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Head detection in real-world videos is a classical research problem in computer vision. Head detection in videos is challenging than
in a single image due to many nuisances that are commonly observed in natural videos, including arbitrary poses, appearances, and
scales. Generally, head detection is treated as a particular case of object detection in a single image. However, the performance of
object detectors deteriorates in unconstrained videos. In this paper, we propose a temporal consistency model (TCM) to enhance
the performance of a generic object detector by integrating spatial-temporal information that exists among subsequent frames of a
particular video. Generally, our model takes detection from a generic detector as input and improves mean average precision (mAP)
by recovering missed detection and suppressing false positives. We compare and evaluate the proposed framework on four
challenging datasets, i.e., HollywoodHeads, Casablanca, BOSS, and PAMELA. Experimental evaluation shows that the
performance is improved by employing the proposed TCM model. We demonstrate both qualitatively and quantitatively that

our proposed framework obtains significant improvements over other methods.

1. Introduction

Pedestrian detection is gaining much attention from the
research community. Pedestrian detection has numerous
applications in the surveillance domain, such as tracking [1,
2], anomaly detection [3, 4], congestion detection [5, 6],
and behavior analysis [7, 8]. Most of the existing methods
rely on face and pedestrian detection for tracking, counting,
and behavior analysis. While pedestrian and face detection
algorithms have gained much popularity, the task of detect-
ing people in complex scenes is still a challenging task. Face
detectors rely on extracting facial features that cannot be
extracted when the pedestrian turns his back to the camera.
On the other hand, pedestrian detection relies on detecting
the whole pedestrian, which is not possible due to a number
of problems in an unconstrained video environment. With
these limitations, face and pedestrian detection methods can-

not be employed in complex scenes. Therefore, to detect
pedestrians in complex scenes, the head is the only visible
and reliable clue.

Although several efforts have been made in this direction
[9-11], head detection in an unconstrained environment is
still an open issue and has enough room for improvement.
The goal of a good head detector is to detect heads in an
image with a high precision-recall rate. To achieve this, the
head detector must be invariant to scale, pose, and appear-
ance variations. Figure 1 shows the results of a generic head
detector that we trained for this particular task. Despite low
image quality, variations in poses, scales, and appearances,
the generic head detector performed well. However, it misses
many detections and accumulates a considerable number of
false positives.

Inherently, large capacity convolutional neural networks
(CNNs) have translation invariance property and can handle
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FIGURE 1: The results of a generic detector are shown using the Casablanca dataset [18]. Due to variations in human poses, scales, and
appearances, a generic detector accumulates many false positives and missed detection in some frames.

pose and appearance variations in the image. This is due to
the reason that CNNs have achieved tremendous success in
object classification, detection, and segmentation tasks.
Generally, most of the existing CNN-based methods deal
head detection as a special case of object detection problem
[12-16]. Vu et al. [16] proposed three models for person
head detection, i.e., local model, global model, and joint
model. Their local model is similar to the region-based con-
volutional neural network (R-CNN) [15] and uses the selec-
tive search (SS) [17] method for generating object
proposals. The joint model exploits the contextual relation-
ship among the pairs of detected heads. However, these
models are computationally expensive. The region with
CNN (R-CNN) method [12] generates 2000 region pro-
posals using the SS method. Each proposal is then resized
to fit the input of CNN and feed-forward to the network
that extracts hierarchical features from the last convolution
layer (5th layer of AlexNet). After extracting hierarchical
features, SVM is trained to detect objects in the image. Fas-
ter R-CNN [15] proposed a two-stage network that uses a
region proposal network (RPN) to generate high-quality
object proposals. Faster R-CNN achieved superior results
in various object detection tasks; however, the method suf-
fers from computation complexity. You only look once
(YOLO) [14] proposed a regression-based method that pre-
dicts the probabilities of classes by applying regression
between pixels of an image and object bounding boxes.
YOLO uses a limited number of candidate’s regions for
object detection. This strategy makes the YOLO faster than
Faster R-CNN; however, the accuracy of YOLO is lower
than Faster R-CNN. A single-shot detector (SSD) [13] pro-
duces a predefined number of object proposals by exploit-
ing a fully convolutional neural network and predicts class
probabilities of candidate bounding boxes. High confidence
bounding boxes are retained, and low confidence bounding
boxes are removed by applying the nonmaximum suppres-
sion method (NMS).

The above-mentioned object detection methods pro-
duce state-of-the-art results using static images; however,
the performance of these detectors degrades when applied
to videos.

This may attribute to the following two challenges:

(1) In videos, pedestrians pass through significant varia-
tions in scale, pose, texture, and illumination. These
variations cause intraclass variability that degrades
the performance of a detector. In most of the cases,
the detector misses the detection or accumulates false
positives that result in low mAP

(2) Object detectors based on CNN learn hierarchical
features from raw images; however, they do not have
the ability to leverage the temporal consistency
among consecutive frames of a video

To address the above challenges, we proposed an
approach that enhances the mAP of a generic detector.
Figures 2 and 3 illustrate that the efficiency of the generic
detector is improved by employing our proposed method
that suppresses false positives and recovers missed detection.
Generally, our approach has the following contributions:

(1) We propose the temporal consistency model (TCM)
that leverages spatial and temporal information of
video that exists between consecutive frames. An
energy function is defined based on intensity and gra-
dient consistency assumption that estimates the dis-
placement vectors of all pixels of the image

(2) Using TCM, we enhance the performance of the
generic detector by addressing two problems, i.e.,
suppressing false positives and recovering missed
detection

(3) To suppress false positives, we propose an algorithm
that uses the TCM model to leverage temporal infor-
mation and to assign a confidence score to each
detection

(4) In order to recover missed detection, a dual-mode
tracking technique is adopted

(5) We use four challenging benchmark datasets, Holly-
woodHeads [16], Casablanca [18], BOSS [19], and
PAMELA [20], to evaluate our approach. From
experimental results, we observe that the mean aver-
age precision (mAP) of the generic detector is
increased by 10% by considering the TCM model

The rest of the paper is organized as follows. We discuss
related work in Section 2. Section 3 elaborates the details of
the proposed method. Experiment results are discussed in
Section 4. Section 5 discusses the conclusion and future work.

2. Related Work

Person head detection has numerous applications in video
surveillance. Despite significant importance, little work has
been reported in the literature regarding head detection.
Most of the existing methods focus on face detection and
pedestrian detection. These methods model the problem of
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FIGURE 3: It shows improved results by recovering missed detections via the proposed unique tracking method.

head detection as a multiobject detection problem. Head
detection can provide localization information that can be
further utilized for face recognition in real-time applications.
For the face recognition problem, some researchers focused
on metric learning [21-23], and some researchers focused
on feature representation [24-27]. In this section, we review
some methods for face detection and head detection.

With the tremendous success of CNNs, most of the cur-
rent methods are based on CNNs for detecting faces in
images and videos [28, 29]. In recent years, many methods
have been proposed in the literature that exploits contextual
information for detecting human faces in complex scenes
[30, 31]. In order to capture a wide range of scales, Hu and
Ramanan [32] proposed a method that finds tiny faces by
exploiting contextual information. Hao et al. [33] propose a
face detector that detects human faces in a wide range of
scales in an image. Face detection also plays an important
role and serves as a preprocessing step in face recognition
problems. Lu et al. [25] proposed a face recognition model
by learning face descriptors using the feature mapping of
pixel vectors. Duan et al. [34] exploit contextual information
by using the local binary feature of adjacent pixels. The aim
of metric learning is to measure similarity among features.
Hu et al. [22] proposed a multimetric learning model by
learning global distance metrics. We claim that our proposed
model can also be used to improve the performance of face
recognition systems by suppressing regions that do not con-
tain humans’ heads.

Generally, the task of head detection is similar to face
detection, but compared to the structure of the face, the head
has a limited number of features and can change drastically
due to perspective distortions. Therefore, we cannot apply a
face detector for the head detection task. Since face detectors
rely on facial features, these features are impossible to extract
when a person turns his back to the camera. The traditional
head detection model uses statistical features to learn a non-
linear classifier. For instance, Viola and Jones [35] used
Haar-like features and learn a Haar-cascade classifier for face
classification. The method is then improved and extended by
[18] using a conditional random field (CRF). The deformable
part model (DPM) [36] is a popular model that used a histo-

gram of oriented gradient (HOG) features. Ishii et al. train a
linear classifier using hand-craft features. These traditional
methods work well in a low-density environment; however,
their performance suffers in complex scenes. Moreover, these
models incur high computational costs due to the computa-
tion of complex features.

Recent head detection models are based on the convolu-
tional neural network that extracts hierarchical features and
learns a better representation of human heads. With the suc-
cess of using contextual information in object detection tasks,
Vu et al. [16] exploit contextual information by proposing a
context-aware CNN model that leverages the relations
between person-to-scene and person-to-person. Li et al.
[37] proposed Faster R-CNN-based model that exploits
regional context. Similarly, Wang et al. [38] fused multiscale
features using SSD [37]. These methods improve the existing
generic detection models, i.e., Faster R-CNN and SSD, by
incorporating multiscale fusion strategy and contextual
information. Furthermore, the most recent head detection
method is proposed in [39] that employs the CNN model
and learns the semantic connection between the human head
and other body parts. Li et al. [9] proposed an end-to-end
adaptive relational network that exploits contextual informa-
tion to detect heads.

3. Proposed Methodology

In this section, we discuss the proposed methodology of
detecting human heads. The pipeline of our framework has
two sequential stages. In the first stage, we use an existing
generic head detector to obtain initial head detection. The
detection obtained during the first stage contains false posi-
tives. Moreover, the detector may suffer from miss detection
at this stage. In the second stage, the obtained detections are
refined by employing our proposed TCM model that sup-
presses false positives and recover missed detection, hence
improving mean average precision (mAP) and recall rate.

3.1. Head Detection. Our head detection model follows the
traditional pipeline of Faster R-CNN [15]. We use the model
that is initially trained on ImageNet [40] and fine-tuned it on



the HollyWood dataset [16] for head detection. We use sev-
eral backbone architectures, for example, VGG16 [41],
VGGM [41], and ZF [42]. From empirical studies, we
observed that VGG16 outperformed other architectures but
caused computational complexity during training and test-
ing. Faster R-CNN is a two-stage network. During the first
stage, the region proposal network (RPN) generates pro-
posals of various scales, while the classification of these object
proposals is carried out in the second stage. We also fine-
tuned the YOLO model [14] and single-shot detector (SSD)
[13] on the HollywoodHeads dataset. These models tackle
detection as a regression problem. To tackle the scale prob-
lem, YOLO divides the image into 13 x 13 cells of equal size.
YOLO then treats each cell of a gird as an object proposal and
predicts its confidence score. We observe that YOLO works
faster as compared to its counterparts; however, it compro-
mises the accuracy.

3.2. Temporal Consistency Model. Detection obtained by pre-
vious methods contains false positives. Moreover, the detec-
tor may suffer from miss detection due to occlusion and
severe clutter in the scene. In order to address this problem,
we leverage spatial-temporal information that naturally
exists in videos. Generally, in object detection tasks, end-to-
end learning is the most useful way of solving detection prob-
lems; however, in the case of videos, the end-to-end learning
approach can cause significant computational and memory
costs. Therefore, as a solution, we propose a TCM model
based on intensity and gradient consistency assumption.
We assume that objects detected in the first frame travel
few pixels, thereby maintaining intensity and gradient con-
sistency. To mathematically model this assumption, we
define an energy function E. Energy function E has two main
components, i.e., the intensity constancy model and the gra-
dient constancy.

For calculating displacement vector, which represents the
change in x and y directions, we assume that the intensity
does not change [43] and is given by

W(i,j, k) =W (i+% j+ 7 k+1), (1)

where ¥ : y e R* - R is the bounding box represented as a
4-D vector (i, j, X, 7), where 7:= (%, 7, 1) is the displacement
vector and (i, j) represents spatial coordinates of a pixel.

For calculating 7, we only consider (i, j) and assume the
width and height of bounding box ¥ are the same. Therefore,
we do not consider the size of the bounding box in the equa-
tion. In our calculations, we assume the gradient of intensity
values. Since the intensity values of pixels are very sensitive to
environmental changes, small changes in illumination may
cause a huge change in the intensity values of pixels. In our
calculation, we assume that the gradient of intensity values
does not change due to the illumination and other environ-
ment disturbance [44] and is given by

V(i j k) = V(i +% j+ 7, k+1), (2)

where V is the gradient that captures the change in pixel’s
intensity value between current frame k and next frame k + 1.
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Equation (2) does not consider the influence of neighboring
pixels. In this case, the model may encounter a problem of
diminishing gradient. Moreover, this model may also catch
outliers. In order to incorporate the influence of neighboring
pixels, we employ spatial and temporal smoothing con-
straints in Equation (2).

After defining intensity and gradient consistency
assumptions, we now formulate an energy function that
computes the cost of deviations from the above-mentioned
assumptions. The cost of deviation from the intensity and
gradient consistency assumption [43] is computed as follows:

E,= J (I (s+1) = F(s)|* + 0|V (s + 7)-V¥(s)[*)ds, (3)
Y

where s:= (i, j, k) and v balances two terms in the equation.
The smoothness equation which computes the cost of total
variations in the flow field is computed as follows:

E, - J (‘V§‘2+‘V}A}’2)ds. (4)
Y

The final energy function E is the linear combination of
Equations (3) and (4) and is given by

E(x,y)=E, + aE,, (5)

where « is a regularization parameter with a > 0. For every
pixel, we compute its displacement vector by minimizing
the above energy function in Equation (5).

We now discuss our proposed temporal refinement algo-
rithm that leverages temporal information to suppress false
positives and recover missed detection.

3.2.1. Suppressing False Positives. Before recovering the
missed detection, we first refine the detection by suppressing
false positives. Let D, = {d,, d,, -+, d, } represents n number
of detections in frame t. Let Q={D,,D,,---,D,,} is a con-
tainer that contains detections of video sequence having m
frames. To suppress false positives in frame k, we use similar-
ity criteria ¢ between the detection d, in the current frame
and detection d,; in the next frame.

Algorithm 1 takes D, for frame k as an input and gives a
refined output R,. For each detection, d; € D, at frame k, we
first define a temporal window W, and then by using Equa-
tion (5), we compute its location in the next frame k + 1.
We then compute similarity o, and distance 7 between the
centroids of the current detection d;, and all detections
belongs to Dy,. We then select detection d; that gives a max-
imum value of ¢. We compute the final score ¢ for each
detection d; considering the predefined temporal window of
size W. We define a threshold € and delete detections whose
confidence score is less than 0.5. We process whole container
Q in the same way.

3.2.2. Recovering Missed Detection. After refining detection,
the next step is to recover detection that was missed by the
generic detector. We utilize the method in [18] to recover
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Input: Detections D,

Output: Refined detections R,

1: function DETECTION REFINEMENT D,
2: R <0

3t Dyy :{dl’dz"">dk+w}

4: for each detection d, in D, do

5: for each dj in Dy,, do

6: Compute similarity o(d;, d;) = |d; - d;/d; + d|
7: Compute distance 7(d;, d;) = /(d; - dj)2
8: ¢=¢+(1-(t/Max (W, H))o)

9: end for

10: if /W > e then

11: Insert d; in Ry,

12: end if

13: end for

14: return R,
15: end function

ArGoriTHM 1. Refinement algorithm.

the missed detection via tracking. Generally, the tracker has
two modes:

(1) Tracking via detection and

(2) Tracking via temporal correlation

For every detection, a tracker is initialized at frame k. If
detection is found in frame k + 1, the tracker follows the first
mode. This mode is robust and invariant to the appearance,
scale, and pose of human heads. In case the tracker could
not find the detection in the next frame, it switches to the sec-
ond mode.

In the second mode, for each detection d;, we compute
the next location of detection by using Equation (5). For
detection d; at frame k, let p, and s, represent its position
and scale, respectively. Let p, and 5, are the observations
and Py, and Sy, are the predictions. We keep head tem-

plate patch H,,, search for the best match in the next frame

around location py;,, and size $y,;. The matching criteria
are based on texture and appearance similarity between
H,, and patch in the next frame. We assign detection d;
to a current track if [Bye,, - .| << and [Syers St | <
B, where p,, is the position and s, is the size of detection

dj at frame k + 1. In case the tracker does not find the best
match, the tracker update H ., as follows:

Hpatch = (1 - pratch + wI(pkH’ Sk+1))’ (6)

where y is the balancing parameter and I(p,,;, ;) is the
patch in the next frame. In our experiments, we fix the value
of y to 0.3. During tracking, we maintain N, and N,, where
N, is the number of frames that a tracker follows mode 1 and
N, represents the number where the tracker follows mode 2.

4. Experimental Results

In this section, we discuss experimental results, and in order
to qualitatively and quantitatively evaluate our proposed
method, we use four publicly available benchmark datasets,
i.e, HollywoodHeads, Casablanca, BOSS, and PAMELA
datasets. We have shown sample frames from these datasets
in Figure 4. We provide the details of each dataset as follows:

The BOSS dataset is originally proposed in [19]. This
dataset contains 16 video sequences collected using 9-10
cameras on the moving train. The video sequences cover dif-
ferent anomalous behaviors, for example, theft, fight, and
fainting as well as normal behaviors. The dataset is initially
proposed to evaluate anomaly detection algorithms. How-
ever, the dataset also contains normal behaviors where peo-
ple walk along the corridor of the train in different
directions. One of the problems with the BOSS dataset is that
it provides annotations for different anomalous and normal
behaviors; however, annotations of heads are missing. There-
fore, we annotate human heads and generate ground truth
for all video sequences of the BOSS dataset. For annotations,
we use the VIPER-GT [45] publicly available annotation tool
and mark the position of each person by drawing a bounding
box around the head. It is to be noted that we extend the size
of the bounding box by 10% following the convention in [46].
After generating the ground truth, we then extract positive
patches (belong to the head in the original image) and back-
ground for training the network.

PAMELA dataset is first proposed by [20]. This dataset is
collected in 2008 to simulate the metro carriage at the Lon-
don Underground station. The dataset consists of video
sequences captured from different cameras with different
viewpoints. For the human head detection problem, we use
video sequences that were captured from the orthogonal
views to avoid perspective distortions. The dataset covers
two main situations at the train station:

(1) People alighting or getting off the train
(2) People waiting and then boarding

The alighting situation contains eight video sequences;
waiting and boarding contain seven video sequences. The
duration of each video sequence is about 1 to 2 minutes, with
the 352 x 588 resolution and frame rate of 25 frames per sec-
ond. For generating the ground truth, the authors used
ViPER [47] to annotate the head of pedestrians in each
frame. While annotating human heads, the authors extend
the bounding box to cover also the shoulder of pedestrians
in order to capture contextual information. We then generate
positive and negative samples for training and testing the
model. Our training set consists of a total of 109,376 samples,
among which 43,751 are positive, and 65,625 are negative
samples, while the testing set consists of 103,831 samples,
among which 41,533 are positive and 62,298 are negative
samples.

HollywoodHeads dataset is first proposed by Vu et al.
[16] for evaluating head detection models. The dataset con-
tains a total of 224,740 images that were collected from 21
Hollywood movies. The video sequences demonstrate huge



(c) PAMELA dataset
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(d) HollywoodHeads dataset

FIGURE 4: Samples from benchmark datasets.

variations in illumination, camera viewpoints, pose, and
scales of human heads. In this dataset, 369,846 human heads
are annotated in a way that can be easily deployed to train
deep convolutional networks. The authors adopt the frame
skip strategy by annotating the initial frame, and consecutive
frames are annotated by linear interpolation of bounding
boxes. For training and testing, we follow the same conven-
tion adopted by the authors. We use 216,719 frames for train-
ing (collected from 15 movies) and 1,302 frames (collected
from the remaining 3 movies) for validation.

Casablanca dataset contains video sequences from the old
movies and was first proposed by Ren [18] for evaluating
head detection models. The dataset contains 147,600 frames
of low resolution 464 x 640 and high variations in head scales
and poses. The dataset is annotated in a way to cover the
front face of people. To evaluate the effectiveness of the pro-
posed TCM, we use different state-of-the-art generic detec-
tors, for example, Faster R-CNN [15], YOLO [14], SSD
[13], and R-CNN [12]. It is to be noted that the choice of
these generic detectors is arbitrary. Instead of these detectors,
one can use any good human detection model that is robust
and performs detection in a wide range of scales. These detec-
tors are used to provide initial detections that will be refined
by employing the proposed TCM. It is to be noted that we
train each of the above generic detectors from scratch. We
first trained each detector using the ImageNet dataset and
then fine-tuned the model on benchmark datasets used in
this work. To evaluate the effectiveness of the proposed
approach, we used mean average precision (mAP) that is cal-

culated from the area under the precision-recall curve and
has been used as a standard metric for evaluating object
detectors.

4.1. Ablation Study. We follow the original implementation
of generic detectors for ablation study. However, we intro-
duce some changes during fine-tuning the network. For
training Faster R-CNN, the frames used for testing are first
rescaled to a shorter dimension of about 500 pixels. We keep
the size of anchor boxes up to 10 scales, which has the poten-
tial for capturing scale variations in the image. In our exper-
iments, we used different backbone networks, for example,
VGGI16 [41], VGGM [41], and ZF [42]. During the fine-
tuning process, we allow 100k iterations and we analyze the
network performance using mAP at every 10k interactions,
as shown in Figure 5. From the figure, it is obvious that
VGG16 performs well compare to other networks.

In the same way, we trained SSD and YOLO detectors,
and the performances of these detectors are shown in
Figure 6. For SSD, we use VGG16 as baseline architecture.
From Figure 6, it is evident that YOLO performed compara-
tively lower than SSD. This is due to the fact that YOLO used
a limited number of object proposals for detecting objects in
the scene.

During the ablation study, we use different state-of-the-
art generic detectors with different backbone CNN architec-
tures. Comprehensive results on each dataset are reported
in Tables 1-4. The third row of all tables shows the mean
average precision (mAP) obtained by the detectors. The
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Validation accuracy: faster R-CNN
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FIGURE 5: Performance of Faster R-CNN using different network architecture at every 10k iteration on HollywoodHeads dataset.

Validation accuracy: SSD and YOLO
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FIGURE 6: Summary of the performance of the network at different iterations using YOLO and SSD.

fourth column of all tables shows the mAP after employing
the proposed TCM. It is obvious from the fifth column of
all tables that mAP is improved for all detectors after employ-
ing the proposed TCM model.

From the third column of tables, it is obvious that the per-
formances of generic detectors reach to 78% to 80% in some
cases; however, there is still room for improvement. From

empirical studies, we observe that generic detectors suffer from
missed detection and accumulate false positives that lower the
precision and recall rates. The proposed TCM model tackles
this problem by employing spatiotemporal information that
suppresses false positives and recovers missed detection.
Table 1 shows the performance of different generic detec-
tors on the HollywoodHeads dataset. From the table, it is



Journal of Sensors

TaBLE 1: Performance evaluation on HollywoodHeads dataset.

Detectors Baseline CNN mAP TCM (mAP) Improvement (%age)
7F [42] 0.76 0.83 9.20%
Faster R-CNN [15] VGG16 [41] 0.79 0.85 7.59%
VGGM [41] 0.78 0.81 3.84%
ZF [42] 0.71 0.79 11.26%
R-CNN [12] VGG16 [41] 0.74 0.83 12.16%
VGGM [41] 0.72 0.81 12.67%
YOLO [14] 13-layered architecture 0.39 0.46 18.42%
SSD [13] VGGI6 [41] 0.43 0.54 25.58%
Average 12.59%

TaBLE 2: Performance evaluation on Casablanca dataset.

Detectors Baseline CNN mAP TCM (mAP) Improvement (%age)
7F [42] 0.48 0.54 12.50%
Faster R-CNN [15] VGG16 [41] 0.55 0.61 10.90%
VGGM [41] 0.51 0.55 7.84%
7F [42] 0.43 0.45 4.65%
R-CNN [12] VGG16 [41] 0.53 0.57 7.54%
VGGM [41] 0.48 0.53 10.41%
YOLO [14] 13-layered architecture 0.31 0.40 20.30%
SSD [13] VGG16 [41] 0.38 0.42 10.52%
Average 8.46%

TaBLE 3: Performance evaluation on BOSS dataset.

Detectors Baseline CNN mAP TCM (mAP) Improvement (%age)
ZF [42] 0.74 0.79 6.75%
Faster R-CNN [15] VGGI16 [41] 0.80 0.87 8.75%
VGGM [41] 0.78 0.84 7.69%
ZF [42] 0.72 0.79 9.72%
R-CNN [12] VGG16 [41] 0.75 0.83 10.95%
VGGM [41] 0.73 0.80 9.58%
YOLO [14] 13-layered architecture 0.72 0.82 13.88%
SSD [13] VGG16 [41] 0.75 0.81 8.00%
Average 7.54%

obvious that generic detectors achieve good performance in
detecting heads. This is due to the reason that the Holly-
woodHeads dataset contains heads of large size (_100 pixels),
and scale variations are not significantly large. Therefore, it is
a trivial job for a single-scale detector to detect heads in this
dataset. However, we observe that these detectors missed
many detections in different frames.

Furthermore, these detectors also accumulate false posi-
tives that reduce precision and recall rates. However, by
employing the proposed TCM model, the performance of
each detector is improved by 12.56% on average, as shown

in the fourth column of the table. Table 2 shows the perfor-
mance of detectors on the Casablanca dataset. From the table,
it is obvious that generic detectors could not perform well as
compared to other datasets. This is due to the reason that the
dataset contains low-resolution frames, with significant vari-
ation in head scales. Furthermore, the size of heads in most of
the cases was extremely small, and it was challenging for
generic detectors to detect small heads. However, by employ-
ing the proposed TCM, the average performance of the
generic detector is improved by 8.46%. Table 3 shows perfor-
mance on the BOSS dataset. It is evident that generic
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TABLE 4: Performance evaluation on PAMELA dataset.

Detectors Baseline CNN mAP TCM (mAP) Improvement (%age)
ZF [42] 0.63 0.67 6.34%
Faster R-CNN [15] VGG16 [41] 0.67 0.71 5.97%
VGGM [41] 0.65 0.69 6.25%
ZF [42] 0.52 0.55 5.76%
R-CNN [12] VGG16 [41] 0.56 0.59 5.35%
VGGM [41] 0.54 0.59 8.25%
YOLO [14] 13-layered architecture 0.59 0.63 6.77%
SSD [13] VGG16 [41] 0.62 0.64 3.22%
Average 4.79%
BOSS ) PAMELA
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FIGURE 7: Precision-recall curves of different specific detectors on different datasets.

detectors perform well on this dataset as compared to other ited scales and perspective distortions that make head detec-
datasets. The dataset is relatively less dense and contains 2-  tion trivial in this dataset. As obvious from the fourth column
5 persons per image. The heads are clearly visible with lim-  of the table that by employing the proposed TCM, the
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Faceness [44]

Proposed

F1GURE 8: Qualitative comparison of the proposed method with reference methods using all benchmark datasets. The first row shows the
results on the Casablanca dataset, the second row shows results on the BOSS dataset, the third row shows results on the HollywoodHeads

dataset, and the last row shows results on the PAMELA dataset.

performance is increased to 7.53%. Table 4 shows perfor-
mance on the PAMELA dataset. In this dataset, the proposed
TCM model improves the performance of generic detectors;
however, the average performance is 4.79 which is lower than
achieved on other datasets. This is due to the reason that
TCM could not recover detections. The tracker is lost after
a few frames due to poor quality of image, cluttered back-
ground, and illumination changes.

From the tables, it is observed that the performance of
generic detectors is relatively high on all datasets except
PAMELA. The lower performance attributes to the complex-
ity of the dataset. This dataset contains human heads of rela-
tively small size, and it is challenging for the generic detector
to detect such small human heads. The reason is that generic
detectors generate a feature map from the last convolutional
layer due to which features of the small objects become too
small to be detected.

4.2. Comparison with a Head Detector. In this section, we
compare the performance of different state-of-the-art head
detectors with the proposed framework. These head detec-
tors include VJ-LBP [35], VJ-HOG [35], Faceness [29],
deformable part model (DPM-Head) [36], deformable part
model (DPM-Face) [36], fully convolutional head detector
(FCHD) [48], Reinspect [49], and context-aware convolu-

tional neural network for head detection (Context-CNN)
[16]. For comparisons, we select the best model among the
models discussed in Tables 1-4. For fair comparisons, we
use pretrained models of state-of-the-art head detectors and
fine-tuned the models on analyzed datasets. From our empir-
ical studies, we observe that the performance of state-of-the-
art head detectors improves after finetuning. We use a
precision-recall curve with different thresholds to rigorously
evaluate the performance of head detectors.

The performance of different state-of-the-art detectors is
shown in Figure 7. As evident from Figure 7, the proposed
model outperforms state-of-the-art methods in all bench-
mark datasets.

We observed that Faceness [29] performs relatively low
than other competing methods. This is due to the reason that
the Faceness model is designed for face detection problems.
The model extracts facial features from the image in order
to detect human faces. However, we observe that the Face-
ness model could not effectively extract facial features from
the image due to occlusions, variation in illumination, scale,
and pose. For example, it is challenging for a face detector
to detect the face of a person who turns his back to the cam-
era. Furthermore, we observed that VJ-LBP and VJ-HOG
performed significantly lower than other detectors. This is
due to the fact that these detectors are based on the
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TaBLE 5: Speed versus accuracy of different detectors before and after employing the proposed TCM model.
Detection models Before TCM After TCM
mAP Speed (FPS) mAP Speed (FPS)
Faster R-CNN [15] 0.80 17 0.87 10
Generic detectors YOLO [14] 0.72 50 0.82 43
SSD [13] 0.75 52 0.81 47
Context-CNN [16] 0.81 10 0.88
Specific detectors FCHD [48] 0.76 12 0.83
Faceness [29] 0.79 19 0.82 13

traditional Viola-Jones algorithm and the sliding window
approach makes the algorithm slow and unfeasible in real
time. Furthermore, due to the sliding window approach, the
algorithm generates many bounding boxes, and miss classifi-
cation accumulates many false positives that lower precision
and recall rates. We also observe that DPM faces problems in
detecting small human heads as DPM detects human parts of
size up to 23 x23 pixels. However, Context-CNN [16]
achieves comparable performance by utilizing both R-CNN
as baseline model and exploits contextual information for
human head detection in complex scenes. FCHD [39] on
the other hand utilizes whole-body context to detect human
heads; however, in complex scenes, whole body is not always
visible.

The proposed framework, on the other hand, achieves
state-of-the-art performance by adopting the temporal con-
sistency model (TCM) that improves the performance of
generic detectors. Through this work, we show that generic
detectors compared to the specific detector (that are specially
designed for head detection task) can perform well by inte-
grating the proposed TCM model.

We also qualitatively evaluate and compare results with
other reference methods in Figure 8. It is evident from the
figure that by integrating the proposed model, a generic
detector achieves better performance compared to head
detection models specifically designed for head detection
tasks.

4.3. Inference Speed. In this section, we discuss the inference
speed of detectors before and after the integration of the pro-
posed TCM model. For all experiments, we used a desktop
computer equipped with Intel Core i7-8700K 8th generation
CPU, 16 GB RAM, and NVIDIA Titan Xp GPU. It is also to
be noted that the implementation of generic detectors, e.g.,
Faster R-CNN, SSD, and YOLO, is done in PyTorch library,
while specific detectors, for example, FCHD, Context-CNN,
and Faceness, is done in Keras and TensorFlow. We report
the inference speed (in frames per second) versus accuracy
(in terms of mean average precision (mAP)) for each detector
with a batch size of 1 in Table 5. From the table, it is obvious
that the performance of generic as well as specific detectors is
improved after employing the proposed TCM model. How-
ever, integration of the proposed TCM model caused addi-
tional cost (in terms of speed). This is due to the reason
that analyzed generic and specific detectors are specifically

designed to detect heads in a single frame of video, while
the proposed TCM model improves head detection by
exploiting temporal consistency that exists among multiple
frames. To model temporal consistency, the proposed TCM
model causes additional cost by recovering missed detection
and suppressing false positives in the selected temporal
sequence.

5. Conclusion

In this work, we propose a novel model to recover missed
detection and suppress false positives by leveraging temporal
consistency that exists among subsequent frames of videos.
The main objective of this work is to improve the perfor-
mance of generic object detectors by integrating spatial-
temporal information. We evaluate our proposed model
using challenging benchmark datasets that contain severe
clutter and occlusions. From experiments, we observed that
the mAP is improved by employing the proposed temporal
consistency model. We believe that the proposed model can
also be applied to any other object detector. Our model can
also be useful in identifying and localizing human behaviors
and emotion recognition and is part of our future work.

Data Availability

We used publicly available datasets in our research. The
source and URL of the datasets are given in the follow-
ing. The sources are also cited in the paper: Hollywood-
Heads dataset: https://www.robots.ox.ac.uk/~vgg/software/
headmview/;Casablanca dataset: https://www.di.ens.fr/willow/
research/headdetection/;Boss ~ dataset:  http://velastin.dynu
.com/videodatasets/BOSSdata/;PAMELA dataset: https://www
.di.ens.fr/willow/research/headdetection/.
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