing industry are 

covered by the EU ETS starting from phase one. The scope was broadened in 2012 to cover 

CO2 emissions from the aviation sector. The horizon was further extended from phase three 

with the inclusion of aluminium, carbon capture and storage, petrochemicals, power stations 

and combustion plants with ≥ 20 Mega Watts (MW) thermal rated input (except for hazardous 

or municipal waste), oil refineries, steel and iron, glass, lime, paper and board, ammonia and 



16 

 

many more (European Commission, 2015). The EU ETS covers CO2 emissions, N2O 

emissions, and from phase three, PFC emissions.  

 

According to the ETS directive (European Commission, 2015), a single EU full cap is set for 

the percentage of emission reduction. The cap is expressed in tCO2e for each of the trading 

phases. The European Commission calculate and establish the cap before each trading period. 

For the phase three, the cap ensures the meeting of the EU's 2020 GHG reduction target which 

in total can be attributed to 20 per cent reduction of the EU GHG emissions compared to the 

1990 levels (European Commission, 2015). According to the EU ETS directive, the cap can be 

separated into two distinct categories: 

 

o A fixed installation cap decreases each year by a linear factor of 1.74 per cent. Factually 

the total number of EUAs reduced annually will be 38,264,246 (European Commission, 

2015). 

o A fixed cap for the aviation sector decreasing at a fixed level of 210,349,264 allowances 

per year (European Commission, 2015).  

 

Setting a cap is essential for the economic survivability of the market. The price of the carbon 

is determined by the harmonic combination of demand and supply. Scarcity is a critical factor 

for any economic assets. The cap stringency plays a critical role to ensure scarcity, thus 

circulating the demand and supply EUAs.  

The allowances are allocated in a transparent way of auctioning. The auctioning methodology 

enables the market participant to buy the allowances at the market price. The auctioning 

methodology for the EU ETS has changed a lot since its inception in 2005. At that trading 

phase, only five per cent of the emissions allowances were allowed to auction (Ellerman, et al., 

2010). From phase three all the EUAs are auctioned except for the allocated free 

allowances. Primarily the Member States are liable to ensure their share of allowances 

auctioned. From phase 3, the auctioning can take place on a common auction platform such as 

the European Energy Exchange AG (EEX) through a joint procurement procedure or on an 'opt-

out' auction platform under the supervision of the procurement procedure stated by the Member 

States. Except for Germany, Poland and the UK, other 25 Member States follows the joint 

procurement approach. The common platform for these Member States is the EEX. Norway, 

Liechtenstein, and Iceland also use the EEX. Alternatively, the ICE Futures Europe (ICE) is an 

opt-out auction platform for the UK. A bidder can apply for admission to bid at the auction 
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platforms residing anywhere in the EU and the EEA. Then the auction platform verifies the 

eligibility of the application under the regulatory framework of the Auctioning Body. 

The EUAs can be traded in five ways like any other financial instrument. In case of the spot 

trade, the settlement takes place on the spot. The trade date is generally within two business 

days after the completion of the trade. Futures are a standardized contract among two parties 

with delivery and payment occurring at a specified future date, which is the delivery date also. 

Our paper analyzes the dynamic relationship between the price of the futures contract of EUAs 

with the price of the futures contract on oil. The EUAs can also be used as a forward contract, 

swap or options. However, in case of swaps, the buyer can also swap any amount of EUAs for 

a proportionate amount of Kyoto carbon credits which usually sells at a discount to EUAs.  

A National Allocation Tables were established replacing the National Allocation Plan Tables 

to issue allowances. A Central Administrator is responsible for issuing all allowances by 

creating them on the EU total quantity account in the Union Registry. The Central 

Administrator is also held responsible for the transfer of allowances for auctioning and free 

allocation to the applicable accounts. After the activity of the Central Administrator, the 

Member States are then responsible for the allocation of allowances free of charges.  

The EUAs can also be surrendered throughout the trading period. ETS operators have an 

obligation to surrender the quantity of EUAs equivalent to the volume of their GHG emissions 

of the previous year. The process usually takes place by the end of April each year. International 

credits are also allowed in the process of submission. However, from phase 3, international 

credits cannot be directly surrendered. Instead, the credits need to be exchanged for EUAs first. 

A failure for surrendering allowances is met with a penalty for €100 per tCO2e, adjusting for 

EU inflation (Brohé, et al., 2009). Voluntary cancellation and transfer of allowances are also 

permissible by the ETS directive. The instructions for a transfer is carried out electronically by 

the authorized delegate of the seller account. The delegate indicates and ensures the transfer of 

the number of units.  

 

Transparency, accuracy, monitoring, reporting and verification is essential to create trust in any 

trading. These are also applicable to emissions trading. Since the third phase of ETS, the 

monitoring and reporting of GHG emissions are in line with the European Union Monitoring 

and Reporting Regulation, according to No 601/2012 (European Commission, 2012). Annually, 

installations and aircraft operators hand in the Annual Emission Report (AER). The document 

provides the details regarding the total amount of emitted GHGs of the operator in that given 

year. An independent accredited verifier verifies the AER.  
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2.2 Literature Review of Oil 

 

The history of oil is theatrical. Oil is extensively used in our economy and a vital source of 

energy. In this section of our paper, we will be briefly addressing the volatile history of oil from 

1859 to the present day. Furthermore, we will address the futures market for oil, which will be 

used for our analysis along with the EUA futures. 

 

2.2.1 A History of Oil 

 

The modern oil industry started because of a scarcity of whales (York, 2017). Until 1859, most 

of the people obtained light by burning animal fats in the form of beeswax candles or whale oil 

(Britannica, 2011). The purest light of all available fuels was the whale oil, and it soon became 

a luxury product. Due to overfishing of whale, a decline in the whale population resulted, which 

in turn led to the increase in whale oil prices (Davis, et al., 1988). In 1854, George Bissell and 

his business associates sent a sample of crude oil skimmed from a surface pool in North Western 

Pennsylvania to Professor Benjamin Silliman of Yale University for analysis (Aoghs.org 

Editors, 2019). Professor Silliman confirmed that the sample could be distilled to produce 

kerosene. The fundamental process of distillation involves separating different products by 

heating them. The products have different boiling points, so they evaporate and are condensed 

separately, which remains the basic refining technique used today. Silliman's analysis was used 

to raise capital for the formation of the Pennsylvania Rock Oil Company in 1855 (American 

Chemical Society National Historic Chemical Landmarks, 2009).  

The Pennsylvania Rock Oil Company hired a railroad conductor named Colonel Edwin Drake 

to carry out the drilling. Edwin Drake struck oil on August 27, 1859 (American Chemical 

Society National Historic Chemical Landmarks, 2009). The first well was on a salt dome rock 

formation. The well was 69 feet deep and yielded 15 barrels a day. The petroleum that flowed 

from the world's first wells is known as Oil Creek, near Titusville, Pennsylvania and started the 

modern oil industry (McNally, 2017). Crude oil was stored and transported to refineries in any 

readily available container. Wooden whiskey and wine barrels were the most common means 

of transporting liquids at the time and were requisitioned to haul crude oil (International 

Association of Oil Transporters, n.d.). By 1870s, railroad tanker cars and pipelines began to 

replace barrels as the preferred and less expensive methods of moving crude oil. Drake's first 

well created a scramble reminiscent of California Gold Rush of 1849 (Roske, 1963). Oil became 
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known as black gold. In January 1869, one barrel of crude oil was sold for $18 which is 

equivalent to $553 in today's market value (CPI Inflation Calculator, n.d.). About 90 per cent 

of the new oil industry was gradually consolidated by John D.Rockefeller and the Standard Oil 

Company.. Rockefeller purchased his first refinery in Cleveland in 1865 and founded the 

Standard Oil Company in 1870 (McNally, 2017). Journalist Ida Tarbell brought the anti-

competitive practices of Standard Oil to public attention in a series of investigative reports 

published from 1902 through 1904 (Tarbell, 1904). Hastened by the Tarbell information, the 

Sherman Antitrust Act of 1890 was used in 1911 to split Standard Oil into several competing 

firms (Tarbell, 1904). Thus, sprang forth 34 companies including Exxon now known as 

ExxonMobil, Chevron and Texaco, now known together as Chevron; and Conoco, now part of 

ConocoPhillips (Downey, 2009). Barrel remained the default volume measure in oil markets. 

Standard Oil standardized the volume of a barrel to be a Standard Oil Blue Barrel, or bbl (an 

acronym used to this day), which is 42 US gallons (approximately 159 litres).  

 

Following the initial discovery of crude in Pennsylvania, additional small discoveries were 

made in Texas, Oklahoma, and California. In 1901, a gusher named Spindletop (Johnson, 1966) 

was discovered in 1901 just south of Beaumont, Texas, which produced over 50,000 barrels per 

day. Patillo Higgins made the discovery (Johnson, 1966). This individual well produced 20 per 

cent of daily US production at the time. In addition to the significant US discoveries such as 

Spindletop, major discoveries began to occur in other parts of the world. Production began in 

Baku, Russia, which is a part of modern-day Azerbaijan, along the shores of the Caspian Sea 

around the 1870s (Mir-Babayev, 2002). This development was led and funded by the 

Rothschild Banking Family (Mir-Babayev, 2002). Production in the Middle East commenced 

in Persia when the UK government-controlled Anglo-Persian Oil Company, as BP was then 

known, struck oil in 1908 (BP, n.d.). Royal Dutch discovered oil in the 1890s on the island of 

Sumatra, nowadays part of Indonesia (Royal Dutch Shell, n.d.).  

 

These discoveries created the needed cheap and ubiquitous supply of fuel to launch the 

automotive age. Up until the First World War, oil was not of much strategic significance. The 

strategy changed when Winston Churchill decided to replace slow coal-powered vessels with 

rapid response oil-powered military ships in WWI, which became a decisive factor in the 

outcome of the war (Philpott, 2006). Ocean-going commercial and military ships continue to 

use residual fuel oil as their primary fuel to this day. 
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A significant challenge for the oil industry was the exploration. The prices of oil remained in 

equilibrium until the demand caught up. In 1928, following significant oil production increases 

from Russia, English and American oil companies became worried that the world was again 

moving into a dangerously oversupplied situation (Bamberg, 1994). To address the glut, the 

heads of the most powerful oil companies in the world resulted in an agreement Achnacarry 

Agreement (Bamberg, 1994). Under the Agreement the oilmen agreed that they would not 

compete against each other outside of the US and instead would act to ensure price and profit 

stability for each of them. The Soviet Union in 1929 agreed to participate in the Agreement. 

However, the Agreement failed as the participants did not hold sufficient market share to 

control supply and prices. The need to stabilize prices at profitable levels in the face of 

oversupply was satisfied three years later by the US government. While dealing with the Great 

Depression and trying to kick start US industry including the oil business, the US federal 

government required the Texas Railroad Commission (TRC) and similar but smaller 

organizations in other oil-producing states to impose production restrictions to ration the 

amount of crude produced in each state (McNally, 2017). TRC control of East Texas production 

spare capacity made it the arbiter of global prices from 1931 to 1971. The Seven Sisters 

dominated the exploration and production outside the US until the 1970s (Sampson, 1985). The 

Seven Sisters, through mergers and acquisitions, are now four: ExxonMobil, Chevron, BP, and 

Royal Dutch Shell. The four remaining Sisters have been joined by two other large international 

oil corporations, ConocoPhillips and TOTAL, to form a group known today as the six Majors. 

Today, the Majors have lost their market dominance. Together, they control only 14 per cent 

of global crude oil production, although they still own 24 per cent of global refinery capacity 

(U.S. Energy Information Administration , 2020). Much of the oil produced outside of the US 

until the 1970s was carried out based on concessions which is a legal Agreement between and 

International Oil Corporation, most often a Major, and the government of the country in which 

the oil was being produced. Concessions negotiated by the Majors were as a rule on a 50/50 

profit sharing basis (Yamani, 1975).  

 

Cracks in the 50/50 concession arrangements began to emerge in 1951 as Mohammed 

Mossadegh, the democratically elected prime minister of Iran, nationalized his country's oil 

industry (McNally, 2017). OPEC (Organization of Petroleum Exporting Countries) was formed 

in 1960 in Baghdad (McNally, 2017). The organization was based in Vienna and modelled after 

the TRC. Five founding member countries: Saudi Arabia, Kuwait, Iran, Iraq, and Venezuela, 

were joined in later years by a further nine nations, the UAE, Qatar, Libya, Algeria, Nigeria, 
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Angola, and Ecuador. Organization for Economic Cooperation and Development (OECD) in 

response to the energy crisis of 1973, formed the International Energy Agency (IEA) in 

November 1974 to coordinate the response of developed nations to restrictions in supply 

(International Energy Agency, 2019). The IEA recommended minimum stockpile levels of oil 

to be created in consumer countries to enable petroleum consumers to shelter themselves better 

from such crises. In 1975, President Gerald Ford established a Strategic Petroleum Reserve 

(SPR) of crude oil to be used for US emergency purpose (Lantero, 2015). In 1978, during the 

Iranian dethroning, Saudi production had rapidly and very briefly ramped up to 10.5 million 

barrels per day (McNally, 2017). Total global oil production in 1978 was 67 million barrels per 

day (Federal Reserve History, 2013). Subsequently, in order to keep prices from collapsing 

during the early 1980s as Iranian oil production resumed, and to bring production back to more 

optimal rates, Saudi Arabia cut its production back to two million barrels per day, which is a 

massive swing for any producer. Saudi Arabia became known as the swing producer for its 

singular attempts to manage prices (Yousef, 2011). However, the more the Saudis cut back, the 

more other OPEC countries produced by cheating on their quotas. In August 1985, Saudi Arabia 

decided a new form of netback pricing where they linked the Saudi crude oil price to the retail 

gasoline and other product prices in the US and elsewhere (Biddle, 1985). The international 

market did not need additional Saudi oil. Within a year, oil prices collapsed more than 70 per 

cent and remained between $10 and $20 until 1990 (McNally, 2017). 

 

During the late 1970s, oil started trading on the future exchanges. A futures exchange is a 

marketplace where one can buy or sell a commodity for delivery at a point in the future. Heating 

oil futures first started trading on New York Mercantile Exchange (NYMEX) in 1978 

(Ederington & Lee, 2002). Subsequently, in 1981 gasoline futures started trading (Bird, 1987). 

After the US domestic crude oil prices were deregulated in 1981, crude oil futures started 

trading on the NYMEX in 1983 (Reuters Staff, 2009). In 1988 oil began to trade on the 

International Petroleum Exchange (IPE) in London (Intercontinental Exchange, n.d.). The IPE 

now trades electronically as the Atlanta-based Intercontinental Exchange (ICE). The oil traded 

on these two exchanges (NYMEX and ICE) created price transparency between producers and 

consumers. Heating oil, gasoline and other finished product prices being openly quoted on 

futures exchanges enabled Saudi Arabia, followed by other large producers, to begin using 

refining margin netback pricing in 1984, linking the price at which they sold their crude oil to 

the price of finished products (McNally, 2017). For example, if a western oil refiner managed 

to sell gasoline, heating oil, and the other products in its basket of finished products linked to 
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futures prices for $50 per barrel, and the pre-agreed netback margin between the OPEC crude 

oil producer and the refiner is $10 per barrel, then the refiner pays $40 per barrel for the crude 

oil. In this way, the revenue of the crude oil producer is more closely linked to the final market 

price for the refined petroleum products, and a refiner is guaranteed a profit margin. However, 

the refining margin netback pricing began to be replaced by crude oil formula netback pricing. 

 

Crude oil formula netback pricing, which is the mechanism still in use today, links the price at 

which OPEC crude producers, and others, are willing to sell crude oil to an openly traded free-

market crude oil benchmark or a combination of benchmark prices (Stevens, 2005). Benchmark 

oil prices, also known as price markers, are oil prices set at the close of business each day on 

futures exchanges, such as the NYMEX or ICE futures exchanges. They also include prices 

assessed daily by oil trade journals S&P Global Platts and Petroleum Argus, two most widely 

used oil trade journals (Mathur, 2013). They assess prices during a window of time at the end 

of each business day for hundreds of grades of oil at various locations around the world based 

on spot market trading in physical oil at those locations. Oil traders and their brokers report to 

these journals in real-time during the daily time window, the price and quantity of any trades 

they have transacted, or are willing to, transact.  

 

For OPEC and the oil industry, the 1990s and early 2000s were relatively stable and orderly 

compared with the preceding periods. Nevertheless, once again, starting soon after the turn of 

the twenty-first Century, tectonic shifts in global oil demand and supply began to reshape the 

oil market, subjecting oil producers, consumers, and governments to massive oil price volatility 

not seen since the 1920s and 1930s and shattering perceptions that OPEC could maintain oil 

price stability. On the demand side, global GDP growth picked up sharply between 2003 and 

2007, averaging a healthy five per cent per year (McNally, 2017). The vigorous economic 

activity caused oil consumption to grow by 6.5 million barrels per day (eight per cent) over the 

period. The average consumption of oil had been rising by one million barrels per day from 

2000 through 2003 (McNally, 2017). However, the consumption rose 60 per cent faster from 

2004 to 2007, i.e., 1.6 million barrels per day. In China, demand exploded stemming from faster 

economic growth and rapid industrialization and urbanization. Electricity shortages played a 

significant role, too. To keep the lights on, China was forced to fall back on older power plants 

burning distillate and heavy fuel oil (McNally, 2017). Many businesses, facing periodic 

compulsory shutdowns to save energy, also invested in diesel power generators. The confluence 

of these factors more than doubled China's oil demand growth, from 0.4 million barrels per day 
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in 2003 to 0.9 million barrels per day in 2004 (McNally, 2017). European countries tightened 

regulations on distillate fuel by lowering the amount of sulphur it could contain, sending 

refiners scrambling to make the cleaner fuel. Besides, the introduction of the EU ETS in the 

European market caused the industry to move towards clean and renewable sources of energy. 

On the supply side, production growth outside OPEC was unexpectedly weak while the costs 

of production soared due to increases in the cost of steel pipe, drilling rigs, oil field services, 

and cement. Amid dire warnings about peak oil and demands to crack down on speculators and 

release strategic stocks, oil prices kept rising into 2008. In February 2008, the price escalated 

to $100 for the first time (McNally, 2017). As the summer approached in 2008, the price of 

crude was over $140. Unbeknownst to oil market participants gawking at oil's towering spike 

in the middle of 2008, a collapsing real estate bubble was about to drop the floor out from under 

crude oil prices, triggering a price bust as sudden and spectacular as the boom. We know that 

consumers do not quickly adjust their consumption of gasoline when oil prices change—but 

they do when their income changes. An employed worker has little choice but to pay whatever 

the pump price is to drive to work, but after losing his job, an unemployed person's need to 

drive drops quickly. In 2008 incomes were collapsing and oil demand along with them, falling 

by 0.7 million barrels per day in 2008 and by 1.1 million barrels per day in 2009. As it became 

clear that the world was entering a massive recession, oil prices plummeted. In October of 2008, 

prices fell to almost $60 per barrel—half their level just two months earlier (McNally, 2017). 

By December prices had tumbled to $33, an astounding crash of 78 per cent in just six months. 

 

 

2.2.2 Oil and Coronavirus 

 

The impact of Coronavirus (COVID-19) is still immeasurable on the economy. As the COVID-

19 is spreading around the world, travel and tourism, economic activities are in astringing. 

China is one of the highest energy consumer among other nations. They were accounted for 

more than 80 per cent of demand growth in global oil (International Energy Agency, 2019). 

IEA predicted than the demand for oil would grow by 825,000 barrels a day in 2020 

(International Energy Agency, 2020). However, the IEA is now re-evaluating their prediction. 

The IEA has developed two scenarios. In the pessimistic scenario, failure to contain the 

COVID-19 globally will lead to a decrease of global demand for oil by 480,000 barrels per day 

in the remaining months of 2020 (International Energy Agency, 2020). On a more optimistic 
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scenario, containment of the COVID-19 globally will lead to a demand of 730,000 barrels per 

day. As a measure of recuperate, Members of OPEC and their allies, except Mexico, agreed to 

a production cutback of 9.7 million barrels per day deal to balance the global oil market (Duffy 

& Disis, 2020). For the first time in history, the price of West Texas Intermediate (WTI) 

dropped by almost 300 per cent, to a negative $37 per barrel (Bayly, 2020). However, the price 

has steadily recouped by 90 per cent in May (Stevens, 2020). Also, the petroleum industry is 

still in a high degree of uncertainty. Whiting Petroleum became the first major firm to file for 

bankruptcy protection (Reuters Staff , 2020). 

 

 

2.2.3 Futures Market for Oil 

 

The spot price is the price of oil for immediate delivery. The price of oil for delivery at a 

specified date in the future is called a forward price. Oil for delivery in the future is most 

commonly traded using exchange-traded futures contracts and Over-the-Counter (OTC) swap 

contracts. A useful feature of futures and swaps is that, if one chooses, one never actually should 

take or make delivery of physical oil. As one does not have to get involved in the physical oil 

market, such contracts are referred to as paper barrels as opposed to real physical wet barrels. 

Less than one per cent of paper barrel contracts such as futures or swaps are converted into 

physical oil, but it is still vital that the link between paper and physical exists as it ensures that 

paper contracts have real underpinnings. Charting the various dates and forward prices of either 

futures or swaps create a forward curve of prices going out into the future. Each benchmark 

grade of oil has its forward curve. The parts of the forward curve closer to expiry date are 

referred to as the front-end of the curve. The parts that are further along the curve into the 

distant future is referred to as the back-end. Price differentials between the front of the curve 

and further out parts of the curve are referred to as front-to-backs, or time spreads. Forward 

curves can be in contango, which is upward sloping as one goes further into the future, or in 

backwardation, which is downward sloping. Contango is a case that occurs when there is 

excessive oil around today relative to today's demand and implies that there may be money to 

be made in storing oil as one can sell oil on the forward curve at a higher price than today's low 

price (Constable, 2020). Backwardation usually occurs when there is a relative shortage of oil 

today, and the forward curve discourages storing oil as one can sell oil today at a better price 

than in the future. As there has always tended to be spare capacity globally in oil storage, 
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refining, and transportation, changes in spreads due to fundamental economic and seasonal 

differences have typically not been as significant as changes in absolute prices of crude oil up 

or down. The relationship implies that oil spot prices and forward curves are relatively highly 

positively correlated. 

 

 

2.2.4 Exchange Traded Futures Contracts:  

 

A futures contract gives one the right to buy a standardized quantity of oil for delivery at a date 

in the future. If one buys future, then one is said to be going long futures, and the trade will 

make money if market prices rise. If one sells futures, then one is said to be going short, and 

the trade will make money if market prices fall. There are five actively traded, or liquid, futures 

contracts for petroleum globally, three listed on the NYMEX and two on ICE. The fossil fuel 

contracts are summarized in the table below: 

 

ICE Futures  

(London) 

Ticker Root 

Brent Crude (contract size: 

1000bbls) 

LCO (Reuters) 

CO (Bloomberg) 

Gasoil (contract size: 100 metric 

tonnes) 

LGO (Reuters) 

QS (Bloomberg) 

    Table 2 Fossil Fuel Contracts traded on the Exchange 

 

The ICE Futures exchange in London is a public company and is regulated by the UK Financial 

Services Authority (FSA). At the end of trading each day, settlement prices for each futures 

contract are posted by the exchange. These settlement prices are determined by trading over the 

last few minutes of the trading day. Daily settlement prices are used for mark-to-markets, which 

show the financial state of positions at the end of each trading day and are used for calculating 

variation margin payments required. The Exchange Traded Futures Contracts are standardized 

with fixed volumes contrary to the OTC contracts. An upfront initial margin deposit is required, 

which is managed by the clearinghouse. 
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2.3 Literature of Oil Futures and EUAs 

 

Previous literature on the association between oil prices and carbon prices focused on the spot 

market rather than the futures market. However, the background of the market, attributes of the 

market, and structure of the market of Phase two and three differ from Phase one, the outcomes 

of the research papers may not be generalized to Phase two and three. Our research paper tends 

to bridge the gap by focusing on the futures market for both oil and carbon. Existing studies 

also analyzed both the markets using traditional multiple regression techniques. This paper 

focuses on the maximum likelihood estimation techniques for VAR analysis, which is more 

robust and less prone to multicollinearity problems and outliers. Furthermore, the timing of our 

paper is very relevant. The Earth is getting warmer, and the primary reason is the usage of fossil 

fuel burning. The dynamic relationship pointed out in our paper might help with policymaking 

and may shed light on the importance of a carbon market for tackling the climate change 

problem. Contemporary works of literature on the relationship between oil futures and EUA 

futures is sparse. In this section, we will give a brief overview of the contemporary works of 

literature on the oil price and emission allowance price in this section.  

 

The Kyoto Protocol enacted in 2005. Since then GHG emission permit has been a scant resource 

which is endowed with a commodity attribute. Under such events, carbon market came into 

being in the terrain to deal with the global climate change. Global carbon market represented 

by the EU ETS has marked a rapid development: the turnover increases to $176 billion in 2011 

from $10 billion in 2005, with an annual growth rate of 60 per cent (Brohé, et al., 2009). The 

market is expected to be one of the biggest and most active trading markets in the world. The 

existing methods used for pricing and forecasting carbon market can be roughly categorized 

into two distinct groups: econometric models and artificial intelligence approaches (Zhu & 

Chevallier, 2017). However, these approaches cannot function well on the real data of carbon 

price because of some constraint and nature of the market. A carbon market is typically 

complexed in nature compared with other markets in the economy. Carbon price exhibits 

uncertainty, nonlinearity, anomalous behaviour, and volatility due to its interactions among 

multiple factors and their external heterogeneous environments, as well as their influences. The 

reasons, as mentioned above, make the methods unlikely to achieve satisfactory performance 

on the pricing and forecasting carbon market. The integral drivers of a carbon price can be 

generalized to the price of energy (oil, natural gas, coal), external heterogeneous environments 

(policies), temperature conditions (summer, winter), and economic activity (boom, recession).  
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CO2 emission primarily results from fossil energy consumption. Power plants can also 

selectively use various fuels such as coal, gas, and oil. Due to this reason, there is an internal 

price transmission mechanism between fossil energy market and the carbon market. 

Consequently, rising energy price is likely to cause an increase in the carbon price and vice 

versa. The above finding is consistent with that of Kanen (Kanen, 2006), Convery & Redmond 

(Convery & Redmond, 2007), Mansanet Bataller, et al. (Mansanet Bataller, et al., 2006), 

Oberndorfer (Oberndorfer, 2009), and Hintermann (Hintermann, 2010). 

 

In recent years, an increasing amount of researchers around the world has begun to pay attention 

to the EU ETS carbon market. Several researchers have studied the Phase on to date, 

considering the environmental benefit and cost-efficiency of the EU ETS carbon market. For 

instance, Mansanet Bataller, et al. (Mansanet Bataller, et al., 2006) and Alberola, et al. 

(Alberola, et al., 2008) investigated the driving factors of EU ETS Phase one from 2005-2007 

successively. The key findings of their papers are that carbon price drivers, such as energy 

prices and weather factors could influence EUA prices. They also demonstrated that the 

essential variables in the determination of CO2 returns are the most emission-intensive energy 

variable, i.e., prices of coal, represented by electricity returns in EEX, and the prices of Brent. 

Besides, the weather variables influencing CO2 returns are not significantly imperative, 

although days with high and low temperatures have a positive influence on CO2 prices. External 

heterogeneous environments also have a considerable effect on the carbon price. As the carbon 

market is a policy-based artificial market, it is influenced by both the mechanism of the market 

and heterogeneous environments such as global climate negotiations, quotas allocation, 

financial crisis, and information pronouncements. 

Furthermore, the sensitivity of temperature conditions with a carbon price is also evident in 

papers. Fifty-five per cent leaseholders of EUA are from thermal and electric departments. The 

shortage of EUA and rising carbon price appears to have an interrelationship to dry and cold 

winter calls for large amounts of heats which decrease the demands in hydropower. High 

temperature also leads to the frequent maintenance of nuclear power. Thus, power consumption 

based on coal makes CO2 emission rise, and carbon therefore increase. The above view is 

supported by Mansanet Bataller, et al. (Mansanet Bataller, et al., 2006), Alberola, et al. 

(Alberola, et al., 2008), Daskalakis, et al. (Daskalakis, et al., 2009), Benz & Trück (Benz & 

Trück, 2009), and Hintermann (Hintermann, 2010).  
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A considerable amount of contemporary studies are focused on the EU ETS Phase one. Since 

the background of the market, attributes of the market (flexibility and intensity), and decree of 

the market of Phase two and three differ from Phase one, the outcomes of the research papers 

may not be generalized to Phase two and three. Furthermore, most of the contemporary results 

are basically obtained from carbon spot prices. Presently, carbon spot trading is still very low, 

while carbon futures trading is the preeminent product in carbon markets. Nevertheless, studies 

relating to carbon futures are scarce. Since carbon futures enjoy substantial trading volume than 

carbon spot prices theoretically speaking, carbon futures prices are much less receptive to the 

structural changes that have occurred on the spot market (e.g., 2006). Hence, carbon futures 

prices show less volatile fluctuation than spot price equivalents. For this reasoning, the research 

inference from carbon spot prices is probably not applicable to carbon futures prices. Besides, 

existing studies primarily employ traditional multiple linear regression methodology, which is 

susceptible to the problem of multicollinearity. Therefore, the reliability of the research results 

might be inadequate in some cases, and the dynamic relationship between the energy futures 

(e.g., oil) and carbon futures cannot be adequately grasped.  

 

To aid our previous discussion, we provide some insights from different research papers 

comprising of EU ETS Phase one and two and other exogenous factors, including energy prices. 

The drivers of carbon prices of EU ETS at Phase one and Phase two are somewhat different. 

Wei, et al. (Wei, et al., 2010) used the Cointegration technology to examine the interactions of 

the carbon price and energy prices at both long and short terms. They found that energy prices 

are marginally associated with carbon futures price at Phase one, and has a long-run equilibrium 

relationship with carbon futures price at Phase two. The deviation of energy prices has been the 

leading driver of carbon price at Phase two.  Keppler & Mansanet-Bataller (Keppler & 

Mansanet-Bataller, 2010) adopted the Granger causality test to explore the "granger-causes" 

relationship between the carbon price and energy prices. They concluded that coal and gas 

prices at Phase one influenced carbon price, which further impacted electricity price. However, 

at Phase two, gas price is still influential to the carbon price, but the carbon price no longer 

influences coal price. Moreover, electricity price is a driver of carbon price at Phase two 

contrary to Phase one. Creti, et al. (Creti, et al., 2013) also conducted a Cointegration analysis 

to compare the drivers at Phase one and two. They remarked that there existed two different 

long-term Cointegration relationship between carbon prices and energy prices at Phase one and 

two when the structural breaks are considered. Zhu & Chevallier (Zhu & Chevallier, 2017) 

extended the study of Creti, et al. (Creti, et al., 2013) to identify the determinants of the carbon 
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price from 2006 to 2012 using cointegration analysis. Their results indicated a long-term 

cointegrating relationship between carbon prices and its driving factors, including energy 

prices, weather conditions, economic activities, and institutional decisions. Bredin and Muckey 

(Zhu & Chevallier, 2017)  employed a cointegration VAR model with likelihood ratio test 

statistics and proposed that the carbon futures market in Phase two is inefficient. Fezzi & Bunn 

(Fezzi & Bunn, 2010) by employing a VAR procedure, implied that shocks on electricity prices 

influence the carbon prices. Their findings suggest that one per cent increase in the price of 

emission permits resulted in an increase of 0.32 per cent in UK electricity prices during Phase 

one. Milunovich & Nazifi (Milunovich & Nazifi, 2010) also reported links between electricity 

and emission permit prices, as well as between emission permits and oil prices. Contrary to 

other studies, their results indicate that there is no evidence of a long-run relationship between 

carbon prices and oil prices. The result implies that the prices are not cointegrated and may 

wander apart without bounds in the long-run.  

 

There are several other research works conducted from an economic point of view to identify 

the connection between various drivers of carbon prices. From the supply point of view, the 

number of total allowances is decided by each Member-State of EU ETS through the 

implementation of National Allocation Plans (NAPs). The NAPs are then coordinated at the 

EU-level under the supervision of EC. From the demand side, the usage of CO2 allowances by 

Member-State is a function of the expected CO2 emissions in the Member-State. The degree of 

CO2 emissions depends on a myriad of factors, such as unanticipated volatility in energy 

demand, price of energy products, condition of weather. Based on the demand and supply 

fundamentals stated above, Christiansen et al. (Zhu & Chevallier, 2017) have identified policy 

and regulatory issues, market fundaments (emissions-to-cap ratio), the role of fuel-switching, 

weather and production levels as the price determinants in the EU ETS. Using an extended 

dataset, Mansanet Bataller, et al. (Mansanet Bataller, et al., 2006) and Alberola, et al. (Alberola, 

et al., 2008) uncovered the dynamic relationship between energy markets and CO2 price. The 

essence of the relationship between energy and carbon prices varies depending on the period 

under consideration and the dominant influence of institutional events. Hintermann 

(Hintermann, 2010), under the efficient market hypothesis, derived a structural model of the 

allowance prices. He examined the degree to which marginal abatement costs can explain the 

volatility in price. Boutaba (Zhu & Chevallier, 2017) investigated interactions among the 

European carbon markets that trade EUAs and Certified Emission Reductions (CERs) using the 

data from European Climate Exchange, Nordic Power Exchange, Powernext, European Energy 
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Exchange, Energy Exchange Austria, and SendeCO2. He employed a cointegration test, and 

the results revealed several cointegrating relationships that exist between the different markets, 

and hence, a high degree of price transmission. Powernext, Nordic Power Exchange and Energy 

Exchange Austria displayed leading roles as short-term channels of causality from changes in 

the carbon markets. Milunovich & Nazifi (Milunovich & Nazifi, 2010) explored the dynamic 

interaction between EUA and CER prices through cointegration analysis and concluded that 

EUA and CER prices are not cointegrated. Mark et al. (Zhu & Chevallier, 2017) studied the 

interactions of EUA and CER emission prices with key energy markets across the EU. Their 

results indicated that in Phase two, significant interactions existed between the prices of EUA 

and CER contracts and the critical energy markets for Europe. Using an Autoregressive 

Distributed Lag Model, Kim and Koo (Zhu & Chevallier, 2017) examined whether price 

movements of fossil energy can significantly affect carbon price dynamics in short-run. Zhang 

& Sun (Zhang & Sun, 2016) analyzed both return and volatility spillovers (i.e., an unexpected 

repercussion) between carbon and energy markets using the Dynamic Conditional Correlation 

(DCC) threshold GARCH model and the full BEKK-GARCH model. They pointed out that 

there were significant and unidirectional volatility spillovers from the coal market to the carbon 

market, and from the carbon market to the natural gas market, whereas there exists no spillover 

between carbon and oil markets. Chevallier, et al. (Chevallier, et al., 2019) employed a 

conditional vine copula approach with a dataset covering both Phase two and three and provided 

novel insights in investigating the dependence structure between carbon and energy prices in 

Europe, taking fuel-switching mechanism into account. They found that carbon prices 

demonstrate a weak and negative link with both oil and natural gas prices. They also argued 

that inefficiency of fuel-switching mechanism in reducing carbon emissions and analyzed that 

the switch from coal-fired to natural gas-fired plants does not occur even if carbon prices remain 

at a high level. Kun et al. (Zhu & Chevallier, 2017) examined the interdependency of energy 

and carbon market by employing a Quantile-on-Quantile Regression approach using the data 

from Phase three. The paper found that a positive (negative) price change in carbon-consumed 

resources (oil, natural gas, coal) due to strong (weak) demand or weak (strong) supply could 

rise (decrease) of marginal production costs of installations using such energy as an input, lower 

(decrease) the installations outputs, and then depress (prompt) their future energy demand. They 

remarked that current energy price fluctuations are expected to exert negative impacts on future 

carbon price dynamics, while the intensity of the impact could be heterogeneous at different 

locations of the carbon-energy price distribution, due to idiosyncratic market characteristics and 

carbon emission volumes per tonne of different fossil energy.  
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In the above paragraphs, we have described the contemporary research papers that are available, 

which focused on the individual EU carbon market and also on the determinants of the market. 

The next few paragraphs of this section discuss some of the critical studies on the oil price 

shocks on the carbon market. Several studies have focused on the collective dynamics between 

West Texas Intermediate (WTI), Brent crude oil, and natural gas spot log returns. The dynamics 

have been explored by many statistical techniques such as copula, Monte Carlo simulations, 

and bootstrap based goodness-of-fit tests. The modelling of stochasticity in the energy, equity, 

commodity, and foreign exchange markets has become more common nowadays. Most of the 

studies assert that crude oil plays a significant role in many types of investments, including 

equity market, commodity market, and the foreign exchange market. Gr ́egoire, et al. 

(Gr ́egoire, et al., 2008) examined the dependence structure of log-returns of futures on crude 

oil and natural gas and implied that the dependence between the two prices is roughly constant 

with time. 

 

A study by Accioly & Aiube (Accioly & Aiube, 2008) found conflicting results with Gr ́egoire, 

et al. (Gr ́egoire, et al., 2008). The authors found a change in price behaviour at different 

periods. The change was observed through different copula models, and the results were 

confirmed using bootstrap analysis. An interesting study was conducted by Reboredo 

(Reboredo, 2012) on the dependence structure between crude oil benchmark prices utilizing 

copulas using weekly data. The researcher wanted to assess whether markets were regionalized 

or globalized on the basis of upper and lower tail dependence. The study concluded that markets 

with well-developed forward and future markets exhibit conditional dependence and that 

globalization hypothesis holds as oil prices move together, independently of whether the market 

is booming or crashing. The contemporary literature on the relationship between oil price and 

emission allowance price is relatively scarce. The co-movements of EU ETS and energy prices 

are crucial for government planning since they affect the overall economy of both oil-

consuming and producing countries. Benz & Trück (Benz & Trück, 2009) and Hammoudeh, et 

al. (Hammoudeh, et al., 2014) explored the relationship between oil price and emission 

allowance price by utilizing higher frequency (daily) data. The authors also created a model of 

potential asymmetries in oil price fluctuations. A related study by Dutta, et al. (Dutta, et al., 

2018) employed a bivariate VAR-GARCH approach and concluded that volatility in the EUA 

prices affects positively on the renewable energy stock returns. However, the associated 

relationship was not statistically significant. Krokida, et al. (Krokida, et al., 2020) in their paper 

examined the effect of different oil price shocks on the price of emission allowances traded 
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under the EU ETS; leading to changes in aggregate and sector-specific European equity returns. 

The paper reports that positive aggregate demand shocks have an immediate and persistent 

positive effect on carbon emission price, whereas an unexpected oil disruption has a positive 

but smaller effect. They also conducted a historical variance decomposition analysis reveals 

that the responses of the price of CO2 carbon emission allowance have been mainly driven by 

global economic activity and oil-specific demand shocks rather than oil-supply shocks which 

typically exert smaller effects. Lastly, Soliman & Nasir (Soliman & Nasir, 2019) examined the 

association between the Energy prices and EU ETS prices using a time-varying SJC copula 

model. The results indicate that there exists a proportionate correlation between ETS and crude 

oil spot price. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 

 

3 Theoretical and Empirical Approach 

 

3.1 VAR and Cointegration  

 

In our study, we will be implementing two econometric models that are closely related to each 

other, Vector Autoregression (VAR) and Cointegration and a Vector Error Correction form 

(VECM) for the estimated VAR. The actual analysis will be described in the Data analysis 

section, and the results will be discussed in the Discussion section.  

In the first part of this section, we start by providing a theoretical framework for the 

methodology, i.e., VAR, Cointegration and VECM. We derive our model for analysis in the 

subsequent sections. We will start by describing the VAR model and derive the estimation 

technique, limiting distributions and significant equations that are used to estimate the model 

later in the analysis part. In a nutshell, we will describe how to estimate a VAR model, how the 

select the appropriate order for the VAR model, achieving a parsimonious model through model 

simplification, forecasting into the future with the available information, and finally the 

dynamic effect between the variables in the study.  

In the second part, we start with the concept of unit-root, determining the order of integration, 

theoretical concepts of Cointegration along with the error correction form, cointegrating 

vectors, Johansen’s trace statistic for Cointegration tests, and estimation of the Error-Correction 

model and their limiting distributions which is function of standard Brownian motions. The 

theoretical construct section draws heavily on the works of Hamilton (Hamilton, 1994), Juselius 

(Juselius, 2006), Johansen (Johansen, 1995), Pfaff (Pfaff, 2008), and Tsay (Tsay, 2014).  

 

 

3.1.1 VAR: 

 

One of the most commonly used multivariate time series models is the VAR model. The VAR 

model has become popular due to its relative ease of estimation techniques. A VAR can be 

estimated using the least-squares (LS) method, maximum-likelihood (ML) method or Bayesian 

method and all the three estimation methods have closed-form solutions. The multivariate time 

series zt  follows a VAR model of order p, VAR(𝑝), if  

zt= ∅0+ ∑ ∅izt-i+at

p

i=1
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where ∅0 is a k-dimensional constant vector and ∅i are k × k matrices for 𝑖 > 0, ∅p ≠ 0, and 

at is a sequence of independent and identically distributed (iid) random vectors with mean zero 

and covariance matrix ∑  𝑎 which is positive-definite.  

 

 

3.1.1.1 Properties of VAR: 

 

VAR(𝑝) model has some unique properties that we will explore in this section. We will start 

with the stationarity conditions. For the above model, a necessary condition for the VAR(𝑝) 

series to be stationary is that all eigenvalues of must be less than 1 in absolute value or 

equivalently, the solutions of the determinant equation are greater than 1 in absolute value. That 

is, the solutions of the determinant equation are outside the unit circle. A time series zt  is said 

to be invertible if it can be written as  

zt = 𝑐 + 𝑎𝑡 + ∑ 𝜋𝑗𝑧𝑡−𝑗

∞

𝑗=1

 

where, 𝑐 is a k-dimensional constant vector, 𝑎𝑡 is a sequence of iid, and 𝜋𝑗 are k × k constant 

matrices. For an invertible series zt, 𝜋𝑗→ 0 as 𝑖 → ∞.  

By definition, a VAR(𝑝) time series is a linear combination of its lagged values, which makes 

the VAR(𝑝) always invertible.  

 

 

3.1.1.2 Estimation of VAR: 

 

As stated before, a VAR(𝑝) model can be estimated using the least-squares or maximum-

likelihood method. We will briefly describe the maximum likelihood estimation of the VAR(𝑝) 

model. Let us consider the below model  

 

zt =  ∅0 +  ∅1zt-1 + ⋯ + ∅pzt-p + 𝑎𝑡 , 𝑡 = 𝑝 + 1, … , 𝑇 

 

where the covariance matrix of 𝑎𝑡 is ∑ .𝑎  We have 𝑇 − 𝑝 data points for effective estimation. 

To facilitate the estimation, we rewrite the VAR(𝑝) model as 

 

zt
′ =  𝑥𝑡

′𝛽 + 𝑎𝑡′ 
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where 𝑥𝑡 =  (1, z't-1, …, z't-p)′ is a 𝑘𝑝 + 1 -dimensional vector and 𝛽′ = [∅0, ∅1, … , ∅p] is a 

k × (kp+1) matrix. With this new format, we can write the data as 

 

𝒁 = 𝑿𝛽 + 𝑨, 

 

where 𝒁 is a (𝑇 − 𝑝) ×  𝑘 matrix with 𝑖𝑡ℎ row being z'p + i, 𝑿 is a (𝑇 − 𝑝) ×  (𝑘𝑝 + 1) design 

matrix with 𝑖𝑡ℎ row being  x'p + i, and 𝑨 is a (𝑇 − 𝑝) ×  𝑘 matrix with 𝑖𝑡ℎ row being a'p + i.  

 

Given the data set {z1, … , 𝑧𝑇}, the maximum likelihood of a VAR(𝑝) model is  

 

𝐿(�̂�,𝑎
̂ |𝑧1:𝑝) = (〖2𝜋)〗−

𝑘(𝑇−𝑝)
2 |𝑎

̂ |
−

𝑇−𝑝
2

𝑒𝑥𝑝 [−
𝑘(𝑇 − 𝑝)

2
] 

 

Under the multivariate normality assumption, i.e., 𝑎𝑡 follows a 𝑘-dimensional normal 

distribution, the ML estimates of a VAR(𝑝) model are asymptotically equivalent to the LS 

estimates.  

 

 

3.1.1.3 Model Building: 

 

We now turn to model building where we follow the iterated procedure of Box and Jenkins 

(Box, et al., 2016) consisting of model specification, estimation and diagnostic checking. For 

VAR models, specification implies the order, p, selection. Various methods have been proposed 

in the literature to select the VAR order. We choose the information criteria approach. 

Information criteria are useful in selecting a statistical model. All criteria are based on 

likelihood and consist of two components. The first component is the goodness of fit of the 

model to the data, and the second component penalizes more heavily complicated models. For 

the normal distribution, the maximized likelihood is equivalent to the determinant of the 

covariance matrix. This determinant is known as the generalized variance in multivariate 

analysis. The selection of the penalty is relatively subjective. Three criteria functions are 

commonly used to determine VAR order. Under the normality assumption, these three criteria 

for a VAR(𝑙) model are  
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𝐴𝐼𝐶(𝑙) =  𝑙𝑛|𝑎,𝑙
̂ | +

2

𝑇
𝑙𝑘2 

𝐵𝐼𝐶(𝑙) =  𝑙𝑛|𝑎,𝑙
̂ | +

𝑙𝑛 (𝑇)

𝑇
𝑙𝑘2 

𝐻𝑄(𝑙) =  𝑙𝑛|𝑎,𝑙
̂ | + 

2𝑙𝑛 [𝑙𝑛(𝑇)]

𝑇
𝑙𝑘2 

 

where 𝑇 is the sample size,  𝑎,𝑙
̂  is the ML estimate of ∑ .𝑎  AIC was proposed Akaike (Akaike, 

1981) and is abbreviated Akaike Information Criterion. BIC stands for Bayesian Information 

Criterion (Schwarz, 1978) and HQ is proposed by Hannan and Quinn (Quinn & Hannan, 1979). 

If zt is indeed a Gaussian VAR(𝑝) time series with 𝑝 < ∞, then both BIC and HQ are consistent 

and will select the true VAR(𝑝) model with the probability one as the total sample size 𝑇 

approaches towards infinity. To compute the information criteria for a given time series 

realization {z1, … , 𝑧𝑇}, we use the data from 𝑡 = 𝑃 + 1 to T to evaluate the likelihood functions, 

where 𝑃 is the maximum AR order.  

Residual analysis is a crucial function of model building. The main objectives include to ensure 

that the fitted model is adequate and to suggest directions for further improvement if needed. 

Typically, a fitted model is said to be adequate if  

 

• All fitted parameters are statistically significant (at a specified level),  

• The residuals have no significant serial or cross-sectional correlations, 

• There exist no structural changes or outliers, 

• The residual does not violate the distributional assumption of multivariate normality. 

 

We derive here the multivariate Portmanteau statistics for model checking. The test is used to 

detect the existence of linear dynamic dependence in the data. Let 𝑹𝒍 be the theoretical lag 𝑙 

cross-correlation matrix of innovation at. The hypothesis of interest in model checking is 

𝐻0: 𝑹𝟏 = ⋯ = 𝑹𝒎 = 𝟎 

versus 

𝐻0: 𝑹𝒋  ≠  𝟎 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 1 ≤ 𝑗 ≤ 𝑚 

where 𝑚 is a pre-specified positive integer.  
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For the residual series, the Portmanteau statistic becomes 

 

𝑄𝑘(𝑚) =  𝑇2 ∑
1

𝑇 − 𝑙

𝑚

𝑙=1

𝑡𝑟(𝑅𝑙 ′̂𝑅0
−1̂𝑅�̂�𝑅0

−1̂) 

 

where 𝑡𝑟(𝐴) is the trace of the matrix 𝐴 and 𝑇 is the sample size and 𝑙 is the lag size. The test 

statistic 𝑄𝑘(𝑚) is asymptotically distributed as a chi-square distribution with (𝑚 − 𝑝)𝑘2 

degrees of freedom. In practice, some of the AR parameters in a VAR(𝑝) model are fixed to 0. 

In this case, the adjustment in the degrees of freedom of the chi-square distribution is set to the 

number of estimated AR parameters.  

Multivariate time series models may contain many parameters if the dimension 𝑘 is moderate 

or large. In practice, some of the parameters might not be statistically significant at a given 

significance level. So, it is advantageous to simplify the model by removing the insignificant 

parameters by the information criteria option. For instance, we can estimate the unconstrained 

VAR(𝑝) model (under alternative hypothesis) and the constrained VAR(𝑝) model (under the 

null hypothesis). If the constrained model has a smaller value for a selected criterion, then we 

accept the null hypothesis according to that criterion.  

 

 

3.1.1.4 Forecasting:  

 

After we have estimated the VAR model, we turn to forecasting. The minimum mean-squared 

error forecast of 𝑧ℎ+𝑙 is simply the conditional expectation of 𝑧ℎ+𝑙 given 𝐹ℎ, where ℎ is the 

forecast origin and 𝐹ℎ is the information available at time ℎ (inclusive). For the VAR(𝑝) model, 

the general, 𝑙 -step ahead forecast is  

𝑧ℎ = 𝐸(𝑧ℎ+𝑙|𝐹ℎ) =  ∅0 + ∑ ∅𝑖𝑧ℎ(𝑙 − 𝑖)

𝑝

𝑖=1

 

 

which can be computed recursively. For a stationary VAR(𝑝) model, all eigenvalues of ∅ are 

less than 1 in absolute value which leads to the relationship, 

∅𝑗 → 0, 𝑎𝑠 𝑗 →  ∞ 

Consequently, we have 

𝑧ℎ(𝑙) −  𝜇 → 0, 𝑎𝑠 𝑙 → ∞ 



38 

 

In other words, the stationary VAR(𝑝) process is mean-reverting. The speed of mean-reverting 

is determined by the magnitude of the largest eigenvalue, in modulus, of ∅. 

 

It is most convenient to use the moving average (MA) representation of the VAR(𝑝) model for 

the forecast error, which is  

𝑧𝑡 =  𝜇 + ∑ 𝜓𝑖𝑎𝑡−𝑖

∞

𝑖=0

 

 

where 𝜇 = [∅ (1)]−1∅0, 𝜓0 = 𝑰𝑘, and  

 

𝜓𝑖 = ∑ ∅𝑗𝜓𝑖−𝑗

min (𝑖,𝑝)

𝑗=1

, 𝑖 = 1,2, …, 

 

which can be calculated recursively. Now we define the l-step ahead forecast error  

𝑒ℎ(𝑙) = 𝑎ℎ+𝑙 + 𝜓1𝑎ℎ+𝑙−1 + ⋯ + 𝜓𝑙−1𝑎ℎ+1 

 

 

3.1.1.5 Impulse Response Functions: 

 

For our analysis, we would like to know the effect of changes in carbon futures price on oil 

futures prices or vice versa. To figure out the effect of the changes we turn to the impulse 

response function analysis, also known as multiplier analysis. In the multiplier analysis, we 

assume that 𝐸(𝑧𝑡) = 0 because the mean does not affect the pattern of the response of 𝑧𝑡 to any 

shock. We would like to study the behaviour of 𝑧𝑡 for 𝑡 > 0 while 𝑧10 increases by 1. Using 

the MA representation of a VAR(𝑝) model with coefficient matrix 𝜓𝑙 =  [𝜓𝑙,𝑖𝑗], we have, 

 

𝑧0 = 𝑎0 = [1 0 … 0]′, 𝑧1 = 𝜓1𝑎0 = [𝜓1,11  𝜓1,21  … 𝜓1,𝑘1]
′
 

 

The results are the first columns of the coefficient matrices 𝜓𝑖. The coefficient matrix 𝜓𝑖 of the 

MA representation of a VAR(𝑝) model is referred to as the coefficient of impulse response 

functions. The summation 𝜓𝑛 = ∑ 𝜓𝑖
𝑛
𝑖=0  denotes the accumulated responses over 𝑛 periods to 
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a unit shock to 𝑧𝑡. Elements of 𝜓𝑛 are referred to as the nth interim multipliers. The total 

accumulated responses for all future periods can be stated as, 

𝜓∞ = ∑ 𝜓𝑖

∞

𝑖=0

 

 

Often 𝜓∞ is called the long-run effects. In practice, often the elements of 𝑎𝑡 tend to be 

correlated. To overcome this difficulty, we can transform 𝑎𝑡 such that components of the 

innovation become uncorrelated. We could use the Cholesky decomposition of  ∑ .𝑎  

Specifically, we have  

∑𝑎 = 𝑈′𝑈 

where 𝑼 is an upper triangular matrix with positive diagonal elements. From the MA 

representation of 𝑧𝑡 we have, 

 

𝑧𝑡 = 𝜓(𝐵)𝑎𝑡 = 𝜓(𝐵)𝑈′(𝑈′)−1𝑎𝑡 = [𝜓0 + 𝜓1𝐵 + 𝜓2𝐵2 + ⋯ ] 𝜂𝑡 

 

where 𝜓𝑙 = 𝜓𝑙𝑈′ for 𝑙 ≥ 0, 𝜂𝑡 = (𝑈′)−1𝑎𝑡.  

 

Let  [𝜓𝑙,𝑖𝑗] = 𝜓𝑙 , which is the impulse response coefficients of 𝑧𝑡 with orthogonal innovations. 

The plot of 𝜓𝑙,𝑖𝑗 against 𝑙 is called the impulse response function of 𝑧𝑡 with orthogonal 

innovations. 𝜓𝑙,𝑖𝑗 denotes the impact of a shock with size being ‘one standard deviation’ of the 

jth innovation at time 𝑡 on the future value of 𝑧𝑖,𝑡+𝑙. The (𝑖, 𝑗) th element of the transformation 

matrix (𝑈′)−1 denotes the instantaneous effect of the shock 𝜂𝑗𝑡 on 𝑧𝑖𝑡. As before, The 

summation 

𝜓𝑛 = ∑ 𝜓𝑖

𝑛

𝑖=0

 

denotes the accumulated responses over 𝑛 periods to a unit shock to 𝑧𝑡. 
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3.1.2 Cointegration and Error Correction Model: 

 

We discuss here some theoretical methodologies for Cointegration and VECM. We will start 

this section by defining Cointegration and its usage and derive the VECM from the VAR(𝑝) 

model that we described in the previous section.  

 

The simplest unit-root nonstationary time series is the univariate random walk, which we write 

as 

𝑧𝑡 = 𝜋𝑧𝑡−1 + 𝑎𝑡 

where 𝜋 = 1.  

The characteristic equation of this model is 1 − 𝑥 = 0, which has a solution 𝑥 = 1. 

Consequently, the random walk process 𝑧𝑡 is called a unit-root process. The solution 𝑥 = 1 is 

on the unit circle which makes 𝑧𝑡 nonstationary. We are considering the hypothesis 𝐻0: 𝜋 = 1 

versus 𝐻1: 𝜋 < 1. This testing problem is called unit-root testing.   

 

Below we summarize the framework of unit-root tests commonly employed in the literature 

known as the Augmented Dickey-Fuller (ADF) (Dickey, 1979) tests. It takes account of the 

serial correlation that may exists in the error process. Three types of model are often employed 

in the test. They are listed below:  

 

o No constant: ∆𝑧𝑡 = 𝛽𝑧𝑡−1 + ∑ ∅𝑖
∗𝑝−1

𝑖=1 ∆𝑧𝑡−1 + 𝑎𝑡 

o With constant: ∆𝑧𝑡 = 𝛼 +  𝛽𝑧𝑡−1 + ∑ ∅𝑖
∗𝑝−1

𝑖=1 ∆𝑧𝑡−1 + 𝑎𝑡 

o With constant and time trend: ∆𝑧𝑡 = 𝜔0 + 𝜔1𝑡 +  𝛽𝑧𝑡−1 + ∑ ∅𝑖
∗𝑝−1

𝑖=1 ∆𝑧𝑡−1 + 𝑎𝑡 

 

where, 𝛽 = (𝜋 − 1). For an AR(𝑝) process, ∅(𝐵)𝑧𝑡 = 𝑎𝑡 with 𝑝 > 1, such that ∅(𝐵) =

∅∗(𝐵)(1 − 𝐵), where ∅∗(𝐵) is a stationary AR polynomial. Let ∅∗(𝐵) = 1 − ∑ ∅𝑖
∗𝑝−1

𝑖=1 𝐵𝑖.  

 

The null hypothesis of interest then becomes 𝐻0: 𝛽 = 0 and the alternative hypothesis is 

𝐻𝑎: 𝛽 < 0. The test statistic is the t-ratio of the least squares estimate(LSE) of 𝛽. The usual t-

ratio for testing the null hypothesis is given by 

𝑡𝜋 = (∑ 𝑧𝑡−1
2

𝑇

𝑡=1

)

1
2

�̂� − 1

𝑠
=

∑ 𝑧𝑡−1𝑎𝑡
𝑇
𝑡=1

𝑠√∑ 𝑧𝑡−1
2𝑇

𝑡=1
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where 𝑠 = √
1

𝑇−1
∑ (𝑧𝑡 − �̂�𝑧𝑡−1)2𝑇

𝑡=1  is the residual variance. 

 

Next, we turn to Cointegration. In econometric literature, a time series 𝑧𝑡 is said to integrated 

process of order d, i.e., 𝐼 (𝑑) process, if (1 − 𝐵)𝑑𝑧𝑡 is stationary and invertible, where 𝑑 > 0. 

The order d is referred to as the order of integration or the multiplicity of a unit root. A stationary 

and invertible time series is said to be an 𝐼 (0) process.  

 

Let us consider a multivariate process 𝑧𝑡. If 𝑧𝑖𝑡 are 𝐼 (1) processes, but a nontrivial linear 

combination 𝛽′𝑧𝑡 is an 𝐼 (0) series, then 𝑧𝑡 is said to be cointegrated of order 1. In general, if 

𝑧𝑖𝑡 are 𝐼 (𝑑) nonstationary and 𝛽′𝑧𝑡 is 𝐼 (ℎ) with ℎ < 𝑑, then 𝑧𝑡 is cointegrated. Cointegration 

often means that a linear combination of individually unit-root nonstationary time series 

becomes a stationary and invertible series. The linear combination vector 𝛽 is called a 

cointegrating vector. Below we define Cointegration more formally by adhering the definition 

of Johansen (Johansen, 1995): Assume Zt is an integrated series of order 1. We can call Zt 

cointegrated with vector 𝛽 ≠ 0 if 𝛽′𝑍𝑡 can be made stationary by choosing a suitable initial 

distribution. The number of linearly independent cointegrating relations is the number of 

cointegrating rank, and the cointegrating space is the space spanned by the cointegrating 

relations.  

 

Suppose that 𝑧𝑡 is unit-root nonstationary such that the marginal models for 𝑧𝑖𝑡 have a unit root. 

If 𝛽 is a 𝑘 ×  𝑚 matrix of full rank 𝑚, where 𝑚 < 𝑘, such that 𝑤𝑡 = 𝛽′𝑧𝑡 is 𝐼 (0), then 𝑧𝑡 is 

cointegrated series with 𝑚 cointegrating vectors, which are the columns of 𝛽. This implies that 

there are 𝑘 − 𝑚 unit roots in 𝑧𝑡. For the given full-rank 𝑘 ×  𝑚 matrix of 𝛽 with 𝑚 < 𝑘, let 𝛽⊥ 

be a 𝑘 × (𝑘 − 𝑚) full rank matrix such that 𝛽′𝛽⊥ = 𝟎. Then 𝑛𝑡 = 𝛽′⊥𝑧𝑡 is unit-root 

nonstationary. The components 𝑛𝑖𝑡[𝑖 = 1, … , (𝑘 − 𝑚)] are referred to as the common trends of 

𝑧𝑡. Johansen’s (Johansen, 1995) method is the most popular and best-known approach to 

Cointegration tests for VAR model. Let the VAR(𝑝) model for our test be: 

 

∆𝑧𝑡 = 𝑐0 + 𝑐1𝑡 + 𝜫𝑧𝑡−1 + ∑ 𝜱𝒊
∗

𝑝−1

𝑖=1

∆𝑧𝑡−𝑖 + 𝑎𝑡 

 

Let 𝑚 be the rank of 𝚷. There are two instances of interest. 
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1. Rank (𝜫) = 0: Implies that 𝜫 = 0. Thus, there is no cointegrating vector. In this case, 

z𝑡 has k unit roots and we can work directly on the differenced series ∆𝑧𝑡, which is a 

VAR(𝑝 − 1) process. 

2. Rank (𝜫) = 𝑚 > 0: In this case, Rank 𝑧𝑡 has m cointegrating vectors and 𝑘 − m unit 

roots. There are 𝑘 ×  m full-rank matrices α and 𝛽 such that 𝜫 = 𝛼 𝛽′. The vector series 

𝑤𝑡 = 𝛽′𝑧𝑡 is an 𝐼 (0) process which is referred to as the cointegrating series, and α 

denotes the impact of the cointegrating series on ∆𝑧𝑡.  

 

For simplicity, we concentrate out the effects of 𝑐(𝑡) and ∆𝑧𝑡−𝑖 from the above equation before 

estimating 𝜫. We break the equation into the following to linear regressions: 

∆𝑧𝑡 = 𝑐(𝑡) + ∑ 𝜛𝑖

𝑝−1

𝑖=1

∆𝑧𝑡−𝑖 + 𝑢𝑡 

𝑧𝑡−1 = 𝑐(𝑡) + ∑ 𝜛𝑖
∗

𝑝−1

𝑖=1

∆𝑧𝑡−𝑖 + 𝑣𝑡 

where, 𝑐(𝑡) is the deterministic function such as 𝑐(𝑡) = 𝑐0 + 𝑐1𝑡, and 𝑢𝑡 and 𝑣𝑡 denote the error 

terms. We can estimate these regression with least-squares method. Let 𝑢�̂� and 𝑣�̂� are the 

residuals of the above equations. Then we have the following regression: 

 

𝑢�̂� = 𝜫𝑣�̂� + 𝑒𝑡 

 

where 𝑒𝑡 denotes the error term. Let the nested hypotheses:  

 

𝐻0: 𝑚 = 𝑚0      𝑣𝑒𝑟𝑠𝑢𝑠    𝐻𝑎: 𝑚 > 𝑚0; 

 

where 𝑚 = 𝑅𝑎𝑛𝑘(𝜫) and 𝑚0 is, a given integer between 0 𝑎𝑛𝑑 𝑘 − 1 with 𝑘 being the 

dimension of 𝑧𝑡. Then, Johansen’s (Johansen, 1995) trace statistic is defined as 

 

𝐿𝑡𝑟(𝑚0) = −(𝑇 − 𝑘𝑝) ∑ 𝑙𝑛 (1 − 𝜆𝑖)

𝑘

𝑖=𝑚0+1

 

 

where 𝜆𝑖 are the eigenvalues of the positive-definite covariance matrix Σ̂𝑢𝑢, Σ̂𝑣𝑣 , Σ̂𝑣𝑢. If 

𝑅𝑎𝑛𝑘(𝜫) = 𝑚0, then the 𝑚0 smallest eigenvalues should be 0, and the test statistic should be 
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small. On the contrary, if 𝑅𝑎𝑛𝑘(𝜫) > 𝑚0, then some of the eigenvalues in {𝜆𝑖}𝑖=𝑚0+1
𝑘  are 

nonzero and the test statistic should be large.  

 

 

3.1.2.1 Vector Error Correction Model: 

 

We could give different parametrizations without imposing any binding restrictions on the 

model parameters of the unrestricted VAR model, i.e., without changing the value of the 

likelihood function. This formulation is called the Vector Error Correction Model (VECM). 

There are several advantages of this formulation (Juselius, 2006):  

(1) The multicollinearity effect which is typically persistent in time-series data is 

significantly reduced in the error-correction form.  

(2) The long-run effects are summarized in the levels matrix (𝜋).  

(3) To avoid the non-invertibility in the VAR model. The error-correction form for the 

model has an invertible MA structure, but uses 𝑧𝑡−𝑖 in the right-hand side of the model. 

The term 𝑧𝑡−𝑖 is referred to as the error-correction term.  

 

 

3.1.2.2 Estimation of Error-Correction Models (ECM): 

 

We illustrate two cases here. In the first case, the cointegrating matrix 𝛽 is known so that the 

cointegrating process 𝑤𝑡 = 𝛽′𝑧𝑡 is available. In this case, our model for ECM becomes 

 

∆𝑧𝑡 = 𝛼𝑤𝑡−1 + 𝑐(𝑡) + ∑ 𝜱𝒊
∗

𝑝−1

𝑖=1

∆𝑧𝑡−𝑖 + 𝑎𝑡 

 

which can be estimated by the ordinary least-squares method. The estimates have the usual 

asymptotic normal distribution and the conventional approach can be used to make statistical 

inference. In the second case, the 𝛽 is unknown. Here the model becomes 

 

∆𝑧𝑡 = 𝛼𝛽′𝑤𝑡−1 + 𝑐(𝑡) + ∑ 𝜱𝒊
∗

𝑝−1

𝑖=1

∆𝑧𝑡−𝑖 + 𝑎𝑡 
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which involves products of parameters and requires nonlinear estimation. Let us consider 

rewriting the cointegrating matrix 𝛽 such as 

𝛽 = [
𝑰𝑚

𝛽1
] 

where 𝛽1 is an arbitrary (𝑘 − 𝑚) ×  𝑚 matrix. We can use the Quasi Maximum Likelihood 

Estimation to estimate the model. We could use the initial estimate of 𝛽 from Cointegration 

tests and the results of the previous case can be used to start the nonlinear estimation. With the 

presence of 𝑧𝑡−1, the limiting distribution of the estimate of 𝜫 involves functions of Brownian 

motion discussed previously.  

Though Cointegration is an interesting concept there are few drawbacks of this methodology. 

Firstly, it does not address the rate of achieving long-term equilibrium. For example, if the 

cointegrating series  𝑤𝑡 = 𝛽′𝑧𝑡  has a characteristic root that is close to unit circle, then the 

Cointegration relationship may take a long time to achieve. Second, Cointegration tests are 

scale invariant.  
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4 Data Collection 

 

For our paper, we have collected the data from the Intercontinental Exchange (ICE). We will 

concisely review the data collection technique in this section of the paper.  

 

The European Union Allowance (EUA) Futures contract listed on the ICE is deliverable. Each 

Clearing Member is obligated to make or take the delivery of the Emission Allowances. The 

delivery is organized on or from the Union Registry upon the termination of the contract. The 

unit of trading is one lot which contains 1,000 Carbon Emission Allowances (EUA). Each EUA 

has the entitlement to emit one tonne of carbon dioxide equivalent gas. The contract trades in 

Euro and Euro cent per metric tonne. For the EUA futures contract, we have collected data from 

January second of 2008 till August seventh, 2020. For complete synchronization of our 

analysis, we have also taken the oil futures contract from ICE. The ICE Brent crude futures 

composes of North Sea crudes. The Brent crude is waterborne, which makes it easy to access 

on different global shipping, ports, and storage capacity around the world. The contract size is 

1,000 barrels and is settled in cash.  

 

For both futures price, we have confined to the returns instead of the futures price. Campbell et 

al. (Campbell, et al., 1997) provided two justification for using returns, (i) return of an asset is 

a complete and scale-free summary of the investment opportunity, (ii) return series are easier 

to handle than price series and the former has more attractive statistical properties. The primary 

reason for taking the returns is, prices tend to be more volatile than returns which could distort 

the analysis. For example, around the end of phase one for EU ETS, the prices were almost 

zero, which could skew the total dataset giving us biased results. Similarly, during the 2008 

Financial crisis, oil prices plummeted.  
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5 Data Analysis 

 

After collecting the data from the Intercontinental Exchange, we converted the daily price 

change into natural logarithmic returns so that all the data are on the same scale. A snapshot of 

the data after conversion is given below. The full dataset can be accessed here. 

 

Figure I Return Series 

The data has been collected from February of 2008 till August of 2020. The first column is the 

Date column. The next columns are daily carbon returns, one month Brent crude returns, two 

month Brent crude returns and three month Brent crude returns. The green colour signifies that 

the returns are positive for that month and the red colour signifies that the commodity incurred 

a negative return. However, we cannot interpret the true property of the data until we plot the 

data. Below we depict the returns individually.  

https://bit.ly/2HIkfBM


47 

 

 

Figure II Carbon Return Series 

After plotting the returns, we can see that the data looks quite stationary, however, we visualize 

some outliers which can be thought of the various economic downturn that carbon futures price 

went through its timeline. For example, the most significant outlier is the drop of almost 40% 

which can be attributed to the fact that at the end of phase 2, the cumulative surplus in the 

allowances increased to more than 2.1 billion (European Commission, 2014). Due to 

coronavirus, many factories have stopped production temporarily and it affected the price of 

EU ETS. The price of allowance fell to EUR 15 from EUR 25. When companies sell emission 

allowances on a large scale, the emission price drops and a surplus may arise. It is important to 

be aware of the measures offered by the ETS rules to avoid a surplus of allowances. These 

measures result in a decrease in the number of allowances in circulation, as a result of which 

the CO2 price is expected to remain relatively high (Angeren, et al., 2020).  
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Next, we plot the Brent crude one month return series.  

 

Figure III Brent Crude Returns (One Month) 

 

As we can see from the plot, the series looks visually stationary except the fact that there might 

be some outliers. Such as we can see the anomalous spike around the financial crisis of 2008. 

We can also clearly see the impact of recent economic turmoil due to coronavirus on the oil 

price. In our analysis, we will also include the Brent Crude two months and three months return 

to discover the dynamic relationship between the futures contract of one, two and three month. 

The three returns series depicts similar behaviour which can be seen from the plots.  
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5.1 VAR Analysis 

 

As mentioned in the estimation of VAR in our paper, there are primarily three criteria to select 

VAR order for further analysis. All the criteria are based on likelihood and consist of two 

components. The first component is concerned with the goodness of fit of the model to the data, 

whereas the second component penalizes more heavily complicated models. The order is 

selected based on the sequential M-statistic given by: 

 

𝑀(𝑙) =  −(𝑇 − 𝑃 − 1.5 − 𝑘𝑙) ln (
| ∑̂ 𝑎,𝑙|

| ∑̂ 𝑎,𝑙−1|
) 

 

for 𝑙 = 1, … . , 𝑃, 𝑤ℎ𝑒𝑟𝑒  ∑̂𝑎,𝑙  is the residual covariance matrix. However, these are estimates 

and is a good starting point to start our initial analysis. After computing the statistics, we looked 

at the p-values and select an initial VAR order for our model. If 𝑧𝑡 is indeed a Gaussian VAR(𝑝) 

time series with 𝑝 <  ∞, then both BIC and HQ are consistent in the sense they will select 

VAR(𝑝) model with probability 1 as 𝑇 → ∞. After conducting our order selection analysis with 

Carbon Return series and Brent Crude Return series, we see that AIC selected an order of 13, 

BIC selected an order of 1 and HQ selected an order of 2. For our paper, we will initialize our 

VAR model with VAR (2).  

 

 

5.1.1 Model Estimation 

 

With our selected VAR order of 2 estimated by HQ, we start our VAR analysis. From the 

output, the VAR (2) model for the daily returns of Brent Crude and Carbon EUAs is: 

 

𝐂𝐚𝐫𝐛𝐨𝐧 𝐑𝐞𝐭𝐮𝐫𝐧𝐬 (𝐨𝐧𝐞 𝐦𝐨𝐧𝐭𝐡): 

𝑧1𝑡 = 0.551𝑧3,𝑡−1 − 0.653𝑧4,𝑡−1 − 0.0684𝑧1,𝑡−2 − 0.419𝑧3,𝑡−2 + 0.471𝑧4,𝑡−2 + 𝑎1𝑡 

𝐁𝐫𝐞𝐧𝐭 𝐑𝐞𝐭𝐮𝐫𝐧𝐬 (𝐨𝐧𝐞 𝐦𝐨𝐧𝐭𝐡): 

𝑧2𝑡 = 0.292𝑧2,𝑡−1 − 0.391𝑧4,𝑡−1 + 𝑎2𝑡 

 

where, z1t = Carbon Returns, z2t = Brent Returns(one month),  

    z3t = Brent Returns(two month), and  z4t = Brent Returns(three months). 
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The correlation matrix of the residuals is: 

 

𝑅0 = [

1.00 0.214 0.214 0.207
0.214 1.00 0.988 0.969
0.214 0.988 1.00 0.990
0.207 0.969 0.990 1.00

] 

 

We start with the correlation matrix of the residuals. It is evident that the correlation between 

carbon returns and Brent Crude returns is low. However, we can clearly see that the Brent Crude 

Futures are instantaneously correlated with each other and have a high correlation of 0.9. 

Therefore, we can say that the futures contract of Brent Crude has a dynamic interdependence 

on each other.  

 

Now we move to the model interpretation. All the estimates are significant at the usual 5% 

level. The fitted four-dimensional model shows that the returns for carbon futures depend on 

the lagged Brent Crude two-month futures contract positively and negatively dependent on the 

Brent Crude three-month futures contract. Though, the Carbon Futures returns are not 

contemporaneously related with Brent Crude one-month futures contract, the Carbon Futures 

returns are dependent on its lagged value −0.0684. One of the reason that we can attribute to 

the above-mentioned behaviour could be due to hedging tactics deployed by the futures contract 

holder. There has been no evidence of correlation or dynamic interaction between the Brent 

Crude futures contract and Carbon Futures contract. However, the relationship between these 

two contracts might be long-term and can be found by Cointegration or Error-Correction model 

that we deploy in the next section of our analysis. Furthermore, the Brent Crude one-month 

returns are dependent on its lagged value and negatively related with the Brent Crude three-

month returns.  
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5.1.2 Residual Analysis 

 

Residual analysis is an extremely important part of data analysis. We start with the residual 

cross-correlation matrices. The dashed lines of the plots indicate the approximate 2 standard-

error limits of the cross-correlations, that is ±2/√T. Based on the plots, the residuals of the 

model have some strong cross-correlations.  

 

Figure IV Residual Analysis of VAR 

 

Next, we plot the multivariate Portmanteau test to check the residual cross-correlations. The 

below figure plots the p-values of the 𝑄4(𝑚) statistics applied to the residuals of the VAR (2) 

model. Since there are 11 parameters, the degree of freedom of the chi-square distribution for 

Q4(m) is 11.  
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Figure V Portmanteau Statistic 

 

There is a strong indication of serial correlations in the residuals of the VAR (2) model. The 

reason behind it might be that the oil futures contract is dynamically dependent on each other 

and influence each other in both negative and positive way. We have also tried differencing the 

series and the serial correlation tends to pertain.  

 

 

5.1.3 Forecasting 

 

Previously in our analysis, we fitted a VAR (2) model on the return series data. Using this 

model, we consider one-step to five-step ahead forecasts of the returns at the forecast origin 

seventh August of 2020. We also provide the standard errors and root mean-squared errors of 

the predictions. The root mean-squared errors include the uncertainty due to the estimated 

parameters. The results are given in the figure below:  

 

Figure VI Forecast Analysis 



53 

 

From the figure, we can make the following observations. First, the point forecasts of the four 

series move closer to the sample means of the data as the forecast horizon increases, showing 

the evidence of mean reverting. Second, the standard errors and root mean-squared errors of 

forecasts increase with the forecast horizon. The standard errors should converge to the standard 

errors of the time series as the forecast horizon increases. Third, the effect of using estimated 

parameters is evident when the forecast horizon is small. The effect vanishes quickly as the 

forecast horizon increases which is a reasonable explanation because a stationary VAR model 

is mean reverting. The standard errors and mean-squared errors of prediction converges to the 

standard error of the series. An interesting thing would be to forecast the distribution for the 

next day future contract price which itself can be a further research topic.  

 

 

5.1.4 Impulse Response Function 

 

The below figure shows the impulse response functions of the fitted four-dimensional model. 

From the plots, the impulse response functions decay to 0 quickly. This is expected for a 

stationary series.  

 

Figure VII Impulse Response Function 
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We are essentially interested in the first row of plots. The farthest left plot is the impulse on 

Carbon Returns. As per the equation (i), we see a response from the two-month Brent Crude 

futures and the three-month Brent Crude futures. The delayed effect on the Carbon Return is 

due to the fact that a change in Carbon Returns at time t affects the Brent Crude two-month 

return at both t + 1 and t + 2. The impulse also effects Brent Crude three-month return at t + 1 

and t + 2. However, the impulse response functions show the marginal effects, not the 

conditional effects.  

 

 

5.2 Cointegrating Price Relationship 

 

Cointegration tests measures whether the difference in means between two variables remains 

constant. When testing for Cointegration, we use prices rather than returns since we are more 

interested in the trend between the variables’ means over time than in the individual price 

movements. We will start our Cointegration analysis by plotting the price series of Brent 

Futures and Carbon Futures. The time frame for both the series is from January of 2008 till 

August seventh of 2020. The price series has been transformed into natural logarithm to ensure 

scalability of the two variables.  

 

 

Figure VIII Brent Crude and Carbon Price Series 



55 

 

From the above figure, we can see that the two-price series has some co-movements between 

the variables, however, it is not that evident. We can also see some structural breaks around the 

time after 2008, before 2014 and around 2020. These structural breaks can be attributed to the 

facts of financial crisis, and coronavirus.  

 

 

5.2.1 Estimation of the model 

 

The VAR analysis of our paper was conducted based on the returns computed on the price 

series used for the Cointegration analysis here. However, using returns for Cointegration 

analysis might yield spurious results. For this reason, we are using the price series to identify 

whether Brent Futures and Carbon Futures share a common stochastic trend. Furthermore, the 

primary idea behind Cointegration is  

 

𝑋𝑡 − 𝜃𝑌𝑡 = 𝐼(0) 

 

where 𝑋𝑡 is the Carbon Futures price series integrated of order 𝐼 (1),  

𝑌𝑡 is the Brent Futures price series integrated of order 𝐼 (1), 

and 𝜃 is the cointegrated vector.  

 

 

5.2.2 Tests for Cointegration 

 

There are primarily two different tests for Cointegration. We will employ both test here to make 

sure that both test results yield similar results. We will start with Engle-Granger ADF tests of 

Cointegration. Then, we will move on to the Johansen procedure for Cointegration. For both 

tests, we start by selecting the correct lag order. Next, we employ the Cointegration tests to 

check for the equation 𝑋𝑡 − 𝜃𝑌𝑡 = 𝐼(0). If there is a cointegrating vector, we move on to the 

analysis of the long-term relationship between the variables. However, if we do not find any 

cointegrating vector, we conclude our result by stating the fact that the price series are not 

cointegrated.  
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5.2.2.1 VAR Order 

 

From our analysis, we can see that 

according to the AIC the selected lag 

order is 5, according to BIC and HQ 

the selected lag order is 2. As 

previously discussed, BIC and HQ 

are more consistent than AIC. We 

will consider the lag order of 2 for 

our analysis.  

 

 

5.2.2.2 Unit-Root Testing  

 

With the VAR order, we obtained in 

the previous page, we perform the 

ADF test here to determine whether 

the financial variables follow a 

random walk. If the series has unit 

root, then it is said to follow a 

random walk i.e., implying a non-

stationarity condition. For our 

analysis, we deploy the Augmented 

Dicky-Fuller (ADF) Test for 

checking unit root in time series. We 

perform ADF tests for each of our 

variable. As we can see from figure, 

the value of our test statistic is 

−0.8719 and the critical values are, 

−2.58, −1.95, −1.62 for the 1%, 

5% and 10% significance level.  

 

 

Figure IX VAR Order for Cointegration Analysis 

Figure X ADF Test 1 
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In the next test, we considered whether the 

variable is integrated of order 1.  

we got a test statistic of −31.9171 with 

the critical values of −2.58, −1.95, −1.62 

for the 1%, 5% and 10% significance 

level respectively. Clearly, we can see that 

the null hypothesis is rejected, unit root is 

not present. Thus, it is evident that the 

Brent price series is integrated of the order 

1.  

 

 

 

 

 

 

 

Similar test results are yielded when we 

perform unit root tests for Carbon Futures 

price. First, we perform ADF test to check 

whether the price series is a random walk. 

Our test statistic is −0.4115 and 

corresponding critical values are 

−2.58, −1.95, −1.62 for the 1%, 5%, and 

10% significance level. Clearly the series 

is unit-root non-stationary. 

 

 

 

 

 

 

Figure XI ADF Test 2 

Figure XII ADF Test 3 
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Next, we check for whether the price 

series is of 𝐼 (1). The value of our test 

statistic is −34.499 and the corresponding 

1%, 5%, and 10% critical values are 

−2.58, −1.95, −1.62 respectively.  

 

Thus, we conclude that both the price 

series are integrated of order 1. We now 

move on to checking whether the price 

series are cointegrated or not.  

 

 

 

 

 

5.2.2.3 Engle-Granger ADF test 

 

Since there are no theory suggesting the 

value of 𝜃, we first compute the 𝜃 using 

the first-stage OLS regression with the 

following equation: 

𝐶𝑎𝑟𝑏𝑜𝑛𝐹𝑢𝑡𝑢𝑟𝑒𝑠,  

𝑋𝑡 =  𝛽0 + 𝛽1𝐵𝑟𝑒𝑛𝑡𝐹𝑢𝑡𝑢𝑟𝑒𝑠 + 𝑧𝑡 

 

The result of the regression is given in the 

following figure. Our 𝜃 = 0.0491 which 

is not even at 10% level.  

 

 

However, we continue our Cointegration with residuals from the analysis given in the next 

figure.  

 

Figure XIII ADF Test 4 

Figure XV EG-ADF Test 

Figure XIV Residual of EG-ADF Test 
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The result of our Cointegration analysis 

is the given figure. Here we can see that 

the test statistic is −1.3816 and the 

corresponding 1%, 5%, and 10% critical 

values are −2.58, −1.95, −1.62 

respectively. Thus, we conclude our test 

for Cointegration by stating that the 

price series of Brent Futures and Carbon 

Futures are not cointegrated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure XVI ADF Test 5 
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5.2.2.4 Johansen Cointegration Test 

 

In our theoretical construct section, we have discussed the theoretical concept behind the 

Johansen Cointegration Test. In the previous section, we performed an Engle-Granger Test for 

Cointegration and concluded that the price series of Carbon Futures and Brent Futures are not 

cointegrated. To verify our result, we will conduct the Johansen Cointegration test on the price 

series and check the result with the Engle-Granger Test for Cointegration.  

The VAR order selection and the Unit Root Testing is same as the previous section. Our VAR 

order was 2 according to the HQ and BIC criterion and both the price series are integrated of 

order 1. The figure below is our output of the analysis. In the figure 𝑟 is the rank of the 

coefficient matrix for the first lag. When 

the matrix 𝐴 = 0 the series are not 

cointegrated. We perform an eigenvalue 

decomposition on 𝐴. The Johansen Test 

checks if 𝑟 = 0 or 1. In our analysis, the 

test statistic for 𝑟 is 7.09 and the 

corresponding 1%, 5%, and 10% critical 

values are 23.52, 17.95, 15.66 

respectively.  

 

Clearly, we cannot reject the rank of 𝑟 

and conclude that the price series are not 

cointegrated. The result is consistent 

with Engle-Granger Cointegration Test.  

 

 

  

 

 

 

 

 

 

 

Figure XVII Johansen Cointegration Test 
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5.3 Structural Breaks Analysis 

 

Structural break can be caused by new legislation that affects the economy or by a redefinition 

of the policy affect the time series or any significant external effects. A structural break or 

change can have a long-lasting effect on the time series of 𝐼 (1) characteristics. In our paper, 

both Carbon Futures prices and Brent Crude Futures prices are of 𝐼 (1) i.e., integrated of order 

1. Our research hypotheses and literature review indicated that there might be a cointegrated 

relationship between the two-price series, however, the analysis indicated that the series are not 

cointegrated. Such unexpected result led us to the structural break analysis. The figure displays 

the result for the presence of structural breaks in the Carbon Futures price dataset. As we can 

see from the figure, there are five structural breaks, starting at 2009, 2010, 2012, 2013, 2015.  

 

The next figure displays the structural breaks in the Carbon Futures price series. In the 

Discussion section, we will identify some suggestive reasoning behind the price behaviour.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We also conducted a Cointegration analysis with structural breaks however, we did not found 

any significant result. We plotted the Carbon price series along with the regression line 

considering five structural breaks. The figure is illustrated below: 

Figure XVIII Structural Breaks in the Carbon 

Price Series 
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Figure XIX Changes in Carbon Price Series 

 

As we can see from the figure, the aftershock of 2008 financial crisis changed the relationship 

between the Carbon price series and Brent Crude price series. The relationship returned to 

somewhat normalized position after 2014 and before 2016. From the above figure, we can 

assume that due to several macroeconomic policies and external influence the dynamic 

relationship between the Carbon price and Brent Crude price has changed significantly.  
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6 Results and Discussion 

 

In the previous section, we conducted several analyses on the Carbon Futures and Brent Crude 

Futures return and prices. We deployed a VAR model on the returns and we checked whether 

the price-series (Carbon and Brent) are cointegrated. We also checked for structural breaks in 

the series. The final results found on the previous section is summarized here.  

 

Brent Crude Futures returns have some significant effects on the Carbon Futures returns, 

however, the residuals are non-stationary. The price-series of Carbon Futures and Brent Crude 

Futures are not cointegrated. There are five structural breaks in the Carbon Futures price series. 

The break periods are 2009, 2010, 2012, 2013, 2015. The breaks in the price series might be 

the primary reason behind the reasoning of no Cointegration. We also conducted a 

Cointegration analysis with five structural breaks and found out that the relationship between 

the Carbon price series and Brent Crude price series has changed after the shock of 2008 

financial crisis drastically. 

 

The implications for our research work can be manifold in various situations. Firstly, the third 

phase of the EU ETS will be ending by 2020. The policymakers can focus on strategies that 

excludes oil as a primary driver of CO2 emissions and design policy plans regarding coal and 

natural gas based energy sources. Secondly, dynamics of the oil market is more complex than 

it seems which would lead further researchers to investigate on the mechanism of the oil market 

by including other relevant factors such as political influence, demand and supply relationship. 

The CO2 emission can only be a small part of the dynamics. Thirdly, further research between 

the dynamic relationship of fossil fuel (coal, natural gas) and EU ETS might lead to an increase 

in the marginal cost of production for energy which in turn could affect on the price of the 

product. These research works could lead to the increased dependency on the renewable energy 

sources.  

 

In our paper, we attempted to identify the dynamic relationship between the Carbon Futures 

and Brent Crude Futures. There is some effect of Brent Crude Futures return on the Carbon 

Futures return, however, the price series is not cointegrated. Our suggestive reasoning behind 

the behaviour is most industries uses gasoline or coal as an energy input rather than oil. There 

might be some plausible connection between the gasoline or coal prices and Carbon prices if 
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we deploy a Cointegration model for these commodities. The volatility of the Carbon and Oil 

might be cointegrated however, we cannot state it as a fact. Furthermore, there are several 

structural breaks in the Carbon Futures price series which might be another reason for the 

above-mentioned results. The first break date is in 2009 which corresponds to the after-shock 

of the financial crisis happened in 2008. Structural breaks can have long-lasting effect on time 

series that are of integrated of order 1. The European Union Emissions Trading Scheme was 

launched around 2006 to control the effect of Fossil Fuel on our environment and economy. 

The scheme was designed towards the decrease of hazardous gas on our atmosphere. From a 

logical reasoning perspective, it would make sense that the increase and decrease in the price 

of Oil would eventually affect the increase and decrease in price of Carbon. However, as we 

have studied in our paper, the logical reasoning does not hold. The means between the two-

price series is not constant. According to a press release by the European Commission, the EU 

ETS emissions fell 11.6% in 2009 compared to 2008 (European Commission, 2010). The 

structural breaks primarily refer to the price drops that happened during that period. There are 

three commonly identified factors that affects the low EUA price: economic recession, policies 

regarding renewables, and the usage of international credits (Skeptical Science, 2016). 

However, the price variation and the breaks in the series is largely unexplained due to the time 

and resource constraint of our research. Further research is required to identify the imperative 

reason behind the breaks.  

 

As we have seen from our analysis, the Brent Crude Futures and Carbon Futures are not 

cointegrated. Carbon pricing is a penalty to the usage of Fossil Fuel. However, due to myriad 

reasons, it may be wise to associate other energy factors such as gasoline and coal with Carbon 

rather than Oil. Most industry uses gasoline and coal as an input in the energy factor. Brent 

Crude might be imperative to transportation however, it is not than imperative when it comes 

to industry usage. Economist and policy researcher should take it in consideration while 

designing renewables policies. Further research can shed light on the matter of creating 

renewables policies. It would also be interesting to identify the change in volatility given the 

two-price series, Carbon Futures and Brent Crude. The change in volatility could be designed 

as a density function and the changes in it can be measured through the impulses given to it. 

For example, given a high price change at time 𝑡, how would the density plot react at time 𝑡 +

1.  
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Another important improvement over our paper would be to employ the Gregory-Hansen 

Cointegration test which is superior to Engle-Granger test. The Gregory-Hansen test involves 

testing for Cointegration with regime shift at an unknown date. The test would help us identify 

the cointegrating relationship between the Brent Crude Futures and Carbon Futures all along 

the time-period from 2008 to 2020. Further research work on this topic might yield some better 

insight on our assumption that there used to be a cointegrating relationship between the two 

commodities, however, it changed due to some specific structural regime change.  

 

 

 

 

 

7 Conclusion 

 

The relationship between the fossil fuel and carbon is significant to researchers and policy 

makers. The identity of the relationship could help them make decisions that would lead to the 

betterment for the society and environment. In our paper, we found out that the Carbon Futures 

Return and Brent Crude Futures Return (one month) does not have an implied or dynamic 

relationship, however, the Brent Crude Futures Return for two and three months have some 

effect on the Carbon Futures Return. The result could not be generalized immediately and 

should go through some other extensive tests that we discussed in the Results and Discussion 

section of our paper. Furthermore, there is no apparent cointegrating relationship between 

Carbon Futures and Brent Crude Futures price series, however, there are several structural shifts 

in the Carbon Futures price series, which can lead to spurious results for Engle-Granger and 

Johansen Cointegration test results that we conducted. A further improvement over those 

techniques would be to deploy the Gregory-Hansen Cointegration test that captures the 

cointegrating relationship with structural shifts. The results of our paper can help other 

researchers to further investigate the relationship between other types of fossil fuel such as 

natural gas or coal to EUAs. The implications for our paper could help future researchers and 

policymakers focus on the dynamic relationship between coal based and natural gas based 

energy sources and EU ETS excluding the oil based energy sources.  
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